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a b s t r a c t 
Transformation toughening has been used in commercial products for several decades in order to in- 
crease the toughness of brittle materials. Composites made from an elastic matrix and elastic-plastic in- 
clusions similarly exhibit increased toughness and R-curve behavior due to the residual stress induced in 
the wake of the crack tip by the unloaded, plastically deforming fillers. These two mechanisms, in which 
the eigenstrains in the wake of a major crack lead to toughening, belong to the same class. In this study, 
we investigate the effect of the elastic heterogeneity of the matrix on such toughening mechanisms and 
observe that increasing the elastic heterogeneity amplifies the effect. The analysis is relevant for bone, 
which is a highly heterogeneous hierarchical material, in which localized plastic deformation has been 
recently shown to occur at dilatational bands. Understanding toughening in bone is a subject of current 
interest in the context of age-related fragility. The heterogeneity-enhanced eigenstrain toughening effect 
is of interest for a broad range of engineering applications. 

© 2018 Elsevier Ltd. All rights reserved. 
1. Introduction 

Toughening of brittle materials has been studied for almost half 
a century and a number of engineering solutions have been de- 
veloped and adopted industrially ( Pearson et al., 20 0 0; Qin and 
Ye, 2015 ). Brittle materials fail in tension by the propagation of a 
major, critical crack. Failure occurs in compression either through 
wedging followed by sample splitting produced by a major crack 
that grows in the direction of the principal compressive load (the 
wing crack mechanism) ( Cannon et al., 1990 ) or, in presence of 
confinement, through the formation of a shear band which links 
through a large number of microcracks produced during prelimi- 
nary loading ( Jaeger et al., 2007 ). 

Toughening mechanisms are sought to enhance the material 
toughness measured in tension, which is typically much lower than 
that in compression. The main toughening mechanisms are crack 
bridging, crack deflection, crack pinning and transformation tough- 
ening. Crack bridging refers to the formation of ligaments behind 
the crack tip which restrict the crack opening displacement and 
hence lead to a reduction of the effective crack tip stress intensity 
factor ( Swanson et al., 1987; Erdogan and Joseph, 1989; Evans and 
Hutchinson, 1989 ). Crack deflection is related to the presence of 

∗ Corresponding author. 
E-mail address: picuc@rpi.edu (R.C. Picu). 

material heterogeneity. Strong obstacles to crack propagation lead 
to crack deflection, which increases the tortuosity of the crack path 
and the roughness of crack surfaces ( Faber and Evans, 1983; Ahn 
et al., 1998 ). Crack pinning is similarly caused by material het- 
erogeneity. Considering the crack to be planar and the material 
toughness to be spatially non-uniform, crack growth is slower in 
regions of higher resistance and the crack front becomes rough 
( Spanoudakis and Young, 1984 ). Transformation toughening is a 
more complex mechanism associated with the presence of material 
sub-domains that undergo a phase transformation under the ac- 
tion of the stress field in the region of the crack tip. This transfor- 
mation produces eigenstrains in the surrounding elastic and non- 
transforming matrix, which, in turn, act on the crack, reducing 
the effective stress intensity factor. While the transformation oc- 
curs mainly in front of the crack, the toughening effect is due to 
the eigenstrains of the transformed sub-domains located in the 
wake of the tip. Hence, an R-curve effect is observed, the effec- 
tive toughness increasing as the crack grows. The toughness even- 
tually reaches a plateau once the wake is fully formed ( Sakai et al., 
1988 ). The transformation toughening mechanism has been used 
to toughen ceramics by the incorporation of yttria-stabilized zir- 
conia particles in the respective material ( Garvie et al., 1975; Bu- 
diansky et al., 1983; Ortiz, 1987 ). These particles are metastable 
and undergo a phase transformation when loaded by the large 
stress field in the vicinity of a crack tip. The eigenstrain produced 
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during this transformation leads to the toughening effect described 
above. 

