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ABSTRACT

Increases in the computational power of massively parallel machines have facilitated the

implementation and execution of numerical simulations of unprecedented scale and fidelity.

When the physical mechanism governing the action of interest in a simulation occurs at a

scale orders removed from the desired resolution of the solution, even modern leadership

class machines are insufficient to provide full granularity. Multi-scale numerical simulations

allow the coupling of multiple scales of interest in order for the multi-scale simulation to

reflect important properties of each scale.

The whole-clothe implementation of multi-scale simulations targeting massively par-

allel machines requires a substantial investment of man-hours. Leveraging existing, well-

established single-scale simulations already in wide use in order to construct new multi-scale

systems will allow a reduction in development time and costs to produce novel new multi-

scale systems.

The design and development of the Adaptive Multi-scale Simulation Infrastructure

(AMSI) along with the design and implementation of a multi-scale soft biological tissues

code is discussed. The parallel characteristics and implications of the AMSI component-

code coupling approach are considered in the context of the soft tissue multi-scale code.

Modern simulations on leadership-class machines also leverage dynamic and adaptive

capabilities to load balance simulations during execution and reduce time-to-solution. In-

tegration of such codes into a multi-scale system must allow for the use of dynamic load

balancing operations while maintaining all inter-scale linkages.

The deployment of codes designed for massively parallel machines relies on the lever-

aging of various component libraries, often fulfilling similar purposes but targeted at specific

machine architectures to provide optimal performance. Accessing these component libraries

through mechanisms providing for the use of a generic interface over a component code

targeted to a particular platform allows for the development of algorithms once and their

deployment and optimization on various platforms without the need to explicitly modify

code. Implementation of such a mechanism should necessarily introduce minimal overhead

into the resulting simulation, with a goal of zero-overhead abstraction of the various compo-

nent backends.

xi



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Multi-scale numerical simulations have undergone rapid advancement in recent years.

Increases in the computational power of massively parallel machines have facilitated the

implementation and execution of numerical simulations of unprecedented scale and fidelity.

However, when the physical mechanism governing the action of interest in a simulation occurs

at a scale orders removed from the desired resolution of the solution, even modern leadership

class machines are insufficient to simulate the domain with full granularity.

No fully general model or methodology for the development and implementation of

multi-scale simulations yet exists. Many approaches have been developed and efforts are

ongoing to define a general multi-scale modeling ontology and implementation formalisms

to produce and execute new simulation codes. Beyond the development and implementa-

tion phases of a general multi-scale simulation production methodology there are numerous

challenges with respect to the rapidly advancing standards of the HPC space.

Thousands of man-hours have been devoted to the development of effective simulation

codes and software suites. This existing set of proven simulation capability provides a rich

source of development components in the construction of new multi-scale simulations [1].

The method of implementation for most massively parallel numerical simulation codes

is single-program multiple-data (SPMD), where each processing core associated with the

simulation is assigned some subset of the data to process, taking part in parallel communi-

cation (in-memory or message passing) where necessary to continue valid computation. This

implementation paradigm is versatile and widely used, and exhibits good parallel scaling

characteristics when leveraged correctly.

The bespoke development of multi-scale simulations using the SPMD paradigm neces-

sarily allows for the highest level of granularity with respect to implementation restrictions

specific to the HPC space, incorporating many specific optimization strategies. The use

of the SPMD strategy to produce a combined, tightly-coupled multi-scale simulation code

necessarily requires the extensive modification of existing codebases or the redundant devel-

opment of capabilities already provided in the set of single-scale simulation components.

1



2

Developing capabilities to incorporate existing SPMD codes to produce novel multi-

scale systems avoids repetitious developments and will allow for a reduction in initial devel-

opment times [2].

The effective deployment of a simulation code on a variety of hetero- and homo-geneous

computing platforms presents an additional consideration in the development of methods for

code implementation.

Hardware developments in recent years have resulted in HPC machines with less ar-

chitectural homogeneity. Many machines on the current Top500 list include computational

accelerators such as the Xeon Phi and NVIDIA K40. The introduction of the accelerator into

the HPC space has complicated the implementation of new codes in order to leverage the full

power offered by such devices. Even with such complications, the SPMD paradigm remains

the dominant implementation strategy for massively parallel simulation code development.

The operations developed to support code development on a variety of HPC machines

must result in adequate performance, utilization, and parallel scaling metrics in the resulting

simulation codes. The varying restrictions placed on the development of such a multi-scale

coupling technique to combine existing predominantly SPMD simulation codes in a massively

parallel distributed execution environment in a manner generally applicable to all classes of

multi-scale simulation represents a substantial set of difficulties.

Toward the production of a general methodology of multi-scale software implemen-

tation we developed the Adaptive Multi-scale Simulation Infrastructure (AMSI), a set of

libraries and tools to support the implementation of multi-scale simulations targeted at

HPC machines, and supporting parallel dynamic and adaptive simulation techniques.

1.2 Outline

In order to make the construction of multi-scale simulation codes accessible to devel-

opers in the HPC space, we have develop a set of libraries supporting the general operations

required to couple together existing single-scale simulation codes. The AMSI multiscale

library provides the computational abstractions and operations required to construct a new

multi-scale simulation with minimal intervention in the existing operations of a single-scales

simulation code. We discuss the implementation of a multi-scale soft biological tissue sim-

ulation using the capabilities provide by AMSI multiscale. We extend the capabilities

of the AMSI multiscale library to allow for the dynamic migration of single-scale data
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in the context of a coupled multi-scale simulation and use these capabilities to implement a

dynamic load balancing operation on the multi-scale soft tissue simulation.

Further we provide a method of implementing zero-overhead abstraction layers for use

in implementing algorithms for deployment on machines with varied architectural consider-

ations.

Chapter 2 introduces key features of multi-scale simulation methodologies and discusses

existing multi-scale frameworks developed to support multi-scale simulation. Chapter 2 also

discusses the design and development of the Adaptive Multi-scale Simulation Infrastructure

(AMSI), a set of libraries supporting the implementation of a multi-scale simulations through

the combination of existing single-scale simulation codes. Further it provides a discussion

of the implications of key design decisions on the parallel structure and performance of a

resulting application code.

In chapter 3 the development of a multi-scale application for the simulation of soft

biological tissues using the AMSI libraries discussed in chapter 2 is covered. An overview of

the mechanics being simulated at each scale in the simulation is provided, and a description

of the scale-linking mechanisms is discussed, as well as the implementation of the scale-

coupling procedure using the AMSI libraries. Several examples of test problems constructed

and run with the multi-scale system are provided, as well as the results of these runs. The

parallel properties of the simulation are also explored with discussion of how they related to

the design of the AMSI multi-scale functionality.

Chapter 4 provides a review of the concepts of dynamic load balancing in the con-

text of HPC applications. Further it discusses load balancing individual simulation scales in

the context of a multi-scale application developed using AMSI, including additional require-

ments placed on the load balancing procedure and an algorithmic description of the process

of scale-sensitive load balancing required to retain inter-scale validity in multi-scale simu-

lations. Usage of these load balancing operations on the multi-scale soft tissue simulation

from chapter 3 is discussed.

In chapter 5 the development of abstraction layers for use in HPC applications is dis-

cussed. Goals and requirements for such APIs is provided, and a method of implementing

such abstraction layers in C++ is developed. This approach is used to implement an abstrac-

tion layer for interacting with linear algebraic data structures (LAS). The LAS abstraction

layer is used in the implementation of the soft tissue code from chapter 3, and for several key
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operations in the under-development multi-scale fusion codes XCGM and M3D-C1. Com-

parison between use of the provided optimized abstraction layer versus several other forms of

commonly-used abstraction layer implementation and direct usage of a third party backend

are provided.

Finally in chapter 6 directions for extension and future work are discussed in more

depth, with brief road maps and considerations for continued development in these areas.

1.3 Contributions

This thesis primarily concerns the implementation of multi-scale simulations on HPC

machines. During the work performed to create this thesis, novel contributions have been

achieved through:

• Developing and implementing a set of software libraries to ease the implementation

of new multi-scale simulations and interactions through the combination of existing

single-scale simulations.

• Development of a multi-scale simulation for modeling soft tissues by combining inde-

pendent single-scale simulation codes.

• Applying the multi-scale soft tissue simulation code to problems of interest in the

scientific community today.

• Allowing the use of existing load-balancing techniques for improving computational

performance of individual scale-codes in a multi-scale simulation while retaining inter-

scale linkages.

• Making use of the new load-balancing capabilities in the soft-tissue simulation to at-

tempt to increase simulation performance.

• The design and implementation of abstraction layers with zero overhead, possessing

properties allowing both for the ease of swapping out underlying libraries and support-

ing usage in HPC environments.

• Application of the LAS zero-overhead abstraction layer for linear algebraic operations

in multiple codebases.



CHAPTER 2

THE ADAPTIVE MULTI-SCALE SIMULATION

INFRASTRUCTURE – AMSI

2.1 Multi-scale Simulation

The development of new numerical simulations has proliferated rapidly in the last sev-

eral decades. The dramatic increases in computational power of massively parallel machines

has facilitated the implementation and execution of numerical simulations of unprecedented

scale and fidelity. When the physical mechanism governing the evolution of the system oc-

curs primarily at a scale orders removed from the desired resolution of the solution, even

massive increases in computation power is insufficient in many cases. Multi-scale simula-

tion techniques offer a method of executing simulations and producing results on a domain

orders of magnitude removed from key underlying phenomena originating from finer scales

and accounted for through the application of scale-coupling methods.

Multi-scale simulation broadly falls into two categories: concurrent and hierarchical

problems. These categories are most readily distinguished by the relationships between the

interacting scales in a problem.

In concurrent problems the domain of each scale is modeled using similar physical

dimensions: the standard units used to describe the scale will typically fall within several

orders of magnitude of each other. Interface surfaces or overlap regions are used to transfer

relevant physical tensor field information between scales. The transfer of relevant tensor field

values allow the scales to influence one another and gives rise to multi-scale behaviors in the

problem simulation.

The Domain Decomposition Methods (DDM) [3] and the Quasicontinuum Methods

(QM) [4] both allow the implementation of concurrent multi-scale problems. DDM allows

the implementation of multi-physics continuum-to-continuum coupling while QM is used to

couple atomistic models to continuum regions in a macro-scale domain.

Hierarchical problems are characterized by strongly-separated scale behaviors. The

domain relationship between two such scales is often reduced to the existence of ”micro-

scale” simulations occurring at various points throughout the larger-scale simulation. The

5
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tensor field couplings which give rise to multi-scale behavior occur at each point in the

macro-scale simulation at which a micro-scale simulation is embedded. The local value of

tensor field data is used to establish conditions at the micro-scale, which in turn produces a

tensor field value relevant to the evolution of the macro-scale simulation. Hierarchical multi-

scale simulations typically require up- and down-scaling operations to account for differences

between the coupled scales.

Hierarchical problems can be implemented with the use of information passing schemes

in which a well-defined set of parameters is transmitted between the simulation scales [5]–[7].

This approach effectively takes out the use of a constitutive model to guide the evolution

of a simulation and replaces it with the response of a set of coupled mirco-scale simulations

placed at distinct points through the macro-scale domain.

The Heterogeneous Multiscale Methods (HMM) [8], [9] are methods used to solve multi-

scale problems with either localized regions of macroscopic model failure or problems without

a known macroscopic model entirely. HMM is well-suited for application to hierarchical

problems as it does not require the existence of a macro-scale constitutive model, allowing

the micro-scale simulations to fully guide system behavior.

An example of scale separation maps [10] associated with these multi-scale problem

categories can be seen in figure 2.1. Further discussion of the taxonomy of multi-scale mod-

eling as given in [11] is a useful primer on the various categories of multi-scale models, with

accompanying examples for each category to further elucidate the concepts. Implementa-

tion of multi-scale numerical simulations typically rely on either an ad-hoc set of algorithms

designed for a particular problem or on implementation within a framework. Ad-hoc ap-

proaches, by their nature, are targeted to a particular multi-scale problem for a specific set

of specifically-coupled single-scale models, and thus offer little or no opportunity to effec-

tively implement alternative multi-scale simulation capabilities. Framework approaches are

more flexible and admit a broader range of reuse, but typically necessitate that single-scale

operations be adapted to work in the ecosystem they create.

Many thousands of man-hours have been devoted to the development of various indus-

try standard single-scale simulation codes and suites. The development of tightly-coupled

multi-scale codes wherein the individual scales are not separate at the implementation level

is possible, but such an approach would often involve redundant development of capabilities

already available in existing – highly developed – physics codes. Developing capabilities to
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Fig. 2.1: Hierarchical and Concurrent Scale Separation Maps

incorporate existing codes to produce novel multi-scale systems avoids repetitious develop-

ments and will allow for a reduction in initial development times [2]. This minimization of

imposed requirements on single-scale codes being coupled – accompanying the requirement

that any HPC code should exhibit good parallel performance in a variety of metrics includ-

ing scaling and process utilization – forms the basis of the requirements for our multi-scale

system.

2.2 Multi-scale Frameworks

Foremost a multi-scale framework needs to support the introduction and solution of

each of the single-scale models involved in the multi-scale model. It must provide the capa-

bility to link introduced scales together through the communication of data between physical

tensor fields existing at each scale. Finally it must accomplish the above goals while exe-

cuting effectively on large scale parallel computing systems required to provide the level of

computation needed for such problems.

Most generally, software intended to support multi-scale simulations needs to “enable

the introduction of new models, algorithms, and data structures” [12], to effectively incor-

porate new single-scale models and incorporate them into novel multi-scale systems.

Multi-scale frameworks should minimize the required development time in order to
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allow developers to quickly iterate on new multi-scale simulation designs as they develop

new models. As such, the refactoring of existing codes (single-scale simulation codes) a

developer may want to use as a basis for the development of new multi-scale simulations

should be minimized.

The public interfaces used to by an application developer to implement new multi-

scale coupling of distinct scales should be understandable and use generic types and hooks

where appropriate in order to allow a developer to supply new data structure and extend

the behavior of coupling algorithms.

A set of well-defined modules with distinct interfaces should be implemented, espe-

cially as this concerns data ownership and simulation state. State data should be query-able

through interfaces in order for coupled codes to maintain consistency throughout the simula-

tion. Implementing general code, or providing mechanisms to extract important underlying

data in general formats is necessary.

With these qualities relating to extensability, multi-scale application developers would

be required to adhere to specific data structures and algorithms, or write their own wrapper

code in order to translate specialized between specialized data structures. These issues and

rationales concerning multi-scale software development are further discussed in [12].

Beyond extensability the simulation code produced through use of a framework must

be performant. A primary focus on HPC machines is parallel scalability of the resulting

code in order to apply the code to problems of sufficient granularity to provide meaningful

insight. Beyond parallel scaling of the simulation, the resulting code should also maximize

process utilization in order to (1) reduce time-to-solution and (2) to use the computational

resources available as cost-effectively as possible.

The extensability and performance focuses often conflict in practice, as extensible and

generic development priorities may sacrifice performance and the most performant code

usually sacrifices ease of extensability. There are many different approaches taken toward

balancing these issues. Some frameworks choose to focus primarily on producing the most

performant code possible, which typically requires a developer extensively refactor any ex-

isting codebase in order to make use of the framework features and achieve the goal of

performant code. Conversely some prefer to allow for easy extensability to allow quick de-

velopment turnaround so the exploration of novel multi-scale models can occur more rapidly.

Given the extensive existing single-scale codebases in use in both industry and academia
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and the countless man-hours which have gone into their development, our approach is to focus

primarily on ease of extensability to allow the incorporation of existing, legacy codebases

into new multi-scale simulations. Performance is considered and prioritized as well, but in

cases where a method of increasing performance would sacrifice simplicity of implementation

priority is given to ease of implementation.

There are numerous multi-scale frameworks currently in development intended to facil-

itate the implementation of multi-scale simulations on HPC machines. We do not intend to

provide a full survey of such frameworks in this section but rather to provide representative

examples that take alternative approaches as to be able to see the strengths and weaknesses

of these approaches.

The Uintah Problem Solving Environment (PSE) [13] is a framework developed at the

University of Utah intended to allow the intuitive combination of parallel simulation compo-

nents into novel scientific applications, including but not limited to multi-scale simulations.

Each component in the Uintah system is designed to solve a PDE on a structured AMR

grid, and must adhere to a C++ API used to establish connections between components.

All components are decomposed into a set of discrete tasks, each of which has a well-defined

set of required input and output data. The information about these tasks is expressed in the

form of a directed acyclic graph (DAG) [14], and is used by the Uintah system to schedule

task execution across the HPC system. The parallel communication necessary to provide

task input and output occurs through a data warehousing structure which controls access to

local and global data.

The Mesh-Based Parallel Code Coupling Interface (MpCCI) [15] is a library which

facilitates the coupling of simulation codes based on the underlying domain grid over which

simulation data (specifically tensor field values) are distributed. Support for different grid

formats is provided by MpCCI, as well as different methods of data interpolation when

needed to communicate data between simulation scales with mismatched grids. MpCCI

uses a code-coupler component object in order for two single-scale application codes to

communicate with eachother [16]. A coupler object is implemented to transform values from

a producing single-scale code into values that can be used by a consuming single-scale code.

In the time since MpCCI was developed over a decade ago it has seen sufficent adoption

to warrant the organization of several user forums and is currently used to support the

implementation of multi-physics codes. There have also been coupler objects implemented
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to allow many industry-standard simulation tools to be coupled through MpCCI including

Abaqus, ANSYS Fluent, MATLAB, and others [17].

The MUSCLE-HPC [18] code is a partial implementation of the MUSCLE-2 toolkit [19],

[20] for use on HPC machines. The multi-scale simulation in MUSCLE-HPC is constructed

from a set of submodels, each of which is implemented by inheriting from an abstract C++

class which provides an API for initialization, boundary condition updates, numerical so-

lution iteration, and several data query functions. Coupling together of submodels into a

multi-scale model is done through the use of an interface of Conduits which the class API

has methods to express the set of input and output Conduits for the submodel. Further

the MUSCLE-HPC runtime environment requires that a machine core acting as a server is

devoted to running a special Manager class to register client submodels and facilitate the

creation of parallel communication channels between the submodels.

