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ABSTRACT

This thesis present a matrix-free method for partial differential equation (PDE)

constrained optimization problems formulated in the reduced space. When many

state-based constraints are present in the reduced-space formulation, the constraint

Jacobian can become prohibitively expensive to compute explicitly, because each

constraint gradient requires the solution of a distinct adjoint PDE. This leads many

practitioners to use constraint aggregation, which can produce overly conservative

solutions. To avoid conservative solutions as well as the expense of forming the con-

straint Jacobian, we adopt a matrix-free inexact-Krylov optimization framework.

This choice introduces additional challenges related to globalization and precondi-

tioning. To address globlization, the proposed method uses a homotopy continua-

tion approach and a predictor-corrector algorithm to trace the solution curve. The

predictor and corrector linear systems are solved using a Krylov iterative method

with the necessary matrix-vector products evaluated via second-order adjoints. To

cope with the poorly conditioned primal-dual system, a matrix-free preconditioner is

proposed that uses a low-rank approximation of the Schur complement of the primal-

dual matrix; the low-rank approximation is constructed using a fixed number of it-

erations of the Lanczos method. The algorithm is verified using analytical problems,

a subset of CUTEr problems, a stress-constrained mass minimization problem, and

an aerodynamic shape optimization problem. The method shows promising perfor-

mance relative to a state-of-the-art matrix-based active-set algorithm, particularly

for large numbers of design variables.

x



CHAPTER 1

INTRODUCTION

1.1 Motivation

Global warming has been unequivocally proven by scientific evidence [1]. Fur-

thermore, there is also strong evidence that human activities, especially anthro-

pogentic emissions of carbon dioxide (CO2), are the major source of this warming.

Every industry has an ethical responsibility to address climate change, includ-

ing the air transport industry, which is responsible for about 2% of the manmade

carbon dioxide (CO2) emissions [2], [3]. While this percentage may seem small, re-

searchers suggest that aviation’s share of CO2 emissions should be multiplied by 1.9

times [2], [3] to incorporate the impact of altitude and other emissions, like NOx and

water vapors. Furthermore, with the number of passengers increasing at an average

of 5% each year [4], [2], perhaps more in developing markets, the impact of aviation

on the environment will only increase. It is estimated that approximately 27,000

new passenger aircraft will be demanded between now and 2030 [2]. In summary,

the total contribution of aviation to human emissions of CO2 and other effects will

likely rise to 5% and in a worst-case to 15% [2] by 2050.

In light of these figures, reducing the impact on the environment is becoming

a driving factor for future aircraft design [5]. For example, the Advisory Council

for Aeronautics Research in Europe (ACARE) is enforcing strict emission targets in

order to reduce CO2 emissions per passenger kilometer by 75%, NOx by 90% and

perceived noise by 65% by 2050 relative to the year 2000 [6], [7]. To design future

aircraft that meet such targets, the aviation industry needs to consider a range of

strategies, including improved efficiency through optimization.

1.2 PDE-constrained Optimization

Numerical optimization is a powerful tool that can be used to inform the

design of aircraft. In particular, in aircraft conceptual design stage, engineering

design optimization can reveal valuable insights about the design trade-offs and

1
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help engineers make detailed and informed decisions. Moreover, optimization is

increasingly used during detailed design to refine the shape and structural layout

of aircraft. However, the optimization must be coupled with sufficiently accurate

models if the results are to be reliable. For example, in this work we will consider

partial-differential equations (PDEs) models that can capture the complex nonlinear

physics present in flight.

Engineering design optimization problems that are governed by PDEs arise

in many engineering applications including aerodynamic shape optimization [8], [9],

[10], structural optimization [11], [8], [12], and thermodynamic optimization [13],

[14], [15]. Figure 1.1 shows two examples of PDE-constrained design problems: the

first one is an aero-structural optimization problem; the second one is a topology

optimization problem.

(a) Aero-Structure Optimization [16]

(b) Topology Optimization [17]

Figure 1.1. Large-scale PDE-constrained optimization
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In PDE-constrained optimization, an optimization library is coupled with one

or more PDE models. Figure 1.2 illustrates the schematic diagram of the PDE-

constrained optimization process1. As shown in Figure 1.2, a typical optimization

iteration begins with updating the computational mesh (if necessary), followed by

the primal PDE solve. The solution of PDE can then be used to evaluate the

objective and constraints. If a gradient or Jacobian is requested by the optimization

algorithm, then one or more adjoint PDEs must be evaluated.

Mesh 
Movement 

Initial 
Design, x0 

Final 
Design, x* 

Solve PDE 

Optimization Algorithm 
Converged

? 

Solve 
Adjoint 

Gradient 
? 

Yes 

Yes 

No No 

Figure 1.2. Schematic process of PDE-constrained optimization

Computational cost is an important consideration in PDE-constrained opti-

mization. Again referring to Figure 1.2, we see that each optimization iteration

requires the solution of the PDE. This subproblem itself can be a formidable task

in high-performance computing. Furthermore, gradients and Jacobians require the

solution of additional linearized PDEs, e.g. adjoints. In the next section, we will dis-

cuss how these differences cause significant challenges for conventional optimization

algorithms.

1More precisely, Figure 1.2 illustrates a reduced-space PDE-constrained optimization.
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1.3 Conventional Optimization Algorithms and Their Lim-

itations

Conventional gradient-based optimization algorithms [18], [19], [20] have been

used extensively in PDE-constrained optimizations, particularly for problems with

relatively few state-based constraints. For example, [21] and [22] used SNOPT

(Sparse Nonlinear OPTimizer) [20] through the Python interface pyOpt [23] for the

investigations of the aerodynamic and aerostructural optimization on the Common

Research Model based on RANS. Because there were only three state-based outputs

of interest, drag, lift, and pitch moment coefficients, they use adjoint methods [24],

[25], [26], [27], [28], [29], [30] to assemble the total gradients and feed them to

SNOPT. The cost of an adjoint solution is independent of the number of design

variables for each state-based output. Other general purpose optimization algo-

rithms, such as IPOPT [31] and Knitro [32] have been used for aerodynamic design

problems [33], [34] as well.

However, conventional optimization algorithms are not well suited for large-

scale PDE-constrained optimization problems with many design variables and state-

based constraints. Large-scale problems with many (thousands or more) design vari-

ables are a problem, because conventional optimization algorithms typically rely on

limited-memory quasi-Newton methods, which have linear asymptotic convergence

rates [35]. Furthermore, in the presence of many state-based constraints, assembling

the total constraint Jacobians can become prohibitively expensive, as each constraint

gradient requires the solution of an adjoint equation whose cost is comparable to

that of the governing PDE.

This work is particularly concerned with addressing the costs associated with

the constraint Jacobian. Conventional optimization methods require the explicit

constraint Jacobian at every major iteration in order to factor the matrix and de-

termine a basis for its null-space; this basis is required by many algorithms for

constrained optimization [36]. As already explained, these matrix-based algorithms

are not practical when many constraints are present. Therefore, a different class of

algorithm is needed.
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1.4 PDE-constrained Optimization Algorithms

1.4.1 Full-space and Reduced-space Approaches

There are two broad classes of algorithm used to solve PDE-constrained opti-

mization problems: full-space methods and reduced-space methods. In order to de-

scribe these two approaches and their relative merits, consider the following generic

PDE-constrained optimization problem,

min
x,u

f(x, u)

subject to h(x, u) = 0

g(x, u) ≥ 0

governed by R(x, u) = 0,

(1.1)

where x ∈ Rn and u ∈ Rv are the design and state vectors, respectively, and

f : Rn × Rv → R, h : Rn × Rv → Rl, g : Rn × Rv → Rm are the objective,

equality and inequality constraints, respectively. We assume that f , h and g have

continuous second derivatives. Finally, R(x, u) represents the PDE modeling the

physical system.

A solution to (1.1) must satisfy the first-order necessary optimaltiy condi-

tions [18]. These conditions are most easily expressed in terms of the Lagrangian,

which is the scalar function defined below:

L(x, u, ψ, s, λh, λg) = f(x, u) + λThh(x, u) + λTg (g(x, u)− s) + ψTR(x, u), (1.2)

where s ∈ Rm are the so-called slack variables, and λh ∈ Rl and λg ∈ Rm are the

Lagrangian multipliers for the equality and inequality constraints, respectively.

Using L, the first-order necessary conditions, as known as the Karush-Kuhn-
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Tucker (KKT) optimality conditions, for (1.1) can be expressed as

∂xL = ∂xf + λTh∂xh+ λTg ∂xg + ψT∂xR = 0,

∂uL = ∂uf + λTh∂uh+ λTg ∂ug + ψT∂uR = 0,

∂ψL = R = 0,

∂λhL = h = 0,

∂λgL = g − s = 0,

−SΛge = 0,

s ≥ 0, λg ≤ 0.

(1.3)

For notational convenience, we have introduced e = [1, 1, . . . , 1]T and the diagonal

matrices

S = diag (s1, s2, . . . , sm) , and Λg = diag
(
λg1, λg2, . . . , λgm

)
.

As mentioned earlier, the nonlinear system (1.3) can be solved in either the full

space or the reduced space. Full-space methods [37], [38], [39] solve all the unknowns

in (1.3) simultaneously. This results in a large nonlinear system whose size is more

than double the number of PDE state variables (due to the adjoint). If Newton’s

method is used to solve (1.3), the resulting linear system is highly sparse, indefinite,

and ill-conditioned. Nevertheless, effective iterative methods and preconditioners

have been proposed for full-space methods [37], [38].

An advantage of the full-space approach is that, during the intermediate opti-

mization iterations, the PDE state equation, R = 0, and adjoint equation, ∂uL = 0,

do not need to be solved exactly. This avoids the computational expense of tightly

converging the PDE and adjoint equation residuals; however, this is also a poten-

tial disadvantage in practical engineering problems, because, if the optimization

fails to converge, the intermediate solution may not be feasible with respect to the

physics. Furthermore, for highly nonlinear PDEs, e.g. gas dynamics with shocks and

boundary layers, practitioners have developed specialized globalization strategies

that may be difficult to take advantage of in general-purpose full-space optimization
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algorithms. For theses reasons, no general purpose optimization libraries exist for

full-space methods, to the best of our knowledge.

Reduced-Space algorithms for solving (1.3) treat the states u and the adjoints

ψ as implicit functions of the design variables through R(x, u(x)) = 0, and ∂uL = 0.

Consequently, the reduced KKT conditions can be formulated as follows:

F (x, s, λh, λg) ≡


∇xf + λTh∇xh+ λTg∇xg

−SΛge

h

g − s

 = 0,

subject to si ≥ 0, and λgi ≤ 0 ∀i = 1, 2, . . . ,m,

(1.4)

where the unknowns are xT , sT , λTh , λ
T
g , and F : RN → RN , N = n + l + 2m, is the

vector-valued residual of the KKT conditions, excluding the inequalities on s and

λg.

The reduced-space approach to PDE-constrained optimization is attractive for

a few reasons. First, it should be clear that the KKT system (1.4) is much smaller

than (1.3). Second, reduced-space algorithms are more modular, since they can

make direct use of existing PDE primal and adjont solvers. This modularity is one

of the reasons that the reduced-space approach has remained the dominant approach

in aerospace applications.

Of course, the reduced-space approach is not without difficulties. If conven-

tional optimization algorithms are used to solve (1.4), then the aforementioned scal-

ing issues arise, particularly the cost of evaluating the explicit constraint Jacobian.

Instead, we need an algorithm that does not require the explicit constraint Jacobian.

1.4.2 Reduced-space Inexact-Newton Methods

One alternative to using conventional (matrix-based) optimization algorithms

to solve the reduced-space KKT conditions (1.4) is to apply inexact-Newton meth-

ods [40], which are also know as truncated-Newton methods in the optimization

literature [41].