In composites with elastic matrix and elastic-plastic inclusions, 
localized plastic deformation in fillers is expected in the vicinity of 
the crack tip. This energy dissipation leads to an increase of the 
critical energy release rate. As the crack advances, the inclusions 
that deform plastically in the process zone of the crack move in 
the wake of the tip and are unloaded. Since the surrounding ma- 
trix is elastic, these inclusions are forced to return to a strain state 
close to the initial undeformed configuration and consequently, an 
eigenstress is produced in the matrix. This mechanism is quali- 
tatively similar to that of transformation toughening or process 
zone toughening and has similar effects on the crack. The com- 
mon ground of the two mechanisms is that toughening is associ- 
ated with the occurrence of eigenstrains which act on the crack. 
Here we demonstrate the impact of such mechanisms on fracture 
toughness and further analyze the effect of rendering the matrix 
elastically heterogeneous. A finite element (FEM) model is devel- 
oped aimed to isolate the contribution of eigenstrain toughening 
from the other toughening mechanisms expected in heterogeneous 
materials, specifically, crack deflection and crack pinning. We also 
inquire whether rendering the matrix material heterogeneous may 
enhance the effectiveness of the eigenstrain toughening mecha- 
nisms. 

This investigation is motivated in part by the need to under- 
stand toughness of bone. Many of the toughening mechanisms 
mentioned above have been discussed in relation to bone tough- 
ness ( Vashishth et al., 1997; Nalla et al., 20 03, 20 04; Tang and 
Vashishth, 2007; Koester et al., 2008; Launey et al., 2010 ). Crack 
deflection has been observed on the microscale, especially for 
cracks transverse to osteons. Crack deflection leads to rough crack 
surfaces, interlocking of these asperities and enhanced resistance 
to crack growth in both mode I and mode II ( Koester et al., 
2008 ). Recent studies ( Pro et al., 2015; Abid et al., 2018 ) on 
stochastic microstructures of bio-composite show that crack de- 
flection toughening depends on the statistical variability of the 
microstructure. Specifically, in the case of nacre, the toughness 
decreases as the microstructural variability increases. Nucleation 
of microcracks in front of a major crack tip followed by coales- 
cence with the main crack was also documented ( Vashishth et al., 
1997; Tang and Vashishth, 2007 ). Uncracked ligaments and col- 
lagen fibrils bridging have been observed on micrometer to sub- 
micrometer length scales ( Nalla et al., 2003, 2004; Koester et al., 
2008 ). Poundarik et al. (2015) demonstrated that microcracking 
controls and interacts with other toughening mechanisms in bone. 
However, eigenstrain toughening has not been considered so far as 
a potential toughening mechanism in bone. 

Recently, the occurrence of submicron diffuse damage re- 
gions was reported in fatigued cortical bone samples ( Diab and 
Vashishth 2005; Diab et al., 2006; Vashishth, 2007 ). Sub-domains 
in which inelastic deformation takes place are known as dilata- 
tional bands ( Poundarik et al., 2012; Seref-Ferlengez and Basta- 
Pljakic, 2014 ). The specific mechanical behavior of bone within 
a dilatational band is largely unknown. However, due to co- 
localization with non-collagenous protein (NCPs) complexes (i.e. 
osteocalcin, osteonectin and osteopontin), it has been suggested 
that the dilatational bands formation is a result of protein complex 
denaturation ( Poundarik et al., 2012 ). Also, nanoindentation exper- 
iments performed in such regions indicate an effective modulus 
13% lower than that of the surrounding material ( Poundarik et al., 
2012 ). This level of reduction is probably an underestimate of the 
actual modulus reduction since probing was performed in dilata- 
tional bands embedded in undamaged bone and the effect of this 
confinement on the measured effective stiffness was not evaluated. 