The Multiphysics Object Oriented Simulation Environment, MOOSE [21], [22] is a multi-

physics code developed to support the implementation of simulations in nuclear engineering.

MOOSE is an end-to-end framework in that it attempts to incorporate both the required

physical kernels, the discrete mesh and tensor fields, and the linear solver components. It

makes use of a third party linear solver in PETSc [23]–[25] and third party nonlinear solvers

in Trilinos NOX [26]–[31]. However it is not intended to supply a component model to allow

incorporation of user components into new multi-scale simulations, but rather to construct

multi-scale simulations from a suite of in-house components.

2.3 AMSI

The Adaptive Multi-scale Simulation Infrastructure (AMSI) [32] is a set of libraries

providing support for the implementation and execution of dynamic multi-scale simulations

on massively-parallel HPC machines. AMSI is designed to ease the incorporation of legacy

single-scale simulation codes into new multi-scale simulations. These codes are typically

implemented using a single-program multiple-data (SPDM) parallel implementation strategy.

Using these component codes in a multi-scale infrastructure which is also SPMD in nature

would require extensive development to accomodate, either on behalf the AMSI user, or

with respect to the structure of AMSI itself. In contrast taking a multiple-program multiple-

data (MPMD) parallelization strategy with AMSI allows the inclusion of multiple existing

component codes without the requirement they are extensively reworked or accommodated
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in the AMSI systems. The MPMD model has been noted to be more appropriate for multi-

physics and multi-scale systems [33].

An AMSI user can integrate their single-scale codes using AMSI without an imposed

requirement that they refactor their data structures or interfaces in order to accommodate

the AMSI runtime. The more monolithic frameworks such as UINTAH, MOOSE, and MpCCI

require that a user adapt their code explicitly to interfaces specified by the framework sys-

tem. AMSI attempts to take a service library approach by providing new capabilities to

existing codes rather than a framework approach where the entire simulation construction

and execution procedure is controlled using the framework.

In the minimal case the work to adapt a codebase involves simply the implementation

of wrapper code or intermediate interface layers (such as the Coupler components used

in MpCCI), but in the worst case this requires a restructuring of much of the codebase

to accommodate requirements of the framework. The MUSCLE2 framework requires that

integrated sub-models expose a specific interface so the coupling daemon is able to query

them about required inputs and output. In UINTAH all user-code must be expressed in a

specialized asynchronous task format. MpCCI requires the implementation of code-coupler

components to facilitate the coupling of codes with specific domain formats. The MOOSE

system is and end-to-end multiphysics system to inclusion of external component codes isn’t

considered a primary goal.

The single-scale codes used in AMSI have no requirements placed on them with respect

to a specific underlying format of spatial discretization or tensor field data structures. In

contrast codes being coupled using the MpCCI framework must adapt their domain query-

ing interfaces to facilitate the necessary interrogation operations for relating the geometric

domains [15]. The Uintah Software explicitly manages the discretized domain of the problem

– implemented using a adaptive structured grid-type model – and user-developed simulation

components operate on this domain managed by the system [34]. The MOOSE multiphysics

system also explicitly manages the domain discretization using structured grids.

AMSI does not explicitly require domain interrogation functionality to implement

multi-scale coupling operations, this allows for the integration of code with arbitrary (or

nonexistent) discrete domain representations. This protects the capabilities provided by

AMSI against a shift in community adoption of new simulation models or different domain

representations.
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AMSI requires placement of multi-scale planning and coupling calls only at those loca-

tions in legacy codebases associated with the actual coupling operations used for multi-scale

interaction. All AMSI interfaces operate on built-in data types or are implemented to accept

generic data types, limiting the need to refactor existing codebases to adapt to specialized

data types or inheritance schemes [35].

There are many open questions in the development and verification of multi-scale

modeling approaches [36]. AMSI attempts to provide the tools to approach these questions

through the development of new multi-scale models and simulations from existing single-scale

simulations without placing assumptions on the multi-scale model or simulation implemen-

tation that would preclude exploration of an open question.

2.4 Model Design

The design of the simulation coupling operations utilizing the AMSI multiscale library

is informed by two abstract models. The first is the Abstract Scale Model (ASM), which

describes a generalized single-scale simulation. The second is the Abstract Coupling Model

(ACM), which describes a generic coupling of two such simulations. These models provide

a workflow through which a simulation developer can produce a new multi-scale simulation

on an HPC machine using the facilities provided by the AMSI libraries. Further, these mod-

els guided many development decisions during the implementation of the AMSI multiscale

library.

The theoretical model-production tool discussed in [37] consists of a set of decisions

made about various features of a multi-scale model and where each feature lies within the

taxonomy introduced and discussed in that document. The abstract models used in the devel-

opment of both AMSI and particular multi-scale simulations using AMSI provides sufficient

information for the unique specification of each decision in the theoretical tool discussed, and

thus allows a multi-scale model produced by AMSI to be defined in terms of the discussed

multi-scale taxonomy.

In addition to taxonomic considerations, the AMSI model workflow includes consider-

ations for the hierarchy of implementation operations that go into the production of a new

multi-scale code.



13

computational

numerical

mathematical

conceptual domain physical 
model tensor fields

geometric 
description

physical 
derivation

tensor field 
structure

discretized 
geometry

numerical 
approach

tensor field 
structures / 

apis

implementation

Fig. 2.2: Abstract Single-scale Model

2.4.1 Abstract Scale Model (ASM)

The Abstract Scale Model (ASM) (illustrated in figure 2.2) provides a hierarchical

model of the implementation specifics of a single-scale simulation. The model is oriented on

the principle of most general abstraction through the steps required to produce the actual

computational model used along the vertical axis. Each level in the abstraction hierarchy

requires information in three different areas: the physics being simulated, the domain (type)

over which the simulation is to take place, and the physical tensor fields required to quantify

the specific problem. By specifying or implementing the information required at each node

in the ASM a developer will fully describe and produce a single-scale simulation.

The conceptual physical model is often the starting point in the development of an

ASM, as it informs many of the decisions made during the specification of the rest of the

model. This high-level description is often specified in terms of the primary physical prop-

erty(ies) being modeled, e.g. displacements, temperature, trajectories, etc, as well as (typi-

cally) one or more conservative laws. The specification of the physical model most directly

effects the conceptual domain and conceptual tensor fields that are required. The conceptual

domain incorporates both the temporal and spatial domains of the problem, which provides

sufficient information to plot the scale on a scale-separation and interaction graph. In addi-
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tion the conceptual domain and physical model combined provide sufficient information to

specify the qualities the domain must posses in order to support the modeled mechanics, e.g.

continuum domain, atomistic domain. The conceptual tensor fields are directly influenced

by the physical model and includes every primary and supporting field required to simulate

the physical model as specified by the chosen conservative laws.

The mathematical physical derivation is a specification of the chosen form of the conser-

vative law(s) from the conceptual physical model and accompanying mathematical require-

ments. The mathematical geometric description of the domain incorporates the specification

of the method of mathematical representation of a domain for the problem, e.g. for a con-

tinuum problem a CAD format or grid structure [38], [39]. The mathematical tensor field

structure for the required fields is specified, including symmetries which allow for tensor

order reductions to simplify the mathematical formulations in the physical derivation.

The numerical approach includes the approach to solving the mathematical physi-

cal derivation this includes the construction and solution of the discretized model. The

discretized geometry specifies the representation of the geometric domain the numerical ap-

proach will query and operate on, this includes for instance meshes and grids for continuum

problems and discrete particles for MD problems. The tensor field structures and APIs are

specified over the discretized geometry and are queried for use in the numerical approach to

produce a solution which is also expressed in terms of a tensor field structure.

The computational implementation of an ASM requires the combination of all numer-

ical specifications in order to produce a final simulation.

2.4.2 Abstract Coupling Model (ACM)

The Abstract Coupling Model (ACM) (seen in figure 2.3) provides a model of the

coupling of two distinct realizations of an ASM (fig 2.2). The hierarchy of each coupled

ASM must be taken into account during the specification of the primary nodes in the ACM.

It is convenient to view the ACM as a top-down view of two ASMs and the coupling layer

between them. Each of the conceptual, mathematical, and numerical layers must still be

considered when specifying nodes in the ACM. Specifying and implementing the ACM fully

will result in a valid multi-scale coupling operating between two single-scale simulations.

The ACM is derived from a model initially discussed in [1].

The physical model compatibility requires the specification of the relationship between
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the two physical models. This includes any laws relating the physical quantities modeled in

the two ASMs, and may require intermediate operations including derived values in order

for the two physical models to influence each other. Proceeding down the ASM hierarchy

this further requires a particular mathematical derivation, as well as the specification of any

numerical operations required to produce all quantities needed to satisfy the mathematical

derivation.

The geometric interaction of problem domains includes the specification of each domain

on a scale-separation map, as well as the nature of the domain relationship with respect

to e.g. overlapping regions/interfaces or full locality of sub-domains for strongly-separated

scales. This specifies whether the multi-scale problem is concurrent or hierarchic as discussed

in sections 2.1. Going down the hierarchy this also includes any mathematical operations

required to map spatially between the domains which can include e.g. inverting mappings,

interpolation operations, tensor field queries at selected locations. At the numerical level the

operations necessitated by the mathematical relationships must be implemented.

The field transforms in a coupling require the specification of all operations required

for influences from a field associated with a scale to be incorporated into a field on the other

scale(s) in the ACM. At the conceptual level this includes the full set of tensor fields on each

scale along with known relevant relationships between the fields. The specification of these

operations is primarily mathematical and numerical in nature, and is influenced heavily by

the physical model compatibility and geometric interactions.
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2.5 Parallel Design

Software intended to suppport multi-physics simulations needs to ”enable the intro-

duction of new models, algorithms, and data structures” [12]. Further, a set of well-defined

modules with distinct interfaces must be implemented, especially as this concerns data own-

ership and simulation state. State data must be query-able through interfaces in order for

coupled codes to maintain consistency throughout the simulation. Further, implementing

general code, or providing mechanisms to extract important underlying data in general for-

mats is necessary. This forces multi-physics application developers to adhere to specific data

structures and algorithms, or write their own wrapper code in order to translate special-

ized data structures into more general formats. These issues and rationales for multi-scale

software development are further discussed in [12].

Toward this end AMSI provides a simple API used for multi-scale coupling and scale-

sensitive load-balancing operations, and makes no requirement on the application code pro-

viding any interfaces for AMSI usage. This allows intervention in legacy code only in loca-

tions where multi-scale operations are to be implemented, and where replacement of global

collective operations with scale-collective operations is required in order to prevent parallel

deadlock.

The design and operation of the AMSI libraries and the multi-scale simulations created

through AMSI coupling operations must account for the parallel design of the individual scale

codes being coupled. Legacy single-scale simulation codes operate under the assumption that

they have the entirety of the global parallel execution space within which to operate. The

parallel execution space is the set of threads of execution in a given simulation and their

relationship with the physical hardware of the machine (generally analogous to global parallel

communicator). A great deal of effort is expended during the development of such single-

scale codes into ensuring that as the size of the parallel allocation for the code grows, the

parallel operations do not inhibit the computational efficiency of the code.

Allowing two or more single-scale codes designed around the assumption of global par-

allel execution to interleave their operation in a general manner would be fraught with design

and execution pitfalls. Further, the resulting code would likely have few or no guarantees

with respect to acceptable parallel performance characteristics: not only in terms of scaling

but also process utilization and idle time overheads.

Because of this restriction AMSI avoids the issue of shared access to the global parallel
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execution space and instead isolates each scale-code in disjoint subsets of the global parallel

communicator. This partitioning of the parallel execution space allows the allocation for

each scale-code to be determined to match the computational demand associated with the

multi-scale system and/or the current specific problem.

This hierarchy of parallel execution spaces gives rise to a hierarchy of parallel operations

on those spaces. The hierarchy of parallel operations in the AMSI system is global, inter-

scale, and intra-scale.

Global parallel operations are still possible in an AMSI multi-scale simulation, but

AMSI itself does not implement any fully-global parallel operations beyond the capability

to partition the global parallel space. Efficient use of any global parallel communication

operations (whether synchronous or asynchronous) in a multi-scale system is exceedingly

difficult, thus in order to discourage the practice AMSI provides no direct support for such

operations.

Inter-scale operations are parallel over the union of the two parallel spaces taking

part in the operation, and are designed to be one-way. These operations are referred to as

Reconciliations within AMSI, as this type of operation is most often used to reconcile the

current simulation state (or metastate) between two disjoint scale-codes. Reconciliations are

used to plan and execute coupling operations in order to provide data produced at one scale

to another scale for use in continuing the simulation.

Intra-scale operations are parallel over a single parallel execution space in a multi-

scale system. These operations are referred to as Assemblies within AMSI, as this type of

operation is most often used to produce a final valid product concerning the local simulation

state (or, again, metastate) on a specific simulation scale. Assemblies are often used just

prior to reconciliations to produce a data structure that is complete over an entire scale,

for use in the reconciliation operation. Specifically, when planning coupling operations, the

metastate concerning the distribution of discrete coupling values across a scale is Assembled

just prior to the Reconciliation operation to produce a coupling plan between the scales (see

section 3.2.1 for an example of coupling planning).

2.6 AMSI Parallel Implementation

The AMSI multiscale library provides the facilities to instantiate, manage, and execute

dynamic scale coupling operations on otherwise uncoupled single-scale simulation codes.
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AMSI specifically targets the use-case of a developer taking existing single-scale simulation

codes and combining them to produce a new multi-scale code while minimizing intervention

in the legacy codebases.

The core of the AMSI multiscale systems operates at the numerical and implementa-

tion levels of the ASM and ACM abstraction hierarchy. While developers use a top-down

approach to specify and construct a simulation, initial development on AMSI multiscale

has focused on providing functionality in a bottom-up fashion. The intent of this approach

is to provide a useful set of functionality for developers before working up the abstraction

hierarchy to provide facilities for operations required at those levels.

At the lowest-level, the AMSI multiscale library is concerned with the instantiation

and management of the individual single-scale codes used in a multi-scale simulation. The

parallel structure of HPC machines requires that in order to couple multiple single-scale

codes into a multi-scale code, the relationship of those individual single-scale codes to the

machine must be modeled by AMSI multiscale.

AMSI models the parallel execution space of the whole multi-scale simulation as well

as each single-scale code in the multi-scale system, through the use of a Scale.

2.6.1 AMSI Scales

The Scale is a data structure modeling the relationship between the computational level

of a single ASM used in the construction of a multi-scale simulation and the parallel execu-

tion space of the HPC machine the simulation is executing on. The relationship between the

Scale and the parallel execution space is specified by the user using an AMSI multiscale con-

figuration file, further discussed in section 2.6. All Scales present in a multi-scale simulation

are instantiated and configured at the beginning of a multi-scale simulation.

Several methods for determining the partitioning of the parallel execution space and

assigning the partitions to Scales in a simulation are provided. Scale allocations may be de-

termined by total process count, process ratios between multiple Scales, and additionally may

take advantage of machine introspection operations such as using the hwloc [40] hardware

locality library in order to take advantage of machine structure for parallel communication

operations.

Also during initialization, a main-like function is associated with an individual Scale. A

developer may simply reuse the main function of the existing single-scale simulation, however
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the function is additionally passed an MPI_COMM associated with the Scale on which parallel

operations for the single-scale code modeled by the Scale are to take place. See listing 2.1

for the Scale creation and management API. Currently the initialization of Scales can occur

through use of configuration files (discussed in 2.6.2) or the API. The scale main-like function

must be set programmatically using the setExecFunction() on the scale.

Listing 2.1: AMSI Scale API

1 // Main-like execution function taking standard argc and argv

2 // arguments in addition to an MPI_Comm for configuration

3 typedef int(*exe_func)(int&,char**&,MPI_Comm);

4

5 // create a scale with size-many processes with rank pids[0-size-1]

6 // pids are specified in the AMSI_COMM_WORLD

7 Scale * createScale(int size, int * pids, const char * nm);

8 // retrieve a scale that has already been created,

9 // use to retrieve non-local scales when using file-based

10 // multi-scale configuration

11 Scale * retrieveByName(Scale * scl, const char * nm);

12 // retrieve the currently active local scale

13 // NOTE: currently only a single scale may be active

14 // per-process

15 Scale * getLocalScale();

16 void destroyScale(Scale * scale);

17

18 // set the main-like function for this scale to execute

19 void setExecFunction(Scale * scale, exe_func e);

20 // execute the main-like function for this scale if

21 // this scale has an execution function and the

22 // local rank is assigned to the scale

23 int execute(Scale * scale);

24

25 // whether the local rank is assigned to the scale

26 bool assignedTo(Scale * scale);

27 // translate a pid from a rank in the MPI_Comm associated

28 // with the scale to a pid in AMSI_COMM_WORLD

29 int localToGlobalRank(Scale * scale, int lcl);

30 // get the MPI_Comm associated with this scale
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31 MPI_Comm scaleComm(Scale * scale);

2.6.2 AMSI Scale Instantiation

AMSI Scales are created during simulation initialization, prior to the main-like func-

tions of the scales being called. The Scales can be created programatically using the interface

in listing 2.1, or they can by configured using an AMSI configuration file as seen in listing

2.3. When the initMultiscale() function (from listing 2.2 is called using the standard

argc and argv arguments from the simulation main, the configuration file – passed in the

with the -a command-line flag – is parsed and the portions relevant to multi-scale initial-

ization are used to create the specified Scales. The initAnalysis() function in listing

2.2 is also called and supplied the AMSI configuration file. It parses the sections specific

to initializing third-part analysis packages and initializes them as needed. The analysis and

multiscale AMSI packages are entirely orthogonal, so a user can make use of the multiscale

coupling package without being concerned with the analysis libraries.

