
A MODULAR MATRIX-FREE APPROACH TO
MULTIDISCIPLINARY DESIGN OPTIMIZATION

By

Alp Dener

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: AERONAUTICAL ENGINEERING

Approved by the
Examining Committee:

Jason E. Hicken, Thesis Adviser

Assad Oberai, Member

Onkar Sahni, Member

John E. Mitchell, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2017
(For Graduation December 2017)

c© Copyright 2017

by

Alp Dener

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1. INTRODUCTION AND CONTRIBUTIONS 1

1.1 A Generic Multidisciplinary Analysis Statement 2

1.2 Simultaneous Analysis and Design . 3

1.3 Multidisciplinary Feasible . 4

1.4 Individual Discipline Feasible . 5

1.5 Contributions . 6

1.5.1 Second-Order Adjoints for KKT Matrix-Vector Products . . . 6

1.5.2 Matrix-Free Preconditioner for the IDF Architecture 7

1.5.3 Parallel-Agnostic Optimization Library 7

1.6 Thesis Outline . 7

2. REDUCED-SPACE INEXACT-NEWTON-KRYLOV ALGORITHM . . . 9

2.1 Introduction . 9

2.2 Sequential Quadratic Optimization Review 10

2.2.1 Adjoint Method for Calculating Derivatives 13

2.3 Inexact-Newton for Optimization . 14

2.3.1 Matrix-Free KKT Matrix-Vector Products 15

2.3.2 Extending FGMRES for Nonconvexity 19

2.3.3 Globalizing the Newton Step 21

2.4 Algorithm Overview . 22

2.5 Application: High-Fidelity Aerodynamic Shape Optimization 24

2.5.1 Baseline Geometry . 24

2.5.2 Objective Function and Problem Setup 25

2.5.3 CFD Solver . 26

2.5.4 Impact of Regularization . 27

2.5.5 Optimization Results . 28

2.6 Summary . 31

iii

3. MATRIX-FREE PRECONDITIONER FOR THE IDF ARCHITECTURE 32

3.1 Introduction . 32

3.2 Constructing the Preconditioner . 33

3.3 Invertibility of the IDF Constraint Jacobian 34

3.4 Nested Linear Solutions . 38

3.5 Preconditioner Overview . 39

3.6 Numerical Examples . 40

3.6.1 Domain Decomposition as a Model MDO Problem 40

3.6.1.1 Objective Function and Problem Setup 43

3.6.1.2 IDF Preconditioner Results 45

3.6.1.3 Optimization Results 45

3.6.2 Aero-Structural Optimization of a 2-D Elastic Nozzle 48

3.6.2.1 Quasi-1D Flow Solver 49

3.6.2.2 Linear Elastic Structural Solver 49

3.6.2.3 Monolithic MDA and Adjoint Solutions 51

3.6.2.4 Nozzle Geometry . 53

3.6.2.5 Objective Function and Problem Setup 53

3.6.2.6 IDF Preconditioner Results 55

3.6.2.7 Optimization Results 56

3.7 Summary . 57

4. PARALLEL-AGNOSTIC OPTIMIZATION LIBRARY 60

4.1 Introduction . 60

4.2 PDE-Solver Interface . 63

4.2.1 Abstract Vectors . 63

4.2.2 Vector Allocator . 64

4.2.3 Solver Wrapper . 65

4.3 Linear Algebra Abstraction . 65

4.3.1 Kona Memory Manager . 67

4.3.2 Vector Factories . 68

4.3.3 Kona Vectors . 68

4.3.4 Kona Matrices . 69

4.4 Optimization Tools and Algorithms 70

4.4.1 Optimization Algorithms . 71

4.4.2 Hessian Approximations . 72

iv

4.5 Verification Tests . 72

4.6 Summary . 75

5. AN AERO-STRUCTURAL DESIGN OPTIMIZATION 77

5.1 Introduction . 77

5.2 Optimization Problem Statement and Setup 78

5.2.1 CFD Solver . 80

5.2.2 Structural Solver . 81

5.2.3 Multidisciplinary Solution for MDF 81

5.3 IDF Preconditioner Results . 82

5.4 Optimization Results . 84

5.5 Summary . 88

6. CONCLUSIONS AND FUTURE WORK 89

6.1 Future Research Areas . 90

6.1.1 Theory-Based Update of the FLECS Penalty Parameter . . . 90

6.1.2 Extending RSNK to Inequality Constraints 91

6.1.3 Matrix-Free Constraint Jacobians in Quasi-Newton SQO Meth-
ods . 92

REFERENCES . 94

APPENDICES

A. SUPPLEMENTARY RESULTS FOR AERODYNAMIC SHAPE OPTI-
MIZATION . 102

v

LIST OF TABLES

2.1 Number of control points in each direction shown for the range of FFD
box sizes used in the ASO test case. 25

3.1 Subdomain configurations tested with the Laplace problem. 44

3.2 Optimization parameters for the Laplace problem. 44

3.3 Optimization parameters for the elastic nozzle problem. 55

4.1 Operations defined by the ISolver interface. 66

4.2 Optimization statements for Kona verification problems. 73

5.1 Size of the aero-structural optimization problem for each MDO archi-
tecture. 80

5.2 Optimization parameters for the aero-structural test case. 80

vi

LIST OF FIGURES

2.1 CRM wing and the FFD parameterization [52]. 24

2.2 Euler-based coefficient of pressure distribution on the initial CRM wing. 26

2.3 Comparison of SNOPT convergences on three variations of the problem:
non-regularized without thickness constraints, non-regularized with thick-
ness constraints, and regularized proxy. 27

2.4 Aerodynamic solution of the optimal design for SNOPT (left half) and
RSNK (right half). CL, CMy, and the volume constraint are approxi-
mately the same for both optimums to the 8th decimal place. 28

2.5 Convergence history of RSNK with 192 FFD coefficients, plotted against
CPU time (left) and iterations (right). 29

2.6 Computational cost scaling of RSNK and SNOPT with respect to the
size of the design space. 30

3.1 Four-subdomain example of the domain decomposition used for the
Laplace problem. 41

3.2 IDF KKT system Krylov solution convergence with four-subdomain
(2x2) decomposition. 46

3.3 Optimal solution with a four-subdomain (2x2) decomposition. 46

3.4 Convergence histories for optimizations with four-subdomain (2x2) de-
composition. 47

3.5 Cost scaling with number of subdomain “disciplines” under IDF and
MDF architectures. 48

3.6 Deformed nozzle areas and corresponding pressure distributions. 54

3.7 A sample of FLECS convergence histories for the IDF problem with 20
design variables. 55

3.8 Computational cost of the optimization with varying numbers of design
variables. 57

3.9 Optimization convergence histories for the elastic nozzle problem. . . . 58

4.1 Minimal UML diagram for Kona, showing only high-level associations. . 62

vii

4.2 Relative error in the objective value across function evaluations for all
verification problems. 74

5.1 Geometry of the wing used in the aero-structural optimization. 78

5.2 Structural wing box used in the aero-structural problem. 81

5.3 Krylov convergence history for the KKT system at a representative
nonlinear iteration. 82

5.4 Krylov convergence history of the nested solutions within the IDF pre-
conditioner. 83

5.5 Normalized lift distribution for the aero-structural problem. 85

5.6 Twist angle along the wing for the aero-structural problem. 85

5.7 RSNK convergence histories for the aero-structural problem. 86

5.8 SNOPT convergence history for the MDF aero-structural problem. . . . 87

A.1 Optimality and feasibility convergence history of RSNK and SNOPT at
dierent design space sizes. 102

viii

ACKNOWLEDGMENTS

First and foremost, a special thanks go out to my thesis advisor, Jason Hicken. It

was perhaps the greatest stroke of luck in my professional life to have started my

doctoral studies at RPI the same year he started his own career as an Assistant

Professor. I could not have asked for a better mentor, teacher and research partner

than he has been for me throughout the last five years, and I am forever grateful

for his willingness to take me on as his first doctoral student.

I would like to thank Joaquim Martins for granting access to his research

group’s high-fidelity flow and structural solvers, and Gaetan Kenway for providing

extensive technical support. I also greatly appreciate Justin Gray’s generosity in

sharing his software design expertise throughout our collaboration.

The hard work and friendship of my colleagues at the Optimal Design Lab,

Pengfei Meng, Anthony Ashley, Kinshuk Panda, Jared Crean, and Jianfeng Yan,

were always a valuable source of motivation. I am thankful for the great work

environment they have helped create.

I would also like to thank Onkar Sahni, Assad Oberai and John Mitchell for

kindly agreeing to be on my doctoral committee and reviewing my work.

Attending RPI would not have been possible without the support of the Na-

tional Science Foundation under grant number 1332819. Additionally, numerical

experiments in this thesis were made possible by the exceptional computing re-

sources offered by the Scientific Computing Research Center and the Center for

Computational Innovations at RPI.

Finally, I would like to extend my eternal love and gratitude to my family;

in particular my mom and dad, who have instilled in me a great appreciation for

science and education, and have relentlessly pushed me to realize my full potential.

I would not be who I am and where I am today without the sacrifices they have

made to provide me with the greatest opportunities in life.

ix

ABSTRACT

The individual discipline feasible (IDF) formulation is a multidisciplinary design

optimization (MDO) architecture that provides modularity for the underlying dis-

cipline solvers. Similar to reduced-space methods, the IDF formulation does not

require the optimization algorithm to converge the state variables for each disci-

pline in addition to the optimization variables; the state equations are still solved

fully at each optimization iteration. However, IDF decouples the discipline equations

from each other through the introduction of coupling variables and constraints to

the optimization problem. Consequently, the discipline solutions at each optimiza-

tion iteration can be performed independently and in parallel. This promotes the

use of existing discipline-specific PDE solvers, and lowers the software development

challenge of creating efficient coupled discipline analyses.

Despite its advantages in modularity, the IDF architecture has remained largely

unused by researchers and practitioners alike since its introduction in the early

1990s. The addition of large numbers of variables and constraints into the optimiza-

tion problem proved to be challenging for conventional gradient-based optimization

approaches. In particular, the explicit constraint Jacobian required by these algo-

rithms is prohibitively expensive to compute for IDF problems.

In this thesis, we propose a reduced-space inexact-Newton-Krylov (RSNK)

algorithm that can address the challenges posed by the IDF formulation. RSNK

achieves this with three key components: a matrix-free formulation that avoids

explicit Jacobians and Hessians, a new Krylov solver tailored for nonconvex saddle-

point problems, and a novel matrix-free preconditioner for the IDF architecture. We

implement RSNK in a parallel-agnostic optimization library, and verify its efficacy

on a range of low- and high-fidelity test problems drawn from aerospace applications.

Our findings demonstrate that RSNK scales favorably with the size of the design

space, exhibits superlinear asymptotic convergence, and can efficiently solve large-

scale PDE-governed MDO problems.

x

CHAPTER 1

INTRODUCTION AND CONTRIBUTIONS

The advent of high-performance computing has enabled researchers in both industry

and academia to create predictive computational models for a variety of physical

phenomena. The availability of these tools has made simulation-based design an

indispensable tool for the development of new technologies and products by helping

engineers efficiently evaluate more prototypes than would be possible with physical

experimentation alone.

In the present work, we focus on engineering systems that involve complex in-

teractions between two or more physical disciplines or subsystems. Examples include

compliant lift surfaces that experience significant deformation under aerodynamic

loads, or boundary-layer ingestion where changes to the airframe have a signifi-

cant impact on air flow at the engine intake. In these situations, single-discipline

analysis often fails to capture the phenomena of interest, and high-fidelity, coupled

partial-differential-equations (PDEs) are necessary to accurately capture the govern-

ing physics. We believe that multidisciplinary design optimization (MDO), which

develops and applies numerical optimization techniques to such problems, can help

engineers identify and exploit complex trade-offs that may otherwise remain hidden.

One of the critical steps in performing multidisciplinary design optimization

(MDO) is to determine the structure and organization of the problem. Decisions

on how to couple the different disciplines, and how to solve the coupled problem,

ultimately impact the size and characteristics of the optimization problem, which in

turn influence the choice of optimization algorithm. These problem formulations are

referred to as MDO “architectures” or “formulations” in literature, and fall under

one of two categories: monolithic or distributed. Monolithic MDO architectures

are single stand-alone optimization problems that encompass all variables and con-

straints. Distributed architectures, on the other hand, partition the optimization

Portions of this chapter previously appeared as: A. Dener and J. E. Hicken, “Matrix-free
algorithm for the optimization of multidisciplinary systems,” Structural and Multidisciplinary Op-
timization, vol. 56, no. 6, pp. 1429–1446, Jun. 2017

1

2

problem into sequential or nested subproblems, each solving only a subset of the

design variables and constraints.

Distributed architectures are primarily motivated by the way engineering de-

sign is performed in industry, where large systems are broken up into largely in-

dependent subsystems and assigned to separate teams of engineers. For instance,

the propulsion and airframe subsystems for an aircraft are typically designed by

different departments or companies that each possess specialized expertise over the

governing physics of their discipline. Distributed architectures allow these teams to

work independently and communicate infrequently.

However, distributed architectures are also known to exhibit poor conver-

gence rates at the multidisciplinary system-level optimization, and they are not

competitive with monolithic architectures on large-scale problems with strong inter-

disciplinary coupling [2]. These characteristics motivate us to adopt a monolithic

MDO architecture instead; our goal in this thesis is to develop an algorithm that

can solve monolithic MDO problems efficiently, while maintaining modularity of the

underlying disciplines.

To facilitate this effort, we begin with a review of monolithic MDO architec-

tures and related research. For a more comprehensive review of all MDO architec-

tures, we refer the reader to Martins and Lambe [3].

1.1 A Generic Multidisciplinary Analysis Statement

In order to effectively discuss MDO architectures, we first introduce a model

multidisciplinary analysis (MDA) problem. For simplicity, we will restrict our dis-

cussion to two physical disciplines represented by the algebraic state equations

Ru(u, Eu(v),x) = 0,

Rv(v, Ev(u),x) = 0,
(1.1)

where x ∈ Rn are the design variables, and u ∈ Rp and v ∈ Rq are state variables

associated with each discipline. These state equations depend on each other through

Eu(v) ∈ Rs and Ev(u) ∈ Rr, which are functions that extract or compute the

information that couples the two disciplines together.

3

In the applications of interest, the MDA defined by (1.1) represents a set of

discretized PDEs. For instance, in an aero-structural problem, Ru might be the

Euler equations discretized using a finite-volume scheme, and Rv might be the

equations of linear elasticity discretized using the finite-element method. In this

example, the state u would denote the conservative flow variables averaged over

each volume in the mesh, and v would be the nodal displacements of the finite-

element model. Furthermore, Ev uses the state u to compute the pressure on the

wing surface, while Eu uses v to determine the structural deformations of the outer

mold line.

1.2 Simultaneous Analysis and Design

In order to covert the MDA in (1.1) into a generic MDO formulation, we intro-

duce the objective function, J : Rn×Rp×Rq → R, and construct the optimization

problem,

minimize
x,u,v

J (x,u,v),

subject to Ru(u, Eu(v),x) = 0,

Rv(v, Ev(u),x) = 0,

(1.2)

where the discipline residuals are expressed as constraints to be satisfied by the

optimization algorithm.

In the context of MDO, (1.2) is referred to as simultaneous analysis and design

(SAND) [4]. Its defining characteristic is that the optimization variables include

both the design variables, x, and the state variables, u and v. This approach,

where the optimization algorithm is responsible for simultaneously converging both

the design and the states, is more generally referred to as a “full-space” formulation

in the PDE-constrained optimization literature.

Efficient full-space PDE-constrained optimization algorithms have been de-

veloped and applied to large-scale single-discipline problems [5]–[9]; however, the

full-space formulation can be difficult to implement and poses challenges to mod-

ularity. In particular, PDE models often take advantage of specialized solution

4

techniques for efficiency and robustness. This is especially true for nonlinear PDEs,

which may require tailored globalization strategies to ensure robust convergence. A

general-purpose full-space algorithm cannot easily anticipate all such globalization

strategies. The complexity of the task also increases with each added discipline and,

to the best of our knowledge, no one has solved high-fidelity MDO problems using

full-space methods.

1.3 Multidisciplinary Feasible

The difficulties in modularity for the SAND formulation motivate the use of

the “reduced-space” formulation, given by

minimize
x

J (x,u(x),v(x))

governed by Ru(u, Eu(v),x) = 0,

Rv(v, Ev(u),x) = 0.

(1.3)

The notation change from “subject to” to “governed by” indicates that the state

equations are no longer imposed as constraints in the optimization problem, but

instead considered as governing equations that have to be solved at every new design

point. Consequently, the reduced-space formulation defines the state variables as

implicit functions of the design x via the state equations. Thus, the optimization

variables consist only of the design variables. In the context of MDO, the reduced-

space formulation (1.3) is referred to as multidisciplinary feasible (MDF).

Under the MDF formulation, every evaluation of the objective function J re-

quires a complete solution of the coupled state equations (1.1). Block-Jacobi and

block-Gauss-Seidel are popular choices for solving the coupled state equations in

MDF, but these iterative methods have been shown to be considerably less effi-

cient than monolithic Newton-Krylov MDAs [10]. Conversely, implementing such

a monolithic MDA with existing legacy solvers requires significant intrusion into

the source code, and may be impractical with commercial software. Furthermore,

the use of gradient-based algorithms necessitates a coupled-adjoint implementation

or expensive (and potentially inaccurate) finite-difference approximations. Despite

5

these challenges, there has been significant success applying the MDF formulation

to, for example, aero-elastic optimization problems [11]–[14].

1.4 Individual Discipline Feasible

There are clear trade-offs between the full- and reduced-space formulations

of solving multidisciplinary optimization problems. The SAND formulation may

achieve better optimization efficiency, but it comes at the cost of greater time in-

vestment into software development. The MDF formulation can facilitate the reuse

of existing PDE solvers, but at the expense of fully coupled MDAs at each opti-

mization iteration.

This trade-off motivates a compromise, which we believe is provided by the

individual discipline feasible (IDF) formulation [15], [16]:

minimize
x,ū,v̄

J (x,u(x, v̄),v(x, ū)),

subject to Ev(u)− ū = 0,

Eu(v)− v̄ = 0,

governed by Ru(u, v̄,x) = 0,

Rv(v, ū,x) = 0,

(1.4)

which modifies (1.3) by introducing coupling variables, ū ∈ Rr and v̄ ∈ Rs, and their

corresponding coupling constraints. Under the IDF formulation, the states are still

expressed as implicit functions of design variables, x, but they are no longer directly

dependent on each other. This is because the state equations for each discipline can

be solved independently using the coupling variables prescribed by the optimization

algorithm. Consequently, IDF avoids a full MDA at every evaluation of the objective

function. This advantage extends to sensitivity analysis as well, where the adjoint

solutions are also decoupled.

Unfortunately, the decoupled state and adjoint equations come at a cost, as

IDF presents two significant disadvantages. State-of-the-art gradient-based opti-

mization algorithms frequently use limited-memory quasi-Newton approximations

of the Hessian for such large-scale problems [17], [18], and it is known that these

6

approaches scale unfavorably with the size of the design space [19].

More significantly, the cost of evaluating the Jacobian of the IDF coupling

constraints is prohibitively expensive for most multidisciplinary problems modeled

with PDEs. To illustrate, the IDF formulation applied to a three-dimensional aero-

structural problem could yield on the order of 103-104 new degrees of freedom in

the optimization problem, and it requires the same number of adjoint solutions at

every optimization iteration to form the constraint Jacobian.

However, these are limitations of the optimization algorithms used to solve

IDF problems, and not of the IDF architecture itself. This suggests that alternative

optimization algorithms may avoid these limitations.

1.5 Contributions

In this thesis, we develop a reduced-space inexact-Newton-Krylov (RSNK) al-

gorithm targeted at addressing the challenges of the IDF formulation outlined above,

and demonstrate its efficacy on a range of low- and high-fidelity problems drawn

from the field of aerospace engineering. Our goals are to avoid explicit formulation

of the Hessian or the constraint Jacobian, achieve good cost scaling with increasing

number of design and coupling variables, and leverage the superlinear asymptotic

convergence expected from inexact-Newton-type methods. By fulfilling these three

goals, we hope to make the modular IDF formulation practical on large problems,

and encourage greater use of MDO in general.

Below, we describe the core contributions of this thesis towards the stated

goals, and provide an outline of the upcoming chapters.

1.5.1 Second-Order Adjoints for KKT Matrix-Vector Products

A key aspect of the RSNK algorithm is the use of a Krylov iterative method

for the solution of the linear system that arises from applying Newton’s method to

the first-order optimality conditions. In this context, a matrix-free implementation

requires the computation of an efficient matrix-vector product. However, the linear

system solved in this application involves second-order derivative information that

is typically not available in PDE-governed optimization problems. In this thesis, we

7

introduce a second-order adjoint-based method for computing matrix-vector prod-

ucts for the solution of the first-order optimality conditions. While second-order

adjoints themselves are not novel, to the best of our knowledge, this thesis and its

related publications represent the first application of second-order adjoints in the

context of equality-constrained optimization.

