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• Novel biofoam, developed from the root
structure (mycelium) of fungi, is charac-
terized under axial compression.

• The material response is highly nonlin-
ear and controlled by microscopic ran-
domness and density variability.

• Mycelium biofoam exhibits strong
stress softening and hysteresis under
cyclic loading.

• Amultiscalemodel is presented, captur-
ing the microscale structure and meso-
scale density fluctuation of the material.
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Mycelium, the root structure of fungi, grows naturally as a biodegradable filamentous material. This unique ma-
terial has highly heterogeneous microstructure with pronounced spatial variability in density and exhibits
strongly non-linear mechanical behavior. In this work we explore the material response in compression, under
cyclic deformation, and develop an experimentally-validated multiscale model for its mechanical behavior. The
deformation localizes in stochastically distributed sub-domains which eventually percolate to formmacroscopic
bands of high densitymaterial. This is reflected in the stress-strain curve as strain softening. Cycling at fixedmac-
roscopic strain leads to deformation history dependence similar to theMullins effect. To capture this behavior, we
use a two-scale model. At the micro-scale, a random fiber network is used, while at the macroscale the spatial
density fluctuations are captured using a stochastic continuummodel. The density-dependent local constitutive
behavior is defined by the microscale model. An empirical damage model is incorporated to account for the ex-
perimentally observed cyclic softening behavior ofmycelium. Themodel is further validated by comparisonwith
a separate set of experimental results. The model can be used to explore the effect of mesoscale density fluctua-
tions on the overall mechanical behavior and to design mycelium-based products with desired mechanical
performance.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Mycelium is a sustainable alternative to petroleum-based polymeric
materials. It grows naturally as the root structure of fungus and self-
organizes as a network of tubular filaments, called hyphae, Fig. 1.
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Fig. 1. Illustrationofmycelium-basedbio-foam: (a)macroscopic structure (50×50×50mm)
and (b) microstructure of mycelium; scale bar 100 μm.
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Mycelium has the potential to emerge as a material of choice for light-
weight structureswith several advantages such as low density, low pro-
duction cost, minimal processing energy input and, most importantly,
100% biodegradability. To promote the applications of this novel fungal
bio-material, a precise understanding of its deformation behavior is
required.

Recent experiments on mycelium indicate that it demonstrates sig-
nificant non-linear behavior under compression [1]. In particular, myce-
lium exhibits three distinct regimes under compression, somewhat
similar to open cell foams [2]. Linear elastic behavior is observed at
small strains. This is controlled by hyphae bending and does not entail
significant structural reorganization of the network. A second regime
emerges at larger strains, which is associated with fiber buckling and
local structural collapse/densification leading to strain stiffening. In
the third regime, rapid stiffening is associated, with full compaction
and the formation of a large number of inter-fiber contacts. It is ob-
served that the strain distribution is highly heterogeneous due to strong
structural disorder and density fluctuations. Deformation localizes at
multiple sites which eventually merge into one or multiple bands that
percolate through the sample [1].

Mycelium also exhibits significant hysteretic behavior under cyclic
compression, including stress softening, or the Mullin's effect, and the
occurrence of residual strain, similar to filled and unfilled elastomers
[3,4]. When subjected to compressive cycles of constant strain ampli-
tude, the response is softer during reloading compared to the response
of the virgin material. This softening diminishes gradually in successive
cycles.

The mechanical behavior of mycelium is dictated by the structure of
the underlying network and the properties of the constituent fibers –
the hyphae. The hypha is a hollow filament and its major structural
components are chitin nanofibers, beta-glucans and proteins [5]. Chitin
nanofibers form a network which is covalently cross-linked with beta-
glucans, and constitutes the structural element of the hypha wall [5,6].
Several researchers studied the mechanical properties of chitin
nanofiber-based membranes. Jeffe et al. [7] observed a tensile modulus
of 3 GPa and tensile strength of 50 MPa for regenerated chitin mem-
branes. Ifuku et al. [8] extracted chitin nanofiber networks from exo-
skeletons of crabs and prawns and measured similar values for the
modulus (~2.5 GPa) and tensile strength (~45 MPa). Fan et al. [9] re-
ported a tensile modulus of 5 GPa and strength of 140 MPa from chitin
nanowhiskers. Mushi et al. [10] observed that properties of the chitin
nanofiber network largely depends on the nanofiber volume fraction
and the tensile modulus varies from 2.5 to 8.2 GPa for volume fractions
ranging from 42% to 78%. The tensile strength varies from 29 to 77 MPa
in the same range of volume fractions. Note that the chitin percentage in
mycelium is in the range 34 to 68% [11].

