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ABSTRACT

High performance parallel adaptive simulations operating on leadership class sys-

tems are constructed from multiple pieces of software developed over many years. As

increasingly complex systems are deployed new methods must be created to extract

performance and scalability. This thesis addresses two key scalability limitations for

unstructured mesh-based simulations.

Attaining simulation performance at ever higher concurrency levels requires

increasing the performance of transformations within each procedure, as well as the

transfer of data between procedures.

Controlling the transformations requires distributing the work evenly across

the processors while executing e�cient data transfers requires local operations that

avoid shared or contended resources. This thesis addresses these requirements

through multi-criteria load balancing procedures and in-memory data transfer tech-

niques.

Partition improvement methods defined in this work enable improved appli-

cation strong scaling on over one million processors through careful control of the

balancing requirements. Applied to a computational fluid dynamics simulation run-

ning on 524,288 processes with 1.2 billion elements these methods reduce the time

of the dominant computational step by up to 28% versus the best existing methods.

The scalable data transfer requirement is addressed through an in-memory

functional coupling that avoids the high cost of fileystem access. The methods devel-

oped are applied to adaptive simulations in which the time required for information

exchange is reduced by over an order of magnitude versus file-based couplings. Three

additional simulations for industrial applications are then provided that highlight

an in-memory coupling and the automation of key simulation processes.

xi



CHAPTER 1

INTRODUCTION AND CONTRIBUTIONS

Unstructured mesh methods, like finite elements [1] or finite volumes [2], support

the e↵ective analysis of complex physical behaviors modeled by partial di↵erential

equations over general three-dimensional domains. The most reliable and e�cient

methods apply adaptive procedures with a posteriori error estimators that indicate

where and how the mesh is to be modified. Although adaptive meshes can have two

to three orders of magnitude fewer elements than a more uniform mesh for the same

level of accuracy, there are many complex simulations where the meshes required

are so large that they can only be solved on massively parallel systems.

The parallel simulations of interest are defined by a series of procedures which

we refer to as a workflow. Fig. 1.1 provides a high-level overview of this sequence.

Starting at the top-left the problem definition is specified on the computational do-

main, typically a CAD model. Next, automated mesh generation procedures driven

by the problem definition and optional mesh controls produce a spatial discretiza-

tion of the computational domain, a mesh. With the mesh, the associated CAD

model, and the problem definition, an analysis is executed until some criterion is

met that indicates adaptation is required. In a workflow using mesh adaptation

procedures this criterion is most e↵ective when it is based on the discretization

error [1]. Following the analysis, the adaptation procedure is executed to reduce

the error by locally refining and coarsening the mesh [3], [4]. During these mesh

modification operations local transfer procedures [5] are executed to maintain an

accurate distribution of physical quantities of interest (e.g., the velocity of a fluid or

the displacement of a solid). Once an adapted mesh has been created, the analysis

procedure is executed again. This solve-adapt cycle is repeated until a stopping

criterion is met, such as a pre-defined number of time/load steps. After the last

cycle completes, post-processing tools are executed to extract spatial and temporal

Portions of this chapter have been submitted to: C. W. Smith, B. Granzow, G. Diamond, D. A.
Ibanez, O. Sahni, K. E. Jansen et al., “In-memory integration of existing software components for
parallel adaptive unstructured mesh workflows,” submitted for publication.
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PDE
Analysis

Mesh
Generation

Problem
De nition

Adaptation
Post

Processing
Fig. 1.1. The series of steps in an adaptive unstructured mesh-based
workflow and (bottom) a sequence of adapted meshes and (top) the

corresponding solution fields for an adaptive manifold flow
simulation [6].

characteristics of the physical quantities of interest.

The time spent running a parallel workflow is dominated by the repeated

execution of PDE analysis and adaptation procedures. E�ciency of the analysis

is maintained by redistributing the mesh after adaptation procedures have non-

uniformly refined and coarsened it. Given an existing mesh distribution across the

processes running on a parallel system, a partition, dynamic load balancing meth-

ods determine which mesh elements should be moved between processes to reduce

the imbalance and communication costs. For part counts numbering in the tens of

thousands, multi-level methods operating on the dual graph of the mesh are su�-

cient [7], but beyond this concurrency level these methods often fail due to memory

usage that increases significantly with process count [8]. The goal of Partitioning

using Mesh Adjacencies (ParMA) is to perform e�cient, multi-criteria, dynamic

load balancing of unstructured meshes by directly using the existing mesh adja-

cency information. Results will demonstrate the ability of ParMA to dynamically

re-balance meshes for multiple criteria with billions of mesh regions on over one

million processors. Thus, ParMA addresses a key limitation to workflow scalability

by enabling e�cient transformation of data within the computationally dominant

analysis procedures.
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Within the solve-adapt cycle are transfers of mesh and field data between anal-

ysis and adaptation procedures (depicted by the pair of bold arrows in Fig. 1.1).

In massively parallel simulations requiring frequent adaptation, the reading and

writing of files between the execution of analysis and adaptation procedures intro-

duces significant computational overheads. To avoid shared and contentious parallel

filesystems, our in-memory coupling approaches using data streams and APIs pro-

vide scalable and e�cient transfers of data by using node-local memory. Thus,

in-memory transfer approaches address a second key limitation to parallel workflow

scalability.

1.1 Contributions

The work of this thesis develops load balancing and in-memory workflow

construction methods for conformal 2D and 3D unstructured meshes composed of

quadrilaterals, triangles, tetrahedra, prisms, hexahedra, and pyramids. A conformal

mesh is one in which the intersection of two elements is a lower order mesh entity

shared by both (i.e., a face for two regions, an edge for two faces, and a vertex for

two edges).

1.1.1 Dynamic Partition Improvement

ParMA provides dynamic load balancing methods that compliment existing

graph and geometric partitioners to create mesh partitions with billions of elements

on millions of processors that are tailored to the needs of a given application. Par-

tition improvement results at various per part element counts on over one million

processors are discussed.

Zhou’s 2010 work [9] defines the LIIPBMod algorithm for reducing vertex

imbalance and the number of vertices on part boundaries while indirectly trying

to limit the increase of element imbalance. In 2012, Zhou [10] executes a strong

scaling study of a massively parallel computational fluid dynamics application us-

ing partitions created with (hyper)graph partitioners and LIIPBMod. Our work,

ParMA, defines new algorithms for balancing all entity dimensions (vertices, edges,

faces and regions), with weights, while reducing the number of vertices on the part
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boundaries, the number of disconnected components, and the average number of

neighboring parts. ParMA developments were guided by Zhou’s work for vertex

balancing.

Our work, relative to Zhou’s, demonstrates multi-entity balancing on up to

3.5 times more parts, 1Mi, with up to two times smaller parts, 1100 elements. Like

Zhou, we focus on balancing tetrahedral meshes. We also support balancing mixed

and other monotopological meshes (e.g., all quadrilaterals or all hexahedra).

ParMA’s implementation relies on the PUMI parallel unstructured mesh in-

frastructure [11], and inter-process communication algorithms detailed by Ibanez

et al. [12]. We refer readers to these papers for details on the element migration

procedure and neighborhood communications for information exchange.

In this work, ParMA, combined with graph and geometric partitioning meth-

ods provided by Zoltan [13], satisfies the requirements for dynamic load balancing

described in Section 2.2 to over one million parts on meshes with over 12 billion

tetrahedral elements. Partition quality requirements 1 and 2 are satisfied by parti-

tioning the mesh with a graph or geometric partitioner and then running ParMA

to reduce the imbalance of mesh entity dimensions critical to the application. For

example, ParMA is applied to balance the entities used as degree of freedom holders

in finite element method procedures. The incremental partition change requirement

(3) is implicitly satisfied by the definition of ParMA’s di↵usion procedure and re-

cursive coordinate bisection. Graph-based methods provided by Zoltan’s API also

have execution modes that minimize data movement. Requirement 4 is implicitly

satisfied as applications in the workflow are driven from the partitioning of the

mesh that ParMA produces. Performance requirements 5 and 6 are satisfied by

combining ParMA with a partitioner that scales to the required concurrency level.

Lastly, requirement 7 is satisfied through Zoltan’s API to interact with the mesh

data structure and ParMA’s direct use of mesh modification and query APIs.

1.1.2 In-memory Component Coupling

Critical to the construction of parallel workflows is the ability to couple existing

pieces of software. We define bulk and atomic level couplings implemented using
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API- and data stream-based approaches. These in-memory couplings are applied to

a monolithic, mixed C/C++ and FORTRAN, computational fluid dynamics (CFD)

analysis code, a C++, hp-adaptive, finite element framework for linear accelerator

frequency analysis, and a C++ multi-physics framework. Scaling results up to

16,384 processes are provided for the coupling of the massively parallel PHASTA

CFD analysis code with mesh adaptation, and the memory overhead for the linear

accelerator framework when coupled with mesh adaptation is studied.

1.1.3 Parallel Workflows for Industrial Applications

In addition to the three in-memory workflows discussed above, we also con-

struct parallel workflows for three industrial applications. The first workflow demon-

strates an adaptive, multi-phase flow simulation using an in-memory coupling to a

closed-source, serial procedure provided by the industrial partner. The second and

third workflows focus on reducing the time engineers and analysts have to spend

setting up problems and running jobs by applying automation and abstraction tech-

niques.

1.2 Thesis Organization

The thesis is organized into the following chapters.

• Chapter 2 details the ParMA load balancing software and its support for

extreme scale workflows.

• Chapter 3 discusses the construction of parallel, unstructured mesh-based,

in-memory workflows and the components that define them.

• Chapter 4 describes the in-memory coupling for three unstructured mesh-based

workflows and examines their performance relative to file-based approaches on

massively parallel systems.

• Chapter 5 discusses three industrial workflows: one using in-memory coupling

techniques, and two others using automation technologies.

• Chapter 6 summarizes the work and discusses some possible future e↵orts.
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1.3 Terminology and Notation

2D,3D two- and three-dimensional.

petascale,exascale a computer system capable of executing 1015 and 1018

floating-point operations per second, respectively.

CFD computational fluid dynamics.

CAE computer-aided engineering.

CAD computer-aided design/drafting.

ISV independent software vendor; typically a for-profit orga-

nization with a closed-source product.

I/O input and output.

API application program interface.

CPU central processing unit; typically a socketed device on

the motherboard with multiple, independent, out-of-

order processing units.

(CPU) core a processing unit within a CPU.

GPU graphical processing unit; typically a bus-attached de-

vice with thousands of group-synchronized, simple, in-

order processing units.

O(1) an operation that executes in constant time.

workflow the sequence of steps to set up and execute a simulation.

(mesh) part a set of mesh elements and their closure assigned to a

given process.

(mesh) partition the set of parts forming a distributed mesh.

Ki su�x to denote 210. So, for example, 16Ki is equal to

16 ⇤ 210 = 16384.

l.N denotes the Nth line of an Algorithm or Listing.

code C/C++/Fortran is written with a fixed-pitch font. For

example, the function printf(...) is declared in

stdio.h; the ellipsis represent omitted arguments.
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The following notation describes the topological entities of geometric models,

meshes, and partitions, the associations between the topological entities, and the

distribution of mesh entities in a partitioned mesh [11].

V the model, V 2 {G, P , M}, where G is the geometric

model, P is the partition model, and M is the mesh.

{V d} the set of dimension d entities in model V .

V
d
i the i

th entity of dimension d in model V . d = 0 for

vertex, d = 1 for edge, d = 2 for face, and d = 3 for

region.

{Md
i {M q}} a set of mesh entities of dimension q that are adjacent to

M
d
i . For instance, {M1

3{M3}} is a set of mesh regions

adjacent to mesh edge M
1
3 .

M
d
i @ G

q
j the geometric classification indicating the unique asso-

ciation of mesh entity M
d
i with geometric model entity

G
q
j , d  q.

M
d
i @ P

q
j the partition classification indicating the unique associ-

ation of mesh entity M
d
i with partition model entity P

q
j ,

d  q.

wp(Md) the weight of mesh entities Md on part p.

I
d
p the weighted imbalance of dimension d mesh entities on

part p; wp(Md
i )/avg(wq=0..N�1(Md

i )) where N is the to-

tal number of parts in the mesh.

I
d the maximum imbalance of entity dimension d;

max(Idp=0..N�1).



CHAPTER 2

IMPROVING UNSTRUCTURED MESH PARTITIONS

FOR MULTIPLE CRITERIA USING MESH

ADJACENCIES

2.1 Introduction

Parallel simulation-based engineering workflows using unstructured meshes re-

quire adaptive methods to ensure reliability and e�ciency [14]. Starting with a prob-

lem specification on a geometric model [15], [16], an e↵ective workflow automatically

executes parallel mesh generation [17], analysis, and analysis-based mesh [18], [19]

and/or model [20] adaptation. The analyze-adapt cycle is repeated until a desired

level of solution accuracy is reached. Between each step in the cycle is an opportu-

nity to improve scalability and e�ciency through dynamic partitioning.

Current dynamic load balancing methods do not e↵ectively reduce imbalances

to the levels needed by applications capable of strong scaling to the full size of leader-

ship class petascale systems. This chapter presents a scalable approach that quickly

reaches the required imbalance levels for multiple criteria by pairing Partitioning

using Mesh Adjacencies (ParMA) with current partitioning methods.

A review of (hyper)graph, recursive sectioning geometric, and di↵usive par-

titioning methods is located in Section 2.2. Section 2.3 introduces the dynamic

partitioning problem and how our approach meets the requirements to solve it ef-

fectively. Section 2.4 reviews the partitioned mesh representation in the Parallel

Unstructured Mesh Infrastructure (PUMI) [11], [21]. Sections 2.5 through 2.7 de-

tail partition improvement procedures to support application specific partition re-

quirements. Section 2.8 begins with a comparison of ParMA and its predecessor,

LIIPBMod. Next, we present a ParMA feature comparison test and multi-criteria

partitioning results on meshes with over 12 billion elements running on over one

Portions of this chapter have been submitted to: C. W. Smith, M. Rasquin, D. Ibanez, K. E.
Jansen, and M. S. Shephard, “Improving unstructured mesh partitions for multiple criteria using
mesh adjacencies,” submitted for publication.
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million cores. Section 2.8 closes with a discussion of scaling improvement in a CFD

analysis running on over a half-million cores.

2.2 Unstructured Mesh Partitioning

The dynamic partitioning problem seeks to quickly improve the load balance

and reduce communication costs of an existing partition that is reasonably dis-

tributed; such as those generated by (hyper)graph and geometric partitioning tools.

Hendrickson and Devine [22] define the requirements of dynamic partitioning as:

(1) balance the computational work, (2) reduce the inter-processor communication

costs, (3) modify the partition incrementally, (4) output the new communication

pattern, (5) execute on parallel systems quickly, (6) consume small amounts of mem-

ory, and (7) provide an easy to use functional interface. For unstructured meshes

these requirements are mostly satisfied by multi-level (hyper)graph and recursive

sectioning methods [23]. Multi-level (hyper)graph methods are limited in scalabil-

ity; memory requirements limit their e↵ective usage on more than several thousand

processors [8]. Recursive sectioning methods are limited in quality; they have lower

memory and time requirements at the expense of increased inter-part surface area.

Additionally, these methods can only balance one dimension of mesh entity. This

approach can result in a less-than optimal balance of the other entity dimensions

as process counts increase. The balance of the other dimensions can be improved,

but not fixed, with carefully defined weights in the multi-constraint partitioning op-

tions provided by Zoltan’s recursive coordinate bisection implementation and by the

multi-level (hyper)graph methods [24]–[26]. Below, we review the graph, geometric

sectioning, and di↵usive partitioning approaches in more detail.

2.2.1 (Hyper)Graph Partitioning

Graph-based partitioning methods define an assignment of weighted graph

nodes to k parts such that each part has the same total weight and the inter-part

communication costs are minimized. A graph is constructed from an unstructured

mesh by selecting one dimension of mesh entity (i.e., vertices, edges, faces, or regions)

to define graph nodes, and one mesh adjacency between the selected entity dimension
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to define graph edges. At a higher level, the goal of this selection is to represent a

work unit with the graph node and an information dependency between two work

units by a graph edge. 3D element-based finite element and finite volume codes

typically select mesh regions for graph nodes and mesh faces shared by elements

for graph edges. This selection results in the unique assignment of mesh regions to

parts, which enables e�cient local execution of element-level computations [1].

Parallel, multi-level, graph-based partitioning methods produce high quality

partitions with tens of thousands of parts in a fraction of the time needed by most

analysis procedures [7], [26]–[28]. One approach to generalize these methods to rep-

resent more complex information dependencies uses hypergraphs. A hypergraph is

defined as a set of weighted nodes and hyperedges. Hyperedges di↵er from graph

edges in that they represent dependencies between multiple graph nodes and, in

doing so, have the ability to better model the communication costs of an applica-

tion [29], [30]. As with graph-based partitioning, the goal of hypergraph partitioning

is to balance the node weight across the k parts while minimizing a hyperedge-based

objective function. Boman and Devine propose constructing the hypergraph from

an unstructured mesh by creating one hypergraph node for each mesh region (in

3D), as is done in the graph-based construction, and a hyperedge connecting the

mesh regions bounded by each mesh vertex. This richer representation improves the

modeling of communication costs, but results in algorithms that are more compute

and memory intensive relative to graph-based methods.

2.2.2 Geometric Partitioning

Geometric methods represent information via spatial coordinates, and rela-

tions via distance; the closer two pieces of information are the stronger their relation.

The exclusive use of coordinate information significantly reduces the memory re-

quirements of these methods relative to (hyper)graph methods that rely on topolog-

ical relations [8]. Along with the lower memory cost, the spatial sorting procedures

used by geometric methods are also computationally cheaper than the topological

traversals needed by graph methods. The lower computational and memory usage

costs come at the expense of significant increases in inter-part communications [31].
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For applications that require frequent balancing though, the resulting communica-

tion overheads may be o↵set by the time saved computing the partition [8].

Geometric recursive sectioning methods can quickly compute well-balanced

partitions for a single entity dimension [32]–[36]. Recursive coordinate (RCB) [37]

and inertial bisection (RIB) [35], [36], [38] methods recursively cut the parent do-

main; RCB along a coordinate axis and RIB perpendicular to the parent domain’s

principal direction. Multi-sectioning techniques [33], [34] can be considered ex-

tensions of the recursive coordinate bisection methods as they define cuts along

coordinate axis, but do so with multiple parallel cut planes at each recursion.