To see how inexact-Newton methods can be used to solve 1.4, notice that,
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with the exception of the bounds on s and λg, the KKT conditions (1.4) form a

set of nonlinear algebraic equations, F (q) = 0, where q ≡ (xT , sT , λTh , λ
T
g )T ∈ RN is

the vector of unknowns. These equations can be solved, in principle, using Newton

iterations of the form

(∇qF )∆q(k) = −F (q(k)), (1.5)

where q(k) is the solution at the kth iteration and ∆q(k) = q(k+1)−q(k) is the solution

update. Solving (1.5) exactly can be inefficient during early Newton iterates when

the linear model is not a good approximation to F (q) = 0. Instead, truncated-

and inexact-Newton methods find approximate solutions to (1.5) that, for example,

satisfy the inexact-Newton condition

∥∥∥(∇qF )∆q(k) + F (q(k))
∥∥∥ ≤ ηk

∥∥∥F (q(k))
∥∥∥ , (1.6)

for some parameter ηk ∈ (0, 1).

There has been considerable success applying inexact-Newton methods to un-

constrained optimization problems; see [41] and the references therein. On the

other hand, inexact-Newton methods for general (nonconvex) constrained problems

are much less common. Some notable exceptions include the efforts by Byrd and col-

leagues [42], [43] and by Heinkenschloss and Ridzal [44]; however, these algorithms

make assumptions regarding the structure of the problem that favor full-space for-

mulations, and our experience applying them to reduced-space PDE-constrainted

optimization has been disappointing.

Applying Newton’s method to (1.4), the KKT system, also called the primal-

dual system, is obtained:
∇xxL 0 ∇xh

T ∇xg
T

0 −Λg 0 −S

∇xh 0 0 0

∇xg −I 0 0




px

ps

ph

pg

 = −


∇xL
−SΛge

h

g − s

 (1.7)

where L the Lagrangian is defined in (1.2), and S and Λg are as defined previously. A

Newton-Krylov (NK) algorithm is a type of inexact-Newton method that solves (1.7)
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approximately using a Krylov iterative method, which only needs the matrix-vector

product of the system matrix. The products can be formed in a matrix-free way

by solving two second-adjoint systems; for details, see [45], [46] and the references

therein. This is significant, because it means that NK algorithms do not require

the constraint Jacobian (or Lagrangian Hessian) explicitly, unlike conventional op-

timization algorithms.

Prior to this work, the reduced-space Newton-Krylov method has been success-

fully applied to unconstrained problems and certain types of equality-constrained

problems. In the case of unconstrained problems, a Newton-Conjugate-Gradient

method can be used, in which the Steinhaug-Toint variant of CG is used to deal

with nonconvex objectives; see, for example, [47], [48], [49], [50]. Reduced-space

NK optimization algorithms have also shown promise for some types of equality-

constrained problems, because, as already mentioned above, they do not require

the constraint Jacobian to be form explicitly and, thus, avoid the scaling issue de-

scribed earlier. For instance, [46] applied a matrix-free NK algorithm to a class

of equality-constrained optimization problems that arise in multidisciplinary design

optimization and would otherwise be intractable with conventional matrix-based

algorithms.

1.4.3 Challenges in Using Reduced-space Newton-Krylov Methods

Motivated by its success in the unconstrained and equality-constrained cases,

this thesis aims to extend the Newton Krylov methodology to more general, equal-

ity and inequality constrained problems. This extension of the reduced-space NK

algorithm encounters two fundamental challenges that must be addressed.

Nonconvexity: The system F (q) = 0 does not distinguish between different types

of stationary points, so Newton-type methods, including inexact-Newton-Krylov

methods, may converge to local maximizers or saddle points. Conventional

optimization algorithms often project onto the null-space of the (active) con-

straint Jacobian to detect directions of negative curvature and avoid undesir-

able stationary points; however, the null-space is not explicitly available for

matrix-free inexact-Newton methods. Consequently, we must find a matrix-
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free approach to deal with nonconvexity.

Preconditioning: The number of iterations necessary to satisfy the inexact New-

ton condition (1.6) using a Krylov method is closely related to the condition

number of the system. Unfortunately, it is well known that the primal-dual

matrix∇qF is indefinite and highly ill-conditioned. A preconditioner is needed

that is inexpensive to form, store, and apply. A general-purpose, inexpensive

preconditioner is especially difficult to find in the reduced-space context, since

approximations to ∇qF are not readily available as they are in the full-space.

1.5 Contributions

This thesis proposes a matrix-free inexact-Newton-Krylov optimization algo-

rithm that is specifically intended for large-scale, reduced-space PDE-constrained

design problems. The primary contributions of this work are in addressing the

challenges related to nonconvexity and matrix-free preconditioning.

The approach to addressing nonconvexity is to introduce a homotopy map that

implicitly defines a solution curve that connects the solution to an easy problem to

the solution of the desired problem. A predictor-corrector algorithm is proposed to

follow the curve from the easy to the desired solution.

To address the conditioning of the KKT matrix, a low-rank approximation of

the Schur complement of the KKT system is proposed. The low-rank approxima-

tion is computed by using the Lanczos method, which only involves matrix-vector

products with the Schur complement. The matrix-vector products can be obtained

using approximate state and adjoint solutions.

1.6 Thesis Outline

The remaining chapters in the thesis are structured as follows:

• Chapter 2 reviews the homotopy-based globalization and the homotopy map

adopted in this work. Then it describes the predictor-corrector path-following

algorithm that traces the homotopy zero curve. Finally, the proposed algo-

rithm is verified and investigated using analytical problems.
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• Chapter 3 is focused on describing the proposed matrix-free preconditioner.

It begins by considering inequality constrained problems, and then generalizes

the preconditioner to problems with both equality and inequality constraints.

A synthetic quadratic problem with linear inequality constraints is used to

investigate the effectiveness of the inequality preconditioner and the scalability

performance of the algorithm.

• Chapter 4 presents the main numerical results. The chapter begins by describ-

ing the optimization environment Kona in which the proposed algorithms have

been implemented. Subsequently, the chapter summarizes a state-of-the-art

optimization algorithm (SNOPT) against which comparisons will be made.

The predictor-corrector algorithm and the preconditioners are first tested on

a subset of the CUTEr problems. Next, the proposed algorithms are applied

to the stress-constrained mass minimization of a flat plate. Finally, we present

the results of a three-dimensional aerodynamic shape optimization problem.

• Chapter 5 provides conclusions and some recommendations.



CHAPTER 2

HOMOTOPY-BASED GLOBALIZATION

2.1 Homotopy-based Globalization

Recall that Newton-Krylov (NK) root-finding algorithms cannot distinguish

between (desired) local minimizers and other stationary points. Thus, the basic

NK algorithm must be augmented with a globalization that avoids local maximizers

and saddle points. This chapter describes one such globalization approach based on

homotopy methods.

Homotopy methods are robust, numerically stable, and globally convergent

methods for solving nonlinear algebraic equations; see, for example, [51] and [52].

These methods have been used to globalize nonlinear PDEs, including difficult com-

putational aerodynamics problems [53], [54], [55], but globally convergent probability-

one homotopy methods have also been successfully applied to solve engineering

optimization problems [56]. Watson [57] reviewed and developed the general con-

vergence theory of probability-one homotopies for nonlinear optimization problems,

including unconstrained, bound-constrained, linear and nonlinear inequality con-

strained convex cases. He also discussed the extension of the theory to nonconvex

problems, although the convergence theory for equality constraints remains an open

problem. More recently, Huang et al. [58] transformed a general nonlinear opti-

mization with equality and inequality into an inequality-only problem, and used

a predictor-corrector method to track the homotopy interior-point map using the

conjugate gradient method. While their method achieves global linear convergence

under the normal cone condition, it is limited to convex objectives and constraint

functions.

Portions of this chapter previously appeared as: P. Meng, A. Dener, J. Hicken, and G. Kennedy,
“Matrix-free algorithm for reduced-space PDE-governed optimization with inequality constraints”,
unpublished.

12
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2.1.1 An Example

Conceptually, the idea of homotopy methods is easy to understand. To find the

solution of a difficult nonlinear equation, F (q) = 0, a homotopy map is constructed

that relates the target problem to an easy-to-solve problem via a parameter. For

example, a convex homotopy map H : RN × RN × [0, 1)→ RN is given by

H(q, q0, µ) = (1− µ)F (q) + µG(q, q0), 0 ≤ µ ≤ 1, (2.1)

where µ is the homotopy parameter, and G : RN × RN → RN is chosen such that

G(q, q0) = 0 is easy to solve and has the solution q = q0.

We will use a simple, unconstrained optimization example to illustrate the

homotopy idea. Consider the problem

min
x

f(x) = x4 − x2.

The first-order optimality condition for this problem is given by (identifying q with

x here)

F (x) = ∇xf(x) = 2x(2x2 − 1) = 0.

It is easy to see that there are three stationary points; a local maximizer at x = 0

and two local/global minimizers at x = ±1/
√

2. Newton’s method may converge to

any of these stationary points depending on the initial guess x0, so we need some

way to avoid the local maximizer at x = 0.

Now, consider the simple problem minx
1
2
(x−x0)2, whose first-order optimality

is given by

G(x, x0) = x− x0 = 0.

This has the obvious solution x = x0. We can take advantage of this simple op-

timization problem by constructing a convex homotopy that combines F (x) and

G(x, x0) as follows:

H(x, x0, µ) = (1− µ)F (x) + µG(x, x0) = (1− µ)2x(2x2 − 1) + µ(x− x0).
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Figure 2.1. Solution curves of H(x, x0, µ) = 0 (left side of figure) for
different values of x0. The paths begin at µ = 1 and converge to the

local minimizers at µ = 0. The function to be minimized is plotted on
the right-side of the figure

Next, we trace out the set of solutions corresponding to H(x, x0, µ) = 0 from µ = 1

to µ = 0. Starting at µ = 1 we have the solution x = x0. If we change the value of µ

slightly to µ = 1−∆µ, then, for ∆µ sufficiently small and by continuity, x0 should

remain in the basin of attraction for Newton’s method applied to H(x, x0, 1−∆µ) =

0. The solution at µ = 1−∆µ can then be used as an initial guess for the next value

of µ, and so on, until we reach µ = 0. Example solution paths for this process are

illustrated in Figure 2.1 starting from distinct x0. Notice that all paths converge to

the local minimizers, even those that begin near the maximizer x = 0.

2.1.2 Review of Convergence Theory for Homotopy Methods

The path-following process described above, while intuitive, is not guaranteed

to succeed. In particular, it is not clear that ∇qH remains non-singular along the

path. A poor choice of G(q) may produce a level set H(q, q0, µ) = 0 with an

intersection, where ∇qH is singluar and the path bifurcates. The Jacobian will also

become rank deficient at so-called turning points, where following the path from

µ = 1 to µ = 0 requires µ to increase at some point. Finally, the path may diverge

before reaching µ = 0.

Many of the potential issues with the path-following approach can be avoided
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if we place some conditions on the map H. These conditions are described in the

theorem below, which has been adapted from [59] to the present context.

Theorem 1. Assume the following conditions hold:

• G : RN × RN → RN is a C2 map, and q = q0 is the unique solution to

G(q, q0) = 0;

• F : RN → RN , the first-order optimality residual given by (1.4), is a C2 map;

• For the homotopy map H defined by (2.1), the Jacobian

∇H ≡
[
∇qH ∇q0H ∇µH

]
is full-rank on the zero set X ≡ {(q, q0, µ)|H(q, q0, µ) = 0}.

Then, for almost all q0 ∈ RN , there exists a zero curve of H starting from q = q0

at µ = 1 along which the Jacobian ∇H has full rank. Furthermore, if the set

X is bounded, then the path includes a point (q, q0, µ) = (q∗, q0, 0), i.e., where

H(q∗, q0, 0) = F (q∗) = 0. Finally, if the Jacobian ∇qF is invertible at q∗, the

path has finite arc length.