In recent years, significant research effort has been devoted to delin-
eate structure-property relations of network-based materials [12]. Sev-
eral micromechanical models are employed using simplified periodic
unit cells or representative volume elements (RVE) of realistic systems
to obtain the effective mechanical response. In the small strain regime,
network behavior is largely determined by the density, degree of con-
nectivity and the fiber bending-to-axial stiffness ratio. For dense net-
works with fibers that are relatively stiff in bending, the network
undergoes affine deformation. In these conditions the networkmodulus
scales linearly with the density and the fiber axial stiffness. On the other
hand, networks of low density, sparse connectivity and/or fibers which
are relatively soft in bending, deform in a highly non-affine way. In this
case, small strain modulus varies as a power function of the network
density (this dependence is quadratic for mycelium [1]) and scales lin-
early with the fiber bending rigidity.

Network behavior in the collapse/densification regime was also
studied usingmicromechanical models. It is shown [2] that the network
softens in this regime due to elastic buckling and/or formation of plastic
hinges at fiber-fiber joints. For elastic fibers, the stress-strain curve in
this regime has positive slope (much smaller compared to that of the
linear regime) which is controlled by the network architecture and
structural stochasticity. In particular, a random fibrous network shows
larger slope in the collapse/densification regime compared to cellular
networks, where fibers are arranged in polyhedral cells [13]. Further,
if fibers are elastic-plastic, the network loses stability and shows a
more drastic softening behavior with zero or negative stress-strain
slope [14].

In contrast to micromechanical models, several phenomenological
models were also developed. These consider the network as a contin-
uummaterial and describe the behavior through empirical constitutive
equations without considering microstructural details [15]. Most phe-
nomenological models rely on the hyperelastic model formulation and
use suitable forms of the strain energy function to predict experimental
observations. A large set of strain energy functional forms are available,
including Mooney-Rivlin [16], Arruda-Boyce [17], and Ogden [18]
models. Hyperelastic models provide reasonably accurate predictions
of the non-linear stress-strain response during compression loading,
but cannot capture hysteresis, Mullin's effect and residual strains. To
model the stress softening effect, several researchers incorporate addi-
tional damage type variables in the hyperelastic model that remain in-
active during loading but are activated during unloading based on the
maximum strain reached [3,19].

While the above-mentionedmicrostructurally-detailedmodels of fi-
brous materials, as well as other similar works, established the relation
between network parameters and its overall properties, they refer to
structures with mesoscale homogeneity. Specifically, on scales larger
than the size of the respective ‘representative volume elements,’ the
material is considered homogeneous. However, real fibrous materials,
including mycelium, exhibit density fluctuations on all scales, up to
themacroscopic scale [20]. The effect ofmesoscale fluctuations ofmate-
rial properties has been discussed in the literature on stochastic com-
posite materials [21,22], mostly in the context of linear elastic
constitutive behavior [23]. Pronounced heterogeneity modifies the
global mechanical behavior, promoting softening and localization. Ac-
counting for such mesoscale effects in explicit fiber network models is
not feasible since this implies modeling large structures while resolving
every fiber in the material. Therefore, a multiscale approach is needed.
Developing such representation for mycelium materials is the central
objective of the present work.