Listing 2.2: AMSI initialization API

1 // pass in a configuration file using command-line

2 // flag -a [filename] to automatically allocate processes

3 // and create named scales

4 void initMultiscale(int argc,

5 char * argv[],

6 MPI_Comm cm = MPI_COMM_WORLD);

7 void freeMultiscale();

8

9 // pass in a configuration file using the command-line

10 // flag -a [filename] to automatically initialize specified

11 // analysis libraries

12 void initAnalysis(int argc,

13 char * argv[],

14 MPI_Comm cm = MPI_COMM_WORLD);

15 void freeAnalysis();

Listing 2.3 shows the full configuration file used for a run of the soft tissue multi-

scale simulation discussed in chapter 3. In this case the simulation is being assigned to 256
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processes, 16 of which are assigned to the micro-scale and 240 of which are assigned to the

macro-scale, as can be seen in the @scales section. Further the @relations section

specifies that the macro-scale is Coupled to (sending coupling data to) the micro-scale, and

the micro-scale is Coupled to the macro-scale. As will be discussed in section 2.6.3, Couplings

are not assumed to be symmetrical.

Listing 2.3: Multiscale Configuration file

1 @scales

2 macro 16

3 micro 240

4 @relations

5 macro micro

6 micro macro

7 @util

8 results $RESULTS_DIR

9 @analysis

10 petsc true

11 petsc_options petsc_opts

12 simmetrix true

13 simmetrix_license license.txt

2.6.3 AMSI Couplings

The Coupling is a data structure modeling the relationship of units of coupling data be-

tween two distinct Scales. The Coupling in AMSI multiscale is not assumed to be symmetric

so in order to establish a two-way coupling between Scales a Coupling must be produced for

each direction of communication. While it is often the case that a coupling is bi-directional,

this is not always the case [37], so this form is preferred. Each Coupling exists on the union

of the parallel execution spaces associated with both Scales being coupled, and specifies on

Scale as the producer and the other as the consumer.

The Coupling operates at the computational level of the ACM, but is directly informed

by specifications at the numerical level. Individual units of scale-coupling data are supplied

to the Coupling, e.g. tensor field values located at points as specified by the domain re-

lationship in the ACM. These may be raw values or values derived locally, i.e. the tensor

field transformation operations may by applied to the coupling data on either end of the
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Coupling. This allows for minimization of communication overhead whenever possible.

A unit of coupling data generically refers to any data type as the precise implementation

or data structure of the data is not assumed by the Coupling or AMSI multiscale until the

communication phase of the coupling operation.

The parallel discretization of the numerical domains of the multi-scale problem informs

the parallel locality of both the origin and the destination of each unit of scale-coupling data.

At present this mapping is taken care of by the developer. Facilitating the automation of

the construction of this mapping is the next step in advancing the development of AMSI

multiscale up the ASM/ACM abstraction hierarchy.

Listing 2.4: AMSI Coupling and Coupling Data API

1 // declare coupling data on a scale, returns NULL if

2 // the local rank is not associated with the scale

3 CouplingData * createCouplingData(Scale * scale, const char * nm);

4 void destroyCouplingData(CouplingData * dat);

5

6 bool assembleCouplingData(CouplingData * dat);

7

8 typedef Coupling * (*coupling_algo)(CouplingData * dat,

9 Scale * frm,

10 Scale * to);

11

12 Coupling * evenlyDistributedCoupling(CouplingData * dat,

13 Scale * frm,

14 Scale * to);

15 Coupling * createCoupling(CouplingData * dat,

16 Scale * frm,

17 Scale * to,

18 coupling_algo algo =

19 evenlyDistributedCoupling);

20 Coupling * invertCoupling(Coupling * orig);

21 // create an empty coupling to reconcile coupling planning

22 // information into when recv-ing

23 Coupling * createRecvCoupling(Scale * frm, Scale * to);

24 void destroyCoupling(Coupling * coupling);

25
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26 bool assembleCoupling(Coupling * coupling);

27 bool reconcileCoupling(Coupling * coupling);

28

29 Scale * getSender(Coupling * coupling);

30 Scale * getRecver(Coupling * coupling);

2.7 AMSI Performance Measures

AMSI is designed around the composition of existing single-scale codes which are most

often implemented in a single-program multiple-data (SPMD) style in order to gain per-

formance from parallelization. Despite sharing a common implementation pattern, each

single-scale code in a multi-scale system has distinct scaling characteristics that contribute

to the scaling characteristics of the multi-scale system. These scaling characteristics are

primarily determined with respect to the problem size being worked on, under some metric

of computational demand. Two well-established scaling measures are the strong scaling and

weak scaling; in strong scaling the problem size is held constant globally while the parallel

execution space grows, in weak scaling the problem size is held constant per-process in the

execution space as the execution space is increased.

The parallel execution of a problem in an AMSI multi-scale simulation must take into

consideration the global problem size and the relationship between the problem sizes for

each coupled scale pair. To determine the parallel partitioning and scale-assignment for a

particular multi-scale composition and global problem size, the ’performance ratio’ of the

coupled scales is used, in conjunction with the actual optimization goal.

The simplest optimization goal for simulations is time-to-solution, which for simulations

using SPMD parallelization is often attained by simply increasing the parallel execution

space, scaling characteristics permitting. The second most common optimization goal is

process utilization, which is simply the ratio of useful compute time to total simulation

time, thus any process idle time is penalized. Improving process utilization often improves

time-to-solution, as a given problem size represents a constant amount of computational

effort to be expended, thus less idle time means expending the required computational effort

more quickly.

An AMSI multi-scale simulation houses individual scales in partitions of the global

execution space, there is an amount of idle overhead inherent in this multi-scale composition
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approach. Individual scales may be optimized with respect to process utilization, but there is

typically some amount of time where parts of (or an entire) scale must block and wait for the

result of some coupled scale. Individual scale optimization in terms of process utilization is

often accomplished through load balancing operations. Multi-scale load balancing introduces

additional constraints and operations to the load balancing process, which are discussed in

detail in 4.

Strong and weak-scaling metrics are still applicable to AMSI multi-scale simulations,

but the strong and weak scaling of a particular simulation is additionally a property of

the parallel partitioning of the execution space. Thus the partitioning ratio between each

pair of coupled scales is a heavily contributing factor to the scaling characteristics exhibited

by a multi-scale MPMD simulation. In the simplest multi-scale case of only two coupled

scales, this causes the scaling curves to become scaling surfaces due to the introduction of a

single coupling-ratio parameter. Introducing additional coupled scales into a simulation also

adds additional ratio parameters. The case of three mutually-coupled scales is of particular

interest from a performance optimization standpoint, but has not been explored yet and is

an area of interest for future work.

Discussion of scaling studies conducted on a multi-scale code implemented using AMSI

can be found in section 3.5.

2.8 Conclusion

In this work we have developed an abstract model of single-scale simulation and a

multi-scale simulation coupling that is compatible with existing multi-scale modeling ap-

proaches. We have developed this model and defined the process through which the model

is made concrete in order to implement a multi-scale simulation. To realize these efforts we

have implemented the Adaptive Multi-scale Simulation Infrastructure to facilitate the im-

plementation of multi-scale simulations, providing especially for the combination of existing

single-scale simulation codes into new, novel multi-scale codes without undue development

overhead. We have used the abstract scale model and abstract scale coupling model in

conjunction with considerations for the established properties of existing codes in the HPC

space to develop a library supporting the flexible creation of multi-scale systems from con-

crete Scale objects and Coupling objects. Finally we have established that the multi-scale

simulation codes resulting from using the AMSI facilities for simulation implementation
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exhibit non-typical parallel behavior and explored the implications and evaluation of such

codes.



CHAPTER 3

IMPLEMENTATION AND EVALUATION OF A

HIERARCHICAL MULTI-SCALE SOFT TISSUE SIMULATION

USING AMSI

3.1 Soft Tissue Simulation

The Biotissue code [41] is a multi-scale simulation for modeling soft organic tissues,

consisting of an engineering-scale simulation using the finite element method, and a micro-

scale quasistatics force-balance simulation based on networks of 1D structural entities. These

two codes are combined into a multi-scale code using the coupling features of the AMSI

libraries.

The biotissue simulation falls under the HMM classification of numerical approaches.

See [42] for additional discussion of the current biotissue simulation and applying the simu-

lation to a problem modeling individual neurons embedded in collagen gels.

Stress and stress-derivative values needed to compute the elemental tangent stiffness

matrices and force vectors are supplied by the micro-scale force-balance simulations, which

occur at each numerical integration point in the engineering-scale mesh. Appendices A and

B contain derivation and implementation details for the macro- and micro-scale problems

and appendix C discusses the derivation of the multi-scale coupling terms.

3.1.1 Engineering Scale

The macro-scale geometric domain is described by a parasolid CAD model derived

from one of several sources. Some domains are constructed from voxel data recovered from

segmented images of actual biological cells/structures, such as the neuron domain in section

3.4.3 and the podocyte domain in section 3.4.2. Other, simpler domains can be constructed

as CAD models using geometric modeling software such as the tensile test ’dogbone’ in

section 3.4.1.

The Simmetrix [43] software suite is used to develop many of the models (particularly

from segmented image data), and to produce discretized meshes from the geometric models.

All extant domains have been discretized into simulation meshes using tetrahedral elements,

26
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Fig. 3.1: Biotissue Multi-scale Domain Hierarchy

although the simulation makes no strict restriction on the element type or field order used.

Analysis cases are specified on the geometric model (again using the Simmetrix software

suite), by tagging geometric entities with information about material properties, micro-

scale relationships and structures to load, dirichlet and neumann boundary conditions, and

solution strategies including convergence approaches and thresholds and psuedo-timestep

specification.

A vector field using first order Langrange shape functions over each element is defined

and used in elemental numerical integration routines to construct elemental linear systems

for assembly in the global tangent stiffness matrix and load vector. The use of first order

Lagrange shape functions induces the creation of a single numerical integration point inside

each element in the macro-scale mesh. Each of these numerical integration points may be

coupled to a micro-scale representative volume element (RVE) simulation which provides

quantities for use in the elemental integration procedures. Whether an element is coupled to

an RVE, and the precise RVE domain (or library of RVE domains) to which an integration

point is related may be specified on a per-geometric region basis in the Simmetrix simmodeler

analysis case specification.



28

3.1.2 Micro Scale

Each RVE is a dimensionless unit cube containing a connected collagen fiber network,

currently all fiber members are truss elements and the fiber network is generated using

Delauney triangulation. This results in a high coordination number at each node and conse-

quently a numerically stable global Jacobian given the use of truss elements. Using a Voronoi

map to generate the fiber-network structure is also possible, though would also necessitate

the use of beam elements for the fiber networks in order to achieve a more stable Jacobian.

The macro-scale incremental displacements u(M) generated by the accumulation of

solutions ∆u(M) from previous simulation psuedo-timesteps and defined on each engineering-

scale finite element node are used to calculate the deformation gradient F at each point

associated with a micro-scale simulation. The deformation gradient is used to displace the

corners of the dimensionless RVE. The fiber-network nodes located on the boundary faces

of the RVE are displaced using linear interpolation of the RVE corners displacements and

held fixed.

To generate an initial guess ∆u
(m)
0 for the micro-scale Newton-Raphson procedure

the interior fiber-network nodes are displaced using trilinear interpolation of the corner

displacements in the first macro-scale iteration of each pseudo-time step. In all subsequent

micro-scale iterations the solution from the previous iteration is used to provide a first order

approximation of the displacement.

After each micro-scale simulation converges to a solution, the Jacobian and force vector

are then formulated again using the solved fiber network state. The force exerted along the

boundary of the RVE is summed for each of the principal and shear components of a stress

tensor, which is then dimensionalized and sent back to the engineering-scale for use in the

elemental tangent stiffness matrix formulation.

More detail into the derivation of this multi-scale system can be found in [44]–[47].

Discussion of the dimensionalization of the dimensionless force terms produced by each fiber

network can be found in [48], [49].

The multi-scale simulation consists of two nested Newton-Raphson operations occur-

ring. During each macro-scale Newton iteration every micro-scale RVE must undergo a

full Newton-Raphson convergence to produce coupling data for the macro-scale. As such,

the micro-scale nonlinear processes will typically dominate the total computational effort

required to fully converge to a solution at each macro-scale psuedo-timestep.
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3.2 Soft Tissue Implementation and Multi-scale Coupling with

AMSI

A configuration file is used to initialize AMSI, partition the parallel execution space,

and pass the partitioned spaces to the single-scale codes for use in their individual initial-

ization procedures. After initialization, the macro-scale code creates the necessary data

structure describing the distribution of coupling data (in this case the deformation gradient

at every numerical integration point in the discrete domain) across the macro-scale parallel

space. This data structure is supplied to a Coupling which is Reconciled with a null Coupling

object present on the micro-scale.

As the scales are strongly-separated, and the multi-scale interaction is information-

passing rather than concurrent, no geometric information must be dealt with prior to con-

structing the Coupling object used to couple macro-scale to micro-scale. Further, each

micro-scale simulation is simple enough (approx. 10k unknowns), that they execute in serial

rather than parallel, as the parallel communication overhead involved in solving a step in

a single micro-scale RVE would increase overall time to solution in the average case. This

allows the macro-scale to construct a Coupling object without any coordination with the

micro-scale simulation. One of the built-in information-passing Coupling construction algo-

rithms supplied with AMSI is sufficient for this purpose, and produces a Coupling evenly

distributing the coupling terms across the micro-scale simulation.

After an initial guess generated by a linear-elastic constitutive model is generated, the

micro-scale is sent initial information including fiber-parameters, macro-scale element type,

element coordinates, and the first deformation gradient. This data is applied to the micro-

scale simulations to bring their state into agreement with the current macro-scale state.

Once the micro-scale receives the initial data an induced Coupling is created, which in

turn creates an induced data structure describing the allocation of the macro-scale coupling

terms across the micro-scale space, which coincides with the distribution of micro-scale

coupling terms to be sent back to macro-scale.

Since the allocation of RVEs to micro-scale processes is handled by the macro-scale, the

macro-to-micro Coupling can simply be inverted to produce the micro-to-macro coupling,

as the macro-scale processes which require micro-scale data are precisely those which sent

out the data in the macro-to-micro coupling operation. After the micro-scale simulation

converges, the forces along the surface of the RVE are gathered and used in the micro-to-
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macro coupling operation.

3.2.1 Scale Implementations

Both the macro and micro-scale simulations are implemented using a variety of simu-

lation tools and libraries. As indicated below, several in-house SCOREC libraries are used

(primarily related to mesh and tensor field interactions) and several third party libraries are

used as well (primarily for linear algebraic solvers, some geometric model/mesh operations,

and analysis attribute specification).

3.2.1.1 Engineering Scale Implementation

The macro-scale geometry and discrete meshing are handled by Simmtrix [43] as noted

in 3.1.1. Querying the mesh data structure in the finite element analysis procedures is

accomplished through the SCOREC/core library which abstracts meshing operations and

supports several backends. The numerical integration routines, degree of freedom numbering,

and tensor field creation/manipulations are also handled through core/apf.

Interactions with the linear system take place through the LAS interface (discussed in

chapter 5), configured to use PETSc [23]–[25] as the backend linear system library, configured

to use the SuperLU_dist direct LU solver [50]–[52]. A direct linear solver is used rather

than an iterative solver since in most cases the size of the finite element model is small enough

that a parallel direct solve is effective. As the macro-scale parallel unstructured meshes grow

this will become less efficient and a switch to an iterative method will be made.

High-level simulation and analysis structures, along with all multi-scale interactions,

are handled by the AMSI/analysis and AMSI/multiscale libraries, respectively. AMSI/analy-

sis provides C++ classes for abstract nonlinear convergence operations, pseudo-timestepping,

and extensions/utility operations for core/apf fields operations. Additionally, AMSI/analysis

provides functionality to retrieve, create, and apply boundary conditions described through

the Simmetrix simmodeler analysis case specification language and tools.

3.2.1.2 Micro Scale Implementation

The micro-scale fiber networks are based solely on discrete meshes, with no explicit

geometric domain. These meshes are generated by creating Delaunay (or Voronoi) networks

in 3d with customized MATLAB scripts. The fiber properties may be specified on a per-
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element basis using an accompanying parameters file defining both the element member type,

the fiber constitutive model, and all required physical parameters for the constitutive model.

In the multi-scale simulation a library of fiber networks (contained in a single directory) are

specified on a per-geometric region basis.

These simple mesh and parameter files are used to create a core/mds edge-and-vertex

only mesh, with a first-order Lagrange vector field modeling displacements ∆u(m) using the

core/apf library. An additional mesh representing only the RVE cube is created dynamically

to bound the fiber network, which are clipped to the cube dimensions during creation.

Separating the unit cube of the RVE from the fiber network mesh simplifies many operations

which take place on one object or the other, as few operations are applied uniformly to each

mesh.

A core/mds macro-scale mesh of a single element is created using initialization data

from the macro-scale domain meshing attributes which describes the element type, shape

functions and their order, and the mesh entity parameters for the macro-scale element con-

taining the numerical integration point associated with the local micro-scale simulation. The

physical scale of this mesh is used for dimensionalization and calculation of the micro-to-

macro coupling terms.

The fiber network mesh is used to create a compressed-sparse row (CSR) sparse matrix

data structure for each micro-scale material point using algorithms provided by the LAS (see

chapter 5) library. This sparse matrix is assembled into using the elemental system for each

fiber generated by a numerical integrator derived from a core/apf integrator, particular to

the constitutive type and member type of the fiber edge. After assembly the matrix and

load vector are supplied to the LAS interface to solve the linear system, the backend of

this instance of the LAS library is configured to use the Sparskit [53] incomplete LU solver.

Using a Newton-Raphson nonlinear convergence procedure, the micro-scale will reformulate

the micro-scale tangent stiffness matrix and force vector until convergence of the nonlinear

iterations.

Sparskit operates only in serial to solve the linear system on the local process. As

the fiber network complexity scales it will eventually reach a point where the micro-scale

simulations must also be parallelized. Accommodating this from the perspective of the

linear algebraic system is trivial as the backend can be immediately swapped out with an

alternative parallel linear solver such as PETSc.
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3.2.2 Coupling Terms

The macro-to-micro coupling term is the deformation gradient F at the point in the

macro-scale domain associated with a micro-scale RVE domain. This is calculated from the

set of displacement degrees of freedom effecting each element, at the location of the numerical

integration point(s) within the element.

