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The individual discipline feasible (IDF) formulation is a modular multidisciplinary de-
sign optimization architecture that promotes the use of disparate discipline analysis tools.
IDF achieves modularity by introducing coupling variables and coupling constraints into the
optimization problem, which enables the state equations for each discipline to be solved in-
dependently at each optimization iteration. However, the increased number of optimization
variables and nonlinear state-based constraints poses a significant challenge to conventional
matrix-explicit optimization algorithms. In this paper, we apply a reduced-space inexact-
Newton-Krylov (RSNK) algorithm to a large-scale, high-fidelity aerostructural optimization of
a commercial airliner wing. Our findings demonstrate that the RSNK algorithm, paired with
a novel matrix-free preconditioner, can solve the IDF problem at least as fast as its multidis-
ciplinary feasible counterpart. In particular, the IDF preconditioner remains highly effective
even in the presence of thousands of coupling constraints.

I. Introduction

The advent of high-performance computing has enabled researchers in both industry and academia to create
predictive computational models for a variety of physical phenomena. The availability of these tools has made
simulation-based design indispensable for the development of new technologies and products by helping engineers
efficiently evaluate more prototypes than would be possible with physical experimentation alone. However, further
design improvements and scientific discoveries beyond what is afforded by single-discipline analysis requires the
consideration of complex multiphysics interactions. Accurate prediction of these systems usually requires the solution of
coupled partial-differential equations (PDEs). This poses a challenge to traditional workflows based on the independent
analysis and design of disparate subsystems.

Multidisciplinary design optimization (MDO) is a powerful methodology that seeks to inform the design of these
complex multiphysics systems. MDO practitioners develop and apply numerical optimization techniques to reveal
trade-offs in the design that may otherwise remain undiscovered. In doing so, however, one would like to take advantage
of existing (well-validated) discipline-specific analysis tools that employ specialized solution methods for their governing
equations. The individual discipline feasible (IDF) formulation [1–3] is an MDO architecture that supports the use
of such disparate PDE solvers by decoupling the disciplines at each optimization iteration. The coupling is instead
addressed within the optimization problem through the introduction of coupling variables and constraints.

Despite its advantages in terms of modularity, IDF has remained largely unused since its introduction in the
early 1990s. One reason is that the large number of nonlinear IDF constraints and optimization variables has
proven to be challenging for conventional optimization algorithms. Dener and Hicken [4] developed a reduced-space
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inexact-Newton-Krylov (RSNK) algorithm and a matrix-free preconditioner tailored for IDF problems to address these
limitations, and demonstrated their effectiveness on two small IDF problems. The findings in [4] indicate that the RSNK
algorithm with the IDF preconditioner can solve IDF problems at least as efficiently as problems posed in the (less
modular) multidisciplinary feasible (MDF) formulation. In the present work, we apply this approach to a high-fidelity
aerostructural optimization test case and evaluate whether our previous observations can be replicated in a large-scale
problem.

The remainder of the paper is organized as follows. First, we introduce the IDF formulation and review the relevant
literature. Next, we provide an overview of both the RSNK algorithm and the IDF preconditioner. Then, we present the
numerical results from the large-scale aerostructural optimization of a commercial airliner wing. We conclude the paper
with a summary of our findings.

II. Individual Discipline Feasible

Our IDF-based optimization framework is applicable to any multidisciplinary system; however, we will describe the
framework in the context of a generic reduced-space aerostructural optimization of a wing:

minimize
x

F (x,u(x, v), v(x,u)),

subject to C(x,u(x, v), v(x,u)) = 0,

governed by R =

(
Raero(x,u, v)

Rstruct (x, v,u)

)
= 0,

where x are the design variables (e.g. wing twist, sweep angle, structural sizing), u are elastic deformations of the wing
box, and v are the flow states. The objective function, F (x,u, v), represents a scalar cost metric that is to be minimized;
for example, a weighted combination of induced drag and wing mass. The general constraints, C(x,u, v) = 0, are
typically imposed on functionals such as lift, pitching moment, or Von Mises stresses in the wing box. In the present
work, we restrict ourselves to equality constraints.