To this end, we expand our recentwork [1] by performing additional
experimental characterization of mycelium of different effective densi-
ties, and developing a 3Dmultiscalemodel that accounts for strain local-
ization and the Mullins effect. An explicit network model is used on the
microscale and a stochastic continuum representation is used on the
mesoscale. The local constitutive behavior of the continuum is dictated
by the local density and the response of the corresponding microscale
networkmodel. Ogden'smodel is used on the continuum scale to repre-
sent Mullin's effect observed experimentally. The model is validated by
comparison with a separate set of experimental results. The model can
be further used to explore the effect of mesoscale heterogeneity on
the overall mechanical behavior of the material, and to design the
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multiscale structure of mycelium to meet targeted global properties for
specific applications.

2. Experimental details and results

The mycelium samples used in this work were provided by
Ecovative Design, LLC. The samples were prepared as follows: the
mycelium vegetative tissue is first inoculated in a filter patch bag
with nutrition (calcium and carbohydrate) and water. After an initial
growth phase (around 4 days), the substrate is ground into small
pieces to redistribute the growth evenly throughout the material.
This step also prevents preferential colonized growth of mycelium
in the vicinity of nutrition sites. Next, the material is packed into
rectangular molds (6″ × 6Δ″ × 1″) and additional nutrition is added
to promote further growth. Mycelium is allowed to grow for around
six additional days in the molds. As a last step, the samples were heat
treated to stop hyphae growth.

Microscopic imagingwas carried out to characterize themicrostruc-
ture of mycelium, using a VERSA 3D Dual Beam Scanning Electron Mi-
croscope (SEM). SEM images were processed using ImageJ [24] to
evaluate various parameters such as the fiber diameter, segment length,
orientation and pore size. The mean hypha diameter, segment length
and pore size were 1.3 ± 0.66 μm, 6.5 ± 4.7 μm and 5.8 ± 4.1 μm, re-
spectively. Furthermore, it was observed that fibers (hyphae) have no
preferential orientation. Themass density of the samples was also mea-
sured to evaluate the effect of density on mechanical properties.

Cuboid specimens of dimensions - 20mm×20mm×16mmare cut
for compression testing using a bandsaw. An EnduraTec Elf 3200 me-
chanical testing machine (BOSE, Eden Prairie, MN) with displacement
control was used for mechanical testing in ambient conditions (25°C
and ~50% relative humidity). A constant strain rate of 6.25 × 10−3 s−1

was used for all tests during both loading and unloading. Cyclic loading
tests with no hold/relaxation between cycles were performed under
compression.

Fig. 2(a) illustrates the generic stress-strain response of mycelium
under compression. The test is performed with a sample of effective
density ρs = 34 kg/m3. The stress-strain measures used in this work
are the nominal stress (computed as the total applied force divided by
the initial cross-sectional area of the sample), S, and the stretch ratio,
λ. The response is linear elastic at small strains, with constant Young's
modulus E= 1.3 MPa. Starting in the range 0.97 N λ N 0.92 thematerial
undergoes gradual softening due to strain localization and the initiation
of collapse band formation. A pronounced hysteretic response is ob-
served upon unloading. Samples of higher density (ρs = 59 kg/m3) ex-
hibit similar behavior (Fig. 2(a)), although the small strainmodulus and
the stress at the onset of localization are larger. Fig. 2(b) shows the
stress-strain curves for five compressive loading-unloading cycles per-
formed at two different maximum strain levels for a sample of density
Fig. 2. Experimental stress-strain response of mycelium under compression- (a) single comp
successive compression cycles performed on same sample at two different maximum stretche
ρs = 59 kg/m3. Unloading is performed immediately after loading,
with the same strain rate (6.25×10−3 s−1).Mycelium softens cyclically,
i.e. a smaller stress is required in subsequent cycles to compress thema-
terial to the same strain level. However, once the strain exceeds the pre-
viously imposed maximum strain level, the loading curve converges to
whatwould have been obtained fromamonotonic compression of a vir-
gin sample (Fig. 2(b)). Part of these experimental results is used in
Section 4 for model calibration, while the reminder of the data set is
used for validation.

