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Abstract

Adjoint-based error estimation is used in finite element methods to effectively and accurately estimate
discretization errors in physically meaningful output quantities. These estimates are obtained via the solution
of an auxiliary adjoint problem. Obtaining an enriched representation of the solution to this adjoint problem
is a necessary step in the process of adjoint-based error estimation. Solving the adjoint problem on a
uniformly refined mesh is one possible way to obtain such an enriched adjoint representation. In this note,
we propose a similar method for adjoint enrichment, whereby the adjoint problem is solved on a mesh
obtained via non-uniform refinement. This leads to an adjoint problem with fewer degrees of freedom than
the traditional uniform refinement approach. We propose two possible non-uniform refinement strategies
and investigate resulting output error estimates for Poisson’s equation in two dimensions and nonlinear
elasticity in three dimensions.
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1. Introduction

Adjoint-based error estimation [3, 9, 15, 19, 20, 21, 16, 17, 8, 6] is a tool used in numerical simula-
tion to estimate the discretization error in physically meaningful output quantities. Combined with mesh
adaptation, adjoint-based error estimation also provides the ability to control the discretization error. The
process of adjoint-based error estimation relies on the introduction of an auxiliary adjoint problem, which is
constructed using the solution to the original or primal problem of interest.

To obtain meaningful error estimates, the solution to the adjoint problem must be enriched in some
manner. That is, it is necessary to obtain a representation of the adjoint solution in a richer space compared
to the space used for the primal problem. Several strategies are commonly used to obtain an enriched adjoint
representation. These approaches include solving the adjoint problem in a globally higher order polynomial
space [7], solving the adjoint problem on a uniformly refined mesh [5], solving the adjoint problem in the
same space as used for the primal problem and solving local patch-wise problems least squares problems [14]
or performing patch-wise higher-order interpolation [3], and enriching the adjoint solution via variational
multiscale methods [11].

Solving the adjoint problem in a globally higher order polynomial space or on a uniformly refined mesh is
a computationally expensive proposition. On the other hand, solving the adjoint problem in the same space
as used for the primal problem and enriching it via some local recovery operation may not be guaranteed
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to yield a more accurate adjoint solution. In this chapter, we propose a simple compromise and solve the
adjoint problem on meshes obtained via non-uniform refinement.

The remainder of this chapter is structured as follows. First, we review adjoint-based error estimation
for functional quantities using two discretization levels, a coarse space and a fine space. We then review
three choices for the fine space obtained by refinement of the mesh used for the coarse space. The first
choice is the standard uniform refinement method, while the other two approaches form the fine space via
non-uniform refinement. In each of these sections, we discuss the algorithm utilized to generate the fine
space. We then investigate these three adjoint enrichment approaches when applied to examples in Poisson’s
equation and conclude with a summary of the results.

2. Error Estimation with Two Levels

2.1. Error Estimates

Following Venditti and Darmofal [19, 20, 21], we review output-based error estimation using two dis-
cretization levels. Let Vh and VH denote finite dimensional spaces such that VH ⊂ Vh. We refer to Vh
and V H as the fine space and the coarse space, respectively. Let RH : RN → RN denote the system of
(potentially nonlinear) algebraic equations arising from a finite element discretization of a PDE on the coarse
space VH , such that the solution vector uH ∈ RN satisfies

RH(uH) = 0. (1)

Similarly, let Rh : Rn → Rn denote the system of algebraic equations arising from a finite element dis-
cretization of the same PDE on the fine space Vh, such that

Rh(uh) = 0, (2)

where uh ∈ Rn is the solution vector on the fine space and n > N .
Let JH : RN → R denote a discrete representation of a physically meaningful functional quantity on

the coarse space VH , and similarly let Jh : Rn → R denote the functional approximated on the fine space
Vh. Let uhH := IhHuH denote the prolongation of the coarse space solution uH onto the fine space Vh via

interpolation, where IhH : VH → Vh.
The functional evaluated on the fine space J(uh) can be expanded in a Taylor series approximation

about the prolonged coarse space solution uhH as

Jh(uh) = Jh(uhH) +

[
∂Jh

∂uh

∣∣∣∣
uh

H

]
(uh − uhH) + . . . (3)