In the reduced-space formulation, the state variables are expressed as functions of the design variables by using the
implicit function theory. The “governed by” notation above signifies that the relationship between the states and the
design variables is described by the PDE residuals for each discipline, Raero = 0 and Rstruct = 0, which are solved
fully at each optimization iteration. In the context of MDO, this formulation is also referred to as multidisciplinary
feasible (MDF), owing to the fact that design points traversed in the optimization always remain feasible with respect to
the fully coupled analysis problem.

The MDF formulation has been successfully applied to high-fidelity aeroelastic problems [5–8]. However, this
approach requires a coupled multidisciplinary analysis and, in the context of gradient-based optimization, a coupled
adjoint solution at each optimization iteration. High-fidelity engineering analysis is traditionally performed by discipline-
specific solvers developed by domain experts, and coupling these disparate solvers presents trade-offs and challenges
in software development. Stationary iterative methods, such as block Jacobi or Gauss-Seidel, offer an easy way to
implement multidisciplinary coupling, but they are not competitive in computational cost compared with monolithic
approaches such as Newton-Krylov [9]. On the other hand, Newton-Krylov coupling requires access to the source code
of the underlying solvers and may be impractical for legacy or commercial software.

The individual discipline feasible (IDF) formulation [1, 2] offers a modular alternative to MDF. For the aerostructural
problem under consideration, the IDF problem statement is as follows:

minimize
x,ū,v̄

F (x,u(x, v̄), v(x, ū)),

subject to C(x,u(x, v̄), v(x, ū)) = 0,

Cid f (x,u(x, v̄), v(x, ū)) =

(
Cū

Cv̄

)
=

(
U(u) − ū

V(v) − v̄

)
= 0,

governed by R =

(
Raero(x,u, v̄)

Rstruct (x, v, ū)

)
= 0,

where U(u) and V(u) are functions that compute terms responsible for coupling between disciplines. In the
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aerostructural problem considered in this work,U(u) would extract only the structural deformations on the wing surface,
whileV(v) would compute the aerodynamic forces on the wing based on the flow states.

The IDF formulation introduces coupling variables, ū and v̄, which stand in for the actual coupling terms in the
multidisciplinary analysis. Consequently, at a given design point (x, ū, v̄), the state equations for each discipline can
be solved independently from each other and in parallel. The coupling variables are then driven by the optimization
algorithm to be equal to the actual coupling terms they represent.

Although IDF offers a significant advantage in terms of modularity, this advantage comes at the cost of a much
larger optimization problem. For a high-fidelity aerostructural problem, such as the one explored in this paper, the IDF
formulation may introduce on the order of 104 additional optimization variables and just as many nonlinear state-based
constraints. This poses a significant challenge to conventional gradient-based algorithms that require the explicit
constraint Jacobian. In the reduced space, the constraint Jacobian is a total derivative, and its explicit assembly involves
one linear adjoint solution for each individual constraint. For the IDF problem, this may entail thousands of adjoint
solutions at each optimization iteration, which is computationally impractical in high-fidelity applications.

III. Reduced-Space Inexact Newton-Krylov

To solve the IDF problem efficiently, we adopt an inexact Newton-Krylov approach, which is known to exhibit
favorable algorithmic scaling with respect to the number of variables on a range of nonlinear problems. In particular, we
draw inspiration from inexact-Newton methods that have been successfully applied to large, full-space single-discipline
optimization problems [10–14].

We have introduced this RSNK algorithm in previous work where we studied its algorithmic scaling on a single-
discipline high-fidelity problem [15] and demonstrated its efficacy on a pair of small IDF test problems [4]. In the
present work, we will briefly review the algorithm’s major components and apply it to a large-scale, high-fidelity
aerostructural test case.

To facilitate the review, we first introduce a general reduced-space PDE-governed optimization problem:

minimize
y

F (y,w(y)),

subject to C(y,w(y)) = 0,
governed by R(y,w) = 0.

This generic problem can encapsulate the IDF formulation by defining yT = (xT , ūT , v̄T ) andwT = (uT , vT ). Similarly,
the state equations and the IDF coupling constraints are combined under R and C, respectively. This general optimization
statement ensures that the RSNK algorithm is broadly applicable to all reduced-space PDE-governed optimization
problems with equality constraints.