3. Multiscale model for mycelium

The multiscale model developed for mycelium is presented in this
section. At themicroscale, we consider representative volume elements
of the hyphae network and characterize their mechanical behavior as a
function of the effective network density. A hyperelastic model with
density-dependent parameters is fitted to these results. This is then
used as constitutive representation in a stochasticmesoscale continuum
model which accounts for density fluctuations on a scale much larger
than that of the microscale network models. Hence, the continuum
model is heterogeneous in terms of all parameters of the hyperelastic
description, which fluctuate spatially as a function of density. A damage
phenomenological model is introduced in the continuum representa-
tion in order to capture the Mullins effect (Fig. 2). An alternative to
this procedure would be to allow damage (e.g. fiber failure) to evolve
on the microscale in each representative volume element and import
that information in the upper scale continuum model. We avoid taking
this route due to the limited data available at this time about the condi-
tions in which individual hyphae rupture or lose their load carrying
capacity.

Fig. 3 shows this procedure schematically. The distribution of myce-
lium density on the mesoscale has been characterized in our previous
work [1]. This distribution is mapped to a histogram of 10 specific den-
sity values. Microscale networkmodels, in which each fiber is explicitly
represented, are constructed for each of these densities. The average re-
sponse to uniaxial compression of multiple replicas of a given density is
fitted with a hyperelastic model. Further, a stochastic continuummodel
is constructed and eachmesoscale sub-domain is assigned the constitu-
tive model associated with the local density. We present next each of
these modeling steps.

3.1. Microscale model

The random fiber networkmodel used at themicroscale is a Voronoi
network. A set of randomly distributed seed points are used to construct
the tessellation of the domain in which the network is defined, and fi-
bers are placed along the edges of the resulting polyhedral cells to ob-
tain a random fiber network. In this algorithm, the network density is
ression cycle for mycelium of densities ρs = 34 kg/m3 and ρs = 59 kg/m3, and (b) five
s (λ = 0.9 and λ = 0.79 respectively) for a mycelium of density ρs = 59 kg/m3.



Fig. 3. Schematic representation of the multiscale mycelium model.
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controlled by the density of seed points. We adjust the distribution of
seed points so as tomimic closely the pore size distribution ofmycelium
observedmicroscopically. Fig. 4 compares pore size probability distribu-
tion functions of experimental samples and microscale model. It is
noted that the experimental pore size distribution corresponds to the
two dimensional (2D) projection of mycelium network as observed in
SEM images of finite (and known) depth of focus. As such, the pore
size of the microscale model was also evaluated for thin sections of
same thickness to ensure proper comparison with experimental values.

The network mass density, ρm, is defined as:

ρm ¼ 1

L3

� �
ρ f A

XN
i¼1

li ð1Þ

where L is the size of the 3D domain, ρf is the density of a hypha wall, A
is the cross-section area of a typical tubular hypha, N is the number of
filaments in the network and li is the length of the ith filament.
Fig. 4. Comparison of pore size distribution functions for experimental samples and
microscale model.
The fiber segment length in themodel (lc) varies from 4 to 8 μm(ex-
perimental, lc≈ 6.5 μm)depending on the network density (ρm). All fil-
aments in the network model are assumed to have identical cross-
section with outer diameter d0=1.3 μm (experimental, do ≈ 1.3 μm)
and wall thickness (tw =100 nm [5]). The base material of the filament
is chitin which has density, ρf =1430 kg/m3. We used an elastic-plastic
material model based on literature data for chitin nanofilament net-
works (the structural constituent of the hypha wall) following ref. [8],
with the elastic modulus, Poisson ratio and yield strength as 2.5 GPa,
0.3 and45MPa respectively. Beyond the yield point, thematerial behav-
ior is assumed to follow linear strain hardening with a stiffness ratio of
0.02 between elastic and plastic regime. The generated network is
discretized using shear-deformable Timoshenko beams. The minimum
element aspect ratio is 5.

