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Abstract

Duality-based approaches to estimate errors for functional output quantities require the solution of an
auxiliary dual problem. This dual solution must be approximated in a richer function space than the
one used for the original problem of interest. A novel strategy for dual enrichment is proposed based on
variational multiscale (VMS) methods and an error representation for output quantities for VMS methods
is derived. An implicit error estimate based on the derived error representation is compared to a recently
developed explicit error estimate for VMS methods. It is shown that while both estimates are identical with
respect to calculating the total output error, the newly derived estimate provides superior local indicators
for use in driving mesh adaptivity.
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1. Introduction and motivation

Stabilized finite element methods have been used to effectively solve a wide variety of problems where
standard Galerkin methods are known to be unstable. Among these problems are the advective-diffusive
equations [12, 18], Stokes flow [17, 4], and the Navier-Stokes equations [7, 11, 26]. The variational multiscale
(VMS) method, as developed by Hughes et al. [16, 19], provides a systematic approach to derive a stabilized
finite element method. From a high level, the VMS approach decomposes the solution u to a partial
differential equation (PDE) into coarse-scale components u and fine-scale components u′, where the fine-
scale solution is represented or approximated analytically.

A posteriori error estimation is a common tool to assess the accuracy and reliability of a finite element
solution [1]. In the original developments of the VMS method, it was suggested that approximations to the
fine-scale solution u′ = u−u could be used to derive a posteriori error estimates [16]. Since then, numerous
studies have utilized VMS techniques in the context of a posteriori error estimation. Hauke et al. [13, 15]
investigated using the fine-scale solution as an explicit error estimator in the context of advective transport
problems. Masud et al. [24] derived explicit and implicit error estimates for the global discretization error
for a mixed form of nearly incompressible elasticity, and then later extended these techniques to nonlinear
elasticity formulations [23]. Larson and Målqvist [21] investigated approximating the fine-scale solution via
local patch-wise problems, and derived an a posteriori error estimate for the solution in the energy norm
for use in an adaptive finite element method.

Traditional a posteriori error estimates attempt to bound the error in a given norm. More recently
developed duality-based a posteriori error estimates [10] seek to approximate the error in an output quantity
that can be expressed as a functional J(u). For example, outputs corresponding to the lift or drag over an
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airfoil may be of primary interest for a numerical study. In general, output-based error estimates based on
duality techniques require the solution of an auxiliary dual problem. In contrast, the original PDE of interest
is referred to as the primal problem. Using the solution z to the dual problem, output error estimates are
written, in part, as the product of two terms [5, 3]. The first term involves the residual Ruh of the primal
PDE evaluated at the finite element solution. The second term, typically referred to as the weighting term,
involves the difference z − Ihz between the exact dual solution and the nodal interpolant of the exact dual
solution onto the finite element space used to approximate the primal problem.

The exact dual z solution is generally unknown, and thus must be approximated to obtain functional
error estimates. Note that if the dual solution is approximated in the same finite element space as used for
the primal problem, then the weighting term in the output error estimate is identically zero. Thus some
form of enrichment to the dual solution is required. Several enrichment procedures are commonly used.
One approach is to approximate the exact dual solution in a globally richer finite element space than the
one used for the primal problem. Another approach involves solving the dual problem using the same finite
element space as used for the primal problem and enriching the dual solution via projection. Yet another
approach involves using a priori estimates to bound the interpolation error in the dual solution.

In this paper we propose a novel strategy for output-based error estimation, whereby the dual solution
is enriched by the fine-scale dual solution z′ using VMS techniques. This is achieved by the introduction
of a general representation E2 for functional errors in VMS methods. Using this general representation, we
introduce simple approximations to the fine and coarse scale solutions for both the primal and dual problems
to derive an error estimate η2.

We then seek to demonstrate the utility of this error representation in adaptive finite elements. This is
achieved in part by comparison to a recently proposed explicit output-based error representation E1 that
utilizes VMS techniques to entirely circumvent the solution of an auxiliary dual problem [14]. We prove
that error estimates η1 ≈ E1 and η2 ≈ E2 based on this explicit error representation and the newly proposed
VMS technique, respectively, are identical. However, we demonstrate that localization of the explicit error
estimate η1 is insufficient to drive mesh adaptation for local output quantities, whereas the estimate η2

performs well.
The remainder of this paper is structured as follows. We begin by presenting a review of the derivation of

a VMS method for an abstract Dirichlet primal problem. Then we introduce simple approximations to the
fine-scale solution u′ and the coarse-scale solution u to obtain a computable numerical subgrid method for
the primal problem. Next, we introduce an auxiliary dual problem to relate the output J(u) to the primal
problem. We then derive a VMS and subgrid method for the dual problem. Using the VMS methods for the
primal and dual problems, we derive a general expression E2 for representing output errors in VMS methods,
as well as the previously proposed error representation E1. Then, utilizing the approximations made for the
primal and dual subgrid models, we derive error estimates η1 ≈ E1 and η2 ≈ E2 and demonstrate that these
two quantities are identical. Next, we discuss the localization of these error estimates to element-level error
indicators and how these indicators are used to drive mesh adaptation procedures. Then we investigate the
effectivity of error estimates η1 and η2 for one and two dimensional example problems. We conclude by
investigating the ability of the estimates η1 and η2 to drive mesh adaptation to accurately compute output
quantities J(u).

2. Review of VMS methods

2.1. Model problem

Let Ω ⊂ Rd be an open bounded domain with smooth boundary ∂Ω, where d is the number of spatial
dimensions of the domain. Let V be a Hilbert space equipped with the norm ‖ · ‖V and inner product
(·, ·)V such that V = {u ∈ H(Ω) : u|∂Ω = 0}, where H(Ω) is a Hilbert space defined over the domain
Ω. Let V∗ be the dual space of V and V〈·, ·〉V∗ denote the dual pairing between the two spaces given by

V〈v, u〉V∗ =
∫

Ω
vudΩ. Let L : V → V∗ be a linear differential operator. Let f ∈ V∗ be given data. We
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consider the abstract model problem of finding u ∈ V such that{
Lu = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(1)

In Appendix A we discuss extending this model problem to account for non-homogeneous Dirichlet and
Neumann boundary conditions.