Next, we formulate the reduced-space Lagrangian,

L(y,λ) = F (y) + λTC(y),

and differentiate it to obtain the first–order necessary conditions,

dL
dy
=

dF
dy
+ λT

dC
dy
= 0,

dL
dλ
= C = 0,

(1)

where d/dy and d/dλ denote total derivatives with respect to the design variables and Lagrange multipliers, respectively.
In reduced-space PDE-governed optimization, these total derivatives can be efficiently computed via the adjoint method
[16, 17].

In the RSNK algorithm, we apply Newton’s method to (1) to produce the primal-dual system,[
W AT

A 0

] (
py

pλ

)
= −

(
dL
dy
dL
dλ

)
, (2)

where W = d2L/dy2 is the Hessian of the Lagrangian and A = dC/dy is the constraint Jacobian. We solve this system
inexactly at each Newton iteration using a Krylov solver, and we leverage the fact that Krylov solvers require only
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matrix-vector-product and preconditioning operations. This approach enables the RSNK algorithm to avoid explicit and
computationally intractable assembly of the constraint Jacobian and the Hessian.

Matrix-vector products with the primal-dual matrix in (2) are computed by a second-order adjoint formulation
[4, 15, 18–20]. This approach entails two linear-system solutions, based on the PDE Jacobian, for each product,
irrespective of the number of design variables and nonlinear constraints. In our previous numerical experiments on
an aerodynamic shape optimization problem, we demonstrated that this matrix-free product is an important factor in
achieving good algorithmic cost scaling with respect to the size of the design space [15]. This adjoint-based product is
summarized in Appendix A.

The choice of Krylov solver in the RSNK algorithm is also critically important. Popular solvers such as generalized
minimum residual (GMRES) [21] can be used only in convex cases where the Hessian of the Lagrangian, W, is
positive-definite in the null space of the constraint Jacobian, A. In general nonconvex applications, however, GMRES
can converge to stationary points that are not necessarily local minimizers. To account for this possibility, we use a
Krylov method, called flexible equality-constrained subproblem (FLECS) solver [22], that utilizes a quadratic penalty
and a trust radius constraint.

The Newton step is globalized by a trust-region approach [23] that marries effectively to the trust radius constraint in
the FLECS subproblem. Step acceptance is determined through a simple filter [24], and a rejection leads to an efficient
re-solve that recycles the Krylov subspace built up during the original solution of the Newton step.

These building blocks are combined into the complete RSNK algorithm shown in Alg. 1 in Appendix B, which
originally appeared in [4].

IV. Matrix-Free Preconditioner for Individual Discipline Feasible

A preconditioner is an operator that approximates the inverse of a target matrix and is relatively inexpensive to
apply. The application of a preconditioner is meant to improve the conditioning of linear systems of equations, and
thereby improve the rate of convergence of iterative methods used to solve these systems. In the present work, we adopt
a left-preconditioning approach that transforms the linear system Kx = b into P−1Kx = P−1b where P−1 ≈ K−1.

The RSNK algorithm uses a Krylov iterative method to solve the primal-dual system in (2), which is an ill-conditioned
saddle-point system [25] that needs to be preconditioned in order for the Krylov solver to not only produce high-quality
step directions but also achieve good rates of convergence. This preconditioning is particularly important in the
large-scale, high-fidelity applications targeted in the present work, where the size of the Krylov subspace (and, hence,
the number of iterations the Krylov solver is allowed to take) is often restricted to 10 to 20 vectors because of the
computational expense of each matrix-vector product and potential memory limitations of the computer.

To that end, we have developed a novel matrix-free preconditioner for the IDF architecture based on approximately
inverting the IDF constraint Jacobian, which has the form

Aw̄ =
dCid f
dw̄

=

[
dCū
dū

dCū
dv̄

dCv̄
dū

dCv̄
dv̄

]
=

[
−I dCū

dv̄
dCv̄
dū −I

]
(3)

for a two-discipline problemwhere w̄T = (ūT , v̄T ). Applying this preconditioner to an arbitrary vectorzT = (zTx, zTw̄, z
T
λ)

involves approximately solving a preconditioner system,
I 0 AT

x

0 0 AT
w̄

Ax Aw̄ 0


©«
px

pw̄

pλ

ª®®¬ =
©«
zx

zw̄

zλ

ª®®¬ , (4)

where Ax = dC/dx denotes the total derivative of the general constraints with respect to the design variables.
We solve (4) with a three step process.
1) Solve AT

w̄pλ = zw̄ for the preconditioned dual pλ.
2) Compute the preconditioned design px = zx − AT

xpλ.
3) Solve Aw̄pw̄ = zλ − Axpx for the preconditioned coupling variables pw̄.