1.5.2 Matrix-Free Preconditioner for the IDF Architecture

The primal-dual linear equation that is solved at each Newton iteration by a

Krylov solver is an ill-conditioned saddle-point system. An effective preconditioner

is required to achieve good rates of convergence and produce high-quality step direc-

tions in the optimization. However, the matrix-free nature of the RSNK algorithm

makes it impractical to use common preconditioning techniques based on incomplete

factorizations. In this thesis, we will present a novel matrix-free preconditioner for

the individual discipline feasible architecture, and demonstrate its efficacy on three

different multidisciplinary design optimization problems.

1.5.3 Parallel-Agnostic Optimization Library

The core motivation behind the use of the individual discipline feasible ar-

chitecture in this work is to take advantage of its modularity in discipline/PDE

solvers. However, the RSNK algorithm we present in this thesis relies on products

and solutions with the PDE Jacobian, and different PDE solvers adopt different data

structures and parallelization schemes for these tasks. This presents the need for the

implementation of the RSNK algorithm to remain agnostic to the implementation

of the underlying PDE solver(s). In this thesis, we describe an optimization library

written in Python that utilizes reverse communication techniques and a linear alge-

bra abstraction layer to separate the optimization algorithms from the underlying

solvers.

1.6 Thesis Outline

The remaining chapters of this thesis are organized as follows:

8

• Chapter 2 reviews the sequential quadratic optimization approach, and in-

troduces the RSNK algorithm. The second-order adjoint-based KKT-matrix-

vector product and the nonconvex Krylov solver are described in detail. The

chapter concludes with a study of the RSNK algorithm’s computational cost

scaling with respect to the size of the design space on a high-fidelity aerody-

namic shape optimization problem.

• Chapter 3 introduces a matrix-free preconditioning strategy for the IDF for-

mulation, and demonstrates its efficacy on two low-fidelity problems.

• Chapter 4 discusses a parallel-agnostic optimization library that implements

the RSNK algorithm, and benchmarks its components on a set of simple test

problems.

• Chapter 5 presents an application of the RSNK algorithm on a high-fidelity

multidisciplinary aero-structural optimization problem.

• Chapter 6 summarizes the work and lists potential future research avenues

based on the findings.

CHAPTER 2

REDUCED-SPACE INEXACT-NEWTON-KRYLOV

ALGORITHM

2.1 Introduction

Having motivated the choice of the IDF architecture, we now turn our atten-

tion to developing an optimization algorithm that can efficiently solve this type of

problem formulation. To accomplish this goal, we will adopt an inexact-Newton-

Krylov approach, which is known to exhibit superlinear asymptotic convergence and

favorable algorithmic scaling as the number of variables increases on a wide range

of nonlinear problems. We aim to take advantage of these features in reduced-space

optimization, and render the computational cost of the IDF formulation practically

viable for high-fidelity engineering problems.

To facilitate the discussion, we re-state the IDF formulation first described in

Chapter 1:

minimize
x,ū,v̄

J (x,u(x, v̄),v(x, ū)),

subject to Ev(u)− ū = 0,

Eu(v)− v̄ = 0,

governed by Ru(u, v̄,x) = 0,

Rv(v, ū,x) = 0,

(2.1)

where x, ū and v̄ are the optimization variables (also called “design” variables),

ū and v̄ are coupling variables, and u and v are state variables. Recall that Eu
and Ev are functions that extract or compute the information that couples the two

Portions of this chapter previously appeared as: A. Dener and J. E. Hicken, “Matrix-free
algorithm for the optimization of multidisciplinary systems,” Structural and Multidisciplinary Op-
timization, vol. 56, no. 6, pp. 1429–1446, Jun. 2017

Portions of this chapter previously appeared as: A. Dener, G. K. W. Kenway, J. E. Hicken,
and J. R. R. A. Martins, “Comparison of inexact- and quasi-Newton algorithms for aerodynamic
shape optimization,” presented at the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL,
USA, 2015

9

10

disciplines together.

We would like to develop an algorithm that is generally applicable to all

reduced-space PDE-governed optimization problems. To that end, we combine the

coupling constraints into a single constraint vector and the state equations into a

single residual vector:

C(y,w) =

Ev(u)− ū
Eu(v)− v̄

 , and R(y,w) =

Ru(x,u, v̄)

Rv(x,v, ū)

 , (2.2)

where wT = [uT vT] denotes the multidisciplinary state and yT = [xT ūT v̄T]

denotes the optimization variables. With this notation, the IDF optimization state-

ment simplifies to

minimize
y

J (y,w(y)),

subject to C(y,w(y)) = 0,

governed by R(y,w) = 0,

(2.3)

where the state equations w(y) are implicit functions of the design variables, as is

expected in a reduced-space formulation. This simplification will allow us to define

a general-purpose optimization algorithm applicable to both single and multidis-

ciplinary problems with an arbitrary number of disciplines and nonlinear equality

constraints.

In this chapter, we begin with a review of sequential quadratic programming,

paying close attention to considerations relevant to PDE-governed reduced-space

problems. We then introduce the building blocks of the inexact-Newton-Krylov

approach and assemble them into a complete algorithm. The chapter will conclude

with an application of the algorithm to a high-fidelity single-discipline aerodynamic

shape optimization problem.

2.2 Sequential Quadratic Optimization Review

Our target applications in this thesis are large-scale PDE-governed optimiza-

tion problems where the objective function and constraints depend both on design

11

and state variables. The relationship between these functionals and the design vari-

ables involves the solution of nonlinear state equations, which can be computation-

ally expensive in high-fidelity problems. This motivates the use of gradient-based

nonlinear optimization techniques that can avoid large numbers of expensive func-

tion evaluations.

Sequential quadratic optimization (SQO), also commonly known as sequential

quadratic programming (SQP), is one such gradient-based method that can effec-

tively solve nonlinear optimization problems where the first and second derivatives

of the objective function and the constraints are continuous. SQO computes steps

by solving a series of quadratic subproblems, and it can be used in both a line search

and trust region framework. In this section, we present a review of SQO in order to

provide a theoretical foundation for our inexact-Newton algorithm.

We begin by introducing the reduced-space Lagrangian for the optimization

problem in (2.3):

L(y,λ) = J (y,w(y)) + λTC(y,w(y)), (2.4)

where λ are the Lagrange multipliers associated with the equality constraints. Dif-

ferentiating (2.4) with respect to y and λ produces the Karush-Kuhn-Tucker (KKT)

first-order necessary conditions that must be satisfied by the local optimum:

dL
dy

=
dJ
dy

+ λT
dC
dy

= 0, (2.5a)

dL
dλ

= C = 0, (2.5b)

where d/dy denotes a total derivative operator with respect to y, and d/dλ denotes

a total derivative with respect to λ.

Let (yk,λk) be the kth iterate in an SQO algorithm. The SQO approach

constructs a quadratic subproblem,

minimize
p

Lk + pT
dLk
dy

+
1

2
pTWkp,

subject to Akp+ Ck = 0,

(2.6)

12

where Wk = d2Lk/dy2 is the Hessian of the Lagrangian, and Ak = dCk/dy is the

total constraint Jacobian evaluated at (yk,λk). The constant term Lk is typically

discarded from the problem as it has no dependence on p and does not affect the

optimization.

Under the assumptions that the constraint Jacobian Ak has full row rank and

the Hessian Wk is positive-definite in the null-space of the constraints, the quadratic

subproblem has a unique solution, (p,d), given by

Wkp+AT
k (d+ λk) +

dJ
dy

= 0,

Akp+ Ck = 0.

(2.7)

This system of equations can also be expressed asWk AT
k

Ak 0

p
d

 =

− dJk
dy
− AT

kλk

−Ck

 , (2.8)

which is equivalent to applying the Newton’s method to the KKT conditions in

(2.5). In the present work, we take advantage of this relationship to construct our

inexact-Newton algorithm.

SQO algorithms employ a number of different methods to solve (2.7). The

KKT matrix may be directly inverted; however, the indefinite nature of this matrix

requires indefinite factorization techniques such as those proposed by Bunch and

Kaufman [21] or Duff and Reid [22]. Other popular approaches include range-

space [23], [24] and null-space [24], [25] methods.

The common thread across these solution methods is that they all require

either the Hessian of the Lagrangian, or its inverse. However, the Hessian contains

second-order derivative information that is usually not readily available, especially

in PDE-governed optimization. Most SQO algorithms address this issue through

the use of quasi-Newton approximations of the Hessian, which was first proposed

by Davidon [26] and later popularized by Fletcher [27]. Today, the most commonly

used quasi-Newton approximations are the Symmetric-Rank-1 [28] and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) [29]–[32] methods: BFGS also has a limited-

13

memory variant [33] that is often used on large-scale problems.

Quasi-Newton approximations of the Hessian utilize updates based on the first

derivative of the Lagrangian. The same first derivative is also used for convergence

checks at each optimization iteration. Furthermore, most SQO solution methods

also require the constraint Jacobian Ak to be provided explicitly for factorization.

In reduced-space optimization, these first derivatives are total derivatives involving

sensitivities with respect to both the design and state variables, and are typically

not available analytically. Therefore, to present a complete review of SQO in the

context of PDE-governed optimization, we must also address how to provide the

required derivatives.

2.2.1 Adjoint Method for Calculating Derivatives

Finite difference methods can be used to compute first-order total derivatives

when the objective function and constraints are computationally cheap to evalu-

ate. However, these function evaluations in PDE-governed optimization involve the

potentially nonlinear solution of state equations for each design perturbation. De-

pending on the computational cost of the PDE solution itself, the finite difference

approach may become intractable even for small design spaces with only tens of

variables and just a few constraints. Instead, the first-order total derivatives can be

efficiently computed via the adjoint method [34], [35], which we will review in this

section.

We begin by introducing the full-space Lagrangian,

L̂(y,λ,w,Ψ) = J (y,w) + λTC(y,w) + ΨTR(y,w), (2.9)

where the state equations are now imposed as constraints and associated with the

Lagrange multipliers in Ψ . As before, differentiating (2.9) with respect to its inputs

produces the KKT conditions for the full-space problem:

∂L̂
∂y

=
∂J
∂y

+ λT
∂C
∂y

+ ΨT ∂R
∂y

= 0, (2.10a)

∂L̂
∂λ

= C = 0, (2.10b)

14

∂L̂
∂w

=
∂J
∂w

+ λT
∂C
∂w

+ ΨT ∂R
∂w

= 0, (2.11)

∂L̂
∂Ψ

= R = 0, (2.12)

where all the derivatives above denote partial derivatives rather than total deriva-

tives.

Recall that in the reduced-space formulation, the state variables are implicit

functions of the design via the state equations. This means that (2.12) is satisfied

at every design point, and can be eliminated from the problem.

Similarly, (2.11), which is rewritten below in residual form, can also be solved

at each optimization iteration to determine the multipliers in Ψ :

S(y,λ,w,Ψ) :=
∂J
∂w

+ λT
∂C
∂w

+ ΨT ∂R
∂w

. (2.13)

The matrix multiplying Ψ is the transposed Jacobian of the state equations, which

must be invertible if the state equations have a unique solution. Consequently, the

multipliers in Ψ can be defined as implicit functions of y and the multipliers in λ.

Solving (2.11) and (2.12) at each optimization iteration, and, thus, eliminating

them from the full-space KKT conditions, establishes an equivalence between (2.5)

and (2.10) via R(y,w) = 0 and S(y,λ,w,Ψ) = 0:

dL
dy

=
dJ
dy

+ λT
dC
dy

=
∂J
∂y

+ λT
∂C
∂y

+ ΨT ∂R
∂y

= 0,

dL
dλ

= C = 0,

(2.14)

which reveals the role of Ψ in assembling the total derivatives in the reduced-space.

We will henceforth refer to Ψ as the first-order adjoint, and (2.13) as the first-order

adjoint equation. This concludes our review of the SQO method.

2.3 Inexact-Newton for Optimization

Recall from the earlier review that sequential quadratic optimization is equiva-

lent to applying the Newton’s method to the nonlinear system of equations in (2.5),

15

at least in the case where W is positive-definite. This produces the KKT system

(also known as the primal-dual system),W AT

A 0

p
d

 = −

 dL
dy

dL
dλ

 , (2.15)

where we have dropped the subscript k to simplify the notation.

Note that each row in the constraint Jacobian A in the reduced-space is a to-

tal derivative. As discussed in the SQO review, the conventional approach taken in

gradient-based optimization algorithms requires this matrix to be provided explic-

itly, because most conventional optimization algorithms need to factor A to find its

null-space. However, computing A explicitly for the IDF formulation requires a sep-

arate adjoint solution for each nonlinear coupling constraint, which is impractical in

general. The same limitation is also present in general PDE-governed optimization

problems that feature large numbers of state-based constraints.

Few reduced-space algorithms address the challenge presented by the IDF Ja-

cobian, and state-based constraint Jacobians more generally. One notable exception

is the matrix-free augmented Lagrangian algorithm developed by Arreckx et al. [36].

However, this approach relies on quasi-Newton approximations that we would like

to avoid; large-scale problems targeted in the present work often necessitate the use

of limited-memory quasi-Newton approximations, which are known to scale unfa-

vorably with the size of the design space [19].

In contrast, there have been significant efforts in the full-space optimization

literature to develop matrix-free1 Newton-Krylov algorithms that avoid explicit con-

straint Jacobians [37]–[40]. Inspired by full-space algorithms, we solve the reduced-

space KKT system in (2.15), inexactly, using a Krylov solver. We call this approach

the “Reduced-Space inexact-Newton-Krylov algorithm”, or RSNK for short.

2.3.1 Matrix-Free KKT Matrix-Vector Products

Most Krylov iterative methods can be implemented in a matrix-free fashion

because they rely on matrix-vector products rather than the explicit matrix itself.

1Notwithstanding the possible use of matrix-based preconditioners for the state Jacobian.

16

Taking advantage of this feature in sequential quadratic optimization requires a

matrix-vector product with the KKT matrix, or, alternatively, products with its

sub-blocks. In full-space PDE-constrained optimization problems, the constraint

Jacobian is the Jacobian of the PDE residual, which involves partial derivatives

only. Products with this Jacobian are readily available, for example, in most finite-

element codes, or through algorithmic differentiation. The reduced-space constraint

Jacobian, on the other hand, is a total derivative and requires additional considera-

tions. In this section, we will introduce a second-order adjoint-based formulation for

computing products between the reduced-space KKT matrix and arbitrary vectors.

We begin by recognizing that the KKT matrix in (2.15) is the Jacobian of the

KKT conditions. Consequently, we can approximate products with this matrix and

an arbitrary vector zT = [zTy , z
T
λ] via forward-differencing on (2.5); that is

Kz =

W AT

A 0

zy
zλ

 ≈ 1

ε

G(y + εzy,λ+ εzλ)− G(y,λ)

C(y + εzy)− C(y)

 , (2.16)

where G = dL/dy is the total derivative of the Lagrangian with respect to the design

variables, and ε is the finite-difference step size.

When Jacobian-free Newton-Krylov methods are used to solve nonlinear PDEs

[41], the nonlinear equation (i.e. the PDE residual) explicitly depends on the state

variables that are being perturbed in the forward-difference approximation. This

allows PDE-Jacobian-vector products to be approximated relatively cheaply. In con-

trast, in reduced-space PDE-governed optimization, the state variables are implicit

functions of the design; therefore, in a naive implementation of the forward-difference

approximation (2.16), we must solve the nonlinear state equations and the first-order

adjoint at the perturbed point every time we evaluate a KKT-matrix-vector prod-

uct. As we will demonstrate below, the linear adjoint solution is unavoidable, but

the nonlinear state solution can be replaced with a linear problem.

Let w + εσ be the state corresponding to the perturbed design point y + εzy

such that,

R(y + εzy,w + εσ) = 0. (2.17)

17

For an infinitesimal perturbation ε, we can use a first-order Taylor expansion to

expand the left hand side of the above equation to arrive at

R(y + εzy,w + εσ) = R(y,w) + ε
∂R
∂y

zy + ε
∂R
∂w

σ +O(ε2) = 0. (2.18)

Recognizing that R(y,w) = 0, we rearrange (2.18) and take the limit as ε → 0 to

get the linear system,

∂R
∂w

σ = − ∂R
∂y

zy, (2.19)

where σ is a second-order adjoint [42], so called because it helps us assemble second-

derivative information.

We repeat this process with the first-order adjoint residual in (2.13). Let

Ψ + εΦ be the first-order adjoint corresponding to the perturbed primal-dual point

(y + εzy,λ+ εzλ) such that,

S(y + εzy,λ+ εzλ,w + εσ,Ψ + εΦ)

= S(y,λ,w,Ψ) + ε
∂S
∂y

zy + ε
∂S
∂λ

zλ

+ ε
∂S
∂w

σ + ε
∂S
∂Ψ

Φ+O(ε2) = 0.

(2.20)

Similar to the primal residual, we recognize that the adjoint residual, S(y,λ,w,Φ),

is zero and eliminate it from (2.20). Additionally, we note that the partial derivatives

of S with respect to λ and Ψ are given by

∂S
∂λ

=

(
∂C
∂w

)T
and

∂S
∂Ψ

=

(
∂R
∂w

)T
. (2.21)

These modifications simplify (2.20) into the linear system,

(
∂R
∂w

)T
Φ = −

(
∂C
∂w

)T
zλ −

[
∂S
∂y

∂S
∂w

]zy
σ

 , (2.22)

where Φ is another second-order adjoint used in assembling the KKT-matrix-vector

18

product.

Unfortunately, the partial derivatives of S with respect to y andw in (2.22) in-

volve the second-derivatives of the objective function, the constraints, and the state

equations. For a general-purpose algorithm, we cannot assume that the underlying

PDE solvers possess the infrastructure needed to compute these second-derivatives

directly. Instead, we define the second term on the right-side of (2.22) in terms

of known first-derivatives. To do so, we make use of the fact that this term is in

the form of a Jacobian-vector product and evaluate it using forward-differencing on

(2.13):

[
∂S
∂y

∂S
∂w

]zy
σ

 ≈ 1

ε
[S(y + εzy,λ,w + εσ,Ψ)− S(y,λ,w,Ψ)] . (2.23)

The perturbation factor is chosen as ε =
√
εmach/‖zy‖2 where εmach is the “ma-

chine zero” constant specific to the hardware. This approach was used by Nielsen

et al. [43] for a CFD application and demonstrated to be more accurate than fixed

perturbation factors. Our implementation in this algorithm includes two conditional

modification. First, we pick ε = 1.0 when ‖zy‖2 < εmach to safeguard against the

multiplying vector being very small. Second, we set ε = ‖y‖2
√
εmach/‖zy‖2 when

‖y‖2 ≥ εmach‖zy‖2 to account for cases where the current design point y dominates

the multiplying vector zy in magnitude.

We have now described all the pieces necessary to compute (2.16) while avoid-

ing a solution of the nonlinear state equations. To summarize, we begin the assembly

with the primal component of the KKT conditions, namely

Wzy + ATzλ ≈
1

ε
[G(y + εzy,λ+ εzλ)− G(y,λ)]

≈ 1

ε

[(∂J
∂y

)
ε

+ (λ+ εzλ)T
(
∂C
∂y

)
ε

+ (Ψ + εΦ)T
(
∂R
∂y

)
ε

− ∂J
∂y
− λT ∂C

∂y
− ΨT ∂R

∂y

] (2.24)

where the ε subscript denotes first-derivatives that are evaluated at the perturbed

design y + εzy and the corresponding state variables w + εσ. Finally, we perform

19

a Taylor expansion on the dual component,

Azy ≈
1

ε
[C(y + εzy)− C(y)]

≈ 1

ε

[
C(y) + ε

∂C
∂y

zy + ε
∂C
∂w

σ − C(y)

]
≈ ∂C

∂y
zy +

∂C
∂w

σ.

(2.25)

With this second-order adjoint approach, we can compute KKT-matrix-vector

products at a fixed cost of two linear system solutions based on the state Jacobian

and transposed Jacobian. Significantly, the cost is virtually independent of the num-

ber of design variables and the number of constraints. This formulation extends to

MDO problems without any changes, where the two required linear system solu-

tions are based on the Jacobian of the combined multidisciplinary state equations.

Another important observation is that the linear system solutions are performed

at the (y,w) design-state point instead of the perturbed counterparts, so the PDE

Jacobian(s) does not need to be reassembled nor preconditioner(s) refactored.

2.3.2 Extending FGMRES for Nonconvexity

The selection of the Krylov iterative method that solves (2.15) requires careful

consideration of two particular issues: preconditioning and nonconvexity. For the

first, we restrict our choice to flexible Krylov methods that enable the use of non-

stationary preconditioners, and re-visit the subject of preconditioning in greater

detail in Chapter 3. For the present discussion, we instead focus on the second

challenge of nonconvexity.