We define the residual operator R : V → V∗ as Ru := f −Lu, and we refer to (1) as the primal problem.
The equivalent weak form of the primal problem can be stated as: find u ∈ V such that

V〈v,Lu〉V∗ = V〈v, f〉V∗ ∀ v ∈ V. (2)

2.2. VMS formulation

In this section, we review the foundations of the VMS method, as developed by Hughes et al. [16] and
later refined by Hughes and Sangalli [19]. The basis of the method is the introduction of a sum decomposition
of the solution u such that u = u+u′. Here u ∈ V corresponds to the computable coarse-scale solution, while
u′ ∈ V ′ is associated with unresolved fine-scales of the solution. Further, it is assumed that the coarse-scale
space V and fine-scale space V ′ are closed subspaces of V and that V ⊕ V ′ = V.

Using this sum decomposition, the weak form of the primal problem can be restated: find u + u′ ∈ V
such that

V〈v,L(u+ u′)〉V∗ = V〈v, f〉V∗ ∀ v ∈ V, (3)

which can be split into the two subproblems: find u+ u′ ∈ V such that

V〈v,Lu〉V∗ + V〈v,Lu′〉V∗ = V〈v, f〉V∗ ∀ v ∈ V, (4)

V〈v′,Lu〉V∗ + V〈v′,Lu′〉V∗ = V〈v′, f〉V∗ ∀ v′ ∈ V ′. (5)

The goal of the VMS method is to eliminate the fine-scale solution u′ from the first sub-problem (4) by
expressing u′ in terms of the coarse-scale solution u. This results in a coarse-scale model involving only u
that can then be solved numerically. However, the two sub-problems are not currently well-posed in terms
of uniqueness. To ensure uniqueness, an optimality condition φ(·) is chosen, for example φ(·) = ‖ · ‖2H1(Ω)

or φ(·) = ‖ · ‖2L2(Ω). The problem is then reposed in the optimal context:

min
u

φ(u− u),

s.t.


u ∈ V,
u′ ∈ V ′,
L(u+ u′) = f,

(6)

The success of Hughes and Sangalli [19] is in showing that this optimality criteria defines a projector
P : V → V onto the coarse-scale space such that Pu′ = 0. Additionally, the projector P implicitly defines
the fine-scale space V ′ = {v ∈ V : Pv = 0}. Using this projector, Hughes and Sangalli then show that the
fine-scale solution can be analytically represented as:

u′ =
(
G − GPT

(
PGPT

)−1 PG
)

︸ ︷︷ ︸
G′

Ru, (7)

where G = L−1 is the classical Green’s operator and G′ is the so-called fine-scale Green’s operator. Similarly,
the fine-scale solution can be written in terms of the so-called fine-scale Green’s function g′(x;y) as

u′(y) =

∫
Ω

g′(x;y)(Ru)(x) dΩx, (8)
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where g′(x;y) is defined by the operator G′.
Let L∗ be the adjoint operator of L such that

V〈v,Lu〉V∗ = V∗〈L∗v, u〉V ∀u, v ∈ V. (9)

We note that this equation represents the definition of the adjoint operator L∗ and does not place any
restriction on L. When L is self adjoint, we have the identity L∗ = L, otherwise L∗ and L are different.
However, equation (9) holds in either case.

Using the definition of the adjoint (9) and the representation of the fine-scale solution (7), the first
sub-problem (4) can be restated as: find u ∈ V such that

V〈v,Lu〉V∗ + V∗〈L∗v,G′Ru〉V = V〈v, f〉V∗ ∀ v ∈ V. (10)

We refer to this equation as the continuous variational multiscale formulation of the primal problem. For
use in later derivations, we rewrite this formulation as:

V∗〈L∗v,G′Ru〉V = V〈v,Ru〉V∗ ∀ v ∈ V, (11)

recalling the definition of the primal residual operator Ru := f − Lu.

2.3. Subgrid model

In practice, the continuous VMS model (10) is approximated by a finite element method. We refer to this
approximate model as the subgrid model, as is common in the literature. The first step in this approximation
is to choose the coarse-scale space to be a finite dimensional subspace, that is V = Vh, and partition the
domain Ω into nel non-overlapping finite element subdomains Ωe with boundaries ∂Ωe for e = 1, 2, . . . , nel.

Next we note that an exact representation for the fine-scale Green’s function g′(x;y) (and the fine-scale
Green’s operator G′) is generally not obtainable. Thus, we must introduce an approximation for the fine-
scale Green’s function to accurately represent the fine-scale solution (8). To this end, we introduce the
so-called element-level Green’s function ge(x;y), defined over element interiors as{

L∗ge(x;y) = δ(x− y), x ∈ Ωe,

ge(x;y) = 0, x ∈ ∂Ωe,
(12)

such that g′(x;y) ≈ ge(x;y).
Note that this approximation assumes that the fine-scale solution u′ vanishes on element boundaries

∂Ωe. Hughes and Sangalli [19] show that, in one spatial dimension, the choice of an H1 optimality condition
φ = ‖ · ‖2H1 results in a completely local fine-scale Green’s function. That is, when d = 1, the H1 optimality
condition ensures the equivalence of the fine-scale Green’s function g′(x;y) and the element-level Green’s
function ge(x;y). This result provides justification for approximating the fine-scale Green’s function as the
element-level Green’s function and motivates us to only consider φ(·) = ‖ · ‖H1 in this work.

As a further simplification, we approximate the element-level Green’s function by it’s average value over
the element interior, and denote this value by τe, which can be expressed as:

τe =
1

meas(Ωe)

∫
Ωe

∫
Ωe

ge(x;y) dΩx dΩy. (13)

We note that more accurate approximations for the element-level Green’s function can be made. For
instance, Oberai and Pinsky [25] approximate the element-level Green’s function by a polynomial scalar
function involving moments of the element-level Green’s function. We leave investigation into this area as
a consideration for future work.

With this final approximation, the subgrid model can be written as: find uh ∈ Vh such that

V
〈
vh,Luh

〉
V∗ + V∗

〈
L∗vh, τeRuh

〉Ω′
V = V

〈
vh, f

〉
V∗ ∀ vh ∈ Vh, (14)
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or equivalently as: find uh ∈ Vh such that

V∗
〈
L∗vh, τeRuh

〉Ω′
V = V

〈
vh,Ruh

〉
V∗ ∀ vh ∈ Vh, (15)

where we have approximated the fine-scale solution over element interiors as

u′
∣∣
Ωe ≈ ũ′

∣∣
Ωe = τeRuh. (16)

Here V∗〈·, ·〉
Ω′

V denotes the ‘broken’ dual pairing over element interiors given by

V∗〈u, v〉Ω
′

V =

nel∑
e=1

V∗〈u, v〉Ω
e

V , (17)

where we have denoted the dual pairing over a single element interior as

V∗〈u, v〉Ω
e

V =

∫
Ωe

uv dΩ. (18)

We emphasize that the approximations made to the fine-scale solution imply that the subgrid model
(14) is an approximation to the continuous VMS formulation (10), which in turn implies that the subgrid
solution uh is an approximation to the coarse-scale solution u. With this in mind, we can express the exact
solution u as

u = uh + ũ′ + ũ (19)

where ũ = (u− uh) + (u′ − ũ′) represents the approximation errors in the coarse and fine-scale solutions.

