
PARALLEL CURVED MESHING FOR HIGH-ORDER
FINITE ELEMENT SIMULATIONS

By

Qiukai Lu

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: MECHANICAL ENGINEERING

Examining Committee:

Dr. Mark S. Shephard, Dissertation Adviser

Dr. Assad A. Oberai, Member

Dr. Bruce R. Piper, Member

Dr. Onkar Sahni, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2017
(For Graduation May 2017)

c© Copyright 2017

by

Qiukai Lu

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . xi

1. INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Historical Review . 1

1.3 Objectives . 3

1.4 Thesis Organization . 4

1.5 Nomenclature . 4

2. CURVED MESH REPRESENTATION . 6

2.1 Introduction . 6

2.2 Curved Mesh Representation . 6

2.2.1 Curvilinear Mesh Representation Based on Bézier Polynomials 7

2.2.1.1 The Bernstein Polynomials and Bézier Curves 9

2.2.1.2 Bézier Polynomial Based Representation of High-
Order Tetrahedral Volume 10

2.2.2 Curved Surface Meshes with Higher-Order Continuity 13

2.2.2.1 Tangent Plane Continuity 14

2.2.2.2 Vertex Consistency Problem 14

2.2.2.3 Previous Works on Triangular Patches for G1 Con-
tinuous Surface Interpolation 15

2.2.2.4 Domain-Splitting Schemes 16

2.2.2.5 Convex Combination Schemes 17

2.2.2.6 Quartic Triangular G1 Patch 19

2.2.3 G1 Meshes Higher Than 4th Order 22

3. CONSTRUCTION OF HIGH-ORDER CURVED MESHES 26

3.1 Unstructured Mesh Infrastructure . 26

3.1.1 Topology-Based Data Structure 27

3.1.2 Distributed Data Structure . 28

3.1.3 High-Order Curved Mesh Entities in FMDB 29

iii

3.2 C0 Mesh Curving . 30

3.2.1 Nodal Interpolation Sets . 33

3.2.2 Implementation of Interpolation Sets 37

3.3 G1 Mesh Curving . 39

3.3.1 Implementation Geometric Shapes and Curved Mesh Entities . 41

3.3.2 G1 Curving Algorithm Using Quartic Gregory Patches 45

3.3.3 Higher-Order G1 Curving Algorithm Using Bezier Patches . . 47

3.3.4 Surface Mesh with Mixed C0 and G1 Continuity 49

3.3.5 Geometric Interpolation Accuracy 50

4. MESH MODIFICATION AND ADAPTATION FOR CURVED MESHES . 56

4.1 Introduction . 56

4.2 Curved Mesh Validity . 57

4.2.1 Quality Metrics for Straight-Sided Tetrahedral Elements . . . 58

4.2.2 Quality Metric for High-Order Curved Tetrahedron 62

4.3 The Hybrid Shape Quality Metric . 64

4.3.1 The Validity Condition of Curved Element 66

4.4 The Uniform Validity Check Method 67

4.4.1 min{P (q)
|i| } at Interpolating Points 68

4.4.2 min{P (q)
|i| } at Non-interpolating Points 68

4.5 The Adaptive Validity Check Methods 68

4.5.1 Adaptive Check Using Degree Elevation 69

4.5.2 Adaptive Check Using Subdivision 70

4.5.3 Stopping Criteria the Algorithm Description 71

4.6 Mesh Modification Operations for Curved Elements 74

4.6.1 Entity Geometry Modifications 74

4.6.2 Local Mesh Topology Modification 86

4.7 Curved Mesh Adaptation Workflow 87

4.7.1 Invalidity Correction for Initial Curved Meshes 89

4.7.2 Coarsening and Refinement 89

4.7.3 Curved Element Quality Improvement 90

4.7.4 Parallel SPR Based Error Estimation 90

4.8 Examples . 92

iv

5. INTEGRATION WITH FINITE ELEMENT SOLVERS 96

5.1 Introduction . 96

5.2 Geometric Mapping of Curved Finite Elements 96

5.3 Design of Inter-Operable Components and Interface 100

5.3.1 Strategy Pattern . 100

5.3.2 Bridge Pattern . 101

5.4 Solver Integration . 103

5.5 Nektar++ . 104

5.6 Omeag3P . 106

5.6.1 Curved Mesh Improvement . 106

5.6.2 In-memory Adaptive Loop . 107

6. APPLICATIONS AND RESULTS . 111

6.1 Introduction . 111

6.2 Incompressible Flow Applications . 111

6.2.1 Poiseuille Flow . 111

6.2.2 Kovasznay Flow . 114

6.3 Computational Electromagnetism Application 117

7. CONCLUSIONS AND FUTURE WORK 120

7.1 Contributions . 120

7.2 Future Work . 121

REFERENCES . 122

v

LIST OF TABLES

3.1 Table of coordinates . 35

3.2 Table of Lebesgue constants . 36

3.3 Table of Lebesgue constants for 2D simplex 37

3.4 Convergence data for meshes of the cylinder model 52

3.5 Convergence data for meshes of the porcine aorta model 54

6.1 Finite element solution error norms L2(u) and L∞(u) in velocity for
different types of curved meshes. 113

6.2 Finite element solution error for the Poiseuille Flow problem 114

6.3 Finite element solution errors for different types of curved meshes of the
Kovasznay Flow simulations. 117

6.4 Solutions obtained by error based mesh adaptation 119

6.5 Solutions obtained by uniformly refined meshes 119

vi

LIST OF FIGURES

2.1 Convex hull of a third-order Bézier curve 10

2.2 Degree elevation of a third-order Bézier curve to fourth order 11

2.3 Subdivision of a third-order Bézier curve into two third-order curves . . 11

2.4 2nd-order curved tetrahedron . 12

2.5 Tangent plane continuity [1] . 15

2.6 Illustration of a Clough-Tocher type of 3-split domain scheme [2] 17

2.7 Illustration of Hahmanns 4-split domain scheme [3]. 17

2.8 Triangular face with third order Bézier bounding curves 21

2.9 Fourth order triangular blended Bézier face 22

2.10 Triangular Gregory patch and its control points 23

2.11 An example of a 6th order triangular Bézier patch with a total of 28
control points . 25

3.1 Topological mesh entity types and their adjacency [4] 27

3.2 Illustration of mesh classification [5] . 28

3.3 Illustration of mesh partitions [5] . 29

3.4 High-order nodes as attached data in FMDB 30

3.5 An example of curving a mesh edge to a model edge 30

3.6 Curving boundary mesh entities by parametric interrogation. (a) is
a straight-sided mesh face classified on a geometric model face in the
physical space. (b) shows the mesh face in the 2D parametric space of
the model face. The parametric coordinates of the edge mid-point are
calculated in this space and given to the CAD modeler. (c) shows the
mapping from the parametric coordinates to the physical space to get
the Cartesian coordinates and the mesh face curved accordingly 31

3.7 Collaboration relations among the geometric model and mesh classes . . 32

3.8 Plot of the Runge function and its polynomial interpolation functions . 35

3.9 Lebesgue constants plot . 36

vii

3.10 Plot of Lebesgue constants for 2D simplex 38

3.11 Class diagram for interpolation point classes 38

3.12 Class diagram for 1D interpolation nodal set classes 39

3.13 Class diagram for multi-dimensional interpolation point classes 39

3.14 Composition diagram for 1D and multi-dimensional tensor product in-
terpolation nodal set classes . 40

3.15 CrvEnt interface class declaration . 41

3.16 Class diagram for curved mesh entity classes 42

3.17 Class diagram for curved entity geometry classes 42

3.18 Class diagram for parametric curve classes 43

3.19 Class diagram for Bezier curve classes of various orders 43

3.20 Class diagram for parametric face classes 44

3.21 Class diagram for parametric triangular face classes 44

3.22 Composition diagram of CrvTri and ParTri classes 44

3.23 Composition diagram of CrvMesh and CrvEnt classes 45

3.24 Inheritance diagram for meshAdapt and crvMeshAdapt classes 45

3.25 Class declaration of the driver level CrvMesh class 46

3.26 Class declaration for the triangular Gregory patch 47

3.27 A 6th order triangular Bézier patch with a total of 28 control points . . 48

3.28 A tube model . 51

3.29 A close-up view of the tube . 52

3.30 Curved G1 mesh of a linear accelerator model 52

3.31 CAD model and quartic C0 mesh of a cylinder 53

3.32 Convergence of geometric approximation error 53

3.33 The CAD model and G1 mesh of the porcine aorta model 54

3.34 Convergence plot of number of elements v.s. distance 55

4.1 Invalid curved mesh and its correction 58

viii

4.2 Definition of the edge ratio metric . 59

4.3 An example of a flat element in plane P 59

4.4 Definition of dihedral angle . 60

4.5 An example of needle-shaped straight-sided tetrahedron 61

4.6 Definition of the aspect ratio metric . 61

4.7 Plot of Qsc with respect to qc for different weighting constant n, assum-
ing qs = 1 . 65

4.8 Convergence of Degree Elevation . 70

4.9 Convergence of Subdivision . 71

4.10 Two cases of 2D mesh edge reshaping. (a) without further geometric
constraints, (b) one additional edge classified on model boundary G1 . . 80

4.11 An example of an interior curved edge represented by a cubic Bezier
geometry . 83

4.12 Example of curving mesh entities to fix invalid curved elements. 84

4.13 Boundary curves for a Coons patch . 86

4.14 Illustration of curved mesh adaptation workflow 88

4.15 Overview and close-ups of a partitioned curved mesh of linear acceler-
ator cavities . 93

4.16 An example of parallel curved mesh refinement on a four part mesh . . 94

4.17 An example of curved mesh adaptation with an anisotropic size field . . 94

4.18 Example of one iteration of the parallel adaptive loop 95

5.1 The desired workflow for an adaptive simulation 97

5.2 Schematic diagram of Strategy Pattern 100

5.3 Entity class diagram using the Strategy design pattern 101

5.4 Schematic diagram of the Bridge pattern 102

5.5 Bridge design pattern applied to mesh entity and geometric shape classes103

5.6 Integration of Nektar++ solver package with PUMI 105

5.7 Class diagram of integration of MeshAdapter with Omega3P solver . . . 107

ix

5.8 The MeshAdapter interface class . 108

5.9 Adaptive loop driver . 110

6.1 Poiseuille Flow . 112

6.2 CAD model and quartic G1 mesh for the Poiseuille flow test problem . . 113

6.3 Streamline solution for 2D Kovasznay flow 115

6.4 A curved mesh and the solution visualization in 2D for Kovasznay Flow 116

6.5 A curved mesh and the solution visualization in 3D for Kovasznay Flow 116

6.6 32-part mesh of the Tesla accelerator cavity model 118

6.7 Solution field on the 32-part mesh . 118

6.8 Convergence of the solution under error-based adaptation and uniform
refinement . 119

x

ABSTRACT

It is well known that high-order finite element methods (FEM) are among the most

powerful methods for simulating complex engineering problems in terms of solu-

tion accuracy and rate of convergence. In order to fully realize the benefits of using

high-order methods, the mesh entities representing curved domain geometry must be

curved and provide high-enough order of geometry approximation to prevent the loss

of convergence due to geometric approximation errors. For high-order finite element

methods, it has been demonstrated that properly curved meshes with higher-order

continuity between the elements representing curved domain can achieve better solu-

tion properties. Although attaining greater than C0 continuity is being increasingly

used with tensor product representations over quadrilaterals, there is the desire to

have higher than inter-element continuity on unstructured meshes where triangular

finite element faces are used to represent curved domain surfaces.

This thesis presents developments of curved meshing procedures that effec-

tively represent curved domain boundaries by using triangular surface patches of

high accuracy and smoothness. A procedure has been developed to generate G1-

continuous triangular surface meshes based on positional and surface normal data

sampled from the CAD model representing the problem domain. Specific parame-

terization approaches based on blending functions are used to define the mapping for

curved element faces and volumes between local and global coordinate systems. To

effectively adapt curved G1 meshes to satisfy a desired mesh size field, a set of mesh

modification operations, including topological as well as geometrical operations, have

been extended to deal with the complexities risen from the high-order smooth mesh

entities. The software implementation has been integrated with well established

finite element solvers using high-order methods. Benefits of using adaptive curved

meshing techniques are demonstrated through examples in the Computational Fluid

Dynamics (CFD) applications for viscous flow analysis with curved boundary ele-

ments, as well as in Computational Electromagnetism simulations using vector finite

elements.

xi

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Computer aided design and simulation methods are invaluable tools for scien-

tific research and industrial development on a wide range of problems. Among them,

the finite element method (FEM) is a powerful tool for solving complex engineer-

ing problems in structural analysis, fluid dynamics, electromagnetism, and many

other areas. The finite element method relies on a mesh, a spatial discretization

of the geometry domain into simple geometric pieces that makes numerical solu-

tion possible. Tetrahedral meshes are a popular choice for discretization of complex

three-dimensional domains due to the availability of methods for their automatic

generation. Accuracy of a finite element analysis depends on the spatial discretiza-

tion and the polynomial order of the elements. It is well known that high-order

finite element methods are capable of producing superior analysis results in terms

of solution accuracy and rate of convergence compared with conventional low order

FEM [6]. In order to fully realize the benefits of using high-order methods, the

curved portions of the geometric domain must be properly represented by the com-

putational mesh. An analysis based on the relation of approximation theory to the

convergence of the error in the energy norm indicates that the numerical solution

will converge so long as the geometric approximation of the mesh is within one order

of that used in the finite element basis [7]. As a result, the mesh entities representing

curved domain geometry must be curved and provide high-enough order of geometry

approximation to prevent the loss of convergence due to geometric approximation

errors [8, 9].

1.2 Historical Review

Early attempts to accurately represent curved domains for finite element sim-

ulations date back to the 1970s when the isoparametric element approach was in-

troduced to solid mechanics applications [10]. The approach was quickly adopted

1

2

by applications in a wide range of other areas and became a standard technique for

approximating curved domain boundary in classic FEM. Gordon and Hall [11] intro-

duced the transfinite elements which employs blending functions to define mapping

between reference and physical domains thus allows for the use of exact bound-

ary geometry in FEM. With the rapid development of the Computer-Aided Geo-

metric Design (CAGD) technology, researchers started to work on integration of

CAD technology for geometrical representation with finite element analysis meth-

ods. Schramm and Pilkey [12] used Non-Uniform Rational B-Splines (NURBS),

which is the de facto industrial standard for geometric modeling, for geometry to

implement transfinite elements and applied it to shape optimization. Dey et al [7]

also introduced an approach that uses NURBS geometry based on blending function

based mapping. One of many issues involved in using curvilinear meshes is the abil-

ity to effieicent evaluate numerical integration since the integrands are in general not

polynomials. Many researchers have proposed different ways to deal with the issue.

Sherwin et al [13] proposed an approach to make use of degenerate tensor product

type of mapping to directly evaluate integrand for curvilinear tet meshes. Dey et

al proposed a way to interpolate the non-polynomial integrand with polynomials

to an order of accuracy that is non-dominate, and carry out the numerical inte-

grate on the polynoimals effifiently [14]. A number of different techniques have been

proposed in recent years to generate curvilinear meshes based on high-order poly-

nomial mappings and optimal nodal placement [15, 16]. Luo et al have proposed to

use Bezier polynomials in their curvilinear meshing strategy and developed specific

validity check and curved mesh modification procedures based on the curved Bezier

geometry [9]. Persson and Peraire [17] proposed a strategy to generate curved mesh

by deforming the mesh using a solid mechanics analogy. Sevilla et al [18] proposed

the NURBS-enhanced FEM method which combines NURBS based elements near

the CAD model boundary and standard polynomial based finite elements for the

interior. Researchers are developing new analysis technique based entirely on CAD,

and the Isogeometric Analysis (IGA) methods have become very popular in recent

years [19]. The key idea is to use the same CAD description and basis functions to

both represent the geometry and approximate the analysis solution. Due to inherent

3

tensor product nature of the NURBS patches, the IGA methods have been limited

to applications of quad surfaces and hexahedral volume meshes.

A well designed mesh adaptation procedure provides critical capabilities that

is needed to support the use of adaptive finite element simulations. As a result, it

has been an area of active research interest for several decades. The majority of

the research efforts on mesh adaptation have been focused on h-adaptivity dealing

with low order meshes with all straight-sided elements. In order to achieve the full

strength of the high-order methods, one needs to make use of hp-adaptive methods

on curvilinear meshes where extra complexities may arise when the mesh involves

curved entities. Details of the hp-adaptive methods will be reviewed and discussed

in later chapters regarding mesh adaptation. A curved mesh adaptation procedure

designed to operate for curved quadratic C0 meshes is presented in [8]. The core

procedure consists of two classes of mesh modification operations: entity geome-

try modification and local mesh modification for curved meshes. For the entity

geometry modification, curved entity reshape operations that explicitly resolve el-

ement invalidity and improve the shape quality of curved elements are presented.

The local mesh modification operations for curved meshes were extended from the

operations for straight-sided meshes [20], with additional consideration and treat-

ment of curve boundary entities and selected curved interior entities. Other mesh

adaptation techniques for fully unstructured curved meshes are discussed in ref-

erences [21, 22, 15, 17]. For simulations that require the numerical solutions to

have extremely high accuracy, high mesh resolution is required in critical regions.

Even when taking advantage of the benefits of adaptively refined meshes, element

counts in the millions are common for problems with both complex physics and

complex geometry. Such meshes can only be created and analyzed using large scale

parallel computing systems, which requires effective parallel mesh adaptation tech-

niques [23].

1.3 Objectives

The author’s dissertation research aims to develop a novel approach for high-

order curved meshing technique to effectively treat curved boundaries, which takes

4

advantage of the CAD technologies and uses surface patches for high-order, accurate,

smooth representation of the finite element computational domain, while still main-

taining the flexible and local properties of the unstructured meshing (generation,

adaptation) techniques, in particular, triangular surface patches. Parallel curved

mesh adaptation techniques are extended and improved to support the adaptation

of high-order, higher-continuity curved meshes in order to be utilized in the context

of adaptive finite element simulations.

The primary objectives of this research include the following:

• developing curved mesh representation techniques for finite element simula-

tions using high-order methods, with specific focus on meshes with high-order

geometric approximation accuracy, and high-order geometric continuity.

• developing curved mesh adaptation techniques for adaptive simulations, in-

cluding mesh refinement, coarsening, and optimization.

• parallel execution of the curved meshing operations.

• integration of curved meshing procedure with existing high-order solvers and

demonstration of the impact of the improved mesh geometry on the simulation

solution accuracy.

1.4 Thesis Organization

The rest of the dissertation is organized as follows: Chapter 2 presents the

curved mesh representation and mesh entity curving techniques. Chapter 3 discusses

curved mesh adaptation and its parallel execution. Chapter 4 presents the aspects

of solver integration. Chapter 5 presents demonstration cases of the integrated

curved meshes with a high-order finite element solver in the application areas of

fluid flow simulation. Chapter 6 summarizes the contribution of the dissertation

and recommends future developments.

1.5 Nomenclature

The nomenclature used in this dissertation is defined as follows:

5

Ωυ Domain of interest, υ = G,M where G denotes the geometric

model and M denotes the mesh model

∂Ωυ Boundary of the domain Ωυ

Ωυ Closure of the domain, Ωυ = (Ωυ ∪ ∂Ωυ)

Gd
i ith geometric model entity of dimension d.

Md
i ith mesh entity of dimension d. d = 0, 1, 2, 3 and represents mesh

vertex, edge, face and region respectively.

@ Classification symbol used to indicate the association of one or

more entities from the mesh model M with the geometric model G.

Md Unordered group of mesh topological entities of dimension d.

Mdi
i {Md

j } First order adjacency sets of individual mesh entity Mdi
i defined as

the set of mesh entities of dimension dj adjacent to mesh entity Mdi
i .

b
(n)
i (t) The ith Bernstein basis polynomial of degree n.

P
(n)
i (Md

j) The ith control point of a nth order Bézier polynomial associated

with the mesh entity Md
j .

X(n)(M3
j) The nth order Bézier polynomial representation of a general tetra-

hedron.

§i(ξ) A parametric surface patch

Γi(ξ) A parametric space curve

CHAPTER 2

CURVED MESH REPRESENTATION

2.1 Introduction

This chapter presents techniques to represent curved mesh entities in ways that

facilitate convenient construction of high-order curved tetrahedral meshes which

approximate curved domain boundaries to the desired order. The curved mesh

representation scheme is based on Bézier polynomials commonly used in the Com-

puter Aided Geometric Design (CAGD) community. Adopting such a curved mesh

representation provides convenient ways to support geometry related evaluation op-

erations during finite element analysis processes, and it serves as a foundation for

mesh curving and adaptation techniques to be presented in later chapters.

2.2 Curved Mesh Representation

Driven by the developments of high-order finite element analysis techniques

and applications, for instance the p-version finite element methods, effective curvilin-

ear mesh generation and adaptation techniques have become an important building

block to construct adaptive finite element simulation loops. As a result, develop-

ment of curvilinear mesh generation techniques has recently been an active area of

research in the finite element meshing community.

To achieve exponential rate of convergence possible with high-order methods,

mesh entities on curved domain boundaries must properly approximate the geom-

etry of the model to the correct order. For example, the work of Sherwin et al on

curvilinear mesh generation provided evidence that properly curved meshes help to

increase the accuracy of the finite element and spectral element methods for fluid

problems [16]. A study by Luo et al [9] based on the relation of approximation

theory to the convergence of the error in the energy norm indicated that the energy

norm of a finite element solution for second-order elliptic partial differential equa-

tions will converge so long as the geometric approximation of the mesh is within

one order of that used in the finite element basis [9]. Ainsworth et al provided proof

6

7

of a computable error bounds for finite element solutions of Poisson’s equations on

non-polygonal domains [24]. In a survey article, Wang et al pointed out the im-

portance of having high-order mesh generation capabilities in order to achieve the

full potential of high-order CFD methods [25]. In the case where the finite elements

are defined in terms of interpolating Lagrange polynomials, the geometric approxi-

mation requirement is met by being sure that all nodes at mesh vertices, on mesh

edges and on mesh faces on curved domain boundaries are placed on the appropri-

ate boundary with optimal placement schemes. It is well known that simple node

placement method such as equal spacing nodes can lead to severely bad interpola-

tion results [9]. Various optimal nodal placement schemes have been developed. For

instance, Chen and Babuska proposed optimal interpolation points for polynomial

functions based on minimization of L2-norm of the Lebesgue constant [26]. In ad-

dition, a well known set of point distribution called Fekete points are investigated

by Bos [27] and Taylor et al [28] by searching for a nodal set with small Lebesgue

constant to maximize the determinant of the Vandermonde matrix. If different basis

functions other than the standard Lagrange polynomials for interpolating element

geometries are chosen, one has to carefully consider how to satisfy the geometric

approximation requirements for these elements by the proper improvement of the

mesh edge and face shapes.