In convex problems, where the Hessian of the Lagrangian, W, is positive-

definitive in the null-space of the constraint Jacobian, A, it is possible to solve

(2.15) using any flexible Krylov solver, such as the Flexible Generalized Minimal

Residual (FGMRES) [44] method. However, in nonconvex problems, the Krylov

solver may converge to stationary points that are not necessarily the minimum.

To address this issue, we developed the FLexible Equality-Constrained Subproblem

(FLECS) solver [45], which is a Krylov iterative method that extends FGMRES to

produce descent directions in the presence of nonconvexity. We provide a review of

20

this method below.

Like FGMRES, FLECS constructs the primal-dual solution from the sub-

spaces generated by the generalized Arnoldi procedure. If Zj = [z1z2 . . . zj] and

Vj+1 = [v1v2 . . .vj] where Vj+1 has orthonormal columns, then the generalized

Arnoldi procedure produces

KZj = Vj+1H̄j. (2.26)

In the present application, K is the KKT or the primal-dual matrix in (2.15), and H̄j

is the associated upper Hessenberg matrix. This Arnoldi relation can be expanded

into its primal and dual parts to reveal the relations for the KKT matrix sub-blocks;

WZpj + ATZdj = Vp
j+1H̄j,

AZpj = Vd
j+1H̄j,

(2.27)

where the superscripts p and d denote the primal and dual components of the sub-

space vectors, respectively, and the subscript j denotes the size of the Krylov sub-

space.

To address nonconvexity, FLECS aims to minimize a quadratic penalty func-

tion with a trust radius constraint,

minimize
p∈span{Zp

j }
Q(p, µ) ≡ GTp+

1

2
pTWp+

µ

2
(Ap+ C)T (Ap+ C),

subject to ||p|| ≤ ∆,

(2.28)

where G ≡ ∂L/∂y. The primal solution, p = Zpjρ, is restricted to the subspace

span{Zpj} and bounded by the trust radius ∆. Using the Arnoldi relations, (2.28)

can be reduced to the subproblem,

minimize
ρ∈Rj

[
GZ + µ(ATC)Z

]T
ρ+

1

2
ρT
[
WZ + µ(ATA)Z

]
ρ,

subject to ||Zpjρ|| ≤ ∆,

(2.29)

where the subscript Z denotes a Galerkin projection of the terms onto the subspace

21

span{Zj} (e.g. WZ = (Zpj)
TWZpj). In the large-scale applications targeted in the

present work, we restrict the Krylov subspace to at most 20 vectors. Consequently,

the size of the subproblem in (2.29) remains small.

This small subproblem is solved using the Moré and Sorensen algorithm [46].

The resulting primal solution is combined with the traditional FGMRES solution

for the dual variables, dj = Zdj ρ̂j, where

ρ̂j = argmin
ρ̂∈Rj

||βe1 − H̄jρ̂||. (2.30)

The use of a quadratic penalty term in FLECS raises the question of how to

update the penalty parameter, µ, from one nonlinear iteration to the next. In our

previous work, we proposed a heuristic of the form

µk+1 = max

(
µk, µ0

||C0||
||Ck||

)
, (2.31)

where the subscript k = 0, 1, 2, . . . denotes the nonlinear optimization iteration. For

the results presented in this thesis, we have slightly modified this original update

such that,

µk+1 = max

(
µk, µ0

||C0||
min (||Gk‖|, ||Ck||)

)
. (2.32)

The inclusion of G in the denominator causes the penalty parameter, µ, to grow

more rapidly when the nonlinear convergence of the optimality norm outpaces feasi-

bility. In our experiments, this modification has helped RSNK avoid extra nonlinear

iterations near the primal optimum solely to restore feasibility.

2.3.3 Globalizing the Newton Step

The final remaining consideration for the RSNK algorithm is promoting con-

vergence from remote starting points relative to the optimum. SQO algorithms

commonly employ line-search or trust-region techniques where a merit function is

used to evaluate step acceptance, and in the case of line-search methods, step length

along a descent direction. In the present work, a trust-region framework [47] emerges

22

as a natural fit for globalizing the Newton step in RSNK, as it pairs effectively with

the trust radius constraint in the FLECS quadratic subproblem.

For step acceptance, the RSNK algorithm relies on a simple filter [48], which

tests (Jk, ‖Ck‖) pairs at each optimization iteration against previously accepted

points. Steps that produce an improvement in either the objective or the constraint

norm are accepted and added to the filter. Old points that are “dominated” by the

newly added point (i.e. points where both the objective and constraint norm are

worse) are removed from the filter. The filter-based approach eliminates the need

to develop a predicted decrease approximation for any choice of a merit function,

and thus, avoids the ambiguity associated with merit function parameters.

In the event that the filter rejects a Newton step, the FLECS solver reviewed

in Section 2.3.2 provides both a second-order correction to account for the Maratos

effect and an efficient re-solve that recycles the Krylov subspace built up during the

original Newton-step solution. If the second-order correction does not lead to step

acceptance, the re-solve is triggered with a smaller trust radius.

2.4 Algorithm Overview

We present an overview of our reduced-space inexact-Newton-Krylov imple-

mentation in Alg. 1. In line 9, the matrix-free KKT-matrix-vector product de-

scribed in Section 2.3.1 is used in conjunction with the Krylov solver described in

Section 2.3.2. The Krylov tolerance η in line 8 is dynamically adjusted to obtain su-

perlinear convergence and avoid over solving [49]. The Newton step sk is globalized

in the trust-region framework outlined in Section 2.3.3.

Note that Alg. 1 is formulated for equality-constrained optimization. Its ana-

logue for unconstrained problems is the trust-region Newton-CG algorithm [24],

which is an inexact-Newton-Krylov method where the Krylov solver of choice is the

Steihaug-Toint Conjugate Gradient method [50]. We apply this latter algorithm

to the unconstrained MDF problems in Chapter 5, in conjunction with matrix-free

Hessian-vector products formulated using a second-order adjoint approach analogous

to the one described in Section 2.3.1 for the IDF products.

23

Algorithm 1: Reduced-space inexact-Newton-Krylov with filter glob-
alization.

Data: y0, λ0, µ0, η0, ∆0, ∆min, ∆max, τp, τd
Result: estimate for the optimal solution (y∗,λ∗)

1 set µ = µ0, η = η0, ∆ = ∆0

2 for k = 0, 1, 2, . . . ,max iter do // start Newton loop

3 compute KKT conditions ∇Lk = (GTk , CTk)T

4 if ‖Gk‖ ≤ τp‖G0‖ and ‖Ck‖ ≤ τd‖C0‖ then // check convergence

5 set (y∗,λ∗) = (yk,λk) and return
6 end
7 set µ← max [µ, µ0‖C0‖/min (‖Gk‖, ‖Ck‖)]
8 set η ← max

[
η, min

(
1.0,

√
∇Lk/∇L0

)
, min (τp/‖Gk‖, τd/‖Ck‖)

]
9 solve (2.15) for sk = (pT ,dT)T using FLECS, with tolerance η,

penalty µ, and trust-radius ∆
10 for i = 0, 1, 2, . . . ,max filter iter do // start filter loop

11 if [J (yk + p), ‖C(yk + p)‖] is not dominated by filter then
// step accepted by filter

12 if i = 0 and ‖p‖ = ∆ then set ∆← min(2∆,∆max)
13 set filter success = true, and exit filter loop

14 else // step rejected by filter

15 if i = 0 then
16 compute second-order correction pc
17 if [J (yk + p+ pc), ‖C(yk + p+ pc)‖] is not dominated by

filter then
18 set filter success = true, set p← p+ pc, and exit filter

loop

19 end

20 end
21 if ∆ = ∆min then optimization failed, raise error
22 set ∆← max(∆min,

1
4
∆), and re-solve (2.15) for sk using

FLECS, with penalty µ and trust-radius ∆

23 end

24 end
25 if filter success then set yk+1 = yk + p and λk+1 = λk + d
26 else set yk+1 = yk and λk+1 = λk
27 end

24

2.5 Application: High-Fidelity Aerodynamic Shape Opti-

mization

Having introduced the RSNK algorithm, we now apply it to the lift and pitch-

ing moment constrained drag minimization of the NASA Common Research Model

(CRM) [51] wing. This single-discipline aerodynamic shape optimization (ASO)

problem has been investigated previously by Lyu et al. [52] using SNOPT [18], an

SQP library that utilizes a limited-memory quasi-Newton approach to approximate

the Hessian of the Lagrangian. Consequently, we can use the ASO problem to com-

pare the performance of our RSNK algorithm with that of the quasi-Newton method

on a challenging high-fidelity PDE-constrained optimization problem. Our goal is

to study the RSNK algorithm’s computational cost scaling with increasing number

of design variables.

2.5.1 Baseline Geometry

Fig. 2.1. CRM wing and the FFD parameterization [52].

The baseline geometry of interest is obtained by removing the fuselage and the

tail from the complete CRM model. The wing is then parameterized using a free-

form deformation (FFD) volume approach [53], where the number of FFD control

points vary from 72 to 768 in six distinct FFD boxes. The configurations of these

FFD boxes are described in Table 2.1, and Fig. 2.1 visualizes the FFD box with 768

control points as an example. The z-coordinates of these control points are used as

design variables in the optimization formulation.

25

Table 2.1. Number of control points in each direction shown for the
range of FFD box sizes used in the ASO test case.

FFD Box Sizes

Directions 72 192 320 480 616 768

Chordwise 6 12 16 20 22 24
Spanwise 6 8 10 12 14 16
Thickness 2 2 2 2 2 2

2.5.2 Objective Function and Problem Setup

The optimization problem considered in this test case is

minimize
x

CD(x,u(x)) + γxTx,

subject to CL(x,u(x)) = CL,0,

CMy(x,u(x)) = CMy,0,

V– (x) = V– 0,

governed by REuler(x,u) = 0.

(2.33)

The coefficients of lift and pitching moment, CL and CMy, are defined as equality

constraints and fixed to their initial values, CL,0 = 0.5 and CMy,0 = −0.17, re-

spectively. Note that the negative direction for the pitching moment indicates a

“nose up” rotation. Additionally, the Mach number and angle of attack are fixed at

M = 0.65 and α = 2.2 respectively.

The original problem formulation explored by Lyu et al. [52] also included

inequality constraints on the wing thickness in order to prevent the optimization

from generating unrealistically thin trailing edges and other wing shapes that may

produce poor mesh elements. However, the RSNK algorithm in this work has not yet

been extended to support inequality constraints. To address this limitation, we have

opted to use a modified objective function that is the sum of the drag coefficient,

CD and a regularization term, which is the squared-L2 norm of the design vector

multiplied by γ. This regularization has the effect of encouraging optimum designs

that are close to the initial design, x0.

The parameter γ controls the magnitude of the regularization term, and it

26

must be tuned to ensure that the regularization does not overwhelm the coefficient

of drag. This parameter was determined through trial and error such that the value

of γxTx is approximately three orders of magnitude smaller than the coefficient of

drag at convergence. We will demonstrate with numerical results below that this

regularized drag minimization problem behaves similarly to the original thickness

constrained problem, and allows us to re-formulate the problem using only equality

constraints.

2.5.3 CFD Solver

The coefficients of lift, drag, and pitching moment are evaluated using SUmb

[54], a finite-volume flow solver for compressible Euler, laminar Navier-Stokes and

RANS equations with support for a variety of turbulence models. SUmb also pro-

vides PDE Jacobian products, partial gradient evaluations, and adjoint solutions via

matrix-free automatic differentiation. Mesh movement is performed by an efficient

analytic inverse distance method [55].

Fig. 2.2. Euler-based coefficient of pressure distribution on the initial
CRM wing.

For our investigation, the flow is modeled using the compressible Euler equa-

27

tions, which are solved with a combined multigrid Runge-Kutta (RK) and Newton-

Krylov (NK) approach. This solution was performed with a 840, 192-cell structured

grid, using 64 MPI processes, run on Rensselaer Polytechnic Institute’s DRP Clus-

ter, equipped with two 8-core 2.6GHz Intel Xeon E5-2650 processors and 125 GB

system memory per compute node. The coefficient of pressure distribution on the

initial geometry is shown in Fig. 2.2.

2.5.4 Impact of Regularization

Fig. 2.3. Comparison of SNOPT convergences on three variations of the
problem: non-regularized without thickness constraints, non-regularized

with thickness constraints, and regularized proxy.

Before we compare the two optimization algorithms, it is important to illus-

trate the effect of the regularization on the optimization problem. To this end,

Fig. 2.3 shows the SNOPT convergence histories for the regularized problem, the

corresponding non-regularized problem without any thickness constraints, and the

original formulation using the thickness constraints. Note that the objective value

28

is tracked in terms of “drag counts”, which is equal to 104CD.

The non-regularized problem, devoid of thickness constraints, is free to explore

impractical geometric features, such as extremely thin trailing edges and sharp lead-

ing edges, in order to achieve a lower coefficient of drag. The regularized problem,

on the other hand, appears to converge to a similar optimum design as the thickness

constrained case, which suggests that it is a good proxy for the thickness constrained

case. Furthermore, the increased convexity provided by the regularization makes the

problem easier for SNOPT as well as RSNK, and, therefore, it does not unfairly favor

one algorithm over the other.

2.5.5 Optimization Results

Fig. 2.4. Aerodynamic solution of the optimal design for SNOPT (left
half) and RSNK (right half). CL, CMy, and the volume constraint are
approximately the same for both optimums to the 8th decimal place.

The coefficient of pressure distributions over the optimized geometry for both

RSNK and SNOPT are shown in Fig. 2.4 for the 192 design-variable case. The

figures also include the CD and constraint values for the geometries. The solution

29

is representative of the entire range of FFD sizes used in this study. All solutions of

this regularized problem with either algorithm converge to optima within 0.5 drag

counts of each other. A full set of convergence histories for both RSNK and SNOPT

for all FFD boxes are available in Appendix A.

Fig. 2.5. Convergence history of RSNK with 192 FFD coefficients,
plotted against CPU time (left) and iterations (right).

Fig. 2.5 shows the convergence history of RSNK on the regularized problem

with 192 design variables. The history has been plotted against two different cost

metrics: CPU time in seconds and iterations.

Plotted against iterations, RSNK exhibits the expected superlinear asymp-

totic convergence on this problem. However, superlinearity disappears when plotted

against CPU time, because the convergence tolerance for the KKT system gets pro-

gressively smaller as the optimization approaches the solution; therefore, the FLECS

solver requires more iterations to converge on this non-preconditioned problem. As

a result, the elapsed time per outer iteration increases throughout the optimization

process, causing the superlinear convergence to be lost when plotted against CPU

time.

In practice, the RSNK algorithm aims to solve the KKT system inexactly,

requiring convergence to a designated tolerance only within a small number of Krylov

iterations. This inherently imposes a limit to how long each outer iteration can take.

However, RSNKs superlinearity is nonetheless dependent on sufficiently reducing

the KKT system residual. The superlinearity is lost when the solution to the KKT

30

system becomes too inexact.

The ideal number of Krylov iterations for the FLECS solver is largely de-

pendent on the cost of solving the second-order adjoint systems and the matrix-

vector products used to assemble the KKT-matrix-vector product described in Sec-

tion 2.3.1. For this particular implementation and problem, our experiments indi-

cate that establishing superlinear convergence requires 30 to 40 Krylov iterations.

However, allowing this many iterations leads to a loss of competitiveness against

SNOPT in terms of CPU time. In the following section, we will illustrate promising

and competitive results achieved using 15 to 20 iterations, depending on the size of

the design space, but it is worth noting that this restriction on the Krylov iterations

leads to a loss of superlinear convergence.

This provides further evidence that an effective preconditioner for the KKT

system is needed in order to produce high-quality step directions at lower computa-

tional cost. In the present work, we have developed one such preconditioner for the

IDF formulation, which we will introduce in Chapter 3.

Fig. 2.6. Computational cost scaling of RSNK and SNOPT with respect
to the size of the design space.

Convergence results from Fig. A.1 are compiled into a direct comparison of

cost scaling in Fig. 2.6. The results demonstrate that RSNK has favorable scaling

31

with respect to the dimensionality of the design space. Despite the loss of superlin-

earity discussed earlier, RSNK converges faster than SNOPT for 616 and 768 design

variables, and remains competitive at 480. This demonstrates RSNK’s potential to

be an efficient algorithm for problems with thousands of design variables.

2.6 Summary

In this chapter, we have introduced a reduced-space inexact-Newton-Krylov

(RSNK) algorithm intended for the efficient solution of PDE-governed optimization

problems with large numbers of design variables and state-based constraints.

A unique challenge of this class of problem is a constraint Jacobian that is

computationally too expensive to compute explicitly. Each row of the explicit Ja-

cobian represents a total derivative of a single constraint with respect to the design

variables, and would require a separate adjoint solution. To address this challenge,

we have developed a matrix-free second-order adjoint-based product with the KKT

matrix in Section 2.3.1. Using this method, each product with the KKT matrix can

be computed using only two linear system solutions based on the PDE Jacobian

regardless of how many state-based constraints there are in the problem.

This matrix-free product is used in conjunction with a Krylov iterative solver

to solve the KKT system and compute the Newton step. Since the KKT system

is an indefinite saddle-point system, we perform this solution using a specialized

Krylov solver called FLECS [45], described in Section 2.3.2. The Newton step is

then globalized in a trust-region framework, using a simple filter [48] to assess step-

acceptance.

We have demonstrated the efficacy of this algorithm on a high-fidelity aerody-

namic shape optimization problem. Our results demonstrate that the computational

cost of the RSNK algorithm is relatively insensitive to the size of the design space,

and compares favorably against SNOPT (a limited-memory quasi-Newton method)

when the optimization problem has several hundred design variables.

CHAPTER 3

MATRIX-FREE PRECONDITIONER FOR THE IDF

ARCHITECTURE

3.1 Introduction

A preconditioner is an operator that approximates the inverse of a target

matrix and is relatively inexpensive to apply. The application of a preconditioner

is meant to improve the conditioning of linear systems of equations, and thereby

improve the rate of convergence of iterative methods used to solve these systems.

The reduced-space inexact-Newton-Krylov algorithm we have developed and

introduced in Chapter 2 relies on a Krylov iterative solver to compute the Newton

step at each optimization iteration. However, it is well known that saddle-point

systems like (2.15) are ill-conditioned; see, for example, the review by Benzi et al.

[56]. Therefore, any Krylov iterative method used to solve (2.15) will require an

effective preconditioner in order to produce high-quality steps.

Unfortunately, common and generally applicable preconditioning methods,

such as incomplete Cholesky or LU factorizations, are not suitable for the matrix-

free solution the KKT system. These methods require the matrix to be available

explicitly, and avoiding the explicit computation of the KKT matrix or its sub-

blocks is a critical goal in the present work. To the best of our knowledge, no such

matrix-free preconditioner exists in the literature for the primal-dual system in the

IDF formulation.

Our approach to developing an effective IDF preconditioner was inspired by

a preconditioner originally proposed by Biros and Ghattas for full-space PDE-

constrained optimization [7]. The preconditioner in [7] 2 approximately inverts the

linearized PDE Jacobian, thereby preconditioning the full-space problem by mim-

icking the reduced-space formulation. In this chapter, we will demonstrate that a

Portions of this chapter previously appeared as: A. Dener and J. E. Hicken, “Matrix-free
algorithm for the optimization of multidisciplinary systems,” Structural and Multidisciplinary Op-
timization, vol. 56, no. 6, pp. 1429–1446, Jun. 2017

2Specifically, the P̃2 preconditioner.

32

33

matrix-free preconditioner for the IDF problem can be constructed by approximately

inverting the IDF coupling Jacobian, thereby preconditioning the IDF problem by

mimicking the MDF formulation.

3.2 Constructing the Preconditioner

In the IDF formulation, for an arbitrary vector b, we seek an operator M−1

such that M−1b ≈ K−1b, where K is the KKT matrix in (2.15).

To identify such an operator, it is instructive to begin with the ideal case,

where M = K. In this case, given bT = [bTx , b
T
w̄, b

T
λ], we must solve the following

linear system:
Hxx Hw̄x AT

x

Hxw̄ Hw̄w̄ AT
w̄

Ax Aw̄ 0

px

pw̄

pλ

 =

bx

bw̄

bλ

 , (3.1)

where the subscripts on the Hessian and constraint Jacobian blocks denote the

variables by which the Lagrangian and the IDF constraints are (total) differentiated,

respectively. In addition, we have introduced w̄ ∈ Rl for the vector of IDF coupling

variables; in the two-discipline case this vector would be w̄T = [ūT v̄T].