The micro-to-macro coupling terms are a Cauchy-like stress terms and stress derivative

terms calculated with respect to the degrees of freedom of the element in the macro-scale

domain – each micro-scale simulation has a minimal representation of the single element in

the macro-scale mesh to which it is related, created during initialization. The number of

stress derivative terms is determined by the macro-scale shape function defining the location

and number of degrees of freedom effecting an element, and the type of element at macro-

scale. As noted in 3.1.1 all extant meshes contain only tetrahedral elements. The use of

meshes with multiple element types would require the creation of multiple couplings, one for

each element type, as the distribution of coupling data would differ for each element type.

3.3 Scale Coupling Using AMSI

Listing 3.1: Biotissue Scale-main Functions

1 int run_micro_fo(int argc, char * argv[], MPI_Comm cm)

2 {

3 // seed the random number generator since

4 // micro *can* randomly select RVEs from

5 // the provided libraries

6 bio::MultiscaleRVEAnalysis rves;

7 rves.init();

8 return rves.run();

9 }

10 int run_macro(int argc, char * argv[], MPI_Comm cm)

11 {

12 // read amsi-specific command-line arguments

13 // initialize configured analysis backends on the provided MPI_Comm

14 amsi::initAnalysis(argc,argv,cm);

15 // load geometry and mesh and initialize analysis case

16 bio::MultiscaleTissueAnalysis an(model,mesh,analysis_case,cm);
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17 an.init();

18 int rslt = an.run();

19 amsi::freeAnalysis();

20 return rslt;

21 }

22 int main(int argc, char * argv[])

23 {

24 // initialize the amsi multiscale components using the configuration

file

25 amsi::initMultiscale(argc,argv);

26 // set the main-like function for macro-scale

27 amsi::setScaleMain("macro",&run_macro);

28 // set the main-like function for micro-scale

29 amsi::setScaleMain("micro_fo",&run_micro_fo);

30 // execute the multi-scale simulation

31 int rslt = amsi::execute();

32 amsi::freeMultiscale();

33 return rslt;

34 }

Using AMSI to support the scale coupling operations required by the soft tissue problem

is relatively unobtrusive on the existing single-scale codebases.

As seen in listing 3.1, the main function for the multi-scale biotissue simulation ini-

tializes the AMSI multi-scale components using a provided auto-generated configuration file

generated by a runtime script. The main function then sets the scale-main functions for the

macro-scale and the micro-scale and executes the multi-scale simulation. Both the macro-

and micro-scale perform initialization operations and then begin primary execution.

The macro-scale initialization routines initialize the multi-scale coupling by creating a

CouplingData data structure to describe the parallel distribution of the RVE embedded

locations in the macro-scale domain. This CouplingData is then used to create and

reconcile a Coupling with the micro-scale code before finally waiting for the micro-scale

to reconcile the return Coupling. Refer to listing 3.2 line 6 for this coupling initialization.

The micro-scale initialization routines initialize the multi-scale coupling by creating an

empty Coupling based on no CouplingData in order to reconcile the Coupling created

by the macro-scale. Once this coupling is reconciled the micro-scale creates an inverted

coupling to use the same parallel communication patterns in reverse for the micro-scale to
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macro-scale coupling. Refer to listing 3.3 line 6) for this coupling initialization.

After the initialization of each scale is complete, the macro-scale begins normal ex-

ecution. At the beginning of every pseudo-timestep the Coupling is updated based on

any migration routines at the micro-scale and decisions made at the macro-scale to create

or delete RVEs at specific macro-scale locations based on some criteria. When new RVEs

are created (as in the very first time step), the macro-scale creates a delta Coupling that

describes the changes between the previous Coupling and the new Coupling after in-

stantiating new RVEs. This delta coupling is used to communicate the initialization data

for the newly-created RVEs to the micro-scale, see listing 3.2 line 26 for the macro-scale side

of this operation and listing 3.3 line 26 for the micro-scale side of this operation.

After removed RVEs are deleted and new RVEs are instantiates, the boundary condi-

tions are applied at macro-scale, making modifications to the linear system if needed, and an

initial guess for the current psuedo-timestep is generated. Just prior to entering the section

of code which applies numerical integration to each element in the mesh and assembles the

global linear system, a function which calculates and serializes all deformation gradients for

the local mesh part is called, followed by a call to the Coupling operation, providing the

serialized buffer of coupling data (see listing 3.2 line 73). After sending the coupling data,

the macro-scale immediately initiates the micro-to-macro coupling to wait for results from

the micro-scale.

Listing 3.2: Biotissue Macro-scale Coupling and Driver Functions

1 void MultiscaleTissueAnalysis::init()

2 {

3 initCoupling();

4 TissueAnalysis::init();

5 }

6 void MultiscaleTissueAnalysis::initCoupling()

7 {

8 amsi::CouplingData * rve_dist = amsi::createCouplingData(macro,

9 "micro_fo_rves

");

10 (*rve_dist) = 0;

11 amsi::assemble(rve_dist);

12 send_ptrn = amsi::createCoupling(rve_dist,macro,micro_fo);
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13 amsi::reconcile(send_ptrn);

14 recv_ptrn = amsi::createRecvCoupling(micro_fo,macro);

15 amsi::reconcile(recv_ptrn);

16 }

17 void MultiscaleTissueAnalysis::updateMicro()

18 {

19 // locally decide whether a micro-scale RVE

20 // should be created/destroyed/persist/change type

21 // at each integration point

22 updateRVETypes();

23 // inform micro-scale of deletion/creation of RVEs

24 updateRVEExistence();

25 }

26 void MultiscaleTissueAnalysis::updateRVEExistence()

27 {

28 // collect all rves to be deleted

29 updateRVEDeletion(to_delete);

30 // communicate the deletions to micro

31 amsi::removeData(send_ptrn,to_delete);

32 // serialize all new rve data into buffers

33 serializeNewRVEData(new_headers,new_params,new_init_data);

34 // communicate the additions to micro

35 auto delta_ptrn = amsi::addData(send_ptrn,to_add);

36 // used the delta coupling to send new rve data

37 amsi::communicate(delta_pattern,

38 new_headers,

39 mpi_type<micro_fo_header>());

40 amsi::communicate(delta_pattern,

41 new_params,

42 mpi_type<micro_fo_params>());

43 amsi::communicate(delta_pattern,

44 new_init_data,

45 mpi_type<micro_fo_init_data>());

46 // update the recving pattern for the new RVEs

47 amsi::reconcile(recv_ptrn);

48 }

49 void MultiscaleTissueAnalysis::run()

50 {

51 computeInitGuess();
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52 bool sim_completed = false;

53 while(!sim_completed)

54 {

55 // as part of the iteration process, call the

56 // MultiscaleTissueAnalysis::assemble() function

57 if(amsi::numericalSolve(itr,cvg))

58 {

59 checkpoint();

60 if(step == max_step)

61 sim_completed = true;

62 else

63 step();

64 }

65 else

66 {

67 // failed to converge, handle it

68 }

69 }

70 }

71 void MultiscaleTissueAnalysis::assemble()

72 {

73 computeRVEs();

74 // apply nuemann bcs

75 // elemental integration using rve results

76 // linear system assembly

77 }

78 void MultiscaleTissueAnalysis::computeRVEs()

79 {

80 serializeRVEData(micro_data);

81 amsi::communicate(send_ptrn,

82 micro_data,

83 amsi::mpi_tpe<micro_fo_data>());

84 amsi::communicate(recv_ptrn,

85 micro_results,

86 amsi::mpi_type<micro_fo_results>());

87 }

The main micro-scale simulation loop can be seen in listing 3.3 on lines 52–112, where

the outermost loop corresponds to macro-scale simulation psuedo-timestep, and the inner
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loop corresponds to the macro-scale simulation Newton-Raphson iteration. Upon receiving

a buffer of locally-assigned RVEs in the correct order, each RVE is solved serially (listing

3.3 lines 68-90). First the deformation gradient is applied to deform the corners of the

dimensionless RVE cube using the dimensionality of the abstract RVE in the macro-scale

domain. After converging to a solution for all local RVEs, the micro-scale produces a set

of stress values and derivatives for use by the macro-scale. These terms are packed into a

buffer in the same order the macro-to-micro terms were received and sent back to macro-

scale (listing 3.3 line 92 for micro-scale and listing 3.2 line 86), while micro-scale waits for

the next set of deformation gradients to continue (listing 3.3 line 66).

Listing 3.3: Biotissue Micro-scale Coupling and Driver Functions

1 void MultiscaleRVEAnalysis::init()

2 {

3 initCoupling();

4 initAnalysis()

5 }

6 void MultiscaleRVEAnalysis::initCoupling()

7 {

8 // create an empty coupling from macro->micro

9 recv_ptrn = amsi::createRecvCoupling(macro,micro_fo);

10 // reconcile the coupling information from macro

11 amsi::reconcile(recv_ptrn);

12 // create a coupling from micro->macro by inverting

13 // the coupling which was just received

14 send_ptrn = amsi::invertCoupling(recv_ptrn);

15 // reconcile the coupling information to macro

16 amsi::reconcile(send_ptrn);

17 }

18 void MultiscaleRVEAnalysis::initAnalysis()

19 {

20 // receive information from macro about the number

21 // of rve/fiber network libraries and their directories

22 // read in each library and create the fiber networks

23 // determine the size of the working buffers for the linear

24 // solver system (Sparskit)

25 }
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26 void MultiscaleRVEAnalysis::updateCoupling()

27 {

28 // receive information on any RVEs which have been deleted

29 amsi::removeData(recv_ptrn,to_delete);

30 // delete the rves

31 ...

32 // receive information on any RVEs which have been added

33 // create and reconcile a new coupling which only describes the

34 // data which has been added

35 auto delta_ptrn = amsi::addData(recv_ptrn,to_add);

36 // receive header, parameter, and initialization data for each new RVE

37 amsi::communicate(delta_ptrn,

38 rve_headers,

39 amsi::mpi_type<micro_fo_header>());

40 amsi::communicate(delta_ptrn,

41 rve_parameters,

42 amsi::mpi_type<micro_fo_params>());

43 amsi::communicate(delta_ptrn,

44 rve_init_data,

45 amsi::mpi_type<micro_fo_init_data>());

46 // create new RVE analyses using the received data

47 ...

48 // update the micro->macro pattern to reflect the new RVEs

49 send_ptrn = amsi::invertCoupling(recv_ptrn);

50 amsi::reconcile(send_ptrn);

51 }

52 int MultiscaleRVEAnalysis::run()

53 {

54 int rslt = 0;

55 int sim_complete = 0;

56 while(!sim_complete)

57 {

58 int step_complete = 0;

59 while(!step_complete)

60 {

61 // update the multi-scale coupling, creating/delete

62 // as dictated by the macro-scale

63 updateCoupling();

64 amsi::communicate(recv_ptrn,
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65 macro_data,

66 amsi::mpi_type<micro_fo_data>());

67 int ii = 0;

68 for(auto rve = ans.begin(); rve != ans.end() ++rve)

69 {

70 // use the data from macro-scale to apply boundary

71 // conditions to the RVE and fiber network

72 applyMultiscaleCoupling(&rve,&macro_data[ii]);

73 // create an object encapsulating the operations

74 // needed to calculate a single numerical convergence

75 // iteration on the fiber network simulation

76 FiberRVEIteration itr(*rve);

77 // create an object encapsulating the convergence

78 // criteria for the newton-raphson procedure:

79 // fabs(f_{i-1} - f_{i}) < eps (1e-8)

80 RelativeNormConvergence cnvrg(&itr);

81 // perform the newton-raphson procedure on the

82 // rve until convergence

83 rslt = amsi::numericalSolve(&itr,&cnvrg);

84 // detect any errors (rslt != 0) and handle them

85 ...

86 // use the converged micro-scale state to generate

87 // results for the macro-scale simulation

88 recoverMultiscaleResults(*rve,&results[ii]);

89 ++ii;

90 }

91 // send the micro-scale results back to macro-scale

92 amsi::communicate(send_ptrn,results,amsi::mpi_type<micro_fo_results

>());

93 // increment the macro-scale iteration count

94 macro_iteration++;

95 // macro-scale broadcasts whether the current

96 // psuedo-timestep is complete

97 amsi::scaleBroadcast(M2m_id,&step_complete);

98 }

99 // when the pseudo-timestep completes, reset

100 // the macro iteration counter and increment

101 // the macro timestep counter

102 macro_iteration = 0;
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Fig. 3.2: 400k Element Dogbone Tensile Test Mesh

103 macro_step++;

104 // macro-scale broadcasts whether the entire

105 // simulation is complete

106 amsi::scaleBroadcast(M2m_id,&sim_complete);

107 }

108 macro_step--;

109 // return whether we were able to handle all

110 // micro-scale convergence failures

111 return rslt;

112 }

The macro-scale receives the coupling data for each numerical integration point in the

local domain, and associates the data with the relevant integration point (listing 3.2 line 86).

Finally the macro-scale enters the elemental integration procedure, using the supplied stress

and stress derivative values in lieu of a constitutive equation to produce an elemental system.

From there the macro-scale simulation continues as a standard finite element analysis until

the next Newton-Raphson iteration, when the multi-scale coupling process is repeated.
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3.4 Example Soft Tissue Problems

3.4.1 Tensile Test Sample

The tensile test sample ’dogbone’ domain (see figure 3.2) is a CAD model of a standard

materials science and engineering sample used in tensile testing. The sample structure is well-

established and provides a useful testbed for development of parameters for use in problems

with other, more complex geometries, since the response of many materials with the tensile

sample domain and standard tension boundary conditions are widely available and easy to

produce.

The dogbone problem domain and associated simulation cases are used here to analyze

computational aspects of the multi-scale code, both with respect to numerical performance

and simulation resiliency. Many problems of interest require that the body being simu-

lated reach very high-strain states, which can induce numerical instability and cause the

Newton-Raphsone procedure to fail to converge. Figure 3.3 shows the macro-scale con-

vergence iteration count (and the linear and quadratic best fits) for each Newton-Raphson

process in a simulation that was intentionally run to the point that the Newton-Raphson

procedure failed to converge due to an overly deformed mesh. As the simulation proceeded

the convergence procedure required additional iterations to converge. As the simulation is

designed to regularly checkpoint the valid simulation state after the convergence of each

Newton-Raphson procedure the simulation results are retained up to the final, failed step.

Figure 3.4 shows the state of a multi-scale simulation on the dogbone structure after the

convergence of the first psuedo-timestep. A mesh of approximately 2k tetrahedral elements

is used. The average fiber alignment in each micro-scale RVE is plotted as a normalized

vector at the location at which the RVE is embedded in the macro-scale domain. In this

simulation the domain is held fixed on all three DOFs for each node on the left-most face of

the domain set to zero.

A Neumann boundary condition of an x-axis oriented traction is applied to the right-

most face of the domain. The fibers align to the loading axis in the first load step, and

continue to align more aggressively throughout the simulation (see figure 3.5 for the state

after 10 pseudo-time steps, figure and 3.6 for the state after 20 pseudo-time steps).

In each psuedo-time step the loading on the right-most face is incrementally increased

to approach the maximum loading specified by the simulation case attributes. In figure 3.3

the loading increments correspond to the simulation psuedo-timesteps. After 10th loading
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Fig. 3.3: Macro-scale Body Extension and Newton-Raphson Iterations per Load
Increment

Fig. 3.4: Dogbone 1k Mesh and Fiber Alignment After 1 Load Increment

increment the body has extended by approximately 27% and by the 20th and final loading

increment the body has extended by approximately 45% (figures 3.5 and 3.6, respectively).

Figure 3.7 depicts the initial state of an Voronoi fiber network RVE embedded and

coupled to the dogbone simulation seen in figure 3.4. The line segment plotted in the center

of the RVE cube is the primary fiber alignment of the fiber network, corresponding to the

line segments seen in figures 3.4, 3.5, and 3.6.

In figure 3.8 the same RVE is seen fully deformed after 20 macro-scale pseudo-timesteps
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Fig. 3.5: Dogbone 1k Mesh and Fiber Alignment After 10 Load Increments

Fig. 3.6: Dogbone 1k Mesh and Fiber Alignment After 20 Load Increments

have converged. The RVE body has extended approximately 60%. In general it is not unusual

to see local strains on the RVEs of 2-3 times the total macro-scale body extension. These

large local strains can cause stability issues at the micro-scale and require many iterations for

the nonlinear procedure to convergence. A more robust convergence procedure (or switching

to an explicit solver under certain circumstances) may alleviate this particular bottleneck

and allow pushing overall simulations to larger strains.

3.4.2 Glomerular Podocyte

A model of a glomerular podocyte domain can be seen in figure 3.9. This domain

was constructed from sample data taken from an actual podocyte cell using the Simmetrix

model construction tools [43]. The domain represents half of the cell, the other half would

be the mirror of the object across the cut plain most visible on the top surface of the right
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Fig. 3.7: State of an RVE in a Dogbone Anlaysis After a Single Timestep

sub-figure in figure 3.9.

The problem domain has a capillary (the yellow portion of the domain) through which

blood is flowing, inducing an internal pressure. The green and blue sections of the domain

are the nuclei of the two podocyte cells attached to the artery, while the red regions are the

rest of the cell bodies.

In this problem the symmetric face was fixed with respect to the normal direction

of the face, while the internal surfaces of the artery were loaded with a normal pressure.

A minimum number of degrees of freedom on the symmetric face to eliminate rigid body

motions were also fixed.

The capillary portion of the domain was added later in the development process of this

particular domain. An initial simulation of the segmented image data without the capillary

structure was also conducted (see figure 3.10). The particular problem specification for this

domain necessitated the development of pressure boundary conditions which were developed

as an extension to the preexisting traction boundary conditions. The model faces on the
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Fig. 3.8: RVE Deformation after 20 Load Increments

Fig. 3.9: Glomerular Podocyte Mesh

’interior’ of the domain – those model faces in contact with the capillary walls in figure 3.9

– were loaded with a pressure boundary condition. This resulted in the cellular ’fingers’ of

the podocyte cells spreading apart as seen in figure 3.10.