Theorem 1 is a powerful result. It implies that, for almost all choices of q0,

there exists a path from q = q0 at µ = 1 to a point q = q∗ at µ = 0 that satisfies

F (q∗) = 0, and along this path the Jacobian is full-rank. The phrase “almost all

choices of q0” means that the set of points for which there is no path has measure

zero.

The drawback of Theorem 1 is that its assumptions, with the exception of the

first, are difficult to guarantee or verify in practice2. The second condition, which

cannot be relaxed [59], implies that the objective and constraints are C3. While this

level of smoothness exists for many engineering problems, it is certainly not true in

general. The third assumption means that H is transversal to zero for each choice

of q0, which can be verified for simple problems, but may be difficult to determine

2The first condition requires G to be sufficiently smooth and have q0 as its only solution; as we
show in Section 2.1.3, it is straightforward to construct such a map.
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for complex engineering design problems. Finally, as Watson points out in [59], the

assumptions on the boundedness of the path and the invertibility of ∇qF at q∗ are

the most difficult to verify, since, taken together with the other conditions, they

imply the exsistence of a solution to F (q) = 0.

Despite the potential difficulty of guaranteeing the assumptions of Theorem 1,

the theorem hints at the robustness of the homotopy approach, and this is corrob-

orated by our experience.

2.1.3 Homotopy Map for Constrained Optimization

For this work we use the convex homotopy defined by (2.1), therefore we need

only define G(q, q0). Similar to the unconstrained case, we could use a map of the

form

G(q, q0) = q − q0,

where q0 =
[
xT0 sT0 λTh0 λTg0

]T
. However, this map produces a positive-definite

(diagonal) Jacobian ∇qG, which would be inconsistent with the inertia of the Jaco-

bian ∇qF at a local solution to (1.4) [18]. Instead, we adopt the map

G(q, q0) ≡
[
(x− x0)T (s− s0)T −λTh −λTg

]T
,

for which q0 =
[
xT0 sT0 0T 0T

]
. We note that G(q, q0) satisfies the requirements

of Theorem 1.

For future reference, we restate the homotopy map that we use for solving the

first-order necessary conditions in this work:

H(q, q0, µ) = (1− µ)


∇xf(x) + λTh∇xh(x) + λTg∇xg(x)

−SΛge

h(x)

g(x)− s

+ µ


x− x0

s− s0

−λh
−λg

 . (2.2)

Remark 1. The homotopy map (2.2) can be used to identify stationary points of

F (q), but it cannot, on its own, ensure that si ≥ 0 and λi ≤ 0. We use safeguards to

ensure the correct signs for the slacks and inequality multipliers; see Section 2.2.3.
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The homotopy map (2.2) is favorable in the context of optimization for several

reasons. First, the term µ(x−x0) helps to address nonconvexity by adding a positive

diagonal matrix to the Lagrangian Hessian during the early stages of convergence.

Furthermore, the term µ(s− s0) with s0 > 0 generates a path that remains feasible

with respect to the slack boundaries s > 0. Finally, the terms −µλh and − µλg

improve the conditioning of the KKT matrix; even when the constraint Jacobian is

rank deficient the homotopy map will remain invertible for µ > 0.

2.2 Predictor-Corrector Path-following Algorithm

The theory presented in Section 2.1 tells us when a path exists between q0 and

a solution to F (q), but it does not tell us how to traverse such a path in an efficient

manner. In this section we describe the modified predictor-corrector algorithm [51]

used to trace the zero-curve of the homotopy map.

2.2.1 Overview

Figure 2.2a illustrates the predictor and corrector phases at iteration k when

exact linear and nonlinear solutions are possible. The iteration begins by computing

a tangent to the path, q′k+1, and using this tangent to predict the next point on the

path. Subsequently, the homotopy parameter µ is fixed and a correction is found

that gives a root of the homotopy. This cycle is repeated until µ < εµ, where εµ > 0

is a specificed tolerance. Once µ is sufficiently close to zero an approximate solution

of the primal-dual system is recovered.

Remark 2. We use a default value of εµ = 10−9 in our algorithm, which we have

found works well for most problems; however, for difficult problems, e.g., with rank-

deficient constraint Jacobians, it may be necessary to use larger thresholds. For

example, we use εµ = 10−6 in the structural optimization problem presented in Chap-

ter 4.3.

In practice, the linear and nonlinear subproblems cannot be solved exactly.

Thus, the true situation is more like that in Figure 2.2b, which depicts the path-

following algorithm when inexact solutions are obtained. These inexact solutions
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(a) exact solves

(b) inexact solves

Figure 2.2. Figure 2.2a illustrates the predictor-corrector algorithm in
the case that exact solves are used, while Figure 2.2b depicts the

situation when inexact solves are used

are discussed in the following high-level description of the predictor and corrector

phases.

Predictor: During the predictor phase we first need to compute an approximate

tangent direction q′ = dq/dµ, which is defined by taking the total derivative

of H(q, q0, µ) = 0 with respect to µ, i.e. by applying the implicit function

theorem: (
∇qH

)
k
q′k = −∇µHk = F (qk)−G(qk, q0), (2.3)

where ∇qH and ∇µH are evaluated at qk, the previous homotopy iterate.
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In practice, we solve (2.3) inexactly using a preconditioned Krylov iterative

method. That is, we find a q′k that satisfies

‖
(
∇qH

)
k
q′k − F (qk) +G(qk, q0)‖ ≤ τ‖F (qk)−G(qk, q0)‖,

where τ ∈ [0, 1) is the desired relative tolerance. Further details on the inexact

solution of (2.3) are provided in Chapter 3.

After (inexactly) solving (2.3) for q′k, the predictor step is given by q̂k+1

µk+1

 =

qk
µk

+ αktk, (2.4)

where αk is the step length taken along the tangent direction at iteration k

(see Section 2.2.2), and tk is the normalized tangent given by

tk ≡
1√

‖q′k‖2 + 1

−q′k
−1

 . (2.5)

Note that the negative signs in the definition of tk account for decreasing µ as

the path moves from µ = 1 to µ < εµ.

Corrector: In the corrector phase, we fix the homotopy parameter at µ = µk+1

based on the predictor, and use a Newton-Krylov method to inexactly solve

H(qk+1, q0, µk+1) = 0. This has the effect of “correcting” q̂k+1 to be closer to

the path. More precisely, we seek qk+1 that reduces the relative residual below

some tolerance:

‖H(qk+1, q0, µk+1)‖ ≤ εH‖H(q̂k+1, q0, µk+1)‖. (2.6)

A loose relative tolerance of εH ∈ [0.1, 0.5] is used for homotopy parameter

values µ > 0 to avoid oversolving the corrector step. Once the algorithm

reaches µ ≤ εµ, the tolerance is tightened to the user-specified value for the

first-order necessary conditions.
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At each Newton subiteration within the corrector, we must (inexactly) solve

a linear system of the form

(
∇qH

)
k+1

∆qk+1 = −H, (2.7)

for ∆qk+1, where (∇qH)k+1 and Hk+1 are evaluated at µk+1 and the current

estimate for qk+1. The Jacobian, ∇qH, that appears in (2.7) also appears in

(2.3) during the predictor phase; again, further details regarding the solution

of the linear systems that involve ∇qH are provided in Chapter 3.

Remark 3. The above predictor-corrector approach is a classical embedding

method [51], since the solution path is assumed to be parameterized by µ; that is,

the path has the form (q(µ), µ). This type of method cannot handle folds, or turning

points, where the path reverses direction with respect to µ and the Jacobian ∇qH

becomes singular. Problems for which such turning points arise can be handled using

more advanced predictor-corrector algorithms; see, for example, [60].

2.2.2 Adaptive Step-Size Control

The step length α along the tangent direction is calculated using the asymp-

totic expansion method [61], which we briefly review here.

At the first iteration of the predictor-corrector algorithm when µ = 1, a con-

servative step length is used, e.g., α0 = 0.05. Subsquent step lengths are then

determined adaptively using a scaling factor and a couple safeguards on the maxi-

mum step size:

αk = min

(√
‖q′k‖2 + 1∆µmax, αmax, αk−1/ζk

)
,

where ∆µmax is the maximum allowable change in µ, αmax is the allowable step size

permitted by the fraction-to-the-boundary rule (see Section 2.2.3), and the scaling

factor for αk−1 is given by

ζk ≡ max

(√
δk/δtarg, φk/φtarg

)
.
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The scaling factor ζk is controlled by two quantities that measure how nonlinear

the path is, namely the previous corrector update size, δk, and the angle between

successive tangents, φk. Referring to Figure 2.2, the corrector update size is the

magnitude of the difference between the predictor step and the corrector step:

δk ≡ ‖qk − q̂k‖. (2.8)

A large value of δk indicates that the linear predictor does not approximate the path

well, so a smaller step size is warranted. The angle between the tangents is

φk ≡ arccos
(
tTk+1tk

)
. (2.9)

The angle φk is a measure of the curvature in the path, so a relatively large value

of φk also suggests that αk should be reduced. For locally linear paths both δk and

φk are zero, and the scaling factor will lead to an unbounded αk; hence the need for

the maximum allowable step αmax.

Remark 4. While the adaptive step-size control is automated, performance depends

on the parameters α0, ∆µmax, δtarg and φtarg. The optimal choice for these parame-

ters is problem dependent.

2.2.3 Safeguards On The Slacks and Inequality Multipliers

One of the differences between solving (1.4) and solving a generic nonlinear

system of equations is that the slacks and inequality multipliers must remain nonneg-

ative and nonpositive, respectively. To cope with this additional set of requirements,

the following safeguards are implemented in the predictor-corrector scheme.

• During the predictor phase, the maximum allowable step size is bounded using

a fraction-to-the-boundary-like rule [18] defined below.

αmax = max
{
α ∈ (0, 1] | s+ αs′ ≥ τs.

}
. (2.10)

where τs = 10−6. The fraction-to-the-boundary rule we use is slightly different

than [18] in that we use a fixed absolute value τs to define the boundary instead
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of a fixed fraction boundary.

The maximum step size is enforced for all variables, including the design vari-

ables x. We have found that synchronizing the step size across the design,

slack and multipliers improves the performance of the algorithm.

• In addition, the following clipping rule is applied to the slack variable:

s← max(s, τs). (2.11)

This clipping rule is applied at two points in the algorithm: at the very be-

ginning to the initial slack s0, and at the last point of the corrector phase.

• At the end of both the predictor and corrector phases, the inequality multi-

pliers are clipped to ensure they remain non-positive:

λg ← min(λg, 0) (2.12)

where the min function in the above expression is to be interpreted element-

wise.

While the slacks and inequality multipliers both have similar bound con-

straints, their treatment is slightly different in the above safeguards. Our motivation

for bounding the slacks away from zero, in both the predictor and corrector phases,

is to avoid severe ill-conditioning in the system matrix and its preconditioner; see

Section 3.3 for further details. The inequality multipliers, in contrast, do not lead

to conditioning problems if they vanish, so we can clip the multipliers to zero.

2.2.4 Algorithm Summary

With most of its elements described, we summarize the predictor-corrector

method in Algorithm 1. The solution of the tangent step, line 19, and the solution

of the Newton step, line 14, are the only components of the algorithm that require

further explanation. Note that the initial tangent step on line 4 is a linear system
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that is trivial to solve, because ∇qH is diagonal when µ = 1.

Algorithm 1: Inexact-Newton predictor-corrector algorithm for reduced-

space PDE-Constrained optimization.