The physical picture proposed here is that the dilatational 
bands occurring in the vicinity of a major crack tip behave simi- 

Fig. 1. Schematic representation of the compact tension specimen used in this 
study. B denotes the region where elastic-plastic/transformation sub-domains 
and/or matrix elastic heterogeneity are defined. The reunion of the transformation 
sub-domains in region B (red dots) is denoted by ℑ . A crack of initial length a 0 is 
introduced along segment OA (O is at the origin of the coordinate system) and a co- 
hesive zone is defined along plane y = 0 in front of the crack. The circular domain 
surrounding region B (shown in blue) is used for the calculation of the J integral. 
δ is the displacement boundary condition applied at the top and bottom bound- 
aries. Heterogeneity is limited to region B. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
lar to elastic-plastic particles embedded in an elastic matrix of a 
composite. Before the dilatational bands form, the material is lin- 
ear elastic. Subsequently, the material becomes plastic in the di- 
latational band sub-domains. Upon unloading, these sub-domains 
produce eigenstress, which in turn act on the crack leading to a re- 
duction of the effective stress intensity factor and hence to tough- 
ening. This process takes place only upon unloading and hence 
is effective in the region behind the crack tip. In the following 
sections, we evaluate the magnitude of the toughening effect for 
several volume fractions of dilatational bands. Further, we investi- 
gate the effect of the elastic heterogeneity in regions of the model 
surrounding the dilatational bands (matrix elastic heterogeneity) 
on the toughening mechanism proposed. This investigation is mo- 
tivated by the observation that bone is indeed a heterogeneous 
material ( Nicolella et al., 2005; Tai et al., 2007; Thurner, 2009 ). 
The coefficient of variation of bone elastic moduli within a given 
sample and in absence of dilation bands is reported by Tai et al. 
( Tai et al., 2007 ) to be approximately 0.4, while a broader range, 
from 0.2 to 0.5, was inferred by Thurner (2009) for human corti- 
cal bone, based on literature data. This concept is also relevant for 
toughening of engineering brittle materials, case in which it is of 
interest to inquire whether material stochasticity may enhance the 
effect of the eigenstrain toughening mechanisms. 
2. Model description 

A schematic of the compact tension specimen used in this 
study is shown in Fig. 1. The model has dimensions L in the di- 
rections parallel and perpendicular to the crack. The initial crack 
length is a 0 = L/6 and the crack growth is restricted to the y = 0 
plane containing the initial crack. Restricting the crack to be pla- 
nar helps separate the effect eigenstrain toughening from that of 
other toughening mechanisms caused by heterogeneity. To enforce 
this restriction, cohesive elements are used along this plane, as in- 
dicated in Fig. 1. This set-up ensures that the crack remains pla- 
nar and hence the crack deflection mechanism plays no role in the 
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Table 1 
Parameters of the model. 

Parameters Value 
Specimen dimension, L 180 µm 
Initial crack length, a 0 30 µm 
Width of region B, b 120 µm 
Width of region B, h 60 µm 
Fraction of inclusions, ϕt 5%–20% 

Fig. 2. Traction-separation function of the cohesive zone. The area under the curve 
represents the fracture energy G 0 c and δc is the opening displacement when the 
cohesive layer is subjected to the maximum stress T max . 
analysis. A region B of dimensions b × h is defined in the range x / L 
∈ (0, 2/3) and y/ L ∈ ( − 1/6, 1/6), where elastic-plastic inclusions 
are defined. These inclusions are non-overlapping, of identical size 
(diameter 0.0022 L ) and are randomly distributed in region B. The 
area fraction of inclusions is ϕt ≪ 1 and their reunion is denoted 
by ℑ . 