Fiber to fiber contact is incorporated using surface based contact
constraints using the general contact algorithm in Abaqus [25]. The con-
tact behavior normal to fiber surfaces is implemented with zero pene-
tration condition (‘hard’ contact algorithm in Abaqus). The relative
sliding between fibers is represented as Coulomb friction with a coeffi-
cient of friction, μf = 0.3, as suggested in refs. [26, 27]. The hypha net-
work is deformed in uniaxial compression by introducing two rigid
surfaces at the top and bottom boundaries while imposing equal and
opposite displacement boundary conditions on these surfaces. The lat-
eral faces of the model are kept traction free and all other degrees of
freedom are free. Finite element simulations are performed using the
general purpose finite element solver Abaqus/Explicit (version 6.13-1)
[25].

It has been discussed in the literature that fiber networks exhibit
strong size effects [28] depending on the fiber elastic properties. Specifi-
cally, for fibers which are rather rigid in bending, the scale of homogene-
ity (i.e. scale at which the response becomes independent of model size)
is equal to few fiber segment lengths (lc). If fibers are soft in bending,
which is the case formycelium, the scale of homogeneity increases grad-
ually as the bending stiffness of filaments decreases. In the current work,
a large model size (L≥12lc) is selected to exclude the network size effect.

The compressive stress-strain responses of samples with four
representative network densities are illustrated in Fig. 5. At small
compressive strains (λ ≤ 0.95), the curves show a linear elastic re-
sponse where deformation is largely dominated by fiber bending.



Fig. 5. Stress-strain response of microscale network models of four representative
densities under uniaxial compression. The symbols indicate the network response
(averaged over three realizations) and the lines represent the fitted hyperelastic
constitutive model, Eq. (3) (Section 3.3).
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The small strain modulus scales quadratically with density. As the
compressive strain increases (λ ~ 0.94 to 0.92), a gradual softening
is observed. At this stage, a significant number of fibers undergo
large bending deformations, thus reducing the number of load sus-
taining members. Foams also exhibit this type of behavior, which is
associated with strain localization in a band that traverses the sam-
ple. The band then moves across the sample leading to full compaction
of the foam and to a characteristic plateau in the stress-strain curve [2].
In mycelium, as well as in our microscale models, strain localization oc-
curs in sub-regions of the model which, initially, do not percolate. This
is due to the more irregular geometry of the fibrous network compared
to the foamswith periodic or quasi-periodicmicrostructure. Localization
in a major band eventually happens in the present microscale models
too, but the resulting band does notmove across the sample as global de-
formation proceeds. Fig. 6 shows the deformed configurations of a net-
work of density ρm = 17.1 kg/m3 at three strain levels λ = 0.99,0.95
and 0.85. The von Mises stress contours are overlaid in order
to show the degree of stress (and hence strain) heterogeneity. Heteroge-
neity is observed even in the linear regime, for stretch ratios close to 1,
e.g. λ= 0.95, and it becomes pronounced at λ= 0.85.
3.2. Mesoscale density distribution

The mesoscale model is a continuummodel whose size is compara-
ble with that of mycelium samples used in experiments. Density vari-
ability is incorporated in this model at a length scale larger than the
microscale model size (L) by introducing subdomains. Each subdomain
is assigned a density, sampled from a calibrated distribution, and the
Fig. 6.Deformed configurations of a micro-scale networkmodel (ρm =16.9 kg/m3) with vonM
0.95 and (c) λ = 0.85.
constitutive behavior is derived from a microscale network model of
corresponding density.

In general, elastic properties (e.g. elastic moduli) of network based
materials are explicit functions of density. Therefore, density variability
in the material has a unique correlation with local moduli variation
which in turn affects the local strain field especially in the small strain re-
gime. Since density variability on the microscale could not be measured
directly in the experimental samples, the local strain field (on the sample
surfaces) estimated from digital image correlation (DIC) was used as an
indirect measure of the random density field. Specifically, a trial-error
based inverse problem is formulated where the density/elastic moduli
distribution of themesoscale subdomains is tuned to achieve comparable
strain distribution as obtained experimentally with DIC. We further con-
jecture that the spatial correlation length of the strain field is identical
to that of the underlying density/elastic moduli fluctuations. The size of
the individual subdomain is set equal to this characteristic length and
the size of themesoscalemodel is taken 20 times the size of an individual
subdomain in order to eliminate size effects of the continuummesoscale
homogenization. The mesoscale model contains 8000 subdomains.