2.2.1 Curvilinear Mesh Representation Based on Bézier Polynomials

Various types of methods to represent curvilinear mesh geometry have been

proposed and studied over the past several decades. Historically, high-order La-

grange polynomials have been used to represent curved finite element geometry in

the context of isoparametric finite element methods, which can be attributed to

the pioneering work by Ahmad, Irons and Zienkiewicz on analysis of curved shell

structures [29]. Despite the wide adoption of the isoparametric approach for solid

mechanics applications, shortcomings are reported in applications for computational

fluid dynamics (CFD) as well as computational electromagnetics (i.e. numerical

analysis of Maxwell’s equations). For instance, Bassi and Rebay [30] identified the

origin of spurious entropy production near curved wall boundaries in the numeri-

8

cal solution of Euler equations of gas dynamics as caused by low-order geometric

approximation of curved walls. Xue and Demkowicz [31] showed for 3D Maxwell’s

equations the exact geometry mapping reduces the error in solution by one order

of magnitude compared to isoparametric approach. The identified drawbacks of

isoparametric approach motivated several techniques aimed to incorporate the ex-

act geometry into the finite element analysis. For instance the transfinite elements

proposed by Gordon and Hall [11] and later implemented by Schramn and Pilkey in

shape optimization [12]. In the meantime as the research and development of the

CAGD techniques grow rapidly, more meshing techniques have been proposed that

base themselves on CAD interpolation basis functions. For instance, Bézier polyno-

mials are being increasingly used to represent curvilinear meshes thanks to a set of

unique properties of the Bézier polynomials and the fact that it has been extensively

researched in the CAGD community. As an effort to unify the fields of CAGD and

FEM, a type of analysis methods have been proposed which are generally referred

to as iso-geometric analysis (IGA), and a type of geometric modeling methods are

being actively researched called analysis-aware modeling. The main drawback of the

IGA methods is that a solid CAD modeler for 3D domains is needed, while in prac-

tice, most CAD modelers work with the so-called boundary representation where

the 3D domains geometry is given by a set of parametric surface rather than a para-

metric solid. Due to the nature of the NURBS basis functions used for CAD surface

parametrization, the development meshing techniques for IGA methods is focused

primarily on tensor product type of meshes, e.g. quads and hexes. (See [32, 33]

for example) The work presented in this thesis focuses, in stead, on providing ge-

ometry representation that supports unstructured meshes with simplex elements.

In addition, it is desirable to support mesh geometry that are independent of the

interpolation basis functions used for analysis such that it can be easily integrated

with various finite element analysis code. In particular, the work in this thesis fo-

cuses on Bézier polynomial based meshing techniques. Therefore, both IGA and

analysis-aware modeling techniques are outside the scope of this thesis. Interested

readers can refer to specialized literature for details of IGA [19] and analysis-aware

modeling [34].

9

2.2.1.1 The Bernstein Polynomials and Bézier Curves

In computer aided geometric design, Bézier polynomials are frequently used

to construct 3-dimensional curves and surface patches in parametric forms [35]. For

example, a single-variable Bézier polynomial with vector-valued control points can

be used to construct a general curve in the 2D or 3D physical space. In general, a

nth order Bézier curve can be expressed as:

B(t) =
n∑
i=0

b
(n)
i (t)P

(n)
i , t ∈ [0, 1] (2.1)

In Equation 2.1, b
(n)
i (t) is the ith Bernstein basis function of degree n,

b
(n)
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, ..., n; (2.2)

(
n

i

)
=

n!

i!(n− i)!
. (2.3)

and P
(n)
i is the ith control point of a nth order Bézier curve.

A single-variable Bézier polynomial maintains a mapping between the repre-

sentations of a curve in the physical space and parametric space. If the control points

are in 3D, i.e. Pi = (Px, Py, Pz)
T ∈ R3, then B(t) maps a one-dimensional para-

metric coordinate system (t ∈ R) to a 3D Cartesian coordinate system (B(t) ∈ R3),

and vice verse.

Bézier polynomials have a number of properties which make them useful for

representing geometry[35]. Key ones of importance to the development of curved

meshing algorithms for this work are listed as follows:

1. The Convex Hull Property. The value of a Bézier polynomial evaluated within

the its parametric domain is bounded by the maximum and minimum values

of its corresponding control points. Figure 2.1 illustrates the convex hull of a

third order Bézier polynomial in 2D.

2. The derivatives of a Bézier polynomial remain Bézier polynomials. The prod-

10

Figure 2.1: Convex hull of a third-order Bézier curve

uct of a mth order Bézier polynomial and a nth order Bézier polynomial is also

a Bézier polynomial of order (m+ n).

3. It is straight-forward to split a Bézier curve into multiple sub-curves by sub-

division or inflate the order of a given Bézier curve through degree elevation.

The algorithms to perform subdivision and degree elevation are readily avail-

able. The property turns out to be useful for the h-version and p-version mesh

adaptation procedures. Figure 2.2 shows an example of degree elevation and

Figure 2.3 shows and example of subdivision respectively.

2.2.1.2 Bézier Polynomial Based Representation of High-Order Tetra-

hedral Volume

It is not difficult to generalize the Bézier polynomial to represent a parametric

surface or volume. Using the notation in [21, 36], the nth order Bézier polynomial

based volume representation of high-order tetrahedrons can be expressed by making

use of the volume coordinates as follows:

11

Figure 2.2: Degree elevation of a third-order Bézier curve to fourth order

Figure 2.3: Subdivision of a third-order Bézier curve into two third-order
curves

12

Figure 2.4: 2nd-order curved tetrahedron

X(n)(M3
j) = X(n)(ξ) =

q∑
i=1

P
(n)
i b

(n)
i (ξ) (2.4)

where b
(n)
i (ξ) are the Bernstein polynomials with ξ = {(ξ1, ξ2, ξ3, ξ4)|ξ1+ξ2+ξ3+ξ4 =

1 and ξi ∈ [0, 1]}. q is the total number of control points for a nth order Bézier

polynomial in 3D. And q is determined by Eq 2.5

q =
n∑
i=0

(i+ 1)(i+ 2)

2
(2.5)

More specifically in the case of a 2nd-order curved tetrahedron (see Figure 2.4),

the Bézier representation is:

13

B(2)(ξ1, ξ2, ξ3, ξ4) =
4∑
i=1

P
(2)
i (M0

i)C1ξ
2
i

+
6∑
j=1

P
(2)
j (M1

j)C2ξmξn (2.6)

where m,n = 1, 2, 3, 4 and m 6= n. P
(2)
i (M0

i) are four control points associated with

the vertices, and P
(2)
j (M1

j) are six control points associated with the edges. Ci = 2!
i!

are the coefficients of the second order Bernstein polynomials. For higher-order

curved tetrahedra, additional terms which are associated with face control points

and volume control points will appear in Eq 2.6.

2.2.2 Curved Surface Meshes with Higher-Order Continuity

In addition to the conventional curvilinear mesh representation techniques

based on continuous C0 mesh elements, the ability to provide higher order of geomet-

ric approximation is also facilitated by the use of greater than C0 geometric shape

continuity between elements [2, 37, 38, 39]. In fact, higher order geometric continu-

ity is being increasingly used for curved meshes with tensor product representations

over quadrilaterals [40, 19]. Naturally, there is also the desire to have higher than

C0 geometric continuity between elements on unstructured meshes where curved

triangular finite element faces are used. The current work aims to investigate and

address the technical difficulties associated with developing curved meshing tech-

niques for unstructured meshes where G1 surface geometry continuity is maintained

for the triangular element faces representing the curved domain surfaces.

In the following sections, several fundamental notions in the field of CAGD

are briefly reviewed, such as tangent plane (G1) continuity. The so-called vertex

consistency problem is introduced as a difficult problem to solve that arises when

constructing a network of G1 joined patches around a common vertex.

14

2.2.2.1 Tangent Plane Continuity

To join two neighboring triangular patches smoothly, one seemingly intuitive

choice is to ensure C1 continuity in which case the two patches meet with continu-

ous first derivatives across the common boundary. However, ensuring C1 continuity

requires a continuous parametrization of the two patches, and is not always pos-

sible for surface patches of arbitrary topology. In other words, the concept of C1

continuity is not suitable to characterize the smoothness of a surface since a change

in the parametrization of one of two adjacent patches changes the cross-boundary

derivatives of that patch, thus destroying the C1 continuity. Therefore in practice,

an alternative is to construct triangular patches that meet with continuous tangent

planes along the common boundary, which is referred to as G1 continuity [41].

Let Si−1(ξ1, ξ2) and Si(ξ1, ξ2) be two adjacent patches share a common bound-

ary curve Γi(ξ). The two patches meet with tangent plane continuity if there exist

three scalar functions φ, µ, ν such that [41].

φ(t)
∂Si−1

∂ξ1

(t, 0) = µ(t)
∂Si−1

∂ξ2

(t, 0) + ν(t)
∂Si
∂ξ2

(0, t) t ∈ [0, 1] (2.7)

As shown in Fig 2.5, the equation indicates that the three partial derivatives

along the boundary curve Ci are always coplanar, thus ensuring tangent plane con-

tinuity of Si−1 and Si.

2.2.2.2 Vertex Consistency Problem

Given the tangent plane continuity condition in Eq 2.7, it is relatively straight-

forward to construct two patches that meet with G1 continuity. On the other hand,

additional complexity arises when one tries to merge a closed network of G1 joined

patches incident to a vertex [42, 41]. The G1-continuity conditions between patches

lead to a system of constraints that are not always solvable for a vertex bounding

an even number of edges greater than four. Details of the problem can be found

in reference [41]. This problem is commonly referred to as the vertex consistency

or twist compatibility problem, and every scheme aiming at constructing a tangent

plane continuous surface has to find a way to cope with this problem. In the following

sections, several methods are surveyed.

15

Figure 2.5: Tangent plane continuity [1]

2.2.2.3 Previous Works on Triangular Patches for G1 Continuous Sur-

face Interpolation

Many triangular patches and schemes have been developed to construct G1

continuous surface interpolations [43, 2, 3, 1, 44, 45, 38, 46, 39]. In general, these

methods start with constructing a network of boundary curves for the edges in the

mesh. A cross-boundary tangent field is defined along the boundary curves. The

triangular surface patches are then constructed to interpolate the boundary curves

and the tangent field. Mann et al [47] surveyed a handful of methods up to the

early 1990s. Based on how the vertex consistency problem is tackled, the methods

can be categorized into two types of schemes: (1) domain-splitting schemes and (2)

convex combination schemes. Boschiroli et al [43] provided a comparative study of

the noticeable methods developed after Mann’s survey. The methods surveyed in

Boschiroli’s study focus primarily on convex combination type of schemes that use

the rational patches and blending technique.

16

2.2.2.4 Domain-Splitting Schemes

The domain-splitting scheme is first used by Clough and Tocher [48] to in-

terpolate scalar valued data. Figure 2.6 gives an illustration of a Clough-Tocher

type of 3-split scheme [2]. It is then adopted and generalized by researchers such as

Piper [38], Shirman and Sequin [46], and others [2, 3, 1] in the CAD community to

solve data interpolation problems for parametric surfaces.

As the name suggests, the domain-splitting methods subdivide the domain

(or macro triangle) to several sub-triangles such that the constraints of the vertex

consistency condition are decoupled and can be solved independently. A major dif-

ference among various domain-splitting methods is the ways the triangular domains

are subdivided. For instance, Piper [38] used a 3-split scheme which introduces a

new vertex at the centroid of the triangle while keeping the edges unchanged. Hah-

mann et al [3, 1] introduced a 4-split scheme that splits the each one of the three

boundary curves into two pieces. See Figure 2.7 for an illustration of Hahmanns

4-split domain scheme [3]. Another difference among the methods has to do with

the order of geometric shape functions used to interpolate the data. Piper, and

Shirman, Sequin use quartic Bézier polynomials to fill the 3 sub-patches [38, 46].

Hahmanns 4-split scheme uses quintic polynomials [3, 1].

Despite the different ways to split the domain and orders of geometric shape

functions being used, all the domain-splitting methods share a set of similar steps

for the data interpolation process. After splitting, each of the sub-patches is used to

interpolate the data alone one of the boundaries. Splitting allows the data along each

boundary to be matched independently of the data on the other two boundaries. For

instance, the scheme developed by Shirman and Sequin [46] starts with constructing

cubic boundary curves for each edge and subsequently degree raised to quartic.

A linearly varying cross-boundary tangent field is computed and the tangent plane

continuity condition given by Eq 2.7 is used to ensure G1 for the exterior boundaries

of the sub-patches. After determining the set of control points that ensure the G1

continuity of exterior boundaries, the remaining degrees of freedom are used to make

the internal boundaries of the three sub-patches meet with G1-continuity.

17

Figure 2.6: Illustration of a Clough-Tocher type of 3-split domain
scheme [2]

Figure 2.7: Illustration of Hahmanns 4-split domain scheme [3].

2.2.2.5 Convex Combination Schemes

Different from domain-splitting, the Convex combination schemes attempt to

create a single parametric patch for each mesh face. The patches are C2 every-

where except at the vertices [44, 45, 46, 39]. This construction avoids the vertex

consistency problem by not having consistently defined mixed partial derivative

terms at the patch corner. The scheme starts by first building boundary curves and

across-boundary tangent plane fields along the curves. After that, three patches are

created, each covering the entire triangle and interpolating the position and normal

fields along each boundary curve independently. Finally, a single patch is formed by

blending the three patches in a way that the resulting patch interpolates all of the

18

boundary data. Convex combination scheme normally leads to rational patches due

to the usage of blending whereas domain-splitting schemes general creates polyno-

mial patches. For instance, Nielson [44, 45] introduced a side-vertex method by first

constructing three boundary curves corresponding to the edges of the input triangle.

Three patches are created, one for each pair of edge and its opposite vertex. The

interior of each patch is constructed by passing curves from points along the edge

to the opposite vertex. The final patch is formed by blending the three patches

together.

Let Γi denote the boundary curve for edge M1
i . P0,P1 denote nodes at the

end vertcies M0
0 and M0

1 , and N0, N1 are normal vectors at those two vertices.

Γi[P0,P1, N0, N1](ξ) (2.8)

such that Γi(0) = P0, Γi(1) = P1, Γ′i(0) ·N0 = 0, and Γ′i(1) ·N1 = 0

Assume there exists a normal field constructor Cin along Γi, together with the

position and normal data of the opposite vertex P2(M0
2), N2(M0

2). A single surface

patch Si can be constructed that interpolates the tangent plane field of the edge

M1
i .

Si[Γi,P2, Cin, N2](ξ) (2.9)

The final surface is defined as

S[P0,P1,P2, N0, N1, N2] = β0S0 + β1S1 + β2S2 (2.10)

where βi are a set of blending functions. For example, in Nielson’s side-vertex

scheme, βi is defined as [44]

βi =
ξjξk

ξiξj + ξjξk + ξiξk
(2.11)

The blending function introduced here determines that the surface patches

constructed using convex combination schemes are rational patches

Another subset of the convex combination methods are based on the triangular

19

Gregory patches. The vertex consistency problem is addressed in the similar way

by constructing boundary curves and interior control points independently for each

edge. This results in an additional number of interior control points. When evalu-

ating the patch at a given parametric location, instead of blending surface patches,

pairs of interior control points are blended together to form a rational blend Bézier-

like patch. For instance, Walton and Meek [39] developed a G1 quartic Gregory

patch based on this scheme. Boschiroli et al [43] proposed a cubic Gregory patch

based on Walton and Meeks work. The Walton-Meek construction procedure is

presented in the following section.

2.2.2.6 Quartic Triangular G1 Patch

A fundamental step in the procedure to create G1 curved meshes involves the

scheme to construct triangular G1 patches for boundary mesh faces that interpolate

the position xi(ξ) and normal data nj at their corner vertices. The scheme used in

this work to represent the curved geometry is based on an extension of the Gregory

patch originally proposed by Gregory [49] to bypass the constraint on twist compati-

bility for smooth surface interpolation with triangular patches. The extension to the

original Gregory patch, developed by Walton et al [39], constructs boundary curve

network in the way that the principal normals of each curve at the end vertices are

always aligned with the prescribed surface normals. For an individual mesh face,

each of the three bounding edges is assigned with a geometric representation of a

cubic Bézier curve B(3)(ξ).

Let Γ
(3)
i (t) denote a cubic bezier curve representing the geometric shape of the

ith boundary edge. Let di = ‖Pi,3−Pi,0‖, γi =
Pi,3−Pi,0

di
, ai = Ni ·Ni+1, ai,0 = Ni ·γi,

ai,1 = Ni+1 · γi. The two edge control points of Γ
(3)
i (t) are determined by

Pi,1 = Pi,0 +
di(6γi − 2ρiNi + σiNi+1)

18

Pi,2 = Pi,3 −
di(6γi + ρiNi − 2σiNi+1)

18
(2.12)

20

where

ρi =
6(2ai,0 + aiai,1)

4− a2
i

(2.13)

and

σi =
6(2ai,1 + aiai,0)

4− a2
i

(2.14)

The calculated cubic bezier curve not only interpolates the position and normal

data at the end vertices M0
0 and M0

1 , but also has its principle normal parallel to

the face normal vectors at M0
0 and M0

1 .

Next, a field of tangent planes is spanned by the curve tangent vector Γ′i(t)

and cross boundary tangent vector Hi(t) , where

Hi(t) =
2∑

k=0

Ai,kb
(2)
k (t) (2.15)

where

Wi,k = Pi,k+1 −Pi,k, k = 0, 1, 2

Ai,0 =
Ni ×Wi,0

‖Wi,0‖

Ai,2 =
Ni,1 ×Wi,2

‖Wi,2‖

Ai,1 =
Ai,0 + Ai,2
‖Ai,0 + Ai,2‖

(2.16)

Then, the cubic bezier curve Γ
(3)
i (t) is degree-elevated to quartic Γ

(4)
i (t)

P
(4)
i,j =

1

4
{jP(3)

i,j−1 + (4− j)P(3)
i,j },

i = 0, 1, 2; j = 0, ..., 4 (2.17)

Finally, two face control points are determined for each boundary edge.

Gi,1 =
1

2
(P

(4)
i,1 + P

(4)
i,2) +

2

3
λi,0Wi,1 +

1

3
λi,1Wi,0

+
2

3
µi,0Ai,1 +

1

3
µi,1Ai,0 (2.18)

21

Figure 2.8: Triangular face with third order Bézier bounding curves

and

Gi,2 =
1

2
(P

(4)
i,2 + P

(4)
i,3) +

1

3
λi,0Wi,2 +

2

3
λi,1Wi,1

+
1

3
µi,0Ai,2 +

2

3
µi,1Ai,1 (2.19)

The rational blend degree-4 triangular Bézier patch is defined by

S(4)(ξ) =
15∑
1

P
(4)
ijkb

(4)
ijk(ξ), i, j, k ≥ 1, i+ j + k = 4 (2.20)

where P
(4)
ijk are the control points and b

(4)
ijk(ξ) are 4th order Bernstein basis functions.

The surface control points P112,P121,P211 are affine combinations of the split surface

control points Gi,j computed by Eq.2.18 and Eq. 2.19:

22

Figure 2.9: Fourth order triangular blended Bézier face

P112 =
1

ξ1 + ξ2

(ξ1G2,2 + ξ2G0,1)

P121 =
1

ξ3 + ξ1

(ξ3G0,2 + ξ1G1,1)

P211 =
1

ξ2 + ξ3

(ξ2G1,2 + ξ3G2,1) (2.21)

Fig 2.10 shows an example patch and its control point set.

2.2.3 G1 Meshes Higher Than 4th Order

As the order of the finite element function space increases, it is desirable to

provide the capability to support geometry representation higher than 4th order

such that the geometric approximation accuracy of the finite element mesh is kept

in accordance with the order of finite element space such that it does not become

the leading source of error in the entire analysis. There is limited amount of research

and published literature discussing high order polynomial patches beyond 4th in both

computer graphics and CAE communities. One scheme to create quintic triangular

23

Figure 2.10: Triangular Gregory patch and its control points

patches using Bézier polynomials is developed by Farin [2]. Loop also developed

a scheme which uses 6th order polynomials to form patches that are capable of

interpolating the surface position and normal data [50]. However, it is also reported

in [50] that enforcing interpolation in Loop’s scheme leads to unwanted surface

undulations due to severe constraints on the second derivatives along the boundary

curves.

The scheme proposed by Farin requires six pieces of input data up to the second

derivatives at each of the three boundary mesh vertices, i.e. coordinates, 1st and

2nd derivatives: P(ξ1, ξ2), ∂P
∂ξ1

(ξ1, ξ2), ∂P
∂ξ2

(ξ1, ξ2), ∂
2P
∂ξ21

(ξ1, ξ2), ∂2P
∂ξ1∂ξ2

(ξ1, ξ2), ∂
2P
∂ξ22

(ξ1, ξ2).

Three more pieces of information are prescribed at the mid-edge points of the

three boundary edges such that the 21 coefficients of the 5th order Bézier patch can

be uniquely determined. The three additional pieces of data are cross-boundary

derivatives at edge mid points. For instance, the derivative at edge M1
i {M0

1 ,M
0
2} is

given by Eq 2.22:

24

∂

∂γ
S(
ξ1 + ξ2

2
) (2.22)

where γ denotes the cross-boundary direction.

With the prescribed pieces of data, the equations used to calculate the 6 control

points surrounding one vertex of the patch are given as follows [2]:

P500 = S(M0
0)

P410 =
1

5

∂

∂ξ1

S(M0
0) + P500

P401 =
1

5

∂

∂ξ2

S(M0
0) + P500

P320 =
1

20

∂2

∂ξ2
1

S(M0
0) + 2P410 −P500

P302 =
1

20

∂2

∂ξ2
2

S(M0
0) + 2P401 −P500

P311 =
1

20

∂2

∂ξ1∂ξ2

S(M0
0) + P410 + P401 −P500 (2.23)

The remaining 3 control points are determined by the cross-boundary tangent

data given in Eq 2.22 using the Equations (4.4) and (4.5) in the reference paper

by Farin [2]. The resulting surface patch has G1 geometric continuity across patch

boundaries.

Based on Farin’s procedure for the quintic patch, a procedure is developed in

this work to construct G1 continuous polynomial patches that are generally appli-

cable to 5th and higher order. The details of the proposed procedure and algorithm

are presented in Chapter 3. Figure 2.11 shows an example of a triangular patch

with polynomial order 6.

25

Figure 2.11: An example of a 6th order triangular Bézier patch with a
total of 28 control points

CHAPTER 3

CONSTRUCTION OF HIGH-ORDER CURVED MESHES

In this chapter, techniques to construct high-order curved meshes are presented. In

particular, methods to create high-order curved meshes with C0 inter-element geo-

metric continuity from linear straight-sided initial meshes are reviewed. A novel

mesh curving technique is developed to create curved unstructured tetrahedral

meshes where G1 surface continuity is maintained for the triangular element faces

representing the curved domain surfaces. A bottom-up curving approach is im-

plemented to support geometric models with multiple surface patches where either

C0 or G1 geometry continuity between patches is desired. Before getting into the

details of curved meshing algorithms, it is important to briefly review the parallel

unstructured mesh infrastructure (PUMI) which plays a critical role in supporting

the desired mesh operations.

3.1 Unstructured Mesh Infrastructure

The operations to construct curved unstructured meshes are dependent on

having a topology based mesh database that is able to communicate with the geo-

metric model and answers basic queries about mesh entities regarding their topolog-

ical adjacency, model entity classification as well as geometrical shape information.