Partitioning methods using space-filling curves (SFC) produce partitions of

similar quality to RCB and RIB. For 3D unstructured meshes Hilbert [39] and Mor-

ton curves have been used e↵ectively by the Zoltan [40] and SPartA [8] packages,

respectively. Given the simplicity of SFC partitioning methods (encoding, sorting,

then splitting) a high degree of on-node and inter-node concurrency is possible. For

example, a constant time Hilbert curve encoding procedure (spatial coordinates to

curve position) [39] and its subsequent sorting has been demonstrated on shared-

memory devices using a data-parallel implementation [5] and a two-collective split-

ting approach is used by SParTA. As an added benefit, sorting provides a cache

e�cient layout of the mesh entities for subsequent mesh-based operations that ben-

efit from topological locality [41], [42].

2.2.3 Di↵usive Partitioning

Di↵usive partitioning methods e�ciently improve an existing partition by

transferring load between neighboring parts. Load transfer can be coordinated

globally or locally. Global load transfer selects elements to minimize either the

total weight of transferred elements, or the maximum weight transferred in to or

out from a part [43]–[49]. Alternatively, local load transfer iteratively moves ele-

ments from heavily loaded to less loaded parts [47], [50]–[52]. This approach can

have significantly lower overall computational costs if the total amount of trans-

ferred load is controlled. Control is typically exerted through greedy heuristics.

These heuristics first determine the amount of load to transfer between neighboring
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parts, and then select elements to satisfy the transfer requirement. Fiduccia [53]

and Kernighan [54] proposed selecting elements based on the subsequent part qual-

ity improvement. For partitioning complex graphs with up to one trillion edges [55],

[56] these heuristics have proven successful as part of a label propagation based

approach. Likewise, a greedy improvement heuristic is applied to reduce the com-

munication cost of parallel sparse matrix-vector multiplication [57]. In Zhou’s work

on unstructured meshes a similar heuristic is shown to be highly scalable given a

distributed mesh representation [9], [10].

2.3 Dynamic Partitioning Requirements

The dynamic partitioning problem seeks to quickly improve the load balance

and reduce communication costs of an existing partition that is reasonably dis-

tributed; such as those generated by (hyper)graph and geometric partitioning tools.

Hendrickson and Devine [22] define the requirements of dynamic partitioning as:

(1) balance the computational work, (2) reduce the inter-processor communication

costs, (3) modify the partition incrementally, (4) output the new communication

pattern, (5) execute on parallel systems quickly, (6) consume small amounts of mem-

ory, and (7) provide an easy to use functional interface. For unstructured meshes

these requirements are mostly satisfied by multi-level (hyper)graph and recursive

sectioning methods [23]. Multi-level (hyper)graph methods are limited in scalabil-

ity; memory requirements limit their e↵ective usage on more than several thousand

processors [8]. Recursive sectioning methods are limited in quality; they have lower

memory and time requirements at the expense of increased inter-part surface area.

Additionally, these methods can only balance one dimension of mesh entity. This

approach can result in a less-than optimal balance of the other entity dimensions

as process counts increase. The balance of the other dimensions can be improved,

but not fixed, with carefully defined weights in the multi-constraint partitioning op-

tions provided by Zoltan’s recursive coordinate bisection implementation and by the

multi-level (hyper)graph methods [24]–[26]. Below, we review the graph, geometric

sectioning, and di↵usive partitioning approaches in more detail.
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2.4 Partitioned Mesh Representation

PUMI provides the O(1) queries of intra- and inter- part mesh topology infor-

mation needed by ParMA via a complete and distributed mesh representation [11],

[21]. The distributed mesh is the union of mesh parts. A mesh part is defined as a

collection of mesh facesM2 in 2D, and regionsM3 in 3D, assigned to a processing re-

source, typically a core or hardware thread. Mesh entities are denoted as Md
i , where

d specifies the dimension and i specifies the id or index. At the shared boundary

of two or more parts mesh entities are copied (as shown for mesh vertex M
0
0 and

edge M1
0 in Fig. 2.1) and locally tracked on each part through a remote copy object.

Distributed mesh operations involving a mesh entity on the part boundary are co-

ordinated through an ownership protocol; depicted by the discs and bold segments

in Fig. 2.1.

Two parts with common boundary mesh entities are neighbors. Sets of mesh

entities sharing common neighboring parts form a partition model entity [58]. Like

mesh entities, we denote the ith partition model entity of dimension d as P d
i . A mesh

entity is classified on the partition model entity of equal or greater dimension which

bounds it. For example, in Fig. 2.1 mesh vertex M
0
0 is classified on the partition

model vertex P
0
0 , mesh edge M

1
0 is classified on the partition model edge P

1
1 , and

mesh face M
2
0 is classified on the partition model face P

2
2 . These classifications are

respectively noted as M0
0 @ P

0
0 , M

1
1 @ P

1
1 , and M

2
0 @ P

2
2 . Information is exchanged

by neighboring parts, typically for synchronizing data associated with part boundary

entities, through non-blocking, collective, neighborhood communications provided

by PCU [12], [59]. Using these communications, PUMI also provides procedures to

e�ciently move mesh elements between processors; referred to as migration.

2.5 Partition Improvement

ParMA reduces the peak imbalance of multiple entity dimensions by itera-

tively migrating some mesh elements from heavily loaded parts to neighboring parts

with less load. The entity dimensions to balance are defined by an application spec-

ified priority list. For example, if element>vertex is specified then the algorithm

prioritizes improvements to element balance over vertex balance. The greater-than
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Fig. 2.1. (left) Example of a mesh, (middle) its partition model, and
(right) its ownership. Discs and bold segments denote entity ownership.

relation indicates that element balance improvements are allowed to degrade the

vertex balance, but vertex balance improvements cannot degrade the element bal-

ance. The balance of unlisted entity dimensions (edges and faces in this example)

are not considered and may be degraded. If vertex=element is specified, then the

algorithm considers the balance of mesh elements and vertices equally important. In

this case, the lower-dimension entities are processed first as improvements to their

balance tends to improve the balance of the entities they bound (higher-dimension

entities). The target imbalance for each listed entity dimension is specified by the

application as tgtImb
d where d  dmax (the maximum dimension entity in a mesh).

Applications which perform work on entities regardless of their ownership define the

imbalance of a part, Idp , as the weight of mesh entities of dimension d existing on

part p divided by the average weight of dimension d entities per part. The weight of

a mesh entity is set to one when it is not specified by the application. The maximum

imbalance of dimension d entities across all parts is noted as Id.

The ParMA iterative di↵usion procedure is summarized in Algorithm 1. This

process is repeated for each specified entity dimension in order of descending priority,

as described above. For simplicity, the pseudo code is written with only a single

entity dimension, d, being passed to the supporting procedures. In practice though,

we have the list of higher priority entity dimensions to avoid disturbing the imbalance

of the higher priority entities during the balancing of the current, lower priority,

entity dimension. Iterations are stopped on line 9 if the target imbalance (tgtImb
d)

is reached, or they are stopped on line 10 if no migration opportunities remain
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(discussed in Section 2.7.1), or if a maximum number of iterations is reached. Each

di↵usive iteration has four steps [50]. First, on line 2, neighboring parts exchange

local information (e.g., the weight of mesh entities) using PCU. Next, each part

determines how much load needs to be migrated and where it needs to go on line

3, targetting, and then marks elements for migration on line 4, selection. Before

migration is executed, on line 5, each part determines if too much weight is being

sent to it, and, as necessary, cancels a portion of the incoming element migrations.

The cancellation process is detailed in subsection 2.7.0.2. The final step, migration,

moves the marked elements to their defined destinations using PUMI.

Algorithm 1 ParMA Load Balancing

1: procedure RunStep( (in/out) mesh, (in) d)
2: ComputeAndExchangeWeights( (in) d, (out) weight, (out)

neighborWeights)
3: Targeting( (in) mesh, (in) weight, (in) neighborWeights, (out) targetWeights)

4: Selection( (in) mesh, (in) d, (in) targetWeights, (out) migrationP lan)
5: Cancellation( (in) mesh, (in) neighbors, (in/out) migrationP lan)
6: Migration( (in/out) mesh, (in) migrationP lan)

7: procedure Balance( (in/out) mesh, (in) dimensions)
8: for all d 2 dimensions do
9: while imbalance of d > tolerance do RunStep( (in/out) mesh, (in) d)
10: if Balancing Stagnates then
11: break

The targeting and entity selection steps are detailed in the following sections.

2.6 Targeting

ParMA defines the load transfer requirements for balancing a given entity di-

mension based on the relative weight of the entities in neighboring parts. Parts with

an entity imbalance, Idp , greater than the specified imbalance, tgtImb
d, are defined

as heavily loaded parts. A lightly loaded part is defined based on the partition

improvement requirements. If the application requires vertex=edge>element then

migration to decrease element imbalance should not increase the imbalance of ver-

tices or edges. Thus, during element improvement a part is a ‘lightly loaded’ target

to receive elements if it has fewer vertices, edges and elements than the heavy part.
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The amount of load, ldpq, migrated from a heavily loaded part p to a neighboring

part q during improvement of mesh entities of dimension d is defined as

l
d
pq = ↵ ⇤ sf ⇤

 
X

i

w(Md
i 2 p)�

X

i

w(Md
i 2 q)

!
, (2.1)

where w(Md
i ) is the application specified weight associated with a given entity i , ↵

is a di↵usion rate limiting constant 2 (0, 1] [51], and, in 3D, sf is the ratio of mesh

faces shared by parts p and q to the total number of faces classified on partition

boundaries of p. The surface area bias sf helps define load transfer requirements

that can be satisfied in a single iteration by selecting elements for migration that

are classified on the part boundary. A large transfer across a small boundary will

not only take several iterations to satisfy, it will also lead to a large increase in the

number of entities classified on the part boundary as each iteration will ‘tunnel’ into

the part. The entity selection process is detailed in Section 2.7.

We tested the e↵ect of ↵ on run time and imbalance to guide the choice of a

conservative default value. The test mesh of the automotive part shown in Fig. 2.2

has 2048 parts and an initial vertex imbalance of 46%. Table 2.1 and Fig. 2.3

respectively show the run time and vertex imbalance as ↵ is varied from 0.2 to 1.0.

The target vertex imbalance was set to 5%. With the exception of the ↵ = 1.0 case,

all the cases reached an imbalance of 6% or 7% before stagnation detection stopped

the vertex balancer (Section 2.7.1). Setting ↵ to 0.6 yields the fewest iterations and

the shortest run time. Increasing ↵ from this value causes too many elements to

be migrated in each iteration, which results in imbalance oscillations that increase

the run time. Similarly, lower values of ↵ increase the run time by migrating too

few elements in each iteration. Given these observations, ↵ is conservatively set to

0.5 for the remaining tests in this work. Note, this setting of ↵ may be tuned for a

specific case to improve performance.
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Fig. 2.2. Coarse mesh of the 2014 RPI Formula Hybrid suspension

upright.
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Fig. 2.3. E↵ects of ↵ on the number of iterations, and vertex imbalance.

The initial mesh has 2048 parts and a 46% vertex imbalance.
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Table 2.1. Di↵usion iterations and run time for various ↵ settings.

↵ iterations time (s) I0

0.2 45 19.3 1.07

0.4 31 14.0 1.07

0.6 27 12.5 1.06

0.8 27 13.5 1.07

1.0 31 16.6 1.09

Compared to Zhou’s LIIPBMod, ParMA’s use of Equation 2.1 enables finer

grained migrations. In LIIPBMod, a part is a target for migration if (1) the di↵er-

ence between the vertex imbalance of the source part and the target part is greater

than 2% or (2) the vertex imbalance is less than 4.5%. Note, LIIPBMod does not

support weights associated with mesh vertices.

2.7 Entity Selection

Entity selection’s primary objective is to reduce the imbalance of a given entity

dimension. While selecting mesh elements for migration it is important to maintain

inter-part boundaries with low surface area as an increase in the number of mesh

entities classified on boundaries increases application communications, and in some

cases, also the computational load [60]. Thus, entity selection’s secondary objective

is to reduce the number of mesh entities classified on partition model entities of

dimension d < dmax.

Entity selection satisfies the objectives with part-level and entity-level heuris-

tics. In Section 2.7.0.1 we describe how the part-level heuristic defines a vertex

traversal order for evaluating the entity-level heuristic. Next, in Section 2.7.0.2, we

describe how the entity-level heuristic evaluates the topology of a cavity; the set of

elements adjacent to a given vertex. Combined, these two procedures reduce both

the surface-to-volume ratio of the parts and their entity imbalance. Pseudo code

for the selection procedure, as called in Algorithm 1, is given in Algorithm 2 and

described in the following sections.
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Algorithm 2 ParMA Selection

1: procedure Selection( (in) mesh, (in) d)
2: if dist not set then
3: IdentifyDisconnectedComponents((in) mesh, (out) comps)
4: SetVertexComponentIds((in) mesh, (in) comps, (out) ids)
5: FindTopologicalCenters((in) mesh, (in) comps, (out) centers)
6: ComputeCoreDistance((in) mesh, (in) ids, (in) centers, (out) dist)
7: OffsetCoreDistance((in) mesh, (out) dist)
8: else
9: UpdateDistance((in) mesh, (in/out) dist)

10: for cavSize 2 {2, 4, 6, 8, 10, 12} do
11: CreateTraversalQueue((in) mesh, (in) dist, (out) q)
12: for all v 2 q do
13: if ShouldMigrateCavity((in) mesh, (in) v, (in) cavSize) then
14: Add cavity of v to migrationP lan

2.7.0.1 Part-level Core Distance Heuristic

The number of mesh entities classified on partition model entities is reduced

by migrating elements that are furthest from the topological center of the part,

referred to as ”the core”. To find these elements we traverse the part boundary

vertices in order of their distance from the core. We define this distance as the

shortest edge-based path between a vertex and the part’s core. Thus, as di↵usive

iterations are executed, elements bounding vertices far from the core are migrated

and the maximum distance of the part is reduced [61], [62]. This approach satisfies

the second entity selection objective by forming parts with lower surface to volume

ratios and reduced communications. In Algorithm 2 the core is found on line 5 and

the distance is computed on line 6.

To understand the distance computation procedures, we must first account

for parts produced by the graph and geometric partitioning that have multiple

connected components. We define a (connected) component of a part as the set

of elements in which there exists a path via M
d�1 adjacencies (faces in 3D) between

any two elements. Given this complexity, we first identify the components (lines 3

and 4 of Algorithm 2), compute the distance in each component (lines 5 and 6 of

Algorithm 2) , and then o↵set the component distances to ensure a strictly increasing

ordering for the traversal of boundary vertices (line 7 of Algorithm 2); we want the

traversal to process the entire boundary of one component before moving on to the
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next one. The remainder of this subsection defines these procedures.

Connected components are identified via a breadth-firstMd�1 adjacency-based

traversal [63] starting at the first mesh element in the part (based on iterator or-

dering). As elements are visited, they are marked with the component id. When

there are no more unmarked M
d�1 adjacent elements to visit, the component id is

incremented and the traversal is restarted with an unmarked element in another

component. This process is repeated until all elements in the part are marked with

a component id.

By traversing M
d�1 mesh adjacencies between elements we have identified

components with the strongest topological connectivity. But, to compute the core

distance at mesh vertices, we first need to uniquely assign vertices to components.

For vertices bounded by elements with the same component id the assignment is

obvious. The problem comes with vertices at the common boundaries between

components formed by lower dimension topological mesh adjacencies (i.e., an edge

or vertex adjacency). To resolve this assignment issue, we set the vertex id to the

lowest bounding component id. Now that vertices have component ids, we can find

the vertices at the topological center of each component.

We find the central vertices in a component via a breadth-first traversal start-

ing from all the boundary vertices of a component. When there are no more vertices

to visit the traversal ends. From the set of vertices with the largest traversal depth,

the first (based on vertex iterator ordering) is chosen as the component’s core. The

left half of Fig. 2.4 shows the vertices marked with their traversal depth. Note that

selecting a di↵erent vertex with a depth of three could reduce the maximum dis-

tance to any boundary vertex, thus representing a more central vertex, and result

in a small improvement to the subsequent boundary traversal. From the central

vertices Dijkstra’s algorithm [64] is run to compute the core distance to all other

vertices in the component. The core distance at each vertex is shown in the right

half of Fig. 2.4. A more complex example of distancing is shown in Fig. 2.5.
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Fig. 2.4. (left) The distance from each vertex to the boundary and

(right) the distance from the core vertex (marked with a zero near the

bottom left corner).
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(a) Component core vertices marked with a zero.

B

C

A

(b) An edge-disconnected junction (arrow) and three

disconnected components (A, B, C).

Fig. 2.5. Components in one of four parts of the MPAS 60km [65] ocean

mesh. Dark shaded elements are isolated (no M
d�1 adjacency path to

elements on the part boundary) and light shaded elements are on a

di↵erent part.
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Now that all components have vertices with distance, we must o↵set the dis-

tances so that our element selection procedure can traverse all the boundary vertices

of a component before moving to another component. In Algorithm 2 the o↵set is

computed on line 7. Fig. 2.6 depicts the distance of the disconnected components

before and after the o↵set is applied. Algorithm 3 computes the component ver-

tex distance o↵sets. The procedure begins by sorting the components in order of

descending depth; forming the list c. Next, on line 2, the deepest component, r0,

has its o↵set set to zero. Lines 3 through 4 then compute the o↵set of the i
th com-

ponent, ri, by summing the previous component’s o↵set and maximum distance,

ri�1 +max(R(M0
j 2 c(i � 1))), (where R(M0

j ) is the distance of a vertex), plus an

upper bound on a component’s distance increase, maxDistIncrease. This upper

bound enables fast distance updates by including a bu↵er into the o↵set that allows

the parts to grow during di↵usion iterations without overlapping. As each di↵u-

sion iteration can only add one layer of elements to a component, the maximum

growth in distance for a component is bounded by the number of iterations. So,

maxDistIncrease is set to the maximum number of di↵usive iterations. The final

step on line 5 loops over the components in ascending order of their depth and ap-

plies the o↵set to their vertices. This component traversal order, combined with the

conditional checking that the current distance value is less than the o↵set, prevents

the distance of vertices on the boundary of two components being o↵set multiple

times.