Similarly, the residual system of equations evaluated on the fine space Rh(uh) can be expanded about the
prolonged coarse space solution uhH as

Rh(uh) = Rh(uhH) +

[
∂Rh

∂uh

∣∣∣∣
uh

H

]
(uh − uhH) + . . . (4)

Using the governing relation (2) in the residual Taylor expansion (4) suggests a first order approximation
for the discretization error between the spaces:

(uh − uhH) ≈ −
[
∂Rh

∂uh

∣∣∣∣
uh

H

]−1

Rh(uhH). (5)

Inserting the error approximation (5) into the functional Taylor expansion (3) suggests the error estimate:

Jh(uh)− Jh(uhH) ≈ −
[
∂Jh

∂uh

∣∣∣∣
uh

H

][
∂Rh

∂uh

∣∣∣∣
uh

H

]−1

Rh(uhH), (6)
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which can be re-written in terms of an adjoint variable zh as

Jh(uh)− Jh(uhH) ≈ −zh ·Rh(uhH), (7)

where zh ∈ Rn is the solution to the so-called adjoint problem given by[
∂Rh

∂uh

∣∣∣∣
uh

H

]T
zh = −

[
∂Jh

∂uh

∣∣∣∣
uh

H

]T
. (8)

2.2. A Simple A-Priori Analysis

Consider that the functional of interest converges at the rate k, such that J − Jh(uhH) = cHk and
J − Jh(uh) = chk, where J is the exact value of the functional quantity of interest. Assume that the fine
space is obtained via refinement of the coarse space. Consider the ratio

Jh(uh)− Jh(uhH)

J − Jh(uhH)
≈ −z

h ·Rh(uhH)

J − Jh(uhH)
(9)

which, as H → 0, will tend towards [8]

α := 1−
(
h

H

)k
. (10)

Let η denote our approximation to the functional error J − Jh(uhH). Let I denote the effectivity index
given by

I =
η

J − Jh(uhH)
. (11)

We would like error estimates E that lead to effectivity indices of I = 1 as H → 0. To achieve this, we scale
the two-level adjoint weighted residual estimate (7) by the inverse of the factor α, such that

η = − 1

α
zh ·Rh(uh

H). (12)

3. Choices for the Fine Space

3.1. Uniform Refinement

We first consider the traditional approach of using a uniformly refined mesh to solve the adjoint problem.
We refer to this approach as the Unif refinement approach. To perform uniform refinement, every edge in
the mesh is marked for refinement. The algorithm for uniform refinement is given in Algorithm 1. Figure
1 demonstrates an example of the Unif refinement approach applied to a base mesh. For the uniform

refinement approach, we naturally choose the ration h
H = 1

2 , leading to the scaling parameter α = 1−
(

1
2

)k
.

Algorithm 1 Uniform refinement algorithm

for each edge e in mesh M do
mark edge e for refinement.

end for
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Figure 1: Edges of a base mesh (black) and a nested mesh refined with the Unif scheme (red) in two dimensions.

Figure 2: Edges of a base mesh (black) and a nested mesh refined with the Long scheme (red) in two dimensions.

3.2. Long Edge Refinement

Next, we consider an adaptive scheme that marks the longest edge in each element for refinement. We
refer to this scheme as the Long edge refinement scheme. The Long edge refinement algorithm is outlined
in Algorithm 2. Figure 2 illustrates the Long edge refinement algorithm applied to a base mesh.

Note that, for the Long edge refinement approach, some elements are split once while others are split
multiple times. It follows then that there is no single global ratio h

H of the fine mesh size to the coarse mesh
size. Presently, we approximate this ratio by taking the average of all ratios of nested element sizes to their
parent element size, given by

h

H
≈ 1

nel

nel∑
e=1

he
He

, (13)
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where nel is the total number of elements in the nested mesh.