Such information in general is not maintained in the classical finite element data

structure that stores only grid and connectivity information [51, 10]. The Parallel

Unstructured Mesh Infrastructure (PUMI) [5] developed at the Scientific Compu-

tation Research Center (SCOREC) of Rensselaer Polytechnic Institute (RPI) ad-

dresses such a need by supporting the topological representation of unstructured

meshes. PUMI consists of a collection of software component packages including a

flexible distributed topology-based mesh database (referred to as FMDB). FMDB

is a distributed mesh data management system that is capable of shaping its data

structure dynamically based on the user’s requested mesh representation [52, 53].

FMDB has a set of desirable features to support the mesh curving developments of

26

27

this work and the most important features are reviewed in sub-sections that follow.

PUMI is being used in various scientific and engineering applications as a mesh data

structure running underneath effectively supporting parallel mesh adaptive loop.

3.1.1 Topology-Based Data Structure

Different from conventional data structure for finite element analysis, the un-

structured meshes stored in FMDB are effectively described using a topology based

representation in which the members of the hierarchy of topological entities of re-

gions, faces, edges and vertices are defined plus adjacency that describe how the

mesh entities connect to each other [4, 52]. Figure 3.1 illustrates the supported

topological mesh entities and their adjacency types for the one-level complete mesh

representation. Two important features of the topology-based mesh data structure

are critical in supporting the mesh curving developed in this work.

First is mesh classification against the geometric model which determines the

geometric shape for the curved mesh entities. Figure 3.2 illustrates a model domain

consisting of topological model entities and the corresponding mesh classification

association.

Figure 3.1: Topological mesh entity types and their adjacency [4]

28

Figure 3.2: Illustration of mesh classification [5]

Second is adjacency describing how topological entities connect to each other.

Having adjacency information supports effective validity checking for curved el-

ements and determining the optimal mesh modification operation to fix a mesh

invalidity. FMDB is able to efficiently support various procedures of mesh genera-

tion and adaptation such as entity creation and delete, iteration over a set of mesh

entities, adjacency queries and user data attachment, etc.

3.1.2 Distributed Data Structure

FMDB is also a distributed mesh database that effectively maintains the mesh

representation across multiple processors in the parallel computing environment.

It has the functionality to efficiently retrieve mesh data, synchronize information

shared by multiple mesh parts, redistribute the mesh by migrating groups of mesh

entities from one processor to another. These are all essential to support the de-

velopments of parallel curved mesh creation and adaptation techniques. Figure 3.3

illustrates an example mesh with four partitions distributed among two processes.

The dotted lines are intra-process part boundaries and thick solid lines are inter-

process part boundaries between the processes representing mesh entities duplicated

on multiple parts.

29

Figure 3.3: Illustration of mesh partitions [5]

3.1.3 High-Order Curved Mesh Entities in FMDB

Compared with a straight-sided mesh entity with linear geometric shape, a

high-order curved mesh entity has additional data associated with its high-order

geometric shape. For instance, a second-order Lagrange type of mesh edge needs

one mid-edge node to define a quadratic geometry in addition to the two end vertices.

Since such extra data does not affect the underlying mesh topology represented by

the mesh database, the data is regarded as dynamic data components attached to

the owning topological entities. The essential data members being stored are the

Cartesian coordinates of a high-order node. When a high-order node is associated

with a mesh entity at the geometric model boundary, its parametric coordinates with

respect to the model entity is also stored by FMDB. Figure 3.4 shows an example

in which two high-order nodes denoted by P and Q are attached to mesh edges M1
0

and M1
1 . P is subsequently repositioned such as M1

0 becomes a curved edge.

30

Figure 3.4: High-order nodes as attached data in FMDB

3.2 C0 Mesh Curving

With the support of PUMI, the construction of C0 curved meshes is achieved

by developing an effective algorithm to perform local mesh modification to a selected

entity, referred to as entity geometry modification. To convert an initially linear

geometry mesh entity to a curved one, it is necessary to inflate the degree of the

geometric shape functions by inserting high-order interpolating (or approximating)

nodes that are then re-positioned to interpolate (or approximate) the geometric

model boundary as desired.

Figure 3.5: An example of curving a mesh edge to a model edge

31

Figure 3.6: Curving boundary mesh entities by parametric interrogation.
(a) is a straight-sided mesh face classified on a geometric
model face in the physical space. (b) shows the mesh face in
the 2D parametric space of the model face. The parametric
coordinates of the edge mid-point are calculated in this space
and given to the CAD modeler. (c) shows the mapping from
the parametric coordinates to the physical space to get the
Cartesian coordinates and the mesh face curved accordingly

Various types of re-positioning strategies have been proposed and a brief his-

torical review can be found in Section 1.2. The work developed in this thesis extends

upon a curving algorithm proposed by Dey et al [21] which interacts with geomet-

ric models through the underlying CAD modeling engine and calculates the proper

position of a high-order node on its classified model boundary entity based on re-

parametrization of the boundary mesh entities using the underlying parametrization

of the CAD model entities.

For example, as shown in Figure 3.5, to properly curve a straight-sided mesh

edge M1 classified on a curved model edge G1 using a quadratic Lagrange interpola-

tion, a third point of the mesh edge has to be determined and placed properly onto

32

the model edge. During the mesh generation process, if a mesh vertex is classified on

a model edge or face, the parametric coordinates ζ of the mesh vertex with respect

to the parametric space of its classified model entity are stored in the mesh data.

If ζ0 and ζ1 are the parametric coordinates of the end vertices M0
0 and M0

1 , their

physical coordinates being x0 and x1 in the physical space, then by evaluating the

mapping from parametric to physical coordinates x(ζ) through the CAD modeler,

the physical position of the mid-point of the mesh edge is obtained.

x2 = x(
ζ0 + ζ1

2
) (3.1)

Therefore a high-order node associated with the mesh edge can be introduced and

placed to that location. Also see Figure 3.6 for an example of curving a planar mesh

face on a curved model face.

As an implementation detail, PUMI includes a unified geometric modeling in-

terface which maintains a high-level geometric model definition and supports inter-

actions with two of the standard CAD system kernels – Acis [54] and Parasolid [55].

Figure 3.7 shows the inheritance diagram of an interface class GeomModel and its

two concrete sub-classes that implement the interface functions. A GeomModel

object is included in PUMIMesh as a data member.

GeomModel

AcisModel ParasolidModel

PUMIMesh

Figure 3.7: Collaboration relations among the geometric model and mesh
classes

33

3.2.1 Nodal Interpolation Sets

When curving a mesh entity to a geometric shape represented by higher-than

quadratic functions, the determination of proper nodal locations becomes an in-

triguing problem. The critical measure typically considered is minimization of the

interpolation error between the actual function representing the shape of the curved

mesh entity versus its finite dimensional interpolants. In the thesis, we focus our

particular attention on the polynomial interpolation schemes.

To briefly define the interpolation problem, we give the following definition:

Consider the problem of interpolating a function f(x) in the domain Ω =

a ≤ x ≤ b. Given a distinct set of points Π = x0, ..., xm, it is assumed that a

polynomial function g(x) exists such that

g(xi) = f(xi),∀i, 0 ≤ i ≤ m. (3.2)

This polynomial can be considered to be the interpolating polynomial such that

g(xi) = Ξmf(xi), (3.3)

where Ξm is the interpolation operator. The set of points Π = x0, ..., xm are referred

to as the interpolation nodal set. Interpolation sets with the constraints x0 =

−1, xm = 1 are called canonical interpolation sets. It is obvious that the canonical

sets can be obtained from any interpolation sets by a linear transformation.

Based on the definition, the admissible interpolation nodal set for a given func-

tion is non-unique. In fact, the accuracy of the approximation is greatly influenced

by the location of these nodes. Therefore, a useful way to measure a given set of

nodes to determine whether its Lagrange polynomials are likely to provide good

approximations is by means of the Lebesgue constant, which is formally defined as

follows.

Denote a function h as the best possible polynomial function that approximates

f in the maximum norm (also referred to as infinity norm), where if X is some vector

34

such that X = (x1, x2, ..., xn), then

‖X‖∞ := max(|x1|, ..., |xn|). (3.4)

we have

‖f − g‖ ≤ (1 + Λ) ‖f − h‖ (3.5)

where, as mentioned earlier, g is an approximation to f found by fitting a polynomial

through the m interpolation points. Λ is known as the Lebesgue constant.

Intuitively, Lebesgue constant measures how far the current nodal set deviate

from the best possible set (which might not have a close form expression). As a

result, the optimal interpolation nodal set can be defined as the one that has the

minimal Lebesgue constant.

The convergence and interpolation accuracy of one dimensional interpolation

sets have been extensively researched over the decades [27, 56]. Two factors have

prominent impact on the quality of high degree polynomial interpolations: the

smoothness of the function to be interpolated, and the locations of the interpo-

lation points. Several sets are proposed and documented based on different choices

of objective functions being optimized [27, 26, 56].

Runge [57] showed that polynomial interpolation on grids consisting of equally-

spaced nodes may lead to unbounded and oscillatory interpolation of smooth func-

tions as the interpolating polynomial degree increases, which is referred to as the

Runge phenomenon. In fact, the Lebesgue constant of the interpolation operator for

equally spaced point set increases exponentially with the degree of polynomial in-

terpolation. Figure 3.8 shows an example of the phenomenon. The blue curve plots

the Runge function defined in Eq 3.6. The green and red curves plot the polynomial

interpolation of the Runge function using 5th and 9th order polynomial respectively

based on equally spaced nodal points. The oscillatory behavior of high-order poly-

nomial interpolation function can be clearly observed near the end points.

f(x) =
1

1 + 25x2
(3.6)

35

Figure 3.8: Plot of the Runge function and its polynomial interpolation
functions

In one-dimension, two useful nodal sets are most commonly used based on or-

thogonal polynomials which eliminate the Runge phenomenon. The Gauss-Lobatto

quadrature points which are determined by maximizing the determinant of the Van-

dermonde matrix [27, 56]. The nodal interpolation set proposed by Babuska and

Chen are computed by minimizing the L2 norm of the interpolation error [26].

Table 3.1 shows the parametric coordinates of several commonly used nodal

sets compared with the equidistant point set. End points and mid-point coordinates

are trivial therefore are not given in the table. Symmetric points are given only once

by the positive valued coordinates.

Degree Babuska-Chen Gauss-Lobatto Equal space
3 0.430664 0.447214 0.333333
4 0.636326 0.654654 0.500000
5 0.276518 0.285232 0.200000

0.748574 0.765055 0.600000

Table 3.1: Table of coordinates

Table 3.2 shows the Lebesgue constants of various commonly used nodal

sets [56].

36

Degree Babuska-Chen (B-C) Gauss-Lobatto (G-L) Equal space (EQ)
2 1.2500 1.2500 1.2500
3 1.4229 1.5000 1.6311
4 1.5595 1.6359 2.2078
5 1.6722 1.7786 3.1063
6 1.7681 1.8737 4.5493
7 1.8516 1.9724 6.9297

Table 3.2: Table of Lebesgue constants

A plot showing the growth of the Lebesgue constants as the polynomial degree

increases is given in Figure 3.9. It can be observed that the B-C points have similar

properties as the G-L points whereas the equally spaced points has the worst inter-

polation property as the Lebesgue constant grows exponentially as the polynomial

degree increases. As a result, it is not given further consideration for the rest of the

work.

Figure 3.9: Lebesgue constants plot

The generalization of 1D sets to multi-dimensional domains are not as straight-

forward especially for the simplex element domains. Only a limited few sets are

documented in the literature in which the points are computed in more than one

dimension. The earliest is due to Bos [27], who derived Fekete points for the triangle

37

up to degree d = 3 and derived some approximate solutions up to degree 7. More re-

cent work has been computational. Chen and Babuska [26] improved and extended

Boss results to degree 13. They also computed optimal L2-norm interpolation points

and showed that these points have a lower Lebesgue constant than their approxi-

mate Fekete points. Taylor, Wingate and Vincent [28] presented Fekete points with

smaller Lebesgue constant than both Fekete and minimal L2-norm points in Chen

and Babuska for degree n > 10. Hesthaven [56] computed a different set of near-

optimal interpolation points for the triangle. For d < 9 these points are quite good,

with a smaller Lebesgue constant than Fekete points and sometimes even the opti-

mal L2-norm points. This fails to be true for larger d, and for d > 13 these points

become significantly worse than Fekete points.

Table 3.3 shows the Lebesgue constants of the nodal sets for 2D simplex [56].

Degree Babuska-Chen (B-C) Gauss-Lobatto (G-L) Equal space (EQ)
2 1.6667 1.6667 1.6667
3 2.1115 2.1125 2.2698
4 2.6920 2.5878 3.4748
5 3.3010 3.1958 5.4522
6 3.7910 4.0752 8.7477
7 4.3908 4.7753 14.345

Table 3.3: Table of Lebesgue constants for 2D simplex

A plot of the Lebesgue constants of the nodal sets for 2D simplex is given in

Figure 3.10.

3.2.2 Implementation of Interpolation Sets

In the work of this thesis, various interpolation nodal sets have been imple-

mented using the object oriented programming (OOP) paradigm. OOP is a very

powerful programming paradigm which allows for the design concepts such as en-

capsulation, abstraction, inheritance and polymorphism. In the case of our work,

it allows abstract interfaces for the interpolation nodal sets to be defined in base

classes so that objects can be manipulated using the base class interface, while the

actual behavior of the objects of various types of nodal sets is dictated by the ac-

tual implementation of the sub-classes. This allows for a consistent definition of

38

Figure 3.10: Plot of Lebesgue constants for 2D simplex

interface while making it extremely easy to extend new features. the notation used

throughout this chapter to describe the object oriented design of the curved mesh

classes (including class diagrams, interaction diagrams, etc) is based on the Unified

Modeling Language (UML) [58].

Inheritance diagram for interpolation point package is shown in Figure 3.11.

An abstract interface class is defined as IntpPt. Two sub-classes (i.e. 1D and

multiD) are defined. It is desirable to separate 1D from multiD since the 1D points

are well defined and can be used to define multiD points.

IntpPt

IntpPt1D IntpPtMultiD

Figure 3.11: Class diagram for interpolation point classes

Various types of 1D interpolation nodal sets are implemented as sub-classes of

39

the IntpPt1D class as shown in Figure 3.12.

IntpPt1D

BCPt1D GLPt1D FeketePt1D

Figure 3.12: Class diagram for 1D interpolation nodal set classes

The multi-point interpolation classes are classified into specific table driven

interpolation for simplex elements such as triangle and tet [26] as well as more gen-

eral tensor product type of interpolation points for quad and hex elements [59].

Figure 3.13 shows the inheritance relations among various types of multi-point in-

terpolation.

IntpPtMultiD

TriPt TetPt TensorProduct

Figure 3.13: Class diagram for multi-dimensional interpolation point
classes

Composition of TensorProduct and IntpPt1D classes is given in Figure 3.14.

The Tensor product type of interpolation points consists one object of IntpPt1D

class for each of the 2 or 3 dimensions.

3.3 G1 Mesh Curving

In order to better support G1 mesh curving, Bezier type of curve and triangle

representation is relied on because of better control of slopes. Based on a set of nodal

40

TensorProduct IntpPt1D

Figure 3.14: Composition diagram for 1D and multi-dimensional tensor
product interpolation nodal set classes

interpolation set, the Lagrange polynomial representation is converted to Bezier

representation by solving a linear equation system at specific interpolation nodes.

Recall that a Bezier curve can be represented as:

B(t) =
n∑
i=0

b
(n)
i (t)P

(n)
i , t ∈ [0, 1] (3.7)

For instance a 5th order Bezier curve can be expanded as

B(5)(t) = (1− t)5P0 + 5t(1− t)4P1 + 10t2(1− t)3P2

+ 10t3(1− t)2P3 + 5t4(1− t)P4 + t5P5 (3.8)

Given a set of nodal interpolation points ξi, i = 0, 1, ..., 5 and the Bezier curve

should interpolate the Lagrange polynomial function L(ξi) approximating the CAD

geometry

B(5)(ξi) = Li, i = 0, 1, ..., 5 (3.9)

This leads to a system of 6∗n linear equations where n is the spatial dimension.

(1− ξ0)5 · · · ξ5

0

...
. . .

...

(1− ξ5)5 · · · ξ5
5

P0

...

P5

 =

L0

...

L5

 (3.10)

As a result, the 6 control points Pi can be determined uniquely by solving

the linear system. In actual implementation, the Eigen package is used to form

and solve the linear system. Eigen is a C++ template library for linear algebra,

matrices, vectors numerical solvers and related algorithms [60] .

41

3.3.1 Implementation Geometric Shapes and Curved Mesh Entities

A interface class CrvEnt is defined as an abstract class. It contains definition

of a host of geometric shape related member functions that are shared by all types

of curved mesh entities used in this work. An abbreviated version of the class

declaration is given in Figure 3.15.

1 c l a s s CrvEnt {
2 pub l i c :
3 // con s t ru c t e r
4 CrvEnt (pMeshEnt in mesh ent) ;
5 // de s t ru c t o r
6 v i r t u a l ˜CrvEnt () ;
7

8 /∗ coord inate system trans fo rmat ion ∗/
9 void g e t x i b y e t a (Point3d in e ta , Point3d & out x i) ;

10 void g e t e t a by c e t a (Point3d in c e ta , Point3d & out e ta) ;
11 void g e t x i b y c e t a (Point3d in c e ta , Point3d & out x i) ;
12

13 /∗ eva lua t i on ∗/
14 void e va l by x i (Point3d in , Point3d & out) ;
15 void eva l by e t a (Point3d in , Point3d & out) ;
16 void e v a l b y c o l l e t a (Point3d in , Point3d & out) ;
17

18 /∗ d i f f e r e n t i a t e ∗/
19 void d i f f b y x i (Point3d in , Mat3x3 & out) ;
20 void d i f f b y x i (Point3d in , i n t j , Point3d & out) ;
21 void d i f f b y e t a (Point3d in , Mat3x3 & out) ;
22

23 /∗ he lpe r ∗/
24 i n t ent type () ;
25

26 pr i va t e :
27 // ordered s e t o f mesh v e r t i c e s
28 VtxPtrVec m vert vec ;
29 // t o p o l o g i c a l mesh en t i t y
30 pMeshEnt m mesh ent ;
31 /// the ID o f the curved mesh en t i t y
32 i n t m id ;
33 } ;

Figure 3.15: CrvEnt interface class declaration

Subclasses of CrvEnt are defined to represent the mesh entity of different

spatial dimensions namely 1D edges, 2D faces and 3D regions. Class diagram for

curved mesh entity classes is given in Figure 3.16.

Similarly for the geometric shapes, an abstract interface class CrvGeom is

42

CrvEnt

CrvEdge CrvFace CrvRegion

Figure 3.16: Class diagram for curved mesh entity classes

defined to represent the common geometric shape information and operations. A

class diagram is given in Figure 3.17.

CurveGeom

ParamCurve ParamFace ParamRegion

Figure 3.17: Class diagram for curved entity geometry classes

For the set of entities of given dimension, a set of sub-classes are defined which

implement specific types of geometric representation. For instance, inheritance di-

agram for ParCurve is given in Figure 3.18. Sub-classes of ParCurve includes the

Lagrange and Bezier curve types and the curve type that is defined by the CAD

model representation.

As for a specific type of curve representation, for example Bezier curve, sev-

eral concrete subclasses are defined and implemented to represent curves of specific

orders. The inheritance diagram for BezCurve is given in Figure 3.19.

Similarly, as mentioned earlier, the parametric face representation class Par-

Face is a subclass of CrvGeom. And it has two sub-classes defined for different face

topology, i.e. triangles and quadrilaterals. Specific concrete classes are defined and

implemented for each face topology. For instance, the GrgTri class implements the

43

ParamCurve

LagrangeCurve BezierCurve CADCurve

Figure 3.18: Class diagram for parametric curve classes

BezierCurve

BezCurveOrder1 BezCurveOrder2 BezCurveOrderN

Figure 3.19: Class diagram for Bezier curve classes of various orders

triangular Gregory patch while the CnsQuad class implements the Coons patch.

The inheritance diagram for ParFace is given in Figure 3.20.

More than one representation is implemented as the parametric triangular face

patches. In crvMeshAdapt, triangular Lagrange, Bezier and Gregory patches are

implemented. The inheritance diagram for ParTri is given in Figure 3.21.

To associate the geometric shape data with its corresponding mesh entity,

each object of a curved mesh entity has a pointer to the its geometric shape object

counterpart. The composition diagram of CrvTri and ParTri classes is given in

Figure 3.22.

The CrvMesh class consists of a set of CrvEnt objects and a set of high level

driver routines implemented to perform such procedures as mesh curving, invalidity

correction and size-driven adaptation. The composition diagram of CrvMesh and

CrvEnt classes is shown in Figure 3.23.

The CrvMesh class is also defined as a subclass of meshAdapt such that it

44

CurvedGem

ParamFace

ParamTri ParamQuad

GregoryTri CoonsQuad

Figure 3.20: Class diagram for parametric face classes

ParamTri

BezierTri LagrangeTri GregoryTri

Figure 3.21: Class diagram for parametric triangular face classes

CrvTri ParTri

Figure 3.22: Composition diagram of CrvTri and ParTri classes

45

CrvMesh CrvEnt

Figure 3.23: Composition diagram of CrvMesh and CrvEnt classes

inherits the existing functionality of straight-sided mesh adaptation procedure. Fig-

ure 3.24 shows the inheritance diagram.

meshAdapt

crvMeshAdapt

Figure 3.24: Inheritance diagram for meshAdapt and crvMeshAdapt
classes

The definition of CrvMesh class is given in Figure 3.25.

3.3.2 G1 Curving Algorithm Using Quartic Gregory Patches

In Section 2.2.2.6, the mathematical background of the Gregory patch was

reviewed. The algorithmic steps to create a quartic G1 Gregory patch is given in

Algorithm 1.

46

1 c l a s s curveMesh : pub l i c meshAdapt{
2 pub l i c :
3 curveMesh (pMeshMdl mesh instance , i n t s i z e f i e l d t y p e , i n t model type)

;
4

5 /// check the o v e r a l l mesh qua l i t y
6 i n t CMA CheckMeshQuality () ;
7

8 /// untangle a g iven curved mesh with a number o f i n v a l i d e lements
9 i n t CMA Untangle () ;

10

11 /// opt imize a g iven va l i d curved mesh
12 i n t CMA Optimize () ;
13

14 /// make a l l mesh e n t i t i e s l i n e a r by removing edge nodes i f the r e i s
any

15 i n t CMA Linearize () ;
16

17 /// ceate a curved mesh with G1 su r f a c e mesh
18 i n t CMA CreateG1Mesh () ;
19

20 /// ceate a r b i t r a r y degree C0 i n t e r p o l a t i n g su r f a c e mesh
21 i n t CMA CreateC0Mesh(i n t iEdgeOrder , i n t iFaceOrder) ;
22

23 } ;

Figure 3.25: Class declaration of the driver level CrvMesh class

1 for each edge M1
i of a triangle do

2 fit cubic Bezier curve ;

3 compute tangent vector field ;

4 compute cross-boundary tangent vector field ;

5 degree elevate boundary curve to quartic ;

6 determine the two interior face control points ;

7 end

8 for each pair of two face control points do

9 apply linear blending function to get a Bezier type control point

expression ;

10 end

11 write the quartic patch in Bezier form based on the 15 control points ;

Algorithm 1: Creating G1 continuous surface triangles using Gregory

patches

47

Concrete implementation of GrgTri class is given in Figure 3.26.