Algorithm 3 Vertex Distance O↵set
1: c  sortDescending(components)
2: r0  0 //component zero’s o↵set
3: for i 1, numComponents do
4: ri  ri�1 +max(R(M0

j 2 c(i� 1))) + 1 +maxDistIncrease

5: for i numComponents, 1 do
6: for M

0
j 2 c(i) do

7: if R(M0
j ) < ri then

8: R(M0
j ) R(M0

j ) + ri;

Within a component, detection of non-manifold [66] portions of the boundary

is critical to ensure that the core distance accurately records the shortest M
d�1
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Fig. 2.6. Core distance of disconnected components A, B, and C from
Fig. 2.5 (left) before, and (right) after, the o↵set is applied.

adjacent path from the core to each vertex. For example, consider the 2D non-

manifold vertex junction indicated by the arrow in Fig. 2.5b. Here the paths from

the core vertex marked in the upper portion of Fig. 2.5a to either side of the junction

will have significantly di↵erent lengths due to the large holes in the mesh formed by

land masses. Detection of a non-manifold junction at a given boundary vertex, s, is

through the breadth-first traversal of s’s cavity vertices (i.e., the vertices bounding

elements in the cavity), rooted at the distance-1 parent of s. Vertices in the cavity

are reachable via M
d�1 adjacencies if the traversal can visit them without passing

through s. For example, consider vertex s in the cavity depicted in Fig. 2.7 to have

the lowest distance in the priority queue of vertices being processed by Dijkstra’s

algorithm. The detection traversal starts at vertex p, the parent of s, by enqueuing

vertices f and h. s is also edge-adjacent to p, by definition, but it is skipped as paths

through it are not considered. The traversal continues by dequeuing a vertex and

enqueuing its edge-adjacent vertices that have not been previously visited and are

not s. Fig. 2.7 depicts the depth of each edge in the traversal tree with hash marks.

If there existed another element that was adjacent to s that was also adjacent to e

and d, or h and b, then the edge (e, d) or (h, b) would provide an edge-adjacent path

from p to b, c and d and the junction would be identified as manifold.
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s
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c

d

e

f

p

h
Fig. 2.7. Determining if s is a non-manifold component boundary by
creating a cavity of elements bounded by s, and then trying to walk

from its parent vertex p to b, c, or d without going through s. The hash
marks indicate the depth of each edge visited in the walk.

Compared to LIIPBMod, our part-level heuristic supports improvement of

lower quality partitions by directly accounting for connected components, and non-

manifold junctions within components.

In LIIPBMod, the boundary vertices are iterated over based on the order they

appear in the underlying data structure without consideration for the part topology.

2.7.0.2 Entity-level Cavity Heuristics

In the previous subsection we described how the part-level heuristic defines

a vertex traversal order for evaluating entity-level heuristics. In this subsection,

we define those entity-level heuristics and how they select elements for migration

to reduce the entity imbalance. We start by describing size-based cavity selection.

Next, we describe and demonstrate how multiple boundary traversals with increasing

cavity size limits benefit partition improvement. In Algorithm 2 these steps are

listed on lines 10 through 13. Lastly, we detail cancellation; a critical mechanism

for multi-criteria load balancing.

Our entity-level, gain-like heuristic [53], [54] is based on Zhou’s cavity-based

approach [9], [10], but is more flexible. Like LIIPBMod, we check the number of

elements in the cavity (the set of elements adjacent to a vertex on a part bound-
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ary), but we also check the adjacencies within the cavity, and the on- and o↵-part

adjacencies external to the cavity. With this additional information we can migrate

cavities that are bounded by vertices classified on partition model vertices, edges,

and faces. LIIPBMod’s heuristic avoided multi-part junctions; any cavity whose

bounding vertex is classified on a partition model vertex or edge was not eligible

for migration. In addition to more flexible migration, our heuristics improve the

selection quality with (1) multiple boundary traversals with increasing cavity size

in a single iteration, and (2) support for migrations to be canceled by the receiver.

The primary check for selection is based on the number of elements in a cavity.

If a cavity is small, then migrating it will decrease the number of entities in the

source part and classified on partition model entities. Conversely, migrating a face-

connected cavity (i.e., between any two elements in the cavity there exists a path

via face adjacencies) with several elements can result in an increase in the number

of mesh entities classified on partition model entities. However, migrating small

cavities with a few disconnected elements can yield significant entity reductions.

Note, LIIPBMod uses a fixed cavity size of five elements.

To illustrate the e↵ect of size and connectivity on entity reductions consider

the cavities depicted in Fig. 2.8 and the reductions listed in Table 2.2. Fig. 2.8 (a-c)

and (d-f) respectively depict face-connected and face-disconnected cavities. Here,

the vertices bounding the cavities are marked with a disc. Vertices classified on the

partition model face P
2
j bounded by parts P

3
0 and P

3
1 are marked with a circle or

disc, and in (c) a vertex classified on a partition model region, M0
i @ P

3
0 , is marked

with a square. In this example, all elements are migrated from P
3
0 to P

3
1 . After

migration the faces bounded by the circled vertices are now on the part boundary

between P
3
0 to P

3
1 , and in cavities (a-b) and (d-f) there is one less vertex classified

on P
3
0 . Migration of cavity (c) does not change the number of entities classified on

the part boundary since there is an entity added to the part boundary for each one

migrated.

Ideally, we would like to select the combination of cavities for migration that

results in the greatest imbalance reductions. Solving this problem exactly would be

expensive, so instead, we iterate over the part boundary multiple times in order of
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d
vertex bounding cavity vertex classi ed on

e f

a b c

vertex classi ed on 

Fig. 2.8. Vertex bounded cavities being migrated from part 0 to 1.

Table 2.2. Reduction in the number of mesh entities classified on P
2
j for

cavities (a-f) depicted in Fig. 2.8.

Cavity
Entity Dimension a b c d e f
Vertex 1 1 0 1 1 1
Edge 3 2 0 5 7 8
Face 2 2 0 4 6 6

descending vertex distance while relaxing (increasing) the cavity size selection limit

before executing the PUMI element migration procedure. Thus, the first traversal of

the boundary will select only cavities with one or two elements, followed by cavities

with less than four elements in the second traversal (the first traversal may have

created new one or two element candidates), and so on. The traversal stops at a

cavity size limit of 12; roughly half of the average number of elements adjacent to a

vertex in a tetrahedral mesh [67].

We tested the e↵ectiveness of selection with an increasing size limit versus a

static size limit by balancing a small test mesh. For both approaches the cavity size

limit is set to 12. The test mesh of the suspension upright has 228 thousand elements

and is partitioned to 2048 parts using RIB. The RIB partition has a perfect element

balance and a 53% vertex imbalance. Our runs with vertex balancing ParMA targets

a 5% vertex imbalance. Balancing with the increasing cavity size limit requires 2.0

seconds on 2048 Blue Gene/Q cores. At the end of the run, the target vertex
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imbalance is reached, the element imbalance is 9%, and the average number of

vertices per part is reduced by 3.4%. On the same number of cores, the fixed cavity

size run takes 3.4 seconds to reach the target vertex imbalance and has a 15%

element imbalance, and a slight (0.07%) increase in the average number of vertices

per part.

Once a cavity is selected, it needs to be assigned to a neighboring part for

migration. The assignment and subsequent migration should result in a reduction

of the number of mesh entities classified on the part boundary. In a 3D mesh we

assign the cavity to the part that shares the most mesh edges with it. Counting

shared edges avoids counting vertices (the lowest dimension shared entity) that are

not adjacent to a higher dimension shared entity (an edge or a face) while providing

more information than the counting of shared faces (the highest dimension shared

entity, in 3D). Fig. 2.9 depicts a two element cavity with entities classified on both

partition model faces and edges. Specifically, the cavity has two faces shared with

part one (dark shaded), two faces with part two (unshaded), and an additional

classification of edge F on the partition model edge shared with part two (dashed

line in bold). Counting shared edges correctly identifies part two as the destination;

it has six cavity edges versus part one only having five. The ‘Sum’ row of Table 2.3

lists the total cavity edge count on each part when the cavity elements are owned

by part zero, the initial owner, and parts one and two, the two possible target parts.

For this example, migrating the cavity to part two reduces the total number of

shared edges from 20 to 19; if part one were selected the total number of shared

edges would increase by one. If multiple parts are tied for the most shared edges

then the first part with remaining capacity is selected as the destination.

As the part boundary is traversed and the cavity heuristic selects elements for

migration, the weight of the selected entities is tracked to prevent migrating too

much weight to the target parts. Tracking is based on the simple rule, rooted in

the unique assignment of elements to parts, that an entity will not exist on the part

if all the elements it bounds are marked for migration. Thus, the weight tracking

mechanism checks for this condition, and if satisfied, adds the entities weight to the

running total for the given destination part.
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Fig. 2.9. Counting mesh entity partition model classification to select
either part one or part two for the migration of part zero cavity

elements. The cavity bounding vertex is marked with a disc. (left) Part
classification; faces in the foreground classified on part 2 are not

shaded. (right) Mesh edge labels. For clarity, edges in the foreground
have bold labels.

During the balancing of lower priority entity dimensions (e.g., elements during

vertex > element balancing) the imbalance of higher priority entity dimensions is

preserved by canceling the migration of some elements [47]. First, the sending parts

determine how much weight associated with higher priority entities is migrated to

the target parts. These weights are then sent to the respective targets using PCU’s

neighborhood communication procedures [12]. The target part then iterates over the

incoming migration requests in descending order of the migration weight, accepts

the request if capacity remains, reduces the remaining capacity accordingly, and

sends the accepted weight to the sender. The sending part then traverses the list of

migration elements in the order they were selected (i.e., descending distance from

the parts topological core), and keeps elements in the list until the peer’s higher

priority entity weight capacity is exceeded. A summary of the interaction between

the part-level and entity-level heuristics is given in Section 2.7.2.

2.7.1 Stagnation Avoidance

A stagnation [9] avoidance procedure stops execution of di↵usion when the

imbalance or part shape has not improved over several iterations. Specifically, a

second order accurate backward finite di↵erence [68] approximates the rate of change
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Table 2.3. Existence of Fig. 2.9 cavity edges on parts. The column
groups list the edge existence prior to migration of the cavity

(Owner=0), and after migration to part N (Owner=N). An entry is ‘1’
if the edge exists on the part. The last row lists the total number of

cavity edges on each part.

Cavity Owner
0 1 2

Part 0 1 2 0 1 2 0 1 2
A 1 1 1 0 1 1 0 1 1
B 1 1 0 0 1 0 0 1 1
C 1 1 1 0 1 1 0 1 1
D 1 0 1 0 1 1 0 0 1

Edge E 1 1 0 1 1 0 1 1 1
F 1 1 1 1 1 1 1 1 1
G 1 0 1 1 1 1 1 0 1
H 1 0 1 1 1 1 1 0 1
I 1 0 0 1 1 0 1 0 1

Sum 9 5 6 6 9 6 5 5 9

of the imbalance, imb, and the average number of boundary mesh vertices per part,

sides. Di↵usion is stopped if the rate of change in imb is less than one percent of the

target imbalance and the change in sides is less than one-hundredth of the initial

sides.

2.7.2 Time Complexity

The part-level heuristic requires first executing an O(|Md|+ |Md�1|) element-

based, breadth-first traversal to identify disconnected components. Next, the vertex

component ids are set, O(|M0|), and boundary vertices are inserted into STL sets,

O(|M0|log|M0|). The component vertices are then traversed in breadth-first order

via edge adjacencies to locate the topological center, O(|M0|+ |M1|). For simplicity,

our implementation uses an STL set to maintain the vertices at each tree-depth.

This choice adds O(|M0|log|M0|) to the cost and could be avoided with a list-

based traversal. Next, Dijkstra’s algorithm is run to compute vertex distances,

O(|M1|+ |M0|log|M0|). As the vertices are visited, adjacent elements are accessed

for non-manifold topology detection; a cost increase of O(|Md|). Lastly, the vertex

distances are o↵set, O(|M0|). The overall complexity of the part-level heuristic for

a 3D tetrahedral mesh is O(|M1| + |M2| + |M3| + |M0|log|M0|). But, for each

entity dimension being balanced these procedures only need to be executed once.
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In subsequent iterations we can execute a lower cost distance update on just the

boundary vertices (line 9 of Algorithm 2).

In each iteration the entity-level heuristic first requires building a STL map-

based distance queue of vertices to traverse, O(|M0|log|M0|). The vertices in the

queue are then traversed, O(|M0|), and cavities constructed by adjacent element

queries, O(|Md|). Lastly, the cavity edges are queried for determining the destina-

tion part, O(|M1|). Thus, the entity-level heuristic’s complexity is O(|M0|log|M0|+
|M1|+ |Md|).

A detailed analysis of convergence and overall time complexity of general dif-

fusive load balancing procedures can be found in the work of Subramanian [50] and

Berenbrink [69].

2.8 Results

ParMA support for balancing 2D and 3D unstructured meshes with complex

topological features are demonstrated in the following subsections. First, we com-

pare ParMA against its predecessor LIIPBMod on up to 256Ki (256·210) parts. We

then test the e↵ect of ParMA’s entity selection features described in Section 2.7 on

partition quality and imbalance. Then, we present ParMA’s ability to improve par-

titions created with graph and geometric partitioning methods on up to 1Mi (220)

parts. Lastly, we discuss the e↵ect of partition improvement on the scalability of

PHASTA computational fluid dynamics up to 512Ki parts.

2.8.1 LIIPBMod Comparison

We compare the performance of ParMA

vertex>element improvement against LIIPBMod on a 64Ki, 128Ki, and 256Ki par-

tition of a 941 million element tetrahedral abdominal aortic aneurysm (AAA) mesh.

This mesh was generated by successively refining the initial coarse mesh shown in

Fig. 2.10. Three test partitions of the mesh were created by running local ParMETIS

(one instance per process [9]) part k-way on a 16Ki base partition created with global

ParMETIS part k-way. Our partition improvement test then executed ParMA and

LIIPBMod on the three partitions using the Mira Blue Gene/Q system at the Ar-
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Fig. 2.10. Abdominal aortic aneurysm (AAA) geometric model and
close-up view of a coarse mesh.

gonne Leadership Computing Facility (ALCF).

Fig. 2.11 depicts the change in vertex and element imbalance resulting from

ParMA and LIIPBMod. In these tests LIIPBMod targets a 5% vertex imbalance

and ParMA targets 5% vertex and element imbalance. Note that LIIPBMod does

not explicitly target reducing the element imbalance; it simply tries not to harm

it significantly while balancing vertices. LIIPBMod balancing stagnates at around

10% for the vertex imbalance and, at 256Ki, increases the element imbalance by

two percentage points. At all three partition sizes ParMA meets the vertex and

element imbalance target of 5% and executes 75% faster than LIIPBMod. For these

partitions ParMA and LIIPBMod have an insignificant e↵ect (less than one percent)

on the total number of vertices. The ParMA features that support fast balancing

are discussed in Sections 2.5, 2.6, and 2.7. Next, we discuss the performance cost

and partition quality improvements of these features.

2.8.2 Feature Tests

We tested ParMA vertex>element improvement on a 497,058 triangular-element

MPAS North America 15km-to-75km graded ocean mesh partitioned to 1Ki parts.

The initial partition generated with local ParMETIS part k-way has a vertex and

element imbalance of 36% and 17%, respectively, and on average, 280 vertices per

part.

Configuration 1 of Table 2.4 serves as the baseline for feature inclusion. It
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Fig. 2.11. Evolution of the (top) vertex and (bottom) element
imbalance with ParMA, LIIPBMod, and ParMETIS in the 941 million

element AAA mesh.

uses iterator-based part boundary vertex traversal (disabled graph distance), dis-

ables detection of non-manifold part junctions, has a fixed cavity size for selection,

and when balancing elements, does not cancel selections to help preserve vertex

imbalance. Configurations 2, 3, 4, and 5 successively add the features listed in

Table 2.4.

For each configuration Fig. 2.12a and Fig. 2.12b depict the change in par-

tition quality, relative to the initial partition, after ParMA balancing. ParMA’s

target imbalance was set to 5% for vertices and elements. Partition quality is mea-

sured in three ways: (1) the average number of neighbors per part, counted via
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Table 2.4. ParMA test configurations.

Configuration Enabled Features
1 None
2 1 + core distance traversal
3 2 + non-manifold feature detection
4 3 + increasing cavity size selection
5 4 + selection cancellation

shared vertices, ‘avgNB/part’, (2) the average number of vertices and edges per

part, ‘avgVtx/part’ and ‘avgEdge/part’, and (3) the entity imbalance, Id. For each

of these measures a value of one indicates no change from the initial partition, while

a value greater (lower) than one indicates an increase (decrease) in the measure

relative to the initial partition.

Fig. 2.12a depicts the improvement in quality after vertex balancing. The

average number of neighbors, vertices, and edges per part increases by one percent or

less with all features enabled. Relative to the over 20% decrease in vertex imbalance,

these increases are negligible.

Vertex>element balancing, Fig. 2.12b, further improves the partition quality

as features are enabled. After Configuration 1 (element balancing with no features

enabled), the element imbalance is reduced from 5% to 3% at the cost of a vertex im-

balance increase from 5% to 20%. Enabling core distance traversal, Configuration 2,

reduces the average number of disconnected components per part. Fig. 2.12c shows

that the disconnected component count, relative to the initial partition, increases

by 50x in Configuration 1 while Configuration 2 only has a 10x increase. The large

reduction in disconnected components reduces the number of vertices on the part

boundaries. This reduction in turn helps limit the vertex balance increase to 13%

after element balancing. The features of Configuration 4 further reduce the number

of boundary vertices (as indicated by the reductions in average neighbors, edges, and

vertices per part) and results in a 10% vertex imbalance. With all features enabled,

Configuration 5, a final vertex imbalance of 7% is reached while maintaining the 5%

element imbalance and further improving the other quality measures. This Configu-

ration runs in 72% of the time of Configuration 1; 3.07 seconds versus 4.25 seconds.

The faster run time is mainly the result of vertex balancing times reducing from
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(a) Partition quality after vertex balancing.

(b) Partition quality after vertex > element balancing.

(c) Disconnected components.

Fig. 2.12. Partition quality of a 1,024 part MPAS North America 15km
to 75km graded ocean mesh using the ParMA configurations listed in

Table 2.4.
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4.09 seconds to 2.82 seconds, and only a slight increase in the element balancing

times from 0.16 seconds to 0.25 seconds.

We also ran the feature test on the 3D 2.3 million element RPI Formula Hybrid

suspension upright mesh, the geometric model depicted in Fig. 2.2. The test mesh

has 2,048 parts and a 46% vertex and 10% element initial imbalance. ParMA’s target

imbalance was set to 5% for both vertex and vertex>element balancing. Fig. 2.13

shows the results of the tests. In Configuration 1 balancing the mesh vertices to 10%

increases the element imbalance to 26%. The subsequent element balancing reduces

the element imbalance to 5% in 17.8 seconds, but increases the vertex imbalance

to 29%. As features are enabled the partition quality and imbalances improve at

the cost of increased run time. Running with all features enabled (Configuration

5) requires 37.6 seconds (two times longer than Configuration 1), and reaches an

element imbalance of 5% and a vertex imbalance of 9%.