The specification of the podocyte problem case is ongoing as the initial segmented

image data used for the construction cellular structures was sufficiently coarse as to introduce

artifacts into the resulting model geometry that acted as stress concentrators. These stress

concentrators resulted in unexpected and unrealistic behaviors during simulation and it was
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Fig. 3.10: Early Glomerular Podocyte Mesh Pre-loading and Post-loading

Fig. 3.11: Neuron Mesh

determined a newer domain without these artifacts is needed.

3.4.3 Collagen Embedded Neuron

A neuron domain embedded in a collagen gel can be seen in figure 3.11. The left

sub-figure shows the neuron with respect to the collagen gel block it is embedded in, while

the right sub-figure shows the isolated neuron. Similarly to the podocyte domain, this

structure was created from actual cell data using Simmetrix model construction tools [43].

The domain contains three neuron structures, the most predominant neuron runs axially

through the domain, while the other two connect transversely to the predominant neuron.

The experiment most typically conducted on this domain is a uniaxial extension setup,

where the collagen gel is held on one end and the opposite face has an applied normal
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Fig. 3.12: Neuron Pre-loading and Post-loading

Fig. 3.13: Neuron Gel Pre-loading and Post-loading

traction.

This problem necessitated the development of additional features for the overall simula-

tion. Firstly, the incorporation of multiple fiber libraries exhibiting differing features, as the

neuron fiber networks are strongly axially aligned while the collagen fibers networks are typ-

ically isotropic. Additionally, the neuron structure should retain global volume throughout

the simulation. This necessitates the implementation of a volume constraint.

3.5 Evaluation of Parallel Implementation

All results in this section were generated on the AMOS BlueGene/Q supercomputer

managed by the Center for Computational Innovation at RPI. The AMOS BG/Q is a 5-rack,

5120 node supercomputer where each node has a 16 core 1.6Ghz A2 processor and 16GB of

DDR3 memory. The IBM xl V12.0 C and C++ compiler suite was used to compile and link

the biotissue code.

Strong and weak scaling studies were conducted using the dogbone domain discussed

in section 3.4.1.
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Fig. 3.14: Strong Scaling of the Soft Tissue Multi-scale Simulation

For the strong scaling study a mesh consisting of 64k elements was used, while the

number of processes assigned to the simulation was scaled, the results are shown in figure

3.14. In each case the 2nd macro-scale pseudo-timestep of the simulation was evaluated

to avoid possible noise introduced by several initialization processes in the simulation that

effect only the first pseudo-timestep.

The number of processes assigned to compute the macro-scale simulation varied by

powers of two from 2 to 64. The number of processes assigned to the micro-scale was

determined as a ratio of the number of macro-scale processes, varying by powers of two from

32 to 512. Thus the processes applied to the entire simulation varied from 64 in the smallest

case to 32,768 in the largest case.

Varying the number of macro-scale processes has the greatest impact on the total

runtime of the simulation, likely primarily due to the impact the macro-scale increase has on

the total number of micro-scale processes, as the distribution and calculation of independent

RVEs is embarrassingly parallel. In the worst case, with only two processes assigned to the

macro-scale and a ratio of 32, the pseudo-timestep required 6.27e+03 seconds to compute.

The best case occurred with 64 macro-scale processes and a ratio of 256, where the compute

time was only 272.26 seconds. In the largest case of 64 macro processes and a micro-scale

ratio of 512, the compute time was larger than with a 256 ratio. This is likely due to over-
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Fig. 3.15: Weak Scaling of the Soft Tissue Multi-scale Simulation

distributing the work as a total of 32,768 processes were assigned to the simulation. As

there are 64k total RVEs most micro-scale processes are evaluating only approximately 2

RVEs each macro-scale iteration. Small amounts of noise on the compute nodes, the use of

blocking communication operations, and basic communication overhead likely account for

this increase.

For the weak scaling study, the dogbone domain is again used. The macro-to-micro

ratio is held fixed at 1:127 processes. The total number of macro-scale elements is approx-

imately 1k elements per macro-scale process, which results in 9-10 RVEs being assigned to

each micro-scale process. As the scaling increases the RVE compute time remains stable

overall. However the macro-scale linear solve time begins to take longer after scaling to 2048

total processes. The linear solver in use at the macro-scale is the SuperLU_dist direct LU

solver [50]–[52], configured underneath the PETSc libraries and APIs. This direct solver is

ill-suited to solve sufficiently large parallel linear systems and an iterative solver should be

used.

Looking at the timings of the same set of operations in the strong scaling case we see

that beyond a modes number of processes the parallel direct solve is the predominant limiting

factor in the time-to-solution of the problem, quickly plateauing after only 16 macro-scale
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Fig. 3.16: Strong Scaling of the Soft Tissue Multi-scale Simulation – Per Oper-
ation

processes are applied to the 64k element problem. As noted in the initial strong scaling

analysis above the uptick at the highest level of scaling seen is indeed due to the RVE

computation and communication, as the RVEs are spread so thinly throughout the parallel

execution space.

3.6 Conclusion

In this chapter we have applied the AMSI multi-scale simulation capabilities introduced

in chapter 2 to implement a multi-scale simulation of soft biological tissues called ’biotissue’.

The physics underlying the implementation of the two coupled scales in the simulation was

briefly described, and is expanded on in appendices A and B. The implementation details of

the individual scale codes and their solution processes were discussed. The data structures

of the coupling terms used to couple the scales together was discussed. The implementation

of the AMSI multi-scale coupling API in each of the simulations was discussed. The appli-

cation of the biotissue simulation software to several problems of interest including a tensile

test sample, glomular podocyte cell structure, and neuron embedded in a collagen gel was

discussed. The parallel characteristics of the biotissue simulation was evaluated and shown

to display good strong and weak scaling characteristics, and limits to the current parallel
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implementation were considered.



CHAPTER 4

SCALE-SENSITIVE LOAD BALANCING OPERATIONS IN

HIERARCHICAL MULTI-SCALE SIMULATIONS USING

AMSI

4.1 Load Balancing

As problem sizes grow - whether in terms of the underlying physical model used to

simulate the problem or the granularity of the domain discretization or problem domain

itself - single-scale simulations must be conducted on massively parallel machines in order to

achieve meaningfully responsive results. This is accomplished by distributing problem data

across the execution space of the machine, and keeping communication/blocking points to a

minimum.

In order to maximize the computational gain granted by parallelization, load balancing

must be used. The general load balancing problem depends on the implementation of the

model used in a simulation; in terms of the data/tasks to be balanced as well as the necessary

coordination between processes in order to advance the simulation. Further, the characteris-

tics of the machine must be taken into account, both with respect to the hetero/homogeneity

of the computational resources of the machine and the communications facilities employed.

Finally combining the other dependencies, the load being balanced must have some metric

denoting the computational demand associated with the discrete units capable of being dis-

tributed across the machine, as well as (possibly) the communication cost associated with

that distribution. For a more in-depth discussion of load balancing theory, see [54]–[57].

Dynamic load balancing is a difficult problem, though many widely-used numerical

methods and/or specific implementations of methods have developed relatively mature load

balancing algorithms or heuristics [56]. In particular the finite element method – used in

the primary scale of the Biotissue problem – has a mature set of load-balancing methods

based on graph methods [58]–[61] used to distribute entities of the discretized domain and

associated tensor field values across the execution space.

Briefly, the computational demand on each process can be estimated as a function of

the number of individual elements that must be processed by each node, but due to dynamic

52
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mesh adaptation processes used to minimize error estimators across the numerical problem

domain, the global number of elements associated with the discretization may vary wildly

over the course of a multi-load step simulation [62]. Dynamic load balancing operations allow

for the redistribution of individual elements between processes after adaptive processes have

created an imbalance in the element distribution, achieving a more balanced element count

and resulting in better overall process utilization.

4.2 Multi-scale Load Balancing

Using numerical methods for which load balancing schemes have been developed in a

multi-scale simulation introduces a new set of constraints to the problem due to the inter-

scale dependencies. Adaptive operations which completely invalidate the geometric relation-

ship and consequently the multi-scale coupling terms between two scales in a multi-scale

simulation requires reinitialization of the geometric relationship and coupling.

When adaptive operations do not invalidate the multi-scale coupling relationship by

retaining the domain characteristics that establish the relationship it is possible to take

advantage of load balancing operations so long as any load balancing effecting the coupling

relationship is modified to accommodate the new parallel distribution of coupling terms.

This process is referred to as scale-sensitive load balancing, where a single scale undergoes

a load balancing process effecting the coupling characteristics of that scale, and all coupled

scales are informed of the redistribution.

4.3 Scale-Sensitive Load Balancing Implementation

The load balancing planning algorithms of Zoltan [63], [64] or other load balancing

procedures can be used underlying the scale-sensitive load balancing planning of AMSI.

AMSI further provides users with the ability to create and register custom load-balancing

algorithms specific to the requirements of a given numerical implementation.

Scale-sensitive load balancing is a three-phase process: a planning phase, migration

phase, and scale-syncing phase are required to complete a single load-balancing event.

4.3.1 Phase 1: Planning

The planning phase is a collective operation on the set of processes associated with the

scale being load-balanced. During this phase weighting constraints and other information
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micro (w/ all weights = 1)
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Fig. 4.1: Scale-sensitive Load-balancing Phase 1: Planning

Table 4.1: Simple Load Balancing Plan
A:{(4):B}
B:{}
C:{(3):B}
D:{}
E:{}
F:{}
G:{(2,4):F,(3,6,7):H}
H:{}

is provided to a planning algorithm which produces a plan for redistributing information

such that the weighting metric is balanced. For this phase AMSI typically utilizes planning

algorithms provided by the Zoltan library, though as noted above any planning algorithm

may be registered and used with the system.

Figure 4.1 depicts a load-balancing plan in a multi-scale system with 2 associated

scales. The macro-scale is executing on processes 0-3 and the micro-scale is executing on

processes A-H. Each micro-scale process has a number of load-balancing units (depicted as

a stack of boxes above the process identifier), each of which is associated with a weight. In

this example a uniform weighting of 1 is assumed for all load balancing units (represented

by the bars above each process) for simplicity and clarity of discussion. The load balancing

plan itself is represented by a set of arrows in the figure. The actual plan corresponding to

the depiction is seen in table 4.1 where each process has set of pairs of lists of local unit

ids and the foreign micro-scale process to which they are being sent in the load balancing

process.
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micro (w/ all weights = 1)
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Fig. 4.2: Scale-sensitive Load-balancing Phase 2: Migration

4.3.2 Phase 2: Migration

The migration phase is also collective on the set of processes associated with the scale

undergoing load-balancing. During this phase the plan from the previous step is put into

action. Each process with a non-null set of migration operations sends the list of local load-

balancing units to the receiving process. Serialization of the data on the origin process and

deserialization/reinitiatization of the data on the receiving process is often required during

this phase as well.

Figure 4.2 depicts the result of implementing the load balancing plan introduced in

figure 4.1 during the migration phase. By transmitting units of load balanced data between

micro-scale processes, each process has as equal a weight as is possible to achieve given

the weight granularity. In this case only a single process, has more weight assigned than

any other process. In practice achieving equal weighting through load balancing is often

impossible, so the planning routines typically operate by bounding the imbalance present

after the load balancing migration takes place.

When using the routines provided by AMSI to enact the migration operations required

by a load balancing plan, each unit of coupling data is appended with two pieces of metadata

used by the final phase of the scale-sensitive load balancing process. This metadata is the

scale-rank of the process from which the load balancing unit data is sent, and the local id of

the load balancing unit on that rank in the context of any CouplingData distributions used

to derive Couplings on the scale.
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Fig. 4.3: Scale-sensitive Load-balancing Phase 3: Scale-syncing

4.3.3 Phase 3: Synchronization

A scale synchronization operation is collective over the processes assigned to the sim-

ulation scale undergoing a load balancing operation and the processes assigned to a coupled

simulation scale. The synchronization phase requires a scale synchronization operation for

each scale Coupled to the load balancing scale using CouplingData involved in the load

balancing operation.

In a synchronization operation the appended metadata redistributed with the migration

data is used to provide information to associate scales about the movement of the data at

the scale being load-balanced.

While the initial load balancing plan contains sufficient information to inform the

local scale about required migration operations, it doesn’t provide sufficient information to

coupled scales to update coupling patterns. Both the rank-local id on the scale rank sending

the load balancing data and the rank-local id on the scale rank receiving the data must be

provided to any coupled scales in order to appropriately update any Couplings related to

the load balanced units of data. As such the AMSI migration phase appends metadata to

load-balanced data (as noted in section 4.3.2) instead of the load balancing plan itself being

sent to the coupled scales, as only the scale ranks receiving the load balancing data have

sufficient information to fully inform the necessary Coupling updates.

Figure 4.3 shows the point-to-point communications required in the example case being

discussed, though as stated above the operation is collective over the union of the two scales

as every process may have required communication operations. Each rank which received

any units of load balancing data in the migration phase (in this case ranks B, F and H
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Table 4.2: A Weighted Coupling Between two Scales
Macro Ranks Macro cd Coupling

0 125 64 61
1 122 3 64 55
2 128 8 63 57
3 132 6 63 63

Micro cd 64 64 64 63 63 63 63 63
Micro cd wgt 64 64 64 63 63 64 227 221
Micro Ranks A B C D E F G H

in the micro-scale) now use use the Coupling data structure to determine which ranks in

the coupled scale are associated with the pieces of redistributed coupling/load balancing

data. These ranks in the coupled scale are sent a message for each migrated unit of coupling

data containing the origin rank in the micro-scale, the local id on the origin rank, the

receiving rank in the micro-scale, and the new local id of the data on the receiving rank.

Using this information the macro-scale Coupling is updated to reflect the new CouplingData

distribution at the micro-scale. The Coupling update process is discussed in more detail

along with an accompanying example in section 4.4.

4.4 Synchronization: Multi-scale Coupling

During the synchronization phase of a scale-sensitive load balancing operation the scale

undergoing the load balancing operation provides information to any foreign scales coupled

through the CouplingData being redistributed by the migration phase of the operation.

This information is used to modify any Coupling data structures operating on the modi-

fied CouplingData. Table 4.2 provides the state of a Coupling data structure associated

with a CouplingData with weighted data units undergoing a scale-sensitive load balancing

operation.

4.4.1 Initial Coupling Structure

The ’macro’ scale plays the sender role and consists of processes 0-3. The ’micro’

scale plays the receiver role and consists of processes A-H. A CouplingData (column ’macro

cd’) on the macro-scale is distributed by the Coupling data structure to the micro-scale,

creating an induced CouplingData at the micro-scale (row ’micro cd’). The unit count of

CouplingData being sent by a specific macro-scale process macro_proc to a specific micro-
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Fig. 4.4: Communication Neighborhoods Arising from a Coupling Pattern

scale process micro_proc is given by the value in the CouplingData matrix at location

(macro_proc,micro_proc). The local ids of these units of coupling data are deter-

mined solely by their location in the communication data buffers used to enact a Coupling

operations.

Figure 4.4 depicts the communication neighborhoods induced by the Coupling data

structure depicted in table 4.2. Each shaded region encompassing a set of processes in differ-

ent scales indicates that the processes in each scale engage in point-to-point communication

during a Coupling operation. In particular, since rank 0 in the macro-scale is contained in

a communication neighborhood with rank A and B in the micro-scale, it will only need to

communicate with these ranks during a Coupling operation. This can be seen in table 4.2 as

these are the only nonzero locations in the Coupling table representation in the 0th-process

row.

In this particular coupling relationship use of the default AMSI coupling algorithm

to evenly distributed the coupling data is sufficient, resulting in each micro-scale process

receiving either 63 or 64 units of coupling data. This coupling data has no weight assigned

to it a-priori, but after a single round of computation at the micro-scale a set of weights are

generated (see the emphasized ’micro cd wgt’ row in table 4.2), and the weight on processes

G and H are sufficiently disproportional to the weights on the other micro-scale processes that

a load-balancing operation is prudent. The imbalance threshold to trigger a load balancing

operation is user-determined, often 5-10% is a good heuristic range.

A load balancing plan is generated (see table 4.3) that will result in the weighted

coupling data being more well-balanced among the micro-scale. This particular plan is
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Table 4.3: Greedy Load Balancing Plan for Weighted Coupling
A:{}
B:{(0-29):A}
C:{(0-63):B}
D:{(0-15):B,(16-62):C}
E:{(0-50):C,(51-63):D}
F:{(0-62):D}
G:{(0-4):D,(5-35):E,(36-61):F}
H:{(0-22):G}

Table 4.4: A Weighted Coupling After Load Balancing
Macro Ranks Macro cd Coupling

0 125 104 23
1 122 67 30
2 128 74 64
3 132 16 30 26 25 40

Micro cd 64 64 64 63 63 63 63 63
Micro cd wgt 104 104 103 106 105 108 100 100
Micro Ranks A B C D E F G H

generated by a greedy load balancing algorithm in order to produce an easily-visualized

plan with respect to the Coupling data structure, in practice a plan which minimized data

movement as well would be produced by algorithms in Zoltan or another load balancing

library.

4.4.2 Modified Coupling Structure

The load balancing plan enumerated in table 4.3 is used during the migration phase

on the micro-scale such that the weighting differentials between any two processes in the

micro-scale is minimized (see the ’micro cd wgt’ row in table 4.4). After the plan is enacted

and migration has taken place through the AMSI load balancing interface, the traces of

AMSI metadata passed through the load-balancing migration process are used by the AMSI

systems to update any coupling patterns related to the specific coupling data being load-

balanced. This gives rise to a new coupling pattern which replaces the old coupling pattern,

seen in 4.4.

The internal permutation buffer described in algorithm 4.1 is used in subsequent Cou-

pling operations (and updated in subsequent Coupling modifications) so the user in not

required to reorder their data in cases where that would be burdensome. However the user
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Algorithm 4.1 Coupling Update During Synchronization

1: for all update in couplingUpdates do
2: for all idf in update.foreignIDs do
3: idl ← coupling.translateToLocal(idf )
4: coupling.remove(update.foreignProcessOrigin, idl)
5: idnew ← coupling.add(update.foreignProcessTarget)
6: coupling.permute(idl, idnew)
7: end for
8: end for

Fig. 4.5: Modified Communication Neighborhoods after load Balancing

can retrieve the permutation array in order to reorder their data structures or to change

the serialization ordering of data for use in Coupling communication operations. After re-

trieval of a permutation buffer AMSI treats all future communication operations involving

the related Coupling as though they are unperturbed.