Parameters: Kmax, Jmax, εF , τ , εH , α0, δtarg, φtarg, ∆µmax

Input : x0, s0

Output : q∗ =
[
x∗T s∗T λ∗Th λ∗Tg

]T
, the solution of (1.4)

Clip s0 if necessary: s0 ← max(s0, τs)

Set q0 =
[
xT0 sT0 0T 0T

]
, q ← q0

compute state u and adjoint ψ at q0

4 solve
(
∇qH

)
k
q′k = −∇µHk for q′k

compute the normalized tangent direction tk using (2.5)

for k = 0, 1, 2, . . . , Kmax do

compute αk(α0 if k ≡ 0) = min
(√
‖q′k‖2 + 1∆µmax, αmax, αk−1/ζk

)
use (2.4) to update q̂k+1 and µk+1

clip λg,k+1 if necessary: λg,k+1 = min(λg,k+1, 0)

update state u and adjoint ψ at q̂k+1

set qk+1 ← q̂k+1

for j = 0, 1, 2, . . . , Jmax do

if ‖H(qk+1, q0, µk+1)‖ ≤ εH‖H(q̂k+1, q0, µk+1)‖ then break

14 inexactly solve
(
∇qH

)
k+1

∆qk+1 = −Hk+1 for ∆qk+1

qk+1 ← qk+1 + ∆qk+1

update state u and adjoint ψ at qk+1

end

if µk < εµ then return qk

19 inexactly solve
(
∇qH

)
k
q′k = −∇µHk for q′k to required tolerance τ

compute the normalized tangent direction tk using (2.5)

update δk and φk according to (2.8) and (2.9)

compute the step scaling factor: ζk = max
(√

δk/δtarg, φk/φtarg

)
clip if necessary: sk+1 ← max(sk+1, τs) and λk+1 ← min(λk+1, 0)

end
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2.3 Globalization Numerical Experiments

In theory, Newton-based methods can successfully solve the first-order nec-

essary optimality conditions, but cannot guarantee that the solution also satisfies

the second-order sufficient optimality conditions. However, the added homotopy

term in the homotopy map (2.2) functions like a regularization in the optimization

problem, and thus provides the proposed algorithm the capacity to handle a certain

amount of nonconvexity. To investigate this capacity, two numerical examples are

tested: the first one is a 3D sphere constrained problem with a linear objective,

and the second example is an indefinite quadratic problem with bound constraints.

The goal is to check whether the proposed algorithm can avoid converging to local

maximizers and saddle points.

2.3.1 Sphere Problem Description

The first test problem to verify the homotopy-based globalization has a linear

objective and a feasible domain that is the inside of a sphere:

min
x,y,z

x+ y + z

subject to x2 + y2 + z2 ≤ 3.

The solution to this problem is at (−1,−1,−1)T . There is also a local maxi-

mum point at (1, 1, 1)T , where the first-order optimality condition (KKT condition)

is satisfied but not the second-order optimality conditions. The presence of this

local maximizer provides a test for the homotopy-based globalization algorithm.

2.3.2 Sphere Problem Results

To demonstrate that the algorithm can bypass the local maximizer, 100 ran-

dom starting points around the point (1, 1, 1)T where generating by adding Gaussian

perturbations, ∆xi ∼ N (0, 0.12), to each coordinate. Figure 2.3a shows 100 random

initial points as blue circles and the exact solution as a red star. Figure 2.3b shows

the final iterates as blue circles and the exact solution as a red star. As can be seen,

even when the 100 starting points are near the local maximizer, they all converge

to the minimum point.
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(b) 100 converged points, x∗.

Figure 2.3. 100 initial and converged points
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(b) 1000 converged points, x∗.

Figure 2.4. 1000 initial and converged points
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To further test the robustness of the globalization, we seeded the algorithm

with 1000 initial guesses whose x0 were drawn from a standard normal distribution.

Figure 2.4a shows a scatter plot of these 1000 points. All x0 values converge to the

local minimizer, as shown in Figure 2.4b.

2.3.3 Non-convex Problem Description

For our second numerical experiment, we consider the following simple 100-

dimensional non-convex optimization problem:

min
x∈R100

1

2
xTQx

subject to − 1 ≤ xi ≤ 1 ∀i = 1, 2, . . . , 100,

where Q is a diagonal matrix whose entries are −1 or 1 with equal probability, i.e.

according to a Rademacher distribution. As the objective function can be separated

into individual dimensions, it is easy to see that valid minimizers for this problem

have the following dependence on Q:

xi = 0 if Qii = 1,

xi = ±1 if Qii = −1.
(2.13)

We would like to investigate the ability of the algorithm to avoid stationary

points that are not local minimizers, e.g. xi = 0 when Qii = −1 and xi = ±1 when

Qii = 1. Note that when Qii = 1, the upper and lower bound xi = ±1 are individual

maximums where the gradient of the Lagrangian is zero in that dimension.

2.3.4 Non-convex Problem Results

We ran the optimization algorithm on the non-conex problem with 1000 ran-

domly generated Q matrices. For each case, the arrangement of 1 and −1 in Q was

randomly generated as described above. The initial point x0 was also generated

randomly with uniform probability in the domain Ω = {x ∈ R100 | − 2 ≤ xi ≤ 2}.
We call a solution successful if its pattern is exact as given by (2.13). Table 2.1

lists the success rate for different combinations of εkrylov and τ , εH . Note that εkrylov
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is the tolerance of the Krylov solver introduced in Chapter 3.1; τ and εH are the

tolerances for the predictor and the corrector phases as explained in Section 2.2.1.

Table 2.1. Success rate with different parameters

εkrylov

10−1 10−2 10−3 10−4 10−5 10−6

τ and εH
10−1 51% 90.0% 94.2% 94.6% 93.9% 93.8%

10−2 47.2% 93.1% 94.4% 93.9% 94.2% 94.5%

As can be seen from Table 2.1, the robustness of the algorithm for handling

non-convexity is obviously impacted by the tolerances, particularly εkrylov. The

results show that εkrylov has to be below 10−2 for effective non-convexity handling,

while τ and εH plays a smaller role than εkrylov.

Admittedly, this nonconvex test problem is relatively simple, with no addi-

tional complications such as bad-scaling or ill-conditioning. The focus here is solely

to see whether the added regularization from the homotopy term can help Newton’s

method bypass local maximizers and saddle points. The results show that the op-

timization method can start from infeasible points, and can handle nonconvexity

provided the tolerances are sufficiently tight. Further work is needed to automati-

cally detect nonconvex problems and adjust the tolerances as necessary.

We conclude this chapter by presenting typical optimization convergence plots

for this problem; see Figure 2.5. Figure 2.5a shows the absolute optimality, comple-

mentarity and feasibility at each homotopy iteration of different µ. Note that, for

simplicity, only the predictor points are displayed when µ ≥ εµ, while the corrector

points are displayed for µ < εµ. Figure 2.5b shows the convergence criteria with

respect to CPU time. These convergence plots indicate that, at least asymptotically,

superlinear convergence is maintained by the algorithm.
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Figure 2.5. Convergence history from one of the nonconvex cases. This
history is typical of 1000 cases considered



CHAPTER 3

MATRIX-FREE SOLUTION OF THE LINEAR SYSTEMS

During the execution of Algorithm 1, the tangent linear system and Newton update

are solved many times. Therefore, in order for the predictor-corrector algorithm to

be competitive, these systems must be (inexactly) solved with high efficiency. Both

systems, (2.3) and (2.7), take the form

(∇qH)x = b, (3.1)

where b ∈ RN is either F − G, in the case (2.3) for the predictor step or −H
in the case of (2.7) for a corrector step. We inexactly solve these systems using a

preconditioned Krylov-iterative method. The primary challenge with this approach,

as discussed in Chapter 1, is that the preconditioner itself must be matrix free.

To address this requirement, a matrix-free preconditioner has been proposed

as part of this thesis. The bulk of this chapter focuses on describing the matrix-free

preconditioner and exercising it on some numerical experiments. However, we begin

with a brief review of the Krylov iterative solver that needs the preconditioner.

3.1 Krylov Iterative Solver

We use the flexible generalized minimal residual method, FGMRES [62], to

solve (3.1). One advantage of FGMRES, compared to most Krylov-based methods,

is that it permits nonstationary preconditioners that vary from one Krylov iteration

to the next. While we do not take advantage of nonstationary preconditioners in this

work, we have found this flexibility invaluable in the solution of multidisciplinary

optimization problems [46], [63].

To find an approximate solution to (3.1), FGMRES orthonormalizes a sequence

of matrix-vector products using a generalized form of Arnoldi’s method [64]. Starting

with v1 = b/‖b‖, the generalized Arnoldi’s method produces the following relation

30
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at the ith iteration:

(∇qH)Zi = Vi+1H̄i, (3.2)

where Vi+1 ∈ RN×(i+1) has orthogonal columns and H̄i ∈ R(i+1)×i is upper Hessen-

berg. The vectors in Zi ∈ RN×i form the subspace from which the approximate

solution to (3.1) is drawn (see below). These vectors are related to the vectors in

Vi+1 by

zj = Pj(vj), ∀j = 1, 2, . . . , i,

where Pj(·) denotes the preconditioning operation at iteration j.

The FGMRES solution is given by xi = Ziyi, where yi is chosen to minimize

the 2-norm of the residual, ri ≡ b− (∇qH)xi = b− (∇qH)Ziyi. The solution to this

minimization problem is

yi = argmin
y∈Ri

‖b− (∇qH)Ziy‖ = argmin
y∈Ri

‖Vi+1(‖b‖e1 − H̄iy)‖

= argmin
y∈Ri

‖‖b‖e1 − H̄iy‖, (since VT
i+1Vi+1 = I)

where e1 ∈ Ri+1 is the first column of the (i+1)× (i+1) identity. The least-squares

minimization problem on the final line is inexpensive to solve in our applications,

since i is usually less than 100.

Like most Krylov iterative methods, the FGMRES algorithm described above

does not require the Jacobian (∇qH) explicitly. From the user’s perspective, the

algorithm only requires matrix-vector products and preconditioning operations. In

this work, matrix-vector products involving (∇qH) are computed using second-order

adjoints [65], [45]. Briefly, each product with (∇qH) requires the solution of two dis-

cretized linear PDEs: a linear forward problem and a linear adjoint problem. See [66]

for further details regarding second-order adjoints in the context of reduced-space

problems with state constraints. The second required operation, preconditioning, is

described in subsection 3.3.
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3.2 Review on Preconditioners for Optimization

Using Krylov methods to solve the linear systems saves the effort of computing

and storing the constraint Jacobian and Lagrangian Hessian, but the convergence

rate of Krylov solvers depends on the distribution of the system’s eigenvalues. If the

eigenvalues are clustered in a small radius, the convergence rate is generally better,

and poor convergence often arises when the ratio of the largest to the smallest

eigenvalue modulus is large, e.g. 105 to 109.

In the presence of ill-conditioning, a nonsingular matrix can transform the

linear system to a better conditioned one with the same solutions. This nonsingular

matrix is called the preconditioner, and it exists in the form of mathematical op-

erations in matrix-free methods. A preconditioner is an operator that is designed

to cluster a system’s eigenvalues; it usually does this indirectly by approximating

the action of the matrix inverse and should be inexpensive to apply. When the

preconditioner is stationary, it can be represented as a matrix P ∈ RN×N . Thus, in

the present case we would like

Pj(u) ≈ (∇qH)−1u

in some sense where u ∈ RN is arbitrary.

Many general preconditioners have been developed for saddle-point problems

[67], such as incomplete LU factorizations [68], [69], [64], incomplete null-space fac-

torization [70], [71], and approximate Schur complement decompositions [72], [73].

These preconditioners all involve direct operations to the entries of the system ma-

trix, which would be infeasible for matrix-free methods. Furthermore, the diagonal

entries of the system matrix in interior-point type optimizations could approach

zero or infinity for inequality constraints, causing linear algebraic error in direct

factorization methods.

In addition, many specialized preconditioners have been investigated for full-

space PDE-constrained optimization; see, for example, [74]. However, most full-

space PDE-constrained optimization preconditioners also rely on the availability

of a matrix-based preconditioner for the state Jacobian. There is no analogous
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matrix-based preconditioners for the total Jacobian ∇xg in the reduced-space, and,

as explained in Chapter 1, forming ∇xg explicitly is not feasible. In the making

of this thesis, a Uzawa type preconditioner [75] has been investigated but without

success. The preconditioner proposed in this thesis is also based on the approximate

Schur complement decompositions.