Remark 1. The finite element method is derived from the weak form of a partial differential equation that
has been integrated by parts. Thus instead of the duality pairing used in equation (14) it makes use of the
L2 inner product, and the finite element subgrid model derived from the variational multiscale method is
given by:

A(vh, uh) + (L∗vh, τeRuh)Ω′ = l(vh) ∀ v ∈ V. (20)

where A(·, ·) is the bilinear form associated with the operator L, (·, ·)Ω′ is the broken L2 inner product
defined on element interiors, and l(·) is the linear functional associated with the forcing function f .

3. The dual problem

3.1. Abstract problem

Let J(u) : V → R be a linear functional corresponding to a physically meaningful quantity of interest.
We assume that J(u) can be expressed as

J(u) = V∗〈q, u〉V , (21)

where q ∈ V∗. Following standard duality-based approaches for a posteriori error estimation [3, 5, 9, 10] we
introduce the dual problem : find z ∈ V such that

V∗〈L∗z, v〉V = V∗〈q, v〉V ∀ v ∈ V. (22)

The equivalent strong form of the dual problem can be written as: find z ∈ V such that{
L∗z = q, x ∈ Ω,

z = 0, x ∈ ∂Ω.
(23)

We define the residual operator R∗ : V → V∗ of the dual problem as R∗z := q − L∗z.
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3.2. VMS formulation

If the primal problem necessitates the use of numerical stabilization, it is also likely that solving the dual
problem (22) with a Galerkin finite element method will yield spurious oscillations in the dual solution [8].
To prevent non-physical behavior in the dual solution, we also solve the dual problem with a VMS method.
Cyr et al. [8] call this approach the stabilization of the adjoint. This is in contrast to deriving a dual problem
directly from the primal subgrid model (14), which Cyr et al. refer to as the adjoint of the stabilization.

Let Vd and V ′d be closed subspaces of V. Obtaining a VMS formulation for the dual problem proceeds in
exactly the same manner as the primal problem. First a sum decomposition of the dual solution z is assumed
such that z = z + z′, where z ∈ Vd and z′ ∈ V ′d. The weak form of the dual problem (22) is then written
as two sub-problems, whose solutions are uniquely determined by an optimality condition φd(·) imposed on
the coarse-scale solution z. As with the primal model, we will only consider the H1 optimality condition
φd(·) = ‖ · ‖2H1 . However, we note that one could potentially choose different optimality conditions for both
the primal and dual problems. We leave investigation into this area as an open research topic.

The optimality condition defines a projector Pd : V → Vd onto the coarse-scale subspace such that
Pdz

′ = 0, and this projector implicitly defines the fine-scale subspace as Vd = {v ∈ V : Pdv = 0}. If we let
Gd denote the classical Green’s operator for the dual problem, such that Gd = (L∗)−1, then the fine-scale
dual solution can be represented as:

z′ =
(
Gd − GdPTd

(
PdGdPTd

)−1 PdGd
)

︸ ︷︷ ︸
G′d

R∗z, (24)

where G′d is the dual fine-scale Green’s operator. Similarly, the fine-scale solution can be written in terms of
the dual fine-scale Green’s function, g′d(x;y), as:

z′(y) =

∫
Ω

g′d(x;y)(R∗z)(x) dΩx, (25)

where g′d(x;y) is defined by the operator G′d. Using this representation of the fine-scale dual solution, the
continuous variational multiscale formulation of the dual problem is stated as: find z ∈ Vd such that

V∗〈L∗z, v〉V + V〈G′dR∗z,Lv〉V∗ = V∗〈q, v〉V ∀ z ∈ Vd. (26)

Recalling the definition of the dual residual operator R∗ := q − L∗, we can rewrite equation (26) as:

V〈G′dR∗z,Lv〉V∗ = V∗〈R∗z, v〉V ∀ z ∈ Vd. (27)

3.3. Subgrid model

To derive a corresponding subgrid model to the VMS formulation of the dual problem (26), we will
assume that the coarse-scale spaces for the primal and dual problem are chosen to be the same, such that
V = Vd. Additionally, we will consider approximations made using the same finite dimensional subspace
V = Vh and discretization as used for the primal subgrid model. We first approximate the dual fine-scale
Green’s function g′d(x;y) using the dual element-level Green’s function, defined over element interiors as{

Lged(x;y) = δ(x− y), x ∈ Ωe,

ged(x;y) = 0, x ∈ ∂Ωe,
(28)

such that g′d(x;y) ≈ ged(x;y).
We further approximate the fine-scale dual solution z′ by writing it as the product of a scalar function

τed times the dual residual operating on the coarse-scale solution. The scalar function is given as:

τed =
1

meas(Ωe)

∫
Ωe

∫
Ωe

ged(x;y) dΩx dΩy. (29)

6



The dual subgrid model can then be written as: find zh ∈ Vh such that

V∗
〈
L∗zh, vh

〉
V + V

〈
τedR∗zh,Lvh

〉Ω′
V∗ = V∗

〈
q, vh

〉
V ∀ vh ∈ Vh, (30)

or equivalently as: find zh ∈ Vh such that

V
〈
τedR∗zh,Lvh

〉Ω′
V∗ = V∗

〈
R∗zh, vh

〉
V ∀ vh ∈ Vh, (31)

where we have approximated the fine-scale dual solution over element interiors as

z′
∣∣
Ωe ≈ z̃′

∣∣
Ωe = τedR∗zh. (32)

We note that the exact dual solution can be expressed as the sum

z = zh + z̃′ + z̃, (33)

where z̃ = (z − zh) + (z′ − z̃′) represents the approximation errors in the coarse and fine-scale solutions.

Remark 2. The finite element version of the dual subgrid model corresponding to equation (30) is written
using the L2 inner product as:

A(zh, vh) + (τedR∗zh,Lvh)Ω′ = J(vh) ∀ v ∈ Vh, (34)

where A(·, ·) is the bilinear form associated with the operator L, and (·, ·)Ω′ is the broken L2 inner product
defined on element interiors.