For our first step toward the preconditioner, we drop all the Hessian terms

from K except for Hxx = ∇2
xxL, which is replaced by a symmetric positive-definite

approximation B:
B 0 AT

x

0 0 AT
w̄

Ax Aw̄ 0

px

pw̄

pλ

 =

bx

bw̄

bλ

 , (3.2)

The invertibility of Aw̄, which we will discuss later, allows us to perform a

block factorization of the matrix in (3.2). Applying this block factorization, we

arrive at the initial version of our preconditioner in Alg. 2.

To see how the IDF preconditioner mimics MDF, recall that the IDF for-

mulation removes variables responsible for coupling between disciplines out of the

linearized MDA, and instead solves those variables within the optimization algo-

rithm via coupling constraints. However, these coupling constraints are guaranteed

to be satisfied only at the optimum solution, and the intermediate solutions are not

34

Algorithm 2: Steps for the IDF preconditioner application.

Data: vector to be preconditioned b = (bx, bw̄, bλ)
Result: preconditioned vector p = (px,pw̄,pλ)

1 solve AT
w̄pλ = bw̄ for pλ

2 solve Bpx = bx − AT
xpλ for px

3 solve Aw̄pw̄ = bλ − Axpx for pw̄

feasible with respect to the multidisciplinary problem. At these intermediate steps

of the optimization, a solution with the IDF constraint Jacobian, Aw̄ = dC/dw̄,

effectively acts as a feasibility restoration on the coupling constraints, and can be

used to recover solutions that satisfy the fully coupled linearized MDA.

For this reason, Steps 1 and 3 in Alg. 2 are essentially equivalent to solving the

MDF adjoint and (linearized) state, respectively. For Step 2, the vector bx − AT
xpλ

is analogous to the total gradient, with bx playing the role of ∂J /∂x and the second

term playing the role of (∂R/∂x)TΨ . Thus, in the MDF context, Step 2 finds the

step in design space, where B would typically be some quasi-Newton approximation

to the reduced Hessian. In a sense, it could be said that our preconditioner uses the

coupling information already present in the MDF formulation to precondition the

IDF formulation.

3.3 Invertibility of the IDF Constraint Jacobian

In the proposed IDF preconditioner Steps 1 and 3 hinge on the assumption

that the IDF constraint Jacobian, Aw̄ = dC/dw̄, is invertible. Therefore, in order

to ensure a complete and generally applicable preconditioner for all IDF problems,

we must also provide a general proof for this Jacobian’s invertibility. To that end,

we turn to the Theorem 1 below, which shows the IDF Jacobian is not only square

but also nonsingular provided the MDF Jacobian and the discipline Jacobians are

also nonsingular.

Theorem 1. Let Ki = ∂Ri/∂wi be the Jacobian of the ith discipline’s residual

respect to its state variables. If Ki is nonsingular ∀i, then the IDF Jacobian Aw̄ =

dC/dw̄ is nonsingular if and only if the MDA Jacobian Aw = ∂R/∂w is nonsingular.

35

The proof of Theorem 1 is a straightforward application of the Schur comple-

ment, which we will briefly review here. Given a (p+ q)× (p+ q) matrix,

M =

A B

C D

 , (3.3)

where A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p and D ∈ Rq×q are the matrix sub-blocks, the

Schur complement of M with respect to A or the (1, 1)-block is defined as

M/A ≡ S(1,1) := D− CA−1B. (3.4)

Similarly, the Schur complement of M with respect to D or the (2, 2) block is

M/D ≡ S(2,2) := A− BD−1C. (3.5)

In this proof, we leverage the property that

det(M) = det(A) det(S(1,1)) = det(D) det(S(2,2)). (3.6)

Consequently, if the diagonal sub-block D and the related Schur complement S(2,2)

are both invertible (i.e. det(D) 6= 0 and det(S(2,2)) 6= 0), then M must also be

invertible (i.e. det(M) 6= 0), and vice versa. The same relationship also holds true

for the other diagonal sub-block A and the associated Schur complement S(1,1).

Next, consider an MDA with d disciplines. Let the equation for the ith disci-

pline be given by

Ri (wi, {Eij(wj)|j = 1, . . . , d, j 6= i}) , ∀i = 1, . . . , d, (3.7)

where the set notation in the second argument indicates that the residual depends

on the states of the other d − 1 disciplines via the potentially nonlinear mappings

Eij. Next, introduce the coupling variables, w̄ij, which are defined by

Cij(wj, w̄ij) ≡ Eij(wj)− w̄ij = 0, ∀i, j = 1, . . . , d, j 6= i. (3.8)

36

Using the above conditions, the residual of the ith discipline can be expressed as a

function of the coupling variables:

Ri (wi, {w̄ij|j = 1, . . . , d, j 6= i}) , ∀i = 1, . . . , d. (3.9)

Let wT = [wT
1 , . . . ,w

T
d] and w̄T = [w̄T

12, . . . , w̄
T
d,d−1] denote the compound

vectors containing all the states and coupling variables, respectively, and consider

the compound residual given by

R(w, w̄)

C(w, w̄)

 =

R1(w1, w̄12, . . . , w̄1d)
...

Rd(wd, w̄d1, . . . , w̄d,d−1)

C12(w2, w̄12)
...

Cd,d−1(wd−1, w̄d,d−1)

. (3.10)

The Jacobian of this compound residual, with respect to w and w̄, is the matrix

D ≡

∂R∂w ∂R
∂w̄

∂C
∂w

∂C
∂w̄

 =

∂R∂w ∂R
∂w̄

∂C
∂w

−I

 . (3.11)

The (2,2) block of D is the identity matrix, which is clearly invertible, and the (1,1)

block of D is the block diagonal matrix diag(K1, . . . ,Kd), which is also invertible by

assumption that the Ki are invertible. Therefore, we can form the Schur complement

of D with respect to either block.

The Schur complement with respect to the (2,2) block of D is the matrix

S(2,2) ≡
∂R
∂w

+
∂R
∂w̄

∂C
∂w

. (3.12)

Now, the (i, j)th discipline-block of second term above is, for i 6= j,(
∂R
∂w̄

∂C
∂w

)
i,j

=
∂Ri

∂w̄ij

∂Eij
∂wj

=
∂Ri

∂wj

, (3.13)

37

where the last equality follows from the chain rule. There is no contribution to

the (i, i) block from the second term, since there is no coupling variable between a

discipline and itself. Conversely, recall that the first term in the Schur complement

S(2,2) is Ki = ∂Ri/∂wi, which has no off-diagonal blocks. Summarizing, the Schur

complement with respect to the (2,2) block of D is the monolithic MDA Jacobian

S(2,2) =

(
∂R
∂w

+
∂R
∂w̄

∂C
∂w

)
i,j

=
∂Ri

∂wj

. (3.14)

Next, we consider the Schur complement of D with respect to the (1,1) block:

S(1,1) ≡ −I− ∂C
∂w

[
∂R
∂w

]−1
∂R
∂w̄

. (3.15)

Now, the direct sensitivities of wi with respect to w̄ij can be found by taking the

total derivative of Ri = 0:

dRi

dw̄ij

=
∂Ri

∂w̄ij

+
∂Ri

∂wi

dwi

dw̄ij

= 0

⇒ dwi

dw̄ij

= −
[
∂Ri

∂wi

]−1
∂Ri

∂w̄ij

,

(3.16)

where j 6= i as before. Consequently, substituting this expression, the Schur com-

plement with respect to the (1,1) block of D simplifies to

S(1,1) = −I +
∂C
∂w

dw

dw̄
=

∂C
∂w̄

+
∂C
∂w

dw

dw̄
=

dC
dw̄

, (3.17)

which is the total derivative of the coupling constraints with respect to the coupling

variables, i.e. the IDF Jacobian.

The desired result now follows. The (2, 2) block of D is the identity matrix,

and therefore invertible. If the MDA Jacobian, i.e. the Schur complement S(2,2) is

also invertible, then D must be invertible. If D is invertible, then the IDF Jacobian

must be invertible, since it is the Schur complement S(1,1). The reverse implication

is analogous. This completes the proof.

38

3.4 Nested Linear Solutions

We have shown that the IDF constraint Jacobian is invertible. However, recall

that the rows of Aw̄ consist of total derivatives, so forming this matrix explicitly

and inverting via direct methods is not feasible in practice. Therefore, to solve the

linear systems in Steps 1 and 3 of Alg. 2, we again turn to Krylov iterative methods.

For simplicity, consider the system in Step 3 above in the context of a two-

discipline problem. A Krylov method used to solve this system requires products

between Aw̄ and an arbitrary vector z̄T = [z̄Tu , z̄
T
v]. Such a product can be expressed

as (recall Aw̄ = dC/dw̄ where C is defined by (2.2))

Aw̄z̄ =

 −I ∂Ev
∂u

du
dv̄

∂Eu
∂v

dv
dū

−I

z̄u
z̄v

=

−z̄u − ∂Ev
∂u

(
∂Ru

∂u

)−1 ∂Ru

∂v̄
z̄v

−z̄v − ∂Eu
∂v

(
∂Rv

∂v

)−1 ∂Rv

∂w̄
z̄w

 ,
(3.18)

where we have replaced the total derivatives du/dv̄ and dv/dū with their defini-

tions. The above expression shows that each product with Aw̄ requires the inversion

of the discipline Jacobians. While these inversions are decoupled from one another,

their cost is unnecessarily high given the other approximations inherent to the pre-

conditioner (e.g. approximating and discarding the Hessian blocks).

Instead, we replace the inverse Jacobians with approximate inversions induced

by the discipline preconditioners; that is, we assume that each discipline has a

preconditioner it uses to solve its PDE system, and that we can apply these pre-

conditioners to arbitrary vectors. Thus, the products with Aw̄ are approximated

as

Ãw̄z̄ =

−z̄u − ∂Ev
∂u

˜(∂Ru

∂u

)−1
∂Ru

∂v̄
z̄v

−z̄v − ∂Eu
∂v

(̃
∂Rv

∂v

)−1
∂Rv

∂w̄
z̄w

 , (3.19)

where the tilde accent denotes an approximate matrix. We note that stationary

PDE preconditioners are necessary in this context, otherwise the products with Ãw̄

will change from one iteration to the next and may cause the Krylov solver to fail.

A similar approach to the one described above is used to form the products

39

with ÃT
w̄, which are needed by Krylov iterative methods to solve the system in Step

1 of the IDF preconditioner. In addition, this general approach is used to form

products with ÃT
x and Ãx, which are needed in steps 2 and 3, respectively. For the

transposed matrices, the only significant difference is that these products rely on

the transpose of the PDE preconditioners.

To solve the systems involving ÃT
w̄ and Ãw̄ in Steps 1 and 3, we use unprecon-

ditioned GMRES; unlike the KKT matrix in (2.15), our experience suggests that the

IDF Jacobian is well conditioned and preconditioning is not necessary. Indeed, in

the numerical experiments in Section 3.6 and Chapter 5, we find that approximately

5 iterations are typically needed to reduce the relative residual by a factor of 10−2

on problems with O(102) coupling constraints.

3.5 Preconditioner Overview

We have introduced a matrix-free preconditioner for the IDF formulation,

which is given by the following steps:

1. Inexactly solve ÃT
w̄pλ = bw̄ for pλ using GMRES, where the necessary matrix-

vector products with ÃT
w̄ are evaluated using the transposed variant of (3.19).

2. Solve Bpx = bx − ÃT
xpλ for px, where the product ÃT

xpλ is evaluated using

the ÃT
x variant of (3.19).

3. Solve Ãw̄pw̄ = bλ − Ãxpx for pw̄ using GMRES, where the matrix-vector

products with Ãw̄ are evaluated using (3.19), and Ãxpx is evaluated using the

Ãx variant of (3.19).

The remaining unspecified detail of the IDF preconditioner is the approximate Hes-

sian B appearing in Step 2. In the present work, we simply take B = I. More

generally, a quasi-Newton approximation of the Hessian could be used for B, but we

did not find any significant improvement using, e.g., BFGS in our experiments.

For implementation considerations, many modern open-source PDE solvers

provide, or can be made to provide, the PDE preconditioner and Jacobian prod-

uct subroutines necessary for the IDF preconditioner, e.g. Trilinos [57]. For some

40

legacy (linear) structural codes, it may be possible to use the exact stiffness matrix

to compute products with Ãw̄ without significant cost. In other cases, computa-

tional cost may be mitigated by using approximate solutions with loose tolerances.

More generally, however, we acknowledge that the operations required by the IDF

preconditioner may prevent its use with some legacy solvers.

3.6 Numerical Examples

To test the efficacy of our matrix-free IDF preconditioner, we implement two

low-fidelity multidisciplinary design optimization problems – a domain decomposi-

tion problem based on the 2-D Poisson equation, and a 2-D elastic nozzle problem.

These problems are implemented in both the MDF and IDF formulations, and solved

using inexact-Newton-Krylov algorithms. The MDF versions of these problems lack

constraints; consequently, the appropriate Newton-Krylov algorithm is a Newton-

CG method [24], utilizing second-order adjoint-based matrix-vector products of the

Hessian. Meanwhile, the IDF versions are solved using the RSNK algorithm intro-

duced in Chapter 2.

3.6.1 Domain Decomposition as a Model MDO Problem

Our first numerical example is an inverse problem based on the two-dimensional

Laplace equation. The optimization problem is to determine the boundary value

on the left edge that produces a target solution along the right edge. To mimic

a multidisciplinary system, we use a domain decomposition approach in which the

Laplace equation is solved independently on each subdomain. These independent

subdomains are intended to mimic different “disciplines” in an MDO problem and

are coupled together at the boundaries using consistency constraints imposed as

Dirichlet conditions. Using this model MDO problem, we can investigate the IDF

formulation with varying numbers of “disciplines”.

The 2-dimensional Laplace equation on a unit domain is given by

∂2u

∂x2
+
∂2u

∂y2
= 0, ∀ (x, y) ∈ Ω = [0, 1]2 . (3.20)

41

The boundary conditions for this test case are given by

u(x, y) = 0, ∀ (x, y) ∈ (∂Ω|top ∪ ∂Ω|bottom) ,

u(0, y) = d(y), ∀ y ∈ ∂Ω|left,
∂u

∂x

x=1

= 0, ∀ y ∈ ∂Ω|right,

(3.21)

where the Dirichlet boundary on the left is defined by the control d(y). The Laplace

equation is discretized using a second-order accurate finite-difference scheme over

a uniform grid. Based on this discretization, we use di = d(yi) to denote the ith

design variable associated with the Dirichlet condition imposed at the left boundary

node with y-coordinate yi.

Exterior Neumann boundary conditions

Subdomain overlap element

Exterior Dirichlet boundary conditions

Inter-domain consistency conditions (Dirichlet)

Fig. 3.1. Four-subdomain example of the domain decomposition used
for the Laplace problem.

The unit domain with the boundary conditions specified in (3.21) is divided

into equally sized subdomains, for example, as shown by the four-subdomain ex-

ample in Fig. 3.1. As mentioned above, each subdomain is intended to mimic

an individual “discipline” in a multidisciplinary problem. Decomposing the global

42

domain creates new inter-domain boundaries on which we must define boundary

conditions, and it is through these conditions that we couple the “disciplines” to-

gether. Consequently, the definition of the boundary conditions depends on the

MDAO formulation.

For the MDF architecture, the inter-domain boundary conditions are derived

using the overlapping nodes shown in Fig. 3.1. The solution values of each domain

that are one interval away from the edge are mapped onto the neighboring subdo-

main as a Dirichlet condition. An example expression of the inter-domain bounds

is given as

u1(x1, y1,max) = u3(x1, y3,min +∆y),

u1(x1,max, y1) = u2(x2,min +∆x, y1),
(3.22)

where ∆x and ∆y are the node spacing of the uniform grid, and the subscripts

denote the domain numbers in the four-subdomain example from Fig. 3.1. In this

instance, the row of nodes second from the bottom in Ω3 has been mapped onto

the top edge of Ω1 as a Dirichlet condition. Similarly, the column of nodes second

from the left in Ω2 has been mapped onto the right edge of Ω1. Together with

the exterior boundary conditions defined in (3.21), Ω1 now has all the information

it needs for a well-posed solution of the Laplace equation. Again, these internal

boundary conditions are intended to mimic the transfer of information between the

coupled disciplines of a multidisciplinary system.

The multidisciplinary analysis (MDA) for the MDF architecture is then solved

using a block-Jacobi approach. At each iteration of the MDA, the individual sub-

domains are solved independently, and the inter-domain Dirichlet conditions are

updated before advancing to the next iteration. The multidisciplinary solution is

considered converged when the maximum difference between overlapping nodes of

neighboring subdomains falls below a specified tolerance.

Remark. Stationary iterative methods, such as block-Jacobi, remain a popular so-

lution method for multidisciplinary analysis [3], [58], [59] due to their ease of im-

plementation when using disparate solvers. This choice is particularly appropriate

for the present work, because MDF problems with block-Jacobi MDAs can be refor-

43

mulated into IDF problems without necessitating any new solver infrastructure, and

the two MDO architectures can be compared on equal footing in terms of implemen-

tation difficulty. We recognize that a monolithic Newton-Krylov approach can yield

a more efficient solution of the multidisciplinary system [10], and we will explore

this alternative further with our second test problem in Section 3.6.2.

In the IDF architecture, the inter-domain boundary conditions have the same

form as MDF, but the values are prescribed by coupling variables; for example,

u1(x1, y1,max) = ū1,top(x1),

u1(x1,max, y1) = ū1,right(y1),
(3.23)

where the IDF coupling variables, denoted by ū, are part of the optimization vari-

ables in the optimization problem. No multidisciplinary analysis is performed in

the IDF formulation, and, instead, the multidisciplinary feasibility of the optimal

solution is enforced through optimization constraints of the form

u3(x1, y3,min +∆y)− ū1,top(x1) = 0,

u2(x2,min +∆x, y1)− ū1,right(y1) = 0.
(3.24)

Consequently, the subdomains in the IDF formulation do not communicate any

boundary information to each other during the solution of the state equations, nor

do they require communication during the adjoint solution.

3.6.1.1 Objective Function and Problem Setup

The objective function is the squared L2 error between a target solution and

the solution of the Laplace equation on the right edge of the full domain:

J =
1

2

∫ 1

0

(u(1, y)− utarg(y))2dy, (3.25)

where utarg is the target solution along ∂Ω|right. Thus, the optimization seeks to re-

cover the target solution through the control of the variables that define the Dirich-

let boundary condition along the left edge. The target solution is the parabola

utarg(y) = −4y(y − 1), which has a maxima of 1 at y = 0.5 and complies with

44

zero Dirichlet boundary conditions at y = 0 and y = 1, to ensure the solution is

continuous.

Table 3.1. Subdomain configurations tested with the Laplace problem.

Design Vars Domains Partition (nx × ny) State Vars Coupling Vars

26 2 1× 2 450 28
26 4 2× 2 900 110
26 6 3× 2 1350 192
39 6 2× 3 1350 194
39 9 3× 3 2025 332
39 12 4× 3 2700 470

Table 3.1 lists all the domain-decomposition cases evaluated in the computa-

tional cost comparison. The variables nx and ny denote the number of subdomains

along the x and y axes, respectively. Since the design variables are defined directly

on the left-edge nodes, the number of design variables in the optimization problem

changes with ny. In the IDF formulation, the full size of the design space is expanded

further by the coupling variables. The cases are designed such that the subdomain

grid sizes are fixed at (15× 15), including the overlapping nodes, for a total of 225

state variables for each “discipline”. This ensures that the computational cost of

an individual subdomain solution is a fixed constant for both architectures in all

domain partitioning configurations, and the number of subdomain solutions can be

used as a cost metric for optimization runs.

Table 3.2. Optimization parameters for the Laplace problem.

Parameter Value

relative optimality tolerance, τp 10−5

relative feasibility tolerance, τd 10−5

initial penalty parameter, µ0 105

initial Krylov tolerance, η0 0.5
Krylov subspace size 20

Table 3.2 lists the algorithm parameters used for the solutions generated in

this section. The initial and maximum trust radii vary for each test case to account

for the differences in the size of the design space. The maximum radius is set as

45

∆max =
√

0.25 nd and the initial radius as ∆0 = ∆max/8 for both formulations, where

nd is the number of degrees of freedom for the optimization problem, including the

coupling variables in the case of IDF.

3.6.1.2 IDF Preconditioner Results

Earlier in the chapter, we mentioned that the IDF preconditioner was criti-

cal in the practical application of the reduced-space Newton-Krylov algorithm to

the IDF formulation. Without this preconditioner, the solution of the KKT sys-

tem emerging from the IDF formulation stalls and fails to produce a useful search

direction. To demonstrate this claim, Fig. 3.2 shows the convergence histories of

the preconditioned and non-preconditioned FLECS solution of (2.15) in the four-

subdomain (2 × 2) test case. The residual norm being measured is that of the

linearized KKT conditions, and the Krylov subspace is capped at 20 vectors. The

preconditioned solver is able to meet the tolerance target using only 10 iterations,

while the non-preconditioned solver terminates at the iteration limit without any

significant progress.