3.3 Matrix-free Preconditioner

As µ approaches zero, the system (3.1) becomes an increasingly ill-conditioned

saddle-point problem. Consequently, solving this problem with an iterative Krylov

solver, like FGMRES, requires an effective preconditioner. One of the primary

contributions of this work is a matrix-free3 preconditioner for reduced-space PDE-

constrained optimization with state-based constraints.

To motivate our preconditioner, we begin by examining the exact Jacobian

∇qH in (2.3) and (2.7):

∇qH = (1− µ)∇qF (q) + µ∇qG(q, q0)

= (1− µ)


∇xxL 0 ∇xh

T ∇xg
T

0 −Λg 0 −S

∇xh 0 0 0

∇xg −I 0 0

+ µ


I 0 0 0

0 I 0 0

0 0 −I 0

0 0 0 −I



=


Wµ 0 AT

h,µ AT
g,µ

0 −Λµ 0 −Sµ

Ah,µ 0 −µI 0

Ag,µ −(1− µ)I 0 −µI



(3.3)

where I is the identity matrix, whose size can be inferred from the context; and the

3In this context, matrix-free means that we do not require a matrix whose size is the same size
as ∇xg; however, we do use low-rank matrices.
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sub-Jacobians are defined by

Wµ ≡ (1− µ)
[
∇2
xf + λTh∇2

xh+ λTg∇2
xg
]

+ µI, Ah,µ ≡ (1− µ)∇xh,

Ag,µ ≡ (1− µ)∇xg, Sµ ≡ (1− µ)S, Λµ ≡ (1− µ)Λg − µI.

In the ideal case, a preconditioner application corresponds to solving the linear

system

(∇qH)v = u (3.4)

for v ∈ RN given an arbitrary u ∈ RN , where

u =
[
uTx uTs uTh uTg

]
,

v =
[
vTx vTs vTh vTg

]
,

and ux, vx ∈ Rn, us, vs ∈ Rm, uh, vh ∈ Rl, and ug, vg ∈ Rm. To simplify the

presentation, we will first consider the case when only inequality constraints are

present, in which case the third row and column of (3.4) are removed. Subsequently,

we will reintroduce the equality constraints.

3.3.1 Inequality-only Constrained Problems

When only inequality constraints are present, the linear system (3.4) simplifies

to 
Wµ 0 AT

g,µ

0 −Λµ −Sµ

Ag,µ −(1− µ)I −µI



vx

vs

vg

 =


ux

us

ug

 . (3.5)

If at least one constraint is active, it is easy to show that the lower right 2m× 2m

block in the above matrix will become singular as µ→ 0; however, for the moment,

we consider the case µ > 0 and invert this block to express vs and vg as functions

of vx: vs
vg

 =

C−1
µ 0

0 C−1
µ

 −µI Sµ

(1− µ)I −Λµ

 us

ug − Ag,µvx

 , (3.6)
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where

Cµ ≡ µΛµ − (1− µ)Sµ = µ(1− µ)Λg − µ2I− (1− µ)2S

is a diagonal matrix. Substituting the expression for vg from (3.6) into the first row

of (3.5), we find

[
Wµ + AT

g,µC−1
µ ΛµAg,µ

]
vx = ux − AT

g,µC−1
µ

[
(1− µ)us − Λµug

]
. (3.7)

Remark 5. To derive (3.6), note that the matrices involved in the lower 2m× 2m

block in (3.5) are all diagonal. Consequently, we can apply the formula for the

inverse of a 2× 2 matrix. This yields

 −Λµ −Sµ

−(1− µ)I −µI

−1

=

C−1
µ 0

0 C−1
µ

 −µI Sµ

(1− µ)I −Λµ


where Cµ holds the determinant of each 2× 2 matrix on its diagonal.

Remark 6. Consider the case where all the inequality constraints are active. Sµ =

0 and the matrix in (3.7) becomes the Hessian for an augmented-Lagrangian-like

function with linearized constraints:

lim
µ→0

Wµ + AT
g,µC−1

µ ΛµAg,µ = ∇2
xf + λT∇2

xg + S−1AT
g ΛgAg

= ∇2
xf + λT∇2

xg +
1

τs
AT
g ΛgAg

Notice that the fixed-value fraction-to-the-boundary rule applied to the slack variable

in this thesis would impose the value of τs on all slack variables.

The boundedness of the system (3.7) depends on the behavior of the matrix

Cµ. Assuming strict complementarity, as µ→ 0 we have two situations:

1. If the ith constraint is inactive at the solution, then λg,i = 0 and

limµ→0

[
C−1
µ Λµ

]
ii

= 0. This has the effective of eliminating the corresponding

constraint from the reduced system (3.7).

2. If the ith constraint is active, then si = 0 and limµ→0

[
C−1
µ Λµ

]
ii

=∞.
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The first situation is desirable, since the constraint is inactive and should not in-

fluence the step vx. The second situation is obviously undesirable; however, the

safeguards in place during the predictor-corrector phases bound the slacks away

from zero, so the inverse of Cµ remains well defined in practice. In particular, we

use the fraction-to-the-boundary rule at the end of the predictor step and explicit

clipping at the end of the corrector step to make sure the slack variables remain

larger than τs; see Section 2.2.3 for details.

Having established that (3.7) is well defined for all iterates, we now seek to

approximately invert this system. To this end, we replace Wµ by an approximation

denoted by Bµ:

Wµ ≈ Bµ,

where Bµ is either a scaled identity, Bµ = βI, or an L-BFGS quasi-Newton approxi-

mation [35]. In addition, we use the Lanczos algorithm [76] to construct a low-rank

approximation of AT
g,µC−1

µ ΛµAg,µ for the nonlinear constraints; that is

AT
µC−1

µ ΛµAµ ≈ UΣVT , (3.8)

where Σ = diag(σ1, σ2, . . . , σnΣ
) ∈ RnΣ×nΣ is a diagonal matrix holding estimates for

the nΣ largest singular values, and U ∈ Rm×nΣ and V ∈ Rm×nΣ are the corresponding

approximations to the left and right singular vectors.

Remark 7. The Lanczos algorithm is advantageous in this context, because it only

requires matrix-vector products with AT
g,µC−1

µ ΛµAg,µ. Such products can be evaluated

using second-order adjoints; see [45] or [66] for further details regarding second-

order adjoints. Furthermore, by replacing accurate second-order adjoint PDE solves

with corresponding preconditioner applications, the cost of the Lanczos-based SVD

can be significantly reduced. This idea is explored in the numerical experiments in

Chapter 4.

Based on the above approximations, the (approximate) inverse of the matrix
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in (3.7) can be found using the Sherman-Morrison-Woodbury formula as follows:

[
Wµ + AT

µC−1
µ ΛµAµ

]−1

≈
[

Bµ + UΣVT
]−1

= B−1
µ − B−1

µ U
(

InΣ
+ ΣVTB−1

µ U
)−1

ΣVTB−1
µ , (3.9)

where B−1
µ is either (1/β)I or the L-BFGS approximation. Note that, in the above

expression,
(

InΣ
+ ΣVTB−1

µ U
)

is an nΣ×nΣ matrix. In the proposed preconditioner,

we assume that the number of singular values in the truncated SVD, i.e. nΣ, is

sufficiently small that we can invert this matrix explicitly using an LU factorization.

In summary, to approximately solve (3.7) we evaluate

vx =

[
B−1
µ − B−1

µ U
(

InΣ
+ ΣVTB−1

µ U
)−1

ΣVTB−1
µ

]
{
ux − AT

µC−1
µ

[
(1− µ)us − Λµug

]}
. (3.10)

After obtaining vx, we use it in (3.6) to find vs and vλ;

vs = C−1
µ

[
−µus + Sµ

(
ug − Aµvx

)]
, (3.11)

vλ = C−1
µ

[
(1− µ)us − Λµ

(
uλ − Aµvx

)]
. (3.12)

We conclude this section by summarizing the inequality-only matrix-free pre-

conditioner in Algorithm 2. Note that the approximate SVD can be performed

before each Krylov iterative solve, or it can be performed periodically to reduce

cost, possibly at the risk of descreasing the effectiveness of the preconditioner.

3.3.2 Preconditioner for Problems with both Inequality and Equality

Constraints

When both equality and inequality constraints are present, it is straightfor-

ward to extend the preconditioner to handle the general constrained case, since the

equality-constraint rows in (3.4) do not involve vs or vg. Indeed, in the general case
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Algorithm 2: Matrix-free, approximate SVD preconditioner.

Parameters: values at which to evaluate matrices, x, s, λg, and µ
; nΣ

Input : vectors to precondition, ux, us, uλg
Output : preconditioned vectors, vx, vs, vλg

Build the truncated and approximate SVD (3.8), using preconditioner
applications in place of exact second-order adjoint solves
Solve for vx using (3.10)
Solve for vs using (3.11)
Solve for vλg using (3.12)
return vx, vs, and vλg

the reduced system becomesWµ + AT
g,µC−1

µ ΛµAg,µ AT
h,µ

Ah,µ −µI

vx
vh

 =

ux − AT
g,µC−1

µ

[
(1− µ)us − Λµug

]
uh

 . (3.13)

When both equality and inequality constraints present, we need to solve (3.13)

rather than (3.7). Subsequently, vs and vg can be recovered by (3.6) the same way

as in the inequality-only case. Thus, the problem becomes how to solve (3.13) using

matrix-free methods. Once again we take advantage of the Schur complement.

Recall that, if D and
(
A−BD−1C

)
are invertible, then the solution of the

linear system A B

C D

x
y

 =

a
b

 ,
is given by,x

y

 =

 I 0

−D−1C I

(A−BD−1C
)−1

0

0 D−1

I −BD−1

0 I

a
b

 (3.14)

To use the above factorization in (3.13), we have to consider two situations:

1. When µ is not small, e.g. µ > τµ, then −µI is invertible and we can use (3.14).

2. When µ gets close to zero, e.g. µ < τµ, we enforce the clipping rule µ̄ =

max(µ, τµ) to prevent µ from being too small in the preconditioner. We use
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τµ = 10−4 for all the numerical experiments in this work. With this safeguard,

(3.14) can still be used as a preconditioner.

Remark 8. The choice τµ = 10−4 is made based on numerical experiences. The-

oretically, smaller values such as τµ = 10−6, 10−7, 10−8 will make the precondi-

tioner linear system resemble the original linear system better but also make it

more ill-conditioned as in the original system. In contrast, larger values such as

τµ = 10−1, 10−2 will help with the conditioning of the preconditioner system but will

reduce the effectiveness of the preconditioner. Choosing τµ = 10−4 can balance the

trade-off between the aforementioned scenarios.

To summarize, in the general constrained case, vx and vh can be obtained as

follows: vx
vh

 =

 I 0

1
µ̄

Ah,µ I



(

Wµ + AT
g,µC−1

µ ΛµAg,µ + 1
µ̄

AT
h,µAh,µ

)−1

0

0 − 1
µ̄

I


I 1

µ̄
AT
h,µ

0 I

ûx
uh

 , (3.15)

where ûx denotes the x-component of the right-hand side of (3.13). The most

involved operation in (3.15) is the application of the inverse Schur complelement:

(
Wµ + AT

g,µC−1
µ ΛµAg,µ +

1

µ̄
AT
h,µAh,µ

)−1(
ûx +

1

µ̄
AT
h,µuh

)
. (3.16)

By stacking Ah,µ and Ag,µ together, the Schur complement can be expressed as

Wµ + AT
µΣµAµ = Wµ + AT

g,µC−1
µ ΛµAg,µ +

1

µ̄
AT
h,µAh,µ, (3.17)

where

Aµ =

Ah,µ

Ag,µ

 and Σµ =

 1
µ̄

I 0

0 C−1
µ Λµ

 . (3.18)

Inspecting (3.17), we see that it has the same form as the matrix on the left-hand

side of (3.9). Therefore, as before, we use the Lanczos method to construct an
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approximate singular-value decomposition of AT
µΣµAµ, and replace Wµ with a di-

agonal or quasi-Newton approximation. Subsequently, we can use the Sherman-

Morrison-Woodbury formula to invert the approximation in the same manner as in

the previous section.