Algorithm 2 Long edge refinement algorithm

for each element el in mesh M do
for each edge e in element el do

if e is longest edge in el then
mark edge e for refinement.

end if
end for

end for

3.3. Single Edge Refinement

Figure 3: Edges of a base mesh (black) and a nested mesh refined with the Single scheme (red) in two dimensions.

Finally, we consider a cheap refinement alternative to uniform refinement that attempts to only mark
a single edge in each element for refinement. We refer to this approach as the Single edge refinement
approach. To perform single edge refinement, a traversal of all edges in the mesh is performed. During this
traversal, the first edge encountered is marked for refinement and the elements adjacent to that edge are
tagged as ‘visited’. As the edges in the mesh are traversed, each element adjacent to the edge is checked to
see if it has already been encountered. If all adjacent elements have not been encountered, then the edge is
marked for refinement. After this process has completed, some elements may be isolated, in that they have
still not been marked as ‘visited’. Thus, for each element remaining that has not been marked as ‘visited’,
we mark the first edge adjacent to the element for refinement. The single edge refinement algorithm is
illustrated in Algorithm 3. Figure 3 demonstrates a mesh resulting from the application of the single edge
refinement scheme. For the Single scheme, we again approximate the ratio h

H with equation (13).

4. Mesh Adaptation

4.1. Error Localization

It is necessary to localize contributions to the total error η to mesh entity level correction indicators to
drive mesh adaptation. For finite volume and discontinuous Galerkin finite element methods, it is common
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Algorithm 3 Single edge refinement algorithm

initialize all elements to be ‘not visited’.
for each edge e in mesh M do

let S be the set elements adjacent to edge e.
if each element in S is ‘not visited’ then

mark edge e for refinement.
for each element el in S do

mark element el as ‘visited’.
end for

end if
end for
for each element el in mesh M do

if el is marked as ‘not visited’ then
let S be the edges adjacent to element el
mark the first edge e in S for refinement

end if
end for

to consider the discrete element-level adjoint weighted residuals of the form zhe ·Rh
e , where the subscript e

denotes evaluations over elements. However, for continuous finite elements, this approach does not account
for systematic inter-element cancellation [8], which could lead to a sub-optimal adaptive strategy.

Traditonally, for continuous Galerkin finite element methods, the error is localized by integrating the
residual by parts to recover strong form volumetric and jump contributions to the error over element interiors
and boundaries, respectively. Presently, we utilize a localization strategy introduced by Richter and Wick
[18] that proceeds by introducing a partition of unity φi, such that

∑
i φi = 1, into the variational residual.

In this localization, adjoint-weighted residual error information from neighboring elements is gathered to
mesh vertices, leading to vertex-based correction indicators ηi, for i = 1, 2, . . . , nvtx. Here nvtx denotes the
number of vertices in the fine mesh. To obtain element-level correction indicators ηe, where e = 1, 2, . . . , nel,
for the nel elements in the space VH , we interpolate the vertex-based indicators ηi to element centers in
the coarse mesh. While a full discussion of this localization procedure is outside of the scope of the present
work, we refer readers to [18, 22] to demonstrate how this approach is utilized for Galerkin finite element
methods and [10] to demonstrate how this approach is utilized for stabilized finite element methods.

4.2. Mesh Size Field

Once element-level correction indicators ηe have been obtained, we drive conforming mesh adaptation by
specifying a mesh size field. For isotropic mesh adaptation, which we presently consider, this mesh size field
defines the desired lengths of edges over the mesh. We utilize a mesh size field as described by Boussetta et
al. [4] that attempts to equidistribute the error in an output adapted mesh with N target elements. From
a high level, this size field will refine the mesh in areas of the domain that contribute strongly to the error
in the functional and coarsen the mesh in areas of the domain that weakly contribute to the error in the
functional.