For the sample shown in Fig. 3.2, the preconditioned Krylov solution required

246 subdomain solution versus 160 for its non-preconditioned counterpart. However,

the majority of the subdomain solutions in the preconditioned case are approximate.

Each Krylov iteration for both cases requires one KKT-matrix-vector product, which

in turn requires 8 subdomain solutions in this four-subdomain example (i.e.: 4 solu-

tions for each second-order adjoint). This accounts for only 80 subdomain solutions

in the preconditioned case. The remaining 166 subdomain solutions are, in fact,

cheap approximations used in Steps 1 and 3 of the IDF preconditioner. We be-

lieve that this is a small price well worth paying, as this KKT system cannot be

adequately solved otherwise.

3.6.1.3 Optimization Results

Fig. 3.3 shows the optimum solution for the four-subdomain case, with the

overlap between subdomains shaded in gray. To plotting accuracy, both the MDF

and IDF formulations recover the same optimum, matching the targeted parabola

on the right edge of the domain at x = 1.

46

0 5 10 15 20 25

Krylov iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
el
a
ti
ve

re
si
d
u
a
l
n
or
m

Preconditioned

Not Preconditioned

Fig. 3.2. IDF KKT system Krylov solution convergence with
four-subdomain (2x2) decomposition.

x

0.0
0.2

0.4
0.6

0.8
1.0

y

0.0

0.2

0.4

0.6

0.8
1.0

u

0

2

4

6

8

10

Fig. 3.3. Optimal solution with a four-subdomain (2x2) decomposition.

47

0 10000 20000 30000 40000 50000

of “discipline” solutions

10−8

10−6

10−4

10−2

100

R
el
a
ti
ve

n
or
m
s

MDF optimality

IDF optimality

IDF feasibility

Fig. 3.4. Convergence histories for optimizations with four-subdomain
(2x2) decomposition.

In order to demonstrate the superlienar convergence expected of Newton-

Krylov algorithms, we plot the convergence history of the four-subdomain case in

Fig. 3.4. The convergence metrics are the l2-norms of the KKT conditions in (2.5),

‖dL/dy‖2 for optimality and ‖C‖2 for feasibility, normalized by their initial values.

The trends we present here are representative of all the subdomain configurations

tested for this problem. The IDF formulation exhibits clear superlinear convergence

on this problem, while the MDF formulation is close to superlinear except for the

numerical artifacts at the end. This behavior is due to the dynamic Krylov tolerance

that attempts to prevent oversolving near the optimum.

Additionally, we observe that the optimization for both architectures also takes

approximately the same number of nonlinear iterations, but the overall computa-

tional cost of the MDF formulation for this problem is an order of magnitude more

expensive than IDF. This is due to the forward and adjoint solutions in the MDF for-

mulation requiring expensive block-Jacobi iterations to achieve full multidisciplinary

convergence.

48

0.0 2.5 5.0 7.5 10.0 12.5 15.0

of “disciplines”

103

104

105

106

#
o
f
“
d
is
ci
p
li
n
e”

so
lu
ti
o
n
s

MDF 26 dvs

IDF 26 dvs

MDF 39 dvs

IDF 39 dvs

Fig. 3.5. Cost scaling with number of subdomain “disciplines” under
IDF and MDF architectures.

The computational cost scaling against the number of subdomains is shown

in Fig. 3.5. The trend-lines are separated per coupling architecture and number

of design variables. It is clear that the MDF formulation is not only significantly

more expensive on this problem, but it also scales poorly with increasing number of

“disciplines”.

3.6.2 Aero-Structural Optimization of a 2-D Elastic Nozzle

Our second test case is another inverse design problem, this time based on the

quasi-one-dimensional flow in an elastic nozzle. The optimization problem is to find

the (deformed) nozzle shape that recovers a prescribed pressure distribution. The

flow is modeled using the quasi-one-dimensional Euler equations, and the structural

deformations in the nozzle wall are modeled using combined beam-bending and axial

stiffness.

49

3.6.2.1 Quasi-1D Flow Solver

The quasi-one-dimensional Euler equations are given by

∂F
∂x
− G = 0, ∀ x ∈ [0, 1], (3.26)

where flux and source terms are defined by

FT =
(
ρvA, (ρv2 + p)A, v(e+ p)A

)
and

GT =
(

0, pdA
dx
, 0

)
,

(3.27)

respectively. The state variables in the Euler equations are the density, ρ, momen-

tum per unit volume, ρv, and energy per unit volume, e. The pressure is defined

using the ideal gas law, p = (γ − 1)(e − 1
2
ρv2). The flow solver is coupled to the

structural solver through the nozzle area A(x).

The boundary conditions are prescribed at the inlet, x = 0, and outlet, x = 1,

using the Area-Mach-number relations, with a stagnation temperature of 300K and

a pressure of 100 kPa. The specific gas constant and the critical nozzle area are set

as 287 J/(kg K) and 0.8, respectively.

The spatial derivatives in (3.26) are discretized with a third-order accurate

summation-by-parts operator [60], [61], with boundary conditions imposed weakly

using penalty terms [62], [63]. The solution is stabilized with scalar third-order

accurate artificial dissipation [64]. The resulting set of nonlinear algebraic equations

are denoted by

RF (w,u) = 0, (3.28)

wherew are the flow states and the u are the structure deformations (defined below)

that determine the nozzle area A(x).

3.6.2.2 Linear Elastic Structural Solver

The structural deformations in the elastic nozzle wall are modeled using the

direct stiffness method [65], [66]. The local stiffness system for frame elements is

50

given by

Ke′ue′ = fe′ , (3.29)

where the local stiffness matrix and degrees of freedom are defined as,

wtE

l

1 0 0 −1 0 0

0 12t2

l2
6t2

l
0 −12t2

l2
6t2

l

0 6t2

l
4t2 0 −6t2

l
2t2

−1 0 0 1 0 0

0 −12t2

l2
−6t2

l
0 12t2

l2
−6t2

l

0 6t2

l
2t2 0 −6t2

l
4t2

︸ ︷︷ ︸

Ke′

ux′,1

uy′,1

uθ,1

ux′,2

uy′,2

uθ,2

︸ ︷︷ ︸
ue′

, (3.30)

In (3.30), w is the cross-section width, t is the cross-section thickness, l is the axial

length, and E is the Young’s modulus of the element. The subscripts 1 and 2 denote

the information that belongs to the left and right nodes of the element, respectively.

The degrees of freedom ue′ = (ux′ , uy′ , uθ)
T are the local axial, local transverse and

rotational deformations, respectively. Here, the local axial direction is parallel to

the nozzle wall, while the local transverse direction is perpendicular.

(3.29) is coupled to the flow solver through the local forcing vector,

fe′ =
(
fx′,1 fy′,1 m1 fx′,2 fy′,2 m1

)T
. (3.31)

In the elastic nozzle problem, the only forces exerted on the structure stem from the

pressure of the flow through the nozzle. Since pressure forces are always normal to

the surface, the local axial forces fx′ and applied moments m are always zero. The

normal forces fy′ are defined asfy′,1
fy′,2

 = −wl
6

2 1

1 2

p1

p2

 , (3.32)

where p1 and p2 are the flow pressures on the left and right nodes of the element.

51

The local stiffness system is transformed into the global Cartesian coordinate

system to obtain

TTKe′Tue′ = Tfe′ , (3.33)

using the transformation matrix

T =

cosφ sinφ 0 0 0 0

− sinφ cosφ 0 0 0 0

0 0 1 0 0 0

0 0 0 cosφ sinφ 0

0 0 0 − sinφ cosφ 0

0 0 0 0 0 1

, (3.34)

where φ is the angle between the frame element’s axial centerline x′ and the global

x axis. The element systems in (3.33) are then assembled into a global system,

RS(u,w) = Ku− f(w) = 0, (3.35)

where u contains the deformations of the nozzle at each node, defined in the global

(x, y, θ) directions, and w are the flow states defined earlier.

One of the assumptions inherent to the flow solver is that the areas are always

defined at fixed locations along the nozzle. Therefore, in order to simplify the

transfer of information between the two disciplines, we fix the global x-displacements

for all nodes. Since the inlet and outlet areas are also fixed, we impose simple-

support boundary conditions at the left and right ends of the nozzle, that is

ux(0) = ux(L) = uy(0) = uy(L) = 0.

3.6.2.3 Monolithic MDA and Adjoint Solutions

It is clear that the quasi-one-dimensional nozzle flow and structural displace-

ment are coupled: the pressure determines the displacement, which changes the

nozzle shape, which determines the pressure. To solve this coupled MDA, which

52

is necessary in MDF, we use a monolithic Newton-Krylov method. This iterative

root-finding method solves the nonlinear discrete residual, denoted by the coupled

discrete residual

R(w,u) =

RF (w,u)

RS(u,w)

 = 0. (3.36)

Applying Newton’s method to (3.36) produces∂RF

∂w
∂RF

∂u

∂RS

∂w
∂RS

∂u

∆w
∆u

 =

−RF

−RS

 , (3.37)

which is solved at each Newton iteration using FGMRES. This linear solution is

preconditioned with a block-Jacobi approach, where the (1, 1) flow block is solved

using an LU factorization of a first-order accurate discretization based on nearest-

neighbors, while the (2, 2) structural block is preconditioned using nested FGMRES

with an absolute tolerance of 10−5. The nested FGMRES itself is preconditioned

using the Gauss-Seidel method with 10 iterations. The MDA is converged to an

absolute tolerance of 10−8.

The adjoint system uses the transpose of the matrix in (3.37) and is solved

using FMGRES with a relative tolerance of 10−8. This solution is preconditioned

with the transposed version of the block-Jacobi approach described above.

The IDF version of the problem solves the two disciplines independently. The

discipline residuals are modified such thatRF (w, ū)

RS(u, w̄)

 = 0, (3.38)

where ū and w̄ are the target state variables prescribed by the optimization algo-

rithm. In this particular problem, ū only consists of the transverse displacements

at each node, uy, which are used to compute the nozzle areas for the flow solver.

Similarly, w̄ only consists of the pressure at each nozzle node, p, which are used

to compute the structural forces. Under IDF, the disciplines are decoupled from

53

each other and can be evaluated independently. Forward and adjoint linear systems

for IDF use only the diagonal blocks of the matrix in (3.37), and their associated

preconditioners. Multidisciplinary feasibility is enforced in IDF using constraints,

Ew(u)− ū = 0 and Ew(u)− w̄ = 0, (3.39)

where Ew(u) = uy and Eu(w) = p.

3.6.2.4 Nozzle Geometry

The nozzle area, A(x), is parameterized using a cubic b-spline with an open

uniform knot vector. The interior b-spline control points are used as design variables

in the optimization. The nozzle areas at the inlet and the outlet are fixed to be

A(0) = 2 and A(1) = 1.75 respectively. The initial design variables are chosen such

that they produce a linear nozzle area between the inlet and the outlet.

The displaced areas at each x-coordinate are calculated under the assumption

of a rectangular nozzle cross-section with fixed width w = 1 m and varying height

h = 2[1 − (y0 + uy)], where y0 is the initial y-coordinate of each structural node

and uy are the vertical deformations computed by the structural solver. Finally, the

nozzle lenght is fixed at l = 1 m and the Young’s Modulus at E = 109 Pa.

3.6.2.5 Objective Function and Problem Setup

The objective function for the nozzle inverse design problem is

J =
1

2

∫ 1

0

(p− ptarg)2dx, (3.40)

where ptarg is the target pressure distribution. The discrete integral is calculated

with the same fourth-order accurate SBP quadrature used in the flow solver [67].

The target pressures are calculated from the MDA solution where the initial (i.e., un-

loaded) nozzle has a cubic dependence on x, such that the minimum area, A(0.5) =

1.5 occurs at the midpoint of the nozzle. Fig. 3.6 shows the initial and optimal

nozzle shapes, together with the corresponding pressure distributions. The target

pressure is also provided and is seen to match the computed pressure on the optimal

54

nozzle.

0.0 0.2 0.4 0.6 0.8 1.0

x

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

P
re
ss
u
re

Pressure

Targ. press.

Nozzle Area

1.5

1.6

1.7

1.8

1.9

2.0

2.1

A
rea

(a) initial

0.0 0.2 0.4 0.6 0.8 1.0

x

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

P
re
ss
u
re

Pressure

Targ. press.

Nozzle Area

1.5

1.6

1.7

1.8

1.9

2.0

2.1

A
rea

(b) optimized

Fig. 3.6. Deformed nozzle areas and corresponding pressure
distributions.

The nozzle problem was solved using the MDF and IDF formulations for vary-

ing numbers of design variables ranging from 10 to 40 in increments of 2. Note

55

that the x-axis in Fig. 3.8 only shows the number of b-spline control points: the

IDF formulation for this problem has 242 additional coupling variables, and just as

many Lagrange multipliers, that are also variables in the optimization algorithm.

A complete list of optimization parameters used in this problem is provided

in Table 3.3.

Table 3.3. Optimization parameters for the elastic nozzle problem.

Parameter Value

relative optimality tolerance, τp 10−5

relative feasibility tolerance, τd 10−5

initial trust radius, ∆0 2.0
maximum trust radius, ∆max 4.0
initial penalty parameter, σ0 0.1

initial Krylov tolerance, η0 0.5
Krylov subspace size 15

3.6.2.6 IDF Preconditioner Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Krylov iterations

10−4

10−3

10−2

10−1

100

101

R
el
a
ti
ve

re
si
d
u
a
l
n
or
m

Preconditioned

Not Preconditioned

Fig. 3.7. A sample of FLECS convergence histories for the IDF problem
with 20 design variables.

56

We begin the numerical experiments by demonstrating the efficacy of the IDF

preconditioner, as we did for the domain-decomposition problem. Fig. 3.7 shows

the convergence histories of the FLECS Krylov solver with 20 design variables, with

and without the preconditioner. The sample presented here is representative of con-

vergence histories typically observed throughout the optimization. Once again, the

non-preconditioned solution stalls while the preconditioned solver is able to converge

the relative KKT residual down three orders of magnitude for this particular non-

linear iteration. This mirrors our observations from the previous Laplace domain-

decomposition problem. Without the preconditioner, the Krylov solver cannot pro-

duce useful Newton steps, and the optimization algorithm cannot make progress

toward an optimum for the IDF problem.

3.6.2.7 Optimization Results

Fig. 3.8 shows the cost scaling of the two MDO architectures. The compu-

tational cost is measured by recording the number of flow solver preconditioner

applications and normalizing this by the number of flow solver preconditioner ap-

plications required for the MDA on the target geometry.

The cost scaling analysis for the elastic nozzle problem reveals a number of

important findings. First, the Newton-Krylov MDA makes the MDF formulation

considerably more efficient than what we observed with the block-Jacobi MDA of the

domain-decomposition problem. Consequently, the MDF formulation here costs 8.3

fewer equivalent MDA evaluations, on average, relative to IDF – a 15.5% decrease.

However, the inexact-Newton-Krylov strategy appears to exhibit better cost scaling

with the IDF formulation than it does with MDF. The trust-region Newton-CG

algorithm used for the MDF problem experiences an increase in cost at more than

30 design variables. Overall, the IDF formulation remains competitive in cost while

offering significant advantages in terms of implementation.

We evaluate optimization convergence properties with sample convergence his-

tories taken from the 20 and 40 design-variable cases, shown in Fig. 3.9. The inexact-

Newton-Krylov method for IDF exhibits the expected superlinear convergence for

both cases, and this is typical of the entire range of design variables we have tested.

57

10 20 30 40

Number of design variables

0

20

40

60

80

C
o
st

(e
q
u
iv
a
le
n
t
M
D
A

so
lu
ti
o
n
s)

IDF

MDF

Fig. 3.8. Computational cost of the optimization with varying numbers
of design variables.

Convergence for the MDF formulation, however, loses superlinearity at higher num-

bers of design variables, indicating that the quality of the Newton step produced

by the Krylov iterative method is degrading with the increasing size of the MDF

optimization problem.

3.7 Summary

The RSNK algorithm we have introduced in Chapter 2 aims to solve reduced-

space PDE-governed optimization problems by computing the Newton step by solv-

ing the KKT system with a Krylov solver. The advantage of this approach is that

the solution can be performed matrix-free, without requiring the computationally

expensive explicit assembly of a total constraint Jacobian. However, the KKT sys-

tem that arises from applying the Newton’s method to the first-order optimality

conditions is an ill conditioned saddle-point system. Efficient matrix-free solution

of this system requires an effective matrix-free preconditioner.

58

0 10 20 30 40 50 60

Cost (equivalent MDA solutions)

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
el
a
ti
ve

N
or
m
s

IDF Optimality

IDF Feasibility

MDF Optimality

(a) 20 design variables

0 20 40 60 80

Cost (equivalent MDA solutions)

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
el
a
ti
ve

N
or
m
s

IDF Optimality

IDF Feasibility

MDF Optimality

(b) 40 design variables

Fig. 3.9. Optimization convergence histories for the elastic nozzle
problem.

59

In this chapter, we have taken inspiration from the full-space optimization

community and developed a matrix-free preconditioner for the IDF formulation. Our

preconditioner approximately inverts the IDF coupling constraint Jacobian, which is

analogous to approximating the IDF coupling variables via an MDF analysis. This

is accomplished through a three step process described in Section 3.2. Invertibility

of the coupling constraint Jacobian is proven in Section 3.3, and implementation

details of the nested Krylov solutions discussed in Section 3.4.

We have demonstrated the effectiveness of the IDF preconditioner on two low-

fidelity test problems in Section 3.6. Our results indicate that the preconditioner

is critical for the computation of high-quality descent directions in the IDF formu-

lation. Without it, the Krylov solutions for the associated KKT systems do not

converge. In Chapter 5, we will investigate whether this still holds true on a high-

fidelity large-scale problem with thousands of coupling variables and constraints.

CHAPTER 4

PARALLEL-AGNOSTIC OPTIMIZATION LIBRARY

4.1 Introduction

In the present work, we have developed a reduced-space inexact-Newton-

Krylov (RSNK) algorithm intended to make the modular IDF formulation a vi-

able and efficient choice for multidisciplinary design optimization. However, the

matrix-free KKT matrix-vector product introduced in Chapter 2 and the IDF pre-

conditioner introduced in Chapter 3 involve PDE Jacobian products and linearized

solutions that are often parallelized in high-fidelity applications. Since the choice of

data structures and parallelization schemes differ from one PDE solver to another,

any implementation of this RSNK algorithm must remain agnostic to the underlying

data structures and parallelization schemes in order to maintain modularity.

In this chapter, we will introduce a parallel-agnostic optimization library,

called Kona, that aims to preserve the sought-after modularity. The high-level

design of Kona can be thought of in three components: the PDE solver interface,

the optimization algorithm interface, and an abstraction layer that bridges the two

together. It is important to stress that the optimization side never directly interacts

with the solver side and vice versa, instead going through the abstraction layer. Our

motivation for such a separation is to allow the development of new optimization

algorithms and the integration of new PDE solvers independently from one another.

Figure 4.1 shows a minimal UML diagram for Kona. Here, ISolver,

IAllocator and IVector define the solver side interfaces. IAlgorithm and

IHessian define the optimization side interfaces. Optimizer is the top level op-

timization controller users are intended to interact with. Finally, KonaMemory,

VectorFactory, KonaVector and KonaMatrix form the reverse-communication ab-

straction layer.

Portions of this chapter previously appeared as: A. Dener, P. Meng, J. E. Hicken, G. J.
Kennedy, J. Hwang, and J. S. Gray, “Kona: A parallel optimization library for engineering-design
problems,” presented at the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conf., San Diego, CA, USA, 2016

60

61

Below we will describe the design of each block individually, explaining in

detail the components listed in the UML diagram. To facilitate this discussion,

we introduce a generic equality-constrained, PDE-governed optimization problem

statement.

minimize
x

F(x,u(x))

subject to C(x,u(x)) = 0

governed by R(x,u) = 0

(4.1)

where x ∈ Rn are the design variables and u ∈ Rs are the state variables. The

objective function, F : Rn × Rs → R, and constraints, C : Rn × Rs → Rm, are

assumed to be C2 continuous functions. In this reduced-space formulation, the state

variables are defined as implicit functions of the design variables via a discretized

set of PDEs, denoted here by R(x,u). As in Chapter 2, this general optimization

statement can also represent a multidisciplinary problem, with a set of coupled

PDEs combined under a single multidisciplinary residual. However, defining the

implementation on this general statement ensures the broad applicability of the

optimization library to a wide range of problems.

62

F
ig

.
4
.1

.
M

in
im

a
l

U
M

L
d
ia

g
ra

m
fo

r
K

o
n
a
,

sh
o
w

in
g

o
n
ly

h
ig

h
-l

e
v
e
l

a
ss

o
ci

a
ti

o
n
s.