3.4 Scalable Quadratic Optimization Problem

3.4.1 Problem Description

We conclude this chapter with a numerical experiment to test the effectiveness

of the approximate SVD preconditioner defined in Algorithm 2. In particular, we are

interested in the performance of the algorithm with the preconditioner as the size of

the problem increases. To this end, we consider the following scalable optimization

problem in which we can independently control the size and conditioning of the

Hessian and constraint Jacobian:

min
x∈Rn

1

2
xTQx+ gTx

subject to Ax ≥ b.

. (3.19)

The vector g ∈ Rn is randomly sampled from a uniform distribution on [0, 1), while

b ∈ Rn is randomly sampled from [0, 0.1).

The Hessian Q is diagonal with entries

Qii =


1
i
, i = 1, 2, ..., κ,

1
κ
, i = κ+ 1, ..., n,

where κ ≤ n. This definition produces a Hessian with a condition number of κ, so

that its condition number can be controlled independently of the problem dimension.

The constraint Jacobian A ∈ Rn×n is constructed as follows. First, a diagonal

matrix D ∈ Rn×n of singular values is defined similar to Q:

Dii =


1
i2
, i = 1, 2, ..., ν,

1
ν2
, i = ν + 1, ..., n,
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where ν ≤ n. Next, matrices AL ∈ Rn×n and AR ∈ Rn×n of random integers from

the discrete uniform distribution on the interval [0,10), are factorized using a QR

decomposition:

AL = QLRL,

AR = QRRR.

Finally, the constraint Jacobian is formed as A = QLDQR. Consequently, based on

this construction, the condition number of A is ν2 and is also controllable indepen-

dent of the problem dimension.

For this study we set κ = ν = 9, which gives condition numbers of cond(Q) =

9, cond(A) = 81. While these are modest, even small condition numbers, we em-

phasize that the conditioning of the KKT matrix ∇qH remains high, between 104

and 109.

Remark 9. Although the matrices for this synthetic problem are available explicitly,

our algorithm does not exploit this and remains matrix-free, i.e. it only uses matrix-

vector products.

3.4.2 Results

We consider two problems sizes, n = 200 and n = 500. Figure 3.1 plots

the absolute optimality, complementarity and feasibility histories versus CPU time.

The predictor-corrector algorithm is applied both with and without the precondi-

tioner. In addition, the plots include the results from SNOPT [20], a well-validated

active-set SQP optimization library. See Section 4.1 for further details about the

convergence criteria and SNOPT.

Without the preconditioner, the predictor-corrector algorithm is not competi-

tive and does not converge within the time shown. This illustrates the need for pre-

conditioning Newton-Krylov optmization algorithms, even for modest sized prob-

lems. The results also indicate that the proposed algorithm is competitive with

SNOPT when n = 200 and the proposed algorithm outperforms SNOPT when

n = 500. In both cases, the feasibility of SNOPT sharply decreases once when the

correct set of active constraints are determined. It is notable that when n = 500,

SNOPT takes significantly longer time than the new algorithm to converge.
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Figure 3.1. Convergence histories for the scalable quadratic problem
with n = 200 and n = 500. The results for the proposed algorithm, with

and without preconditioning, are plotted together with the results from
SNOPT
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Figure 3.2. CPU cost versus number of design variables for the
quadratic optimization problem

To further explore the scalability of the proposed algorithm, we ran 100 random

cases for each fixed sized problem, for n = 100, 200, 300, 400, 500. In each random

sample, the gradient of the objective function g, and the right hand side vector b

in the linear constraint in (3.19) were randomly generated as described earlier. The

diagonal matrices Q and D remain fixed, while AL and AR are randomly generated.

Thus the constraint Jacobian A also varies for each case. The starting point for

each run is also randomly generated. Figure 3.2 shows the two standard deviations

in time while the problem size increases. As can be seen, the new method exhibits

good scalability relative to SNOPT.

We should emphasize that the proposed SVD preconditioner is particularly

effective for this synthetic problem, because it is designed in such a way that the

constraint Jacobian can be approiximated effectively using the Lanzcos-based SVD

approximation. Put another way, the SVD approximation can capture the main

characteristics of the matrix in (3.8). For real-world problems, the distribution

of the singular values of the constraint Jacobian is unknown, and may possess an

unfavorable distribution pattern for the proposed preconditioner to remain effective.



CHAPTER 4

NUMERICAL RESULTS: TESTS AND APPLICATIONS

The goal of this chapter is to verify and apply the matrix-free RSNK optimization

algorithm described in Chapters 2 and 3. We begin by summarizing the software

implementation of the proposed algorithm. We also describe the established algo-

rithm we will compare against. Next, we use the well-established CUTEr test set to

verify the algorithm. We then present the results of applying the algorithm to two

large-scale PDE-constrained optimization problems.

4.1 Software Implementation and Benchmarking

This section begins with an overview of Kona, the software library in which the

algorithms from Chapters 2 and 3 are implemented. This is followed by a descrption

of the convergence criteria used in the matrix-free algorithm. Lastly, we provide a

description of SNOPT, an independent and popular optimization library against

which we will compare Kona.

4.1.1 The Kona Optimization Library

The globalized RSNK method and preconditioners are part of an in-house opti-

mization package, Kona [77]. Kona is a matrix-free, architecture-agnostic optimiza-

tion package designed to solve reduced-space PDE-constrained optimization prob-

lems. Kona implements several optimization algorithms including an unconstrained

reduced-space quasi-Newton method, an unconstrained reduced-space Newton-CG

method, an equality constrained reduced-space Newton-Krylov method based on

FLECS [78], and an equality-constrained composite-step RSNK algorithm. These

high-level optimization algorithms are built from modular components that imple-

ment various optimization subroutines including: iterative matrix-free solvers like

FGMRES, STCG, FLECS for solving linear systems; globalization techniques like

trust-region, backtracking line search, and a line search based on the strong Wolfe

conditions; and merit functions like the augmented Lagrangian and the l2 merit

44
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function. In addition, Kona can evaluate Hessian- and Jacobian-vector products by

solving the approriate adjoint equations.

Architecturally, Kona uses an abstract interface to separate the optimization

algorithms from PDE-solver specific implementations, and this allows the develop-

ment of new optimization algorithms independent of the PDE solver. From a user’s

perspective, one has to write a solver interface to Kona providing the function oper-

ations listed in Table 4.1 of [79]. In particular, this solver interface provides the ob-

jective, constraint, gradient, Jacobian-vector, and vector-Jacobian products. These

products allow Kona to evaluate more complex total sensitivities (e.g. Hessian- and

Jacobian-vector products) that are needed for RSNK algorithms.

4.1.2 Convergence Criterion and Default Parameters

To measure the progress of the optimization iterations, Kona evaluates the

infinity norm of each block row in F (x). Specifically, we will refer to optimality,

complementarity, and feasibility as defined below:

Optimality = max
j
|(∇xL)j|,

Complementarity = max
j
|sjλj|,

Feasibility = max
j
|cj|, where c =

[
h(x)T , (g(x)− s)T

]
.

In the subsequent tests, the convergence plots display the above metrics versus

computational cost. In the past we have reported the relative convergence criteria,

which normalizes the above quantities by their initial values; however, in the tests

below we report the absolute criteria. The relative convergence criteria is not ap-

propriate in the current context, because the initial complementarity products are

zero due to the zero initial multipliers, and the initial feasibility could be zero if

s0 = g(x0) is used for inequality-only constrained problems.

Table A.1 in Appendix shows the complete list of the parameters used in the

test problems, including the default values set in the algorithm and their recom-

mended ranges.
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4.1.3 SNOPT

We will benchmark the performance of Kona against the software library

SNOPT, which is short for Sparse Nonlinear OPTimizer [20]. SNOPT is a gradient-

based sequential quadratic optimization method for solving large-scale nonlinear

problems with thousands of constraints and design variables. It uses an augmented

Lagrangian merit function, and the Hessian of the Lagrangian is approximated using

a limited-memory quasi-Newton method.

SNOPT uses scaled feasibility and optimality criteria to measure the progress

of the optimization iterations. The feasibility criterion measures the maximum non-

linear constraint violation, and is normalized by the norm of the current estimated

solution, denoted x(k) below:

SNOPT feasibility = max
i

ci/‖x(k)‖, where c =
[
h(x)T , (g(x)− s)T

]
.

where x is the current iterative point, and ci is the violation of the ith nonlinear

constraint [80]. SNOPT’s feasibility tolerance, εr, has a default value of 10−6.

The optimality criterion measures the maximum complementarity slackness

for the design variables, and it is calculated using the following formulas:

SNOPT optimality = max
j

Compj/‖π‖

where π = [λTh , λ
T
g ]T is the Lagrangian multiplier vector; Compj measures the com-

plementarity slackness for the jth variable and is defined by:

Compj =

(∇xL)jmin(xj − lj, 1) if (∇xL)j ≥ 0

−(∇xL)jmin(uj − xj, 1) if (∇xL)j < 0

where lj and uj denote the lower and upper bounds on the jth variable.

4.2 CUTEr Test Problems

We have chosen to verify the algorithms presented in Chapters 2 and 3 using

the CUTEr test problem set [81], [82]. This section begins with a brief description
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of the CUTEr test suite, and then it presents the results of applying Kona and

SNOPT to a subset of the CUTEr problems. The CUTEr problem set, its interface,

and its classification methods are discussed in Appendix A.1, A.2 and A.3.

4.2.1 Problem Description

The CUTEr set is a collection of test problems to test new optimization codes

and develop new algorithms. The problem set ranges from small differentiable un-

constrained problems to large-scale dense and sparse problems with both equality

and inequality nonlinear constraints. Some of the test problems exhibit challenges

and numerical difficulties observable in practice, such as bad scaling in the objective

and/or constraint functions, multiple local solutions, non-regular solutions where

the linearly-independent constraint qualification is not satisfied, etc. A number of

optimization packages have interfaced with CUTEr [83], including Ipopt, Knitro,

Minos, and SNOPT, to name a few.

The problems are written in the so-called Standard Input Format (SIF) [84].

A decoder translates the problems written in SIF to a library written in Fortran

77 that provide the tools to access the function values, Jacobians, and, sometimes,

Hessians to the optimization packages.

4.2.2 Results

As the CUTEr test problem set contains a large collection of problems with

assorted features, some of which are inappropriate for the RSNK algorithm, only

a subset of the problems are considered here. The following criteria were used to

remove certain problems from being considered in the tests; see Appendix A.3 for

further details on the classification of the CUTEr problems.

• Objective functions with the following type: U, C, and L

• Constraint functions with the following type: U, X

• Irregular problems

• Problems with no correct solutions provided

Table 4.1 lists the results on the selected subset of the Cuter problems. The

first column, ‘Name’ , lists the name of the problems as found in the ASCII files
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from [85]. The files from [85] also include the problem origin, authors, classifications,

SIF problem cards, and, sometimes, the solutions. The second column ‘n, mCUTEr,

l, m’ are the number of design variables, the number of constraints as described

in Appendix A.1, and the number of equality and inequality constraints as defined

in this thesis. The third column provides the origin of the problem, if available.

The fourth column lists the parameters used in the homotopy RSNK algorithm

that were changed for some of the problems: the initial step size α0, the nominal

distance δtarg and nominal angle φ◦targ as defined in Section 2.2.2, and the rank of the

SVD approximation in Lanczos method used in the preconditioner 3.8. The fifth

column is the optimal value of the objective function found using Kona, while the

sixth column is optimal objective value found using SNOPT. The last column is the

optimized objective function value as provided by Reference [85].