Let p be the polynomial interpolant order for the chosen finite element method. In the subsequent results
section, we consider only p = 1. We first define the global quantity G as

G =

nel∑
e=1

(ηe)
2d

2p+d . (14)

From this global quantity, we compute new element size Hnew
e by scaling previous element sizes He according

to the formula

Hnew
e =

(
G

N

) 1
d

(ηe)
−2

2p+dHe. (15)
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To ensure that mesh adaptation is being driven by accurate correction indicators and to prevent excessive
coarsening and refinement in a single adaptive step, we additionally clamp new element sizes such that they
are no smaller than one quarter and no greater than twice the previous element size,

1

4
≤ Hnew

e

He
≤ 2. (16)

Presently, we make use of the PUMI [12] software for mesh adaptation purposes. This software uses a
sequence of edge splits, swaps, and collapses [13, 1] to locally modify the mesh to satisfy the input mesh size
field.

5. Results

5.1. Effectivity Indices for Poisson’s Equation

As a first example, we investigate the effectivity of the error estimate (12) for the model problem:{
−∇2u = f x ∈ Ω,

u = 0 x ∈ ∂Ω,
(17)

when using the Unif, Long, and Single approaches to solve the adjoint problem (8). The model problem
leads to the Galerkin finite element method: find uH ∈ VH such that

(∇wH ,∇uH) = (w, f) ∀wH ∈ VH , (18)

where (w, u) :=
∫

Ω
wudΩ denotes the L2 inner product over the space VH , defined as

VH := {uh ∈ H1(Ω) : uH = 0 on ∂Ω , uH |Ωe ∈ P1}. (19)

Here Ωe denotes an element in a decomposition of the domain Ω into nel non-overlapping elements such that
∪nel
e=1Ωe = Ω and Ωi ∩ Ωj = ∅ if i 6= j. Additionally, P1 denotes the space of piecewise linear polynomials.

We choose the domain Ω = [0, 1]× [0, 1] and the data to be f = 2π2 sin(πx) sin(πy) such that the exact
solution is u(x, y) = sin(πx) sin(πy). We choose the functional quantity to be J(u) =

∫
Ω
udΩ, which has

the exact value J(u) = 4
π2 . With the proposed finite element method, we expect the functional to converge

at the rate k = 2, which we use to determine the scaling parameter α as given by equation (10).
The model problem was solved with mesh sizes H = { 1

5 ,
1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160}. For each chosen mesh size,

the discrete adjoint problem (8) was solved on fine spaces Vh generated by the Unif, Long, and Single
refinement schemes. An error estimate for the three schemes is then computed according to equation (12).

Figure 4 plots the effectivity index (11) for each of the three schemes at each chosen mesh size. Effectivity
indices for the baseline Unif method approach 1 in the limit as H → 0 as expected. The effectivity indices
obtained using the two non-uniform refinement approaches, are less accurate and do not appear to be
asymptotically correct. This is perhaps not surprising, as we have considered a bulk average for the ratio
h
H for these two schemes, as shown in Table 1.

H Long : h
H Single : h

H
1
5 0.6344 0.8198
1
10 0.6323 0.8212
1
20 0.6325 0.8204
1
40 0.6490 0.8183
1
80 0.6477 0.8202
1

160 0.6467 0.8195

Table 1: Approximated mesh size ratios for the Long and Single schemes for the first Poisson’s equation example.
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Figure 4: Effectivity indices using the Unif, Long, and Single refinement schemes for the Poisson example problem.

However, even though the error estimates themselves obtained by the Long and Single schemes may
not be suitable for application purposes, these schemes may still be suitable to drive mesh adaptation at
a cheaper cost than the full Unif approach. Figure 5 demonstrates the decrease in the total number of
degrees of freedom for the adjoint problem for the Long and Single schemes as compared to the Unif
scheme. This motivates us to consider an adaptive example for Poisson’s equation in the next section.