The linear systems in Steps 1) and 2) are solved by GMRES, where the products with the constraint Jacobians are
computed by a second-order adjoint formulation similar to the one used for the primal-dual matrix in (2). Additionally,
a limited-memory quasi-Newton approximation could be used in place of the identity matrix replacing the Hessian
block; however, in our experiments, this did not yield any noticeable improvement.
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(a) Planform view.

(b) RAE 2822 airfoil[27].

Fig. 1. Geometry of the wing used in the aerostructural optimization.

For implementation details and the invertibility proof of these Jacobians, we refer the reader to our previous
publications [4, 20].

V. Numerical Results

Having reviewed the RSNK algorithm and the IDF preconditioner, we will now exercise them on a large-scale
aerostructural design optimization problem. In the following subsections, we analyze the efficacy of the IDF
preconditioner and compare the RSNK convergence characteristics and computational cost of both the MDF and IDF
architectures. Additionally, we benchmark the RSNK algorithm on the MDF problem against SNOPT [26], a robust
quasi-Newton sequential quadratic optimization algorithm.

A. Optimization Problem Statement and Setup
The test case is based on a tapered swept wing with RAE 2822 airfoil sections, as shown in Fig. 1. The sizing of the

problem is based on a Boeing 717-200HGW, with maximum take-off weight (MTOW) of 54, 884 kg, service ceiling of
11, 000 m, and cruise speed of 0.77 Mach (822 km/h).

The optimization statement for this problem is

minimize
x

1
2

D
D0
+

1
2

m
m0
,

subject to L =
MTOW

2
, KS

(
σribs,spars

σyield

)
= 1, KS

(
σskin,upper

σyield

)
= 1, KS

(
σskin,lower

σyield

)
= 1,

governed by RAero = 0, RStruct = 0.

The objective function is an equally weighted combination of the scaled drag, D/D0, and scaled wing mass, m/m0; the
drag and mass are scaled by their initial values, D0 and m0, respectively. The optimizer manipulates 6 twist variables (at
0%, 20%, 40%, 60%, 80%, and 100% along the half-span) and 108 structural sizing variables (thicknesses of the spars,
ribs, and skin elements) for a total of 114 design variables.
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Table 1. Size of the aero-structural optimization problem for each MDO architecture.

MDF IDF

Aerodynamic design variables 6 6
Structural design variables 108 108

Coupling variables 0 8400

Total number of optimization variables 114 8514

Aerodynamic constraints 1 1
Structural constraints 4 4
Coupling constraints 0 8400

Total number of state-based constraints 5 8405

The lift, L, is constrained to be half the MTOW to account for a single-wing solution. The stress constraints are
separated into three structural groups: the ribs and spars; the upper skin; and the lower skin. For each group, the
scaled Von Mises stresses, σv/σyield , are aggregated by a Kreisselmeier-Steinhauser (KS) function [28]. For a vector of
constraints, c ∈ RK , the KS function is defined as

KS(c) =
1
ρ

ln

(
K∑
k=1

exp(ρck)

)
,

where ρ is a user-defined parameter that controls the smoothness and accuracy of the KS aggregation. Higher ρ values
increase the accuracy of the KS function in estimating cmax but also increase the condition number of the Hessian. For
the present work, we have adopted a recommended value of ρ = 50 [29–32].

In general, the stress constraints should be imposed as inequality constraints. However, the IDF-based RSNK
algorithm currently supports equality constraints only. To account for this limitation, we investigated the inequality
constrained problem using SNOPT and observed that the stress constraints are active at the optimum. Hence, the stress
constraints can be safely converted to equalities without changing the optimum solution. For this conversion, we also
take advantage of the fact that the KS function is a “conservative” aggregation method such that

cmax ≤ KS(c) ≤ cmax +
ln(K)
ρ

.