As it is necessary to retain all multi-scale couplings effected by a scale-sensitive load

balancing operation, the actual data migration required to implement a specific load balanc-

ing plan may take place internally in AMSI. AMSI is provided with serialized buffers of load

balancing data associated with an already-planned load balancing operation on each process

in the AMSI scale undergoing load balancing.

This new coupling pattern induces new coupling neighborhoods for communicating the

coupling information from macro-scale to micro-scale, seen in figure 4.5.

In order to maintain usability in more general situations, it is also possible to simply

inform the AMSI system that the current load balancing plan has already been accomplished

by user-implemented data migration. This functionality combined with the ability to use

user-designed load-balance planning algorithms allows AMSI to work with entirely external
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load-balancing libraries and algorithms, allowing scale-sensitive load-balancing to be used

even when a specific multi-scale use case falls outside the bounds of capabilities built into

the system.

4.5 Application to Hierarchical Multi-scale Soft Tissue Simulation

See chapter 3 for discussion of the structure and implementation of the soft tissue

’biotissue’ simulation and code used in our evaluation of scale-sensitive load balancing oper-

ations.

Scale-sensitive load balancing operations are conducted on the micro-scale RVE sim-

ulation distribution at locations in the code where global inter-scale rendezvous operations

already occur. The primary location which fit this requirement are at the end of a macro-scale

iteration (just prior to the macro-to-micro coupling, during the coupling update discussed

in section 3.3, specifically listing 3.3) or at the end of the macro-scale pseudo-timestep (see

section 3.3, listing 3.3).

Conducting load balancing in these locations prevents the introduction of new global

rendezvous operations which may reduce simulation performance. Accumulating sufficient

historical load-balancing weighting information about the RVE simulations motivated the

decision to conduct load-balancing operations at each macro-scale psuedo-timestep rathet

than at each Newton-Raphson iteration.

This also has the effect of limiting the overall number of load balancing operations in

a simulation, as each load balancing operation itself introduces overhead (see discussion of

figure 4.9).

The primary restriction to the redistribution of the RVEs on the micro-scale processes

for load balancing purposes is that the relation to a specific macro-scale numerical integration

point must be maintained.

As each RVE is associated with a nonlinear simulation there is no a-priori estimate

of the computational load each RVE represents, so the optimal initial distribution is simply

treating the weight of each RVE as 1. Thus each micro-scale process is assigned an equal

number of RVEs ±1. Once the first load-balancing event is reached, regardless of the granu-

larity at which load-balancing is occurring for a given case, each RVE has recorded the total

number of newton iterations it has conducted since the previous load-balancing event. This

number is used as a heuristic weighting metric to estimate the computational load of each
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Fig. 4.6: Process Status in Unbalanced Soft Tissue Simulation Over Three Load
Steps – Red Sections Represent Time when a Single Process is Idle, Green
Sections Represent Time when all Processes are Active

individual RVE for the next micro-scale RVE solution.

The iteration count metric was chosen as each micro-scale nonlinear iteration takes a

similar level of work to complete, up to the difference in the number of degrees of freedom for

each fiber network, which is minimal. We hypothesized that the newton iterations required

for converge at a micro-scale simulation would persist relatively well over the course of

an entire multi-scale simulation. Assuming linear incremental loading of the macro-scale

domain, regions in the discrete mesh located near stress concentrators would (over the course

of the entire simulation) provide a coupling state to related micro-scale RVEs that resulted

in a set of micro-scale boundary conditions and an initial guess require more iterations to

converge to a solution than those RVEs related to macro-scale elements undergoing little

deformation. These RVEs located in high-stress regions would retain a high iteration count

over the course of the simulation, while RVEs in low-stress regions would converge relatively

quickly, providing us with a persistent weighting metric.

All discussed results are based on simulations of the problem domain seen in figure 3.1,

a model of a standard dogbone tensile-test sample.

Figure 4.6 shows the equally-weighted results for three pseudo-time load steps. The

macro-scale efficiency and micro-scale efficiency charts run side-by side from wall-clock time
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0 to approximately 600. Areas of the chart in red indicate that any process in the scale was

idle, while areas in green denote that all processes in the scale were active. Load balancing

aims to improve the portion of time the micro-scale is in the idle state by decreasing the

process with the longest time-to-solution during each micro-scale convergence process. In

this equally-weighted case the micro idle time is 50.7%, while the macro idle time is 75%.

The characteristics of figure 4.6 reflect the simulation phases. While the macro-scale is

performing a linear solve, the micro-scale lies idle, and while the micro-scale simulations are

performing their own Newton-Raphson iterations each incremental load step, the macro-scale

sits idle. The load balancing scheme we use is intended to reduce the time to completion of

the final micro-scale simulation to complete, as this is what determines when the macro-scale

simulation may begin it’s global solve procedure.

Figure 4.7 shows the weighting metric deviation from the norm for 256 processes in

the micro-scale over three load steps. Each sub-figure shows the sum of the weights of

the RVEs associated with 256 micro-scale assigned processes during the first three psuedo-

time steps of the simulation. The intended effect of the load-balancing scheme is to reduce

the processes with the largest deviations from the norm, as these represent addition RVE

nonlinear iterations, and thus compute time.

Figure 4.9 shows the effect of using scale-sensitive load balancing on the same problem.

The first load step is identical as we again use an equally-weighted scheme prior to the first

macro-scale pseudo-time step. The load balancing phases on micro-scale can be seen in the

figure as blue sections of time. Unfortunately the maximum deviation from the norm in step

2 is seen to increase, though decrease in step 3, as can be seen in figure 4.8. The micro

idle percentage also increased to 61.5% while the macro idle percentage decreased slightly

to 73.8% (likely as a function of the increased time rather than our load balancing efforts).

These results taken in concert with successive results lead us to believe that an effective

load balancing approach for this problem would require a hierarchical load balancing scheme

making use of problem over-decomposition. This would assigned work pools of RVEs to

different micro-process sets, determined by use of hardware locality tools to be on the same

computational node or plane. Thus local balancing would occur as processes in the pool

share the computational load, and the above load balancing scheme can be periodically used

to balance the load between the various work pools. This represents future work and is

further discussed in section 6.2.3. This also has the effect of reducing frequency of global
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Fig. 4.7: Deviation of Weights on Unbalanced Micro-scale Processes

Fig. 4.8: Deviation of Weights on Balanced Micro-scale Processes
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Fig. 4.9: Process Status in Dynamically Balanced Soft Tissue Simulation Over
Three Load Steps – Red Sections Represent Time when a Single Process is Idle,
Green Sections Represent Time when all Processes are Active, Blue Sections are
Time Spent Load Balancing

parallel communication operations used for load balancing, which themselves add to the total

solve time of the simulation. The efficiency of the communication processes required for the

load-balancing operations is another component that must be considered in additional work

on this subject.

4.6 Conclusion

In this work we have developed an approach to support load balancing operations in

the context of multi-scale simulations coupled using the Adaptive Multi-scale Simulation

Infrastructure (AMSI). We developed this approach as an extension of the standard 2-phase

load balancing model of planning-migration through the addition of a third multi-scale syn-

chronization phase. We developed a multi-scale coupling modification capability to enable

the synchronization phase. To realize these capabilities, we extended the AMSI implementa-

tion to provide both full 3-phase scale-sensitive load balancing support and solely 3rd phase

synchronization capabilities to allow usage in a broad set of use cases.

We leveraged our full 3-phase scale-sensitive load balancing operations in the context of

a hierarchical multi-scale simulation of soft biological tissues. Further we discussed the char-
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acteristics of the load-balanced weighting metric in the soft-tissue simulation and found that,

while the load balancing capabilities were effective in producing a more balanced weighting

on each process in the micro-scale of the simulation, the underlying weighting metric in use

was unable to properly capture the evolving computational expense of the data over the

course of a simulation.



CHAPTER 5

IMPLEMENTATION OF ZERO-OVERHEAD ABSTRACTION

LAYERS FOR USE IN HPC HIGH-PERFORMANCE LOOPS

5.1 Component Software in HPC

The development of scientific codes for high performance computing (HPC) architech-

tures is a laborious process requiring the involvement of developers from many differing

specializations. The construction of framework software packages for HPC development al-

lows for many benefits including allowing the modular construction of new functionality

through the use of components from many developers [65].

Components are intended to provide a set of services to the user to accomplish a task,

and many components from different developers exist that provide similar sets of services

and can accomplish the same task in a variety of ways. The development of a common

interfacing standard to ease the difficulty of combining of software components has long

been a goal in the HPC community, seeing the rise of standards such as CCA [66], [67] and

GridRPC/Omni RPC [68], [69].

The specific context of multi-scale computing on HPC machines has motivated the

development of new component models [70], [71] targeted at creating environments for the

construction of multi-scale simulations, as discussed in chapter 2. The Abstract Scale Model

and Abstract Coupling model introduced in section 2.4 are abstractions based on a generic

component model for individual scale codes.

There are often difficulties in adopting component frameworks including the cost of

refactoring existing code, overhead introduced by the framework, and incompatibility of

approaches between a framework model and a particular use case. Due to these difficulties

it is still common to encapsulate existing libraries in a component wrapper which exposes

an interface geared toward a specific set of operations required by the developer. These

abstraction layers allow many of the benefits of a full component-based approach without

the requirement of refactoring existing codes to accommodate a framework.

67
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5.2 Abstraction Layers

The use of a well-designed abstraction layer can allow a developer a great deal of leeway

when designing and implementing algorithms, allowing the decision about the use of a specific

underlying package or library to be deferred until compile- and even run-time. Abstraction

layers and application programming interfaces (APIs) are a fundamental tool in software

engineering, allowing the implementation details for operations to be both obfuscated and

altered orthogonally from the implementation of algorithms making use of the abstraction

layer.

Further there is support for the assertion that using a proper abstraction layer may

result in better code efficiency than specialized, direct usage of a 3rd party component library,

in part due to the reduction in the knowledge gap on the part of the component user [72].

Many classes of applications exist where runtime overhead associated with use of API

layers is undesirable as it can impact performance and efficiency of the program at a very low-

level [73]. These include applications targeting highly-constrained deployment platforms such

as embedded systems where compute power and memory size are the primary constraints

and high performance computing applications where problem size is the primary constraint.

In these constrained situations, evaluating the efficacy of abstraction layer implementation

and usage is important [74].

5.3 Runtime vs. Compile Time APIs

The most important feature of an abstraction layer is simply to provide an abstraction

of the operation being performed through a generic interface. The determination of the

actual concrete function calls corresponding to the usage of the abstraction layer interface

is primarily made either at run-time or compile-time [75]. In C++ run-time abstraction is

typically accomplished through inheritance polymorphism, though C-style ’abstraction’ using

structs with function pointer interfaces is also a valid method of run-time abstraction [76].

Compile-time abstraction in C++ typically happens through C++ templates [77], though

C preprocessor macros can also be used to supply some compile-time polymorphism.

Methods of implementing abstraction layers at runtime necessarily introduce some

amount of overhead involved in function calls expressed in the API. These API mechanisms

require dynamic function dispatching which introduces overhead [78]. There is no viable

method to reduce a runtime abstraction layer overhead to zero, though the impact is typi-
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cally minimal in the general case. In general code development and usage this overhead is

negligible enough that the ease of use of most dynamic dispatching mechanisms is a reason-

able tradeoff for a small performance hit. Runtime abstractions are very general and provide

the most utility and responsiveness to uncertain requirements being placed on the system.

In event-based and real-time systems these abstraction layers provide vital flexibility and

utility.

Implementing a compile-time abstraction layer allows a developer to leverage the power

of an abstract interface while not paying as steep a price for the abstraction. Typically ab-

straction layers using compile-time abstractions result in the compiled code having only the

overhead of a single function call associated with use of functions in the API. However, since

the abstraction layer is made concrete at compile-time, the software system cannot respond

as well to runtime effects and conditions that may require the software to respond with flex-

ibility. Compile-time abstractions provide the best utility in high-performance or embedded

systems where the requirements on the program are constrained and can be determined a

priori.

5.4 High Performance Loops

Most HPC software possesses sections that can be referred to as tight-loops. These are

low-level loops over simple data structures that represent the bulk of the important com-

putational effort expended in a program. In HPC these include linear system operations

(matrix assembly, matrix multiplication, linear system solution), integration loops over dis-

cretized domains, etc. Reduction of overhead inside of these loops is an especially important

target of program optimization and improvement, as a minor loop speedup has an outsized

effect on program speedup due to the sheer number of times the speedup will effect the

computation [79].

Further, optimizing these tight loops to take advantage of features such as vector-

ization [80] and other considerations for tight loops on heterogenous architectures such as

supercomputers with on-node accelerators such as CUDA accelerators. Specifically with re-

spect to accelerators such as CUDA cards, branching operations and context switching are

particularly impactful on achieving high-performance code in tight loops.

Abstraction layers supplying operations used in tight-loops in an application have a

more stringent set of requirements in order to provide true utility to an HPC developer,
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see [74] for an examination of the MPI standard in this context.

5.5 Zero Overhead Abstraction

Given the requirements on tight-loop HPC operations for absolutely minimal overhead

but also a desire to explore different implementations of key operations and to allow the

software to perform well on machines with different hardware configurations, the use of

some abstraction layer with absolutely minimal cost is desirable. As HPC programs fall

within the set of programs with known constraints at compile-time, the use of a compile-

time abstraction layer is the natural choice for tight-loop operations. However, compile-time

abstraction layers still typically pay the price of a single function call per API operation.

This can be overcome through aggressive inlining of every abstract function imple-

mentation for the API backend, allowing the compiler (in release mode with sufficient op-

timizations active) to inline the abstract function calls. In C/C++ there is no guarantee

by the standard that a function which can be inline will actually be inlined [81], though

many compilers offer extensions to force inlining of functions [82]–[84]. Through the use of

a compile-time abstraction mechanism and aggressive/forced inlining, the abstraction layer

can disappear in the compiled code, resulting in zero-overhead abstraction.

5.5.1 Effect on Vectorization

Of importance is the effect this API model has on the vectorization of tight loops.

Vectorization is a process whereby the operations in a loop occur simultaneously to multiple

operands over which the loop is occurring. This on-core model of single-instruction multiple-

data (SIMD) style parallelism effectively reduces the number of loop cycles necessary to

process the operands, massively reducing compute time to complete the loop. Vectorization

and the code requirements to fully take advantage of vectorization are complex issues that

vary from compiler to compiler, as each offers differing mechanisms and analysis algorithms

to vectorize loops. Further discussion of vectorization pertaining specifically to HPC can be

found in [85].

Vectorization of loops containing function calls is a more recent additional the ca-

pabilities of vectorization routines in modern compilers [86], and in order to vectorize a

loop containing a function call, certain information must be known about the function at

compile-time. Further, dynamic function dispatch methods make supporting vectorization
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Table 5.1: LAS Zero-overhead API
Operation Description
zero(Mat*) zero a matrix
zero(Vec*) zero a vector
zero(Mat*,int) zero a row in a matrix
add(Mat*,int,int*,int,int*,double*) add values to locations in a matrix
add(Vec*,int,int*,double*) add values to locations in a vector
set(Mat*,int,int*,int,int*,double*) set values at locations in a matrix
set(Vec*,int,int*,double*) set values at locations in a vector
get(Mat*,int,int*,int,int*,double**) get values from locations in a matrix
get(Vec*,int,int*,double**) get values from locations in a vector
norm(Vec*) calculate the 2-norm of a vector
dot(Vec*,Vec*) calculate the dot-product of two vectors
axpy(double,Vec*,Vec* y = ax+ y operation on two vectors
get(Vec*,double**) extract the entire local vector array
restore(Vec*,double*) restore the entire local vector array

very difficult only a single compiler (the Intel C++ compiler after version 17.0) has (limited)

support for vectorizing loops containing C++ virtual function calls [87].

Adhering to the strict restrictions and implementation specifics to take advantage of

loop vectorization is a difficult programming problem. Using a zero-overhead abstraction

layer as specified in section 5.5 to inline function operations has the additional benefit of

reducing the complexity of work required to refactor existing loops to fully take advantage

of the benefits of vectorization, so long as the backend implementation itself allows for

vectorization.

5.6 Linear Algebraic System (LAS)

The Linear Algebraic System (LAS) [88] is a zero-overhead abstraction layer library

for performing tight-loop operations on linear algebra data structures in HPC applications.

The library provides a zero-overhead API for manipulating matrices and vectors, as well

as a set of run-time APIs for performing operations which themselves abstract tight-loop

operations such as solving a linear system, matrix-vector multiplication, and matrix-matrix

multiplication. The library supports five backends including the ’sparse’ and ’core’ default

backends, Sparskit, a serial LU solver written in Fortran, CuSparse, the sparse linear algebra

library in the CUDA toolkit, and PETSc, an MPI-parallel linear algebera package used to

construct and solve large linear systems in parallel.
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Table 5.2: LAS Nonzero-overhead API
Operation Description
Mat * create() create a matrix
Vec * create() create a vector
LasOps * getLasOps<T>() retrieve API for backend T

solve(Mat*,Vec*,Vec*) solve a linear system Ax = b
mult(Mat*,Vec*) perform a matrix-vector multiply
mult(Mat*,Mat*) perform a matrix-matrix multiply

The set of operations included in the LAS zero-overhead API (and a description of

each) is listed in table 5.1, and the set of operations included in the extended API (using

standard C++ inheritance polymorphism) is listed in table 5.2.

5.6.1 Implementation using CRTP

The LAS abstraction layer makes use of the curiously-recurring template pattern

(CRTP) in C++ to provide compile-time abstraction. An example of the use of this C++

design pattern in the LAS library from the interface specification to the backend implemen-

tation is shown in listing 5.1. The primary interface class las::LasOps<C> declared in

the las.h header defines the zero-overhead API of functions. In the minimal example in

the listing only a single function – that for zeroing an opaque matrix type – is exposed. The

implementation of the zero function is defined inline in the class declaration and consists

only of performing a compile-time cast of the object to the template type and calling an

equivalent, unexposed version of the API defined in the template class _zero.