63

4.2 PDE-Solver Interface

Kona’s interaction with a PDE solver is inspired by a “reverse communication”

feature first proposed by Ashby and Seager [69] in the context of iterative linear sys-

tem solvers. The goal of reverse communication, as stated by Ashby and Seager,

is to perform algebraic operations while avoiding data structures entirely, such that

the user has the freedom to implement the data storage in whatever architecture

they prefer, and adopt any parallelization scheme. Consequently, an algorithm using

reverse communication never interacts with data directly. Instead, it sends requests

to the user to perform certain linear algebra tasks on data stored in particular loca-

tions. This ensures the algorithm’s operability with both MPI- and GPGPU-style

parallelism, with no scheme-specific modifications to the optimization algorithms.

Kona adopts this reverse communication model by requiring users to create

three objects that follow a predetermined interface.

• IVector – A state vector object implementing ten basic algebra tasks on the

underlying data set.

• IAllocator – A memory allocation tool that will initialize a requested number

of IVector objects in a given vector space.

• ISolver – A solver wrapper with a predetermined set of member functions per-

forming function evaluations, partial-derivative evaluations, Jacobian-vector

products, and linear and non-linear system solutions on IVector objects.

4.2.1 Abstract Vectors

User-created vectors are required to be an implementation of the IVector in-

terface shown in the UML diagram in Figure 4.1. Currently, Kona supports vector

abstraction only for state vectors. Design and dual vectors are internally imple-

mented as serial arrays, under the assumption that their relative sizes in target

applications are considerably smaller than the state space.

The IVector interface consists of eight specific algebra operations on the un-

derlying data structure referenced within the abstract vector. These operations are:

• plus(IVector) – In-place summation with the given vector.

64

• times scalar(float) – In-place multiplication with a scalar.

• times vector(IVector) – In-place element-wise multiplication with the given

vector.

• equals vector(IVector) – Value assignment to the given vector.

• equals value(float) – Value assignment to a scalar.

• equals ax p by(a, IVector, b, IVector) – Value assignment to the scaled

sum of two given vectors.

• inner(IVector) – In-place inner product with the given vector.

By default, the Kona library provides a basic serial implementation of these

operations based on NumPy ndarray data storage. For high-performance applica-

tions, the choice of data structure within the abstract-vector object is left up to the

user. However, it is strongly recommended to store and manipulate the data with a

compiled language, in a parallelized environment, consistent with the PDE solver’s

data structure. This is facilitated by Python’s interoperability with other languages;

for example, Python can leverage compiled Fortran code using F2Py [70], or it can

be extended to C/C++ using the native Python C API, Cython [71], or external

libraries such as SWIG [72] and Boost.Python [73].

4.2.2 Vector Allocator

Once the abstract vector object is defined, Kona then requires a way to allocate

the underlying data structure in bulk. This is achieved using an IAllocator inter-

face with three member functions, one for each vector space, that produce standard

Python arrays containing the requested number of user vectors.

As before, Kona provides a basic serial implementation of this called

BaseAllocator that produces BaseVectors sized according to the requested vector

space. The user is expected to define allocators for the vector objects associated

with any user-implemented parallel data structure.

65

4.2.3 Solver Wrapper

The ISolver wrapper interface defines most of Kona’s reverse communication

scheme with the PDE solver. It contains a reference to the IAllocator implemen-

tation, and a set of predetermined member functions that perform various linear

algebra tasks on IVector implementations.

Table 4.1 outlines all ISolver operations that must be implemented by the

user. These methods are called upon by Kona’s reverse-communication abstraction

layer to perform various optimization tasks. For instance, when an algorithm needs

to evaluate the total design derivative of the objective function, the abstraction layer

will first evaluate the partial state derivative using eval dFdU and then use this as

the negative right-hand-side vector in a solve adjoint call in order to calculate

adjoint variables, as per (2.13). The matrix-vector product between the adjoint

variables and (∂R/∂x)T , evaluated using multiply dRdX T, will then be added to

the partial design derivative of the objective function, evaluated using eval dFdX.

The vector summations are performed via the algebra tools, also defined by the user,

under the IVector implementation.

Kona provides an empty base class implementation of this interface, relying on

the aforementioned base implementations for vector and allocator objects, intended

to assist in the rapid development of simple test problems.

4.3 Linear Algebra Abstraction

The core functionality of Kona revolves around the idea of wrapping the user-

provided ISolver and IVector implementations into abstract vectors and matrices,

which are then used to write optimization algorithms with a simple, easy-to-read

syntax. In order to accomplish this, the reverse-communication abstraction layer

implements a memory manager that contains a “stack” of user-defined vector ob-

jects and factories that wrap these user-vectors into linear algebra objects used by

optimization algorithms.

A very similar abstraction layer, named Thyra, has been developed as part of

the Trilinos framework [74]. Thrya implements abstract vectors in different vector

spaces and provides vector factories for their construction just as Kona does. In

66

Table 4.1. Operations defined by the ISolver interface.

Operation Interface Calls

Function evaluations: evaluate the objective
function, discrete PDE residual, and constraints
at the design-state pair (x,u)

F = F(x,u) F ∈ R
R = R(x,u) R ∈ Rs

C = C(x,u) C ∈ Rm

eval obj,
eval residual,
eval constraints

Objective derivatives: evaluate the objective
function partial derivatives at the design-state
pair (x, u)

y = ∂F
∂x y ∈ Rn

v = ∂F
∂u v ∈ Rs

eval dFdX,

eval dFdU

Matrix-vector products: evaluate Jacobian-
vector products, linearized about (x, u)

v =
∂R
∂x
y, y =

(
∂R
∂x

)T
v,

y ∈ Rn,v ∈ Rs

v =
∂R
∂u
w, w =

(
∂R
∂u

)T
v,

v,w ∈ Rs

z =
∂C
∂x
y, y =

(
∂C
∂x

)T
z,

y ∈ Rn, z ∈ Rm

z =
∂C
∂u
w, w =

(
∂C
∂u

)T
z,

w ∈ Rs, z ∈ Rm

multiply dRdX,
multiply dRdX T

multiply dRdU,
multiply dRdU T

multiply dCdX,
multiply dCdX T

multiply dCdU,
multiply dCdU T

PDE solves: solve the following systems for u,
w, and φ

R(x, u) = 0,

(
∂R

∂u

)
w = u,

(
∂R

∂u

)T
φ = v

v, w, u, φ ∈ Rs

solve nonlinear,
solve linear,
solve adjoint

67

place of abstract matrices, however, Thrya opts to implement linear operators that

define matrix-related operations instead. This choice makes no significant difference

in practice. Kona’s abstract matrix objects do not contain any actual matrix data.

They only house matrix-vector operations such as products and solutions (inverse

products) which are ideally implemented matrix-free under the ISolver interface

4.3.1 Kona Memory Manager

KonaMemory is a memory manager object that contains a reference to the

user-provided ISolver implementation, and it uses the IAllocator implementation

within the solver to create a stack of IVector instances. These preallocated user-

defined vectors are then wrapped into specialized Kona vectors and served to the

optimization algorithms as needed. Neither the PDE solver nor the optimization

algorithms are intended to interact with this memory manager. It is instantiated by

the top level optimization controller, and entirely hidden from the users on either

side of the abstraction layer.

KonaMemory implements three functions used to manage the stack:

• push vector(vec type, IVector) – Pushes the given user-defined IVector

object onto the stack associated with the given vector space.

• pop vector(vec type) – Pops and returns a user-defined IVector object from

the stack associated with the requested vector space.

• allocate memory() – Uses the IAllocator implementation provided by the

user to populate the vector stacks with a predetermined number of IVector

objects.

It could be said that the memory manager simulates dynamic memory alloca-

tion for the optimization algorithms, while still using preallocated solver memory in

practice. Whenever a new KonaVector is created, a user-defined vector of the ap-

propriate vector space is popped off the memory stack and embedded into the Kona

vector. Conversely, whenever an existing Kona vector is destroyed, the embedded

user-defined vector is pushed onto the memory stack for later use. This scheme

68

emerges from the motivation to make the optimization algorithm syntax appear like

pseudo-code, while also respecting good HPC coding practices by avoiding a large

numbers of unnecessary and costly memory allocations and deallocations.

However, this design choice introduces a difficulty in counting the number of

user-defined vectors that need to be preallocated ahead of the optimization. To

solve this problem, we implement vector factories.

4.3.2 Vector Factories

Kona’s vector factories are objects that serve two purposes: 1) tallying up

vector allocation requirements for each vector space, and 2) generating specialized

Kona vectors on-demand using preallocated user-defined vectors from the memory

stack. Kona’s memory manager creates three factories in total, one for each vector

space – design, state and dual. These factories are then passed onto the optimization

algorithm, allowing the algorithm and all its components to report their total data

space requirements to the memory manager during initialization. The same factories

are later used by the algorithm to “dynamically” produce Kona vectors as needed.

4.3.3 Kona Vectors

Kona internally implements a generalized vector object, KonaVector, that is

used as a base class for all specialized vectors. This class contains fundamental al-

gebra methods such as vector summation and subtraction, scalar multiplication and

division, and inner products, common to all user-vector spaces. Each KonaVector

produced by a vector factory also contains a unique IVector object taken off the

internal memory stack. The algebra operations are then linked to the algebra im-

plementation provided by the user as part of the IVector interface, allowing all

KonaVector objects to perform vector operations without direct access to the un-

derlying data, or any awareness of the storage and parallelization scheme adopted

by the user.

A KonaVector by itself is not sufficient to perform optimization tasks.

Three other classes, DesignVector, StateVector and DualVector, inherit from

KonaVector and add specialized methods for their respective vector spaces. These

specialized methods go through the memory manager and call upon solver methods,

69

implemented by the user as part of the ISolver interface, to perform various op-

timization tasks. Consequently, these three vectors are the common vector objects

used by all optimization algorithms implemented in Kona.

Within the abstract vector module, Kona also introduces the concept of a

composite vector. As the name suggests, these objects are composites of the three

core vector objects described above. Unlike core vectors, composite vectors do not

possess their own unique data space. Instead, they contain references to component

vectors that make up the composite. For instance, a ReducedKKTVector in Kona

is defined by the composite of a DesignVector and a DualVector. Any operations

defined on this composite vector modifies the data space of the underlying core

vectors. This mimics the mathematical notation of the RSNK algorithm we have

developed in Chapter 2, where we perform linear algebra operations on primal-dual

vectors of the form z =
[
xT ,λT

]T
, where x are the design variables and λ are the

Lagrange multipliers.

4.3.4 Kona Matrices

In addition to abstract vectors, Kona also implements abstract matrices that

allow optimization algorithms to use Jacobian-vector products and linear solves. As

with vectors, Kona defines a base matrix object called KonaMatrix that the core set

of matrices all inherit from. These core matrices are the residual Jacobians, dRdX

and dRdU, and the constraint Jacobians, dCdX and dCdU.

Unlike vectors, however, the base KonaMatrix object does not implement any

useful methods on its own. Instead, it is used to define an interface that all matrix

objects in Kona must adhere to. This interface requires, at minimum, a transpose

attribute .T, as well as linearize() and product() member functions. The state-

Jacobian of the residual, dRdU, additionally implements a solve() method as well.

These methods are all connected to the appropriate Jacobian-vector products and

linear solves defined in the ISolver interface, and implemented by the user.

It is important to note here that the Jacobian matrices defined in this module

do not possess any data. They are containers for ISolver methods, which in turn

are recommended to be implemented in a matrix-free fashion. In such matrix-

70

free implementations, the linearize() method does not involve any actual matrix

linearizations. Instead, it simply updates references to the design and state vectors

about which linear solves and matrix-vector products should be performed. These

references are used when calling the appropriate Jacobian-vector product or linear

solve method in ISolver. However, to efficiently support legacy or matrix-explicit

solver implementations, this method also includes a call-back to ISolver to trigger

the necessary linearizations and factorizations, so that optimization algorithms that

perform multiple products or solutions with the same matrix can avoid unnecessary

and potentially expensive re-assembly operations.

4.4 Optimization Tools and Algorithms

All data manipulation required by optimization algorithms in Kona is pro-

vided by the reverse-communication abstraction layer described above. However,

we still need additional tools that build on this abstraction layer in order to be

able to perform numerical optimization. Consequently, the algorithm layer of Kona

has two purposes: provide basic optimization utilities used by most optimization

algorithms, and then build on top of these tools a common interface for performing

the optimization.

In this thesis, we will not go into the details of the optimization utilities. These

tools are simply Kona-specific versions of well-known algorithms, adapted to operate

on KonaVector and KonaMatrix objects. Instead, we provide a brief list of what

the library has currently implemented:

• Merit Functions – Three types: the objective function, l2 merit function,

and the augmented Lagrangian merit function.

• Line-Search Algorithms – Two methods: a back-tracking line search and a

line search satisfying the strong Wolfe conditions.

• Krylov Solvers – Four iterative system solvers: Steihaug-Toint Conjugate

Gradient (STCG) [50], Flexible Generalized Minimum Residual (FGMRES) [44],

Flexible Generalized Conjugate Residual with Outer Truncation (GCROT) [75],

71

and the Flexible Equality-Constrained Subproblem (FLECS) solver [45] which

we introduced in Chapter 2.

The optimization interface, which we will describe in detail, is separated into

two complementary components: IHessian, a KonaMatrix-like interface defining a

Hessian matrix, and IAlgorithm, an algorithm interface that uses the Hessian defini-

tion to perform the optimization. This separation grants one optimization algorithm

the flexibility to operate with different Hessian approximations and contributes to

the symbolic math syntax of the library.

4.4.1 Optimization Algorithms

Optimization algorithms in Kona implement the outer/nonlinear optimization

iterations within which KonaVector, KonaMatrix and IHessian objects are used to

perform various optimization steps. The IAlgorithm interface that defines these

objects has very few requirements: they must be initialized using vector factories,

and they must implement a solve() method that triggers the optimization. Alg. 1

is one such algorithm implemented in Kona using this interface.

One of the important functions of these algorithm objects, besides performing

the outer optimization iterations, is to use the vector factories to initialize all the

underlying tools required for optimization. At minimum this involves initializing

the Hessian approximation, but it could also include setting up line searches, merit

functions and Krylov solvers. Performing the initializations using the same vector

factories allows the memory manager to correctly determine the memory require-

ments of the entire optimization process.

Kona currently implements several gradient-based optimization algorithms:

unconstrained reduced-space quasi-Newton, unconstrained STCG-based reduced-

space Newton-CG, and two equality constrained reduced-space Newton-Krylov (RSNK)

algorithms (composite-step [40] and FLECS-based, the latter of which was described

in Chapter 2, specifically in Alg. 1).

72

4.4.2 Hessian Approximations

Kona’s IHessian interface is modeled after the KonaMatrix objects described

before as part of the reverse-communication abstraction layer. This Hessian inter-

face requires mandatory product() and solve() methods that operate on various

KonaVector objects. Here, the solve() method is equivalent to a product with

the approximate inverse Hessian. Optionally, some approximations might require a

linearize() method as well.

Kona currently implements several Hessian objects:

• LimitedMemoryBFGS

• LimitedMemorySR1

• ReducedHessian

• ReducedKKTMatrix

• AugmentedKKTMatrix

• LagrangianHessian

• TotalConstraintJacobian

Our reduced-space quasi-Newton algorithm implementation can operate interchange-

ably with either the L-BFGS or the L-SR1 quasi-Newton approximations, while the

remaining five matrices represent reduced-space KKT systems or KKT matrix sub-

blocks used in our RSNK methods. These KKT systems implement the second-order

adjoint-based matrix-vector products described in Section 2.3.1.

4.5 Verification Tests

In order to test, debug and verify Kona, we construct three analytical test

problems with known optima, intended to exercise the various algorithms imple-

mented in our optimization library. Optimization statements for all three problems

are shown in Table 4.2.

73

Table 4.2. Optimization statements for Kona verification problems.

Unconstrained Spiral problem with state equations

minimize
x,u(x)

J (x,u(x)) =
1

2
(x2 + u2

1 + u2
2)

governed by R(x,u) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

](
u1

u2

)
−
(
x2 cos(α)
x2 sin(α)

)
=

(
0
0

)
where θ =

1

2
(x+ π) and α =

1

2
(x− π)

2-D Rosenbrock function

minimize
x,y

J (x, y) = (1− x)2 + 100(y − x)2

Equality constrained Sphere problem

minimize
x,y,z

J (x, y, z) = x+ y + z

subject to 3− (x2 + y2 + z2) = 0

As part of this work, we have also integrated Kona into OpenMDAO 1.x

Alpha [76] 3 as an optimization driver. Developed at the NASA Glenn Research

Center, OpenMDAO is a platform for development of coupled multidisciplinary

models with analytic derivatives. OpenMDAO provides a unified interface for a

number of optimizers, including several popular SQP algorithms. Kona’s integration

links our algorithms to a range of problems implemented as part of OpenMDAO, and

allows easy comparison against other SQP methods without having to re-implement

a given problem for each optimizer.

The three verification problems are tested with the following algorithms in

Kona:

• L-BFGS RSQN – Reduced-space quasi-Newton with limited-memory BFGS

updates (unconstrained).

• STCG-RSNK – Reduced-space Newton-CG (unconstrained).

3http://openmdao.org/

74

(a) Rosenbrock function optimization. (b) Spiral problem optimization.

(c) Sphere problem optimization.

Fig. 4.2. Relative error in the objective value across function
evaluations for all verification problems.

• CS-RSNK – Composite-step reduced-space Newton-Krylov (constrained).

• FLECS-RSNK – FLECS-based reduced-space inexact-Newton-Krylov (con-

strained).

In addition, the same problems are also solved with SNOPT [18], a robust and

popular quasi-Newton SQP library available in OpenMDAO through pyOptSparse

[77]. The SNOPT solution provides a verification and validation benchmark for

Kona.

Fig. 4.2 shows the objective function evaluations across nonlinear iterations

75

for all three test problems. The measured quantity is the difference between the

numerical objective value and the analytical optimum, normalized by the initial

error. All solutions shown are converged to at least 10−5 in optimality and feasibility

(where applicable).

We can observe that the STCG-RSNK algorithm, which utilizes a second-order

adjoint-based matrix-vector product for the Hessian, offers faster convergence on the

Spiral problem than either of the quasi-Newton algorithms. This problem features

state equations and an objective function that has a nonlinear dependence on the

state variables. The ability of the STCG-RSNK algorithm to capture the full curva-

ture information of the problem without any approximations proves advantageous.

Another important observation lies in the convergence of the Sphere problem,

named after the spherical equality constraint designed to exercise the globaliza-

tion methods implemented in Kona. The optimization is deliberated started near

the stationary point at (1, 1, 1)T , which is a local maximum that Newton methods

would converge to in the absence of globalization. The trust region method used

in CS-RSNK and FLECS-RSNK is effective in preventing this, and converging to

the correct optimum at (−1,−1,−1)T . SNOPT also recovers the correct optimum;

however, the it appears to zig-zag around the local maximum for a number of steps

before converging. While the reason for this is not immediately clear, we suspect

that it may be related to either the line search method used in SNOPT for step

acceptance, or alternatively the need for the quasi-Newton approximation to accu-

mulate sufficient curvature information before it can produce high quality steps.

4.6 Summary

In this chapter, we have described the software design of a Python optimiza-

tion library, called Kona, that aims to perform parallel optimization of large-scale

PDE-governed engineering systems. This is achieved via a reverse-communication

abstraction layer that allows optimization algorithms implemented in Kona to per-

form all necessary optimization tasks without direct access to data. This separation

makes the optimization algorithms agnostic to distributed data structures and par-

allelization schemes implemented by the underlying “PDE solver”.

76

Kona available on GitHub4 for public use under GNU Lesser General Public

License. As part of this work, Kona was also integrated into NASA Glenn Research

Center’s OpenMDAO framework [76], a platform for development of coupled multi-

disciplinary models with analytic derivatives. We have leveraged this integration in

verifying and validating Kona’s optimization algorithms against SNOPT [18], a pop-

ular quasi-Newton SQP library available in OpenMDAO through pyOptSparse [77].

4https://github.com/OptimalDesignLab/Kona

CHAPTER 5

AN AERO-STRUCTURAL DESIGN OPTIMIZATION

5.1 Introduction

Having introduced the building blocks of the RSNK algorithm, we will now

exercise it on a large-scale aero-structural design optimization problem. The test

case is based on a tapered swept wing with the RAE 2822 airfoil, shown in Fig. 5.1.

The sizing of the problem is derived from the Boeing 717-200HGW, with maximum

take-off weight (MTOW) of 54, 884kg, service ceiling of 11, 000m, and cruise speed

of 822km/h.

In this high-fidelity test case, the optimization algorithm manipulates twist

variables along the wingspan and the size of structural elements in order to minimize

a weighted combination of drag and wing mass under lift and stress constraints.