In this application, we set the aggregated KS constraints to be equal to 1, which signifies the boundary of the Von Mises
yield criterion where σv = σyield . The overestimation of the Von Mises stresses by the KS aggregation acts as a built-in
factor of safety on the structural design, ensuring that the discrete stress values do not exceed the yield stress. For the
optimization results presented in this section, both RSNK and SNOPT solve the equality-constrained problem based on
this approach.

The IDF implementation of this problem introduces an additional 8, 400 coupling variables and coupling constraints:
4, 200 accounting for aerodynamic forces on the wing surface, and 4, 200 accounting for the structural deformations of
the wing surface. The optimization problem sizes for both MDF and IDF are summarized in Table 1, and the complete
list of optimization parameters used in this problem is provided in Table 2 in Appendix B.

1. CFD Solver
The flow solver used in the multidisciplinary analysis is ADflow (formerly known as SUMad or SUmb) [33], a

finite-volume solver for compressible Euler, laminar Navier-Stokes, and RANS equations, with support for a variety of
turbulence models. ADflow also provides PDE Jacobian products, partial derivative evaluations, and adjoint solutions
via matrix-free automatic differentiation. Mesh movement is performed by an efficient analytic inverse distance method
[34].
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Fig. 2. Structural wing box used in the aerostructural problem.

For the aerostructural optimization case, the flow is modeled by the compressible Euler equations discretized on
a structured grid with 96, 767 cells. The Mach number and the angle of attack are fixed at M = 0.77 and α = 2.0°,
respectively.

2. Structural Solver
The elastic structural deformations under aerodynamic loads are predicted by the Toolkit for the Analysis of

Composite Structures (TACS) [35]. The wing box, shown in Fig. 2, consists of 7, 632 quadrilateral plate elements. The
material of the wing box is Aluminum 2024, with a density of ρ = 2780 g/m3, Young’s modulus of E = 73.1 GPa, and
yield stress of σyield = 326 MPa.

3. Multidisciplinary Solution for MDF
The coupled aerostructural analysis required by the MDF architecture is performed using a nonlinear block Gauss-

Seidel approach with Aitken acceleration [36]. The aerodynamic forces and structural displacements are transferred by
rigid links between the structural elements and the aerodynamic surface [37].

Coupled adjoint and forward linear systems are solved in a monolithic manner by flexible GMRES [38]. Both
solutions are preconditioned by block Jacobi, which reuses the independent discipline preconditioners for the discipline
forward and adjoint problems.

B. IDF Preconditioner Results
Fig. 3a shows the Krylov convergence history for the solution of the IDF KKT system with and without the

IDF preconditioner. This particular history, drawn from the initial solution, is representative of the typical Krylov
convergence behavior on this problem. We can see that the IDF preconditioner is critically important to the quality of
the Newton step. Without the preconditioner, the KKT system cannot be solved to the required tolerance. This result
demonstrates that the IDF preconditioner maintains its effectiveness even with thousands of coupling constraints present
in the problem.

This observation prompts us to investigate Steps 1) and 3) in the preconditioner application more closely. Fig. 3b
shows a sample convergence history for these nested solutions, which are representative of the typical nested solutions
at all optimization iterations.

One can immediately see that the nested solutions converge rapidly, indicating that the IDF constraint Jacobian is
well conditioned. To understand why, recall that the Jacobian of the IDF coupling constraints takes the following form
for a two-discipline problem:

dCid f
dw̄

=

[
dCū
dū

dCū
dv̄

dCv̄
dū

dCv̄
dv̄

]
=

[
−I dCū

dv̄
dCv̄
dū −I

]
.

The rapid convergence of the linear systems that use this Jacobian suggests that the identity matrix blocks dominate
the off-diagonal blocks. We also observed the consistent trend that the initial residual norm for the Step 3) solution is
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Fig. 3. Krylov convergence histories.

approximately two orders of magnitude lower than Step 1) and converges in fewer iterations as well. The reason for this
is unknown, and requires further study. Ultimately, however, the IDF preconditioner’s success on the present problem,
with 8, 400 coupling variables and constraints, suggests that the preconditioner can be applied effectively to even larger
problems in the future.

C. Optimization Results
The MDF and IDF algorithms recover approximately the same solution for the aerostructural problem, producing

the same optimum coefficient of drag and mass to the fourth decimal place. This optimum offers a 74.4% reduction in
mass from the initial design, with a 32.2% penalty in the total drag, for an overall 21.1% improvement in the objective.