1 // Def ine the c l a s s that implements t r i a n gu l a r Gregory patch o f order n
2 c l a s s GrgTri {
3 pub l i c :
4 // c to r with ordered nodes d e f i n i n g coord inate
5 // and d i r e c t i o n s
6 GrgTri (std : : vector<Point3d> i n o rdered nodes ,
7 std : : vector<Point3d> i n o rde r ed norma l s) ;
8 // dtor
9 ˜GrgTri () ;

10 // Evaluate at parametr ic l o c a t i o n
11 i n t eva l (double u , double v , double ∗ r e t v a l) ;
12 // Evaluate f i r s t d e r i v a t i v e s
13 void der iv1 (Point2d i n x i ,
14 Point3d & out dxyz dxi1 ,
15 Point3d & out dxyz dx i2) ;
16 // main d r i v e r to setup the gregory patch
17 void setup () ;
18 protec ted :
19 // su r f a c e c on t r o l po int pa i r s
20 Point3d m G01 , m G02 , m G11 , m G12 , m G21 , m G22 ;
21 // input data : p o s i t i o n and normal ve c t o r s o f corner c on t r o l po in t s
22 Point3d m q0 ;
23 Point3d m q1 ;
24 Point3d m q2 ;
25 Point3d m n0 ;
26 Point3d m n1 ;
27 Point3d m n2 ;
28 // P −− edge con t r o l po in t s
29 Point3d P004 ;
30 Point3d P013 , P103 ;
31 Point3d P022 , P202 ;
32 Point3d P031 , P301 ;
33 Point3d P040 , P130 , P220 , P310 , P400 ;
34 } ;

Figure 3.26: Class declaration for the triangular Gregory patch

3.3.3 Higher-Order G1 Curving Algorithm Using Bezier Patches

Given a CAD model defined by the Acis or Parasolid CAD modeling engines,

it is straight-forward to obtain data up to the second derivatives at given locations

on the model face. Given the C2 input data at mesh vertices on the model face,

the first step uses the method in Farins quintic scheme to determine the 6 control

points surrounding each mesh vertex as represented by black dots in Figure 3.27.

48

Figure 3.27: A 6th order triangular Bézier patch with a total of 28 control
points

The mathematical equation to compute the control points is given in Eq 2.23 in

Section 2.2.3. This step determines the position of a total of 18 control points.

The rest of the control points are set into 3 categories.

1. Edge control points that are responsible for interpolating C0 data for each

edge.

In this 6th order patch example, these points are represented by hollow cir-

cles at the middle of the edges. They are determined by evaluating the

parametrization of the mesh edge at the mid-point parametric location given

by Eq 3.11.

Pi = X(
ζ0 + ζ1

2
) (3.11)

where Pi is the mid-edge point of the ith edge, and X(ζ) is the parametric

expression of the ith edge. ζ0 and ζ1 represent the parametric coordinates for

the two end vertices.

The tangent plane at the edge mid-points are also calculated by querying the

first derivatives information of the underlying CAD face. The equations are

given in Eq 2.15 and Eq 2.16 in Chapter 2. The tangent plane information is

needed to set the face control points.

2. Face control points that are immediate neighbors of the edge control points

(represented by triangles in Figure 3.27).

49

They are responsible for ensuring G1 continuity across the patch boundaries.

They are determined by the tangent plane information at the edge mid-point,

which has been obtained when setting the edge control points. The equations

are given in Eq 2.18 and Eq 2.19 in Chapter 2.

3. The rest of the interior surface control points (represented by the square in

Figure 3.27).

They are can be determined by ensuring interpolation properties of the face

parameter mapping at specific parametric location. Ref [16] proposes to solve

the surface point location as an optimization problem to achieve high approx-

imation accuracy by minimizing a surface potential energy functional.

The proposed method is capable of creating a Bézier patch of G1 continuity to

arbitrary level of polynomial order given that the under lying CAD representation of

the domain can provide the needed input data which is up to the second derivatives.

3.3.4 Surface Mesh with Mixed C0 and G1 Continuity

The procedure introduced in section 2.2.2.6 serves the purpose of creating G1

surface meshes for models with a single model face. In the mean time, most 3D

models with challenging geometric features consist of more than one model face.

Any procedure aiming to create proper surface meshes for such multi-patch models

has to account for the mixture of C0 and G1 continuity. In this work, a bottom-up

approach is adopted based on the different topological types of model entities on

which a mesh entity is classified. Specifically, the mesh edges that represent the

model edges where model faces join with C0-continuity are curved first to be G1

along the model edge direction while maintaining C0 in the cross-edge direction.

After that, the remaining surface mesh entities that represent the rest of the model

boundary are curved using the procedure discussed in section 2.2.2.6. As a result,

a piecewise G1 surface mesh is created where it is G1 within each model face as

well as along the bounding model edges and C0 in the cross-boundary direction at

the model edges where model faces join together. Note that in the case where two

model faces join with G1 continuity in the first place, G1 continuity is maintained

50

by curving the mesh edges representing the model edge in the same way as those

representing model faces. The pseudo code for the overall procedure is given in

Algorithm 2. Fig 3.28 shows an example mesh created using the algorithm. Fig 3.30

shows another example mesh based on a linear accelerator geometry.

1 for each edge M1
i in the mesh do

2 if M1
i represents model edge with C0 continuity then

3 determine edge control points to interpolate model edge tangent;

4 end

5 if M1
i represents model face or edge with G1 continuity then

6 determine edge control points to interpolate model face normal;

7 end

8 end

9 for each face M2
i in the mesh do

10 if M2
i @ G2

j then

11 compute edge tangent vector t;

12 compute cross-edge tangent vector g;

13 determine face control points Gi,j;

14 end

15 end

Algorithm 2: Creating G1 meshes for multi-patch CAD models

3.3.5 Geometric Interpolation Accuracy

To study and quantify the geometric interpolation properties of the quartic

G1 patch discussed in section 2.2.2.6, a set of numerical experiments have been

conducted. A series of uniformly refined meshes are generated on a CAD model

representing a cylinder. An example is shown in Fig 3.31. The distance between

the mesh faces and CAD model faces is measured for each of the uniformly refined

meshes. The distance is measured in terms of the Hausdorff norm which is commonly

used to measure the distance between two parametric faces [61]. The definition of

Hausdorff distance is given by Eq 3.12:

51

Figure 3.28: A tube model

d(S, S ′) = max
p∈S

min
p′∈S′
‖p− p′‖2 (3.12)

where S and S ′ are two sets of points representing two faces and p and p′ denote

points in the two sets respectively.

As a comparison, the measurement is done for both the G1 meshes and a set

of C0 meshes using quartic Lagrange basis functions with optimal point distribution

scheme proposed by Chen and Babuska [26]. Fig 3.32 shows the convergence plot

generated from the distance data. For the quartic G1 meshes, 4th order interpolation

accuracy is observed, and for quartic C0 meshes, it shows 5th order interpolation

accuracy. It is a well known result in 1D that the order of accuracy for polynomial

interpolation is p+1, where p is the highest complete polynomial order [2]. The one

order difference in interpolation accuracy between the G1 and C0 is due to the fact

that certain portion of the control points of the G1 patch have to be constrained to

ensure the higher surface continuity.

Table 3.4 gives the statistics for the cylinder model as well as the order of

convergence for geometric interpolation accuracy.

Figure 3.33 shows another example which is a biological model representing a

52

Figure 3.29: A close-up view of the tube

Figure 3.30: Curved G1 mesh of a linear accelerator model

Number of element mean distance order
24 5.220E-3 n/a
228 3.175E-4 4.033
1840 2.056E-5 3.948
13720 1.399E-6 3.877

Table 3.4: Convergence data for meshes of the cylinder model

53

Figure 3.31: CAD model and quartic C0 mesh of a cylinder

Figure 3.32: Convergence of geometric approximation error

54

portion of the porcine aorta.

Figure 3.33: The CAD model and G1 mesh of the porcine aorta model

Table 3.5 gives the statistics for the porcine aorta model as well as the order

of convergence for geometric interpolation accuracy.

Number of element mean distance order
128 3.676E-1 n/a
1123 8.552E-2 2.104
9805 6.173E-3 3.809
77541 6.359E-4 3.261

Table 3.5: Convergence data for meshes of the porcine aorta model

Figure 3.34 gives the plot of distance against total number of elements used

in the mesh.

55

Figure 3.34: Convergence plot of number of elements v.s. distance

CHAPTER 4

MESH MODIFICATION AND ADAPTATION FOR

CURVED MESHES

4.1 Introduction

A well designed mesh adaptation procedure provides the capability to mod-

ify the mesh size field while accounting for the model geometry. The majority of

the research efforts on mesh adaptation have been focused on h-adaptivity dealing

with low order meshes with all straight-sided elements. In order to achieve the full

strength of the high-order methods, one needs to make use of hp-adaptive methods

on curvilinear meshes where extra complexities arise when the mesh entities must be

curved to the domain geometry. Mesh adaptation techniques for fully unstructured

curved meshes are discussed in references [21, 22, 15, 17]. For simulations that re-

quire the numerical solutions to have extremely high accuracy, high mesh resolution

is required in critical regions. Even when taking advantage of the benefits of adap-

tively refined meshes, element counts in the millions are common. Such meshes can

only be created and analyzed using large scale parallel computing systems, which

requires effective parallel mesh adaptation techniques [23].

A curved mesh adaptation procedure is presented in [8] which is designed for

curved meshes on massively parallel computers. These procedures support curved

quadratic C0 meshes. The core procedure consists of two classes of mesh modi-

fication operations: entity geometry modification and local mesh modification for

curved meshes. For the entity geometry modification, curved entity reshape oper-

ations that explicitly resolve element invalidity and improve the shape quality of

curved elements are presented. The local mesh modification operations for curved

meshes were extended from the operations for straight-sided meshes (see [62]) with

Portions of this chapter previously appeared as: Q. Lu, “Developments of Paral-

lel Curved Meshing for High-Order Finite Element Simulations”, Master’s Thesis,

Rensselaer Polytechnic Institute, Troy, NY, 2011.

56

57

additional consideration and treatment of curve boundary entities and selected

curved interior entities. The parallel curved mesh adaptation technique is being

used to support the automated adaptive accelerator simulations at SLAC National

Accelerator Laboratory.

4.2 Curved Mesh Validity

A critical issue that needs to be addressed is mesh validity when curved meshes

are used. The most common approach to construct curved meshes is to apply a

straight-sided mesh generation procedure and then curve the mesh edges and faces

on the curved domain boundaries to proper orders [63, 64]. This approach is able to

take advantage of the conventional unstructured mesh generators to deal with the

complexity of model geometry [65, 66]. However, the resulting meshes often become

invalid because curving the straight-sided mesh entities to model boundaries can

lead to negative determinant of Jacobian in the closure of curved elements [62, 36].

Effective and efficient correction of those invalid elements is critical in curvilinear

mesh construction and for its usage with higher-order finite elements.

For example in the 2D case shown in Figure 4.1, mesh edges M1
0 and M1

1

are curved to model edge G1
0. However elements M2

0 and M2
1 become invalid (Fig-

ure 4.1(b)). In this case, the interior edges M1
2 and M1

3 can be curved (Figure 4.1(c))

to ensure element validity. The procedures for such element curving are referred to

as entity geometry modification operations and the details of such operations are

discussed in subsequent sections in this chapter.

A valid mesh entity requires a one-to-one mapping between the reference and

physical element domains [63, 51]. This is ensured if the element’s determinant

of Jacobian that maps to the physical domain, det(J), is strictly positive. As the

mesh geometry becomes curved, the det(J) is no longer a constant over the element

domain as it used to be for a straight-sided simplex entity [10]. Commonly used

methods, such as explicitly checking det(J) at Gauss integration points, only provide

necessary conditions for the validity of the mesh entity, and are computationally

expensive to carry out when extremely high polynomial orders are concerned [67].

The convex hull properties of the Bezier form provides an alternative to evaluate

58

Figure 4.1: Invalid curved mesh and its correction

bounds of det(J) efficiently [68, 69].

4.2.1 Quality Metrics for Straight-Sided Tetrahedral Elements

Given a straight-sided tetrahedral mesh, the geometric shape of an element

is uniquely defined once the positions of its four nodes are determined since the

edges are straight lines and faces are flat planes. It is straight-forward to calculate

various geometric quantities, such as edge length and solid angle, etc. Therefore, a

host of mesh quality metrics for straight-sided elements have been proposed which

were based upon geometric quantities. Several commonly used ones are reviewed as

follows.

1. Edge Ratio:

The Edge Ratio r is defined to be the ratio of the shortest edge over the longest

edge in a given tetrahedron [70]:

r =
mini=1..6 l(M

1
i)

maxj=1..6 l(M1
j)
, (4.1)

59

Figure 4.2: Definition of the edge ratio metric

Figure 4.3: An example of a flat element in plane P

where l denotes the length of one of six edges. See Figure 4.2.

It is obvious that 0 ≤ r ≤ 1 for all elements, and r reaches 1 for an equilateral

tetrahedron. On the other hand, if r is very small or even close to 0, it indicates

that the tetrahedron might be highly anisotropic with one or more edges being

relatively shorter/longer than others. However, this shape metric fails in cases

where the element is indeed flat while none of its edges are degenerated to zero

length as shown in Figure 4.3. It also can not detect inverted elements. This

metric only uses mesh edges and calculates their length, therefore it is one of

the most computationally efficient metrics.

2. Dihedral Angle:

In a given tetrahedron, each of the six edges is used by two mesh faces. The

dihedral angle θ is defined to be the angle of two intersecting faces [70]. It

can be obtained by adding a perpendicular plane to the edge and measure the

60

Figure 4.4: Definition of dihedral angle

angle between the two intersecting lines. See Figure 4.4.

The dihedral angle is an effective metric to detect sliver and flat elements

as θ approaches 0 or π. However it lacks information of the length scale of

the element. A variant of the dihedral angle is discussed in [71] that non-

dimensionalize the quantity by computing

q = sin(θ), (4.2)

This metric targets at elements with small or large dihedral angles but does

not detect needle-shaped tetrahedron as shown in Figure 4.5. The example

tetrahedron is highly distorted, however the dihedral angles are still in an

acceptable range. In addition, evaluation of the angles requires calculating

trigonometric functions which is usually more expensive than normal floating

point arithmetics such as additions or multiplications. Therefore this metric

is more expensive than the Edge Ratio metric.

3. Aspect Ratio:

The aspect ratio is defined as the ratio between the minimum altitude and the

length of the longest edge of a given tetrahedron.

61

Figure 4.5: An example of needle-shaped straight-sided tetrahedron

Figure 4.6: Definition of the aspect ratio metric

ρ =

√
6hmin

2lmax
(4.3)

where hmin is the smallest altitude, lmax is the longest edge length. See Fig-

ure 4.6.

Its normalized inverse form is also used as a quality metric and is discussed

in [71]. The aspect ratio metric ranges from 0 to 1 for a valid element and is

able to effectively detect slivers as well as highly anisotropic elements in which

case hmin is much smaller than lmax. Therefore it is a metric that is able to

detect all types of poorly shaped elements. And if hmin is defined to be a

signed height, i.e. negative values are allowed, then it detects invalid elements

as well.

4. Mean Ratio:

The definition of the mean ratio metric takes into account the length of all six

62

edges and the volume of the tetrahedron [72, 73, 70]. It is computed as:

η = K
V (M3)2∑6
i=1 l(M

1
i)

3 (4.4)

For a valid element, K is a scaling factor that multiplies to rescale η to the

range [0, 1]. In the optimal case, an equilateral tetrahedron has η = 1 under

this metric. A flat or degenerated element has zero volume which leads to

η = 0. In the cases that an element is inverted, η becomes negative since the

volume of the element is negative. Therefore, this metric has also been shown

to be able to detect all types of poorly-shaped and invalid elements [71].

4.2.2 Quality Metric for High-Order Curved Tetrahedron

There are far fewer geometric mesh quality metrics proposed to date for high-

order curved tetrahedral elements than for straight-sided elements, partially due to

the cost of calculating the geometric quantities such as length of a curved edge or

area of a curved surface. Besides that, none of the geometric entity based quality

metric discussed above account for the influence of the mapping of high-order curved

elements on the properties of the numerical system. Although the Jacobian based

algebraic quality metrics do provide knowledge about the mapping of the elements,

the ones in Knupp [74] can not be easily applied to high-order curved elements since

the Jacobian is not constant through the element domain when elements have curved

geometry. It is generally a function of position in the parametric coordinates.

Although many geometric and/or algebraic parameters can not be readily used

for measuring the quality of a high-order tetrahedral element, the Jacobian matrix

remains one of the most influential factors as it is explicitly used in the numerical

integration of the stiffness matrix over the element. It is well-known that negative

determinant of Jacobian det(J) evaluated at integration points will compromise so-

lution accuracy and, in some cases, will cause the solver to halt [75, 76, 77]. Elements

with such Jacobian matrix are identified as invalid. Even with positive det(J), large

variations of det(J) over the element will contribute to numerical stiffening which

will cause the solution to converge very slowly [75]. Such elements are categorized

63

as poorly-shaped.

Ruiz-Girones et al proposed a point-wise distortion measure for high-order

curved tetrahedral elements [78]. The measure is defined as follows:

M(ξ) =
‖J(ξ)‖2

nσδ‖J(ξ)‖2/n
(4.5)

where ‖ · ‖ is the Frobenius norm of matrices, σ = det(J) and σδ is a scaling factor

given by:

σδ =
1

2
(σ +

√
σ2 + 4δ2) (4.6)

It is desired to have value one when the Jacobian matrix is a rotation combined

with an isotropic scaling, while the value approaches infinity when the Jacobian

matrix is non-invertible. Therefore, the corresponding shape quality metric which

ranges from (0, 1] is given as

η =
1

M(ξ)
(4.7)

It is worth noting that the value of the metric is a function of the parametric

coordinates of the curved element. It is not straight-forward to obtain its upper

and lower bounds. A mesh optimization procedure is developed which is based on

minimizing the distortion measure as well as a geometric accuracy measure based

on computing L2 norm of the difference between the curved element geometry and

the CAD model geometry [78].

A quality metrics for high-order curved tetrahedron which identifies poorly-

shaped high-order curved elements by evaluating the scaled variations of the deter-

minant of Jacobian over the element domain is defined as [75, 21, 79, 36]:

qc =
minξ∈Ωe det(J(ξ))

maxξ∈Ωe det(J(ξ))
(4.8)

This metric normalizes the variations of the determinant of the Jacobian by

rescaling the minimum value with respect to the maximum. Its range is within

[0, 1] for valid curved elements, while being negative for invalid elements. It gives

information about how distorted the specific tetrahedron is in the physical space.

64

This metric is also referred to as the scalded Jacobian metric, and has been adopted

as a basis quality measure for various mesh untangling and optimization applica-

tions [79, 17, 80].

However, this scaled metric only considers the shape deviation of a curved ele-

ment with respect to its underlying straight-sided counterpart, it does not consider

the shape quality of the straight-sided element itself. Therefore, if a high-order tetra-

hedron has all straight-sided edges, then its det(J) is again constant over the volume.

Consequently the metric qc reports the optimal value 1, even if the straight-sided

tetrahedron is highly anisotropic or even close to being degenerated. Therefore, qc

alone does not capture all element geometric shape concerns.

4.3 The Hybrid Shape Quality Metric

In order to overcome the issue discussed above and effectively measure the

quality for both straight-sided and curved meshes, a hybrid quality metric is de-

veloped which combines a straight-sided mesh quality metric and a curved mesh

quality metric [66, 8].

Let qs be any selected quality metric for straight-sided elements and qc for

curved elements. m and n are selected weighting constants. The hybrid metric

computes the mesh quality of curved elements as a simple product:

Qsc = qms × qnc (4.9)

This quality metric effectively combines the quality metrics for both straight-

sided and curved elements. In the case of straight-sided elements where qc = 1,

Qsc = qs functions alone to measure the element shape. For curved elements, qc

will be computed and contribute to Qsc together with the underlying straight-sided

shape quality qs. The two power constants m and n can be tuned as needed to

change the influence of either qs or qc on the overall metric Qsc. Note that in the

case that qs and qc are normalized metrics within range [0, 1], m and n has to be

non-negative in order for Qsc to also be a normalized metric.

Differentiating Eq 4.9 with respect to either of the component quality metrics,

65

Figure 4.7: Plot of Qsc with respect to qc for different weighting constant
n, assuming qs = 1

say qc, while holding the other fixed, in this case qs. We get:

Q,c =
∂Qsc

∂qc
= Cqn−1

c (4.10)

where C = nqms .

Assuming C > 0, Eq 4.10 computes the slope of Qsc with respect to the curved

quality component. For example, if one selects n = 1, then Q,c = C is constant with

respect to variations in qc. Therefore it is equally sensitive to the curved element

quality within range [0, 1]. If n > 1 is selected, Q,c is large in the high quality range

of qc, and Qsc drops very rapidly as qc starts to degrade from very good quality to

relatively poor quality, which leads to higher sensitivity of Qsc to the curved element

distortion, therefore detects poorly-shaped curved elements very effectively. On the

other hand, if 0 < n < 1, Qsc starts to rapidly decrease as qc approaches truly low

quality that is close to 0. Therefore it is generally less strict on curved element

distortion than the n > 1 cases and focuses on detecting the poor quality element

affected by its straight-sided component. See Figure 4.7 for examples of the three

situations.

This quality metric serves as the basis to support the explicit nodal reposition-

66

ing procedure to identity poorly-shaped tetrahedral elements and improve element

shape quality. In the present work, the parameters m and n are set to be m = 1

and n = 1, and the Mean Ratio measure is selected and implemented as the metric

for straight-sided elements qs.

4.3.1 The Validity Condition of Curved Element

To identify a valid curved tetrahedral element requires ensuring positive de-

terminant of Jacobian throughout the domain of the element. Eq 4.11 gives the

validity condition for an arbitrary order curved element in general.

det(J)|(ξ1,ξ2,ξ3,ξ4) > 0 ∀ξ ∈ Ωe (4.11)

However, it is not feasible go through each and every point of the volume

to check directly the value of determinant of Jacobian. In practice, positiveness

of det(J) is often checked at the set of integration points which depends upon the

specific order of the element. An alternative method to ensure the element validity

is to consider the bounds of the determinant of Jacobian.

According to the Convex Hull property of the Bézier representation of a high-

order curved tetrahedron discussed in Chapter 2, the determinant of the Jacobian

det(J) can be represented as a Bézier polynomial of order 3(p− 1) over the tetrahe-

dron, where p is the order of the tetrahedral element [35]. As a result, it is bounded

by the maximum and minimum values evaluated at the control points of the order

3(p− 1) Bézier polynomial [36, 15]. In the case of a curved tetrahedron element of

order p, the following inequality holds:

min{P (3(p−1))
|i| } ≤ det(J) ≤ max{P (3(p−1))

|i| } (4.12)

where P
(3(p−1))
|i| represents the value at the ith control point of the Bézier polynomial.

A sufficient condition to ensure positive determinant of Jacobian for a pth

order curved tetrahedral element is that the lower bound of det(J) given in Eq 4.12

is strictly positive. That is, the minimum of all control points P
(3(p−1))
|i| is positive,

as given in Eq 4.13.

67

min{P (3(p−1))
|i| } > 0 (4.13)

Note that Eq 4.13 applies to any curved tetrahedral element of arbitrary order

p.