Region B − J contains a homogeneous or a heterogeneous lin- 
ear elastic material, in separate simulations. The structure in both 
ℑ and B − J is symmetric with respect to the y = 0 plane. This 
includes the distribution of inclusions and, in cases for which 
the matrix is considered heterogeneous, the spatial distribution of 
elastic constants. This assumption imposes no limitations on the 
studied phenomena and ensures that the crack tip is loaded in 
mode I at all times. Loading the crack in mixed mode would intro- 
duce a driving force for crack growth in the out of plane direction. 
The circular domain outside B contains a linear elastic homoge- 
neous material in all cases. This domain is used to compute the 
energy release rate based on the J integral ( Rice, 1968 ). The pa- 
rameters of the model arelisted in Table 1 . 

The cohesive zone along plane y = 0, defining the crack growth 
direction, has parameters G 0 c and the maximum stress T max (as 
shown in Fig. 2 ), and acts in the opening mode. G 0 c represents 
the critical energy release rate (which is equal to the value of J 
computed from the far field at crack propagation) when the ma- 
terial is homogeneous and no toughening mechanisms are active. 
Since the crack is restricted to grow along plane y = 0 and G 0 c 
is constant along this plane, we ensure that the heterogeneity in 
B does not lead to crack pinning, as needed in order to sepa- 
rate the effects of multiple mechanisms. Models of this type have 
been used previously in the literature. Tvergaard and Hutchin- 
son (1992) study the interplay between cohesive zone parameters 
and the elastic-plastic deformation of the body on the effective 
toughness. Deshpande et al. (2002) used a similar model when 
studying the effect of plasticity represented by discrete dislocation 
dynamics on toughness. 

The material behavior in B − J and outside B is linear elastic 
and isotropic with Young’s modulus E 0 and Poisson ratio ν0 . The 
material behavior of inclusions, region ℑ , is bilinear elastic-plastic 

Fig. 3. Schematic showing the loading scheme applied. The applied displacement 
is increased rapidly during t up , up to a value δlow which is close, but smaller than 
the critical displacement producing crack growth, δhigh . The displacement is further 
increased at a smaller rate during t ramp , up to δhigh . The model is unloaded once the 
crack advances and consequently the crack stops. The cycle is repeated in order to 
probe the toughness at multiple sites along the crack path. 
with the same Young’s modulus and Poisson ratio. The plastic be- 
havior is described by the standard J 2 plasticity with yield stress 
in uniaxial tension σ y and strain hardening defined by the tan- 
gent modulus E p = 0.41 E 0 . Hence, once plastic deformation occurs 
in a sub-domain of ℑ , a residual strain is expected. As the crack 
grows, the respective sub-domain moves behind the crack tip and 
unloads. Since the surrounding material ( B − ℑ ) is linear elastic, it 
forces the inclusion to return to zero strain which, in turn, leads to 
the build-up of an eigenstress in ℑ and an associated longer range 
field in the surrounding material, B − J . This field loads the crack 
and leads to toughening in a manner similar to the mechanism de- 
scribed in the literature for transformation toughening ( Budiansky 
et al., 1983; Garvie et al., 1975 ). 

In separate simulations, region B − J is rendered heterogeneous, 
but the material behavior remains linear elastic. This allows inves- 
tigating the effect of heterogeneity on the toughening mechanism 
discussed above. To this end, the Young’s modulus in this region, 
E, is allowed to vary spatially and is selected at random (and spa- 
tially uncorrelated) from a Gamma distribution of mean E 0 and co- 
efficient of variation, CV E . The coefficient of variation is kept as a 
parameter and is varied from 0 to 0.5. The Poisson ratio is kept 
constant. In heterogeneous cases the effective modulus of the ma- 
terial is identical to that of the homogeneous case. This allows the 
direct comparison of the effective energy release rates computed 
with homogeneous and heterogeneous models. 