The initial and optimal lift and spanwise twist distributions are shown in Fig. 4. These results are plotted only for
the RSNK solution of the MDF problem; the SNOPT solution of the MDF problem and the RSNK solution of the IDF
problem are both visually indistinguishable from this result.

The initial lift distribution is close to elliptical, which is the aerodynamic optimum that minimizes induced drag. The
multidisciplinary aerostructural optimum, however, increases the twist angle at the root and decreases it at the wingtip,
thereby producing a wash-out that significantly reduces the stresses in the wing box and permits a lower mass structure.

Fig. 5a shows the RSNK convergence histories for the MDF and IDF implementations of the aerostructural problem.
The RSNK algorithm exhibits the expected superlinear asymptotic convergence in both cases. The computational cost
for these optimization runs are measured in CPU time, normalized by the needed to perform a single multidisciplinary
analysis at the initial design. The results demonstrate that the RSNK algorithm is able to solve the IDF problem at least
as efficiently as MDF.

As a final benchmark, we solve the MDF problem using SNOPT. The convergence history for this optimization is
shown in Fig. 5b. SNOPT is able to solve this MDF problem, with 114 design variables, approximately 22% faster than
RSNK using either the MDF or IDF formulation. This observation is in line with the cost scaling comparison we have
performed in previous work [15]. Based on our studies, we expect the RSNK algorithm to become more competitive on
larger problems, with more design variables and state-based constraints than are present in this particular aero-structural
problem.

While SNOPT can solve the MDF formulation, we emphasize that solving the IDF problem with SNOPT is
computationally intractable; SNOPT requires the constraint Jacobian to be provided explicitly, which involves 8400
adjoint solutions at every optimization iteration for this aero-structural test case. The RSNK-IDF approach, on the other
hand, has a computational cost comparable to the SNOPT-MDF solution, while offering modularity in the underlying
PDE solvers.
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Fig. 4. Initial and optimal solutions for the aerostructural problem.
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Fig. 5. Optimization convergence histories for the aerostructural problem.

9



VI. Conclusion

We solved a challenging large-scale aerostructural optimization problem using the reduced-space inexact Newton-
Krylov (RSNK) algorithm implemented with both the multidisciplinary feasible (MDF) and individual discipline
feasible (IDF) formulations. To the best of our knowledge, the present work is the first application of the IDF architecture
to a high-fidelity aerostructural optimization problem.

Our results demonstrate that the RSNK algorithm can successfully solve a large-scale IDF problem at least as
efficiently as its MDF counterpart. Additionally, the computational cost of the RSNK-IDF approach is comparable to
the solution of the MDF problem with SNOPT [26], a quasi-Newton algorithm. This is a significant finding, since IDF
offers valuable advantages in the modularity of the underlying PDE solvers and ease of implementation in the discipline
coupling. Addressing the computational cost challenges associated with the added coupling variables and constraints
enables the use of the IDF architecture as a practical and viable alternative to the commonly used MDF formulation.

We note that the matrix-free IDF preconditioner has been instrumental in achieving this result. We had previously
established its efficacy using low-fidelity 2-D test problems featuring on the order of one hundred coupling constraints
[4]. This aerostructural problem demonstrates that the IDF preconditioner remains effective with 8, 400 coupling
constraints. This increases our confidence in the preconditioner’s general applicability to high-fidelity, large-scale
multidisciplinary optimization problems.
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Appendix

A. Second-order Adjoint Formulation for KKT Matrix-Vector Products

We begin by recognizing that the KKT matrix in (2) is the Jacobian of the KKT conditions. Consequently, we can
approximate products with this matrix and an arbitrary vector zT = (zTy, zTλ) via forward differencing on (1),

Kz =

[
W AT

A 0

] (
zy

zλ

)
≈

1
ε

(
G(y + εzy,λ + εzλ) − G(y,λ)

C(y + εzy) − C(y)

)
, (5)

where G = dL/dy is the total derivative of the Lagrangian with respect to the design variables and ε is the
finite-difference step size.