The distribution of mesoscale density is represented with a beta dis-
tribution. The beta distribution can accommodate a wide variety of dis-
tribution shapes and thereby, it facilitates the calibration of distribution
parameters especially in absence of prior knowledge on the actual dis-
tribution. The distribution is defined as:

P ρmja;bð Þ ¼ ρma−1 1−ρmð Þb−1

B a;bð Þ ; ð2Þ

where B is the Beta function, B(a,b) = Γ(a)Γ(b)/Γ(a + b), with Γ
being the Gamma function and (a,b) shape parameters. The mean
(μ) and variance (σ2) of the distribution are given as μ = a/(a +
b) and σ2 = ab/[(a + b)2(a + b + 1)], respectively. The moments
(μ, σ2) and hence, the shape parameters (a,b) are determined by
the iterative search method discussed above. The search begins
with an initial guess of the shape parameters (a,b) and the meso-
scale model is simulated for this initial guess. The predicted strain
distribution is compared to the DIC measurements, the initial
guess is updated accordingly and the search is repeated until a sat-
isfactory agreement between the statistics of model predictions
and DIC measurements is obtained. We note that the mean of the
distribution is equal to the actual sample mass density (μ = ρs)
and a coefficient of variance of 0.48 (σ/μ = 0.48) provides a den-
sity distribution representative of actual mycelium samples.

Fig. 7 shows the distribution of mesoscale density inferred through
the procedure described above for the sample of average (macroscopic)
density ρs = 34 kg/m3. The distribution is further mapped to a set of 10
delta functions (shown by vertical bars in Fig. 7) equally spaced in the
range of densities ρm = 8 kg/m3 to ρm = 78 kg/m3. For samples of
other mean densities ρs (in the experimental range of 8 to 78 kg/m3),
the distribution is kept the same, while themean is adjusted accordingly.
ises stress contours corresponding to applied stretch ratio values of (a) λ=0.99, (b) λ=



Fig. 7. Representative mesoscale density distribution for a sample of average density ρs =
34 kg/m3. The black line represents the actual distribution and the vertical bars indicate
the corresponding approximation.
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The mechanical behavior of models of all ten densities defining the dis-
crete distribution in Fig. 7 is evaluated using microscale models.

3.3. Constitutive representation of microscale model behavior

The microscale model stress-strain response is described in the me-
soscale continuum model using hyperelastic constitutive equations.
These are defined starting from a scalar strain energy density function,
W(C), written in terms of the right Cauchy-Green deformation tensor
(C). The nominal stress, S, is obtained as S = 2F∂W/∂C, where F is the
deformation gradient and C = FTF. Alternately, for an isotropic solid
the strain energy density is expressed in terms of the principal stretches
(λ1, λ2, λ3) and the nominal principal stress components become Sii =
∂W/∂λi. Here, we consider a strain energy function for compressible
hyperelastic materials proposed by Storakes [29]:

W ¼ W Cð Þ ¼ W λ1;λ2;λ3ð Þ

¼
XN
i¼1

2μ i

α2
i

λαi
1 þ λαi

2 þ λαi
2 −3þ 1

βi
J−αi βi−1

� �� �
ð3Þ

where μi,αi andβi arematerial coefficients. J is the Jacobian J=det F and
N is the number of terms in the series. The coefficients, βi, determines
Fig. 8. Comparison of model response (dotted line) and experimental stress-strain curve
(symbols) for sample density (ρs = 34 kg/m3) under single compression cycle. Error
bars indicate the range of three mesoscale model realizations.
the degree of compressibility, and is related to the Poisson ratio (νi) as
νi/(1 − νi). All terms, βi, are considered identical and correspond to a
global Poisson ratio, ν. The small strain shear modulus, μ0, is defined
as μ0 ¼ PN

i¼1 μ i and the corresponding bulk modulus, K0, is obtained

as K0 ¼ PN
i¼1 2μ iðβi þ 1=3Þ. Finally, if the material is loaded uniaxially,

the nominal stress in the loading direction, SL, is:

SL ¼ ∂W
∂λL

¼ 2
λL

XN
i¼1

μ i

αi
λαi
L − Jαiβi

� �
ð4Þ

where the coefficients (μi, αi and βi) need to be determined by fitting the
stress-strain curves obtained from the microscale model. Material coeffi-
cients are determined by a nonlinear least-squares fit methods based on
Marquard-Levenberg algorithm [30] by minimizing relative error in
stress. Afit of expression (4)with three terms in the sum,N=3, provides
a good approximation of the stress-strain response of various network
densities with relative error b5% for all densities. Fig. 4 shows the fits ob-
tained using Eq. (4) for four representative network densities. To repre-
sent the entire density distribution as shown in Fig. 7, ten similar
network densities (corresponding to the vertical bars in Fig. 7) are consid-
ered and the resulting material parameters are shown in Table A1. The
hyperelastic formulation discussed here is implemented using the
HYPERFOAM material model available in the commercial finite element
package Abaqus.

3.4. Damage model

Mycelium exhibits a marked hysteresis and stress softening effect
under cyclic compression, which are primarily caused by damage accu-
mulation within the material. However, the microscale network model
does not include anydamage component. In order to account for hyster-
esis and stress softening, a phenomenological damage model is used.
For this purpose, the model proposed by Ogden and Roxburgh [31]
was used. In this representation, the strain energy density is rendered
as a function of a damage variable, η, i.e. W�ðF;ηÞ ¼ ηWðFÞ þ ϕðηÞ.
Here, ϕ(η) is a continuous damage function. The damage variable, η,
varies continuously during deformation as described by:

η ¼ 1−
1
r
erf

W�m−W
mþ βW�m

� �
ð5Þ

where W�m is the maximum value of W� at a material point
for a given deformation level, (r, m, β) are material parameters and
erf(.) is the error function. The damage variable varies in the interval
0 b η ≤ 1. In particular, during initial loading, η remains constant (η=
1) and the damage function satisfies, ϕ(1) = 0. On the other hand,
when the load is removed completely (W = 0), η reaches its mini-

mum, defined as ηm ¼ 1− 1
r erfð W�m

mþβW�mÞ. For other values of W, η

varies monotonically between 1 and ηm. These constants do not
have physical significance; rather they are used to control damage
evolution by calibrating with respect to experimental damage accu-
mulation or dissipation curves, similar to Fig. 2. The experimental re-
sults (Fig. 2(a)) indicate that the damage is largely controlled by the
maximum stress/strain reached and does not vary significantly with
the mean sample density. Therefore, we observe that a single set of
damage coefficients (r,m, β) is adequate to predict damage behavior
of mycelium of various mean densities.

4. Calibration and validation

In this section, the calibration and validation of themultiscale model
is presented. The model has two calibration components, namely the
mesoscale density distribution and the damage parameters (r, m, β) of
Eq. (5). The density distribution is calibrated using an iterative proce-
dure by comparing model predicted strain distribution and DIC



Fig. 9. Comparison of model prediction (dotted line) and experiments (symbols) for
sample density (ρs = 59 kg/m3) under two compression cycles. The inset shows the
density distribution used.
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measurements, as discussed in Section 3.2. On the other hand, the dam-
age parameters (r, m, β) are calibrated by comparing the model pre-
dicted stress-strain response with the experimental response. In this
case, the stress-strain curve of a single compression cycle for sample
density (ρs = 34 kg/m3) is used (black curve in Fig. 2(a)). Finally, the
model is validated by predicting the experimental stress-strain re-
sponse for multiple compression cycles (Fig. 2(b)).