A critical di↵erence of the 3D upright tests to the 2D MPAS tests is the large

reduction in disconnected parts and the related decrease in the average neighbors and

entities per part. Compared to the initial partition, Configuration 5 of the upright

test reduces the average neighbors, vertices, and disconnected components per part

by 17%, 8%, and 93% respectively, and 3%, 2%, and 27% versus Configuration

1. This di↵erence is mostly due to the change from 2D to 3D and the increased

connectedness of the geometric model that enables more migration opportunities;

the MPAS mesh has multiple geometric surfaces which only share one or two vertices

with other surfaces.

The feature tests were run using one part per core on the Blue Gene/Q at the

Rensselaer Center for Computational Innovations. Tests with all features enabled

and additional balancing criteria are described next.

2.8.3 Multi-Criteria Improvement

Analysis codes which have work associated with multiple entity dimensions

and have a non-uniform distribution of that work require multi-criteria balancing.

Codes with this requirement include finite elements with non-uniform p, particle-in-

cell [70], contact/impact [71], atomistic-to-continuum [72], and other multi-model
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(a) Partition quality after vertex balancing.

(b) Partition quality after vertex > element balancing.

(c) Disconnected components.

Fig. 2.13. Partition quality of a 2,048 part RPI Formula Hybrid
suspension upright mesh using the ParMA configurations listed in

Table 2.4. Lower is better.
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or multi-physics techniques [73]. ParMA satisfies this requirement by balancing the

entity dimensions defined in a priority-sorted list. For each entity in the mesh the

application also optionally provides weights specifying the associated computational

load. To test this ability we ran ParMA vertex=edge>element balancing on a 2.3

million element, 2,048 part mesh of the suspension upright. The test emulates a

non-uniform work distribution associated with edges by setting entity weights. On

part zero edge weight is set to two; all other parts have entity weights of one.

Two initial partitions were used in testing; one is the result of mesh adaptation

(listed as ‘adapt’), and another is generated with RIB. The partitions’ average entity

counts and imbalances are listed in Table 2.5. The adapt partition, relative to the

RIB partition, has a ten point higher element imbalance, and on average, four more

neighbors and two more disconnected components per part. Given the lower initial

quality, ParMA improvement on the adapt partition requires about 350% more time

to run (27.4 seconds versus 7.7 seconds), and has final entity imbalances (noted in

the ‘elements’ row) a few points higher than the final ParMA imbalances of the RIB

partition. Note that, even with the run time increase, the time spent in ParMA is

insignificant relative to the time spent executing a typical finite element analysis on

a partition of this size.

Despite an initial weighted-edge imbalance of over 90% in both partitions,

ParMA reduces the entity imbalances to less than 9% while also reducing the average

per part entity weights by up to 5%. Critical to this result is ParMA’s ability to

di↵use away edge weight from the heavily imbalanced part zero while not overloading

other parts. Di↵usion reduces the number of mesh edges in part zero from 1674 to

901 in the adapt partition, and from 1665 to 889 in the RIB partition.

2.8.4 Partitioning to Over One Million Parts

ParMA quickly reduces large imbalances and improves part shape of a 1.6

billion element suspension upright mesh partitioned from 128Ki to 1Mi (220) parts

(approximately 1500 elements/part). The initial 128Ki partition has less than 7%

imbalance for all entity dimensions. We ran the tests on the Mira Blue Gene/Q

located at the ALCF. One hardware thread was used per part.
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Table 2.5. vertex=edge>element partition improvement on a 2.3 million
element, 2048 part, mesh of the RPI Formula Hybrid suspension

upright of Fig. 2.2.

avg/part
stage vtx edge face I0 I1 I2 I3 time (s)

adapt 357.749 1741.012 2497.981 1.46 1.92 1.15 1.10
vertices 334.0 1687.7 2469.3 1.08 1.92 1.16 1.19 10.27
edges 330.5 1679.0 2464.3 1.09 1.06 1.09 1.13 6.88
elements 328.829 1674.661 2461.637 1.09 1.06 1.07 1.08 10.26

RIB 350.457 1737.694 2503.369 1.53 1.92 1.10 1.00
vertices 337.8 1705.0 2483.4 1.04 1.95 1.07 1.10 3.01
edges 333.2 1692.8 2475.8 1.06 1.05 1.04 1.07 3.86
elements 331.387 1687.526 2472.306 1.07 1.05 1.04 1.04 0.85

• Partitioning with global RIB completes in 103 seconds and results in a 209%

vertex imbalance and a perfect element imbalance. ParMA runs on 1Mi pro-

cessors in 20 seconds and reduces the vertex imbalance to 6%, only increases

the element imbalance to 4%, and reduces the average number of vertices per

part by 5.5%.

• Local partitioning with ParMetis (one serial instance of ParMETIS for each

initial part) completes in 9.0 seconds and results in a 63% vertex imbalance

and a 12% element imbalance. ParMA runs in parallel on 1Mi processors in

9.4 seconds and reduces the vertex imbalance to 5%, the element imbalance

to 4%, and reduces the average number of vertices per part by 2%.

Partitioning a 12.9 billion element mesh from 128Ki (< 7% imbalance) to 1Mi parts

(approximately 12 thousand elements/part) using serial instances of ParMETIS

completes in 60 seconds and results in a 35% vertex imbalance and an 11% ele-

ment imbalance. Running ParMA in parallel on 1Mi processors takes 36 seconds to

reduce the vertex and element imbalances to 5% and reduce the average number of

vertices per part by 0.6%.

Table 2.6 lists the number of elements, the initial and target part counts, and

the initial entity imbalances, I0�3 for vertices, edges, faces and regions, respectively,

for three partitions. Table 2.7 lists the results of ParMA runs on those partitions.

Note, the column ‘dec. (%)’ lists the percentage decrease in the average vertices per

part after ParMA relative to the partitioning stage, ‘Split’.
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Table 2.6. Initial meshes for upright tests. The name of each is mesh is
describing the number of elements in the target part.

target elms per
name elements parts parts tgt. part I0 I1 I2 I3

small 1.6⇥ 109 217 220 1541.7 1.06 1.06 1.06 1.07
medium 12.9⇥ 109 217 220 12 333.8 1.05 1.06 1.07 1.07
large 12.9⇥ 109 217 219 24 667.6 1.05 1.06 1.07 1.07

Table 2.7. X+ParMA vertex > element upright test results.

avg dec.
scope density method stage vtx (%) I0 I1 I2 I3 tot (s)
local small rib Split 455.1 1.34 1.18 1.13 1.13 10.67

ParMA 427.6 6.42 1.07 1.06 1.05 1.05 8.94
pmetis Split 427.0 1.63 1.32 1.13 1.12 8.99

ParMA 418.8 1.97 1.05 1.05 1.04 1.04 9.48
medium rib Split 2825.5 1.31 1.14 1.08 1.07 54.32

ParMA 2752.0 2.67 1.06 1.05 1.04 1.05 48.81
pmetis Split 2687.7 1.35 1.14 1.11 1.11 59.81

ParMA 2671.3 0.61 1.05 1.05 1.04 1.05 36.15
large rib Split 5273.9 1.16 1.13 1.12 1.13 42.69

ParMA 5122.9 2.95 1.05 1.04 1.04 1.05 52.87
pmetis Split 5132.4 1.21 1.09 1.10 1.10 37.02

ParMA 5102.2 0.59 1.04 1.04 1.04 1.04 41.55
global small rib Split 470.1 3.09 2.07 1.45 1.00 103.14

ParMA 445.4 5.54 1.06 1.04 1.03 1.04 20.23
large rib Split 5367.3 2.49 1.70 1.29 1.00 96.79

ParMA 5228.8 2.65 1.05 1.02 1.03 1.04 379.84

2.8.5 CFD Scaling Improvement

As an example of ParMA’s ability to improve simulations of very complex

geometric models at extreme scale, consider the geometry shown in Fig. 2.14. The

left side of the figure depicts the surface of the vertical tail and rudder while the

right side provides a detailed view of a complex geometric junction. At this junction

we show a close-up view of a clip-plane cutting through the very small gap between

the vertical stabilizer and the rudder where many parts are contained. In this region

several of the parts are “cuto↵” from the surrounding geometry and have a limited

number of neighbors to di↵use through for partition improvement.

The partitions of the 1.2 billion element tetrahedral mesh for this study were

obtained through a series of steps. First, mesh adaptation was executed on a 4Ki

part mesh using an error-based size field [18], [19]. To balance and partition this

mesh, global ParMETIS part k-way [25] was executed to create an 8Ki part mesh.
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Fig. 2.14. (left) Full view of the vertical stabilizer and rudder and
(right) a slice at their junction colored by part number illustrating the

complex geometry and small features of the fluid mesh.

Starting from this 8Ki part mesh, with a 7% vertex imbalance and 1% element im-

balance, ParMETIS part k-way was applied locally to each part to create partitions

of the mesh in powers of two from 64Ki parts to 512Ki parts. These partitions were

then balanced using ParMA vertex>element to create a second set of partitions.

The flow in this case is solved by PHASTA. PHASTA is a stabilized finite

element analysis code [74] using an implicit solver. The code is written in FOR-

TRAN and is parallelized with MPI. PHASTA’s computational work is dominated

by equation formation and equation solution. Both types of work are executed on

the same partition of mesh elements [75]. An ideal partition will have balanced

elements for equation formation work, and balanced vertices, the degree-of-freedom

holder, for equation solution work. Furthermore, the partition will have parts with a

low surface-to-volume ratio to limit the cost of neighborhood communications that

exchange information on boundary vertices [76].

As shown in Fig. 2.15, through three part-count doublings, ParMA is able to

improve the vertex imbalance with only insignificant increases in element imbalance.

For example, in the largest partition, 512Ki parts, ParMA reduces the vertex im-

balance from 54% to 6%, and only increases the element imbalance from 1.8% to

3%. As expected, the 1.2 percentage point increase in element imbalance has no

e↵ect on the nearly perfect scaling of equation formation (scaling factor, defined

as (time(base) · procs(base))/(time(test) · procs(test)), of 0.96 maintained). Criti-
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Fig. 2.15. Evolution of the (top) vertex and (bottom) element
imbalance with and without ParMA.

cally though, ParMA improves the linear algebra work performance by 28% over the

ParMETIS partition, and improves scaling from 0.82 to 1.14, as shown in Fig. 2.16.

As sparse linear algebra is memory bandwidth limited [42], a super-linear scaling is

observed as the working data size is reduced and cache utilization is increased. Sim-

ilar, but less dramatic, performance and scaling gains are observed in the 256Ki part

case. In the smaller 64Ki and 128Ki partitions the performance di↵erence is negli-

gible. All PHASTA runs were performed on Mira using one process per core. This

configuration, although not optimal for achieving peak floating point performance

on the Blue Gene/Q, was selected to avoid unfortunate process to core mappings
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Fig. 2.16. Improvement of PHASTA sparse linear algebra scaling with
ParMA. The PHASTA performance on the 64Ki ParMETIS partition is

used as a baseline for all runs. Higher is better.

that could assign two heavily loaded processes to the same core, and thus confound

the interpretation of performance results.

2.9 Summary

ParMA enables scalable data transformations within components by providing

fast, multi-criteria, dynamic load balancing procedures that execute e�ciently on

over one million cores of leadership-class parallel systems. These procedures rely

on part-level (graph distance) and entity-level (cavity size, surface area) heuristics

to define the traversal order over the part boundary, which elements to select for

migration, and the destination part that should receive the elements. In addition

to the selection heuristics are mechanisms to reject migration requests if they harm

the imbalance of higher priority mesh entities (cancellation) and to gracefully stop

ParMA if beneficial changes can no longer be made (stagnation avoidance). The

net result of these e↵orts is a load balancing method that outperforms the previous

versions of the approach (LIIPBMod) in quality and run time, and, versus a leading
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graph-based method, improves performance of a massively parallel CFD code at

512Ki processors by 28%.



CHAPTER 3

CONSTRUCTING PARALLEL ADAPTIVE

WORKFLOWS

3.1 Introduction

The ability to apply algorithmic or mathematical advances to a particular

simulation depends on the coupling of those procedures with existing simulation-

based engineering tools. Solving the most advanced examples of these simulations

for real-world problems of interest requires more memory than is available on a

single workstation or server. Thus, parallel workflows that operate e↵ectively on

distributed memory parallel systems are needed.

3.2 The Current State-of-the-Art

Advances in hardware and algorithms have provided many orders of mag-

nitude improvement in the ability to perform large-scale simulations. Combined,

these advances enable parallel simulations to operate e�ciently on the largest petas-

cale computers (e.g., unstructured mesh CFD software that scales to over 768,000

cores [76]). As plans to move to exascale computing are carried out [78] though, it

is clear that the inability to e↵ectively increase CPU clock rates requires all truly

large-scale computations be performed on massively parallel computers. These fu-

ture massively parallel computers will be more heterogeneous and therefore more

complex to program. On the positive side, progress on the development of next

generation massively parallel computers is leading to systems that are much more

cost e↵ective to purchase, power, and maintain. This means an increased ability to

cost e↵ectively employ the most computationally intense simulations in engineering

Portions of this chapter previously appeared in: M. S. Shephard, C. Smith, and J. E. Kolb,
“Bringing hpc to engineering innovation,” Comput. in Sci. & Eng., vol. 15, no. 1, pp. 16–25, Feb.
2013

Portions of this chapter previously appeared in: C. W. Smith, S. Tran, O. Sahni, F. Behafarid,
M. S. Shephard, and R. Singh, “Enabling HPC simulation workflows for complex industrial flow
problems,” in Proc. XSEDE Conf.: Scientific Advancements Enabled by Enhanced Cyberinfrastruc-
ture, 2015, pp. 41:1–41:7
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design processes, assuming the required software tools and methods of applying the

software are available.

The national laboratories, particularly the U.S. Department of Energy (DOE)

with programs like SciDAC’s FASTMath and the Exascale Computing Project, are

actively developing new generations of software that can e↵ectively operate on mas-

sively parallel computers. These developments include simulation tools for DOE ap-

plications and software that aid in the development of large-scale simulation tools.

Three examples of di↵erent classes of tools that help support the development of

parallel simulations are: Trilinos [79] is an infrastructure of over 50 composable

packages that can be used to construct large-scale, multi-physics simulations. The

Portable, Extensible Toolkit for Scientific Computation (PETSc) [80] is known pri-

marily for its set of linear, and non-linear, algebraic system equation solvers that

have been integrated into numerous simulation codes. Zoltan [13] is a parallel load

balancing service that interacts with application data to determine how to distribute

it for the most e↵ective parallel execution. In addition, there are many parallel anal-

ysis procedures developed that execute specific simulations produced by DOE and

Department of Defence laboratories. These primarily open source software packages

are beginning to receive increased attention by industry and, to some extent, inde-

pendent software vendors (ISVs). Although the open source nature of such software

is attractive, the majority of these software packages are developed and supported

by small teams that are most often focused on the advancement of a specific sci-

ence application. These packages typically include specialized features designed for

use by domain experts, are complex to integrate into simulation workflows, and

lack adequate support systems for broad use. Some packages though, have been

made more generally usable and are supported by more substantial developer and

user teams. However, the ability of those teams to continue to provide long-term

support through government R&D budgets is a complex issue and not guaranteed.

The maturation of computer-aided design (CAD) and computer-aided engi-

neering (CAE) technologies have made engineering simulations a cornerstone in the

design and manufacture of products ranging from aerospace vehicles, to consumer

goods, to medical devices. The key CAD/CAE tools being used in these processes
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include geometric design, analysis model generation, engineering analysis and vi-

sualization. Over the past several years an increasing number of these engineering

analysis packages execute in parallel. In some cases, parallelism has focused on

taking advantage of higher core count shared memory workstations and do not

address distributed memory methods as needed for inter-node parallelism on mas-

sively parallel computers. Those that have addressed the distributed parallelism

needs typically had to develop new versions of the code to gain any reasonable level

of scalability. However, these new codes, at least initially, have a limited set of

functionalities as compared to the existing more fully featured codes that have been

under development for many years.

Some CAE oriented ISVs have begun to develop new generations of software

that employ data structures and algorithms that allow them to operate and, for

the computationally intensive portions, scale on massively parallel computers. In

addition, some of this software is designed with su�cient modularity to support

interactions through easy to use interfaces such that users can combine procedures

from multiple sources to meet their simulation needs.

3.3 Approach to Eliminating Technical Impediments

The execution of parallel simulations typically requires a workflow that couples

multiple simulation procedures. For example, a single physics simulation requires

linking geometric modeling systems with mesh generators and a mesh-based solver.

For multiple reasons, ranging from a single package’s best practices and validation

processes, to the interactions of multiple organizations or companies doing di↵erent

steps in the process, these capabilities are typically not provided within a single

software system and thus the e↵ective coupling of multiple software packages is

critical. The need to couple packages becomes more acute in multi-physics and

multi-scale problems where procedures based on di↵erent models using di↵erent

physical parameters must be coupled across scales [72], [81]. The ability to support

these workflows is made even more complex when specific computationally intensive

simulation steps must be executed on a massively parallel computer. One approach

to couple software packages for the e↵ective construction of simulation workflows is
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through the use of functional interfaces.

The most e↵ective way to design simulation workflows are based on geometric

models of the computational domain. Accordingly, CAE analysis tools have begun

to move from mesh-based problem definitions to more geometry-based definitions.

These simulations are typically executed using a graphical user interface that can

accept CAD information. Many of these interfaces are oriented toward a specific

vendor’s set of CAE analysis tools while some others are oriented to interact through

APIs supporting general interactions with geometry [82] and simulation attribute

information. In those projects where the workflow developed employed software

from several sources, we found using a generalized interface that can interact with

geometry, attributes, and analysis procedures to be quite e↵ective [11], [83], [84].

Given the problem definition, most analysis procedures require the domain be de-

composed into a mesh of simple shapes. The greatest flexibility is provided when

the parallel analysis procedures can accept an unstructured mesh; a decomposition

of the domain into elements of various topological type (e.g., tetrahedrons, hexahe-

drons, prisms, and pyramids in 3D), order (i.e., straight sided or curved), quality,

and volume. Mesh-based finite element [1] and finite volume [2] analysis methods

are available for many classes of problems. The use of these methods allows both

the application of fully automatic mesh generation and adaptive mesh control.