In reduced-space formulations, the evaluation of the right-hand side in (5) involves the solution of nonlinear state
equations as well as the first-order adjoint at the perturbed design point, (y + εzy). While the linear system solution
associated with the first-order adjoint is unavoidable, we can adopt a second-order adjoint approach to replace the
nonlinear state solution with a linear problem.

Let (w + εσ) be the state corresponding the perturbed design point (y + εzy) such that

R(y + εzy,w + εσ) = 0. (6)

For an infinitesimal perturbation ε , we can use a first-order Taylor expansion to expand the left -and side of (6) to arrive
at

R(y + εzy,w + εσ) = R(y,w) + ε
∂R

∂y
zy + ε

∂R

∂w
σ + O(ε2) = 0. (7)

Recognizing that R(y,w) = 0 and taking the limit as ε → 0, we arrive at the linear system,

∂R

∂w
σ = −

∂R

∂y
zy, (8)

where σ is a second-order adjoint, so-called because it helps us assemble second-derivative information associated with
the KKT matrix.

We can repeat this process for the first-order adjoint residual,

S(y,w,λ,ψ) =
∂J

∂w
+ λT

∂C

∂w
+ψT ∂R

∂w
= 0, (9)

and produce the linear system, (
∂R

∂w

)T
φ = −

(
∂C

∂w

)T
zλ −

[
∂S
∂y

∂S
∂w

] (
zy

σ

)
, (10)

where φ is another second-order adjoint that defines the first-order adjoint (ψ + εφ) corresponding to the perturbed
primal-dual point (y + εzy,λ + εzλ).

Solving (8) and (10) yields all the information necessary to assemble the KKT matrix-vector product in (5), at a fixed
cost of two PDE linear system solves, independently from the number of design variables and number of constraints in
the optimization problem.
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B. Complete RSNK Algorithm

Algorithm 1: Reduced-space inexact Newton-Krylov with filter globalization.

Data: y0, λ0, µ0, η0, ∆0, ∆min, ∆max, τp , τd
Result: estimate for the optimal solution (y∗,λ∗)

1 set µ = µ0, η = η0, ∆ = ∆0
2 for k = 0, 1, 2, . . . ,max_iter do // start Newton loop
3 compute KKT conditions ∇Lk = (G

T
k
, CT

k
)T

4 if ‖Gk ‖ ≤ τp ‖G0‖ and ‖Ck ‖ ≤ τd ‖C0‖ then // check convergence
5 set (y∗,λ∗) = (yk,λk) and return
6 end
7 set µ← max [µ, µ0‖C0‖/min (‖Gk ‖, ‖Ck ‖)]
8 set η← max

[
η, min

(
1.0,

√
∇Lk/∇L0

)
, min

(
τp/‖Gk ‖, τd/‖Ck ‖

) ]
9 solve (2) for sk = (pT ,dT )T using FLECS, with tolerance η, penalty µ, and trust radius ∆
10 for i = 0, 1, 2, . . . ,max_filter_iter do // start filter loop
11 if [F (yk + p), ‖C(yk + p)‖] is not dominated by filter then // step accepted by filter
12 if i = 0 and ‖p‖ = ∆ then set ∆← min(2∆, ∆max)
13 set filter_success = true, and exit filter loop
14 else // step rejected by filter
15 if i = 0 then
16 compute second-order correction pc
17 if [F (yk + p + pc), ‖C(yk + p + pc)‖] is not dominated by filter then
18 set filter_success = true, set p← p + pc , and exit filter loop
19 end
20 end
21 if ∆ = ∆min then optimization failed, raise error
22 set ∆← max(∆min,

1
4 ∆), and re-solve (2) for sk using FLECS with updated trust radius ∆

23 end
24 end
25 if filter_success then set yk+1 = yk + p and λk+1 = λk + d
26 else set yk+1 = yk and λk+1 = λk

27 end

Table 2. Optimization parameters for the aerostructural test case used in Alg. 1.

Parameter Value

relative optimality tolerance (line 4), τp 10−5

relative feasibility tolerance (line 4), τd 10−5

initial penalty parameter (line 1), µ0 1.0
initial Krylov tolerance (line 1), η0 0.5

Krylov subspace size(line 9) 20
initial trust radius (lines 1), ∆0 0.5

minimum trust radius (lines 21-22), ∆min 10−4

maximum trust radius (line 12), ∆max 4.0
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