4.4 The Uniform Validity Check Method

The uniform validity check algorithm is based on the above condition by check-

ing all the control points of a Bézier representation. The total number of control

points of a Bézier polynomial is determined by its order. In the case of cubic curved

tetrahedral element, the Bézier polynomial representing det(J) is of order q = 6.

The total number of control points is 35 [69]. The computation is efficient and

is independent of the numerical integration schemes compared with evaluating the

real determinant of Jacobian at the quadrature points based on the integration

rules [66, 65]. However, due to fact that this algorithm uses a sufficient condition

that evaluates the lower bound of det(J), it can be overly-conservative in cases where

the lower and upper bounds are not very tight. In such cases, the actual det(J)

could still be positive over the entire volume of the tetrahedron even if min{P (q)
|i| } is

negative.

The level of conservativeness of the lower and upper bounds obtained by this

validity check algorithm depends on the number of control points used to represent

the polynomial with, the fewer the number of control points is, the more conservative

the measure is. Besides that, the conservativeness also depends on the classifica-

tion of the control point where the minimum value is reached. The validity check

algorithm is accurate if minimum value is found at an interpolation point where

min{P (q)
|i| } = min{det(J)}, while conservative if minimum is at non-interpolating

points where min{P (q)
|i| } ≤ min{det(J)}. Details are discussed in Sections 4.4.1

and 4.4.2.

Note that the above stated algorithm can be generalized to apply to curved

tetrahedral elements of arbitrary high-order, which still focuses at monitoring the

minimum value of all control points of the corresponding Bézier polynomials.

68

4.4.1 min{P (q)
|i| } at Interpolating Points

According to the convex hull property given by Eq 4.12, the minimum value

among the control points is generally no greater than the actual minimum of the

det(J), i.e. min{P (q)
|i| } ≤ min{det(J)}. Also, the control points at the ends of

a Bézier polynomial are interpolation points, which means det(J) = P
(q)
|i| at these

particular control points. This is true for any curved tetrahedral element of arbitrary

order. Therefore, in the cases that min{P (q)
|i| } is found at a mesh vertex control point,

which is in term an interpolating point, the minimum determinant of Jacobian can

be accurately obtained be to min{det(J)} = min{P (q)
|i| }. In other words, if the value

of min{P (q)
|i| } is negative at any of the vertex control points, the uniform validity

check method is no longer conservative and is able to effectively detect the invalidity.

4.4.2 min{P (q)
|i| } at Non-interpolating Points

In the cases where min{P (q)
|i| } is found at a non-interpolating point, e.g. edge/-

face control point for a curved tetrahedron, the uniform validity check method be-

comes conservative for curved element geometry. Note that it is still accurate if the

high-order tetrahedron is straight-sided in which case all the control points are inter-

polation points. If min{P (q)
|i| } ≥ 0 for all control points of a particular tetrahedron, it

is sufficient to determine that the element is valid according to the condition given

in Eq 4.11 However in the cases where min{P (q)
|i| } ≤ 0, one could not necessarily

conclude that the tetrahedron is invalid. In fact in some applications, such cases

have been reported that negative min{P (q)
|i| } are found for valid curved elements with

large curvature, which means the uniform control point based validity check needs

to be refined to deal with such cases. Two adaptive refinement methods to evaluate

tighter lower bounds for det(J) are discussed in detail in Section 4.5.

4.5 The Adaptive Validity Check Methods

Both degree elevation and subdivision algorithms of a Bézier polynomial in-

creases the number of control points and the control points converge to the actual

polynomial [69, 35]. Thus either method can be used to obtain tighter bounds on

the Jacobian evaluation. Taking advantages of this property, two approaches to

69

refine the uniform validity check method are proposed and studied.

It is worth mentioning that although the uniform validity check is conservative

and loses accuracy in some cases, it is still an effective method to determine the key

mesh entity with which the potential invalidity is associated. Given a curved tetra-

hedron of order p with min{P (3(p−1)
|i| } < 0 reported at a non-interpolating control

point, the mesh entity associated with that particular control point is identified as

the key mesh entity that is likely causing the invalidity.

By determining the key entity, we can avoid doing degree elevation or subdi-

vision uniformly to all the element entities. Instead, only the key entity of interest

is elevated or subdivided in an appropriate manner.

4.5.1 Adaptive Check Using Degree Elevation

After identifying a potentially invalid element and its key entity determined by

doing the uniform validity check, a degree elevation check applies degree elevation

algorithm to the key entity to refine the control polygon of its Bézier representation

to give tighter bounds. For example, if min{P (3(p−1)
|i| } < 0 is reported at an edge

control point, the degree elevation check will elevate the degree of the polynomial

representing that edge based on all the control points associated with it. For a

quadratic curved element, the original representation of det(J) is a 3rd-order Bézier

polynomial, therefore 4 control points are associated with an edge, i.e. P
(3)
|3000|, P

(3)
|2001|,

.P
(3)
|1002|, P

(3)
|0003|. The control points after one step of degree elevation from 3rd- to

4th-order can be calculated by:

P
(4)
|4000| = P

(3)
|3000|

P
(4)
|3001| =

1
4
P

(3)
|3000| +

3
4
P

(3)
|2001|

P
(4)
|2002| =

2
4
P

(3)
|2001| +

2
4
P

(3)
|1002|

P
(4)
|1003| =

3
4
P

(3)
|1002| +

1
4
P

(3)
|0003|

P
(4)
|0004| = P

(3)
|0003| (4.14)

This can be generalized to obtain control points of any degree n elevated

70

Figure 4.8: Convergence of Degree Elevation

from degree n− 1. According to [81, 82], the authors showed that the convergence

rate is O(1
ν
), where ν is the polynomial order. A picture from [69] illustrates the

convergence process of degree elevation to a 2D Bézier curve. See Figure 4.8.

As shown in the figure, as the polynomial degree is elevated, the number of

control points increases and the control polygon becomes closer to the actual curve,

and therefore gives tighter lower and upper bounds.

4.5.2 Adaptive Check Using Subdivision

In addition to degree elevation algorithm, a subdivision algorithm can also

produce more control points and tighter control polygon while maintaining the shape

of the original Bézier polynomial. Take an edge as the key entity again, the check

will subdivide the original 3rd-order Bézier polynomial associated with the edge

as the addition of two 3rd-order sub-polynomials using the de Casteljau algorithm

[35, 69]:

P 1
0 = 1

2
P

(3)
|3000| +

1
2
P

(3)
|2001|, P 1

1 = 1
2
P

(3)
|2001| +

1
2
P

(3)
|1002|, P 1

2 = 1
2
P

(3)
|1002| +

1
2
P

(3)
|0003|,

P 2
0 = 1

2
P 1

0 + 1
2
P 1

1 , P 2
1 = 1

2
P 1

1 + 1
2
P 1

2 ,

P 3
0 = 1

2
P 2

0 + 1
2
P 2

1 (4.15)

71

Figure 4.9: Convergence of Subdivision

The new sets of Control points for the two sub-polynomials are then: {P (3)
|3000|,

P 1
0 , P 2

0 , P 3
0 } and {P 3

0 , P 2
1 , P 1

2 , P
(3)
|0003|}. Note that P 1

1 is not used as a new control

point.

It is also straight-forward to obtain more control points if one keeps doing

subdivision recursively. And a picture from [69] gives an example of a 2D Bézier

curve and its control polygons after several steps of subdivision. See Figure 4.9.

It is obvious that the control polygon gets closer to the curve after each step

of subdivision, and according to [81, 82], it eventually converges to the curve with

the rate of convergence O(1
2i

), where i is the number of subdivision steps.

4.5.3 Stopping Criteria the Algorithm Description

The goal of the adaptive validity check algorithm is to effectively determine

whether a given curved tetrahedron is a valid element. If min{P (n)
|i| } is found to be

positive, the element is valid. On the other hand, the element is invalid if negative

min{P (n)
|i| } is found at any interpolating point during the checking process. In both

cases, the algorithm will stop accordingly. However if negative min{P (n)
|i| } appears

at a non-interpolting point while no invalidity is found at all interpolating points

during finite steps, it is also necessary to terminate the algorithm without doing

infinite loops of checking and refinement. The current stopping criterion for such

situation is based on evaluating the increment of the lower bound ∆ min{P (n)
|i| } after

72

each step. If negative min{P (n)
|i| } is still reported after ∆ min{P (n)

|i| } < ε, where ε

is a prescribed tolerance, then the element is regarded as invalid and the algorithm

stops at the current step.

It is worth noticing that the subdivision algorithm gives more interpolation

points in addition to the vertex control points. Because after each step of subdi-

vision, the original control polygon is divided into two parts and each part has its

own interpolation points at the ends. See Figure 4.9 as an example. This gives an

alternative to get the exact value of det(J) at arbitrary parametric locations of mesh

edges and faces by subdividing the corresponding control polygons at that location.

This property could also serve as an addition to the stopping criterion. If any of the

newly-computed interpolation control points after a subdivision step has negative

value, it indicates that det(J) at this point is negative and the adaptive check stops

and reports the element as invalid.

A pseudocode description of the algorithm is given in Algorithm 3. The input

is a high-order curved tetrahedral mesh.

73

Data: A high-order curved tetrahedral mesh, prescribed tolerance for

relative increments ε

1 loop over the elements of the input mesh and process each of the elements;

2 for the current element to be processed, compute min{P (n)
|i| } ;

3 if min{P (n)
|i| } > 0 then

4 return: the element is VALID ;

5 else

6 if negative min{P (n)
|i| } is at a interpolation point then

7 return: the element is VALID ;

8 else

9 while relative increment > ε do

10 get the mesh entity associated with the negative control point ;

11 apply subdivision to the mesh entity ;

12 update the new min{P (n)
|i| } ;

13 if min{P (n)
|i| } > 0 then

14 return: the element is VALID ;

15 else

16 if new negative min{P (n)
|i| } is at a interpolation point then

17 return: the element is INVALID ;

18 else

19 compute the relative increment of this step ;

20 if relative increment < ε then

21 return: the element is INVALID ;

22 else

23 update the new relative increment ;

24 end

25 end

26 end

27 end

28 end

29 end

Algorithm 3: Termination of the adaptive subdivision validity check

method

74

4.6 Mesh Modification Operations for Curved Elements

In the section, a set of mesh modification operations designed for curved el-

ements are presented. They can be organized into two categories, entity geometry

modification operations and local mesh topology modification operations.

4.6.1 Entity Geometry Modifications

For a linear straight-sided element, the shapes of its edges and faces are

uniquely defined by the end vertices. In this case one can only reshape a straight-

sided mesh entity by repositioning its end vertices. Generally speaking, determining

the optimal location of a vertex to be repositioned is a constraint optimization

problem in terms of a set of carefully selected objective functions. There has been

extensive efforts devoted to develop various algorithms for the vertex repositioning

operation, such as in [83, 84, 85, 67, 80, 79, 86].

One of the algorithms which is effective and inexpensive is the Constraint

Laplacian smoothing method [83, 84]. It moves the target vertex to the centroid of

its cavity defined as M0{M3} under the constraint of the geometric approximation

and improvement of the worst element shape. Given n mesh edges in a mesh cavity

bounded by the vertex to be repositioned M0
0 , and the other end vertex Mn

0 the

target location can be evaluated as:

x0 =

∑n
i=1 xi

n
(4.16)

where xj is the Cartesian coordinates of the jth vertex M j
0 . If the vertex to be

repositioned is classified on a boundary entity of the geometric model, it is only

allowed to move on the model boundary to ensure geometric approximation accuracy.

In such cases, the computed centroid location needs to be projected back to the

model entity.

This algorithm does not always improve the shape of some extremely poorly

shaped elements [62]. In these cases an alternative vertex repositioning algorithm

that guarantees a better overall mesh quality is the explicit vertex movement method.

An effective design of such an algorithm has been introduced in [83]. This algorithm

is computationally more demanding than the constrained Laplacian smoothing ap-

75

proach, and is only applied in cases where constrained Laplacian method is not able

to yield desired results. The algorithm is summarized in Algorithm 4.

Data: A list of straight-sided elements, shape quality threshold Qth,

maximum number of iterations allowed imax

1 initialize an empty list that stores mesh vertices ;

2 traverse the list of elements and for each element compute the shape

quality Qs ;

3 if Qs < Qth then

4 put the four vertices of the element into the vertex list and avoid

duplication;

5 end

6 traverse the vertex list and process each vertex in turn ;

7 evaluate the shape quality of the elements connected to the current vertex

M0{M3} and get the minimum value Qmin ;

8 find a direction of movement that will improve the shape quality of the

element whose shape is Qmin ;

9 define an interval of uncertainty along this direction of movement ;

10 search the interval of uncertainty for a new location of the current vertex

to move to, where the local maximum of Qmin of the cavity M0{M3} can

be reached;

11 if Qmin can not be improved according to the search then

12 do not move the current vertex and proceed to the next one ;

13 end

14 repeat line 1 - 13 when the end of the vertex list is reached ;

15 if the vertex list is empty then

16 exit the algorithm ;

17 end

18 terminate the algorithm after imax iterations ;

Algorithm 4: An explicit vertex repositioning algorithm introduced in [83]

The first step of the explicit vertex repositioning algorithm is to create a list of

candidate vertices to be processed. The vertices are selected from all the elements

76

whose shape quality is below a given threshold Qth (lines 1 - 5). The next step is

to process the vertices one by one, and explicitly search for a local optimal location

for each vertex to move (lines 6 -13). This process involves the determination of

a direction of movement and an interval of uncertainty for searching. In [83], the

direction of movement is defined as a straight line by the original position of the

vertex and the ideal position for the vertex to move to such that the most poorly

shaped element it bounds is improved to its optimal shape. The interval for searching

is defined as a segment along the direction of motion from the original position of

the vertex to the position where the shape of any element of M0{M3} drops below

the original minimum value Qmin. A bisection or golden search is performed on

the interval to find the local optimal position. Since this algorithm is targeting to

improve the overall shape quality of a local mesh cavity, it is allowed to have the

shape of some elements in a cavity degrade so long as the worst shaped element gets

better and the overall quality get elevated.

For a high-order curved mesh, the shapes of the curved mesh edges and faces

depend not only on the position of the end vertices, but also the high-order nodes

associated with the mesh entities or other entity shape parameters. For example,

the shape of a second-order curved mesh edge is uniquely determined when the po-

sition of its two end vertices plus a high-order node on the edge is fixed. Therefore

the vertex repositioning operation itself is no longer sufficient to effectively manip-

ulate the geometry of curved mesh entities. Recently, the research interests of the

community has been mostly in formulating the mesh curving problem in terms of a

physical problem such as linear or non-linear elasticity of a deformed solid body [80],

or in terms of optimization problems for some functional of given element quality or

geometric accuracy measures [86, 79]. In [8], an entity reshaping algorithm has been

developed for the curved mesh edges and faces to improve the element shape quality

of high-order curved meshes. Pseudo code of the procedure is given in Algorithm 5.

77

Data: A input mesh with curved elements, hybrid shape quality

threshold Qth and straight-sided shape quality threshold qth

1 traverse the mesh and for each element compute the hybrid shape quality

Qsc by Eq 4.9 ;

2 if Qsc < Qth then

3 put the element into the list to be processed ;

4 end

5 traverse the element list and process each element in turn ;

6 compute straight-sided shape quality qs ;

7 if qs < qth then

8 remove the element from the current list ;

9 add the element to list for straight-sided shape improvement

procedures ;

10 else

11 compute curved shape quality qc by Eq 4.8 ;

12 get min{det(J(ξ))} and max{det(J(ξ))} ;

13 find the mesh edges associated with min{det(J(ξ))} and

max{det(J(ξ))} ;

14 for a candidate mesh edge, determine the line of motion ;

15 define the interval of uncertainty for searching ;

16 perform an explicit search algorithm such as golden search ;

17 find the local optimal position to reshape the edge ;

18 end

Algorithm 5: An explicit entity reshaping algorithm

The steps of the algorithm are as follows. The input to the algorithm is a

list of poorly-shaped curved tetrahedrons whose shapes are evaluated by the hybrid

element quality metric defined in Eq 4.9. In this present work, m and n in equation

are taken to be 1.

The algorithm processes the list of tetrahedrons as the following steps:

Step 1: Retrieve one tetrahedron from the list, and compute the correspond-

ing shape quality measurement qs and qc respectively.

78

Note that, there are multiple choices for the shape metric qs of a given straight-

sided tetrahedron as discussed in Section 4.2.1. In the present work, the Mean Ratio

measure is selected to compute qs as given in Eq 4.4. The shape metric qc for a

curved tetrahedron in this algorithm uses the scaled variations of the determinant

of Jacobian over the element domain defined by Eq 4.8. The explicit smoothing

algorithm works independently of such choices. Since the Scaled Jacobian measure

is used for calculating qc, curving any edge or face of a given element will change

the Jacobian evaluation. On the other hand, since qs is a function of the vertex

coordinates of a given element, curving any edge or face entity will not change the

value of qs as long as the vertices remain unchanged.

Step 2: Determine whether this tetrahedron should be considered for the

curved entity reshaping operation. See lines 7 - 9 of Algorithm 5.

Given a shape quality threshold qth for straight-sided element shape, if qs <

qth, it indicates the straight-sided shape component is not acceptable under such a

threshold, and it takes a higher priority to improve qs first for the current element.

Therefore, this tetrahedron will not be considered for the next steps. It will be

removed from the current list and will be put into another list of tetrahedrons

for a straight-sided-element shape improvement procedure. On the other hand, if

qs ≥ qth, it shows that the straight-sided shape component qs of this region is good

enough. Thus, considerations are given to improving the curved component of the

shape quality qc. And the algorithm continues with the next steps.

Step 3: Choose the candidate mesh entities to be reshaped. (See lines 11 -

13)

Once it is determined that the curved shape quality qc is to be improved, it is

critical to pick an appropriate candidate entity for reshaping. Based on the curved

shape quality qc defined in Eq 4.8, it is obvious that one should either increase

min{det(J(ξ))} in order for qc to be improved. Therefore the candidate mesh entity

should be the one(s) directly associated with the maximum or minimum value of

det(J(ξ)).

By using the Bézier polynomial representation introduced in Chapter 2 for a

second-order curved tetrahedron, one can easily evaluate the value of det(J(ξ)) at

79

the 20 distinct control points associated with the mesh vertices, edges and faces,

and get min{det(J(ξ))} and max{det(J(ξ))}.
Depending on which control point the maximum or minimum is at, differ-

ent candidate mesh entities are chosen. If the control point is associated with a

mesh vertex M0, then the edges connected to the vertex are the candidate entities

M0{M1}. If the control point is associated with a mesh edge M1, this particular

edge M1 is the candidate entity. If the control point is associated with a mesh face

M2, the bounding edges of the mesh face are candidates M2{M1}.
Note that, the current algorithm only deals with the reshaping operation in

the physical space, therefore the edges that are classified on model boundaries are

not included as candidate edges since it involves the mapping of the entity shape

between the physical space and the parametric space of model entities.

Step 4: Determine the line of motion and the interval of uncertainty (Lines

14 -15)

After having chosen the candidate mesh entity/entities to apply the reshaping

operation, the next step is to determine how to reshape the entity. For the curved

element shape metric qc, the optimal value is always reached when a given tetra-

hedron is straight-sided, in which case, the value of det(J) is a constant over the

tetrahedron and qc = 1. This indicates that for a given curved tetrahedron without

further geometric constraint, it is always the best choice to reshape the curved enti-

ties back to be straight-sided. As an example in Figure 4.10(a), the optimal position

for P to move to is P ′ so that M1 becomes a straight-sided edge therefore qc’s for

the two triangular elements reach 1.

However when reshaping a mesh entity of a curved tetrahedron with certain ge-

ometric constraints (for example some of the edges and/or faces of that tetrahedron

are already curved because they are classified on curved geometric model bound-

aries), it is usually no longer the best choice to place the high-order node(s) of the

curved entity to the mid-point position of its imaginary straight-sided counterpart.

Instead, one needs to search for a local optimal location in a certain direction of

motion. In order to efficiently find a local optimum, this algorithm limits the type

of motion of the high-order node(s) to be on a straight line and consequently defines

80

Figure 4.10: Two cases of 2D mesh edge reshaping. (a) without further
geometric constraints, (b) one additional edge classified on
model boundary G1

the line of motion by the current position of the high-order node to be moved and

the mid-point position of the imaginary straight-sided entity.

r = P + (P−P′) · t (4.17)

See Figure 4.10(b) for example.

As the high-order node moves along the line of motion to improve the shape

quality of current tetrahedron, the shape quality of the neighboring tetrahedrons

in the cavity changes, and is very likely to become worse at some point. The

worst scenario is when the high-order node reaches a position that lies on another

mesh entity, in which case, the current mesh entity associated with the high-order

node will intersect with the other entity leading to mesh invalidity. Therefore the

segment of the line of motion between intersections is considered as the interval of

uncertainty for finding the local optimal position. For instance, the dash-dot line in

Figure 4.10(b) is the interval of uncertainty for P to move along.

Step 5: Search the interval of uncertainty for the local optimal location.

(Lines 16 -17)

81

With the interval of search determined, one needs to find the optimal location

on the line of motion for the high-order node to be moved to. As stated previously,

reshaping a candidate mesh entity affects the shape quality of its neighboring tetra-

hedrons in the cavity, and it is very likely that the shape quality of a certain affected

tetrahedrons will drop even below the lowest shape quality among the tetrahedrons

of the original cavity. To avoid such situation from happening, the objective function

for the search is picked to be the lowest shape quality of the tetrahedrons within the

cavity defined by the entity to be reshaped. Therefore the local optimal location for

the entity to be reshaped is where the lowest shape quality of the cavity is improved

to the highest possible.

The golden section algorithm in [83] is used here to perform the search. This

algorithm evaluates the objective function starting at the two ends of the interval of

uncertainty. By comparing the values, about 38% of the interval is discarded each

time and the rest serves as the interval of uncertainty for the next round of search.

A piece of pseudo code is given to discribe the algorithm (see Algorithm 6).

82

Data: beginning and end of the initial interval of uncertainty P0 and P1,

predefined tolerance ε

1 compute the length of the initial interval l0 = P1 − P0 ;

2 get the two golden section points P2 = P1− 0.61803× l0,

P3 = P0 + 0.61803× l0 ;

3 evaluate the objective function f2 = f(P2); f3 = f(P3) ;

4 set the current length of interval l = l0 ;

5 while l/l0 > ε do

6 if f2 > f3 then

7 P1 = P3; P3 = P2; f3 = f2 ;

8 l = P1 − P0 ;

9 P2 = P1 − 0.61803× l ;

10 f2 = f(P2) ;

11 else

12 P1 = P2; P2 = P3; f2 = f3 ;

13 l = P1 − P0 ;

14 P3 = P0 + 0.61803× l ;

15 f3 = f(P3) ;

16 end

17 end

18 if f2 > f3 then

19 Pmax = P2 ;

20 else

21 Pmax = P3 ;

22 end

Algorithm 6: Algorithm for the golden section search

When re-shaping curved mesh entities with higher-order than quadratic geom-

etry, more than one high-order node may be allowed to move on a particular curved

entity which increases the complexity and computational cost of solving the problem

involved with determining the optimal location to be moved to. Fig 4.11 shows an

example of an interior curved edge represented by a cubic Bezier geometry. While

83

Figure 4.11: An example of an interior curved edge represented by a
cubic Bezier geometry

certain heuristics [8] to determine acceptable positions for the high-order nodes can

be applied to reshape element entities, it is desirable to take advantage of numeri-

cal optimization procedures that can explicitly target at improving a specific shape

quality metric and obtain local optimal for the high-order nodes despite the poten-

tially higher computational cost. One of the critical questions to be addressed is

how to determine a proper objective function for the optimization problem. Since it

is very likely that the chosen objective function is non-smooth, specific optimization

algorithms such as the one proposed by Freitag et al [84] need to be considered.