The results in Table 4.1 suggest that the globalized RSNK algorithm and the

preconditioners proposed in this thesis can deliver accurate solutions. They even

succeed in a few cases where SNOPT fails. Despite this success, several points are

worth highlighting:

1. CUTEr is only used as verification here, and it is not intended to demonstrate

the efficiency of the RSNK algorithm. Indeed, the CUTEr test problems are

sufficiently small in size and have explicit Jacobians, so these problems do not

benefit from the matrix-free RSNK algorithm.

2. The parameters α0, δtarg, φ◦targ, nΣ play important roles in the robustness

and efficiency of the new algorithm. In some cases the parameters have to be

changed manually to get convergence. In contrast, the parameters for SNOPT

remained unchanged for all the test problems.

3. The globalized RSNK algorithm is based on the constraint qualification as-

sumption; therefore, it will fail for problems with redundant constraints.

4. If the null space of the inequality constraint Jacobian includes a vector of

ones, the preconditioner will fail. Because Kona starts the Lanczos algorithm

(used to build the preconditioner) with a vector of ones, for problems whose

inequality constraint Jacobian contain certain structures, e.g. [−1,−3, 3, 1] on

each row, the Lanczos method will crash as the matrix vector product is zero.
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4.3 Stress-Constrained Mass Minimization

4.3.1 Problem Description

Our next numerical experiment is a PDE-constrained structural sizing problem

with state-based constraints. The problem was previously considered by the authors

in [77], and the geometry and boundary conditions are illustrated in Figure 4.1.

Informally, the problem consists of minimizing the plate mass with respect to the

thickness distribution, subject to bound constraints and the von Mises stress criteria.

Figure 4.1. Plate thickness design problem

The response of the plate to the applied force is modeled using the equations of

linear elasticity assuming 2D plane stress. The governing equations are discretized

using the finite element method with bilinear elements. A uniform mesh of nx × ny
elements is employed, and the thickness distribution is piecewise constant over each

element. These thickness values are taken to be the design variables, so there are

n = nxny design variables.

The formal optimization statement is

min
x

mass(x)

subject to stressi(x) ≤ σmax, ∀ i = 1, 2, . . . , n,

xl ≤ xi ≤ xu, ∀ i = 1, 2, . . . , n,

where mass(x) is the plate mass, and stressi(x) is the von Mises stress criterion on

the ith element. The thickness of each element is bounded by the lower and upper

values, xl = 0.02 and xu = 0.98.
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The objective function, mass(x), is a sum of all the elements’ mass. Each

element’s mass is obtained by a constant material density times the filtered thickness

of that element. The filtered thickness of each element is a weighted sum of the

design variables of the adjacent elements within a conic filter, with the weights

determined by 1 − r
r0

and normalized so that the sum is 1; the radius of the conic

r0 = 2, and r is the distance of the adjacent element to the central element. In

summary, the mass is a linear function of the design variables and is given by

mass(x) =
n∑
i=1

mi

∑
j

wijxj,

where mi is the mass per unit thickness of the ith element of the structure, and wij

is the weight from the filter.

The von Mises stress criterion on the ith element can be expressed as

stressi(x) = 1− u(x)TBTGBu(x),

where Bu(x) gives the strain as a function of the displacement, u(x), and G is

a positive-definite matrix. The displacement is a function of the design variables

through the discretized governing equation

R(x, u) = K(x)u− b,

where K(x) is the stiffness matrix and b is the force vector.

We consider a set of three mesh sizes by varying nx and ny. Table 4.2 lists

the mesh dimensions and number of design variables for the three cases. We will

informally refer to these three cases as the small, medium, and large cases.

Table 4.2 also lists the number of approximate singular values used in Algo-

rithm 2 to construct the preconditioner. As the number of design variables increases

in this structural optimization problem, the number of singular values in the SVD

approximation has to increase accordingly, at about 1
6

of the number of design vari-

ables.
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Table 4.2. Mesh dimensions (nx and ny), number of design variables
(n = nxny), and size of the approximate SVD preconditioner (nΣ) for the

plate-thickness optimization problem

Case nx ny n nΣ

Small 16 8 128 20
Medium 32 16 512 80
Large 64 32 2048 320
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la
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PC SVD rank 10
PC SVD rank 20
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Figure 4.2. Impact of nΣ, the rank of the approximate SVD in
Algorithm 2, on the Krylov iterative method

4.3.2 Effectiveness of Preconditioner

To show the effectiveness of the proposed preconditioner, Figure 4.2 plots the

convergence history of the Krylov method when the Lanczos-based preconditioner

uses an increasing number of SVD ranks. The KKT system is extracted from the

first Newton step of the final corrector phase at µ < εµ (i.e. the last homotopy

iteration) for the small case. The KKT system is most ill-conditioned at the final

corrector step, so this particular system provides the most stringent test for the

preconditioner.



56

4.3.3 Optimal Thickness and Comparison with SNOPT

The structural optimization problem was solved using the proposed algorithm,

with and without the preconditioner. Convergence histories are compared with those

of SNOPT in Figures 4.5a, 4.5b, and 4.5c for the small, medium, and larges cases,

respectively. The cost on the horiztonal axis measures the equivalent number of

PDE solves, i.e., the total CPU time divided by the time needed for one forward

solution. The vertical axis measures the change in absolute optimality, absolute

feasiblity, and absolute complementarity.

The final optimal thickness distribution on the large mesh obtained using

the homotopy-globalized RSNK method with SVD preconditioner is plotted in Fig-

ure 4.3a; the distribution obtained without the preconditioner is shown in Fig-

ure 4.3b; finally, the thickness distribution obtained using SNOPT is shown in Fig-

ure 4.3c. The thickness distribution pattern in all three plots is qualitatively similar

and in agreement with physical intuition for this problem.

However, the solution using the globalized RSNK method with the precondi-

tioner has a sharper resolution than that without the preconditioner. In addition,

The thickness distribution using SNOPT is ruffled along the trapezoid edges; this

is consistent with the convergence plots of SNOPT in 4.5c below, which shows that

SNOPT is having difficulty converging the large problem.

To quantitatively measure the differences in the thickness distributions of the

three methods, Figure 4.4 selectively show the thickness distributions along hori-

zontal slices at different vertical locations where SNOPT oscillates the most. The y

direction goes up, so the lower values of y are in the bottom. Figure 4.4 also show

that the thickness is constant over elements.

The convergence histories in Figure 4.5 highlight the need for precondition-

ing on this particular problem: without the approximate-SVD preconditioner, the

optimality, complementarity and feasibility cannot be sufficiently reduced, despite

the fact that the thickness distribution still looks reasonable. In contrast, when the

approximate-SVD preconditioner is used the proposed algorithm can successfully

reduce the optimality and feasibility to the desired tolerance.

Figures 4.5a–4.5c also show that the performance of SNOPT degrades as the
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Figure 4.3. Optimal thickness distribution using Algorithm 1 with
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Figure 4.4. Comparison of thickness distribution along horizontal slices
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problem size increases; on the small problem, optimality is reduced by only three

orders of magnitude, while on the large problem the optimality fluctuates and strug-

gles to decrease significantly. The feasibility achieved by SNOPT is somewhat better

than its optimality, but it also degrades with problem size. The proposed predictor-

corrector algorithm is able to converge the optimality and feasiblity five orders of

magnitude on all three problems. We see that the optimization cost increases ap-

proximately linearly with n on this problem, and the cost is driven primarily by the

increasing number of singular values used in the preconditioner.

Last but not least, it is worth noting that, the small amount of regularization

εµ = 10−6 at the final corrector phase of the RSNK method should have helped with

its convergence. In contrast, SNOPT has no regularization. It is thus estimated

that linearly dependent constraint Jacobian might exist and regularization can help

improve the performance of optimization algorithms. However, the interface of

SNOPT makes it not easy to add external regularizations, and attempts have been

made but without success.

4.4 Aerodynamic Shape Optimization

The last application is an Euler-based aerodynamic shape optimization prob-

lem starting from the NASA Common Research Model (CRM) wing [86]. This prob-

lem is an invisicid version of a problem defined by the AIAA Aerodynamic Design

Optimization Discussion Group (ADODG) [87], and involves drag minimization

subject to lift, pitching moment, and geometric constraints.

4.4.1 Problem Description

The baseline wing-only geometry is extracted from the CRM wing-body con-

figuration with a blunt trailing edge. An IGES file is provided to the public as

shown in Figure 4.6. The CRM is modeled after a contemporary transonic com-

mercial airliner, with a size similar to that of Boeing 777. It has been designed

with good aerodynamic performance, but with an aggressive pressure recovery on

the outboard wing, which provides room for performance improvements.

For completeness and repeatability, we provide the following geometric infor-
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Figure 4.5. Convergence histories for the three sizes of the structural
optimization problem
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Figure 4.6. CRM wing [21]

mation. The origin of the coordinate system is at the leading edge of the wing

root, and all coordinates are scaled by the mean aerodynamic chord of 275.8 inches.

Pitching moments are measured about the point (1.2077, 0, 0.007669) using the ref-

erence length. All aerodynamic coefficients are computed based on the projected

area Sref = 3.407014 squared reference units.

4.4.2 Mesh Generation, Parameterization and Flow Solver

The mesh CGNS file is generated by the University of Michigan’s MDOLab’s

in-house hyperbolic mesh generator, and uses an O-grid topology method from the

wing surface to a farfield a distance 25 times the wing span away from the origin.

Three levels of mesh are available for Euler cases as shown in Table 4.3. The results

in the table show that the drag coefficient appears to be grid converged on the L1
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Figure 4.7. CRM FFD [21]

grid. Therefore, only the L1 grid is used in this study.

Table 4.3. Three grid levels and baseline aerodynamic coefficients

Mesh level Mesh size CD CL CM α

L0 840,192 0.00995 0.49879 -0.20182 2.5◦

L1 105,024 0.01085 0.48925 -0.19502 2.5◦

L2 13,000 0.01417 0.46638 -0.18142 2.5◦

The wing geometry is parameterized using a free-form deformation (FFD)

volume method [88]. In FFD, the wing geometry is embedded inside a B-spline

volume, and the geometric changes of the wing surface are performed by changing

the B-spline control points. Figure 4.7 shows the FFD volume and the control

points. For the following study, the displacement of the control points in the vertical

z direction are used as the design variables.

The flow solver used in this study is SUmb [89], a finite-volume, cell-centered

multi-block structured flow solver that can model a variety of problems, including the

compressible Euler, laminar Navier-Stokes and Reynolds-Averaged Navier-Stokes

(RANS) equations. In this study, the flow was modeled with the compressible Euler

equations. The DRP cluster on Rensselaer Polytechnic Institute’s CCI was used,

consisting of 64 nodes; each node has 128GB of system memory and two eight-core

2.6 GHz Intel Xeon E5-2650 processors.
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4.4.3 Optimization Problem Statement

During the optimization, the wing’s sectional shape and twist are altered by

changing the vertical z coordinates of the FFD control points. The control points are

distributed in nx chord wise locations and across ny spanwise sections; see Figure 4.7.

The leading and trailing edges of the root section are fixed. For the other sections,

the trailing edge is fixed while the leading edge is free. This permits arbitrary wing

twists to be implicitly represented by the remaining degrees of freedom. The wing

planform is fixed because the x and y coordinates of the FFD control points are

fixed. The angle of attack is one of the design variables and is permitted to change.

The optimization problem can be stated formally as

min
x

CD Drag coefficient objective

subject to CL ≥ 0.5 Lift coefficient constraint

CMy ≥ −0.17 Pitching moment constraint

t ≥ 0.25tbase Minimum thickness constraints

V ≥ Vbase Minimum volume constraint

∆zTE,upper = −∆zTE,lower Fixed trailing edge constraints

∆zLE,upper, root = −∆zLE,lower, rootFixed leading edge of the wing root

The thicknesss constraints are imposed at 25 chordwise locations from 1% to 99%

along the chord and 30 spanwise locations covering the full span. The design vari-

ables include the angle of attack plus the FFD shape design variables. The distri-

butions of the FFD control points considered in this work are listed in Table 4.4.