Displacement boundary conditions are applied in the y- 
direction along the top and bottom of the model in Fig. 1 (at y = - 
L/2 and L/2), while the other model edges and degrees of freedom 
are traction free. A sketch of the loading sequence is shown in 
Fig. 3 . In each loading period, T, the load is incremented initially 
fast for a period t up , followed by a slower ramp regime during 
t ramp in order to capture the moment of crack propagation. Once 
the crack propagates, the model is unloaded. During the unload- 
ing time t down the crack stops. The effective critical energy release 
rate, G c , is evaluated by computing the J integral at the moment of 
crack extension. In general, the critical energy release rate has the 
form: 
G c = J ∞ = G 0 c + %J (1) 
where J ∞ is the value of the J -integral calculated from the far-field 
at crack propagation and %J is the effect of the toughening mecha- 
nism of interest. The J integral is computed using the area integra- 
tion formulation ( Li et al., 1985 ) over the circular domain shown in 
blue in Fig. 1. outside region B. This standard formulation of J can 
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Table 2 
Material Properties of the model. 

Parameters Value 
Young’s modulus E 0 14.58 GPa 
Poisson’s ratio v 0.325 

be used since the integration domain is homogeneous. A modified 
version ( Eischen and Herrmann, 1987; Zheng et al., 20 0 0 ) should 
be used if the path would run through the heterogeneous region 
B. This issue is also discussed by Chen (1996) . 

In the case of the crack growing in a homogeneous mate- 
rial with no transformation in ℑ , the crack propagates unstably 
throughout the model. In all other cases, the crack stops at posi- 
tions defined by the random distribution of heterogeneity in B − J . 
We re-emphasize that this crack trapping is exclusively due to the 
elastic field as neither the transformation nor the elastic hetero- 
geneity affect the critical energy release rate of the cohesive zone, 
G 0 c , directly. The trapping effect becomes more pronounced as ϕt 
and/or CV E increase. The process of loading-unloading is repeated 
for the new position of the tip and a new value of G c , which cor- 
responds to the current crack tip position and depends on the het- 
erogeneity in the respective region, is determined. The simulation 
ends once the crack reaches x ∼2 a o , in order to avoid size effects 
associated with excessively small unbroken ligaments. This process 
is repeated for multiple replicas for each case ( n = 10 replicas for 
homogeneous cases and n = 20 replicas for heterogeneous cases) in 
order to account for variability induced by the various stochastic 
parameters of the problem. 

The specific material parameters used in the simulations cor- 
respond to cortical bone and are listed in Table 2 . The model 
represents a 180 × 180 µm 2 domain of cortical bone carrying a 
crack of length a o = 30 µm. In this application, inclusions rep- 
resent dilatational bands and their area fraction ϕt is varied 
from 5% to 20%, which corresponds to the range reported in 
the literature ( Poundarik et al., 2012 ). The occurrence of dilata- 
tional bands close to crack tips has been observed in confocal 
microscopy as ellipsoidal stained areas with dimensions on the 
order of hundreds of nanometers. Cortical bone is orthotropic, 
with elastic constants ( E 1 = 12.01GPa, E 2 = 20.16GPa, E 3 = 13.48GPa, 
G 23 = 6.23GPa, G 12 = 5.61GPa, G 13 = 5.61GPa, v 12 = 0.378, v 23 = 0.21) 
( Cowin and Sadegh, 1991 ). The Young’s modulus considered here, 
E 0 , is computed as the Voigt average of the actual anisotropic elas- 
tic constants of bone. The bilinear constitutive behavior of inclu- 
sions is calibrated based on the anelastic behavior reported by 
Bonfield and O’Connor (1978) who observed a hysteresis loop in 
micro tensile test of bovine cortical bone; an applied stress of 
70 MPa led to a residual strain of 60 × 10 − 6 , while a load of 
20 MPa did not lead to any measurable residual strain or hystere- 
sis. The yield stress of the inclusions is selected to be σ y = 70 MPa. 
The strain hardening is E p = 6 GPa, corresponding to the mod- 
ulus of mineralized collagen fibrils ( Jäger and Fratzl, 20 0 0 ). The 
toughness considered is G 0 c = 15 . 2 N/m , which corresponds to mi- 
croscale cracks; the value was measured by cube-corner indenta- 
tion ( Mullins et al., 2007 ). This toughness value is smaller than 
that usually reported for cortical bone obtained from macroscopic 
measurements ( Koester et al., 2008 ). The difference is due to the 
presence and operation of various toughening mechanisms in bone 
at scales from few microns to the millimeter scale ( Nalla et al., 
2004 ). Finally, for models in which the matrix is considered elasti- 
cally heterogeneous, the coefficient of variation of the distribution 
of elastic constants, CV E , is varied from 0 to 0.5 in order to cover 
the range reported for bone, which is 0.2 to 0.5 ( Tai et al., 2007; 
Thurner, 2009 ). 