Listing 5.1: LAS Implementation Using CRTP

1 // las.h

2

3 // opague matrix type

4 class Mat;

5

6 // interface definition using CRTP

7 template <class C>

8 class LasOps<C>

9 {

10 public:

11 void zero(Mat * m)
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12 {

13 static_cast<C*>(this)->_zero(m);

14 }

15 };

16

17 // function to retrieve interface objects

18 // for specific backends

19 template <class C>

20 LasOps<C> * getLasOps();

This is the core mechanism enabled by the CRTP pattern for compile-time abstrac-

tion. Since the type C is known at compile time, the subsequent location of the call to the

C::_zero function is also known, and can be inlined as well. In this way the invocation of

the LasOps::zero() function can be replaced at compile time be the concrete backend

implementation C::_zero(). Further, a templated function to retrieve a version of the

las::LasOps<C> for a particular backend C is also defined.

5.6.2 Backend Implementation

To implement a backend for the API, a pair of header files is required. Listings 5.2

and 5.3 show the implementation of the zero(Mat*) function for the sparse backend.

The declaration of an opaque class sparse used as a template parameter and the tem-

plate specialization of the function for retrieval of the interface-exposing LasOps<sparse>

structure is the entire public interface required to make use of the API for the sparse

backend.

Listing 5.2: LAS Backend Public Interface

1 // lasSparse.h public interface for ’sparse’ backend

2 // opaque class for template specialization for this backend

3 class sparse;

4 // specialization of the API retrieval function

5 template<>

6 LasOps<sparse> * getLasOps<sparse>();

7 // include the implementation header

8 #include "lasSparse_impl.h"
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All implementation details and explicit calls to any dependencies used by the backend

are placed in an xxx_impl.h file, as the functions are designed to be inlined they compile

into the user code rather than being defined in a source file.

The sparse_impl.h file in listing 5.3 defines data structures used in the backend.

In order to implement the LasOps<sparse>::_zero(Mat*) function the csrMat and

CSR types are needed. Additionally the LasOps<sparse> class is declared and the hidden

API function _zero(Mat*) is implemented inline. The combination of listings 5.1, 5.2,

and 5.3 define the entire API and sparse backend for the zero(Mat*) function.

Listing 5.3: LAS Backend Implementation

1 // lasSparse_impl.h implementation of the ’sparse’ backend

2 // compressed sparse row format matrix,

3 // sparsity pattern and nonzero values

4 // are handled separately

5 class csrMat

6 {

7 private:

8 CSR * csr;

9 double * nonzeros;

10 public:

11 csrMat(CSR * c)

12 : csr(c)

13 , nonzeros(new double[csr->getNNZ()])

14 { }

15 void zero()

16 {

17 memset(&nonzeros[0],0,sizeof(double)*csr->getNNZ(););

18 }

19 }

20

21 // implementation of API operations of the ’sparse’ backend

22 class SparseOps : public LasOps<SparseOps>

23 {

24 public:

25 void _zero(Mat * m)

26 {
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27 csrMat * cm = reinterpret_cast<csrMat*>(m);

28 cm->zero();

29 }

30 };

31

32 // specialized function definition to retrieve

33 // API object.

34 template <>

35 LAS_INLINE LasOps<sparse> * getLasOps<sparse>()

36 {

37 static SparseOps * ops = nullptr;

38 if(ops == nullptr)

39 ops = new SparseOps;

40 return ops;

41 }

Two default backends are provided with LAS, the sparse backend which operates on

CSR format matrices [89] and the dense backend which operates on logically 2d arrays as

matrices. The CSR matrices from the sparse backend provide additional utility as they

can be used directly with additional solver/multiplication backends without modification.

5.7 Automated C API Generation

Leveraging the full capabilities of the zero-overhead API implemented in LAS requires

the calling language be C++. However C and FORTRAN are still widely used in high

performance computing, as many existing pieces of software exist only in these languages.

In order to provide utility to such existing codebases, it is common to provide a C API with a

library, as FORTRAN and C have well-established mechanisms (especially iso_c_binding

since FORTRAN90) to interoperate, so all C and FORTRAN codebases can make use of the

C API.

Each backend added to the LAS library automatically generates a C API interface

allowing it to be used from these existing codebases. In order to allow different backends to

be used in the same link unit in a C program, the C API generate by two different backends

cannot define the same symbols. This is accomplished by generating custom function names

at compile time for each function in the zero-overhead API, through the use of a preprocessor

macro automatically created during the CMake configuration process for each backend. This
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macro – las() – is used in a template las_capi.h file to generate a backend-specific C

API file, e.g. las_sparse_capi.h for the sparse backend. See listing 5.4 for the full

macro definition for the sparse backend.

Listing 5.4: LAS C API Macro

1 #define CONCAT_FUNC(pkg,fnc,bck) pkg ## _ ## fnc ## _ ## bck

2 #define MAKE_PKG_FUNC(pkg,fnc,bck) CONCAT_FUNC(pkg,fnc,bck)

3 #define las(FNC) MAKE_PKG_FUNC(las,FNC,BACKEND)

4 #define BACKEND sparse

Listing 5.5 shows the usage of the macro at configuration and compile time to auto-

matically create a C API for the sparse backend first discussed in section 5.6.2.

Listing 5.5: LAS C API Macro Usage

1 // las_capi.h

2 // c api to zero a matrix for a generic backend

3 void las(zero_mat)(las_ops * las, las_mat * mat);

4

5 // las_sparse_capi.h

6 // auto-generated api macro results in

7 // las(zero_mat) expanding to las_zero_mat_sparse

8 #define BACKEND sparse

9 void las(zero_mat)(las_ops * las, las_mat * mat);

Since the C API for each backend generates different symbols for the API functions,

we are able to retain the benefit of configuration and compile-time polymorphism. Using

the las() macro in conjunction with redefining the BACKEND macro either directly in code

or using placeholders replaced at configuration time by the CMake configuration system,

multiple backends can be used (and determined at compile-time) in any single compilation

unit.

5.8 LAS Adoption and Usage

LAS is currently used in several HPC simulation codes. First and foremost it is used

in the soft biological tissue code discussed in chapter 3, where it was initially developed.
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It is used in the biotissue code in the micro-scale RVE fiber network simulation to create

and assemble the global Jacobian and force vector and to solve the resulting linear system

Ku = −f . The Sparskit [53] linear system solver and ’sparse’ LAS backend which operates

on and enables the construction of CSR matrices and standard arrays as vectors (as seen

in the csrMat implementation in listing 5.3) is used to initialize, assemble and solve the

micro-scale problem in serial.

However, when using sufficiently large problem sizes at the micro-scale (see section

6.2.2.1) the solution of a single RVE will need to be parallelized. By using LAS non of

the finite element assembly operations on the linear system will need to be rewritten to

accommodate this parallelization, only the configuration of a different backend (such as the

existing PETSc [23]–[25] backend is required at configuration and compilation time.

In the XGCM PIC fusion code [90], [91] it is being used to construct matrices used

to perform particle-to-field deposition and field recovery operations which interpolate tensor

field values from nodes on a discrete mesh to values on discrete particles in the simulation and

vice-versa. The LAS code was initially developed to target this application as it is intended

to be deployed on a variety of HPC target platforms with varying hardware profiles.

An LAS backend using the cuSparse [92] library for sparse matrix operations as part of

the the CUDA [93] toolkit was implemented for use in this operation on machines providing

CUDA-enabled computational accelerators. Additionally a Kokkos [94] backend is being

implemented for use on multi-core machines without accelerators.

The M3D-C1 code is a fusion code used to simulate the macroscopic state of the plasma

inside a tokamak fusion ring. Specifically this code focuses on the effects of the interior

boundary surfaces on the magnetic fields and plasma state through the direct modeling

and inclusion in the simulation domain of the wall boundary geometry [95], [96]. The LAS

library configured with a PETSc backend is currently being used to support the linear system

operations for the simulation, which consists of approximately 2 dozen separate matrices.

Many of these matrices are only used locally on a process for multiplication operations,

which may benefit from a switch away from PETSc to another backend more specialized for

the target architecture. Using LAS for this codebase will allows targeted use of specific

backends for specific hardware configurations to achieve the most computational benefit,

while retaining the benefits of PETSc for larger parallel matrices.
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5.9 Zero Overhead API Evaluation

A test binary in which a parallel partitioned-mesh finite element problem is formulated

and the nonzero structure of the global matrix is pre-calculated and pre-allocated was devel-

oped using the SCOREC/core libraries. The PETSc linear algebra package is used to create

and manage the global parallel matrix. In the elemental numerical integration routines a

call is made to assemble the elemental linear system into the global linear system using a

global DOF numbering scheme. This call to assemble the elemental systems is replaced in

various versions of the code with different API mechanisms.

The lowest possible overhead method of using the PETSc API is simply a direct func-

tion call to the MatSetValues() command, all abstraction layers and calling conventions

will eventually make a call to this function to assemble values into an (unblocked) PETSc

matrix.

Secondly, the LasOps<petsc> backend is used for the assembly process.

Third, a single call to a function in a separate compilation unit (rather than an inlined

function, which would compile down to simply the PETSc API call) is used. While it is

possible to implement an API with compile-time configurable backends in this manner it

would either require the use of a configuration mechanism like the preprocessor macro in

section 5.7 to generate unique link symbols or only a single backend could be used in a

binary link-scope as the symbols for different backends would conflict.

Forth, a C-style virtual function API is used where a structure consisting of function

pointers is created and they are bound at run time to the correct function.

Finally, the fifth method is C++ inheritance polymorphism, where an object API is

defined and an inheriting object defines that API; the main compilation unit where the API

is used is not aware of the inherited type, only the supertype.

5.9.1 Assembly Analysis

The LAS library was configured, compiled, and linked on the NERSC CORI Cray

XC40, using the Intel compiler suite (version 18.0.1) with compilation and link flags for the

O3 optimization level and using the c++11 standard. Additionally the library was built on

the the AMOS BlueGene/Q computer, using the IBM XL compiler suite (version 12.0) again

with the O3 optimization level and the c++11 standard.

The assembly of the resulting linked binary was extracted for the section of code seen in
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listing 5.6 for each test case noted in section 5.9. The abbreviated assembly code generated

for both the call to the function and any function backend is included in the listings in table

5.4 for the PowerPC assembly generated by the XL compiler suite on the AMOS BG/Q and

in table 5.3 for the x86-64 assembly generated by the Intel compiler suite.

Listing 5.6: LAS Test Code

1 #if defined(RAW)

2 MatSetValues(K,nds_per_lmt,&nums[0],nds_per_lmt,&nums[0],&ke[0],

ADD_VALUES);

3 #elif defined(LAS)

4 las_ops->assemble(las_K,nds_per_lmt,&nums[0],nds_per_lmt,&nums[0],&ke

[0]);

5 #elif defined(CALL)

6 add(K,nds_per_lmt,&nums[0],nds_per_lmt,&nums[0],&ke[0]);

7 #elif defined(CVIRT)

8 (*petsc_cops->add)(K,nds_per_lmt,&nums[0],nds_per_lmt,&nums[0],&ke[0]);

9 #elif defined(VIRT)

10 petsc_ops->add(las_K,nds_per_lmt,&nums[0],nds_per_lmt,&nums[0],&ke[0]);

11 #endif
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Fig. 5.1: Assembly Operation Counts for API Calling Methods

For case 1 – the explicit PETSc API function call – and case 2 – the LAS API configured

at compile-time with PETSc as the backend – compile down to identical instructions in both

test environments. In case 3 – a standard function call – the assembly includes a branch or

call instruction to switch contexts to the add() function before the PETSc call is prepared

and made. In case 4 – C-style inheritance polymorphism – the branch/call location is first

calculated prior to being invoked, at which point the PETSc API call is prepared and made.

In case 5 – C++ inheritance polymorphism – the branch/call location is again calculated,

this time from the virtual function table of the API object, before the branch occurs and

the PETSc call is prepared and made.

Figure 5.1 shows the assembly operation count for each case on both target architec-

tures. In both cases the raw API call and the LAS API calls are identical. On the CORI Cray

XC40 the function call and C-style virtual function calls take the same number of operations,

only a single additional operation over the raw API or LAS API. On the AMOS BG/Q the

function call requires almost twice the number of operations, and the C-style virtual function

call requires around 2.5 times as many. In both cases the C++ virtual function call requires

the most assembly instructions, on CORI it requires double the number of instructions as

the raw API or LAS API, on AMOS it requires 3 times as many.

5.10 Conclusion

In this work we have developed a methodology for implementing zero-overhead ab-

straction layers for using in HPC environments. We explored the utility of abstraction layers

in general and in the specific context of HPC computing, further we discussed different
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paradigms of abstraction layer implementation and their impact on utility and performance.

We determined that for HPC implementations focused primarily on performance and cor-

rectness the use of a compile-time abstraction layer provides for the best outcomes. We

developed a method of implementing compile-time abstraction layers – using C++ to im-

plement the Curiously Recurring Template Pattern (CRTP) – which are compiled away to

expose raw calls to third-party libraries over which they are implemented. We discussed the

implementation of the Linear Algebraic Systems (LAS) library which is implemented using

the methodology developed. We further developed methods to allow the hot-swapping of

the LAS abstraction layer backend at configuration time and explored options to provide

more accessible C and FORTRAN APIs to allow incorporation of the API in a wider vari-

ety of HPC codes with minimal overhead. We briefly discussed the existing applications in

which LAS is used including a multi-scale simulation of soft biological tissues and two PIC

fusion codes. Finally we established the validity of our approach by analyzing a small API

usage example using several API conventions and showing that on different platforms and

using different compilers, the assembly code produced by our approach is identical to that

produced by raw calls to an API backend, while every other approach introduces additional

assembly operations and overhead.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work we have discussed the development of mechanisms and software to sup-

port the implementation of multi-scale software on HPC machines from existing single-scale

simulations, the use of our software to implement a multi-scale simulation of soft tissue, the

extension of our methods to allow for the dynamic load balancing of individual scale in a

multi-scale system, and finally the design and implementation of zero-overhead abstraction

layers used in the several HPC codes including the soft tissue simulation.

In chapter 2 we began by discussing the difficulties and motivations in the construction

of multi-scale simulations. We developed an abstract model of multi-scale coupling which

is congruent with existing multi-scale abstractions. We developed a software infrastructure,

AMSI to support the implementation of multi-scale systems from existing SPMD HPC sim-

ulations in agreement with the multi-scale abstract model. The implications of the design

and implementation details of AMSI were discussed. These developments make possible the

creation of novel new multi-scale simulations and couplings without tremendous development

costs associated with the development of bespoke codes.

In chapter 3 we further used the AMSI software to combine two single-scale simulations

together to produce a multi-scale simulation of soft biological tissues. We discussed the

properties of each simulation scale and then described the implementation details of each

scale and how AMSI is used to couple the two scales together into a multi-scale system. The

application of the multi-scale soft tissue code to several problems of interest was discussed

including a standard tensile test sample domain, a model of a glomular podocyte cell, and a

single neuron cell embedded in a collagen gel. The numerical and parallel characteristics of

the soft tissue simulation code were discussed.

In chapter 4 we extended our work on AMSI to allow for the dynamic movement of

data between processes assigned to individual scales in a multi-scale system. We developed

techniques to retain the validity of the multi-scale couplings during such operations, and

used these capabilities to implement and enact scale-sensitive load balancing operations on

the multi-scale soft tissue code discussed in chapter 3.
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In chapter 5 we developed an approach for the implementation of zero-overhead ab-

straction layers for use in HPC environments. We showed the application of this approach to

the implementation of the Linear Algebraic Systems (LAS), which is currently used in sev-

eral HPC application codes. The implementation approach was extended to auto-generate

addition APIs to allow C and FORTRAN users to access the LAS backends with minimal

overhead. Finally the approach was validated through the evaluation of several interface

implementation mechanisms on two HPC platforms using two proprietary compilers.

6.2 Future Work

6.2.1 AMSI Extension to Concurrent Multi-scale Problems

The AMSI multi-scale capabilities are currently designed around applications to hier-

archical multi-scale simulations. The geometric inter-scale relationship characterization for

concurrent multi-scale couplings is significantly more complicated than that for hierarchical

multi-scale couplings. Supporting concurrent multi-scale problems in AMSI will require the

development and use of geometric relationship couplings. Disjoint simulation scales require

an interface through which to establish the extent of their simulated geometric domains, and

AMSI must use the information provided to produce a geometric coupling over which an

AMSI multi-scale coupling operation can be established

6.2.2 Biotissue Software Extensions

6.2.2.1 Parallelization of the RVE

The original implementation of the micro-scale simulation was developed as a solely

serial simulation, with no consideration of parallelization. For RVE systems with hundred or

thousands of fibers, the required computational cost is minimal enough that use of message-

passing parallelism would introduce sufficient overhead that any computation gain would be

lost.

The micro-scale simulation has been rewritten from the ground-up using modern tech-

niques and libraries which will more easily support the execution of parallel simulations on

the RVEs. As the fiber network sizes scale the computational demand will pass the threshold

where parallelization will increase time-to-solution, and parallel RVEs should be used.

This extension will also require accommodation in the algorithms used to define the

AMSI coupling for the biotissue problem.
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6.2.2.2 Embedded Fiber Network RVE

A micro-scale RVE model consisting of a fiber network embedded in a nonfibrillar

matrix was developed in [97]. The computational expense of these simulations is sufficient

to require a parallel implementation, in contrast to the relatively small fiber-only micro-scale

RVE simulation used in the current biotissue problem cases. Once the parallelization of the

fiber-only RVE simulations discussed in section 6.2.2.1 is complete, the implementation will

be extended to include the additional terms required to represent the fiber and nonfibrillar

matrix RVE version.

6.2.3 Scale-Sensitive Load Balancing with Over-decomposition and Work Pool-

ing

As noted in section 4.5 an additional approach to load balancing is required in the

context of the multi-scale biotissue simulation. Point-to-point load balancing operations

requiring weighting persistence to achieve effective load balance over the course of a simula-

tion are insufficient to improve the run-time of the biotissue simulation, due to the lack of

persistence in the Newton iteration count of the micro-scale RVE simulations.