4. Error estimation

In this section, we develop a general framework for output-based error estimation in VMS methods. We
first develop two error representations for output quantities in the continuous VMS setting. Next, we discuss
the role of the approximations made in both the primal and dual subgrid models. Finally, we introduce
two error estimates for output quantities. We prove that the error estimates are identical. However, we
demonstrate the superiority of one estimate over the other in the context of error localization needed to
drive mesh adaptation.

4.1. Continuous VMS error representations

Proposition 1. For any solution u = u′ + u to the continuous VMS formulation (10), we have the error
representation

E1 = J(u)− J(u) = J(u′) (35)

Proof. The result follows directly from the linearity of J(·) and the sum decomposition u = u′ + u.

This error representation is used by Hauke and Fuster [14] to derive an explicit a posteriori error estimate
for output quantities. The error estimate only involves an approximation ũ′ to the fine-scale solution u′ and
completely avoids the solution of a dual problem. However, when q is chosen to be a local forcing function
for the dual problem (e.g. a function which is non-zero only over a subdomain of the total domain), error
estimates derived from this representation fail to provide useful information when they are localized to the
element level. Such error localization is critical to drive mesh adaptation and is discussed in detail later.

Proposition 2. For any solutions u = u′ + u to the continuous VMS formulation (10) and z = z′ + z to
the continuous dual VMS formulation (26), we have the error representation

E2 = J(u)− J(u) = V〈G′dR∗z,Ru〉V∗ + V∗〈L∗z,G′Ru〉V (36)

7



Proof.

J(u)− J(u) = V∗〈q, u〉V − V∗〈q, u〉V by (21)

= V∗〈L∗z, u〉V − V∗〈L∗z, u〉V by (22)

= V〈z,Lu〉V∗ − V〈z,Lu〉V∗ by (9)

= V〈z, f〉V∗ − V〈z,Lu〉V∗ by (2)

= V〈z,Ru〉V∗ by definition, linearity

= V〈z′,Ru〉V∗ + V〈z,Ru〉V∗ by definition, linearity

= V〈z′,Ru〉V∗ + V∗〈L∗z,G′Ru〉V by (11)

= V〈G′dR∗z,Ru〉V∗ + V∗〈L∗z,G′Ru〉V by (24)

This error representation suggests a general approach to output-based error estimation for VMS methods,
where the only approximation made to this point is that the coarse-scale subspace for the primal and dual
problems are equal, such that V = Vd. To derive computable error estimates, exact representations or
approximations must be known for the fine-scale Green’s operators and the coarse-scale solutions for both
the primal and dual problems.

4.2. Subgrid model error representations

We now derive error representations that arise by introducing the approximations made in the primal
and dual subgrid models.

Proposition 3. For any solutions u to the primal model (2) and uh to the primal subgrid model (14), we
have the error representation

Ê1 = J(u)− J(uh) = V∗
〈
q, τeRuh

〉Ω′
V + V∗〈q, ũ〉V (37)

Proof.

J(u)− J(uh) = V∗〈q, u〉V − V∗
〈
q, uh

〉
V by (21)

= V∗
〈
q, u− uh

〉
V by linearity

= V∗〈q, ũ′ + ũ〉V by (19)

= V∗〈q, ũ′〉
Ω′

V + V∗〈q, ũ〉V by linearity

= V∗
〈
q, τeRuh

〉Ω′
V + V∗〈q, ũ〉V by (16)

Proposition 4. For any solutions u to the primal model (2), z to the dual model (22), uh to the primal
subgrid model (14) and zh to the dual subgrid model (30), we have the error representation

Ê2 = J(u)− J(uh) = V
〈
τedR∗zh,Ruh

〉Ω′
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V + V

〈
z̃,Ruh

〉
V∗ (38)
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Proof.

J(u)− J(uh) = V∗〈q, u〉V − V∗
〈
q, uh

〉
V by (21)

= V∗〈L∗z, u〉V − V∗
〈
L∗z, uh

〉
V by (22)

= V〈z,Lu〉V∗ − V
〈
z,Luh

〉
V∗ by (9)

= V〈z, f〉V∗ − V
〈
z,Luh

〉
V∗ by (2)

= V
〈
z,Ruh

〉
V∗ by definition

= V
〈
z,Ruh

〉
V∗ − V

〈
zh,Ruh

〉
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V by (15)

= V
〈
z − zh,Ruh

〉
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V by linearity

= V
〈
z̃′ + z̃,Ruh

〉
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V by (33)

= V
〈
z̃′,Ruh

〉Ω′
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V + V

〈
z̃,Ruh

〉
V∗ by linearity

= V
〈
τedR∗zh,Ruh

〉Ω′
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V + V

〈
z̃,Ruh

〉
V∗ by (32)

4.3. Subgrid model error estimates

In general, the approximation errors ũ and z̃ are unknown. This suggests the error estimates η1 ≈ Ê1
and η2 ≈ Ê2 that are obtained by setting ũ = 0 in (37) and z̃ = 0 in (38), and are given below:

η1 = V∗
〈
q, τeRuh

〉Ω′
V (39)

η2 = V
〈
τedR∗zh,Ruh

〉Ω′
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V (40)

Proposition 5. For any solutions uh to the primal subgrid model (14) and zh to the dual subgrid model
(30) the error estimates η1 and η2 are identical.

Proof. Note that if the stabilization parameters τe and τed for the primal and dual problems are equal, we
obtain the desired result since

η2 = V
〈
τedR∗zh,Ruh

〉Ω′
V∗ + V∗

〈
L∗zh, τeRuh

〉Ω′
V

= V∗
〈
R∗zh, τeRuh

〉Ω′
V + V∗

〈
L∗zh, τeRuh

〉Ω′
V by assumption

= V∗
〈
R∗zh + L∗zh, τeRuh

〉Ω′
V by linearity

= V∗
〈
q, τeRuh

〉Ω′
V by definition

= η1

Using the given definitions (13) and (29), we note that a sufficient condition for the equality τe = τed is:
ge(x;y) = ged(y;x). This is verified via the following argument:

L∗ge(x;y) = δ(x− y) by (12)

=⇒
∫

Ωe

ged(x; z)L∗ge(x;y) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ

=⇒
∫

Ωe

Lged(x; z)ge(x;y) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ

=⇒
∫

Ωe

δ(x− z)ge(x;y) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ by (28)

=⇒ ge(z;y) = ged(y; z)

9



Here we remark that the identity (9) holds for arbitrary smooth domains Ω and for a function space V whose
members vanish on the boundary ∂Ω. As such, we employ the element-level identity:

V〈v,Lu〉Ω
e

V∗ = V∗〈L∗v, u〉Ω
e

V ∀u, v ∈ Ve (41)

to derive the third equality above, where Ve = {u ∈ V : u = 0 on ∂Ωe}.