Fig. 8 compares the response of the multiscale model with the exper-
imental stress-strain curves in Fig. 2(a), corresponding to a sample of den-
sity, ρs=34 kg/m3, which is subjected to a single compression cycle. The
model response is the average of three realizations of the multiscale
model, and the error bars represent the range of the respective replicas.
The unloading branch is matched by fitting damage parameters- r =
1.01,m= 0.005 and β= 0.1 in Eq. (5). It is to be noted that the loading
branch of Fig. 8 is amodel prediction since the density distribution has al-
ready been defined as described in Section 3.2. In this case, the density
distribution is the same as shown in Fig. 7.

In Fig. 9, the model prediction is validated with respect to the ex-
perimental results in Fig. 2(b) corresponding to a sample of mean
density ρs = 59 kg/m3. Here, the experimental curve is obtained
from the primary loading-unloading paths. The density distribution
is shown in the inset and the calibrated damage parameters (r =
1.01,m = 0.005, β=0.1) are used. The multiscale model is able to pre-
dict the highly non-linear behavior of mycelium accurately, except for
the residual strain. In the absence of accurate elastic-plastic properties
for individual hyphae, the residual strain or permanent set cannot be
captured. Further, the predicted unloading and reloading curves are
identical, whereas the respective paths are slightly different in exper-
iment. This is most likely due to viscoelastic recovery of mycelium
after unloading. Since no viscoelastic component is included in the
model, the model cannot account for such recovery as seen in exper-
iment. This difference is considered unimportant for the purpose of
the developed model.

5. Conclusion

We presented a multiscale model to describe the non-linear me-
chanical behavior of mycelium under cyclic compression loading. The
model efficiently integrates a micro-scale random fiber network
model characterizing the fibrous microstructure of mycelium, with a
continuummodel that takes into account density fluctuations. In addi-
tion, an empirical damage model is incorporated to account for stress
softening.

We demonstrated the validity of the developed model by compari-
son with experimental results from multiple compression cycles. The
model captures the primary loading curve and unloading accurately.

The model can be easily generalized to predict complex three-
dimensional deformation of other similar materials such as polymeric
foams, soft tissue or hydrogels, where consideration of density fluctua-
tion and network-likemicrostructure is important. Its use in the context
of other types of networks is facilitated by the fact that parameters of
fitted hyperelastic models with damage are presented for a broad
range of network densities (Appendix A). This allows using only the
less complex and less computationally expensive mesoscale model in
any future applications. The model can be used to design mycelium
and mycelium-based composites for a broad range of applications.
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Appendix A

Hyperelastic model parameters, as defined by Eq. (3), are summarized for ten network densities in Table A1. These parameter sets are used to
define the constitutive behavior of each sub-domain of the continuummesoscale model according to the density distribution of Eq. (2). The values
of μi are in MPa, while αi and βi are dimensionless.
Table A1
Summary of hyperelastic model parameters for ten different network densities.1,2

ρm (kg/m3) μ1 α1 μ2 α2 μ3 α3 β

10.3 0.781596 6.56724 −0.29858 4.46147 −0.39316 4.49773 0.3793
16.9 −30.069 −1.68619 16.554 −0.77516 13.6929 −2.52915 0.3793
25.3 1.9383 7.57854 1.64607 7.57949 −3.25804 5.65142 0.3793
36.1 −46.6449 −1.49798 25.9885 −0.52104 21.0135 −2.39752 0.3793
39 3.82235 7.35262 2.03493 7.3551 −5.32076 5.56589 0.3793
47.5 3.14686 5.06527 −1.27358 2.55403 −1.29612 2.47474 0.3793
53.2 5.19417 7.35262 2.76526 7.3551 −7.23036 5.56589 0.3793
61.5 3.97498 5.06526 −1.60873 2.55404 −1.6372 2.47474 0.3793
67.3 6.56622 7.35262 3.4957 7.3551 −9.14027 5.56589 0.3793
76.1 7.35025 7.35262 3.9131 7.3551 −10.2316 5.56589 0.3793

1Values of μi are in (MPa), αi and βi are dimensionless.
2 β = β1 = β2 = β3.
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