One of the methods developed to curve high order interior mesh entities is

to make use of blending based parametrization. See Fig 4.12. In this particular

example, the interior edge is curved based on a Coons patch based parametriza-

tion [87, 88].

Given any 4 curves, f(s, 0), f(s, 1), f(0, t), f(1, t) that meet continuously at

the corners, one can construct a smooth surface interpolating these curves. The

mathematical expression is given in Eq 4.18.

C(s, t) = (1− t)f(s, 0) + tf(s, 1) + (1− s)f(0, t) + sf(1, t)

−(1− s)(1− t)f(0, 0)− (1− s)tf(0, 1)− s(1− t)f(1, 0)− stf(1, 1) (4.18)

84

Figure 4.12: Example of curving mesh entities to fix invalid curved ele-
ments.

Figure 4.13 illustrates the boundary curves and surface rendering for a Coons

patch. Algorithm 7 shows the steps to construct the Coons patch and compute the

desired shape for the curved mesh entity.

85

Data: Candidate edge M1
0 to be reshaped

1 get total number of faces, n, bounded by M1
0 and are also classified on

model surface G1
0;

2 if n != 2, then non-manifold model edge, return error

3 get end vertices M0
0 and M0

1 that bound M1
0

4 get the two triangle faces M2
0 and M2

1 bounded by M1
0

5 for each triangle , get the third vertex M0
2 (and M0

3)

6 with M0
j , j = 0, 1, 2, 3, and the underlying param coordinates, create

Coons patch C(ξ, η),

7 Curve edge M1
0 using quadratic geometry: get the Cartesian coordinates

of mid-edge node P0 = C(1
2
, 1

2
),

8 if the element validity then

9 End of algorithm;

10 end

11 if not passed, curve edge M1
0 using cubic geometry: get the Cartesian

coordinates of the two high-order nodes P0 = C(1
3
, 1

3
), P1 = C(2

3
, 2

3
),

12 if the elements are all validity then

13 End of algorithm;

14 end

15 if there is any invalid curved elements then

16 Invoke explicit vertex smoothing to improve qs;

17 Repeat the algorithm from Step 1;

18 end

Algorithm 7: Edge curving based on Coons patch in the parametric space

A straight-sided edge M1
0 to be curved is given as an input to the algorithm.

Lines 1 - 2 check for the correct local mesh configuration. The algorithm expects one

edge bounded by two triangular faces classified on a geometric model face. Non-

manifold model edges are not supported by this algorithm. Lines 3 - 6 collects

the four corner vertices, M0
j , j = 0, 1, 2, 3, which forms a quadrilateral face in the

parametric space of (ξ, η). Lines 7 - 10 try to create a curved edge with 2nd-order

geometry, which is the lowest possible order. The validity of the resulting curved

86

elements are checked. If the elements are all valid, the algorithm then finishes. If

there is any invalid element as a result of the 2nd-order edge geometry, then Lines

11 - 14 will increase the order of the geometry to cubic. By doing so, the curved

edge has more degrees of freedom and is more likely to produce valid elements. If

there is still any invalid curved elements as a result of the cubic edge, the algorithm

will invoke explicit vertex smoothing procedure as discussed in Algorithm 4 to try

to improve the straight-sided element quality of the local mesh cavity, which will in

term create more space for the creation of a valid curved edge.

It is worth mentioning that while Algorithm 7 is designed for geometry mod-

ification of a curved mesh, it is still important for the overall mesh adaptation

procedure to satisfy the requested mesh size field. More specifically, mesh refine-

ments are always carried out in order to create elements as small as the requested

size in certain regions, while coarsening is carried out when possible as requested in

other regions. A set of curved mesh topology modification operations are designed

to support the size field requirement.

Figure 4.13: Boundary curves for a Coons patch

4.6.2 Local Mesh Topology Modification

While the entity geometry operations provide means to increase geometric ap-

proximation, local mesh topology modification operations are essential in changing

mesh size to satisfy the requirement of a desired new size field. When designing

curved local mesh modification operations for high-order curved meshes, a two-step

process is employed. The mesh topology related modification is first processed as a

87

straight-sided local mesh modification followed by a curved entity reshaping oper-

ation. To generalize curved local topology modification operations, such as curved

split, collapse and swap, to higher order mesh entities, the same 2-step process can

be adopted. The curving step for interior entities uses the entity geometry modifi-

cation operations discussed in Section 4.6.1. More specifically, the following steps

are executed.

1. Test if a local mesh topology modification is applicable by applying checks to

underlying straight-side element cavity.

2. If no topological violation is found, apply appropriate local mesh modification

operations as if the cavity is straight-sided, otherwise end the curved mesh

modification operation.

3. Perform initial curving of entities on model boundary. The curving stage

leverages the techniques developed for high order mesh curving.

4. Check curved element validity

5. If an inverted element is detected due to curving, apply geometry modification

operations, e.g. smoothing, to untangle. If no way to fix invalidity, revert the

cavity to the status prior to applying any mesh modification.

4.7 Curved Mesh Adaptation Workflow

Given an initial curved mesh in parallel and a desired mesh size field, curved

mesh adaptation in parallel produces a distributed curved mesh that satisfies the size

field and preserves the geometric approximation to the right order. The procedure

consists of three stages (see Algorithm 8): 1) curved mesh invalidity correction,

2) coarsening and iterative refinement, and 3) shape quality improvement. After

the mesh adaptation, a load-balancing step is performed by using either Zoltan or

ParMETIS. Fig 4.14 gives an illustration of the overall workflow.

88

Figure 4.14: Illustration of curved mesh adaptation workflow

Data: Initial curved mesh, geometry domain, and mesh metric field
Result: Adapted curved mesh satisfying the metric field

1 traverse mesh regions and create a list of all invalid elements;
2 while the list is not empty do
3 eliminate the invalidity through curved mesh correction procedures;
4 end
5 traverse mesh edges and determine the edges with length shorter than

Llow;
6 perform coarsening algorithm to those edges;
7 traverse mesh edges and determine the edges with length longer than Lup;
8 perform iterative refinement algorithm to those edges;
9 traverse mesh regions and create a list of regions that have shape quality

Qsc < Qthreshold;
10 while there is still unprocessed region(s) in the list do
11 evaluate the best local mesh modification operations applicable to

improve the shape of the region;
12 if no operation is applicable then
13 tag the region as processed;
14 end

15 end
16 create a list of of the regions still with quality Qsc < Qthreshold;
17 perform entity shape smoothing by geometry modifications to improve

shape quality;

Algorithm 8: Overall algorithm of curved mesh adaptation

89

4.7.1 Invalidity Correction for Initial Curved Meshes

This stage eliminates all invalid elements prior to performing mesh modifica-

tions, since the mesh modification operations assume a valid starting mesh. The

invalidity correction algorithm detects the invalid elements by the validity checks

introduced in [8]. It chooses the proper local mesh modification and entity reshape

operations to correct the invalidity of the curved elements. Details of the specific

invalidity correction algorithm can be found in [65, 66].

4.7.2 Coarsening and Refinement

The coarsening process eliminates mesh edges that are shorter than the desired

length specified by the size field [89]. It is accomplished by performing entity collapse

operations on the identified short edges. Serial (on-part) curved entity collapse

operation are introduced in [65]. Parallel entity collapse operation is discussed

in [8]. When collapsing curved mesh entities classified on curved geometric model

boundary, it is necessary to curve the new entities to conform to the boundary after

collapsing. Curving the new entity may lead to intersection with another existing

mesh entity which causes element invalidity. To identify such cases, curved mesh

validity checks are always applied after a collapse operation. Invalidity is then

resolved by the invalidity correction algorithm [65, 66] as discussed in the previous

stage of this section.

After coarsening, the refinement algorithm incrementally reduces the edge

lengths that are longer than the desired size field by as many iterations as needed

to satisfy the local mesh metric. Entity split operations are applied to achieve the

goal [89][65]. In the case that curved entities are to be refined, the new entities should

be curved properly as well. The shape of the new entities are determined through

parametric interrogations to the CAD modeler [21] and/or by calculation in the

parametric space using Bézier parametrization of curved tetrahedrons [22][65][66].

Edge length is checked after each refinement iteration. Edge collapse operations are

performed to eliminate the shorter-than-desired edges introduced by the refinement

operations. In principle, some mesh edges may not be eliminated by collapsing due

to local mesh invalidity that is unable to fix. In such infrequent cases, the col-

90

lapse operation is not performed. On the other hand, all curved mesh refinement

operations are carried out in order to obtain the desired element sizes.

4.7.3 Curved Element Quality Improvement

After obtaining a mesh with the desired size field, this stage is conducted

to further improve mesh quality by edge/face swap and/or curved entity reshape

operations [89][65][66]. Details of the parallel swap operation is presented in [8].

The entity reshape operation for curved elements is extremely demanding in terms

of computation costs due to the explicit search procedure. Thus, it is used only

when swap operations fail to improve the curved element shape quality. Given

a pre-specified element quality threshold Qth, the elements whose shape quality

Qsc < Qth are collected to a list and are processed iteratively until either the list is

empty or no further local mesh modification operations can be applied to improve

the remaining elements in the list.

4.7.4 Parallel SPR Based Error Estimation

In a parallel adaptive finite element simulation, a posteriori error estimation

and correction indication is an important component. A parallel error estimation

procedure has been developed based on the Super-convergent Patch Recovery (SPR)

scheme [90, 91]. In the error estimation procedure, a C0 continuous gradient field is

recovered from the original C−1 discontinuous field, and the error is defined as the

difference between the recovered and original fields.

A key step of the recovery of a given nodal degree of freedom (associated with

a mesh vertex, M0
i) employs a local least-square fitting scheme over the patch of el-

ements (mesh regions {M0
i {M3}}) surrounding the node (or the mesh vertex M0

i).

Therefore, the complete field information of the nodal patch is required. In the

context of a parallel analysis based upon a distributed mesh, a set of mesh vertices

is characterized as being located on mesh partition boundaries. Consequently, the

corresponding nodal patch of such a vertex is distributed among several mesh par-

titions, thus not complete within a local part. In order to form a complete patch

on a local mesh part, and in the meantime, to avoid extensive communication cost

between mesh parts, the parallel SPR based error estimator has been developed to

91

take advantage of the ghosting functionality supported by the Flexible distributed

Mesh DataBase (FMDB) as part of PUMI introduced in Chapter 3 [92].

Data: Distributed Mesh M , Solution field data S
Result: Calculate the error field, elemental error indicator and new

desirable mesh size
1 Load the mesh and solution data, setup the nodal field correctly;
2 Create one layer of ghost regions with bridge vertices;
3 Conduct the on-part SPR procedure on M and S;
4 Calculate the error field, elemental error indicator and new desirable mesh

size using Eq 4.19, 4.21 and 4.20;
5 Delete the ghost entities;

Algorithm 9: Parallel SPR Based Error Estimation with Ghosting

Algorithm 9 gives the steps for the error estimation procedure using ghosting.

Step 1 loads the mesh and solution data and sets up the nodal field correctly. Step 2

creates one ghost layer of mesh regions on part boundaries. The field data attached

to the mesh entities is also carried along with the ghosts. After the ghosting process

is done, it is guaranteed that each mesh vertex on any local part (including the ones

on part boundary) has a complete local patch of elements on the same mesh part.

Therefore no extra inter-part communication is required to form the local nodal

patch.

In Step 3, each local mesh partition including the ghosted entities is regarded

as an independent serial mesh since further communication is no longer needed.

For each non-ghosted mesh vertex on the local part, the SPR procedure recovers

the C0 gradient field ε∗ based on the least-square fitting scheme over the complete

nodal patch [93]. Note that the ghosted mesh vertices are not processed by the SPR

procedure since they are essentially duplicated copies of certain non-ghosted entities

on other mesh parts.

Step 4 calculates the error field, elemental error indicator and desirable mesh

size. As the exact solution ε is unknown, the error eε can only be estimated. In this

SPR based approach, the recovered solution ε∗ is used to replace the exact solution.

The error field computation equation is done using the following Equation 4.19.

eε ≈ e∗ε = ε∗ − εh (4.19)

92

After the error field computation, the elemental error indication is carried out

by integrating of the error over the element domain. The desirable mesh size is

calculated through an h-adaptive procedure based on Equation 4.20 [93].

hnewe = hcurrente × re (4.20)

where hnewe and hcurrente denote the new and current mesh sizes respectively.

And the size scaling factor re is computed based on the Equation 4.21 [93].

re = ‖eε‖
2

2p+d
e

η2‖ε∗‖2∑n
i=1 ‖eε‖

2d
2p+d

i

1
2p

(4.21)

where d and p are respectively the dimension and polynomial order of elements

in the part mesh. e is an element in the mesh. The goal is to ensure the relative

percentage error in L2 norm of the error in the selected quantity η is below a given

limit.

With the aid of the ghost layers, there is no inter-part communication required

in Step 4. After the error estimation procedure is completed, Step 5 deletes the ghost

entities that were created as part of Step 2. With the application of ghosting, the

overall communication cost of the parallel error estimator can be reduced to the one-

time ghosting process in Step 2 as there is no other form of inter-part communication

required.

4.8 Examples

The Advanced Computations Department (ACD) of the SLAC National Ac-

celerator Laboratory (SLAC) is developing a suite of high-order finite element pro-

cedures (ACE3P) for accelerator simulations that have demonstrated the ability to

accurately model a variety of accelerator problems [65][68]. The level of discretiza-

tion to obtain reliable predictions in ACE3P simulations often requires meshes with

upwards of hundreds of millions of elements. To meet the requirements, the Scientific

Computation Research Center (SCOREC) at RPI, in collaboration with Simmetrix

Inc., is working with SLAC on providing the full range of parallel curved mesh

generation and adaptation tools needed to work with the ACE3P simulation tools.

93

Figure 4.15: Overview and close-ups of a partitioned curved mesh of lin-
ear accelerator cavities

Fig 4.15 gives an example of a distributed curved mesh generated over a ge-

ometry of two linear accelerator cavities. The largest application so far has been a

partitioned curved mesh of 180 million tetrahedral elements generated on 64 pro-

cessors in less than 12 minutes (not counting I/O).

Fig 4.16 shows a small example of a parallel curved mesh refinement process

with an isotropic analytic size field. The geometry is a linear accelerator cavity. The

mesh to be refined on the left is of a relatively coarse global mesh size with finer

mesh being generated locally at regions of large curvature. The parallel refinement

focuses at the coarse mesh regions and brings the global mesh to a finer size while

keeping the locally refined mesh regions unchanged.

Fig 4.17 gives an example of adapting an isotropic initial curved mesh to an

anisotropic analytic size field representing a planar shock.

Fig 4.18 gives a set of pictures: (a) initial mesh of 8 parts, (b) solution field, (c)

new size field and (d) 8-part adapted mesh of a pillbox model. (e) and (f) are close-

up views of the region where relatively small mesh sizes are needed to get higher

resolution and extensive curved mesh refinement is applied. The pictures present a

complete iteration of the developed parallel adaptive loop. The initial mesh in this

case has 22k elements and the mesh after adaptation has 106k elements. The wall

clock time of mesh adaptation for this 8-part mesh in parallel is 6.73 seconds. The

total time for the same adaptation process in serial is 22.89 seconds. Both the serial

94

Figure 4.16: An example of parallel curved mesh refinement on a four
part mesh

Figure 4.17: An example of curved mesh adaptation with an anisotropic
size field

and parallel cases run on 2.3GHz Opteron processors.

95

Figure 4.18: Example of one iteration of the parallel adaptive loop

CHAPTER 5

INTEGRATION WITH FINITE ELEMENT SOLVERS

5.1 Introduction

The work flow of an adaptive simulation starts with a definition of the problem

domain of interest. In computer-aided design and engineering, the domain definition

is typically a solid model constructed in a CAD system [35]. The analysis attributes

(loads, boundary conditions, material properties) are specified with respect to the

solid model. Initial mesh control attributes that guide the mesh generation process

can also be specified with respect to the solid model [94]. Based on the meshing

attributes, an initial mesh is generated with the required geometric approxima-

tion accuracy to the model. In the case of parallel simulations, load balancing is

performed to maintain balanced distribution of workloads among the multiple pro-

cesses. The finite element analysis procedure computes the solution fields of interest.

To adaptively improve solution accuracy, error estimation and correction indication

procedures are used to calculate a mesh size field, which is used to drive the mesh

adaptation procedure to obtain an adapted mesh. After mesh adaptation parallel

dynamic load balancing is applied and the finite element analysis procedure is per-

formed, and a new set of solution fields can be obtained with improved resolution

and accuracy [95]. The adaptive simulation loop continues until the desired solution

accuracy is achieved as shown in Fig 5.1. Finally the results of the solution fields

can be post-processed and visualized.

5.2 Geometric Mapping of Curved Finite Elements

A critical step in the finite element solution process is the evaluation of ele-

ment contribution to the global matrix system, which involves the computation of

geometric mapping of an element between the physical and parent domains. For

the classical isoparametric elements in a C0 mesh, the mapping between the parent

space and the physical space is expressed by the same set of polynomial functions

used as the basis functions for interpolating finite element solution fields. However,

96

97

Figure 5.1: The desired workflow for an adaptive simulation

this appproach does not apply to the present work in this thesis because the basis

functions used to represent the rational G1 curved entity geometry are generally not

the same as the finite element shape functions used for analysis. 1 In the present

work, a general approach is adopted to construct the geometric mapping so as to ac-

count for the G1 surface geometry based on the use of blending functions[7]. More

specifically, shapes of all the lower dimensional mesh entities bounding a higher

dimensional mesh entity are multiplied with linear blending functions, and the con-

tributions are added as part of the overall mapping.

For instance, given a curved triangular face entity, its geometric mapping

between the parametric domain and the physical domain is computed by blending

all the vertices and edges bounding the given mesh face. The blended mapping

function is given in Eq 5.1.

1The isogeometric analysis community aims at developing methods to use the same rational
basis functions for numerical analysis, but it is outside of the scope of the thesis.

98

Xi(ξj) =
1

2

{(ξ1

1− ξ2

)
E1(ξ2) +

(ξ2

1− ξ1

)
E1(1− ξ1)

+
(ξ3

1− ξ2

)
E2(1− ξ2) +

(ξ2

1− ξ3

)
E2(ξ3)(ξ1

1− ξ3

)
E3(1− ξ3) +

(ξ3

1− ξ1

)
E3(ξ1)

+ξ1V1(1, 0, 0) + ξ2V2(0, 1, 0) + ξ3V3(0, 0, 1)
}

(5.1)

where Xi denote Cartesian coordinates in the physical domain, ξi denote the para-

metric coordinates, Ei denote the mapping functions of the three edge entities re-

spectively, and Vi denote the three vertices.

In the similar way, the geometric mapping of a tetrahedral volume entity is

given in Eq 5.2.

Xi(ξj) = (1− ξ1)F1(ξ′) + (1− ξ2)F2(ξ′) + (1− ξ3)F3(ξ′) + (1− ξ4)F4(ξ′)

−(1− ξ1 − ξ2)E1(ξ′)− (1− ξ1 − ξ3)E2(ξ′)− (1− ξ1 − ξ4)E3(ξ′)

−(1− ξ2 − ξ3)E4(ξ′)− (1− ξ2 − ξ4)E5(ξ′)− (1− ξ3 − ξ4)E6(ξ′)

+ξ1V1(1, 0, 0, 0) + ξ2V2(0, 1, 0, 0) + +ξ3V3(0, 0, 1, 0) + ξ4V4(0, 0, 0, 1) (5.2)

Here, Fj, (j = 1, 2, 3, 4) denote the four face parametrization. Similarly,

Ej, (j = 1, 2, 3, 4, 5, 6) denote edge parametrization. Vj are the vertices. ξ′i de-

fines the edge or face parametric coordinates normalized such that
∑n

k=0 ξ
′
k = 1,

where n is the number of mesh vertices bounding the edge or face. For example, for

a face entity where ξ4 = 0, the three normalized coordinates are defined as given in

Eq 5.3.

99

ξ′1 =
ξ1

ξ1 + ξ2 + ξ3

ξ′2 =
ξ2

ξ1 + ξ2 + ξ3

ξ′3 =
ξ3

ξ1 + ξ2 + ξ3

(5.3)

It is worth noting that the blending approach is independent of the chosen

face and edge parametrization, therefore can be used with other types of parametric

representations of mesh faces.

Given the blending based entity parametrization defined by Eq 5.1 and Eq 5.2,

geometric mapping related calculations can be carried out in a straight-forward

way. Derivatives quantities required by the Jacobian matrix ∂xi
∂ξj

can be evaluated

by applying chain rule to Eq 5.2. As a result, analytic expressions of the derivatives

of the blending mapping can be obtained.

For example, the partial derivative of the first term in Eq 5.2 with face F1 is

given as follows:

∂

∂ξ1

= −F1(ξ′1, ξ
′
2) + (1− ξ1)(

∂F1(ξ′1, ξ
′
2)

∂ξ′1

∂ξ′1
∂ξ1

+
∂F1(ξ′1, ξ

′
2)

∂ξ′2

∂ξ′2
∂ξ1

) (5.4)

Similarly, the partial derivatives of the first term that blends edge E1 is given

as follows:

∂

∂ξ1

= E1(ξ′1)− (1− ξ1 − ξ2)(
∂E1(ξ′1)

∂ξ′1

∂ξ′1
∂ξ1

) (5.5)

And the partial derivatives of the terms involving vertices are reduced to con-

stants. Given the approach to calculate derivatives, the Jacobian matrix and its

determinant can be easily evaluated. In addition to volumetric entities, Jacobian

of the lower dimensional entities are also needed for carrying out integrals on the

element faces/edges associated with boundary conditions.

100

User

+Calculate()

�interface�
Strategy

+ execute()

ConcreteStrategyA

+execute()

ConcreteStrategyB

+execute()

ConcreteStrategyC

+execute()

Figure 5.2: Schematic diagram of Strategy Pattern

5.3 Design of Inter-Operable Components and Interface

It is a complex task to design and implement a piece of software library which

is flexible, extensible and interoperable with other finite element analysis solvers.

Using proper software engineering solutions and well-known design techniques can

significantly reduce the complexity and increase the quality of the program. This

section introduces a few common design patterns and describes the applications of

those patterns in the design and implementation of the curved element library.

5.3.1 Strategy Pattern

Strategy pattern defines a family of algorithms by encapsulating each algorithm

in one separate class and making them interchangeable via a uniform interface es-

tablished by their base class [96]. Figure 5.2 shows a schematic diagram of this

pattern.

In this diagram the Strategy class declares an interface for all strategies. The

client code represented by the User class maintains a reference to a Strategy object

and uses the Strategy interface to call an algorithm. Each ConcreteStrategy

implements the algorithm using the Strategy interface.