4.4. Error localization

We now demonstrate that even though η1 and η2 are identical global error estimates, their localization
to element-level error estimates is very different. This localization yields positive values at the element
level called error indicators which are necessary to drive mesh adaptation. We compute error indicators by
bounding the two error estimates η1 and η2 from above using the triangle inequality, such that:

|η1| ≤
nel∑
e=1

ηe1, (42)

and

|η2| ≤
nel∑
e=1

ηe2. (43)

Here the error indicator for the error estimate η1 is given as

ηe1 = | V∗
〈
q, τeRuh

〉Ωe

V |, (44)

and the error indicator for the error estimate η2 is given as

ηe2 = | V
〈
τedR∗zh,Ruh

〉Ωe

V∗ |+ | V∗
〈
L∗zh, τeRuh

〉Ωe

V | (45)

Note that the indicator ηe1 is only non-zero over elements for which the dual forcing function q|Ωe is non-
zero. This indicates that only elements for which q|Ω 6= 0 provide contributions to the error J(u) − J(uh),
which is generally not true. As a thought experiment, consider an advective problem for which the dual
forcing function q is defined to be 1 over some subdomain Ωs ⊂ Ω and 0 elsewhere. Any discretization errors
introduced upstream of the subdomain Ωs will be propagated via advection to the subdomain itself, thus
affecting the accuracy of the computed output quantity. However, the indicator ηe1 will indicate that the
elements upstream of the subdomain provide no contributions to the output error, as these elements are
located outside of the subdomain Ωs, whereas this would not be the case for ηe2.

5. Mesh adaptation

Mesh adaptation provides a means to modify the spatial discretization of a PDE to obtain greater solution
accuracy with a given amount of computing power. Presently, we make use of conformal unstructured local
mesh modification that performs sequences of edge splits, swaps, and collapses [2] [22] using the PUMI [20]
software suite. Mesh adaptation is driven by the concept of a mesh size field, which defines element edge
lengths at all locations in the mesh. The mesh size field is determined by the localized error indicators to
perform mesh refinement in areas that strongly contribute to the error and perform mesh coarsening in areas
that do not strongly contribute to the error.

10



5.1. Size field specification

Let N be a desired target number of mesh elements. Let ηe denote a computed element-level error
indicator defined for all e = 1, 2, . . . , nel. Let p be the expected polynomial order of convergence for a chosen
finite element method. Following Boussetta et al. [6], we utilize a size field specification that aims to provide
an output adapted mesh with N elements. First, we define the global quantity G as

G =

nel∑
e

(ηe)
2d

2p+d . (46)

Once G has been computed, new element-level sizes henew are determined by scaling the previous element
size he according to the formula

henew =

(
G

N

) 1
d

(ηe)
−2

2p+d he (47)

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we prescribe that the new
element size be no smaller than half the previous element size and no greater than twice the previous element
size.

1

2
≤ henew

he
≤ 2 (48)

6. Results

In this section, we investigate output-based error estimation and mesh adaptation as applied to a model
scalar, steady state advection diffusion problem, defined by the linear operator

L := −κ∇2 + a · ∇. (49)

Here, κ is a coefficient corresponding to the diffusivity strength and a is a coefficient corresponding to the
advective transport. The adjoint operator is readily found (see Appendix B) to be

L∗ = −κ∇2 − a · ∇, (50)

which is simply another advection-diffusion operator with the advective direction opposite that of the original
operator. The bilinear form A(·, ·) associated with the operator L is given as

A(v, u) = (∇v, κ∇u) + (v,a · ∇u) (51)

where (·, ·) denotes the L2 inner product.

The mesh Peclét number α is given by α := h|a|
2κ , where h = meas(Ωe) is a characteristic measure of the

mesh element size. In one dimension, the stabilization parameter τe is given [16] as:

τe =
h

2|a| (cothα+
1

α
) (52)

The parameter τe exactly solves (13) in one spatial dimension, but we emphasize that utilizing this parameter
in two spatial dimensions introduces yet another approximation to the fine-scale solution.

For a chosen functional output quantity J(u), the effectivity index is defined as

I =
J(u)− J(uh)

η
, (53)

the ratio of the exact error to the estimated error. The effectivity index provides a measure of the degree
to which the error is underestimated. An effectivity index of I = 1 is desirable, as it indicates the error
estimate has exactly recovered the error.
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For each numerical example, the primal and dual problems are solved using the same finite element
discretization. That is the same finite element basis functions and the same finite element mesh are used
to solve the primal and dual problems. The mesh used in each example consists of simplical elements in
one or two dimensions, and the finite element subspace Vh is defined by piecewise linear Lagrange shape
functions. The primal problem is given by equation (20) and the dual problem is given by equation (34),
where we emphasize that homogeneous Dirichlet boundary conditions are applied to both the primal and dual
problems. Finally, we note that we have provided Appendix C to concretely demonstrate the propositions
derived in Section 4.

6.1. One dimensional example

Let Ω = {x : x ∈ [0, 1]}. We choose the forcing function for the primal to be f = 1, and the functional
quantity of interest J(u) =

∫
Ω
udΩ, such that q = 1 for the dual problem. The diffusivity coefficient is

chosen to be κ = 0.001 and the advective coefficient a = 1. The exact solution to the primal PDE (1) is

u(x) =
1

a

(
x− exp(axκ )− 1

exp( aκ )− 1

)
(54)

and the exact value for the chosen quantity of interest is J(u) = 0.499.
We investigate the accuracy of the error estimate obtained by η = η1 = η2. Table 1 shows the computed

functional quantity of interest and the effectivity indices for the one-dimensional problem solved on meshes
with nel elements with mesh size h = 1

nel
. For each chosen mesh size, the effectivity index is exactly one

meaning the error estimate η exactly recovers the output error. It is well known (c.f. [16]) that our choice
of τe results in a solution uh that is nodally exact. For this reason, it is unsurprising that the output error
is exactly recovered for this example.

nel α J(uh) I

10 5.000e+01 4.5000e-01 1.000
20 2.500e+01 4.7500e-01 1.000
40 1.250e+01 4.8750e-01 1.000
80 6.250e+00 4.9375e-01 1.000
160 3.125e+00 4.9686e-01 1.000

Table 1: Effectivity indices for a 1D advection- diffusion example with a global QoI

6.2. A manufactured solution

Let Ω = {x : x ∈ [0, 1]× [0, 1]}. Let ei and ej be unitary vectors in the x and y directions, respectively.
We choose the advective coefficient to be a = ei + ej , the diffusive coefficient to be κ = 0.001, and the
forcing function f such that the exact solution is given by

u(x, y) = sin(πx) sin(πy). (55)

The quantity of interest is chosen to be J(u) =
∫

Ω
udΩ, such that the dual forcing function is q = 1. The

exact value of the quantity of interest is J(u) = 1
π2 ≈ .405284. Again, we investigate the effectivity of the

error estimate η = η1 = η2 for meshes with uniformly nel uniformly distributed triangular elements. Table 2
shows effectivity indices obtained for various meshes. As the mesh size decreases and the number of elements
increases, the effectivity index tends to one.