Workflow development for various academic and industrial applications has

provided valuable lessons on the design of interoperable interfaces. One key lesson

is that there are some common high-level interfaces that can be defined for cou-

pling many of the simulation procedures. These interfaces are primarily focused on

methods to load inputs into the data structures of analysis procedures, and sub-

sequently extract simulation data from those structures. For procedures using a

geometry-based problem definition and a solution field interface, this approach al-

lows the fast integration of multiple meshing, analysis and visualization procedures,

as well as supporting the ability to quickly replace any of their implementations.

The typical initial implementation of these interface methods tend to pass infor-

mation between major procedures using files. Although the most straightforward

implementation, file I/O (serial or parallel) is a major bottleneck in the execution
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of large-scale parallel simulations. When the method used to execute the coupling

of procedures is through APIs, it is conceptually straightforward to bypass the use

of files and transfer information directly between data structures. However, the

e↵ective implementation, given existing software packages, is reasonably complex.

3.4 Component Interactions

The design and implementation of procedures within existing software pack-

ages directly a↵ects how they interact with other workflow procedures. Procedures

provided by a given software package are often grouped by functionality into a com-

ponent; a reusable unit of composition with a set of interfaces to query and modify

encapsulated state information [85]. The most interoperable, reusable, and exten-

sible components are those with APIs, minimal dependencies, minimal exposure

of symbols (e.g., through use of the unnamed namespace in C++ or the static

prefix in C), scoped interfaces (e.g., via C++ namespaces or function name pre-

fixes), and no resource leaks [86]–[88]. Conversely, many legacy components (e.g.,

analysis codes) may simply have file or command line interfaces (i.e., they do not

provide libraries with APIs) and have little control of the symbols and memory they

use. The xSDK project formalizes these levels of interoperability and, from that,

defines basic requirements of packages for inclusion in its ecosystem [89]. In Sec-

tions 4.2 through 4.4 we discuss the design of three di↵erent analysis components

and the impact of each design on coupling with an unstructured mesh adaptation

component.

In-memory component interactions are supported by bulk or atomic informa-

tion transfers. A bulk transfer provides a large set of information following some

provided format. For unstructured meshes this transfer could be an array of node-

to-element connectivities passed from a mesh adaptation or generation procedure

to an analysis code. Conversely, an atomic transfer provides a single, or highly

localized, piece of information. Continuing the connectivity example, an atomic

transfer would be the nodes bounding a single element. In Section 4.4 we provide

another atomic example that computes Jacobians of mesh elements classified on

curved geometric model entities.
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Our approach for high performing and scalable component interactions avoids

filesystem I/O by implementing bulk and atomic transfers with component APIs

or data streams. Thus, component interactions in this work are within a single

executable typically built from multiple libraries. Alternatively, the ADIOS tools

provide a mechanism for the in-memory coupling of multiple executables [90], [91].

Likewise, Rasquin et al. [92] demonstrated in-situ visualization with PHASTA and

ParaView using GLEAN [93].

The type of interaction chosen to couple a pair of components depends on

their implementations. Components with APIs that encapsulate creation, deletion,

and access to underlying data structures support in-memory interactions at di↵erent

levels of granularity. At the finest level a developer may implement all atomic mesh

entity query functions such that components can share the same mesh structure;

trading increased development costs for lower memory usage. An excellent example

of mesh data sharing is the use of octree structures in the development of parallel

adaptive analyses [94]. At a coarser level, a developer may simply create another

mesh representation (a bulk transfer) through use of interfaces encapsulating mesh

construction; trading higher memory usage for lower development costs. Although

this method will allow for in-memory integration, it can su↵er from the same disad-

vantages as the former approach in that a significant amount of time and e↵ort will

be required for code modification and verification. A generalization of this coarser

level approach defines common sets of interfaces through which all components inter-

act. For example, in the rotorcraft aerodynamics community the HELIOS platform

provides a set of analysis, meshing, adaptation, and load balancing components via

the Python-based Software Integration Framework [95].

Components that support a common file format and use one file per process

(e.g., POSIX C stdio.h [96] or C++ iostream) can use our data stream approach

with minimal software changes. Here, the bulk transfer is taken to nearly its highest

level; the exchange of process-level data sets. This approach is also a logical choice

for legacy analysis codes that do not provide APIs to access or create their input

and output data structures.

Using a serialization framework like Google’s FlatBu↵ers [97], or Cap’n Proto [98],
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also supports bulk data exchanges through use of their APIs and data layout spec-

ification mechanism. Furthermore, some of these frameworks provide a ‘zero copy’

mode that avoids encode and decode overheads; the serialized information can be

directly accessed after transfer. Like the HELIOS approach, this approach is an

interesting option for components that will be integrated with many others.

Details for implementing the bulk and atomic transfers are given in the fol-

lowing sub-sections.

3.4.1 Component Interfaces

The components in adaptive simulations that provide geometric model, mesh,

and field information [11], [82], [99], and the relations between them, are essential to

error estimation, adaptation [100]–[102], and load balancing [103] services. For ex-

ample, transferring field tensors during mesh adaptation requires the field-to-mesh

relation [104]. Likewise, the mesh-to-model relation (classification [11]) and geomet-

ric model shape information enable mesh modifications (e.g., vertex re-positioning)

that are consistent with the actual geometric domain [82]. Similarly, classification

supports the transformation of the input field tensors onto the mesh to define the

boundary conditions, material parameters and initial conditions [15]. Because of

this strong dependency, we provide these components and services together as the

open-source Parallel Unstructured Mesh Infrastructure (PUMI) [11], [105]. PUMI’s

unstructured mesh components include:

• PCU - neighborhood-based non-blocking collective communication routines

• GMI - geometric modeling queries supporting discrete models and, option-

ally, Parasolid, ACIS, and Simmetrix GeomSim models using the Simmetrix

SimModSuite library

• MDS - array-based modifiable mesh data structure [106]

• APF MDS - partitioned mesh representation using MDS

• Field - describes the variation of tensor quantities over the domain

• ParMA - multi-criteria dynamic load balancing [103]
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• MeshAdapt - parallel, size field driven local refinement and coarsening.

A good example of PUMI advanced component interface usage is the Su-

perconvergent Patch Recovery (SPR) error estimator. The SPR routines estimate

solution error by constructing an improved finite element solution using a patch-

level Zienkiewicz-Zhu [107] least squares data fit. SPR provides two methods which

use the patch-recovery routines. The first method recovers discontinuous solution

gradients over a patch of elements and approximates an improved solution by fit-

ting a continuous solution over the elemental patch. The second method provides

an improved solution in much the same way as the first, but operates directly on

integration point information obtained by the finite element analysis. For both

methods, the improved and primal solutions are then used to create a mesh size

field that is passed to MeshAdapt to guide mesh modification operations [4], [108].

3.4.2 Data Streams

Components can pass information and avoid expensive filesystem operations

through the use of bu↵er-based data streams. This approach is best suited for

components already using POSIX C stdio.h [96] or C++ iostream String Stream

APIs [109] as few code changes are required. The key changes entail passing bu↵er

pointers during the opening and closing of the stream, and adding control logic to

enable stream use.

In a component using the POSIX APIs, a data stream bu↵er is opened with

either the fmemopen or open memstream functions from stdio.h. open memstream

only supports write operations and automatically grows as needed. fmemopen sup-

ports reading and writing, but uses a fixed size, user specified, bu↵er. Once the

bu↵er is created, file read and write operations are performed through POSIX APIs

accepting the FILE pointer returned by the bu↵er opening functions; i.e., fread,

fwrite, fscanf, fprintf, etc. After all read or write operations are complete, a

call to fclose will automatically dellocate the bu↵er created with fopen. A bu↵er

created with open memstream requires the user to deallocate it.

Example uses of the POSIX C and C++ iostream APIs are located in the

Appendix.
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3.5 Components for 3D Unstructured Mesh-based Work-

flows

Automated, parallel, adaptive, simulation workflows require the interactions

of multiple software components. Fig. 3.1 shows the set of components needed for

reliable unstructured mesh simulations with a focus on the role of the parallel mesh

infrastructure. To e↵ectively support the integration with multiple parallel analy-

sis components, as well as alternative meshing and visualization technologies, the

parallel mesh structures and services interact through APIs [82], [99]. These APIs

are designed specifically for an in-memory passing of information that is needed

between di↵erent simulation components in going from the problem specification

to the simulation results. At the highest level, simulation information is speci-

fied in terms of attributes on a description of the computational domain, typically

a CAD model, and parameters defining the physics model. Boundary-based geo-

metric model and mesh representations, building on the abstraction of topological

entities and their adjacencies, are ideally suited for the specification of, and main-

taining of, the relationship between domain descriptions [67], [110], [111]. Problem

definition attributes are transformed into mathematical fields specified over geomet-

ric sub-domains, through the relationships between the geometric model and mesh,

while physics model parameters are transformed for selection of partial di↵erential

equations and discretization methods. Combined, this information is used to deter-

mine the desired output fields. In the case of a mesh-based simulation, the domain

information is discretized into a mesh that is adapted during the simulation. The

mesh-based analysis discretizes the mathematical model and solves the resulting al-

gebraic systems to determine vectors of unknowns that correspond to distribution

coe�cients for solution fields discretized over the mesh.

In the following sub-sections we review the functionality of the core unstruc-

tured mesh workflow components depicted in Fig. 3.1 and available implementations.

A review of available partitioning tools is located in Section 2.2.
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Fig. 3.1. Components for parallel, adaptive, mesh-based simulation
workflows [11].

3.5.1 Geometric Model Definition and Interrogation

Non-manifold boundary representations provide an e↵ective representation of

the computational domain that can be coupled with mesh generation/adaptation

and analysis attributes for the simulation workflow [82]. Attribute information spec-

ified on topological entities of the geometric model need to subsequently be related

to the mesh discretizing the domain. This critical association of a mesh entity to

exactly one geometric model entity of equal or higher order is known as classifica-

tion. Fig. 3.2 depicts a two-dimensional geometric model with four vertices, G0
1�4,

four edges, G1
1�4, and one face, G2

1, and a mesh classified against it [11]. The mesh

faces are classified on the single geometric model face; noted as M
2
i @ G

2
1. Mesh

edges M
1
i adjacent to a single mesh face are classified on the appropriate geomet-

ric model edges G
1
1�4. All other mesh edges are classified on the geometric model

face; a higher order classification. The mesh vertices at the corners of Fig. 3.2 are

respectively classified against the geometric model vertices G
0
1�4. Likewise, mesh

vertices along the model edges G
1
1�4 are classified on those edges. The remaining

unclassified interior mesh vertices are classified on the geometric model face.

Some mesh data structures and geometric modeling interfaces also support

a reverse classification query. Given a geometric model entity, this query will re-

turn the set of mesh entities of equal order classified on it. If provided, this query
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Fig. 3.2. (left) A simple geometric model and (right) a mesh classified
on it [11]. Arrows show the classification of boundary mesh vertices and
edges to geometric model entities. The interior mesh vertices, edges,

and faces are classified on the geometric model face G
2
1.

Fig. 3.3. Mesh adaptation’s use of a positional geometric model query
to place a new mesh vertex on a geometric model edge [113].

can improve the e�ciency of transferring attribute information associated with ge-

ometric model entities to mesh entities; the most common example being boundary

conditions.

In addition to topological information supporting classification, geometric mod-

eling interfaces can also provide geometric shape information to answer positional

queries and/or provide geometric shape parameters. These queries enable opera-

tions of mesh adaptation and analysis components to properly account for curved

domains. In mesh adaptation these queries are critical for positioning existing or

new vertices (or control points for higher order elements [112]) such that the mesh

can accurately tessellate the volume of the computational domain. Fig. 3.3 depicts

an example where a new mesh vertex is positioned on the geometric model edge via

a parametric location query [113] or closest point projection.
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Fig. 3.4. The mesh of a 2D slice through the segmented Digimouse
created using Simmetrix GeomSim. The location of light emitters and
detectors are shown with black and gray arrows, respectively [119].

Outside of simulation workflows where engineers use CAD systems to design

devices are workflows where the computational domain information is provided in a

discrete form. The most common forms of discrete domain information are triangu-

lated surfaces, voxel level forms, such as image data, and point clouds. The source of

this data can range from volumetric medical imaging (CT, PET, etc.) of living tis-

sues, to surface point clouds generated by satellite or LIDAR imaging of geographical

features. Tools are available to convert this data to a topological representation of

the computational domain which can provide the fundamental classification queries

required by simulation workflows [114]. However, there is limited functionality to

recreate geometry information for precisely satisfying positional queries on curved

domain boundaries. To fill this gap, surface reconstruction techniques are avail-

able [115], [116]. Examples of voxel- and point cloud-based geometric model gen-

eration are depicted in Fig. 3.4 and Fig. 3.5. The resulting Digimouse [117] model

supported adaptive mesh optimization for a mesh-based Monte Carlo simulation

of light propagation through tissues with heterogeneous material properties [118],

[119]. The latter example of the Landers fault system supported petascale high

order dynamic rupture earthquake simulations that were an SC ’14 Gordon Bell

Finalist [120].

A robust, closed-source component that supports workflow interactions with

both discrete and parametric geometric models is GeomSim [122] from Simmetrix.

Its functionality is provided through functional interfaces to several CAD systems
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Fig. 3.5. (top) Geometric model and (bottom) mesh of the Landers fault
system for SeisSol dynamic rupture earthquake simulations [120], [121].

(NX, Pro/E, SpaceClaim, and SolidWorks) and modeling kernels (Parasolid, ACIS,

and Granite). Built on those interfaces, it has capabilities to correct poorly defined

geometry, perform boolean operations on multiple CAD models (both discrete and

parametric), automatically remove small features, when desired, and create comple-

mentary domains.

Applications which require an entirely open-source workflow can use compo-

nents built upon the open-source (LGPL) Open CASCADE [123] modeling kernel.

Unfortunately, its usability is hampered by a lack of documentation and a code base

with over two million lines. To address the usability issues, the Common Geometry

Module [83], [124], [125] (BSD-3 derivative) and EGADS [126] (LGPL) systems pro-

vide a simplified interface over Open CASCADE. Along with OpenCSM, a library

for specifying sequences of geometric construction operations provided by EGADS,

the Engineering Sketch Pad provides a web-enabled system for construction of para-

metric geometry used for automated design optimization [84].
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3.5.2 Mesh Generation

To avoid the mesh generation bottleneck in simulation workflows a mesh gen-

erator must be (1) fully automated, (2) include methods for creating desired mesh

types and gradations (including anisotropic meshes), and (3) be driven from a ge-

ometric model-based specification of the mesh control information. Given a valid,

properly toleranced geometric model, an automated mesh generator is one that

executes to completion without user interaction; including the case where no size

controls are set [127]. By definition, there can be no requirement for the user to

operate on individual mesh entities to ‘repair’ the mesh. Such a robust mesh gener-

ator must rely on geometric model kernels for accurate answers to topological and

positional queries.

The Simmetrix MeshSim and distributed memory Parallel MeshSim compo-

nents satisfy the mesh generation requirements. Parallel MeshSim can generate a

one billion element mesh on a CAD model in about six minutes on 224 Intel Xeon

processors. Meshes with up to 13 billion elements have been generated on 2048

processors. In this thesis the majority of the meshes generated were done so with

the Simmetrix tools.

Another closed-source mesh generator that meets the requirements is from

Pointwise [128], [129]. Unlike, MeshSim though, they only support shared mem-

ory parallelism. Thus, the size of the initial mesh they generate is limited by the

amount of memory available on the system. There are also several serial open-source

mesh generators that partially meet the requirements: gmsh (GPL) [130], NETGEN

(LGPL) [131], and GRUMMP (BSD derivative) [132], [133].

3.5.3 Mesh Adaptation

As transient simulations evolve, the areas of the computational domain with

large discretization error will also change. Procedures to automatically change the

spatial discretization, the mesh, to control these errors are required. To operate

e↵ectively mesh adaptation procedures must run in parallel, apply local modification

operations towards satisfaction of the applications requests, conform to the definition

of the computational domain, and provide application ‘hooks’ to support the transfer
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of fields and other data associated with the mesh as it is modified.

Applications specify how they need the mesh to change through a three-

dimensional metric tensor at each mesh vertex [3], [101], [134]. The tensor defines

how edges incident to each vertex should be rotated and scaled to reduce the dis-

cretization error. For example, in the proximity of a shock the gradients normal to

the front will be much higher than those along the front. As such, an application

can define the tensor using derivatives of the quantity of interest to capture this

anisotropy. In many applications though, it is su�cient to define isotropic scaling.

For these cases the size field can be expressed as a scalar at each mesh vertex.

PUMI’s parallel mesh adaptation component (MeshAdapt) meets the require-

ments by supporting refinement, coarsening, and nodal repositioning [11]. With

each local mesh modification operation applied (split, collapse, swap, etc.) fields on

the mesh are transferred. Field transfers are supported through interpolation and

projection operations in the topological proximity of the modified mesh entities [5].

For fields with higher continuity or conservation requirements Omega h [135], [136]

(BSD-2-Clause) provides the necessary transfer mechanisms along with the majority

of the PUMI MeshAdapt functionality [5], [136].

The Simmetrix SimModSuite Parallel MeshSimAdapt [122] satisfies the re-

quirements while also providing more advanced support for meshes with stacks of

semi-structured elements (e.g., often found in meshes used for solving flow problems

with boundary layers). MeshSimAdapt procedures have executed on meshes as large

as 92 billion elements on 786,432 cores [76].

Like MeshAdapt and MeshSimAdapt, the LGPL licensed MAdLib implements

advanced mesh motion and local mesh modification operators, but only on tetrahe-

dral meshes in serial [134]. Another serial open-source adaptation code is GRUMMP.

It provides mesh quality improvement via edge/face swaps, and vertex re-positioning,

but coarsening procedures are focused on supporting multi-grid methods.

3.5.4 Mesh Data Structures

Components that answer questions about mesh topology and permit associ-

ation of field data are referred to as mesh data structures. A distributed memory
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parallel mesh data structure must also support the queries to determine the links

between entities that are classified on part boundaries. Parallel data structures typ-

ically also support some level of ghosting; the copying of one or more layers of mesh

entities across the part boundaries for read-only access [137].

Mesh data structures that support mesh adaptation must also support topo-

logical modifications and the migration of mesh entities between processes. Such

modifiable mesh data structures are far more complex as e�cient storage becomes

a challenge. For example, a mesh entity of a given order (vertex, edge, face, re-

gion) has a fixed number of downward adjacencies depending on its topological type

(triangle, quadrilateral, tetrahedron, prism, hexahedron, etc.). But, the upward ad-

jacencies are only bounded by the quality the mesh; meshes with poor quality tend

to have high-degree vertices (characterized by their one-to-many vertex-to-edge fan

out).