As before, we will analyze the efficacy of the IDF preconditioner, compare the

RSNK convergence characteristics and computational cost of both the MDF and

IDF architectures, and benchmark the RSNK algorithm against SNOPT on the

MDF formulation.

Portions of this chapter have been submitted to: A. Dener, J. E. Hicken, G. K. Kenway,
and J. R. Martins, “Modular Matrix-free Aero-structural Optimization,” in 19th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2018.

4Image source: Prof. Joaquim R. R. A. Martins/University of Michigan, Ann Arbor

77

78

5 m

14 m

1.5 m

7.5 m

(a) Planform view5.

(b) RAE 2822 airfoil [78].

Fig. 5.1. Geometry of the wing used in the aero-structural optimization.

5.2 Optimization Problem Statement and Setup

The optimization statement for this problem is

minimize
x

1

2

D(x,u(x))

D0

+
1

2

m(x)

m0

,

subject to L(x,u(x)) =
MTOW

2
,

KSribs,spars = 1,

KSskin,upper = 1,

KSskin,lower = 1,

governed by RAero = 0, RStruct = 0.

(5.1)

79

The objective function is an equally weighted combination of the scaled drag,

D(x,u(x))/D0, and scaled wing mass, m(x)/m0; the drag and mass are scaled by

their initial values, D0 and m0, respectively. The optimizer manipulates 6 twist

variables (at 0%, 20%, 40%, 60%, 80% and 100% along the half-span) and 108

structural sizing variables (thicknesses of the spars, ribs, and skin elements) for a

total of 114 design variables.

The lift, L(x,u(x)), is constrained to be half the maximum take-off weight

(MTOW) to account for a single-wing solution. The stress constraints are separated

into three structural groups: the ribs and spars, the upper skin, and the lower skin.

For each group, the scaled Von Mises stresses, σv/σyield, are aggregated using the

Kreisselmeier-Steinhauser (KS) function [79]. For a vector of constraints, c ∈ RK ,

this function is defined as

KS(c) =
1

ρ
ln

(
K∑
k=1

exp(ρck)

)
, (5.2)

where ρ is a user-defined parameter that must be carefully selected to balance the

smoothness of the KS function with the accuracy of the aggregation. In general,

higher ρ values increase the accuracy of the KS function in estimating cmax, but also

produce sharper changes in the gradient. For the present work, we have adopted a

recommended value of ρ = 50 [80]–[82].

The KS function is considered to be a “conservative” aggregation method,

such that

cmax ≤ KS(c) ≤ cmax +
ln(K)

ρ
. (5.3)

In this application, we set the aggregated KS constraints to be equal to 1, which

signifies the boundary of the Von Mises yield criterion where σv = σyield. The

overestimation of the Von Mises stresses by the KS aggregation acts as a built-in

factor of safety on the structural design, ensuring that the maximum stresses in the

structure never exceed the yield stress.

The IDF implementation of this problem introduces an additional 8, 400 cou-

pling variables and coupling constraints: 4, 200 accounting for aerodynamic forces

80

on the wing surface, and 4, 200 accounting for the structural deformations of the

wing surface. The optimization problem sizes for both MDF and IDF are listed in

Table 5.1, and the complete list of optimization parameters used in this problem is

provided in Table 5.2.

Table 5.1. Size of the aero-structural optimization problem for each
MDO architecture.

MDF IDF

Aerodynamic design variables 6 6
Structural design variables 108 108

Coupling variables 0 8400

Total number of design variables 114 8514

Aerodynamic constraints 1 1
Structural constraints 3 3
Coupling constraints 0 8400

Total number of state-based constraints 4 8404

Table 5.2. Optimization parameters for the aero-structural test case.

Parameter Value

relative optimality tolerance, τp 10−5

relative feasibility tolerance, τd 10−5

initial trust radius, ∆0 0.5
maximum trust radius, ∆max 4.0
initial penalty parameter, µ0 1.0

initial Krylov tolerance, η0 0.5
Krylov subspace size 20

5.2.1 CFD Solver

The flow solver used in the multidisciplinary analysis is ADflow, formerly

known as SUMad or SUmd [54]. We previously used this tool in the aerodynamic

shape optimization problem in Chapter 2. For the aero-structural optimization

case, the flow is modeled using the compressible Euler equations and solved on a

81

structured grid with 96, 767 cells. The Mach number and the angle of attack are

fixed at M = 0.77 and α = 2.0◦, respectively.

5.2.2 Structural Solver

Fig. 5.2. Structural wing box used in the aero-structural problem.

The elastic structural deformations under aerodynamic loads are analyzed us-

ing the Toolkit for the Analysis of Composite Structures (TACS) [83]. The wing

box, shown in Fig. 5.2, consists of 7, 632 quadrilateral plate elements. The material

of the wing box is set as Aluminum 2024, with a density of ρ = 2780g/m3, Young’s

modulus of E = 73.1GPa, and yield stress of σyield = 326MPa.

5.2.3 Multidisciplinary Solution for MDF

The coupled aero-structural analysis is performed using nonlinear block-Gauss-

Seidel with Aitken acceleration [84], where the aerodynamic forces and structural

displacements are transferred using a rigid link between the structural elements and

the aerodynamic surface [85]. The mesh movement is performed by the same analytic

inverse distance method [55] previously used in the single-discipline aerodynamic

shape optimization test case from Chapter 2.

82

Coupled linear adjoint and forward solutions are implemented as monolithic

Krylov solutions. Both the coupled forward and coupled adjoint problems are pre-

conditioned via block-Jacobi, which re-uses the independent discipline precondition-

ers for the discipline forward and adjoint problems.

5.3 IDF Preconditioner Results

In contrast with the low-fidelity problems considered in Chapter 3, the aero-

structural optimization problem features thousands more IDF coupling variables

and constraints. Consequently, it is important to examine the efficacy of the IDF

preconditioner once again, considering that the size of the nested linear systems are

significantly larger.

0 5 10 15 20 25

Krylov iterations

10−3

10−2

10−1

100

101

R
el
a
ti
ve

re
si
d
u
a
l
n
or
m

Preconditioned

Not Preconditioned

Fig. 5.3. Krylov convergence history for the KKT system at a
representative nonlinear iteration.

83

Fig. 5.3 shows the Krylov convergence history for the solution of the IDF

KKT system, with and without the IDF preconditioner. This particular solution

is representative of the typical Krylov convergence on this problem. We can see

that the IDF preconditioner is once again critically important to the quality of the

Newton step. Without the preconditioner, the KKT system cannot be solved to the

required tolerance. This result demonstrates that the IDF preconditioner maintains

its effectiveness even with thousands of coupling constraints present in the problem.

0 1 2 3 4 5

Krylov iterations

10−20

10−17

10−14

10−11

10−8

10−5

10−2

101

R
es
id
u
a
l
n
or
m

Step 1

Step 3

Fig. 5.4. Krylov convergence history of the nested solutions within the
IDF preconditioner.

The observation that the IDF preconditioner has maintained its effectiveness

despite the considerably larger size of the nested linear problems prompts us to

investigate Steps 1 and Step 3 in Alg. 1 more closely. Fig. 5.4 shows a sample

convergence history for these nested solutions, representative of the typical nested

solutions at all optimization iterations.

84

It is immediately obvious that the nested solutions converge very rapidly, in-

dicating that the IDF constraint Jacobian is very well conditioned (note that steps

1 and 2 are solved without preconditioning). To understand why, recall that the

IDF coupling constraints take the following form for a two-discipline problem:

C =

Cū
Cv̄

 =

Ev(u)− ū
Eu(v)− v̄

 = 0, (5.4)

where ū and v̄ are coupling variables, and u and v are state variables. The Jacobian

of these constraints, with respect to the coupling variables, is

dC
dw

=

dCūdv̄ dCū
dv̄

dCv̄
dū

dCv̄
dv̄

 =

−I dCū
dv̄

dCv̄
dū

−I

 (5.5)

where w̄ = (ūT , v̄T)T is the vector of combined coupling variables. The rapid

convergence of the nested solution with this Jacobian suggests that the identity

matrix blocks dominate. We also observed the consistent trend that the initial

residual norm for the Step 3 solution is approximately two orders magnitude lower

than Step 1, and converges more quickly as well. The reason for this is unknown,

and requires further study. Ultimately, however, the IDF preconditioner’s success

on such a problem with 8400 coupling variables and constraints suggests that it can

be effectively scaled up to larger problems in the future.

5.4 Optimization Results

The MDF and IDF algorithms recover approximately the same solution for

the aero-structural problem, producing the same optimum coefficient of drag and

mass to the 4th decimal place. This optimum offers a 74.4% reduction in mass

from the initial design, with a 32.2% penalty in the total drag, for an overall 21.1%

improvement in the objective.

Initial and optimal lift and spanwise twist distributions are shown in Fig. 5.5

and Fig. 5.6, respectively. These results are plotted only for the RSNK solution

of the MDF problem; however, the SNOPT solution of the MDF problem and the

85

0.0 0.2 0.4 0.6 0.8 1.0

Nondimensional Span

0.0

0.5

1.0
N
or
m
a
li
ze
d
L
if
t

Elliptical

Initial

Optimal

Fig. 5.5. Normalized lift distribution for the aero-structural problem.

0.0 0.2 0.4 0.6 0.8 1.0

Nondimensional Span

−4

−2

0

2

4

T
w
is
t
A
n
g
le

(d
eg
)

Initial

Optimal

Fig. 5.6. Twist angle along the wing for the aero-structural problem.

RSNK solution of the IDF problem were both visually indistinguishable from this

result.

The initial lift distribution is close to elliptical, which is the pure aerodynamic

optimum that minimizes induced drag. The multidisciplinary aero-structural opti-

mum, however, increases the twist angle at the root and decreases it at the wingtip,

thereby producing a wash-out in the lift distribution that significantly reduces the

stresses in the wing box and permits a lower mass structure.

Fig. 5.7 shows the RSNK convergence histories for the MDF and IDF im-

plementations of the aero-structural problem. The RSNK algorithm exhibits the

86

0 20 40 60 80 100

Equivalent MDA Solutions

10−7

10−5

10−3

10−1

101

R
el
a
ti
ve

N
or
m
s

MDF Optimality

MDF Feasibility

(a) MDF formulation.

0 20 40 60 80 100

Equivalent MDA Solutions

10−7

10−5

10−3

10−1

101

R
el
a
ti
ve

N
or
m
s

IDF Optimality

IDF Feasibility

(b) IDF formulation.

Fig. 5.7. RSNK convergence histories for the aero-structural problem.

87

expected superlinear asymptotic convergence in both cases. The computational

cost for these optimization runs is measured in CPU time, and normalized by the

time it takes to perform a single multidisciplinary analysis at the initial design. The

results demonstrate that the RSNK algorithm is able to solve the IDF problem at

least as efficiently as MDF.

0 20 40 60 80 100 120

Equivalent MDA Solutions

10−7

10−5

10−3

10−1

101

R
el
a
ti
ve

N
or
m
s

SNOPT Optimality

SNOPT Feasibility

Fig. 5.8. SNOPT convergence history for the MDF aero-structural
problem.

As a final benchmark, we solve the MDF problem using SNOPT [18], the

quasi-Newton SQO algorithm we previously used in Chapter 2 to solve a single-

discipline aerodynamic shape optimization problem. The convergence history for

this optimization is shown in Fig. 5.8. SNOPT is able to solve this MDF problem,

with 114 design variables, approximately 22% faster than RSNK. This observation

is in line with the cost scaling comparison we have performed in Chapter 2. Based

on our studies, we expect the RSNK algorithm to become more competitive on large

problems, with more design variables and state-based constraints than is present in

this aero-structural case.

88

5.5 Summary

We solved a challenging large-scale aero-structural optimization problem using

RSNK implemented with both the MDF and IDF formulations. To the best of our

knowledge, the present work is the first application of the IDF architecture to a

PDE-governed multidisciplinary problem.

Our results demonstrate that the matrix-free reduced-space inexact-Newton-

Krylov approach we have developed in this thesis can successfully solve a large-scale

IDF problem at least as efficiently as its MDF counterpart. This is a significant

finding, as IDF offers valuable advantages in the modularity of the underlying PDE

solvers and ease of implementation in the discipline coupling. Addressing the compu-

tational cost challenges associated with the added coupling variables and constraints

promotes the IDF architecture as a practical and viable alternative to the commonly

used MDF formulation.

It is important to note that the matrix-free IDF preconditioner we have devel-

oped in Chapter 3 has been instrumental in achieving this result. We had previously

established its efficacy using low-fidelity 2-D test problems featuring on the order

of a hundred coupling constraints. This aero-structural problem demonstrates that

the IDF preconditioner remains effective with 8, 400 coupling constraints. This in-

creases our confidence in the preconditioner’s general applicability to high-fidelity

large-scale multidisciplinary optimization problems. To the best of our knowledge,

this is the first effective preconditioner developed for the IDF formulation, and rep-

resents a significant novel contribution of this thesis work.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In the last decade, an exponential increase in access to computing power has prompted

engineers and researchers alike to develop simulation tools for increasingly more

complex multidisciplinary problems. With increasing complexity, however, comes

increasing difficulty in performing engineering design solely through intuition and

manual iteration. Multidisciplinary design optimization (MDO) is a powerful method-

ology that can help inform the design of such systems. The motivation of this thesis

was to help proliferate the use of MDO in engineering applications that involve the

computationally expensive solution of coupled partial differential equations (PDEs).

To that end, we have developed a reduced-space inexact-Newton-Krylov algorithm

for the efficient solution of multidisciplinary problems formulated with the individual

discipline feasible (IDF) architecture.

IDF provides modularity in the underlying PDE solvers, such that the state

equations (e.g. discretized PDEs) for each discipline can be solved independently of

each other at each optimization iteration. This enables the use of existing stand-

alone PDE solvers and their specialized solution methods. However, off-loading the

multidisciplinary coupling to the optimization problem introduces large numbers

of additional design variables and nonlinear state-based constraints. This poses

a challenge to conventional gradient-based sequential quadratic optimization algo-

rithms which typically require the constraint Jacobian to be provided explicitly for

factorization purposes.

The RSNK algorithm presented in this thesis overcomes these challenges by

solving the Newton step in matrix-free fashion, using a Krylov solver. In this ap-

proach, the matrix-vector product with the Karush-Kuhn-Tucker (KKT) matrix is

computed using second-order adjoints. This comes at the cost of two linear solves

with the PDE Jacobian, independent of the number of design variables and state-

based constraints. The Krylov solution is then preconditioned via a novel matrix-free

preconditioner tailored for the IDF problem. The resulting Newton step is globalized

89

90

in a trust region framework, using a simple filter for step acceptance.

We have demonstrated the RSNK algorithm on a wide range of problems in

both MDF and IDF formulations, and studied the effectiveness of the novel matrix-

free IDF preconditioner. Our results establish that RSNK exhibits the superlinear

asymptotic convergence expected of Newton-type methods, offers favorable cost scal-

ing with the size of the design space, and does not require the expensive explicit

computation of the constraint Jacobian. Most importantly, we have shown that the

IDF preconditioner is critically important to the successful solution of the Newton

step; without it, the rate of convergence of the Krylov solution is too slow to be prac-

tically viable. In fact, our numerical experiments with restrictions on the number of

Krylov iterations failed to converge to an optimum without the IDF preconditioner.

Finally, a large-scale aero-structural optimization application revealed that the

RSNK algorithm, with the help of the IDF preconditioner, can solve IDF problems at

least as efficiently as their MDF counterparts. Consequently, our approach enables

engineers to take advantage of the modularity and ease of implementation benefits

offered by the IDF architecture, but avoid suffering a penalty in the computational

cost of the optimization relative to the commonly used MDF architecture.

6.1 Future Research Areas

In closing, we present a number of recommendations for future research. These

are based on the experience and results obtained throughout the course of this thesis.

6.1.1 Theory-Based Update of the FLECS Penalty Parameter

The iterative solution of the KKT system in the RSNK algorithm uses a spe-

cialized Krylov solver called FLECS that extends FGMRES to handle nonconvexity.

This is done through a quadratic penalty function in the primal subproblem, which

involves a penalty parameter, µ that needs to be controlled from one nonlinear

iteration to the next.

The currently implemented approach to determining µ values in RSNK is

heuristic, and it is based on our intuition and experience with numerical experiments.

In the interest of robustness and ease of use, however, we recommend developing a

91

mathematical foundation for an update that promotes optimal convergence rates in

the nonlinear problem.

The quadratic penalty term in FLECS, µ(Ap + C)T (Ap + C)/2, is related

to augmented Lagrangian methods [86]. In augmented Lagrangian methods, the

constrained optimization problem is converted into a sequence of unconstrained

problems through a penalty function. This penalty function, like the one in FLECS,

uses a penalty parameter that is updated in outer iterations, and fixed in inner

iterations, which is analogous to the updates we perform in our nonlinear RSNK

iterations while keeping µ fixed through linear Krylov iterations. Literature on

augmented Lagrangian methods do offer some theoretical guidance on the update

of these penalty parameters that could potentially be adapted for use in RSNK.

6.1.2 Extending RSNK to Inequality Constraints

In this thesis, we have developed the RSNK algorithm exclusively for equality

constraints and have not attempted to address inequality constraints. Consequently,

our test problems throughout were carefully chosen or adapted to include only equal-

ity constraints. This was a significant challenge throughout this work, particularly

in the case of single-discipline aerodynamic shape optimization. The absence of sup-

port for inequality constraints prevented us from imposing thickness constraints on

the wing geometry, and necessitated the use of a regularization term in the objective

function that would discourage very thin trailing edges.

On the other hand, existing methods in literature for solving inequality con-

straints in sequential quadratic optimization all involve converting the inequality

constraints into equality constraints, or eliminating them altogether via a penalty

function that combines the objective and constraints. The RSNK algorithm we have

developed and presented in this thesis can accommodate all of these approaches.

Linear or bound constraints can be accounted for via barrier functions [24],

[87]. For nonlinear or state-based inequality constraints, the active set method [24]

offers the most straightforward approach in terms of the software implementation,

with the caveat that it requires element-wise data access into dual vectors and

constraint Jacobians. In exploratory work that is not included in this thesis, we

92

have also had some success experimenting with interior-point methods [88].

6.1.3 Matrix-Free Constraint Jacobians in Quasi-Newton SQO Methods

Throughout this thesis, one of the key reasons why we have sought to avoid

conventional quasi-Newton SQO methods is that they typically require the com-

putationally expensive assembly of explicit constraint Jacobians. This has been

a major motivation behind developing our matrix-free approach, and computing

matrix-vector products with the KKT matrix using second-order adjoints.

An analogous second-order adjoint-based matrix-vector product exists for the

stand-alone constraint Jacobian instead of the complete KKT matrix. One notable

difference with this product is that the right-hand-side of the second-order adjoint

system does not involve any terms computed with a forward-difference approxi-

mation. This raises the natural question of whether such a product can be used

within a quasi-Newton SQO algorithm in order to avoid the finite difference step

size dilemma entirely.

For a potential answer, we turn to the SQO review in Chapter 2 where we

discussed the different ways in which traditional SQO algorithms solve constrained

problems. One of the cited methods is the range-space method [23], [24], where the

KKT system in (2.7) is rearranged into

(AkW−1
k AT

k)λk+1 = AkW−1
k

dJk
dx
− Ck, (6.1a)

Wkpk = − dJk
dx

+ AT
kλk+1. (6.1b)

In the conventional approach, the dual system in (6.1a) is solved with a direct

method (i.e. factorization). However, it is possible to solve it iteratively using a

Krylov solver provided that W−1
k is cheaply available. This approach avoids the

requirement to construct the left-hand-side matrix explicitly.

The matrix-free product with the left-hand-side matrix of (6.1a) is straightfor-

ward to compute. The inverse of the Hessian, W−1
k , is cheaply approximated using a

quasi-Newton method, while products with the constraint Jacobian, Ak, can be pro-

vided via a second-order adjoint-based formulation. Once the dual system is solved

93

for λk+1, it is only a matter of another quasi-Newton approximation application to

compute the primal step, pk.

It is an open ended question whether the Krylov solution of the dual system

will require preconditioning, and how to construct an effective preconditioner. The

operation (AAT) squares the condition number of A; therefore, in the presence of

large numbers of general nonlinear constraints, we could expect slow convergence

rates. However, our numerical experiments with the IDF formulation indicate that

the IDF constraint Jacobian is well conditioned and Krylov solutions of its associated

systems converge quickly without the need for preconditioning. Consequently, this

matrix-free quasi-Newton SQP approach could be a viable alternative to the RSNK

algorithm for IDF problems with only a few additional state-based constraints, with

the added benefit of not requiring any preconditioning.

REFERENCES

[1] A. Dener and J. E. Hicken, “Matrix-free algorithm for the optimization of mul-
tidisciplinary systems,” Structural and Multidisciplinary Optimization, vol. 56,
no. 6, pp. 1429–1446, Jun. 2017.