5.2. Mesh Adaptation for Poisson’s Equation

In this example, we again consider the governing equations for Poisson’s equation, as given in the previous
section. However, we now choose the forcing function f to be f = 1 and the domain Ω := [−1, 1]× [−1, 1] \
[− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ]. Further, we consider the point-wise quantity of interest J(u) =

∫
Ω
δ(x− x0)udΩ, where

the point of interest is chosen to be x0 = (0.75, 0.75). We again expect the functional to converge at the
rate k = 2. The domain and point-wise QoI location are show in Figure 6. The value of the quantity of
interest was determined to have a value of J(u) = 0.0334473± 1e-7 in the reference [2].

We performed the steps:

Solve Primal→ Solve Adjoint→ Estimate Error→ Adapt Mesh

7 times, starting from the initial mesh shown in Figure 6. We solve the adjoint problem with three different
methods on nested meshes obtained with the Unif, Long, and Single refinement schemes. At each adaptive
step, the mesh size field was set according to equation (15), such that the target number of elements N is
twice that of the current mesh.

Figure 7 illustrates the convergence history for the error J(u) − J(uH) for the three adaptive schemes
obtained with the Unif (Goal Uniform), the Long (Goal Long), and the Single strategies, along with the
error obtained by solving the primal problem with successively uniformly refined meshes (Uniform). The
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Figure 5: Ratio of adjoint problem degrees of freedom to primal problem degrees of freedom using the Unif, Long, and Single
refinement schemes for the Poisson example problem.

Figure 6: Geometry and initial mesh used for the second Poisson’s equation example with the point of interest shown in red.

rate of convergence for the Unif scheme agrees with the reference [2]. Additionally, the error for both the
Long and Single schemes converges at a rate almost near the Unif scheme.

Figure 8 illustrates the final adapted mesh obtained using the Unif strategy to solve the adjoint problem.
The distribution of degrees of freedom in this mesh closely resemembles the results obtained in reference
[2]. However, using the Long and Single to solve the adjoint problem results in final adapted meshes that
appear to be largely unsuitable for application analysis, as shown in Figures 9 and 10, even thought these
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Figure 7: Error evolution for adaptive schemes for the second Poisson’s equation example.

meshes result in more accurate functional evaluations as compared to uniform refinement.

6. Conclusions and Outlook

We have developed two alternative approaches to uniform refinement for performing enriched adjoint
solves in adjoint-based error estimation with two discretization levels. We have applied this approach to
Poisson’s equation. While the number of degrees of freedom for the adjoint solve for these two alternative
approaches decreases significantly when compared to the more traditional approach of solving the adjoint
problem on a uniformly refined mesh, the present outlook indicates that these approaches are not yet
suitable for practical applications. That is, when performing adjoint-based error estimation with the two
novel approaches, effectivity indices are not asymptotically correct. Additionally, the meshes obtained
with adaptive adjoint-based analysis display qualitatively different features when compared to the uniform
refinement approach.

It is possible that more accurate error estimates could be obtained by considering the total functional
error as the sum of element-level contributions

Jh(uh)− Jh(uhH) ≈
nel∑
e=1

− 1

αe
zhe ·Rh

e (uhH), (20)
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Figure 8: The final adapted mesh using the Unif strategy to solve the adjoint problem (left) and a close-up of the upper
right-hand corner of this mesh (right).

Figure 9: The final adapted mesh using the Long strategy to solve the adjoint problem (left) and a close-up of the upper
right-hand corner of this mesh (right).

where we have replaced the approximated ratio (13) with the exact element-level ratio, αe = 1−
(
he

He

)k
. Here,

the subscript e denotes the element-level contributions to the corresponding global quantity. Additionally, it
is possible that more suitable meshes may be obtained during the adaptive process if a size field smoothing
algorithm is utilized. We leave investigation into these areas as a suggestion for future work.
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Figure 10: The final adapted mesh using the Single strategy to solve the adjoint problem (left) and a close-up of the upper
right-hand corner of this mesh (right).
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