Currently, the most memory e�cient parallel mesh data structures that sup-

port adaptation are those using structures-of-arrays (SoA) [11]. While SoA imple-

mentations are not as intuitive as their object-based brethren, the complexity can

be hidden under an object-based interface that significantly increases ease of use. A

more recent benefit of SoA implementations is their data-parallel friendliness. On

devices such as GPUs with thousands of small compute units, or CPUs with wide

vector units, memory accesses are most e�cient when they can be combined together

into a fewer larger transfers (coalescing) [138], [139]. Since SoA implementations al-

locate large contiguous arrays where each entry represents a mesh entity or some

scalar data associated with an entity, then an algorithm that traverses the mesh (de-

pendency/collision issues aside) will implicitly have unit-stride coalesced accesses.

That is in stark contrast to the irregular memory access pattern when traversing

an object-based implementation where each object is individually allocated (to re-

duce the dynamic resizing complexities). An array-of-structs (AoS) implementation

could avoid the irregular access pattern by pre-allocating the structs, but still su↵er

from non unit-stride access penalties [139]. As mesh data structure algorithms are

memory bandwidth bound, the run time advantage of SoA implementations over

object-based can be significant.
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APF MDS [11] (BSD-3-Clause) and Omega h both provide parallel modifi-

able mesh data structures implemented using SoA. APF MDS provides distributed

memory parallelism via MPI and supports PUMI’s MeshAdapt implementation.

Omega h supports hybrid super computers through MPI for inter-process commu-

nications and Kokkos [140] for intra-process shared memory communication and

computation. MOAB (LGPL) is an alternative array-based distributed memory

parallel mesh data structure that supports modification [141].

3.6 Summary

Parallel workflows for unstructured mesh-based, adaptive simulations are most

e↵ectively constructed from existing software components. Ideally, these compo-

nents provide APIs that support bulk (sets of data over a significant portion of

the domain on a given process) or atomic (sets of data over small sub-domains on

a given process) queries and modification procedures to encapsulated state infor-

mation. When the existing software component does not provide these APIs, or

provides a very limited set of them, but supports POSIX file-based interactions,

then the bulk transfer of data into and out of the component is well-supported by

data streams. Components supporting these bulk and atomic transfers are easily

coupled with other unstructured mesh-based components when their operations are

based on a mesh classified against a geometric and partition model. PUMI uses

this approach for its APIs that query and modify the mesh, its distribution across

processes, and its relation to the geometric model. PUMI’s unstructured mesh com-

ponents include [11]:

• PCU - neighborhood-based non-blocking collective communication routines

• GMI - geometric modeling queries supporting discrete models and, option-

ally, Parasolid, ACIS, and Simmetrix GeomSim models using the Simmetrix

SimModSuite library

• MDS - array-based modifiable mesh data structure

• APF MDS - partitioned mesh representation using MDS
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• Field - describes the variation of tensor quantities over the domain

• ParMA - multi-criteria dynamic load balancing

• MeshAdapt - parallel, size field driven local refinement and coarsening.



CHAPTER 4

IN-MEMORY INTEGRATION OF EXISTING

SOFTWARE COMPONENTS FOR PARALLEL

ADAPTIVE UNSTRUCTURED MESH WORKFLOWS

4.1 Introduction

Simulations on massively parallel systems are most e↵ective when data move-

ment is minimized. Data movement costs increase with the depth of the memory

hierarchy; a design trade-o↵ for increased capacity. For example, the lowest level

on-node storage in the IBM Blue Gene/Q A2 processor [143] is the per core 16KiB

L1 cache (excluding registers) and has a peak bandwidth of 819 GiB/s. The highest

level on-node storage, 16GiB of DDR3 main memory, provides a million times more

capacity but at a greatly reduced bandwidth of 43GiB/s, 1/19th of L1 cache [144].

One level further up the hierarchy is the parallel filesystem1. At this level, the band-

width and capacity relationship are again less favorable and further compromised

by the fact that the filesystem is a shared resource. Table 4.1 lists the per node

peak main memory and filesystem bandwidth across five generations of Argonne

National Laboratory leadership class systems: Blue Gene/L [147], [148], Intrepid

Blue Gene/P [149], [150], Mira Blue Gene/Q [143], [151], Theta [152], [153], and

2018’s Aurora [154]. Based on these peak values the bandwidth gap between main

memory and the filesystem is at least three orders of magnitude. Software must

leverage the cache and main memory bandwidth performance advantage during as

many workflow operations as possible to maximize performance.

This chapter presents the use of in-memory component coupling techniques

that avoid filesystem use for three di↵erent unstructured mesh-based, parallel, adap-

Portions of this chapter have been submitted to: C. W. Smith, B. Granzow, G. Diamond, D. A.
Ibanez, O. Sahni, K. E. Jansen et al., “In-memory integration of existing software components for
parallel adaptive unstructured mesh workflows,” submitted for publication

1For the sake of simplicity we assume that the main memory of other nodes is not available. But,
there are checkpoint-restart methods that use local and remote memory for increased performance
[145], [146].
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Table 4.1. Per node main memory and filesystem peak bandwidth over
five generations of Argonne National Laboratory systems. The values in
parentheses indicate the increase relative to the previous generation

system.

Memory BW Filesystem BW
(GiB/s) (GiB/s)

BG/L 5.6 0.0039
BG/P 14 (2.4x) 0.0014 (0.36x)
BG/Q 43 (3.1x) 0.0049 (3.5x)
Theta 450 (11x) 0.058 (12x)
Aurora 600 (1.3x) 0.020 (0.34x)

tive workflows. These demonstrations highlight the need for in-memory coupling

techniques that are compatible with the design and execution of the analysis soft-

ware involved. Key to this compatibility is supporting two interaction modes: bulk

and atomic information transfers.

4.2 PHASTA

PHASTA solves complex fluid flow problems [75], [155]–[158] on up to 768Ki

cores with 3Mi (3⇤220) MPI processes [76] using a stabilized finite element method [74]

primarily implemented with FORTRAN77 and FORTRAN90. Support for mesh

adaptivity, dynamic load balancing, and reordering has previously been provided by

the C++ PUMI-based component, chef, through file I/O. This file-based coupling

uses a format and procedures that were originally developed over a decade ago. Our

work adds support for PHASTA and chef in-memory bulk data stream transfers.

We show performance of this approach with a multi-cycle test using a fixed size

mesh and present an adaptive, two-phase dam-break analysis.

The data stream approach for in-memory interactions was the logical choice

given the existing POSIX file support, and the lack of PHASTA interfaces to modify

FORTRAN data structures. The chef and PHASTA data stream implementation

maintains support for POSIX file-based I/O by replacing direct calls to POSIX file

open, read and write routines with function pointers.

Our work also adds a few execution control APIs to run PHASTA within an

adaptive workflow. The API implementation uses the singleton design pattern [159]
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and several of Miller’s Smart Library techniques [86]. This approach provides back-

ward compatibility for legacy execution modes, such as scripted file-based adaptive

loops, with minimal code changes and easily accounts for the heavy reliance on

global data common to legacy FORTRAN codes.

Fig. 4.1 depicts the evolution of the adaptive mesh for a dam-break test

case ran on ALCF Theta using two-phase incompressible PHASTA-chef with data

streams [156] . The dense fluid (water) is initially held against the left wall (not

pictured) in a square column created by a fictitious constraint representing a dam.

The remainder of the domain (1.25 column heights high and five column heights

wide) is air. When the constraint is removed, as if the dam broke, the dense fluid

falls and advances to the right [156]. A distance and curvature-based refinement

band tracks the air-water interface. Outside of these bands the mesh is graded to a

reference coarse size.

Algorithm 4 lists the steps in the two-phase adaptive analysis. Note, the terms

‘read’ and ‘write’ are used to describe transfers from and to both streams and files.

On Lines 2-4 the PUMI partitioned mesh, geometric model, and problem definition

information is loaded. Next, on Line 5 the I/O mode is set to either data streams

or POSIX files by initializing the file handle as described in Section 3.4.2. Next,

the chef preprocessor is called on Line 6. The preprocessor first executes adjacency-

based mesh entity reordering (l.16) [42] to improve the e�ciency of the assembly

and linear algebra solution procedures. Next, it creates the finite element mesh (i.e.,

nodes and element connectivity), solution field, and structures containing the point-

to-point communication protocols and boundary conditions (l.17-18). Preprocessing

concludes with the writing of this data to files/streams (l.19).

Line 8 of Algorithm 4 begins the solve-adapt cycle that runs until the re-

quested number of solver time steps is reached. The PHASTA solver first reads its

input information from chef via files or streams (l.29), then executes an analyst-

specified number of time steps (l.30), and computes the distance-based mesh size

field (l.31). The solver then writes the computed mesh size field and solution field

to files/streams. Those fields are read on Line 11 and attached to the PUMI mesh.

Next, chef drives MeshAdapt with the mesh size field (l.20). To prevent memory
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exhaustion during mesh refinement procedures, ParMETIS part k-way graph re-

partitioning (via Zoltan) is called using weights that approximate the change in

mesh element count on each part (l.22, 25). After adaptation, chef executes prepro-

cessing as previously described (l.14).

Algorithm 4 Two-phase PHASTA-chef Adaptive Loop

1: procedure adaptiveLoop(in max steps)
2: pumi mesh load the partitioned PUMI mesh from disk
3: geom load the geometric model from disk
4: chef probdef  load the chef problem definition from disk
5: initialize file handle for streams or POSIX I/O
6: preprocessor(pumi mesh,geom,chef probdef ,file handle)
7: step number  0
8: while step number < max steps do
9: PHASTA(N ,file handle)
10: step number  step number +N
11: read size field and phasta fields from file handle and attach to pumi mesh

12: meshadapt(pumi mesh,size field,max iterations)
13: ParMA(vtx>elm,pumi mesh)
14: preprocessor(pumi mesh,geom,chef probdef ,file handle)

15: procedure preprocessor(in pumi mesh, in geom, out chef probdef , in/out
file handle)

16: reorder the mesh entities holding degrees-of-freedom
17: phasta mesh create PHASTA mesh data structures
18: phasta fields create PHASTA field data structures
19: write phasta mesh and phasta fields to file handle

20: procedure MeshAdapt (in/out pumi mesh, in size field, in max iterations)
21: w  per element field estimating the change in element volume based on size field
22: predictively balance the mesh elements for element weight w
23: for iteration 0 to max iterations do
24: coarsen the mesh
25: re-balance the mesh elements for element weight w
26: refine the mesh
27: re-balance the mesh elements
28: procedure PHASTA(in N , in/out file handle)
29: read phasta mesh, phasta fields data from file handle
30: run the flow solver for N steps
31: size field isotropic size field based on distance to phasic interface
32: write the mesh size field and phasta fields to file handle

We measured the performance of PHASTA-chef [160] POSIX file and data

stream information exchange in a workflow supporting the adaptive analysis of a
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Fig. 4.1. Evolution of an adaptive dam-break case ran on 2048 processes
of the ALCF Theta system using two-phase, incompressible PHASTA
coupled to PUMI unstructured mesh adaptation with data streams.

Each image (top to bottom) represents an advancement in physical time
by 1/100 of a second. The air-water phasic interface iso-surface is

shown in gray.
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two-phase, incompressible dam-break flow, as shown in Fig. 4.1. Workflow tests ran

on the Intel Knights Landing Theta Cray XC40 system at the Argonne Leadership

Computing Facility (ALCF) using 64 processes per node with a total of 2Ki, 4Ki,

8Ki, and 16Ki processes. All nodes were configured in the ‘cache-quad’ mode [152],

[153]. The two Theta filesystems used by POSIX file tests, GPFS [161] and Lus-

tre [162], were in their default configuration for all runs. Test time is recorded using

the low-overhead Read Time-Stamp Counter instruction (rdtsc()) provided by the

Intel compiler. Unlike some other high resolution timers, rdtsc() is not a↵ected by

variations to the Knights Landing core frequency [153].

Each test initially loads the same mesh with 2Ki parts and 124 million ele-

ments. For the tests running on 4Ki, 8Ki, or 16Ki processes the first step is to

partition the mesh using a graph-base partitioner to the target number of processes.

Once partitioned, the chef preprocessor is executed. The preprocessor reads the so-

lution field produced by PHASTA, balances the mesh using ParMA [103], and then

creates and writes the PHASTA mesh and field data structures. Following the initial

preprocessing, the test executes seven solve-then-preprocess cycles. In the adaptive

workflow used to study the dam-break flow (shown in Fig. 4.1) the preprocess step

is preceded by execution of MeshAdapt. For our information exchange performance

tests though, this step is not necessary. Since we are not adapting the mesh, the

mesh size does not change during the test. Combining this preprocess-only approach

with a limited PHASTA flow solver execution mode we can force the workflow to

perform the same work in each cycle.

After preprocessing with chef, the workflow executes the PHASTA solver.

PHASTA starts by reading the mesh and field structures produced by chef, and then

executes one time step with field updates disabled. With the field updates disabled

the time spent in the solver is the same in each cycle. While this configuration does

not produce meaningful flow results, it performs su�cient linear system solve work

to emulate the data access and movement of multiple complete solution steps. Once

the linear system is solved, PHASTA writes the solution field and control passes

back to chef to run the preprocessor. After six more solve-then-preprocess cycles,

the test is complete.
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Fig. 4.2. chef total bytes read and written per process. PHASTA
reads(writes) the same number of bytes that chef wrote(reads).

The minimum, maximum, and average number of bytes read and written per

process in a cycle by chef and PHASTA is plotted in Fig. 4.2. Since we have a

fixed mesh, the bytes read/written in each cycle is the same. This extends across

the di↵erent I/O method tests (streams, POSIX, ramdisk) as the initial partitioning

and load balancing called during preprocessing is deterministic. Note, in the tested

configuration PHASTA writes additional fields that are not required for input. Due

to the lack of these additional fields the chef byte count is smaller for write than

read, while the PHASTA byte count is smaller for read than write.

While it may be tempting to report the impact of I/O on the overall workflow

execution time, we omit this statistic as it is highly dependent on the application

and the time it spends in the flow solver and adaptation procedures. Specifically, as

the number of steps of the flow solver executed between each adaptation increases,

the fraction of time spent in I/O decreases. If the implicit solve were replaced by an

explicit solve, then the solve time may decrease by an order of magnitude. Lastly,

the number of entities modified or created during adaptation strongly impacts the

fraction of time spent adapting the mesh. Prior to this work, the large time spent

reading and writing files drove research towards less frequent adaptation to amortize

the I/O time. The dramatic reduction of time in data transfer provides alternatives.

For these reasons, we choose to primarily report the performance of the approaches

in terms of direct time spent transferring data between components.

The time spent by chef transferring data to and from PHASTA is reported
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Fig. 4.3. chef streams, ramdisk, and POSIX average read and write
time on ALCF Theta. Lower is better.

in Fig. 4.3 and Fig. 4.4. Note, the PHASTA times for these transfers are nearly

identical and not reported here. Fig. 4.3 depicts the average time spent reading and

writing at each process count using data streams, a 96GB ramdisk in main memory

(DRAM), and the GPFS and Lustre filesystems. At each process count Fig. 4.4a and

Fig. 4.4b depict the time spent reading and writing in each solve-preprocess cycle.

The read time is reported for the function responsible for opening the PHASTA

file/stream containing solution field data, reading the data, attaching the data to

the mesh, and closing the file/stream. Likewise, the write time includes the time to

open, write, and close, plus the time to detach the solution data from the mesh.

Across all process counts read and write times are highest when using POSIX

files on the GPFS filesystem. The Lustre filesystem performs better, especially

for writes, and has significantly lowered variability between cycles. As expected

though, Lustre is slower than the ramdisk and streams. Stream writes and reads

outperform Lustre by over an order of magnitude at all process counts. At 8Ki

and 16Ki the performance gap widens to over two orders of magnitude. Also, note

that the stream and ramdisk performance improves with the increase in process

count and reduction in bytes transferred per process (see Fig. 4.2), whereas the

filesystem performance degrades for Lustre and remains flat for GPFS. Clearly,

avoiding operations accessing the shared file system can save a significant amount

of time over the course of a parallel adaptive analysis.

Furthermore, serial testing on one Theta node indicates that using preallo-
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(a) chef read times.

(b) chef write times.

Fig. 4.4. Time for chef to read and write using streams, ramdisk, and
POSIX on ALCF Theta. Lower is better.
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Fig. 4.5. Streaming write performance with and without preallocation
on a single node of ALCF Theta in the cache-quad configuration.
Higher is better. The code used for these tests is described in the

Appendix.

cated bu↵ers with open memstream can further improve streaming write perfor-

mance by over two times. The performance penalty of dynamic bu↵er expansion

for the non-preallocated writes can clearly be seen in Fig. 4.5 by the large drop

in e↵ective (bytes/time(open+write+close)) bandwidth at approximately 0.25MB,

0.5MB, 1MB and 2MB. Likewise, POSIX file performance may be improved through

use of the POSIX asynchronous I/O interface (aio) [163], but we have not tested

these APIs on Theta.

4.3 Albany Solderball

Albany [164], [165] is a parallel, implicit, unstructured mesh, multi-physics,

finite element code used for the solution and analysis of partial di↵erential equa-

tions. The code is built on over 100 software components and heavily leverages

packages from the Trilinos project [79]. Both Albany and Trilinos adopt an ‘ag-

ile components’ approach to software development that emphasizes interoperability.

Albany has been used to solve a variety of multi-physics problems including ice

sheet modeling and modeling the mechanical response of nuclear reactor fuel. The

largest Albany runs have had over a billion degrees of freedom and used over 32Ki

cores. Albany’s high performance, generality, and component-based design made it
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an ideal candidate for the construction of an in-memory adaptive workflow using

bulk API-based transfers.

The Albany analysis code provides an abstract base class for the mesh dis-

cretization. Implementing the class with PUMI’s complete topological mesh rep-

resentation simply required understanding Albany’s discretization structures. Like

most finite element codes, Albany stores a list of mesh nodes and a node-to-element

connectivity map to define mesh elements. Albany’s Dirichlet and Neumann bound-

ary conditions though, need additional data structures. The Dirichlet boundary

condition data structure is simply an array of constrained mesh nodes. The more

complex Neumann boundary condition structure requires lists of mesh elements

associated with constrained mesh faces; a classification check followed by a face-

to-element upward adjacency query. Algorithm 5 details this process. Here the

notation M
d
j (Gd

j ) refers to the j
th mesh (model) entity of dimension d, Md

j @ G

returns the geometric model classification of Md
j , and {Md

i {M q}} is the set of mesh

entities of dimension q that are adjacent to M
d
i . The PUMI implementation of Al-

bany’s discretization and boundary condition structures allows us to define and solve

complex problems without having to create a second complex mesh data structure

(e.g., a Trilinos STK mesh).