[2] N. P. Tedford and J. R. R. A. Martins, “Benchmarking multidisciplinary design
optimization algorithms,” Optimization and Eng., vol. 11, no. 1, pp. 159–183,
Mar. 2009.

[3] J. R. R. A. Martins and A. B. Lambe, “Multidisciplinary design optimization:
A survey of architectures,” AIAA J., vol. 51, no. 9, pp. 2049–2075, Sep. 2013.

[4] R. T. Haftka, “Simultaneous analysis and design,” AIAA J., vol. 23, no. 7, pp.
1099–1103, Jul. 1985.

[5] S. Ta′asan, G. Kuruvila, and M. Salas, “Aerodynamic design and optimization
in one shot,” presented at the 30th Aerospace Sciences Meeting and Exhibit,
Reno, NV, USA, 1992.

[6] J. Herskovits, P. Mappa, E. Goulart, and C. M. Mota Soares, “Mathemati-
cal programming models and algorithms for engineering design optimization,”
Comput. Methods in Appl. Mechanics and Eng., vol. 194, no. 30–33, pp. 3244–
3268, Aug. 2005.

[7] G. Biros and O. Ghattas, “Parallel Lagrange-Newton-Krylov-Schur methods
for PDE-constrained optimization — Part I: The Krylov-Schur solver,” SIAM
J. on Scientific Comput., vol. 27, no. 2, pp. 687–713, Jan. 2005.

[8] G. Biros and O. Ghattas, “Parallel Lagrange-Newton-Krylov-Schur methods for
PDE-constrained optimization — Part II: The Lagrange-Newton solver and its
application to optimal control of steady viscous flows,” SIAM J. on Scientific
Comput., vol. 27, no. 2, pp. 714–739, Jan. 2005.

[9] E. Özkaya and N. R. Gauger, “Single-step one-shot aerodynamic shape opti-
mization,” in Optimal Control of Coupled Systems of Partial Differential Equa-
tions. Basel, Switzerland: Birkhäuser, 2009, pp. 191–204.

[10] G. J. Kennedy and J. R. R. A. Martins, “Parallel solution methods for
aerostructural analysis and design optimization,” presented at the 13th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Fort Worth,
TX, USA, 2010.

94

95

[11] K. Maute, M. Nikbay, and C. Farhat, “Coupled analytical sensitivity analysis
and optimization of three-dimensional nonlinear aeroelastic systems,” AIAA J.,
vol. 39, no. 11, pp. 2051–2061, Nov. 2001.

[12] K. Maute, M. Nikbay, and C. Farhat, “Sensitivity analysis and design optimiza-
tion of three-dimensional non-linear aeroelastic systems by the adjoint method,”
Int. J. for Numerical Methods in Eng., vol. 56, no. 6, pp. 911–933, Dec. 2003.

[13] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther, “High-fidelity aerostruc-
tural design optimization of a supersonic business jet,” J. of Aircraft, vol. 41,
no. 3, pp. 523–530, May 2004.

[14] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins, “Scalable parallel
approach for high-fidelity steady-state aeroelastic analysis and adjoint deriva-
tive computations,” AIAA J., vol. 52, no. 5, pp. 935–951, May 2014.

[15] R. T. Haftka, J. Sobieszczanski-Sobieski, and S. L. Padula, “On options for
interdisciplinary analysis and design optimization,” Structural Optimization,
vol. 4, no. 2, pp. 65–74, Jun. 1992.

[16] E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis, and G. R. Shubin,
“Problem formulation for multidisciplinary optimization,” SIAM J. on Opti-
mization, vol. 4, no. 4, pp. 754–776, Nov. 1994.

[17] K. Schittkowski, “NLPQL: A Fortran subroutine solving constrained nonlinear
programming problems,” Ann. of Operations Res., vol. 5, no. 1–4, pp. 485–500,
May 1986.

[18] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for
large-scale constrained optimization,” SIAM Rev., vol. 47, no. 1, pp. 99–131,
Jan. 2005.

[19] S. G. Nash and J. Nocedal, “A numerical study of the limited memory BFGS
method and the truncated-Newton method for large scale optimization,” SIAM
J. on Optimization, vol. 1, no. 3, pp. 358–372, Aug. 1991.

[20] A. Dener, G. K. W. Kenway, J. E. Hicken, and J. R. R. A. Martins, “Comparison
of inexact- and quasi-Newton algorithms for aerodynamic shape optimization,”
presented at the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA,
2015.

[21] J. R. Bunch and L. Kaufman, “Some stable methods for calculating inertia
and solving symmetric linear systems,” Math. of Comput., vol. 31, no. 137, pp.
163–163, Jan. 1977.

[22] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse sym-
metric linear,” ACM Trans. on Math. Software, vol. 9, no. 3, pp. 302–325, Sep.
1983.

96

[23] P. E. Gill, N. I. M. Gould, W. Murray, M. A. Saunders, and M. H. Wright, “A
weighted Gram-Schmidt method for convex quadratic programming,” Math.
Programming, vol. 30, no. 2, pp. 176–195, Oct. 1984.

[24] S. J. Wright and J. Nocedal, Numerical Optimization, 2nd ed. New York, NY,
USA: Springer, 2006.

[25] P. E. Gill and W. Murray, “Numerically stable methods for quadratic program-
ming,” Math. Programming, vol. 14, no. 1, pp. 349–372, Dec. 1978.

[26] W. C. Davidon, “Variable metric method for minimization,” SIAM J. on Op-
timization, vol. 1, no. 1, pp. 1–17, Feb. 1991.

[27] R. Fletcher, Practical Methods of Optimization. Hoboken, NJ, USA: John
Wiley & Sons, Ltd, May 2000.

[28] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, “Analysis of a symmetric
rank-one trust region method,” SIAM J. on Optimization, vol. 6, no. 4, pp.
1025–1039, Nov. 1996.

[29] C. G. Broyden, “The convergence of a class of double-rank minimization al-
gorithms 1. general considerations,” IMA J. of Appl. Math., vol. 6, no. 1, pp.
76–90, Mar. 1970.

[30] R. Fletcher, “A new approach to variable metric algorithms,” The Comput. J.,
vol. 13, no. 3, pp. 317–322, Mar. 1970.

[31] D. Goldfarb, “A family of variable-metric methods derived by variational
means,” Math. of Comput., vol. 24, no. 109, pp. 23–23, Jan. 1970.

[32] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimiza-
tion,” Math. of Comput., vol. 24, no. 111, pp. 647–647, Sep. 1970.

[33] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. of
Comput., vol. 35, no. 151, pp. 773–773, Sep. 1980.

[34] J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux
dérivées partielles (Etudes Mathématiques). Paris, France: Dunod/Gauthier-
Villars, 1968.

[35] A. Jameson, “Aerodynamic design via control theory,” J. of Scientific Comput.,
vol. 3, no. 3, pp. 233–260, Sep. 1988.

[36] S. Arreckx, A. B. Lambe, J. R. R. A. Martins, and D. Orban, “A matrix-
free augmented Lagrangian algorithm with application to large-scale structural
design optimization,” Optimization and Eng., vol. 17, no. 2, pp. 359–384, Oct.
2015.

97

[37] R. H. Byrd, F. E. Curtis, and J. Nocedal, “An inexact SQP method for equality
constrained optimization,” SIAM J. on Optimization, vol. 19, no. 1, pp. 351–
369, Jan. 2008.

[38] M. Heinkenschloss and D. Ridzal, “An inexact trust-region SQP method with
applications to PDE-constrained optimization,” in Numerical Mathematics and
Advanced Applications. New York, NY, USA: Springer, 2008, pp. 613–620.

[39] R. H. Byrd, F. E. Curtis, and J. Nocedal, “An inexact Newton method for
nonconvex equality constrained optimization,” Math. Programming, vol. 122,
no. 2, pp. 273–299, Oct. 2008.

[40] M. Heinkenschloss and D. Ridzal, “A matrix-free trust-region SQP method for
equality constrained optimization,” SIAM J. on Optimization, vol. 24, no. 3,
pp. 1507–1541, Jan. 2014.

[41] D. Knoll and D. Keyes, “Jacobian-free Newton–Krylov methods: A survey of
approaches and applications,” J. of Comput. Physics, vol. 193, no. 2, pp. 357–
397, Jan. 2004.

[42] Z. Wang, I. M. Navon, F. X. Le Dimet, and X. Zou, “The second order ad-
joint analysis: Theory and applications,” Meteorology and Atmospheric Physics,
vol. 50, no. 1–3, pp. 3–20, Mar. 1992.

[43] E. Nielsen, R. Walters, W. Anderson, and D. Keyes, “Application of Newton-
Krylov methodology to a three-dimensional unstructured Euler code,” pre-
sented at the 12th Computational Fluid Dynamics Conf., San Diego, CA, USA,
1995.

[44] Y. Saad, “A flexible inner-outer preconditioned GMRES algorithm,” SIAM J.
on Scientific Comput., vol. 14, no. 2, pp. 461–469, Mar. 1993.

[45] J. E. Hicken and A. Dener, “A flexible iterative solver for nonconvex, equality-
constrained quadratic subproblems,” SIAM J. on Scientific Comput., vol. 37,
no. 4, pp. A1801–A1824, Jan. 2015.

[46] J. J. Moré and D. C. Sorensen, “Computing a trust region step,” SIAM J. on
Scientific and Statistical Comput., vol. 4, no. 3, pp. 553–572, Sep. 1983.

[47] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Philadel-
phia, PA, USA: Soc. for Ind. & Appl. Math., Jan. 2000.

[48] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty func-
tion,” Math. Programming, vol. 91, no. 2, pp. 239–269, Jan. 2002.

[49] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an inexact
Newton method,” SIAM J. on Scientific Comput., vol. 17, no. 1, pp. 16–32,
Jan. 1996.

98

[50] T. Steihaug, “The conjugate gradient method and trust regions in large scale
optimization,” SIAM J. on Numerical Anal., vol. 20, no. 3, pp. 626–637, Jun.
1983.

[51] J. Vassberg, M. Dehaan, M. Rivers, and R. Wahls, “Development of a common
research model for applied CFD validation studies,” presented at the 26th AIAA
Applied Aerodynamics Conf., Honolulu, HI, USA, 2008.

[52] Z. Lyu, G. K. W. Kenway, and J. R. R. A. Martins, “Aerodynamic shape
optimization investigations of the common research model wing benchmark,”
AIAA J., vol. 53, no. 4, pp. 968–985, Apr. 2015.

[53] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins, “A CAD-free
approach to high-fidelity aerostructural optimization,” presented at the 13th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Fort Worth,
TX, USA, 2010.

[54] E. van der Weide, G. Kalitzin, J. Schluter, and J. J. Alonso, “Unsteady turbo-
machinery computations using massively parallel platforms,” presented at the
44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2006.

[55] E. Luke, E. Collins, and E. Blades, “A fast mesh deformation method using
explicit interpolation,” J. of Comput. Physics, vol. 231, no. 2, pp. 586–601, Jan.
2012.

[56] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point
problems,” Acta Numerica, vol. 14, pp. 1–137, May 2005.

[57] M. A. Heroux, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring et al., “An overview of the Trilinos project,” ACM Trans.
on Math. Software, vol. 31, no. 3, pp. 397–423, Sep. 2005.

[58] C. L. Bloebaum, “Coupling strength-based system reduction for complex en-
gineering design,” Structural Optimization, vol. 10, no. 2, pp. 113–121, Oct.
1995.

[59] S. Kodiyalam and J. Sobieszczanski-Sobieski, “Multidisciplinary design opti-
mization — Some formal methods, framework requirements, and application to
vehicle design,” Int. J. of Vehicle Des., vol. 25, no. 1/2, pp. 3–22, 2001.

[60] H. O. Kreiss and G. Scherer, “Finite element and finite difference methods
for hyperbolic partial differential equations,” in Mathematical Aspects of Finite
Elements in Partial Differential Equations. New York, NY, USA: Academic
Press, 1974, pp. 195–212.

[61] B. Strand, “Summation by parts for finite difference approximations for d/dx,”
J. of Comput. Physics, vol. 110, no. 1, pp. 47–67, Jan. 1994.

99

[62] D. Funaro and D. Gottlieb, “A new method of imposing boundary conditions
in pseudospectral approximations of hyperbolic equations,” Math. of Comput.,
vol. 51, no. 184, pp. 599–599, Oct. 1988.

[63] M. H. Carpenter, D. Gottlieb, and S. Abarbanel, “Time-stable boundary con-
ditions for finite-difference schemes solving hyperbolic systems: Methodology
and application to high-order compact schemes,” J. of Comput. Physics, vol.
111, no. 2, pp. 220–236, Apr. 1994.

[64] K. Mattsson, M. Svärd, and J. Nordström, “Stable and accurate artificial dis-
sipation,” J. of Scientific Comput., vol. 21, no. 1, pp. 57–79, Aug. 2004.

[65] M. Turner, The Direct Stiffness Method of Structural Analysis. Seattle, WA,
USA: Boeing Airplane Company, 1959.

[66] C. Felippa, “A historical outline of matrix structural analysis: A play in three
acts,” Comput. & Structures, vol. 79, no. 14, pp. 1313–1324, Jun. 2001.

[67] J. E. Hicken and D. W. Zingg, “Summation-by-parts operators and high-order
quadrature,” J. of Comput. and Appl. Math., vol. 237, no. 1, pp. 111–125, Jan.
2013.

[68] A. Dener, P. Meng, J. E. Hicken, G. J. Kennedy, J. Hwang, and J. S. Gray,
“Kona: A parallel optimization library for engineering-design problems,” pre-
sented at the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conf., San Diego, CA, USA, 2016.

[69] S. F. Ashby and M. K. Seager, “A proposed standard for iterative linear
solvers,” Lawrence Livermore Nat. Lab., Livermore, CA, USA, Tech. Rep.
UCRL-102860, 1990.

[70] P. Peterson, “F2PY: A tool for connecting Fortran and Python programs,” Int.
J. of Comput. Sci. and Eng., vol. 4, no. 4, p. 296, Nov. 2009.

[71] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith,
“Cython: The best of both worlds,” Comput. in Sci. & Eng., vol. 13, no. 2, pp.
31–39, Mar. 2011.

[72] D. M. Beazley and P. S. Lomdahl, “Feeding a large-scale physics application to
Python,” presented at the 6th Int. Python Conf., San Jose, CA, USA, 1997.

[73] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems with
Boost. Python,” C++ Users J., vol. 21, no. 7, pp. 29–36, May. 2003.

[74] R. A. Bartlett, “Thyra linear operators and vectors,” Sandia Nat. Labs., Albu-
querque, NM, USA, Tech. Rep. SAND2007-5984, Aug. 2010.

100

[75] J. E. Hicken and D. W. Zingg, “A simplified and flexible variant of GCROT for
solving nonsymmetric linear systems,” SIAM J. on Scientific Comput., vol. 32,
no. 3, pp. 1672–1694, Jan. 2010.

[76] J. S. Gray, T. A. Hearn, K. T. Moore, J. Hwang, J. R. R. A. Martins,
and A. Ning, “Automatic evaluation of multidisciplinary derivatives using
a graph-based problem formulation in OpenMDAO,” presented at the 15th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., Atlanta,
GA, USA, 2014.

[77] J. Hwang, G. K. W. Kenway, and J. R. R. A. Martins, “Geometry and structural
modeling for high-fidelity aircraft conceptual design optimization,” presented
at the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf.,
Atlanta, GA, USA, 2014.

[78] E. Iuliano and D. Quagliarella, “Proper orthogonal decomposition, surrogate
modelling and evolutionary optimization in aerodynamic design,” Comput. &
Fluids, vol. 84, pp. 327–350, Sep. 2013.

[79] G. Kreisselmeier and R. Steinhauser, “Systematic control design by optimizing
a vector performance index,” in Computer Aided Design of Control Systems.
Oxford, United Kingdom: Pergamon, 1980, pp. 113–117.

[80] C. Raspanti, J. Bandoni, and L. Biegler, “New strategies for flexibility analysis
and design under uncertainty,” Comput. & Chemical Eng., vol. 24, no. 9–10,
pp. 2193–2209, Oct. 2000.

[81] M. A. Akgün, R. T. Haftka, K. C. Wu, J. L. Walsh, and J. H. Garcelon, “Effi-
cient structural optimization for multiple load cases using adjoint sensitivities,”
AIAA J., vol. 39, no. 3, pp. 511–516, Mar. 2001.

[82] N. M. K. Poon and J. R. R. A. Martins, “An adaptive approach to constraint
aggregation using adjoint sensitivity analysis,” Structural and Multidisciplinary
Optimization, vol. 34, no. 1, pp. 61–73, Dec. 2006.

[83] G. J. Kennedy and J. R. Martins, “A parallel finite-element framework for
large-scale gradient-based design optimization of high-performance structures,”
Finite Elements in Anal. and Des., vol. 87, pp. 56–73, Sep. 2014.

[84] B. M. Irons and R. C. Tuck, “A version of the Aitken accelerator for computer
iteration,” Int. J. for Numerical Methods in Eng., vol. 1, no. 3, pp. 275–277,
Jul. 1969.

[85] S. A. Brown, “Displacement extrapolations for CFD+CSM aeroelastic anal-
ysis,” presented at the 38th Structures, Structural Dynamics, and Materials
Conf., Kissimmee, FL, USA, 1997.

101

[86] M. R. Hestenes, “Multiplier and gradient methods,” J. of Optimization Theory
and Appl., vol. 4, no. 5, pp. 303–320, Nov. 1969.

[87] R. J. Vanderbei, Linear Programming (Int. Series in Operations Res. & Man-
agement Sci.). New York, NY, USA: Springer, 2014.

[88] F. A. Potra and S. J. Wright, “Interior-point methods,” J. of Comput. and
Appl. Math., vol. 124, no. 1–2, pp. 281–302, Dec. 2000.

APPENDIX A

SUPPLEMENTARY RESULTS FOR AERODYNAMIC

SHAPE OPTIMIZATION

Fig. A.1. Optimality and feasibility convergence history of RSNK and
SNOPT at dierent design space sizes.

102

	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	INTRODUCTION AND CONTRIBUTIONS
	A Generic Multidisciplinary Analysis Statement
	Simultaneous Analysis and Design
	Multidisciplinary Feasible
	Individual Discipline Feasible
	Contributions
	Second-Order Adjoints for KKT Matrix-Vector Products
	Matrix-Free Preconditioner for the IDF Architecture
	Parallel-Agnostic Optimization Library

	Thesis Outline

	REDUCED-SPACE INEXACT-NEWTON-KRYLOV ALGORITHM
	Introduction
	Sequential Quadratic Optimization Review
	Adjoint Method for Calculating Derivatives

	Inexact-Newton for Optimization
	Matrix-Free KKT Matrix-Vector Products
	Extending FGMRES for Nonconvexity
	Globalizing the Newton Step

	Algorithm Overview
	Application: High-Fidelity Aerodynamic Shape Optimization
	Baseline Geometry
	Objective Function and Problem Setup
	CFD Solver
	Impact of Regularization
	Optimization Results

	Summary

	MATRIX-FREE PRECONDITIONER FOR THE IDF ARCHITECTURE
	Introduction
	Constructing the Preconditioner
	Invertibility of the IDF Constraint Jacobian
	Nested Linear Solutions
	Preconditioner Overview
	Numerical Examples
	Domain Decomposition as a Model MDO Problem
	Objective Function and Problem Setup
	IDF Preconditioner Results
	Optimization Results

	Aero-Structural Optimization of a 2-D Elastic Nozzle
	Quasi-1D Flow Solver
	Linear Elastic Structural Solver
	Monolithic MDA and Adjoint Solutions
	Nozzle Geometry
	Objective Function and Problem Setup
	IDF Preconditioner Results
	Optimization Results

	Summary

	PARALLEL-AGNOSTIC OPTIMIZATION LIBRARY
	Introduction
	PDE-Solver Interface
	Abstract Vectors
	Vector Allocator
	Solver Wrapper

	Linear Algebra Abstraction
	Kona Memory Manager
	Vector Factories
	Kona Vectors
	Kona Matrices

	Optimization Tools and Algorithms
	Optimization Algorithms
	Hessian Approximations

	Verification Tests
	Summary

	AN AERO-STRUCTURAL DESIGN OPTIMIZATION
	Introduction
	Optimization Problem Statement and Setup
	CFD Solver
	Structural Solver
	Multidisciplinary Solution for MDF

	IDF Preconditioner Results
	Optimization Results
	Summary

	CONCLUSIONS AND FUTURE WORK
	Future Research Areas
	Theory-Based Update of the FLECS Penalty Parameter
	Extending RSNK to Inequality Constraints
	Matrix-Free Constraint Jacobians in Quasi-Newton SQO Methods

	REFERENCES
	SUPPLEMENTARY RESULTS FOR AERODYNAMIC SHAPE OPTIMIZATION