Fig. 4. Distribution of inclusions that underwent plastic deformation, with colors 
representing the maximum principal plastic strain over the loading history (ranging 
from 60 × 10 − 6 , blue, to 5 × 10 − 3 , red). The current crack tip position is marked by 
the red circle, while the initial crack tip position is at O. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 5. Normalized effective toughness versus crack extension for models with 
ϕt = 0%, 5%, 10% and 20%. The bars represent the standard deviation computed over 
10 replicas. The solid lines are guides to the eye, showing the R-curve behavior. 

3. Results and discussion 
3.1. Effect of the inclusion density 

In the first part of this study, we demonstrate the toughening 
effect and determine the effect of the area fraction of inclusions 
ϕt . To this end, we use the model with homogeneous linear elastic 
behavior in the region B − J . 

Fig. 4 shows a representative configuration with ϕt = 10% af- 
ter a crack extension by %a / a 0 = 2, where a 0 is the initial crack 
length. The color map represents the maximum principal plastic 
strain over the loading history taking place in the randomly dis- 
tributed sub-domains ℑ . A wake forms extending along the entire 
crack. An eigenstress field is produced in the wake and acts on the 
crack. 

The toughening effect associated with this process is shown in 
Fig. 5 for three values of ϕt = 5%, 10% and 20%. The curve for the 
reference case with ϕt = 0 is also shown. As expected, no tough- 
ening is observed for ϕt = 0, case for which G c = G 0 c . For ϕt > 0, 
the apparent toughness increases with increasing crack length (R- 
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Fig. 6. (a) Region B of the model with elastic constants in B − J selected from a Gamma distribution with coefficient of variation CV E = 0.4. The colors represent the local 
value of the stiffness, E . Inclusions forming sub-domain ℑ are not shown. (b) Distribution of inclusions that underwent plastic deformation as the crack tip moved from O 
to the current location marked by the red circle. The system corresponds to the case in (a). The colors represent the maximum principal plastic strain in inclusions over the 
loading history (ranging from 60 × 10 − 6 , in blue, to 8 × 10 − 3 , in red). The heterogenity in B − J is not shown. This figure can be compared with Fig. 4 . (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
curve) and reaches a plateau at a normalized crack extension of 
%a / a 0 ≈0.2, i.e. once the wake is fully developed. The toughening 
effect, i.e. the difference between the apparent toughness for ϕt > 
0 and the toughness of the reference case ϕt = 0, measured in the 
plateau region, increases approximately linearly with ϕt . R-curves 
are known to result by similar mechanisms even when plastic de- 
formation is not confined to inclusions in ℑ as, for example, de- 
scribed by Tvergaard and Hutchinson (1992) . 

The value of the yield stress σ y affects toughening through 
two mechanisms. Reducing the yield stress leads to an increase of 
the width of the wake, h ( Fig. 4 ). Similar to the case of zirconia- 
containing ceramics, where the transforming particles acquire uni- 
form dilatation, h is inversely proportional to the square of the 
critical transformation stress σ c and the toughening is proportional 
to square root of the wake width h ( Evans and Faber, 1983 ). 