6.3. Advection in an L-shaped domain

Let Ω = {x : x ∈ [0, 1] × [0, 1] ∪ [0, 1] × [−1, 0] ∪ [−1, 0] × [0, 1]}. Let ei and ej be unitary vectors in
the x and y direction, respectively. We choose the advective coefficient to be a = −ei + ej , the diffusive
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nel J(uh) I

200 4.0493e-01 1.083
800 4.0512e-01 1.023
3200 4.0521e-01 1.009
12800 4.0525e-01 1.004
51200 4.0527e-01 1.001

Table 2: Effectivity indices for a 2D advection- diffusion example with a global QoI

coefficient to be κ = 0.001, and the forcing function f = 1. We investigate adaptivity for two output
quantities: J1(u) =

∫
Ω
udΩ and J2(u) =

∫
Ω
q2udΩ, where q2 is defined as

q2 :=

{
1 if −0.95 ≤ x ≤ −0.5 and 0.5 ≤ y ≤ 0.95

0 otherwise
(56)

That is, q2 samples the solution uh on a square patch in the upper right corner of the domain Ω. The primal
solution uh and the dual solutions corresponding to the two quantities of interest are shown in Figure 1.
Note that the primal solution contains steep gradients at the two left-most surfaces and the upper surface
of the L-shaped domain.

Figure 1: The primal solution uh (left) and the dual solutions zh corresponding to J1(u) (center) and J2(u) (right)

We investigate the ability of four adaptive schemes to accurately assess the two functional quantities.
Each scheme proceeds by iteratively performing the steps

Solve primal PDE→ Localize error→ Adapt mesh.

The first adaptive scheme, referred to as UNIF, remeshes the entire domain with a uniform size field.
For the two output quantities, errors are computed for the meshes generated with the mesh sizes h =
{ 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64}. In principle, the step to localize the error is not required for this scheme.

For comparison to more traditional energy-based methods, the second adaptive scheme is chosen based
on a Zienkiewicz-Zhu type error estimate [27] [28], whereby error indicators are computed as the difference
between solution gradients ∇uh that are discontinuous between elements and a nodally smoothed approxi-
mation to the gradient (∇uh)∗ that is obtained via a least-squares fit over a patch of elements. Once error
indicators are computed, the size field is set according to the size field equation (47) such that the target
number of elements N is twice the number of elements in the previous mesh. We refer to this scheme as the
superconvergent patch recovery (SPR) adaptive scheme.

The third and fourth adaptive schemes are based on the error indicators ηe1 and ηe2, respectively, and are
referred to as the VMS1 and VMS2 adaptive schemes, respectively. Again, once the error indicators have
been computed, the size field is set according to the size field equation (47) such that the target number of
elements N is twice the number of elements in the previous mesh. We note that the scheme VMS2 is the
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Figure 2: Initial meshes for the outputs J1(u) (left) and J2(u) (right)

only one which necessitates the solution of the dual PDE model, which is implicitly included in the ‘Localize
error’ step.

For each quantity of interest, an initial mesh with a uniform size of h = 1
4 was generated as shown in

Figure 2. From this initial mesh, each adaptive scheme was run until meshes with over 10, 000 degrees of
freedom were produced. The exact values of the two output quantities were computed on ‘truth’ meshes,
which are finer at every spatial location in the domain when compared to the meshes obtained via the four
adaptive schemes. The values of the quantities of interest were found to be J1(u) = 1.6588688371 and
J2(u) = 0.23109653499.

Figure 3: Final adapted meshes for the output J1(u) using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes

Figure 3 shows the meshes obtained at the final iteration of the SPR, VMS1, and VMS2 adaptive
schemes for the global output quantity J1(u). As expected, the SPR scheme strongly refines the mesh in
areas where the gradient changes drastically. These areas include the left-most and upper-most surfaces of
the L-shaped domain where boundary layers in the solution exist, as well as the diagonal downstream of the
reentrant corner where there is a sudden change in the solution magnitude. In addition to performing mesh
refinement in the areas that the SPR scheme targets, the VMS1 and VMS2 also refine the mesh along the
diagonal upstream of the reentrant corner to accurately resolve features of the dual solution zh. For the
global quantity J1(u), the VMS1 and VMS2 schemes yield final meshes with very similar characteristics.
At each iteration in the adaptive schemes, the output error |J1(u)−J1(uh)| was computed. Figure 4 displays
the convergence histories for each adaptive scheme. Unsurprisingly, the VMS1 and VMS2 adaptive schemes
compute the output error more accurately than the SPR and UNIF with a comparable number of degrees
of freedom.

Figure 5 displays the output meshes at the final iteration of the SPR, VMS1, and VMS2 adaptive
schemes for the local output quantity J2(u). Again, it is clear that the SPR strongly refines the mesh
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Figure 4: Convergence history for various adaptive schemes for the output J1(u).

Figure 5: Final adapted meshes for the output J2(u) using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes
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in areas where the gradient changes drastically. The VMS1 scheme only performs mesh refinement over
the square subdomain over which q2 is non-zero and does not seek accurately resolve the mesh to capture
features of the primal or dual solutions. In contrast, the VMS2 strongly refines the mesh over the square
subdomain of interest, while also resolving areas upstream of the domain to accurately account for the
features of the primal and dual solutions. For the output quantity J2(u), convergence histories for each
adaptive scheme are shown in Figure 6. It is clear from both the convergence diagram and final adapted
mesh for the VMS1 scheme that the VMS1 scheme is completely insufficient to drive mesh adaptation for
a locally defined output quantity. On the other hand, the VMS2 adaptive scheme is able to compute the
ouptut quantity with much greater accuracy than the UNIF and SPR schemes when using a comparable
number of degrees of freedom.