Algorithm 5 Construction of Neumann Boundary Condition Structure

1: // store the mapping of geometric model faces to side sets
2: invMap  mapping of G2

j to side sets
3: size set list  ;
4: for all M

2
i 2 {M2} do

5: // get the geometric model classification of the mesh face
6: G

d
j  M

2
i @ G

7: if G
d
j 2 invMap then

8: // for simplicity of the example we assume the model is manifold
9: // upward adjacent element to the mesh face

10: M
3
j  {M2

i {M3}}
11: // collect additional element and face info
12: elm LID  local id of M3

j

13: side id  local face index of M2
i

14: side struct  {elm LID,side id,M3
j }

15: insert side struct into side set list

We ran an in-memory adaptive simulation of a solderball array subject to
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Fig. 4.6. Four adaptation cycles (top to bottom, left to right) of 3x3
solderball mesh. The mesh is refined near the high stress gradients at
the interface between the solderballs and the upper and lower slabs.

thermal creep [166]. Fig. 4.6 depicts the results of the parallel adaptive analysis

using the in-memory integration of SPR and the PUMI unstructured mesh tools with

Albany. The adaptive workflow ran four solve-adapt cycles on 256, 512, and 1024

cores of an IBM Blue Gene/Q using an initial mesh of 8M tetrahedral elements. The

adapted meshes contain only negligible di↵erences across the range of core counts.

Algorithm 6 lists the steps of the Albany-PUMI adaptive workflow. The work-

flow begins by loading the PUMI mesh, geometric model, and XML formatted prob-

lem definition (l.2-4). It then creates the node and element mesh connectivity (l.5)

and sets of mesh entities with boundary conditions (l.6) for Albany. Next, the work-

flow enters into the solve-adapt cycle(l.8). Note, throughout the cycle the PUMI

mesh is kept in memory. At the top of the cycle one load step is solved (l.9). Follow-

ing the load step, the solution information (a displacement vector at mesh nodes)

and history-dependent state variables at integration points are passed in-memory

to an APF FieldShape [11] (l.10). SPR then computes mesh-entity level error es-

timates based on an improved Cauchy stress field (l.11). The estimated error is

then transformed into an isotropic mesh size field, which MeshAdapt then uses to
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drive local mesh modification procedures (l.12). As the mesh modifications (split,

collapse, etc...) are applied the FieldShape transfer operators [167], [168] are called

to determine the value of state variables at repositioned or newly created integra-

tion points. After mesh coarsening, Zoltan’s interface [13] to ParMETIS is called

to predictively balance the mesh and prevent memory exhaustion on parts where

heavy refinement occurs. Once adaptation is complete ParMA rebalances the mesh

(l.13) to reduce element and vertex imbalances for improved linear system assembly

and solve performance. The adaptive cycle concludes with the transformation of

PUMI unstructured mesh information (l.14-15) and APF field information (l.16)

into Albany analysis data structures.

Algorithm 6 Albany-PUMI Adaptive Loop

1: procedure adaptiveLoop(max steps)
2: pumi mesh load the partitioned PUMI mesh from disk
3: geom load the geometric model from disk
4: probdef  load the Albany problem definition from disk
5: createConnectivity(pumi mesh)
6: createNodeAndSideSets(pumi mesh,probdef)
7: step number  0
8: while step number < max steps do
9: solveLoadStep(step number++)
10: getFields(pumi mesh)
11: size field SPR(pumi mesh)
12: MeshAdapt(pumi mesh,size field)
13: ParMA(vtx>elm,pumi mesh)
14: createConnectivity(pumi mesh)
15: createNodeAndSideSets(pumi mesh,probdef)
16: setFields(pumi mesh)

Fig. 4.7 depicts the factor of two performance advantage of in-memory transfers

of fields and mesh data between Albany, PUMI, and SPR versus the writing of the

mesh to POSIX files. Based on this data we estimate the performance advantage of

the in-memory approach over a file-based loop that both reads and writes files to be

about four times higher. Another advantage demonstrated by this data is the low

in-memory transfer time imbalance; defined as maximum cycle time divided by the

average cycle time. The in-memory approach has less than a 6% imbalance across

all core counts while the file writing approach has a 22% imbalance at 512 cores
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Fig. 4.7. Average per cycle file writing and in-memory transfer times.
Minimum and maximum bars are only shown for the 512 core file

writing data point where they are 6% more, or less, than the mean,
respectively. Lower is better.

(as shown by the large error bar in Fig. 4.7). Since the heaviest parts in our test

meshes have at most 5% more elements and 12% more vertices than the average

part, and the data transfers are proportional to the number of mesh vertices and

elements on each part, then we conclude that the observed imbalance in file-based

I/O is attributable to shared filesystem resource contention.

Using the Albany-PUMI workflow we also simulated the tensile loading of the

2014 RPI Formula Hybrid race car suspension upright. Fig. 4.8 depicts the upright

in its initial state, and after multiple load steps. Without adaptation the severe

stretching of domain would result in invalid elements and the subsequent failure of

the analysis.

In the following section we couple PUMI to another modular C++ analysis

package. Unlike Albany though, the provided unstructured mesh APIs are less

well-defined and require a di↵erent approach.
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Fig. 4.8. Large deformation of the RPI Formula Hybrid suspension
upright [169].

4.4 Omega3P Cavity Frequency Analysis

Omega3P is a C++ component within ACE3P for frequency analysis of lin-

ear accelerator cavities [170]. It is built upon multiple components that include

distributed mesh functionality (DistMesh), tensor field management, vector and

matrix math, and many linear solvers. Our in-memory integration of PUMI with

Omega3P leverages these APIs to execute bulk mesh and field transfers, and atomic

element Jacobian transfers for element sti↵ness matrix formation.

In the previous section we discussed a similar in-memory integration for ef-

ficient parallel adaptive workflows with Albany. In Omega3P, as with Albany, we

again assume a small increase in memory usage from storing both the PUMI mesh

and Omega3P DistMesh. This small memory overhead lets us avoid spending time

destroying and reloading the PUMI mesh after the adaptation and analysis steps,

respectively. Furthermore, having access to the PUMI mesh supports the atomic

transfer of exact geometry of curved domains needed for calculation of mesh element

Jacobians during element sti↵ness matrix formation. This capability is critical in

Omega3P for maintaining convergence of higher order finite elements when the ge-

ometric model has higher order curvature [112], [171], [172].

Algorithm 7 lists the steps needed to compute the exact Jacobian using the

APF getJacobian(...) API and its underlying basis functions. To set up the

Jacobian computation, during the PUMI-to-Distmesh conversion, a pointer to each
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PUMI mesh element is stored with the corresponding DistMesh element object as

they are being created. As the DistMesh elements are being traversed for element

sti↵ness matrix assembly the PUMI element pointer is retrieved (l.3). With this

pointer and the barycentric coordinates of the element (l.7) the 3x3 Jacobian matrix

is computed with the call to the APF FieldShape getJacobian function (l.9).

Algorithm 7 Jacobian Calculation for Matrix Assembly

1: // loop over DistMesh elements
2: for all M

3
i 2 {M3} do

3: pumiElementP tr  getPumiElementP tr(M3
i )

4: for all integration points do
5: // compute element Jacobian using APF’s FieldShape class
6: // associated with the PUMI mesh element
7: xi getBaryCentricCoords(integration point)
8: apf::Matrix3x3 J

9: apf::getJacobian(pumiElementP tr,xi,J)
10: // complete element matrix computation

11: // insert element matrix contributions into sti↵ness matrix

The mesh management and computational steps in the adaptive Omega3P-

PUMI workflow are listed in Algorithm 8. Fig. 4.9 depicts adapted meshes and

fields generated using this process. Execution of the workflow begins by loading a

distributed PUMI mesh and the geometric model (l.2-3). Next, ParMA balances

the owned and ghosted mesh entities holding degrees of freedom (edges and faces for

quadratic Nedelec shape functions [173]) (l.5). PUMI APIs are then used to create

a DistMesh instance from the balanced PUMI mesh (l.6); a bulk transfer. The time

required for this procedure is less than 0.1% of the total workflow execution time.

Next, the workflow runs the solve-adapt cycle until the eigensolver has converged

(l.7). Note, the atomic Jacobian transfer of Algorithm 7 occurs during the eigen-

solver execution. Following the solver’s execution, the electric field is attached to

the PUMI mesh (l.8) via a bulk transfer, the DistMesh is destroyed (l.9), a size field

is computed by SPR (l.10), and the mesh is adapted with PUMI (l.11). The cycle

ends by balancing the PUMI mesh with ParMA and creating a new DistMesh.

The increase in peak memory usage from storing two copies of the mesh

and field data is insignificant relative to the applications overall memory usage.
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Algorithm 8 Omega3P-PUMI Adaptive Loop

1: procedure adaptiveLoop(max steps)
2: pumi mesh load the partitioned PUMI mesh from disk
3: geom load the geometric model from disk
4: probdef  load the Omega3P problem definition from disk
5: ParmaGhost(edge=face>rgn,pumi mesh) . quadratic Nedelec

6: dist mesh createDistMesh(pumi mesh) . bulk

7: while not (converged eigenSolver(dist mesh)) do . atomic

8: getElectricField(pumi mesh) . bulk

9: destroy(dist mesh)
10: size field SPR(pumi mesh)
11: MeshAdapt(pumi mesh,size field)
12: ParmaGhost(edge=face>rgn,pumi mesh) . quadratic Nedelec

13: dist mesh createDistMesh(pumi mesh) . bulk

Fig. 4.9. The first eigenmode electric field (left column) and adapted
meshes (right column) for the pillbox (top row) and cav17 (bottom

row) test cases.
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Fig. 4.10 shows the peak per node memory usage over the entire Omega3P execu-

tion on the cav17 and pillbox-2M cases for both the original Omega3P code and

with the code that executes PUMI mesh conversion and load balancing (labelled as

Omega3P+PUMI). In the cav17 test case (top half of Fig. 4.10), the peak mem-

ory when storing the PUMI mesh increases by 2% at 32 cores and by 6% at 128

cores, and decreases slightly at 64 cores (less than 1%). On the other hand, for the

pillbox-2M case at 256, 512, and 1024 cores the peak memory is actually reduced by

0.87%, 1.1% and 2.9%, respectively. The small reduction is the result of di↵erences

in the mesh loading and balancing processes. Specifically, at 256 processes ParMA

balanced the mesh elements (owned and ghosted) in the PUMI workflow to a 14%

imbalance while the non-PUMI workflow using ParMETIS has a 38% imbalance.

These results show that the in-memory integration has an insignificant memory

overhead.

4.5 Summary

In-memory parallel adaptive workflows for three applications have been demon-

strated using bulk data streams, bulk APIs, and a combination of bulk and atomic

APIs. The in-memory transfer of data was significantly faster than file-based trans-

fers for PHASTA and Albany, while the memory overhead for Omega3P was in-

significant. Key to the three couplings was the use of PUMI’s component APIs for

queries to, and modifications of, the mesh, its partitioning, and its associated fields.
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Fig. 4.10. Peak per node memory usage for two Omega3P and
Omega3P+PUMI test cases: (top) cav17 and (bottom) pillbox-2M. The

numbers above the Omega3P+PUMI bars list the ratio of the peak
memory used by Omega3P+PUMI relative to the peak memory used

by Omega3P.



CHAPTER 5

WORKFLOWS DEVELOPED FOR THE NEW YORK

STATE HIGH PERFORMANCE COMPUTING

CONSORTIUM

The High Performance Computing Consortium (HPCNY), supported by the Empire

State Development Division of Science, Technology and Innovation (NYSTAR), is

a multi-year e↵ort to address the impediments listed in Section 3.3. HPCNY sup-

ports computational scientists to work directly with New York State industry to

apply massively parallel simulations on supercomputer systems. Computational sci-

entists are based at Rensselaer Polytechnic Institute, University of Bu↵alo, SUNY

Stoneybrook/Brookhaven National Lab, Icahn School of Medicine at Mount Sinai,

and Marist College. Critical to the success of the computational scientists is the

base institution’s faculty with extensive knowledge of high performance comput-

ing in a broad range of application areas, existing industrial and software vendor

collaborations, and on-site HPC hardware systems programmers.

Industrial partners work with Rensselaer through HPCNY at the level needed

to address their computing requirements. At one extreme are industrial partners

that have the necessary technical personnel, business case, and software to utilize

available HPC hardware. For these interactions an allocation on the Intel Xeon clus-

ter and IBM Blue Gene/Q at the Rensselaer Center for Computational Innovations

(CCI) paired with occasional help from systems programmers and computational

scientist is su�cient.

The more common cases are industrial partners that identify a computing need,

but face most of the impediments described in Section 3.3. For these interactions

Portions of this chapter previously appeared as: M. S. Shephard, C. Smith, and J. E. Kolb,
“Bringing hpc to engineering innovation,” Comput. in Sci. & Eng., vol. 15, no. 1, pp. 16–25, Feb.
2013

Portions of this chapter previously appeared as: C. W. Smith, S. Tran, O. Sahni, F. Behafarid,
M. S. Shephard, and R. Singh, “Enabling HPC simulation workflows for complex industrial flow
problems,” in Proc. XSEDE Conf.: Scientific Advancements Enabled by Enhanced Cyberinfrastruc-
ture, 2015, pp. 41:1–41:7
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the appropriate combination of computational scientists, researchers, and software

vendors are brought to bear on the problem. In many cases the initial statement of

the problem is of broad scope. Thus, the first task then is to define a specific problem

that includes the relevant physical phenomena and geometric complexity. Execution

of this first problem demonstrates the computational and analytical performance of

the chosen HPC software technologies as well as the ability of those technologies

to integrate into simulation workflows accessible to the industrial partners. From

a successful first problem demonstration the business case can be stated and sup-

ported. For the technical contact at the industrial partner the business case often

provides the necessary management level support to continue work with HPCNY

computational scientists to generalize the workflows for broader use.

While technical interactions proceed, HPCNY business administrators and

computational scientists work with the industrial partners to collect economic im-

pact statements and write press releases summarizing the interactions. Despite their

non-technical nature, these materials are critical for the success and growth of the

consortium. For NYSTAR they establish the return-on-investment needed to jus-

tify continued funding from the state. For other New York State companies they

provide examples of prior success that are often enough to motivate a first contact

with HPCNY.

Companies typically understand that there is potential for HPC to improve

their competitive advantage but face some technical impediments. In the following

sections we describe how the technical impediments are addressed for three indus-

trial flow problems. The first problem (Section 5.1) is an example where we address

the limited fidelity and performance provided by a commercial CFD software suite

by coupling scalable and e�cient mesh adaptation with a massively parallel, open-

source, CFD analysis component. In the second problem (Section 5.2), simulating

the flow of a non-Newtonian fluid through a twin-screw extruder, we apply a sim-

ilar approach, but also address another critical bottleneck; the manual transfer of

information between the engineer and the software. In a production environment,

this transfer can be just as limiting to productivity as a poorly performing flow

solver, or a file-based transfer between parallel components in a workflow. Thus,
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for the extruder workflow we automated the process of executing the workflow on

remote parallel systems by defining a web-based gateway for job submission and

management. In the third example problem (Section 5.3), workflow automation is

again the focus. For this workflow we automate the problem set up and execution

steps required to run an ensemble of simulations for studying pump design using a

closed-source CFD analysis framework.

5.1 Micromechanical Device Analysis

Micromechanical device engineers at a New York State equipment manufac-

turer study the design of a multi-phase flow system that is driven by a structural

boundary condition. 3D simulations use a commercial CFD software suite ran on

in-house multi-core workstations. But, engineers typically run reduced fidelity 2D

simulations due to the long execution time of 3D simulations, limited computing re-

sources, and finite design periods. In these simulations the fidelity is further reduced

as the structure driving the boundary condition is not influenced by the fluid flow.

Rensselaer computational scientists defined and demonstrated an end-to-end work-

flow for guiding device design that uses the PHASTA CFD [74], [158] suite of tools

for automated 3D parallel adaptive simulations [10] that account for fluid-structure

interactions.

Modifications to the PHASTA parallel fluid dynamics simulation software were

required to couple it to the structural mechanics code provided by the device en-

gineers. To support these interactions mechanisms were implemented that inter-

polate fields between the di↵erent time and spatial discretizations . Modifications

were also made to the PHASTA error estimator to reduce discretization error and

reduce computational costs. At the phasic interface, where there is a change in

material properties, the mesh is refined. Away from the interface, the mesh is coars-

ened to reduce computational costs. Between the refined and coarse zones the mesh

smoothly transitions between the two sizes [18], [19]. Fig. 5.1 depicts the mesh over

six adaptation cycles. Simulations using this workflow were run on up to 512 proces-

sors of a CCI cluster. Increased scalability of this workflow is now possible through

the in-memory coupling of the PHASTA analysis component with the PUMI mesh
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Fig. 5.1. An axial slice of the 3D mesh at six consecutive adaptation
cycles in the multi-phase PHASTA simulation (top to bottom, left to

right). The gray surface is the phasic interface.
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adaptation and load balancing components described in Section 4.2. This scalable

workflow enables device engineers to leverage HPC resources to run high fidelity

system simulations in hours instead of days, and thus reduce the time required to

develop a new device.

5.2 High-fidelity Viscous Flow Simulation

The second industrial flow problem to demonstrate component-based simu-

lation workflows is a non-Newtonian viscous flow in a twin-screw extruder. The

material flow of interest exhibits highly nonlinear behavior (e.g., follows generalized

non-Newtonian constitutive law) along with nonlinear partial slip at the screw sur-

faces. Simulations support studying the processing performance of these materials

within extruder systems that are designed with thin gaps between adjacent screws

(e.g., twin-screw extrusion) and with passage walls.

The PHASTA CFD analysis component was selected for these simulations due

to our extensive experience with it, its support for non-Newtonian material mod-

els [174], [175], non-linear partial slip boundary conditions, and scalability. PHASTA

inputs are created with the chef pre-processing tool using meshes generated with

Simmetrix MeshSim [122]. Twin screw extuder meshes produced by MeshSim have

automatically generated layered element structures that span thin section gaps and

unstructured tetrahedron away from the gaps.

The geometry of the extruder is composed of complex curved surfaces with

corners and thin gaps at which critical physics occurs. High aspect-ratio semi-

structured boundary layer meshes are constructed over these complex surfaces, in-

cluding in thin gaps, and appropriately graded into the general unstructured mesh

in the remainder of the domain. The mesh, and axial velocity of the flow, is shown

in Fig. 5.2 across two threads and an axial section. For this problem with multiple

threads of the screw and tighter gaps, meshes can range from 20 to 50 millions

elements in order to obtain accurate solution. In-turn, to obtain the solution in a

reasonable time frame, less than a few hours, the PHASTA flow analysis requires

on the order of 500 cores.