There are many places in the design of a finite element software package where

this pattern can be used. For instance, linear solvers, geometries, elements, etc. In

the present work, the entity class is designed by adopting the strategy pattern.

Figure 5.3 shows a schematic diagram of the Entity class structure. Using this

pattern, each curved entity type derived from the base Entity class encapsulates

101

Element

+ComputeDetJ()

�interface�
Entity

+ ComputeDetJ()

CrvEdge

+ComputeDetJ()

CrvFace

+ComputeDetJ()

CrvRegion

+ComputeDetJ()

Figure 5.3: Entity class diagram using the Strategy design pattern

one algorithm to calculate the Jacobian determinant separately based on the spatial

dimension of the entity. This encapsulation makes the software package easier to

maintain and extend. he interface is defined by the base Entity class and is uniform

for all derived types. The client Element class can be from potentially any arbitrary

finite element based analysis code. T he only modification needed for the Element

class in the user code is to maintain a pointer to the Entity base class, which may

point to any member of the derived types of the curved entity classes. T herefore,

any intrusive modification to the client code is minimized.

5.3.2 Bridge Pattern

The bridge pattern decouples the abstraction and its implementation in such

a way that they can change independently [96]. Figure 5.4 shows the structure of

this pattern. In this pattern Abstraction defines the interface for the user and also

holds the implementor reference. AbstractionForm create a new concept and may

also extend the Abstraction interface.

Implementor defines the interface for implementation part which is used by

abstractions. Each ConcreteImplementor implements the implementor interface for

a concrete case. Bridge pattern is useful for connecting to concepts with hierarchi-

cal structure. For instance, in a finite element program this pattern can be used

to connect elements to geometries, linear solvers to their reorderer, or to connect

iterative solvers to preconditioners.

In the present work, the family of curved entity classes are designed to be a

102

Abstraction

+BaseOperation()

AbstractionFormA

+Operation()

AbstractionFormB

+Operation()

Implementor

+ImplementedOperation()

ConcreteImplementorA

+ImplementedOperation()

ConcreteImplementorB

+ImplementedOperation()

Figure 5.4: Schematic diagram of the Bridge pattern

hierarchical structure. The same is true for the geom shape classes as well. There-

fore, a bridge pattern is naturally adopted to connect the curved entity family with

the curved geometry family.

Figure 5.5 shows an illustration of the structure of the entity and geometric

shape classes using bridge design pattern. One of the basic operations of a curved

entity is to compute the Jacobian matrix and its determinant. In the present design

with bridge pattern, the base (or abstract) entity class keeps a pointer to the geom-

etry shape class, which points to any member of the actual geom shape family. The

base entity class also implements the procedure to calculate Jacobian by calling the

interface defined in geom shape. As a result, any derived entity type class inherits

the procedure to calculate Jacobian. Therefore, any entity can be combined with

any geom shape of the same spatial dimension and topology. For example, any

triangular mesh entity can be combined with a triangular geometric shape such as

Bezier, Gregory or other representation.

The geom shape family of classes, in the meantime, is designed and imple-

103

Entity

+GetDetJ()

CrvFace

+GetDetJ()

CrvRegion

+GetDetJ()

GeomShape

+ComputeDetJ()

BezierTri

+ComputeDetJ()

GregoryTri

+ComputeDetJ()

Figure 5.5: Bridge design pattern applied to mesh entity and geometric
shape classes

mented with the strategy pattern which is similar to the design of the curved

entity classes.

5.4 Solver Integration

Using curvilinear meshes and high-order finite elements in the field of com-

putational electromagnetics has proven to produce superior analysis results than

the conventional finite elements both in terms of better accuracy and faster conver-

gence [97]. The curvilinear mesh improvement and adaptation capabilities presented

in the work has been integrated with the electromagnetics solver Omega3P which is

a part of the solver suite ACE3P developed by SLAC National Accelerator Labo-

ratory (SLAC) of the Department of Energy (DOE). It is a collaboration between

SCOREC and DOE to help bring high quality curvilinear meshing and adaptivity

to the electromagnetics solver of interest.

The primary interest in studying the use of G1 meshes is to examine the poten-

104

tial benefit of whether such meshes produce better finite element simulation results

in terms of solution accuracy. It has been identified that certain types of physical

applications, such as electromagnetic scattering and compressible flow applications,

are extremely sensitive to the accuracy and smoothness of the computational mesh

that approximates the curved domain boundaries [40, 19]. Therefore it is desirable

to integrate the curved meshing techniques developed with finite element analysis

solver packages that have the capability of solving some of the benchmark applica-

tions. In the present work, the finite element solver chosen for the integration and

testing is are the flow solver Nektar++ [98] developed by two collaborating research

groups at the University of Utah and Imperial College London.

5.5 Nektar++

Nektar++ is a spectral element based CFD solver package designed to allow

one to construct efficient classical low polynomial order h-type elements as well as

higher-order p-type elements [59].

Nektar++ supports curvilinear meshes defined by standard Lagrange type of

interpolation functions. In the solver pre-processing stage, mesh geometry data is

read in by Nektar++ in the form of spatial coordinates of vertices and high-order

interpolation nodes [59]. During the analysis stage, the standard isoparametric ap-

proach is adopted to construct the geometric mapping between the parametric space

and physical space. The element mapping is defined by the same set of shape func-

tions that are used to define the finite element space and approximate the solution

fields. Therefore, geometric related calculation, such as mapping evaluation, deriva-

tive evaluation, Jacobian determinant, as well as inverse Jacobian are all carried out

based on the element shape functions that define the geometric mapping.

At the implementation level, the SpatialDomains library within the Nektar++

package contains the most important family of classes that define the overall mesh

geometry representation and provide entity level access to the geometric informa-

tion needed by other analysis solver libraries within Nektar++. To integrate PUMI

and the curvilinear G1 mesh geometry representation with Nektar++, modifications

are made to a subset of SpatialDomains classes to support the quartic curved

105

Nektar++

PUMI

SpatialDomain::Geometry
GeomFactor

+ComputeDeriv()
+ComputeJac()

SpatialDomain::TriGeom

SpatialDomain::TetGeom

CrvEntity

CrvTri CrvTet

Figure 5.6: Integration of Nektar++ solver package with PUMI

G1 surface geometry and the curved volume mapping based on blending. More

specifically, new classes are derived from the following existing classes of Nektar++:

SpatialDomains::SegGeom; TriGeom; TetGeom, which represents the equivalent

mesh edge, face and region entity in a PUMI mesh, to provide support for inter-

rogations of the quartic G1 geometric shape for mesh edge, face and region entities.

The SpatialDomains::GeomFactors class, which originally supports Jacobian and

inverse Jacobian calculation through the standard isoparametric mappings built in

Nektar++, has been modified to perform the calculation based on the information

provided by the new mesh geometry. A class diagram is given in Figure 5.6. During

106

runtime of the Nektar++ solution process, an instance of PUMI mesh is maintained

in-memory along with the Nektar++ solver instance. Instances of the derived classes

will be created for the curved mesh entities to replace the original Nektar++ geom-

etry class objects. Function calls originally made to compute the geometric related

quantities for curved elements are re-directed to use the G1 mesh geometry. Re-

sults obtained from test examples solved by Nektar++ with integrated G1 curved

MeshAdapt are given and discussed in Chapter 6.

5.6 Omeag3P

The efforts on integration of PUMI and MeshAdapt with Omega3P to support

linear accelerator applications have been devoted on two specific aspects: (1) extend-

ing the curved mesh adaptation capability to support specific needs of application

and (2) constructing efficient in-memory adaptive loop.

5.6.1 Curved Mesh Improvement

The curved mesh improvement and adaptation procedure, in addition to be-

ing able to work with curved meshes with given CAD models, has been extended to

support operations on evolving curved meshes in the absence of parametric domain

definitions (such as a CAD model). The extended mesh improvement procedure

includes a stage of surface mesh improvement followed by a stage of volume mesh

improvement. For surface mesh improvement, an Interpolation Subdivision Surface

(ISS) scheme [93] is being utilized which operates directly with nodal coordinates in

the physical space, to smooth the mid-edge nodes of the deforming surface meshes.

In addition to smoothing, curved local mesh modification operations (such as swap

and collapse) are used to remove near-flat triangles in the surface mesh. The volume

mesh improvement stage applies a set of curved mesh modification operations in a

desired order to eliminate any invalid elements while keeping the improved surface

mesh unchanged. High-level interface functions of the mesh improvement proce-

dure have been implemented as part of MeshAdapt API. A version of the curved

MeshAdapt has been delivered to SLAC and has been integrated with the SLAC

ACDTools package. The curved mesh improvement tool is file-based. It reads in a

107

ACE3P PUMI

Omega3P

+Solve()
+Adapt()

�interface�
MeshAdapter

+ Adapt()

SimO3PAdapt

+Adapt()

PUMIO3PAdapt

+Adapt()

Figure 5.7: Class diagram of integration of MeshAdapter with Omega3P

solver

mesh file and produces an improved mesh to a new file.

5.6.2 In-memory Adaptive Loop

A prototype in-memory adaptive loop has been designed and implemented for

Omega3P [99]. Primary functionality of the in-memory integration includes (1) pro-

viding driver functions to run the Omega3P solver, SPR-based error estimation and

mesh adaptation procedures and (2) providing interface-level access to the adapted

mesh and solution fields for the Mesh/Field Data Transfer Functions.

Strategy pattern is adopted to design and implement a common interface

class as well as a family of derived sub-classes implemented with specific software

toolchains. A class collaboration diagram is shown in Figure 5.7.

In particular, the abstract interface class is named as MeshAdapter. The

MeshAdapter class and a subset of the API functions are shown in Figure 5.8. This

list of interface functions provides users with access to perform error estimation,

mesh adaptation and solution transfer procedures.

One of the concrete implementation, SimO3PAdapt interfaces with the com-

mercial software packages (such as GeomSim and MeshSim) from Simmetrix Inc.

On the other hand, the derived class named PUMIO3PAdapt is implemented by using

108

MeshAdapter

+InitializeAdaptComp()
+RunErrorEstimation()
+Adapt()
+GetMeshHandle()
+GetFieldHandle()
+FinalizeAdaptComp()

Figure 5.8: The MeshAdapter interface class

open-source PUMI and MeshAdapt packages from SCOREC. PUMIO3PAdapt manages

the memory of a full representation of the PUMI mesh and provides access to the

mesh database object for the transfer functions to transfer necessary mesh data after

mesh adaptation to Omega3P solver. Due to the required mesh data information for

Omega3P solver based on the classic node-connectivity data structure, specific data

manipulation procedures has been implemented to perform the required manipula-

tion of the mesh data including global vertex indexing, vertex sorting, and filling

local nodal coordinate data container and element connectivity data container. The

process of transferring adapted mesh data to the finite element solver is given in

Algorithm 10.

109

Data: Given an adapted mesh stored in a full representation mesh

database

1 Get the solver mesh handle;

2 Initialize the solver mesh data containers;

3 for each mesh vertex in the full mesh database do

4 Assign a unique ID to the vertex;

5 Get the coordinates of the vertex;

6 Push the coordinate data to the solver mesh coordinate container;

7 end

8 for each mesh edge in the full mesh database do

9 if edge has mid-point then

10 Get the coordinates of the mid-point;

11 Get the IDs of the end vertices of the mesh edge;

12 Push the ID and coordinate data into the solver mesh edge data

container;

13 end

14 end

15 for each mesh region in the full mesh database do

16 Get the IDs of the four vertices of the region;

17 if region has at least one face on model boundary then

18 Get the boundary condition IDs of the 4 faces of each region;

19 end

20 Push the ID data into the solver element container;

21 end

Algorithm 10: Transfer of adapted mesh data to finite element solver

The finite element solver class in Omega3P has been modified with minimal

changes to be able to read in-memory mesh input data and perform the solution

steps. A set of field data transfer functions have been implemented to provided in-

memory access to the solution field data for PUMIO3PAdapter after the finite element

solution process.

An adaptive loop driver is implemented in PUMIO3PAdapter to control the

110

overall workflow of the adaptive loop at the highest level through interactions with

component interface API functions and mesh/field data transfer functions. Pseudo-

code of the driver function is shown in Figure 5.9.

1 AdaptiveLoopDriver (Omega3PSolver & rSo lver , SimO3PAdapter & rAdapter)
2 {
3 rAdapter . ReadCADModel(inputAcisMode lFi l e) ;
4 rAdapter . ReadSimMeshFile (inputMeshFi le) ;
5

6 rAdapter . I n i t i a l i z e () ;
7 rSo l v e r . I n i t i a l i z e () ;
8

9 f o r (i n t c u r r e n t I t e r a t i o n = 0 ; c u r r e n t I t e r a t i o n < numTotalCycles ; ++
cu r r e n t I t e r a t i o n)

10 {
11 rSo l v e r . PreProcess () ;
12 rSo l v e r . So lve () ;
13

14 Trans fer : : SolveToAdapt (rSo lver , rAdapter) ;
15

16 rAdapter . RunErrorEstimation () ;
17 rAdapter . DoAdapt () ;
18

19 Trans fer : : AdaptToSolver (rAdapter , rSo l v e r) ;
20 }
21 }

Figure 5.9: Adaptive loop driver

CHAPTER 6

APPLICATIONS AND RESULTS

6.1 Introduction

In this chapter a set problems solved by the Omega3P and Nektar++ solvers

are presented to demonstrate the capability and impact of using curved mesh cre-

ation and adaptation techniques on incompressible flow and computational electro-

magnetism simulations.

6.2 Incompressible Flow Applications

To test the effect of surface continuity, two problems governed by the incom-

pressible Navier-Stokes equations are solved using Nektar++ flow solver with curved

meshes of different surface continuity. The numerical results are compared with the

exact analytical results to measure the impact on solution accuracy.

6.2.1 Poiseuille Flow

The first test problem is the Poiseuille Flow (also referred to as Hagen-Poiseuille

Flow). It describes a fully developed laminar viscous flow through a pipe with con-

stant circular cross-section. The governing partial differential equations for the

Poiseuille flow problem are the steady-state incompressible Navier-Stokes equations

written in the cylindrical coordinate system as given in Eq 6.1:

1

r

∂

∂r
(r
∂uz
∂r

) =
1

µ

∂p

∂z
(6.1)

where µ is the viscosity of the fluid.

Closed form exact solutions exist for the pressure and z-velocity fields. The

analytic expression is given in Eq 6.2. The analytical solution indicates a z-velocity

profile of a parabola as shown in Figure 6.1.

uz = − 1

4µ

∂p

∂z
(R2 − r2) (6.2)

111

112

Figure 6.1: Poiseuille Flow

In the numerical test, it is of interest to solve for the fully developed velocity

profile and compare the numerical solution with the exact analytical solution. A

CAD model of a cylinder is constructed to represent the flow domain with radius

r = 0.5 and length in z-direction l = 1.0 as shown in Figure 6.2.

The problem domain was discretized with both G1 and C0 meshes. No-slip

condition is set for the wall. At inlet, the velocity profile is set to be fully developed

as uz = 0.25 − r2. The pressure at the outlet is set to be zero. A series of simula-

tions are performed with each type of the meshes using 4th and 5th order Legendre

polynomial shape functions.

To measure the solution accuracy, L2 and L∞ norms of the error in velocity

are used as defined in Eq 6.3.

L2(eu) =

(∫
ΩM

(uh,p − uexact)2dΩM

)1/2

(6.3)

L∞(eu) = max
ΩM

|uh,p − uexact|

The error of finite element solution of the z-velocity field against the exact

analytic solution is measured and shown in Table 6.1. It is observed in this test case

that meshes with G1 surface continuity achieve better solution accuracy compared

with C0 meshes for the same order of shape functions. 2

2Further details of the numerical tests and results have been published in Ref [100].

113

Figure 6.2: CAD model and quartic G1 mesh for the Poiseuille flow test
problem

Mesh Type Element Order p L2(eu) L∞(eu)
C0 4 1.29e-3 4.98e-2
G1 4 4.33e-4 4.72e-2
C0 5 5.98e-4 2.27e-2
G1 5 9.67e-5 7.32e-3

Table 6.1: Finite element solution error norms L2(u) and L∞(u) in velocity
for different types of curved meshes.

A similar geometric model with different dimensions was used as well [101].

The geometry is a longer cylinder with unit radius and length of 10 units in the

z-direction. In addition to the error of the solution field, the first derivative error is

measured in terms of L2 norm as defined in Eq 6.4.

L2(e∇u) =

(∫
ΩM

∇(uh,p − uexact) · ∇(uh,p − uexact)dΩM

)1/2

(6.4)

A summary of results is given in Table 6.2.

Comparing the errors in velocity, the C0 method outperforms the G1 method.

Examining the error in pressure, for both the fifth and sixth order method, the L2

norm is smaller for the C0 meshes, however both the L∞ norm of solution error and

L2 norm of the derivative error are smaller, suggesting G1 continuity can improve

114

p L2(eu) L∞(eu) L2(e∇u) L2(ep) L∞(ep)) L2(e∇p)
C0 5 2.14e-4 8.57e-4 6.34e-3 1.71e-3 2.40e-2 5.50e-2
G1 5 1.22e-3 1.67e-3 1.36e-2 4.51e-3 5.25e-3 2.75e-2
C0 6 8.12e-5 3.10e-4 2.43e-3 4.40e-4 6.85e-3 2.12e-2
G1 6 1.21e-3 1.65e-3 1.30e-2 4.47e-3 4.61e-3 1.77e-2

Table 6.2: Finite element solution error for the Poiseuille Flow problem

the accuracy of derivatives and engineering quantities such as shear stresses [101].

6.2.2 Kovasznay Flow

The second test example studied in the present work is the Kovasznay flow

problem, which describes a steady-state laminar flow behind a two-dimensional pe-

riodic array of cylinders, whose analytical solution is given by Kovasznay [102]. The

governing partial differential equation is the steady-state incompressible Navier-

Stokes equation as given in Eq 6.5:

∂u

∂t
+ u · ∇u = −∇p+ µ∇2u+ f

∇ · u = 0 (6.5)

The solution can be written as a function of Reynolds number Re in the form

given in Eq 6.6:

ux = 1− eλx cos(2πy)

uy =
λ

2π
eλx sin(2πy)

p =
1

2
(1− e2λx) (6.6)

where λ is a function of Reynolds number Re.

λ =
Re

2
−
√
Re2

4
+ 4π2 (6.7)

Using the exact solution as Dirichlet boundary conditions, a steady state so-

115

Figure 6.3: Streamline solution for 2D Kovasznay flow

lution was first solved in the 2-dimensional space.

In the classical settings, the problem was solved in a 2D square domain. In

order to investigate the curved mesh impact, a curved domain boundary was in-

troduced to the problem domain. Since the analytical solution is given, we are

able to specify the exact boundary conditions on the curved geometry based on

interpolating the analytical expression.

A curved mesh with 26 triangular elements is used to represent the problem

domain. The mesh and solution field visualization is shown in Figure 6.4.

The study was carried out in a further step by extruding the 2D geometry in

the third direction so that the domain becomes 3D. As a result, the inflow geometry

is represented by a curved face which is a good candidate to test and verify the G1

mesh curving procedure developed in the present work. Similarly, using the exact

solution as Dirichlet boundary condition, a steady state solution for this 3D problem

has been solved using the mesh shown in Figure 6.5.

Using the exact solution allows for the calculation of the error in the Linf and

116

Figure 6.4: A curved mesh and the solution visualization in 2D for Ko-
vasznay Flow

Figure 6.5: A curved mesh and the solution visualization in 3D for Ko-
vasznay Flow

117

L2 norms as defined in Eq 6.4. A summary of the simulation parameters and error

statistics is given in Table 6.3.

Mesh Type p L2(eu) L∞(eu) L2(ep) L∞(ep))
C0 4 5.98e-2 1.89e-1 6.86e-2 4.95e-1
G1 4 5.65e-2 1.88e-1 6.93e-2 5.22e-1
C0 5 1.62e-2 1.33e-1 1.99e-2 1.35e-1
G1 5 9.72e-3 3.00e-2 8.28e-3 5.98e-2

Table 6.3: Finite element solution errors for different types of curved
meshes of the Kovasznay Flow simulations.

Comparing the errors of the velocity and pressure, the G1 meshes outperform

the C0 meshes, which indicates potential benefits of surface continuity in the cases

which the solution fields are represented by more complex analytical functions than

simple polynomials as in the Poiseuille Flow case.

6.3 Computational Electromagnetism Application

As discussed in Section 5.6, the curved mesh adaptation techniques have been

integrated with Omega3P to support computational electromagnetism simulations

in the field linear accelerator design. Figure 4.18 in Section 4.8 gives an example that

demonstrates a single-step adaptive loop on a relatively simple geometric model.

In addition, tests of the parallel adaptive loop are carried out with real world

accelerator models as well. Fig 6.6 gives a 32-part mesh of the linear electron-

positron collider TESLA, which is based on 9-cell superconducting niobium cavities.

The eigenmode solver of Omega3P is used to compute the nominal dipole proper-

ties of the cavities. An initial mesh of 178k elements with 32 partitions is used to

obtain a set of solution data. Based on the solution field, parallel error estimation

and mesh adaptation processes are performed. The adapted mesh is used as in-

put for Omega3P to re-run the computation and get more accurate solution fields.

The adaptive loop iterations continue until the solution converges within tolerance.

Fig 6.7 shows the solution of electric field of Omega3P analysis with a 32-part mesh

of 5.14 million elements. Table 6.4 shows the series of eigenvalue solutions from the

adaptive loop iterations that start from less than 200k degrees of freedom (DOFs)

118

Figure 6.6: 32-part mesh of the Tesla accelerator cavity model

Figure 6.7: Solution field on the 32-part mesh

to more than 5.82 million DOFs. As a comparison with the error-based adaptation

loop, another series of meshes adapted by uniform refinement are studied for the

same problem. Solutions are obtained and listed in Table 6.5.

Fig 6.8 shows the convergence plot of the solutions obtained by error-based

adaptation loops and uniform refinement meshes respectively. One can observe

that the solution fields converges much faster with relatively smaller number of

DOFs using the error-based mesh adaptation procedure. Note that the parallel

mesh adaptation procedure is able to adapt the mesh to have number of DOFs in

the order of hundreds of millions. But, it requires substantially larger amount of

119

No. of elements No. of DOFs Eigenvalue (e+09)
178k 191k 1.29377
429k 468k 1.29214
755k 834k 1.29146

1.65m 1.84m 1.29108
5.14m 5.82m 1.29088

Table 6.4: Solutions obtained by error based mesh adaptation

No. of elements No. of DOFs Eigenvalue (e+09)
68k 72k 1.29663
544k 558k 1.29270

4.35m 4.44m 1.29191

Table 6.5: Solutions obtained by uniformly refined meshes

resource for the Omega3P solver to run the analysis. Therefore, the results of the

adaptive loop shown here are with meshes only up to several million elements.

Figure 6.8: Convergence of the solution under error-based adaptation
and uniform refinement

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Contributions

This dissertation presented novel procedures for high-order curved meshing

and adaptation technique to effectively support high-order finite element simula-

tions. The mesh curving procedures take advantage of the CAD technologies and

make use of higher-continuity surface patches for high-order, accurate, smooth rep-

resentation of the finite element computational domain, while still maintaining the

flexible and local properties of the unstructured meshing (generation, adaptation)

techniques. Curved mesh adaptation procedures are extended and improved to sup-

port the adaptation of high-order, higher-continuity curved meshes in parallel in

order to be utilized in the context of adaptive finite element simulations. A method

to create G1-continuous surface patches is introduced and an approach to integrate

a G1 mesh with existing finite element solver is presented. Numerical test results

show the advantage of using G1 continuous meshes, compared with conventional C0

meshes, in terms of finite element solution accuracy of specific engineering norms.