7. Conclusions

For VMS methods, we have proposed a novel approach to enriching the dual solution for duality-based
functional error estimation using VMS techniques. We have demonstrated the utility of this technique to
drive mesh adaptation to accurately compute output quantities.

Future work includes investigating the effect of choosing different optimality conditions φ(·) and φd(·) for
the primal and dual problems, respectively, extending error estimates to account for nonlinearities in both
the PDE model and in the functional output quantity, investigating the effect of utilizing more accurate
approximations to the fine-scale primal and dual solutions, and extending the arguments presented to a
mixture of non-homogeneous Dirichlet and Nuemann boundary conditions.

References

[1] Mark Ainsworth and J Tinsley Oden. A posteriori error estimation in finite element analysis, 2011.
[2] Frédéric Alauzet, Xiangrong Li, E Seegyoung Seol, and Mark S Shephard. Parallel anisotropic 3d mesh adaptation by

mesh modification. Engineering with Computers, 21(3):247–258, 2006.
[3] Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential equations. Birkhäuser, 2013.
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Appendix A. Non-homogeneous boundary conditions

Extensions to non-homogeneous Dirichlet boundary conditions for the primal model, given as{
Lu = f, x ∈ Ω,

u = g, x ∈ ∂Ω,
(A.1)

can readily be made by introducing the decomposition u = u0 + g̃, where tr(g̃) = g. The problem is then
reposed as a homogeneous Dirichlet problem given by{

Lu0 = f + Lg̃, x ∈ Ω,

u0 = 0, x ∈ ∂Ω,
(A.2)

where all arguments made previously can be applied to this modified formulation, provided f + Lg̃ ∈ V∗.
Extensions to non-homogeneous Neumann boundary conditions require additional investigation. To

proceed, consider the primal problem given as
Lu = f x ∈ Ω,

u = 0, x ∈ ∂ΩD

Bu = h x ∈ ∂ΩN ,

(A.3)

where ΩD ∪ ΩN = Ω and ΩD ∩ ΩN = {∅}. Multiplying the left hand side of the primal problem (A.3) by
an arbitrary test function v and integrating by parts over the domain twice yields the relationship∫

Ω

vLudΩ +

∫
∂ΩN

vBudΓ =

∫
Ω

L∗vudΩ +

∫
∂ΩN

B∗vudΓ. (A.4)

All subsequent derivations would need to be made considering this relationship, which involves the boundary
operator B, rather than relationship (9) which has been used extensively in this paper.
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Appendix B. Derivation of the advection-diffusion adjoint operator

Let L : V → V∗ be the steady-state, constant coefficient operator utilized in section 6:

Lu := −κ∇2u+ a · ∇u (B.1)

such that V = H1
0 (Ω) and V∗ = H−1(Ω). To determine the corresponding operator: L∗ that satisfies the

adjoint property:

V∗〈z,Lu〉V = V〈L∗z, u〉V∗ ∀u, z ∈ H1
0 (Ω), (B.2)

we multiply Lu by an arbitrary function z ∈ H1
0 (Ω) and repeatedly apply the divergence theorem. This

proceeds as follows:

V〈z,Lu〉V∗ =

∫
Ω

z(−κ∇2u+ a · ∇u) dΩ

= −
∫

Ω

zκ∇2udΩ +

∫
Ω

za · ∇udΩ

= −
∫
∂Ω

zκ∇u · ndΓ +

∫
Ω

κ∇z · ∇udΩ +

∫
∂Ω

(zau) · ndΓ−
∫

Ω

a · ∇zudΩ

=

∫
Ω

κ∇z · ∇udΩ−
∫

Ω

a · ∇zudΩ

=

∫
∂Ω

(κ∇zu) · n dΓ−
∫

Ω

κ∇2zudΩ−
∫

Ω

a · ∇zudΩ

= −
∫

Ω

κ∇2zudΩ−
∫

Ω

a · ∇zudΩ

=

∫
Ω

(−κ∇2z − a · ∇z)udΩ

= V∗〈L∗z, u〉V
Here the third equality is achieved by application of the divergence theorem to both terms, the fourth
equality holds since z ∈ H1

0 (Ω), the fifth equality is achieved by application of the divergence theorem to
the leftmost term, and the sixth equality holds since u ∈ H1

0 (Ω). Thus, the operator L∗ : H1
0 (Ω)→ H−1(Ω)

is defined as

L∗z := −κ∇2z − a · ∇z. (B.3)

We make the observation that there has been a sign change for the advective term since the operator L is
not self-adjoint. This sign change, however, is absorbed in the definition of the operator L∗ and in no way
introduces a sign change in the fundamental property:

V〈z,Lu〉V∗ = V∗〈L∗z, u〉V ∀u, z ∈ H1
0 (Ω). (B.4)

Appendix C. Propositions applied to the advection-diffusion operator

We restate the adjoint property (B.4) as∫
Ω

z(−κ∇2u+ a · ∇u) dΩ =

∫
Ω

(−κ∇2z − a · ∇z)udΩ ∀u, z ∈ H1
0 (Ω) (C.1)

We now define the primal problem as:{
−κ∇2u+ a · ∇u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(C.2)
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corresponding to equation (1), where f ∈ H−1(Ω). We note that the primal residual operator is given as:

Ru := f + κ∇2u− a · ∇u. (C.3)

We define the continuous variational multiscale formulation of the primal problem as: find u ∈ V such that∫
Ω

(−κ∇2v − a · ∇v)G′RudΩ =

∫
Ω

vRudΩ ∀ v ∈ H1
0 (Ω), (C.4)

corresponding to equation (11), where we leave the fine-scale Green’s operator G′ : H−1(Ω) → H1
0 (Ω) as

an unspecified abstract operator. Here we note that G′Ru ∈ H1
0 (Ω). Let Vh ⊂ V denote a classical finite

element space consisting of piecewise linear functions defined over a discretization of the domain Ω. The
primal subgrid model can then be stated as: find uh ∈ Vh such that

nel∑
e=1

∫
Ωe

(−κ∇2vh − a · ∇vh)(τeRuh) dΩ =

∫
Ω

vhRuh dΩ ∀ vh ∈ Vh, (C.5)

corresponding to equation (15), where we leave τe unspecified.
We define the dual problem as:{
−κ∇2z − a · ∇z = q, x ∈ Ω,

z = 0, x ∈ ∂Ω,
(C.6)

corresponding to equation (23), where q ∈ H−1(Ω). We note that the dual residual operator is given as:

R∗z := q + κ∇2z + a · ∇z. (C.7)

We define the continuous variational multiscale formulation of the dual problem as: find z ∈ V such that∫
Ω

G′dR∗z(−κ∇2v + a · ∇v) dΩ =

∫
Ω

R∗zv dΩ ∀ v ∈ H1
0 (Ω), (C.8)

corresponding to equation (27), where again we leave the dual fine-scale Green’s operator G′d : H−1(Ω) →
H1

0 (Ω) unspecified. We note that G′dR∗z ∈ H1
0 (Ω) The dual subgrid model can then be stated as: find

zh ∈ Vh such that

nel∑
e=1

∫
Ωe

(τedR∗zh)(−κ∇2vh + a · ∇vh) dΩ =

∫
Ω

R∗zhvh dΩ ∀ vh ∈ Vh, (C.9)

corresponding to equation (31), where we leave τed unspecified.
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Appendix C.1. Proposition 2

For any solutions u = u′ + u to the continuous VMS formulation (C.4) and z = z′ + z to the continuous
dual VMS formulation (C.8), we derive the error representation:

J(u)− J(u) =

∫
Ω

qudΩ−
∫

Ω

qudΩ

=

∫
Ω

(−κ∇2z − a · ∇z)udΩ−
∫

Ω

(−κ∇2z − a · ∇z)udΩ

=

∫
Ω

z(−κ∇2u+ a · ∇u) dΩ−
∫

Ω

z(−κ∇2u+ a · ∇u) dΩ

=

∫
Ω

zf dΩ−
∫

Ω

z(−κ∇2u+ a · ∇u) dΩ

=

∫
Ω

zRudΩ

=

∫
Ω

z′RudΩ +

∫
Ω

zRudΩ

=

∫
Ω

z′RudΩ +

∫
Ω

(−κ∇2z − a · ∇z)G′RudΩ

=

∫
Ω

(G′dR∗z)RudΩ +

∫
Ω

(−κ∇2z − a · ∇z)G′RudΩ

= V〈G′dR∗z,Ru〉V∗ + V∗〈L∗z,G′Ru〉V
Here the first equality is by definition (21), the second equality is due to the dual PDE (C.6), the third
equality is due to the fundamental relation (C.1), the fourth equality is due to the primal PDE (C.2), the
fifth equality is due to the definition of the primal residual (C.3), the sixth equality is due to the sum
decomposition of the dual solution z = z′ + z, the seventh equality is due to the continuous variational
formulation of the primal problem (C.4), the eight equality is due to the definition of the fine-scale dual
solution (24), and the ninth equality is due to the definition of the duality pairing we have chosen.
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Appendix C.2. Proposition 4

For any solutions u to the primal model (2), z to the dual model (22), uh to the primal subgrid model
(14) and zh to the dual subgrid model (30), we derive the error representation

J(u)− J(uh) =

∫
Ω

qudΩ−
∫

Ω

quh dΩ

=

∫
Ω

(−κ∇2z − a · ∇z)udΩ−
∫

Ω

(−κ∇2z − a · ∇z)uh dΩ

=

∫
Ω

z(−κ∇2u+ a · ∇u) dΩ−
∫

Ω

z(−κ∇2uh + a · ∇uh) dΩ

=

∫
Ω

zf dΩ−
∫

Ω

z(−κ∇2uh + a · ∇uh) dΩ

=

∫
Ω

zRuh dΩ

=

∫
Ω

zRuh dΩ−
∫

Ω

zhRuh dΩ +

nel∑
e=1

∫
Ω

(−κ∇2zh − a · ∇zh)(τeRuh) dΩ

=

∫
Ω

(z − zh)Ruh +

nel∑
e=1

∫
Ω

(−κ∇2zh − a · ∇zh)(τeRuh) dΩ

=

∫
Ω

(z̃′ + z̃)Ruh +

nel∑
e=1

∫
Ω

(−κ∇2zh − a · ∇zh)(τeRuh) dΩ

=

∫
Ω

z̃′Ruh +

nel∑
e=1

∫
Ω

(−κ∇2zh − a · ∇zh)(τeRuh) dΩ +

∫
Ω

z̃Ruh

=

∫
Ω

(τedR∗zh)Ruh +

nel∑
e=1

∫
Ω

(−κ∇2zh − a · ∇zh)(τeRuh) dΩ +

∫
Ω

z̃Ruh

where the first equality is by definition (21), the second equality is due to the dual PDE (C.6), the third
equality is due to the fundamental relationship (C.1), the fourth equality is due to the primal PDE (C.2),
the fifth equality is due to the definition of the primal residual (C.3), the sixth equality is due to the primal
subgrid model (C.5) (where we have added and subtracted equal terms), the seventh equality is due to
linearity, the eighth equality is due to the decomposition of the dual solution (19), the ninth equality is due
to linearity, and the tenth equality is due to the fine-scale approximation to the dual solution (32).

Appendix C.3. Proposition 5

We first note that the derivation in Appendix B can be carried out in exactly the same manner for
u, z ∈ H1

0 (Ωe) to obtain the result:∫
Ωe

z(−κ∇2u+ a · ∇u) dΩ =

∫
Ωe

(−κ∇2z − a · ∇z)udΩ ∀u, z ∈ H1
0 (Ωe) (C.10)

We note that the problem (12) defining the primal element-level Green’s function implies that ge(x;y) ∈
H1

0 (Ωe). Similarly, the dual element-level Green’s function satisfies ged(x;y) ∈ H1
0 (Ωe) from equation (28).

With this information, we utilize the relationship (C.10) to verify that ge(x;y) = ged(x;y), even though the
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operator L is not self-adjoint.

−κ∇2ge(x;y)− a · ∇ge(x;y) = δ(x− y)

=⇒
∫

Ωe

ged(x; z)(−κ∇2ge(x;y)− a · ∇ge(x;y)) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ

=⇒
∫

Ωe

(−κ∇2ged(x; z) + a · ∇ged(x; z))ge(x;y) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ

=⇒
∫

Ωe

δ(x− z)ge(x;y) dΩ =

∫
Ωe

ged(x; z)δ(x− y) dΩ

=⇒ ge(z;y) = ged(y; z),

Here the first equality is due to the definition of the primal element-level Green’s function (12), the second
equality is achieved by multiplying by the dual element-level Green’s function and integrating over the
element domain, the third equality is due to the fundamental relationship (C.10), and the fourth equality is
due to the definition of the dual element-level Green’s function (28).
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