It should be noted that while these research e↵orts were being pursued com-
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Fig. 5.2. Twin-screw extruder (left) mesh and (right) axial velocity:
(sub-left) two threads of the screw and (sub-right) cross-section of the

extruder.

putational scientists also worked with the industrial partner’s domain experts to

support their sub-continuum modeling e↵orts. These researchers and engineers had

experience using the computational tools, but needed assistance installing and opti-

mizing them for the Rensselaer Blue Gene/Q system. Performance tuning identified

installation options, problem sizes, and run time environment options that increased

simulation e�ciency of the ab initio packages VASP and GROMACS, and the molec-

ular statics/dynamics package LAMMPS.

Science domain experts are often proficient in the multiple aspects of remotely

executing jobs on large parallel systems. Despite this apparent proficiency, they

spend significant time overcoming problems that would be trivial for a systems

programming expert. Furthermore, the solutions to said problems are often not

aligned with best practices. Clearly, training is one path to recover productivity and

increase skills in related critical areas (such as reproducibility and data management)

but there is another approach. Web-based science gateways let a small team of

system and programming experts create workflows for execution on multiple di↵erent

remote systems without burdening the domain experts with details of each system.

For the domain experts, they simply use a web-browser to upload their input data,

set simulation control parameters, choose a parallel system to execute on and the

level of parallelism, then submit the job. When execution completes the outputs

are made available for download.

We have built a science gateway to support PHASTA users [176]. A science
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PHASTA-chef

adaptiveLoop_interface

Stampede_Xeon/
phastaChefIC

Stampede_KNL/
phastaChefIC

PHASTA-partialSlip

partialSlip_interface

Stampede_Xeon/
phastaPartialSlip

Fig. 5.3. PGA (top) Application Interfaces, (middle) Modules, and
(bottom) Deployments defined for the PHASTA gateway workflows.

gateway is a community-developed set of tools, applications, and data collections

that are integrated through a portal or a suite of applications. These gateway tech-

nologies support PHASTA workflows on HPC systems while hiding complexities

such as data management, job scheduling, and run-time environment setup. The

PHASTA science gateway was created using the PHP Reference Gateway for Aira-

vata (PGA) [177]–[179] and is hosted in the XSEDE gateway hosting environment.

PGA is a general-purpose gateway framework developed to enable scientific applica-

tion in a browser environment. It provides user management, application cataloging

and experiment management.

The PHASTA partial-slip workflow described in the previous section, and the

in-memory adaptive workflow of Section 4.2, were implemented with two PGA Ap-

plication Modules. Each module acts as a hub to associate workflow inputs and out-

puts (Application Interfaces) with the execution mechanisms (Deployments). For

the partial-slip workflow the Deployment executes the serial pre-processing exe-

cutable, followed by execution of the PHASTA binary with support for the nec-

essary non-Newtonian fluid model and partial-slip boundary conditions. The in-

memory workflow has two Deployments associated with it; one for execution of the

PHASTA-chef binary on the TACC Stampede Xeon host processors and another for

the Stampede KNL nodes. Fig. 5.3 depicts these associations.

Simulations, called experiments in the gateway, are defined by uploading a set

of input files that specify the problem definition, simulation parameters, and required

compute resources. The left half of Fig. 5.4 depicts the experiment creation interface.

The application inputs include the complete definition of the analysis domain via the

geometric model (typically from a CAD software such as SolidWorks, NX, etc.) and
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the unstructured mesh. Also, included are information associated geometric model

entities, such as physical attribute information (e.g., loads, boundary conditions,

material properties) and simulation parameters (e.g., initial mesh control, time steps,

convergence requirements, solver options, etc.). Lastly, the compute resource inputs

specify the HPC system, TACCs Stampede system for this example, the node and

core count, and the maximum run time.

Once the experiment is defined, clicking the Save and launch button shown

in the left half of Fig. 5.4 will execute the PHASTA workflow. The experiment

execution request is supported through APIs provided by SciGaP [178]. SciGaP

APIs process the user request, create a job scheduler script specific to a compute

resource (PBS, SLURM, etc.), and monitor the status of a job, as shown in the

right half of Fig. 5.4. SciGaP also supports email notifications triggered by job

status changes; an important mechanism for e↵ective interactions with scheduled

HPC systems. At the end of an experiment, the SciGaP service moves the outputs

to the PGA storage location for users to download.

5.3 Semi-automated Pump Design

Hydraulic engineers at a New York State pump manufacturer study pump de-

sign over a range of operating conditions with the goal of developing an optimum

pump configuration and geometry. Parallel CFD simulations provide a cost e↵ec-

tive way to study the performance. One critical factor for providing competitive

advantage is reducing the time needed to set up and run simulations. Since an

ensemble of simulations are needed to cover the design space, a vast majority of

the engineers’ time is spent in simulation set up. Therefore, Rensselaer computa-

tional scientists worked with Simmetrix software engineers to define an automated

workflow for setting up the ensembles. Setting up a simulation entails association

of mesh generation controls and problem definition attributes with the geometric

model, mesh generation, and creation of the CFD analysis software inputs.

The workflow depicted in Fig. 5.5 combines customizations to the Simmetrix

and ANSYS tools for semi-automated set up and execution of an ensemble of ANSYS

CFX [180] parallel simulations. Phase 1 of the workflow uses the Simmetrix Ab-
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Fig. 5.4. PHASTA gateway experiment creation and management
interface.

stractModel component [122], [181], mesh size control attributes, and a custom set

of Attribute Definitions to support user creation of a problem template. The tem-

plate defines the association of AbstractModel components representing features of

the geometric model with the mesh and problem definition attributes. For example,

the geometric model features of an impeller includes the blade, inlet, outlet, hub,

and shroud surfaces. In the impeller template an inflow boundary condition will be
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Fig. 5.5. Workflow from abstraction to simulation [122].

associated with the inlet surface, a no-slip condition with the hub, blade and shroud

surfaces, and an outflow condition on the outlet surface. Likewise, size gradation,

boundary layer, curvature refinement mesh generation controls can be associated

with the AbstractModel components.

Custom Attribute Definitions define the sets of information needed to create

boundary conditions, initial conditions, material properties, and simulation con-

trol parameters to drive ANSYS CFX two-phase simulations. Fig. 5.6 depicts the

SimModeler interface for the inlet attribute and Listing 5.1 shows a snippet of the

code that defines it. In the graphical interface the geometric model associations are

listed at the bottom with required fields listed above. The depicted inlet bound-

ary condition is created by the derived boundary condition type specified on Line

3 of the Attribute Definition code. Its parent type specification on Line 1 defines

the possible geometric model entity dimensions (face, edge or vertex < f e v >)

that the derived inlet type can be associated with. Fields required for specifying

the inlet types ‘flow direction’ are listed on Lines 5 through 14. Using the parent

and derived type mechanism, three options are provided to users. The cartesian

option requires a one dimensional tensor of length three (l.7, tensor1 3) while the

cylindrical flow direction specification requires one double (l.11-13, double) for

each of the axial, radial and theta coordinate components. Using this syntax and
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Fig. 5.6. Custom attribute definition interface for the inlet boundary
condition.

Listing 5.1. A snippet of the Attribute Definition code defining the inlet
attribute shown in Fig. 5.6.

similar constructs the full set of problem definition attributes are defined. The at-

tributes and their organization through the type mechanism are defined following a

layout that mirrors the CFX interface; the challenges of teaching engineers a new

set of tools and processes is di�cult enough without complicating it with sweeping

interface changes.

Phase 2 of Fig. 5.5 combines tagged geometric model instances (i.e., identifi-

cation strings associated with geometric model entities) with the templates defined

in Phase 1 to create fully attributed geometric models. Each model is then meshed
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Listing 5.2. A portion of the Export Pattern code for writing the inlet
boundary condition flow direction information to the ANSYS CFX

analysis input file.

in Phase 3 and CFX analysis input decks are created. Each input deck is com-

posed of a mesh, in a FLUENT format, and the CFX analysis definition file (.ccl).

The analysis file is created using a custom Simmetrix SimModSuite Export Pattern.

The portion of the CFX Export Pattern code for writing the inlet boundary con-

dition’s flow direction information to the analysis definition input file is shown in

Listing 5.2. On Line 1 is a loop over all the geometric model faces with boundary

condition attributes associated with them. Lines 6, 19 and 27 respectively process

the three derived types for the flow direction. Within the blocks for the components

and cylindrical derived types are formatted strings containing the tensor (l.13-

15) and double precision (l.22-24) values. These strings are in turn written to the

precious header variable which is flushed to the CFX analysis definition file.

In Phase 4 of Fig. 5.5 the user loads the CFX analysis input and Fluent mesh

into ANSYS Workbench along with a table of design points. Each design point de-
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fines values for selected boundary conditions to drive an ensemble of simulations that

covers the design space. Each design point simulation is then executed on a cluster

using one of the natively supported job schedulers or our custom integration of the

ANSYS Remote Solver Manager with the open-source job scheduler SLURM [182].

Hydraulic engineers using this workflow bypass many tedious and error prone

steps. This automation increases their time spent on design and analysis, which

results in better products. Using an early version of this process helped bring a

heavy-duty pump to market which later won industry product awards.

5.4 Summary

In-memory and semi-automated workflows for three industrial applications

were demonstrated. For the in-memory PHASTA application the challenge was to

work with the limitations of the industrial partners structural mechanics code while

providing a workflow that e�ciently simulated the complex multi-phase flow. The

second and third applications emphasized the definition of workflow automation

to limit the time the analyst or engineer spends setting up problems or running

simulations.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

As we move towards the exascale computers being considered [78], [183], it is

clear that one of the few e↵ective means to construct parallel adaptive simulations is

by using in-memory interfaces that avoid filesystem interactions. Of course, the cost

of refactoring existing large-scale parallel partial di↵erential equation solvers to fully

interact with the type of structures and methods used by mesh adaptation compo-

nents is an extremely expensive and time-consuming process. To address these costs,

we presented approaches for in-memory integration of existing solver components

with mesh adaptation components, discussed how code changes can be minimized,

and demonstrated the performance advantage within adaptive simulations. Demon-

strations with the massively parallel computational fluid dynamics, solid mechanics,

and electromagnetics adaptive workflows showed orders of magnitude performance

improvements in I/O procedures using in-memory coupling instead of files at up

to 16Ki processes of the ALCF Theta system. In addition to e↵orts on developing

in-memory approaches with the PHASTA, Albany, and Omega3P solvers, e↵orts are

underway to interface other state-of-the-art solvers including NASA’s FUN3D [184]

and LLNL’s MFEM [185].

Parallel scalability of these workflow components is maintained with new meth-

ods to dynamically balance the computational domain. These methods work directly

on the unstructured mesh alongside traditional graph and geometric methods to

quickly reduce the source of imbalance the consuming workflow component is sen-

sitive to. This approach improves the linear algebra work performance of PHASTA

computational fluid dynamics by 28% over a graph-based partition, and improves

scaling from 0.82 to 1.14, on 512Ki processes of the ALCF Mira system.

As the high performance computing community prepares for near-exascale sys-

tems at the national laboratories, and near-petascale systems become the norm for

academia and advanced industry users, we continue to advance parallel unstructured

95
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mesh-based simulation technologies for e�ciently exploiting the massive amount of

computing power on hand and on the horizon. The challenge is clear; adapt to hard-

ware changes and application needs by applying new programming and algorithmic

approaches while maintaining support for the existing user base. We address this

challenge by focusing a significant portion of our e↵orts on leveraging the wealth of

existing components and the thousands of person-hours invested in them. In the era

of distributed memory message passing between many-core nodes, this has been a

broadly successful approach and is expected to continue well into the next decade.

6.2 Future Work

6.2.1 Partitioning and Load Balancing

The ParMA load balancing algorithms that worked directly on unstructured

meshes are being generalized to support applications that use a di↵erent mesh dis-

tribution (e.g., node partitions), or simply have information and dependencies be-

tween them that can be represented with a graph. EnGPar [186] will implement

the ParMA di↵usive algorithms and multi-level graph partitioning procedures using

data-parallel operations on a graph structure using multiple edge-types to represent

di↵erent application information dependencies. E↵orts are underway to implement

the di↵usive algorithms and explore the use of the Kokkos [140] programming model

for performance portability.

6.2.2 In-memory Component Coupling

Parallel system vendors have started to deploy an additional layer in the mem-

ory hierarchy between the parallel filesystem and main memory (DRAM) on each

node. The additional layer is implemented by Cray DataWarp devices on the Cori

XC40 system at the National Energy Research Scientific Computing Center. In the

2018-2019 Aurora system at the Argonne Leadership Computing Facility the layer

will be implemented with Intel SSDs. By design, we expect transfer tests operat-

ing on the new layer to be slower than data streams and APIs operating out of

DRAM or high bandwidth memory. However, depending on the locality of the SSD

or DataWarp devices to compute nodes, the performance could vary significantly
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and should be evaluated.

6.2.3 Unstructured Mesh-Based Workflows

Application support using the PHASTA-PUMI and Albany-PUMI parallel in-

memory workflows continues with a fluid structure interaction problem and an ad-

ditive manufacturing analysis. In both cases the coupling approaches developed

are reused while specific aspects of the finite element and mesh adaptivity com-

ponents are modified. For PHASTA, developments are focused on implementing

the discontinuous Galerkin method to account for interactions across the solid-gas

interface. In the Albany additive manufacturing workflow the focus is on mesh

adaptation methods to support the evolution of the geometry as layers of material

are deposited.

Ongoing interactions with industrial users are focused on two applications with

evolving geometry. The first application is simulating flow in a gas filled chamber

with a moving displacer. Implementation of this workflow requires combining mesh

motion to track the moving geometry and mesh adaptation to maintain element

quality. The second application uses MeshAdapt to support simulation of an un-

derground reservoir with evolving geometry.
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APPENDIX A

IN-MEMORY EXAMPLE CODE

Example code for using the POSIX C APIs and C++ iostream for data streaming

are shown in Listings A.1 and A.2, respectively. Additional details on their compi-

lation and usage are available in a Zenodo [187] dataset (http://dx.doi.org/10.

5281/zenodo.345749). The dataset also includes the timed version of the POSIX

C example code that was used to generate the bandwidth results shown in Fig. 4.5.

Listing A.1. POSIX C

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc , char** argv) {

const char *method , *mode;

int i;

size_t bytes;

FILE* f;

char filename [1024];

char* buf = NULL;

size_t len;

char* data;

if( argc != 4 ) {

printf ("Usage: %s <stream|posix >"

"<read|write > <number of bytes >\n",argv [0]);

return 0;

}

method = argv [1];

mode = argv [2];

bytes = atoi(argv [3]);

data = (char*) malloc(bytes*sizeof(char ));

for(i=0;i<bytes;i++) data[i] = 1;
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/**** open stream ****/

if( !strcmp(method ," stream ") && !strcmp(mode ," write") ) {

f = open_memstream (&buf , &len);

} if( !strcmp(method ," stream ") && !strcmp(mode ," writeprealloc ") ) {

buf = malloc(bytes*sizeof(char ));

f = fmemopen(buf , bytes , "w");

} else if( !strcmp(method ," stream ") && !strcmp(mode ,"read") ) {

f = fmemopen(buf , bytes , "r");

} else if( !strcmp(method ," stream ") && !strcmp(mode ," readprealloc ") ) {

buf = malloc(bytes*sizeof(char ));

f = fmemopen(buf , bytes , "r");

/**** open posix ****/

} else if( !strcmp(method ,"posix ") && !strcmp(mode ,"write ") ) {

f = fopen ("/tmp/foo.txt", "w");

} else if( !strcmp(method ,"posix ") && !strcmp(mode ,"read") ) {

sprintf(filename ,"/ tmp/%lu.dat",bytes);

f = fopen(filename , "r");

}

/**** read|write ****/

if( !strcmp(mode ," write") || !strcmp(mode ," writeprealloc ") ) {

fwrite(data ,sizeof(char),bytes ,f);

} else if( !strcmp(mode ,"read") || !strcmp(mode ," readprealloc ") ) {

fread(data ,sizeof(char),bytes ,f);

}

fclose(f);

if( !strcmp(method ," stream ") &&

( !strcmp(mode ,"write ") ||

!strcmp(mode ," writeprealloc ") ||

!strcmp(mode ," readprealloc ") ) ) {

free(buf);

}

free(data);

return 0;

}

Listing A.2. C++ iostream
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#include <iostream >

#include <fstream >

#include <sstream >

using namespace std;

ostream* open_writer(const char* name , bool stream );

istream* open_reader(const char* name , ostream* os=NULL);

void write(ostream* fh , int* data , size_t len);

size_t read(istream* fh , int*& data);

ostream* open_writer(const char* name , bool stream) {

if(stream) {

(void) name;

ostringstream* oss = new ostringstream;

return oss;

} else {

ofstream* ofs = new ofstream;

ofs ->open(name ,ofstream :: binary );

return ofs;

}

}

istream* open_reader(const char* name , ostream* os) {

if(os) {

(void) name;

ostringstream* oss = reinterpret_cast <ostringstream *>(os);

istringstream* iss = new istringstream(oss ->str ());

return iss;

} else {

ifstream* ifs = new ifstream;

ifs ->open(name ,ifstream :: binary );

return ifs;

}

}

void write(ostream* fh , int* data , size_t len) {

const char* buf = reinterpret_cast <char*>(data);
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streamsize sz = static_cast <streamsize >(len*sizeof(int));

fh->write(buf ,sz);

}

size_t read(istream* fh , int*& data) {

fh->seekg(0,fh->end);

streamsize sz = fh->tellg ();

fh->seekg(0,fh->beg);

cout << "read size " << sz << "\n";

size_t numints = static_cast <size_t >(sz)/ sizeof(int);

cout << numints << "\n";

data = new int[numints ];

char* buf = reinterpret_cast <char*>(data);

fh->read(buf ,sz);

return numints;

}

int main() {

const char* fname = "foo.txt";

int outdata [3] = {0,3 ,13};

for(int i=0;i<2;i++) {

bool streaming = i;

ostream* oh = open_writer(fname ,streaming );

write(oh ,outdata ,3);

int* indata = NULL;

istream* ih = open_reader(fname ,oh);

size_t len = read(ih ,indata );

delete oh;

delete ih;

for(size_t j=0; j<len; j++)

cout << indata[j] << " ";

cout << "\n";

delete [] indata;

}

}
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