Each spanwise station can control a distinct airfoil shape, and the chordwise points

control the shape of each airfoil, with half on the top and half on the bottom.

The lift coefficient, CL, drag coefficient, CD, and pitching moment coefficient,

CMy , are aerodynamic coefficients calculated from the state variables. The state

variables are implicit functions of the angle of attack and the wing surface shape

through the compressible Euler equations. The flight condition considered is at

Mach number 0.65.
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Table 4.4. Number of geometric design variables from three different
sizes of FFD boxes

192 480 768
Chordwise 12 20 24
Spanwise 8 12 16
Vertical 2 2 2

4.4.4 Results

This section presents the convergence results for both Kona and SNOPT. For

Kona, the convergence plots contain the iteration history of the infinity norm of

the complementarity products, the feasibility, and the optimality. For SNOPT, the

history of the merit function, the feasibility and optimality are plotted.

4.4.4.1 Kona Results

Figures 4.9, 4.10, and 4.11 show the convergence histories for the L1 grid, with

the number of design variables equal to 192, 480, and 768, respectively. Subplot (a)

in these figures show the complementarity, feasibility and optimality histories, while

subplot (b) shows the histories of CD, CL, and CMy. Note that the optimality and

feasibility are only reduced by approximately 10−2, which is similiar to the tolerance

achieved by SNOPT as shown in the next subsection. In addition, Figure 7 in [21]

also exhibits a similar amount of reduction in feasibility and optimality, albeit for

the RANS equations.

Note that in Kona, the CL, and CMy inequality constraints do not become

feasible very quickly, and they remain infeasible for the first half of the iteration.

That could be explained by the stronger influence of the homotopy term on the

optimization steps. Toward the start of the second half of the convergence history,

the inequality constraints are satisfied.

Table 4.5 lists the initial and optimal aerodynamic coefficients using Kona

method.
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Table 4.5. The initial and optimal aerodynamic coefficients using Kona

Size CD × 104 CL CMy

Initial 108.5017 0.489247 -0.195020

Optimal
192 96.1716 0.499805 -0.170138
480 97.7451 0.499907 -0.170002
768 99.0509 0.499902 -0.169954

Table 4.6. The initial and optimal aerodynamic coefficients using
SNOPT

Size CD × 104 CL CMy

Initial 108.5025 0.489247 -0.195021

Optimal
192 97.9155 0.499997 -0.169998
480 98.0529 0.499999 -0.169999
768 99.0552 0.499999 -0.170000

4.4.4.2 SNOPT Results

For comparison, Figures 4.12, 4.13, and 4.14 show the SNOPT convergence

histories for the L1 grid with the number of design variables equal to 192, 480 to

768, respectively.

Table 4.6 lists the initial and optimal aerodynamic coefficients using SNOPT

method.

To intuitively see the change of the design variables during the optimization

process, Figure 4.8 shows the initial, Kona optimized, and SNOPT optimized wing

airfoil profiles at six different span-wise locations,

4.4.4.3 Discussion

The results above demonstrate that the homotopy RSNK method can solve a

difficult, large-scale aerodynamic shape optimization problem. However, its compu-

tational performance is disappointing on this problem relative to SNOPT. Kona’s

poor performance is largely due to the computational expense of forming the SVD-

based preconditioner. This can be explained by the fact that one Lanczos iteration

in the preconditioner involves one Jacobian vector product and one vector Jacobian

product for both the equality and inequality constraints. This makes the SVD ap-
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Figure 4.8. Initial, SNOPT optimized, and SNOPT optimized airfoil
profiles at different span-wise locations

proximation expensive, because it uses 20 Lanczos iterations at each optimization

iteration point. In addition, the inequality constraints consist of 750 thickness con-

straints, 1 volume constraint, and 2 nonlinear aerodynamic constraints. Thus, the

preconditioner is lumping the nonlinear and linear inequality constraints together

when computing the Jacobian-vector and vector-Jacobian products, which makes

the SVD approximation less effective at approximating the nonlinear part. Rather

than using the SVD to approximate the linear constraints, it would be advantageous

to use the explicit linear Jacobians.
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Figure 4.9. Convergence histories for L1 grid, no. of design 192
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Figure 4.10. Convergence histories for L1 grid, no. of design 480
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Figure 4.11. Convergence histories for L1 grid, no. of design 768



70

96
100
104
108
112

M
er
it
 ×
 1
04

10−8
10−6
10−4
10−2

Fe
as
ib
ili
ty

0 100 200 300 400 500
CPU time(s)

10−5
10−4
10−3
10−2

O
pt
im

al
it
y

(a)

80
87
94
101
108
115

CD
 ×
 1
04

0.42
0.44
0.46
0.48
0.50
0.52

CL

0 100 200 300 400 500
CPU time(s)

−0.20
−0.19
−0.18
−0.17
−0.16
−0.15

CM
y

(b)

Figure 4.12. Convergence histories for L1 grid, no. of design 192
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Figure 4.13. Convergence histories for L1 grid, no. of design 480
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

When solving PDE-constrained design optimization problems, many practi-

tioners favor a reduced-space formulation in which the state variables are implicit

functions of the design variables. However, conventional optimization algorithms are

not well suited to problems with many state-based constraints, such as structural

stress constraints, because these algorithms require the contraint Jacobian expli-

cilty; computing the Jacobian of state-based constraints requires solving an adjoint

for each row.

In this work we have developed a matrix-free algorithm to handle reduced-

space PDE-constrained optimization with state-based constraints. To cope with

possibly indefinite or negative-definite Hessians, we follow the zero curve of a homo-

topy map using a predictor-corrector algorithm. The tangent predictor and Newton

corrector linear systems are solved using a Krylov iterative method. To precondition

the Krylov solver, we proposed a low-rank, approximate singular-value decomposi-

tion of the Schur complement of the KKT matrix with respect to the slacks and in-

equality multipliers. All the components of the algorithm — the predictor-corrector

scheme, the Krylov method, and the preconditioner — require only matrix-vector

products and, thus, avoid the need to compute the constraint Jacobian or Lagrangian

Hessian explicitly.

The numerical experiments suggest that the matrix-free algorithm is effective.

In particular, the results indicate that the algorithm can avoid stationary points that

are not minimizers and that it scales well with the number of design variables. On a

synthetic quadratic optimization problem the proposed algorithm was shown to be

competitive with a state-of-the-art (matrix-explicit) active-set SQP algorithm. Fur-

thermore, when applied to a difficult structural optimization problem the algorithm

was able to satisfy the optimality and feasibility criteria whereas the matrix-explicit

SQP algorithm failed to converge.

73
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5.2 Recommendations

1. The numerical experiments suggest that, like PDEs, there are no precondition-

ers that work universally well for all optimization problems. This is especially

true for “matrix-free” preconditioners. Therefore, it is recommended that

specialized preconditioners be investigated for different types of reduced-space

PDE-constrained optimization problems; for example, unique precondition-

ers for structural-stress constraints that scale with the problem size and for

aerodynamic state-based constraints that are of fixed number.

2. During the course of this research, it was found that distinguishing between

nonlinear and linear constraints is important for the construction of the matrix-

free preconditioner. Unfortunately, given the current API in Kona, the current

implementation of the preconditioner must apply the Lanczos SVD method

to approximate the whole inequality block in (3.8), After separating the lin-

ear constraints from the nonlinear constraints, the SVD approximation will

be only applied to the nonlinear part; the explicit linear Jacobians could be

stored and used in the same way as conventional optimization methods. The

explicit storage of the linear constraint Jacobian would mean that the algo-

rithm is only “matrix-free” with respect to the nonlinear constraints, but the

additional storage cost may be outweighed by the reduced computational cost.

3. While the homotopy-based globalization is effective, it often requires very

small predictor steps and tight corrector tolerances to avoid local maximiz-

ers and saddle points. Unfortunately, following the zero curve this closely

is computationally costly. It is recommended that other globalization meth-

ods be considered, including, perhaps, using no globalization but adding an a

posteriori check on the curvature of the Hessian.

4. Once the algorithmic recommendations have been implemented, the aerody-

namic shape optimization problem should be revisited using the RANS equa-

tions and a transonic flow. This will provide a more challenging and realistic

test for the optimization algorithm.
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5. In addition to comparisons with SNOPT, the proposed algorithms should be

benchmarked against different types of optimization algorithms. In particular,

Kona could be compared to the interior-point algorithm implemented in the

IPOPT package.

6. The proposed homotopy RSNK algorithm has many parameters. While per-

formance is insensitive to many of these parameters, there are some parame-

ters that must be chosen carefully. To help the user, robust and automated

procedures should be developed in order to set these parameters.
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APPENDIX A

SUPPLEMENTS ON THE CUTER PROBLEMS AND

PARAMETERS TABLE

A.1 Brief Overview of the CUTEr Test Problems

For each test problem, CUTEr provides access to the objective function and

the constraint functions, as well as their derivatives.

The constraints include bound constraints on the variable and other types of

constraints. The variable x are subject to simple bounds:

bli ≤ xi ≤ bui

where bli and bui are the lower and upper bound on xi. When there is no lower or

upper bound on xi, then bli = −1020 or bui = 1020.

With the exception of the bound constraints, all remaining constraints are

gathered in a single vector-valued function c(x) ∈ Rm, which is then bounded as

follows:

cli ≤ ci(x) ≤ cui

where one of cli or cui is always around 1020. This means that the inequality

constraint must take just one of the following two forms on a given problem:

ci(x) ≥ 0 or ci(x) ≤ 0.

For equality constraints cli and cui are both equal to 0. There is also a bool vector,

Equatn ∈ Rm, indicating whether a constraint is an equality constraint or not.

It is possible to instruct CUTEr to order equality constraints before inequality

constraints, or linear constraints before nonlinear constraints, by reordering the

components of c(x). Likewise, components of x can be reordered such that nonlinear

variables appear before linear ones.

In addition, CUTEr can also output the Lagrangian function value, the gra-
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dient of the objective function and the Lagrangian, the Jacobian matrix and the

Hessian matrix of the constraints.

A.2 Kona-CUTEr Interface

By using a Python interface to CUTEr [90], one can access the test problems

in Python environment and build the Kona-CUTEr interface. As described in [77],

a Kona solver interface essentially asks for matrix-vector products with the PDE-

Jacobian (if any), and matrix-vector and vector-matrix products with the Jacobians

of the equality and inequality constraints. The explicit Jacobian matrices from

CUTEr can be readily used to calculate their product with an arbitrary incoming

vector for Kona. CUTEr problems are still valuable to verify Kona’s accuracy, as

well as its capability to overcome other numerical difficulties, including non-convex

problems.

A.3 Problem Classification

Each problem in CUTEr is classified following the Hock and Schittkowski

scheme [91] by the string:

X X X r − X X − n − m

The first character defines the problem objective function type, with the fol-

lowing options:

• U: undefined,

• C: constant,

• L: linear,

• Q: quadratic,

• S: sum of squares,

• O: none of the above.

The second character defines the constraint function type, with the options:

• U: unconstrained,

• X: fixed variables,
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• B: bounds on the variables,

• N: adjacency matrix of a linear network,

• L: linear,

• Q: quadratic,

• O: more general constraints.

The third character shows the smoothness of the problem, with the option of:

• R: the problem is regular, and its first and second derivatives exist and con-

tinuous everywhere,

• I: the problem is irregular.

The third character r holds an integer among 0, 1 and 2, indicating the highest

derivatives provided analytically.

The first character after the hyphen indicates the origin of the problem, with

the option of:

• A: the problem is academic, mainly used by researchers to test algorithms;

• M: the problem is a modeling exercise, with the solution not used in practical

application;

• R: the solution of the problem has been used in a real application.

The next character has an option of:

• Y: the problem contains internal variables,

• N: the problem does not contain internal variables.

The last two characters have the following options:

• n - m: the number of variables and constraints (fixed variables and bound

constraints excluded),

• V - V: an integer chosen by the user among the given list of fixed numbers.

A.4 Parameter Table
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