Therefore, the degree of toughening is inversely proportional to 
the critical stress σ y . On the other hand, decreasing σ y should lead 
to an increase of the residual stress level. We conclude that the 
level of toughening depends markedly on the value of the yield 
stress in inclusions and increases as the yield stress decreases. In 
this analysis we consider a value of the yield stress at the upper 

end of the range reported for bone ( σ y = 70 MPa) in order to ob- 
tain a conservative value for the toughening induced by this mech- 
anism. 
3.2. Effect of elastic heterogeneity 

It is of interest to inquire further whether rendering the matrix 
material elastically heterogeneous can enhance the toughening ef- 
fect shown in Fig. 5 . Heterogeneity is present at various scales in 
most engineering materials. Furthermore, with the development of 
modern manufacturing methods, such as additive manufacturing, 
it is now possible to control the level of heterogeneity in the mi- 
crostructure. Identifying the extent to which this parameter can be 
used to enhance specific material properties is therefore of inter- 
est. In the context of material toughness, the role of heterogene- 
ity in material properties has been discussed broadly, mostly in 
the context of crack pinning and cracks deflection ( Ramanathan 
et al., 1997; Bolander and Sukumar, 2005 ). These direct crack- 
heterogeneity interaction mechanisms are purposely avoided in the 
current study, as we seek to identify the field-mediated effect 
of elastic heterogeneity on the transformation toughening mech- 
anism. 
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Fig. 7. Normalized effective toughness versus crack extension for models with ϕt = 10% and values of the coefficient of variation of the distribution of elastic moduli in 
B − J , CV E , ranging from 0 to 0.4. The bars represent the standard deviation computed over 20 replicas. The solid lines are guides to the eye. 

To our knowledge, the effect of material stochasticity on the 
eigenstrain toughening mechanisms was not discussed in the liter- 
ature, whether in the context of bone or related to brittle engineer- 
ing materials in general. Notably, the investigation is particularly 
appropriate for bone, which is an elastically heterogeneous mate- 
rial, with effective modulus ranging from 2 GPa to 30 GPa ( Tai et al., 
2007 ). 

To study this effect, we render the modulus E in the domain 
B − J stochastic, while preserving the structure and material pa- 
rameters of ℑ unchanged. Fig. 6 (a) shows region B of the model in 
which the elastic constants are selected from a Gamma distribu- 
tion of mean identical to the elastic modulus of the homogeneous 
B case and coefficient of variation CV E = 0.4. Fig. 6 (b) shows the 
maximum plastic strains over the loading history reached in inclu- 
sions and the formation of a wake, as the crack advances from the 
original position O to the current position marked by the red cir- 
cle. The model has ϕt = 10% and the configuration in Fig. 6 (b) is 
shown for a crack extension of %a / a 0 = 2, such that this state can 
be compared directly with that in Fig. 4 . The difference between 
Figs. 6 (b) and 4 is substantial and is due exclusively to the elastic 
heterogeneity in B − ℑ . 

Figs. 7 and 8 make this observation quantitative. Fig. 7 shows 
the effective normalized toughness, G c /G 0 c , versus crack extension, 
%a / a 0 for the system with ϕt = 10% and several values of CV E . 
The data from Fig. 5 corresponding to ϕt = 10% and to CV E = 0 are 
added for reference. Several observations can be made. First, the 
heterogeneity enhances significantly the toughening effect. The ef- 
fect increases as the distribution becomes broader, i.e. as CV E in- 
creases. Second, rendering the elastic constants in region B − ℑ 
stochastic increases the magnitude of crack trapping and hence 
increases the noise in the quantity reported in Fig. 7 . Third, the 
toughening effect reaches a plateau at larger crack extensions than 
in the homogeneous case CV E = 0, for all values of CV E . This is due 
to the fact that increasing the level of heterogeneity requires larger 
stresses to be applied for crack propagation and hence the width of 
the transforming region increases. Hence, the trend seen here fol- 
lows from the observation that the R-curve levels off once %a / a 0 
becomes larger than the width of the transforming region. 