As a summary, the major contributions of the work presented in this disserta-

tion include:

• development of curved mesh representation techniques with high-order geo-

metric approximation accuracy and high-order geometric continuity.

• development of curved mesh adaptation techniques for parallel adaptive sim-

ulations.

• extension the mesh curving and modification operations to higher-order surface

continuity.

• integration of curved meshing procedure with high-order finite element analysis

solvers of interest.

120

121

• demonstration the impact of the improved mesh geometry on the simulation

solution accuracy.

7.2 Future Work

Additional studies to examine the influence of G1 continuity on more problems

and for other solution norms must be carried out. There is particular interest in

examining solution parameters more local to the surface. For future developments,

it is of interest to study other types of high-order surface patches. Furthermore, the

capability of using the CAD model surface parametrization to define exact geometric

mapping is to be developed. The definition of curved mesh quality metric needs to

be extended to account for mesh entities bounded by high-order Gregory patches.

It is also desirable to extend and apply the high-order surface patches to the

boundary layer meshes in the application of viscous flow simulations in order to

study the impact of the higher-order surface continuity.

In addition to computational fluid dynamics applications, it is also of interest

to perform numerical experiments on computational electromagnetism applications

with G1 meshes as it is reported that those applications are sensitive to the accuracy

and smoothness of the computational meshes [31].

In order to fully support parallel adaptive simulations, extensions of the exist-

ing mesh modification operations and curved mesh adaptation procedure is needed

to account for high-order curved meshes in parallel.

REFERENCES

[1] S. Hahmann and G.-P. Bonneau, “Polynomial surfaces interpolating
arbitrary triangulations.” IEEE Trans. on Visualization and Comput.
Graph., vol. 9, no. 1, pp. 99–109, Jan-March 2003.

[2] G. E. Farin, “Triangular Bernstein-Bezier patches,” Comput. Aided
Geometric Des.., vol. 3, pp. 83–127, 1986.

[3] S. Hahmann and G.-P. Bonneau, “Triangular G1 interpolation by 4-splitting
domain triangles,” Comput. Aided Geometric Des., vol. 17, no. 8, pp. 731 –
757, 2000.

[4] M. W. Beall and M. S. Shephard, “A general topology-based mesh data
structure,” Int. J. Numerical Methods in Eng., vol. 40, pp. 1573–1596, 1997.

[5] S. Seol, C. Smith, D. Ibanez, and M. Shephard, “A parallel unstructured
mesh infrastructure,” in High Performance Computing, Networking, Storage
and Analysis, Salt Lake City, UT, USA, 2012, pp. 1124–1132.

[6] I. Babuska, B. A. Szabo, and I. N. Katz, “The p-version of the finite element
method,” SIAM J. on Numerical Anal., vol. 18, no. 3, pp. 515–545, Jun.
1981.

[7] S. Dey, M. S. Shephard, and J. E. Flaherty, “Geometry representation issues
associated with p-version finite element computations,” Comput. Methods in
Appl. Mech. and Eng., vol. 150, no. 14, pp. 39 – 55, 1997.

[8] Q. Lu, M. S. Shephard, S. Tendulkar, and M. W. Beall, “Parallel mesh
adaptation for high-order finite element methods with curved element
geometry,” Eng. with Comput., vol. 30, no. 2, pp. 271–286, 2014.

[9] X. Luo, M. S. Shephard, J.-F. Remacle, R. M. O’bara, M. W. Beall,
B. Szabo, and R. Actis, “P-version mesh generation issues,” in Proc. of the
11th Meshing Roundtable., Ithaca, NY, USA, 2002, pp. 343–354.

[10] O. C. Zienkiewicz, The Finite Element Method in Engineering Science,
2nd ed. London, UK: McGraw-Hill, 1971.

[11] W. J. Gordon and C. A. Hall., “Transfinite element methods:
Blending-funtion interpolation over arbitrary curved element domains.”
Numerische Mathematik., vol. 21, no. 2, pp. 109–129, 1973.

122

123

[12] U. Schramm and W. Pilkey, “The coupling of geometric descriptions and
finite elements using NURBS – a study in shape optimization,” Finite
Elements in Anal. and Des.., vol. 15, pp. 11–34, 1993.

[13] S. J. Sherwin and G. E. Karniadakis, “A triangular spectral element method;
applications to the incompressible navier-stokes equations,” Comput.
Methods in Appl. Mech. and Eng., vol. 123, no. Issues 1-4, pp. 189–229, June
1995.

[14] S. Dey, J. E. Flaherty, T. K. Ohsumi, and M. S. Shephard, “Integration by
table look-up for p-version finite elements on curved tetrahedra,” Comput.
Methods in Appl. Mech. and Eng., vol. 195, pp. 4532–4543, 2006.

[15] A. Johnen, J.-F. Remacle, and C. Geuzaine, “Geometrical validity of
curvilinear finite elements,” in Proc. of the 20th Int. Meshing Roundtable,
Paris, France, 2011.

[16] S. J. Sherwin and J. Peiro, “Mesh generation in curvilinear domains using
high-order elements,” Int. J. Numerical Methods in Eng., vol. 53, pp.
207–223, 2002.

[17] P.-O. Persson and J. Peraire, “Curved mesh generation and mesh refinement
using lagrangian solid mechanics,” in Proc. of the 47th AIAA Aerospace Sci.
Meeting and Exhibit., Orlando, FL, USA, January 2009.

[18] R. Sevilla, S. Fernandez-Mendez, and A. Huerta, “3D NURBS-enhanced
finite element method (NEFEM),” Int. J. Numerical Methods in Eng.,
vol. 88, pp. 103–125, 2011.

[19] T. J. R. Hughes, J. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement.” Comput.
Methods in Appl. Mech. and Eng.., vol. 194, no. 39-41, pp. 4135–4195, 2005.

[20] X. Li, “Mesh modification procedures for general 3D non-manifold domains,”
Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY., 2003.

[21] S. Dey, R. M. O’Bara, and M. S. Shephard., “Curvilinear mesh generation in
3D.” Comput.-Aided Des.., vol. 33, pp. 199–209, 2001.

[22] P. L. George and H. Borouchaki, “Construction of tetrahedral meshes of
degree two,” Int. J. Numerical Methods in Eng., vol. 90, pp. 1156–1182, 2012.

[23] H. L. de Cougny and M. S. Shephard., “Parallel refinement and coarsening of
tetrahedral meshes.” Int. J. Numerical Methods in Eng.., vol. 46, no. 7, pp.
1101–1125, 1999.

124

[24] M. Ainsworth and R. Rankin, “Guaranteed computable bounds on quantities
of interest in finite element computations.” Int. J. Numerical Methods in
Eng., vol. 89, no. 13, pp. 1605–1634, 2012.

[25] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, and
H. D. et al., “High-order cfd methods: current status and perspective.” Int.
J. for Numerical Methods in Fluids, vol. 72, no. 8, pp. 811–845, 2013.

[26] Q. Chen and I. Babuška, “Approximate optimal points for polynomial
interpolation of real functions in an interval and in a triangle,” Comput.
Methods in Appl. Mech. and Eng., vol. 128, no. 3, pp. 405–417, 1995.

[27] L. P. Bos, “Bounding the lebesgue function for lagrange interpolation in a
simplex,” J. of Approximation Theory, vol. 38, no. 1, pp. 43–59, 1983.

[28] M. A. Taylor, B. A. Wingate, and R. E. Vincent, “An algorithm for
computing fekete points in the triangle,” SIAM J. Numer. Anal., vol. 38,
no. 5, pp. 1707–1720, 2006.

[29] S. Ahmad, B. M. Irons, and O. C. Zienkiewicz, “Analysis of thick and thin
shell sstructure by curved finite elements,” Int. J. Numerical Methods in
Eng., vol. 2, no. 3, pp. 419–451, 1970.

[30] F. Bassi and S. Rebay, “High-order accurate discontinuous finite element
solution of the 2d euler equations,” J. of Computational Physics, vol. 138,
pp. 251–285, 1997.

[31] D. Xue and L. Demkowicz, “Control of geometry induced error in hp finite
element (fe) simulations. i. evaluation of fe error for curvilinear geometries,”
Int. J. Numer. Anal. Model, vol. 2, no. 3, pp. 283–300, 2005.

[32] Y. Zhang, C. Bajaj, and G. Xu, “Surface smoothing and quality
improvement of quadrilateral/hexahedral meshes with geometric flow,”
Commun. in Numerical Methods in Eng., vol. 25, pp. 1–18, 2009.

[33] M. J. Borden, M. A. Scott, J. A. Evans, and T. J. R. Hughes, “Isogeometric
finite element data structures based on bézier extraction of NURBS,” Int. J.
Numerical Methods in Eng., vol. 87, pp. 15–47, 2011.

[34] E. Cohen, T. Martin, R. M. Kirby, R. F. Riesenfeld, and T. Lyche,
“Analysis-aware modeling: Understanding quality considerations in modeling
for isogeometric analysis,” Comput. Methods Appl. Mech. Engrg., vol. 199,
pp. 334–356, 2010.

[35] G. E. Farin, Curves and Surfaces for Computer Aided Geometric Design, A
Practical Guide, 3rd ed. Waltham, MA, USA: Academic, 1992.

125

[36] X. Luo, M. S. Shephard, L.-Q. Lee, C. Ng, and L. Ge, “Tracking adaptive
moving mesh refinements in 3D curved domains for large-scale higher order
finite element simulations,” in Proc. of the 17th Int. Meshing Roundtable,
Pittsburgh, PA, USA, 2008, pp. 585–602.

[37] J. Peters, “Biquartic C1-surface splines over irregular meshes,”
Comput.-Aided Des., vol. 27, no. 12, pp. 895 – 903, 1995.

[38] B. R. Piper, “Visually smooth interpolation with triangular Bezier patches,”
in Geometric Modeling: Algorithms and new Trends, G. Farin, Ed.
Philadelphia, PA, USA: SIAM, 1987, pp. 221–234.

[39] D. Walton and D. Meek, “A triangular G1 patch from boundary curves,”
Comput.-Aided Des., vol. 28, no. 2, pp. 113 – 123, 1996.

[40] L. Demkowicz, P. Gatto, W. Qiu, and A. Joplin, “G1-interpolation and
geometry reconstruction for higher order finite elements,” Comput. Methods
in Appl. Mech. and Eng., vol. 198, no. 13, pp. 1198–1212, 2009.

[41] J. Peters, “Smooth interpolation of a mesh of curves,” Constructive
Approximation, vol. 7, no. 1, pp. 221–246, 1991.

[42] M. Watkins, “Problems in geometric continuity,” Comput.-Aided Des.,
vol. 20, no. 8, pp. 499–502, Oct. 1988.

[43] M. Boschiroli, C. Funfzig, L. Romani, and G. Albrecht, “G1 rational blend
interpolatory schemes: A comparative study,” Graphical Models, vol. 74,
no. 1, pp. 29 – 49, 2012.

[44] G. Nielson, “A transfinite, visually continuous, triangular interpolant,,” in
Geometric Modeling: Algorithms and new Trends, G. E. Farin, Ed.
Philadelphia, PA, USA: SIAM, 1987, pp. 235–246.

[45] ——, “Interactive surface design using triangular network splines,” in Proc.
3rd Int. Conf. on Eng. Graph. and Descriptive Geometry,, vol. 2, Vienna,
Austria, 1988, pp. 70–77.

[46] L. A. Shirman and C. H. Sequin, “Local surface interpolation with bezier
patches,” Comput. Aided Geometric Des., vol. 4, no. 4, pp. 279–295, Dec.
1987.

[47] S. Mann, C. Loop, M. Lounsbery, D. Meyers, J. Painter, T. DeRose, and
K. Sloan, “A survey of parametric scattered data fitting using triangular
interpolants,” in Curve and Surface Design, H. Hagen, Ed. Philadelphia,
PA, USA: SIAM, 1992, pp. 145–172.

126

[48] R. W. Clough and J. L. Tocher, “Finite element stiffness matrices for
analysis of plates in bending,” in Proc. of conf. on matrix methods in
structural anal., 1965, pp. 515–545.

[49] J. A. Gregory, “Smooth interpolation witwith twist constraints,” in Comput.
Aided Geometric Des., R. E. Barnhill and R. F. Riesenfeld, Eds. New York,
NY, USA: Academic, 1975.

[50] C. Loop, “A G1 triangular spline surface of arbitrary topological type,”
Comput. Aided Geometric Des., vol. 11, pp. 303–330, 1994.

[51] T. J. R. Hughes, The Finite Element Method, Linear Static and Dynamic
Finite Element Analysis. Mineola, NY, USA: Dover, 2000.

[52] E. S. Seol, “Fmdb : Flexible distributed mesh database.” Ph.D. dissertation,
Rensselaer Polytechnic Institute, Troy, NY., 2005.

[53] E. S. Seol and M. S. Shephard, “Efficient distributed mesh data structure for
parallel automated adaptive analysis.” Eng. with Comput., vol. 22, no. 3, pp.
197–213, 2006.

[54] “3D ACIS Modeler,” 2015. [Online]. Available:
http://www.spatial.com/products/3d-acis-modeling, Accessed on: Apr. 5,
2017.

[55] “Parasolid: 3D Geometric Modeling Engine.” 2015. [Online]. Available:
http://www.plm.automation.siemens.com/en us/products/open/parasolid,
Accessed on: Apr. 5, 2017.

[56] J. S. Hesthaven, “From electrostatics to almost optimal nodal sets for
polynomial interpolation in a simplex.” SIAM J. on Numerical Anal.,
vol. 35, no. 2, pp. 655–676, 1998.

[57] C. Runge, “Uberempirische functionen und die interpolation zwischen
aqui-distanten ordinaten.” Zeitschrift fur Mathematik und Physik, vol. 46,
pp. 224–243, 1901.

[58] “Unified Modeling Language Resource Page,” 2017. [Online]. Available:
http://www.uml.org, Accessed on: Apr. 5, 2017.

[59] G. Karniadakis and S. Sherwin, Spectral/hp element methods for
computational fluid dynamics. Oxford, UK: Oxford University Press, 1999.

[60] G. Guennebaud, B. Jacob et al., “Eigen Version 3.0,” 2010. [Online].
Available: http://eigen.tuxfamily.org, Accessed on: Apr. 5, 2017.

[61] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” in IEEE Int. Conf. on
Multimedia and Expo, vol. 1, 2002, pp. 705–708.

127

[62] X. Li, M. S. Shephard, and M. W. Beall, “Accounting for curved domains in
mesh adaptation,” Int. J. Numerical Methods in Eng., vol. 58, no. 2, pp.
247–276, 2003.

[63] S. Dey, “Geometry-based three dimensional hp finite element modeling and
computations.” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy,
NY., 1997.

[64] X. Luo, M. S. Shephard, L.-Q. Lee, C. Ng, and L. Ge., “Curved mesh
correction and adaptation tool to improve compass electromagnetic
analyses,” J. of Physics, vol. 125, no. 1, pp. 1–5, 2008.

[65] X. Luo, M. S. Shephard, L.-Q. Lee, L. Ge, and C. Ng, “Moving curved mesh
adaptation for higher-order finite element simulations,” Eng. with Comput.,
vol. 27, no. 1, pp. 41–50, 2010.

[66] Q. Lu, “Developments of parallel curved meshing for high-order finite
element simulations,” Master’s thesis, Rensselaer Polytechnic Institute.,
Troy, NY, December 2011.

[67] P. M. Knupp, “Introducing the target-matrix paradigm for mesh
optimization via node-movement.” in Proc. of the 19th Int. Meshing
Roundtable, Chattanooga, TN, USA, 2010, pp. 67–84.

[68] X. Luo, M. S. Shephard, L.-Z. Yin, R. M. O’Bara, R. Nastasi, and M. W.
Beall, “Construction of near optimal meshes for 3D curved domains with
thin sections and singularities for p-version method,” Eng. with Comput.,
vol. 22, no. 1, pp. 41–50, 2010.

[69] T. W. Sederberg, “Computer Aided Geometric Design,” 2011. [Online].
Available: http://tom.cs.byu.edu/ 557/text/cagd.pdf, Accessed on: March
31, 2017.

[70] J. Dompierre, P. Labbé, F. Guibault, and R. Camarero, “Benchmarks for 3D
unstructured tetrahedral mesh optimization.” in Proc. of the 7th Int.
Meshing Roundtable, Dearborn, MI, USA, 1998.

[71] S. Gosselin and C. Ollivier-Gooch, “Tetrahedral mesh generation using
delaunay refinement with non-standard quality measures.” Int. J. Numerical
Methods in Eng.., vol. 87, pp. 795–820, 2011.

[72] A. Liu and B. Joe., “On the shape of tetrahedra from bisection.”
Mathematics of Computation., vol. 63, pp. 141–154, 1994.

[73] ——, “Relationship between tetrahedron shape measures.” BIT Numerical
Mathematics, vol. 34, pp. 268–287, 1994.

128

[74] P. M. Knupp, “Algebraic mesh quality metrics.” SIAM J. on Scientific
Computing., vol. 23, no. 1, pp. 193–218, 2010.

[75] M. S. Shephard, S. Dey, and M. K. George, “Automatic meshing of curved
three-dimensional domains: Curving finite elements and curvature-based
mesh control.” in Modeling, Mesh Generation, and Adaptive Numerical
Method for Partial Differential Equations., I. Babuska, J. Flaherty,
W. Henshaw, J. Hopcroft, J. Oliger, and T. Tezduyar, Eds. Berlin,
Germany: Springer, 1994, pp. 67–96.

[76] X. Luo, “An automatic adaptive directional variable p-version method in 3D
curved domains,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy,
NY., Troy, NY., 2005.

[77] B. A. Szabo and I. Babuska, Finite Element Analysis. New York, NY,
USA: John Wiley & Sons Inc, 1991.

[78] E. Ruiz-Girons, J. Sarrate, and X. Roca, “Generation of curved high-order
meshes with optimal quality and geometric accuracy,” Procedia Eng., vol.
163, pp. 315 – 327, 2016.

[79] A. Johnen, C. Geuzaine, T. Toulorge, and J.-F. Remacle, “Efficient
computation of the minimum of shape quality measures on curvilinear finite
elements,” in Proc. of the 25th Int. Meshing Roundtable, Washington, DC,
USA, 2016.

[80] M. Turner, J. Peiro, and D. Moxey, “A variational framework for high-order
mesh generation,” in Proc. of the 25th Int. Meshing Roundtable, Washington,
DC, USA, 2016.

[81] H. Prautzsch and L. Kobbelt, “Convergence of subdivision and degree
elevation.” Advances in Computational Mathematics, vol. 2, pp. 143–154,
1994.

[82] G. Morin and R. Goldman, “On the smooth convergence of subdivision and
degree elevation for bezier curves.” Comput. Aided Geometric Des.., vol. 18,
pp. 657–666, 2001.

[83] H. L. de Cougny, M. S. Shephard, and M. K. Georges., “Explicit node point
mesh smoothing within the octree mesh generator.” Scientfic Computation
Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA, Tech.
Rep., 1990.

[84] L. A. Freitag, M. T. Jones, and P. E. Plassmann, “An efficient parallel
algorithm for mesh smoothing.” in Proc. of the 4th Int. Meshing Roundtable,
Albuquerque, NM, USA, 1995, pp. 47–58.

129

[85] L. A. Freitag and P. M. Knupp., “Tetrahedral element shape optimization
via the jacobian determinant and condition number.” in Proceeding of the 8th
Int. Meshing Roundtable, South Lake Tahoe, CA, USA, 1999, pp. 247–258.

[86] E. Ruiz-Girones, J. Sarrate, and X. Roca, “Generation of curved high-order
meshes with optimal quality and geometric accuracy,” in Proc. of the 25th
Int. Meshing Roundtable, Washington, DC, USA, 2016.

[87] S. Coons, “Surfaces for computer aided design.” Massachusetts Institute of
Technology, Cambridge, MA, USA, Tech. Rep., 1964.

[88] ——, “Surface patches and b-spline curves,” in Comput. Aided Geometric
Des., R. E. Barnhill and R. F. Riesenfeld, Eds. New York, NY, USA:
Academic, 1974.

[89] X. Li, M. S. Shephard, and M. W. Beall, “3D anisotropic mesh adaptation
by mesh modification.” Comput. Methods in Appl. Mech. and Eng., vol. 194,
pp. 4915–4950, 2005.

[90] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a
posteriori error estimates. part 1. the recovery technique.” Int. J. Numerical
Methods in Eng.., vol. 33, pp. 1331–1361, 1992.

[91] ——, “The superconvergent patch recovery and a posteriori error estimates.
part 2. error estimates and adaptivity.” Int. J. Numerical Methods in Eng..,
vol. 33, pp. 1365–1382, 1992.

[92] M. Mubarak, S. Seol, Q. Lu, and M. S. Shephard, “A parallel ghosting
algorithm for the flexible distributed mesh database,” Submitted to Scientific
Programming, 2012.

[93] J. Wan, “An automatic adaptive procedure for 3D metal forming
simulations.” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy,
NY., 2006.

[94] M. W. Beall and M. S. Shephard, “An object-oriented framework for reliable
numerical simulations.” Eng. with Comput., vol. 15, no. 1, pp. 61–72, 1999.

[95] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard, “Parallel anisotropic 3D
mesh adaptation by mesh modification,” Eng. with Comput., vol. 21, pp.
247–258, 2006.

[96] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

130

[97] L.-Q. Lee, Z. Li, C. Ng, and K. Ko, “Omega3p: A parallel finite-element
eigenmode analysis code for accelerator cavities. slac-pub-13529,” SLAC
National Accelerator Laboratory, Menlo Park, CA., Tech. Rep., February
2009.

[98] C. D. Cantwell, S. Yakovlev, R. M. Kirby, N. S. Peters, and S. J. Sherwin,
“High-order spectral/hp element discretisation for reaction-diffusion
problems on surfaces: Application to cardiac electrophysiology,” J. of
Computational Physics, vol. 257, pp. 813 – 829, 2014.

[99] C. Smith, B. Orecchio, O. Sahni, and M. Shephard, “Building effective
parallel unstructured adaptive simulations by in-memory integration of
existing software components,” Scientific Computation Research Center,
Rensselaer Polytechnic Institute, Troy, NY, USA, Tech. Rep. 2, 2012.

[100] Q. Lu and M. S. Shephard, “Development of unstructured curved meshes
with G1 surface continuity for high-order finite element simulations,” in Int.
Conf. on Spectral and High Order Methods, Salt Lake City, Utah, June 2014.

[101] D. W. Zaide, Q. Lu, and M. S. Shephard, “A comparison of C0 and G1
continuous curved tetrahedral meshes for high-order finite element
simulations,” in Proc. of the 24th Int. Meshing Roundtable, Austin, TX,
USA, 2015.

[102] L. I. G. Kovasznay, “Laminar flow behind a two-dimensional grid,”
Mathematical Proc. of the Cambridge Philosophical Society, vol. 44, pp.
58–62, 1 1948.