Fig. 8 shows the variation of the value of the plateau in 
Fig. 7 with the coefficient of variation, CV E . The standard deviation 

Fig. 8. Enhancement of the toughening effect in presence of elastic heterogeneity 
in region B.This is entirely a field-mediated effect as the heterogeneity does not af- 
fect the local toughness G 0 c . The blue data points indicate the reference case with no 
eigenstrain toughening. The first red data point, at CV E = 0, represents the toughen- 
ing produced by the eigenstrain mechanism in absence of elastic heterogeneity. The 
bars represent the average standard deviation in the plateau region for each value 
of the coefficient of variance CV E . The dashed lines are quadratic fits to the data, 
Eq. (2) . 
of G c increase with CV E due to enhanced stochasticity, as expected. 
The toughening effect increases considerably as the level of het- 
erogeneity of the material elasticity increases. The curve indicates 
a toughening effect between 5% and 11% for bone with CV E in the 
range 0.2 to 0.5 ( Thurner, 2009 ). If the material is considered ho- 
mogeneous and with ϕt = 10% ( Poundarik et al., 2012 ), the tough- 
ening effect is smaller, of only 2.9%. Allowing the elasticity to be 
heterogeneous with a coefficient of variation CV E = 0.4 the tough- 
ening effect increases to 8.9% relative to the homogeneous case 
with no dilatational bands. Therefore, the present study demon- 
strates the important role dilatational bands play in the overall 
bone mechanics. 
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It is also of interest to investigate the coupling effect between 

eigenstrain toughening and the elastic heterogeneity. To this end 
we consider cases with no transforming inclusions, ϕt = 0, and re- 
peat the analysis using the elastically heterogeneous model. The 
data is shown in Fig. 8 (blue stars). Toughening is observed in this 
case to be due to the interaction of the crack tip with the elastic 
heterogeneity. 

The variation of G c /G 0 c with CV E can be fitted with a quadratic 
function: 
G c /G 0 c = β( ϕ t ) + αCV 2 E (2) 

The fit is shown in Fig. 8 with dashed line. 
The two curves in Fig. 8 are approximately parallel. The data 

sets corresponding to case with and without eigenstrain tough- 
ening can be fitted with Eq. (2) and with α = 0.3447 and 0.2549 
in the two cases, respectively. This indicates that the eigenstrain 
toughening and the toughening associated with the elastic hetero- 
geneity of the material interact weakly and their effects are ap- 
proximately additive. For the material parameter set considered 
here ( Table 2 ), the eigenstrain toughening mechanism increases the 
effective material toughness by about 3%, while elastic heterogene- 
ity adds another ∼4% when CV E = 0.4. 
4. Conclusions 

Toughening mechanisms based on the occurrence of eigen- 
strains in the wake of the crack tip, such as transforma- 
tion toughening and localized plasticity taking place in sub- 
domains/inclusions confined by an elastic matrix, are standard 
toughening mechanism for brittle materials. In this study, we in- 
vestigate the effect of elastic heterogeneity on toughening and 
observe a significant enhancement of toughness as the level of 
elastic heterogeneity increases. The eigenstrain toughening effect 
increases approximately linearly with the area fraction of inclu- 
sions. The toughening induced by the elastic heterogeneity in- 
creases quadratically with the coefficient of variation of the dis- 
tribution of elastic moduli. The results are discussed in the context 
of bone, in which dilatational bands are observed to occur in the 
vicinity of macrocrack tips. These are regions in which protein de- 
naturation leading to inelastic strains takes place. The toughening 
effect of the dilatational bands acting independently from other 
toughening mechanisms is evaluated. Their effect is comparable 
with that of crack bridging which is currently considered the main 
toughening mechanism at small scales in bone. 
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