An additional layer of work decomposition could allow effective load balancing, where

groups of micro-scale processes are assigned pools of micro-scale RVE simulations to work on

and process these work-pools each macro-scale Newton-iteration. Rather than load-balancing

the individual processes on the micro-scale, the work-pools assigned to micro-scale groups

are load balanced. We hypothesize that the work-pooling will result in the workgroups

achieving a balanced time-to-solution for the assigned RVEs, while load-balancing on the

over-decomposed set of workgroups will migrate the most heavily weighted RVEs in order

to balance them among the workgroups in order to reduce differences in time-to-solution

between the workgroups set.

6.2.4 LAS Zero-overhead API Usage

The LAS library is currently used in three simulation codes, but has yet to be evaluated

in terms of general utility. As it is being used in codes intended to be deployed on different

platforms – and with the use of different backends – the efficiency and utility of the LAS

abstraction layer needs to be evaluated. While we have shown that the abstraction layer

acts as intended from the perspective of the configuration and compilation stages, we intend
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further to show the utility of the abstraction layer by allowing and evaluating hot-swapping

of backends on target machines to evaluate operational performance. This will require the

incorporation of additional backends for the abstraction layer as it currently provides an

insufficient variety to provide a broad enough perspective on the efficacy of the approach.
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APPENDIX A

Soft Tissue Macro-scale Derivation

A.1 Strain Tensors

The relationship between an elemental vector in the material configuration, dXXX, and

the spatial configuration, dxxx is given by the deformation gradient tensor FFF

dxxx = FFFdXXX, (A.1)

where FFF is a two-tensor defined as

FFF =
3∑

i,j=1

∂xi
∂Xj

ei ⊗Ej =


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 . (A.2)

To measure general deformation, consider two elemental vectors dXXX1 and dXXX2 as they

deform to dxxx1 and dxxx2. Such a deformation will involve stretching and changes in angle

between the two elemental vectors. To find strain, which involves only the stretch of the

vectors, consider the dot products of elemental vectors

dxxx1 · dxxx2 = (FFFdXXX1) · (FFFdXXX2)

= dXXX1 ·FFF TFFFdXXX2

= dXXX1 ·CCCdXXX2, (A.3)

where Eq. (A.1) has been applied and CCC ≡ FFF TFFF is the right Cauchy-Green deformation

This chapter authored in conjunction with: J. Merson, V. W. L. Chan
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tensor (note that FFF is on right side). One can also express the inverse relationship

dXXX1 · dXXX2 = (FFF−1dxxx1) · (FFF−1dxxx2)

= dxxx1 · (FFF−1)TFFF−1dxxx2

= dxxx1 · bbb−1dxxx2, (A.4)

where bbb ≡ FFFFFF T = (bbb−1)−1 = ((FFF T )−1FFF−1)−1 is the left Cauchy-Green deformation tensor

(note that FFF is on left side).

The strain can be defined as the change of length from the material to spatial config-

uration

1

2
(dxxx1 · dxxx2 − dXXX1 · dXXX2) =

1

2
(dXXX1 ·CCCdXXX2 − dXXX1 · dXXX2) = dXXX1 ·EEEdXXX2

=
1

2

(
dxxx1 · dxxx2 − dxxx1 · bbb−1dxxx2

)
= dxxx1 · eeedxxx2,

where

EEE ≡ 1

2
(CCC − III) and eee ≡ 1

2

(
III − bbb−1

)
(A.5)

are Lagrangian (or Green) and Eulerian (or Almansi) strain tensors, respectively.

A.2 Elasticity Tensors

In the case when work done by the stresses during deformation only depend on the

initial and final configurations, the behavior of the material is called path-independent.

Elastic materials that are path-independent are termed hyperelastic. As a consequence of

the path-independent behavior, an elastic potential Ψ per unit undeformed volume can be

defined as

Ψ(FFF (XXX),XXX) =

∫ t

t0

PPP (FFF (XXX),XXX) : ḞFFdt and Ψ̇ = PPP : ḞFF =
3∑

i,j=1

∂Ψ

∂Fij
Ḟij, (A.6)

where PPP is the first Piola-Kirchhoff stress tensor (work conjugate to the rate of deformation

gradient ḞFF ). Equation (A.6) is often used as a definition for hyperelastic materials [98].

Considering the restrictions imposed by objectivity, Ψ can be expressed in terms of the right
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Cauchy-Green deformation tensor CCC

Ψ(CCC(XXX),XXX) =

∫ t

t0

SSS(CCC(XXX),XXX) : ĊCCdt and (A.7)

Ψ̇ =
1

2
SSS : ḞFF =

3∑
i,j=1

∂Ψ

∂Cij
Ċij =

1

2

3∑
i,j=1

∂Ψ

∂Eij
Ċij, (A.8)

where SSS is the second Piola-Kirchhoff stress tensor (work conjugate to the rate of right

Cauchy-Green deformation CCC) and EEE = 1/2(CCC − III) is the Lagrangian strain tensor.

The relationship between SSS and CCC or EEE is nonlinear. A linear relationship can be

obtained by taking the directional derivative of SSS

DSIJ [uuu] =
d

dε

∣∣∣∣
ε=0

SIJ(EKL[φ+ εuuu])

=
3∑

K,L=1

∂SIJ
∂EKL

d

dε

∣∣∣∣
ε=0

EKL[φ+ εuuu]

=
3∑

K,L=1

∂SIJ
∂EKL

DEKL[uuu], (A.9)

where the chain rule has been applied in the second line and DEK,L[uuu] is the directional

derivative of EKL. More concisely, Eq. (A.9) is

DSSS[uuu] = CCC : DEEE[uuu], (A.10)

where CCC is the fourth-order Lagrangian (or material) elasticity tensor

CCC ≡
3∑

I,J,K,L=1

∂SIJ
∂EKL

EI ⊗EJ ⊗EK ⊗EL = 2
∂SSS

∂CCC
= 4

∂2Ψ

∂CCC∂CCC
. (A.11)

The spatial equivalent of CCC can be obtained by applying the push forward operation on the

rate form of Eq. (A.10) to obtain [98]

σσσo = ccc : ddd, (A.12)

where σσσo is the Truesdell stress rate, ddd is the rate of deformation tensor, ccc is the Eulerian
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(or spatial) elasticity tensor

ccc ≡
3∑

i,j,k,l,I,J,K,L=1

J−1FiIFjJFkKFlLCIJKLei ⊗ ej ⊗ ek ⊗ el. (A.13)

A.3 Isotropic Hyperelasticity

The hyperelastic constitutive equations discussed in the previous section are unre-

stricted. Here, the constitutive equations are restricted to be isotropic, i.e., the constitutive

behavior to be identical in any material direction. Consequently, the elastic potential must

be a function of only invariants of CCC : Ψ(IC , IIC , IIIC ,XXX). The invariant of CCC are

IC = trCCC = CCC : III

IIC = trCCCCCC = CCC : CCC

IIIC = detCCC = J2. (A.14)

As a result of the isotropic restriction, the second Piola-Kirchhoff stress tensor becomes

SSS = 2
∂Ψ

∂CCC
= 2

∂Ψ

∂IC

∂IC
∂CCC

+ 2
∂Ψ

∂IIC

∂IIC
∂CCC

+ 2
∂Ψ

∂IIIC

∂IIIC
∂CCC

= 2ΨIIII + 4ΨIICCC + 2J2ΨIIICCC
−1, (A.15)

where ΨI = ∂Ψ/∂IC ,ΨII = ∂Ψ/∂IIC , and ΨIII = ∂Ψ/∂IIIC . Applying the relationship

σσσ = J−1FFFSSSFFF T , the Cauchy stress can be expressed as

σσσ = 2J−1ΨIbbb+ 4J−1ΨIIbbb
2 + 2JΨIIIIII. (A.16)

A.4 Compressible Neo-Hookean

A compressible Neo-Hookean material is a simple case of an isotropic hyperelastic

material. The elastic potential of a compressible Neo-Hookean material is

Ψ =
µ

2
(IC − 3)− µ ln J +

λ

2
(ln J)2, (A.17)
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where J2 = IIIC and the constants λ and µ are the Lamé parameters:

µ = Shear Modulus

λ =
2µν

1− 2ν

ν = Poisson Ratio. (A.18)

Note that in the absence of deformation (i.e., CCC=III), Ψ = 0. Applying Eq. (A.16) to Eq.

(A.17), the Cauchy stress is

σσσ = 2J−1
∂Ψ

∂IC
bbb+ 4J−1

∂Ψ

∂IIC
bbb2 + 2J

∂Ψ

∂IIIC
III

= 2J−1
(µ

2

)
bbb+ 4J−1(0)bbb2 + 2J

(
−µ

2
J−2 +

λ

2
J−2 ln J

)
III

=
µ

J
(bbb− III) +

λ

J
(ln J)III. (A.19)

Comparing to the Neo-Hookean constitutive equation used in Lai et al. [99], µ is the shear

modulus and λ ≡ (2µν)/(1− 2ν) where ν is Poisson’s ratio.

The corresponding Eulerian elasticity tensor for the Neo-Hookean material can ob-

tained by a push forward operation of the Lagrangian elasticity tensor to obtain [98]

cccijkl = λ′δijδkl + µ′(δikδjl + δilδjk), (A.20)

where λ′ and µ′ are effective Lame moduli

λ′ ≡ µ

J
and µ′ ≡ µ− λ ln J

J
. (A.21)

A.5 Linearized Equilibrium Equations

The internal virtual work can be expressed in a Lagrangian form via

δWint(φ, δvvv) =

∫
V

SSS : δĖEEdV, (A.22)
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demonstrating that the second Piola-Kirchhoff stress tensor SSS is the work conjugate to the

material strain rate tensor ĖEE. The corresponding directional derivative is

DδWint(φ, δvvv)[uuu] =

∫
V

D(SSS : δĖEE)[uuu]dV

=

∫
V

DSSS[uuu] : δĖEEdV +

∫
V

SSS : DδĖEE[uuu]dV

=

∫
V

δĖEE : CCC : DEEE[uuu] +

∫
V

SSS : DδĖEE[uuu]dV

=

∫
V

δĖEE : CCC : DEEE[uuu] +

∫
V

SSS : [(∇0uuu)T∇0δvvv]dV, (A.23)

where the product rule has been used in the second line, the relationship for DSSS[uuu] in Eq.

(A.10) for the third line, and the relationship

DδĖEE[uuu] =
1

2
[(∇0δvvv)T∇0uuu+ (∇0uuu)T∇0δvvv] = (∇0uuu)T∇0δvvv (A.24)

is used in the last line. Furthermore, noting that DEEE[δvvv] = δĖEE, Eq. (A.23) can be rewritten

as

DδWint(φ, δvvv)[uuu] =

∫
V

DEEE[δvvv] : CCC : DEEE[uuu] +

∫
V

SSS : [(∇0uuu)T∇0δvvv]dV. (A.25)

The linearized equilibrium equation of Eq. (A.25) can be simplified to expressing in

the Eulerian (or spatial) form. This is achieved by push-forward and pull-back operations

on the individual terms to obtain (see Section 8.4 of Ref. [98])

DEEE[δvvv] : CCC : DEEE[uuu]dV = δddd : ccc : εdv

SSS : [(∇0uuu)T∇0δvvv]dV = σσσ : [(∇uuu)T∇δvvv], (A.26)

where ε = 1/2[∇uuu + (∇uuu)T ] is the small-strain tensor. Applying the relationships in Eq.

(A.26), the Eulerian form of the linearized equilibrium equation is

DδWint(φ, δvvv)[uuu] =

∫
v

δddd : ccc : εdv +

∫
v

σσσ : [(∇uuu)T∇δvvv]dv. (A.27)

Note that

δddd =
1

2
(∇δvvv + (∇δvvv)T ), (A.28)

which is the same functional form between ε and uuu. This together with the fact that ccc and
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σσσ are symmetric implies that uuu and δvvv can be interchanged without altering results.

DδWint(φ, δvvv)[uuu] = DδWint(φ,uuu)[δvvv]. (A.29)

Such a symmetry gives rise to a symmetric tangent-stiffness matrix upon discretization.

A.6 Discretization of Linearized Equilibrium Equations

A.6.1 Isoparametric Elements

To discretize the linearized virtual work equation in Eq. (A.27), isoparametric elements

are used to interpolate the current position in terms of current nodal position xxxa

xxx =
n∑
a=1

Naxxxa(t), (A.30)

where Na(ξ1, ξ2, ξ3) are the shape functions and n denotes the number of nodes per element.

Differentiating Eq. (A.30) with respect to time gives real and virtual velocity interpolations

vvv =
n∑
a=1

Navvva and δvvv =
n∑
a=1

Naδvvva, (A.31)

respectively. Similarly, restricting the motion brought about by an arbitrary increment uuu

according Eq. (A.30) implies that the displacement is interpolated as follows

uuu =
n∑
a=1

Nauuua. (A.32)

Using Eq. (A.31) the real and virtual velocity gradient can also be written in terms of
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the shape functions as

lll = ∇vvv =
3∑

i,j=1

∂vi
∂xj

ei ⊗ ej =


∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3



=
n∑
a=1


∂Na
∂x1

v1a
∂Na
∂x2

v1a
∂Na
∂x3

v1a
∂Na
∂x1

v2a
∂Na
∂x2

v2a
∂Na
∂x3

v2a
∂Na
∂x1

v3a
∂Na
∂x2

v3a
∂Na
∂x3

v3a


=

n∑
a=1

vvva ⊗∇Na, (A.33)

similarly

δlll =
n∑
a=1

δvvva ⊗Na. (A.34)

Furthermore, applying Eq. (A.34) the virtual displacement rate tensor is

δddd =
1

2

(
δlll + δlllT

)
=

1

2

n∑
a=1

(δvvva ⊗∇Na +∇Na ⊗ δvvva) . (A.35)

The deformation gradient tensor, which is used to calculate the Cauchy stress tensor in Eq.

(A.19), can also be written in terms of the shape functions as

FFF =
3∑

i,I=1

FiIei ⊗EI =


F11 F12 F13

F21 F22 F23

F31 F32 F33

 , where

FiI =
∂xi
∂XI

=
n∑
a=1

xa,i
∂Na

∂Xa,I

. (A.36)

Next consider the the linearized virtual work for element (e) linking nodes a and

b. Specifically, the constitutive and initial stress components of Eq. (A.27) are examined

separately.



105

A.6.2 Constitutive Component

The first term on the right-hand-side of Eq. (A.27) is the constitutive component. Its

contribution for element (e) linking nodes a and b is

DδW (e)
c (φ,Naδvvva)[Nbuuub] =∫

v(e)

1

2
(δvvva ⊗∇Na +∇Na ⊗ δvvva) : ccc :

1

2
(δuuub ⊗∇Nb +∇Nb ⊗ δvvvb) dv.

(A.37)

Equation (A.37) can be written in matrix-vector (also known as Voigt) notation by reinter-

preting small-strain tensor ε as

ε̂ ≡ [ε11, ε22, ε33, 2ε12, 2ε23, 2ε13]
T =

n∑
a=1

BBBauuua (A.38)

and the virtual displacement rate tensor as

δd̂dd ≡ [δd11, δd22, δd33, 2δd12, 2δd23, 2δd13]
T =

n∑
a=1

BBBaδvvva, (A.39)

where BBBa is defined in terms of derivatives of the shape functions as

BBBa ≡



∂Na
∂x1

0 0

0 ∂Na
∂x2

0

0 0 ∂Na
∂x3

∂Na
∂x2

∂Na
∂x1

0

0 ∂Na
∂x3

∂Na
∂x2

∂Na
∂x3

0 ∂Na
∂x1


. (A.40)

Note that the definition of BBBa is different from Ref. [98] because the ordering of the small-

strain and virtual displacement rate tensor components in Eqs. (A.38) and (A.39) is different
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from what is presented in Ref. [98]. Applying Voigt notation, Eq. (A.37) is simplified to

DδW (e)
c (φ,Naδvvva)[Nbuuub] =

∫
v(e)

(BBBaδvvva)
TDDD(BBBbuuub)dv

= δvvva ·
(∫

v(e)
BBBT
aDDDBBBbdv

)
uuub

= δvvva ·KKK(e)
c,abuuua, (A.41)

where

DDD =



λ′ + 2µ′ λ′ λ′ 0 0 0

λ′ λ′ + 2µ′ λ′ 0 0 0

λ′ λ′ λ′ + 2µ′ 0 0 0

0 0 0 µ′ 0 0

0 0 0 0 µ′ 0

0 0 0 0 0 µ′


, where λ′ =

λ

detJJJ
, µ′ =

µ− λ ln(detJJJ)

detJJJ
,

(A.42)

for a Neo-Hookean material described by Eq. (A.17) and KKK
(e)
c,ab is the constitutive component

of the tangent stiffness matrix relating nodes a and b in element (e).

A.6.3 Initial Stress (or Geometric) Component

The second term on the right-hand-side of Eq. (A.27) is the initial stress component.

Its contribution for element (e) linking nodes a and b is

DδW (e)
σ (φ,Naδvvva)[Nbuuub] =

∫
v(e)

σσσ : [(∇uuub)T∇δvvva]dv

=

∫
v(e)

σσσ : [(uuub ⊗∇Nb)
T (δvvva ⊗∇Na)]dv

=

∫
v(e)

σσσ : [(δvvva · uuub)∇Nb ⊗∇Na]dv

= (δvvva · uuub)
∫
v(e)
∇Na · σσσ∇Nbdv, (A.43)

where the relationship σσσ : (uuu⊗ vvv) = uuu ·σσσvvv has been used in the last line. Note that ∇uuu and

∇δvvv are tensors (see definition in Eq. (A.33)).

Observing that
∫
v(e)
∇Na ·σσσ∇Nbdv is a scalar and that δvvva ·uuub = δvvva · IIIuuub, Eq. (A.43)
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can be written in matrix form as

DδW (e)
σ (φ,Naδvvva)[Nbuuub] = δvvva ·

(∫
v(e)
∇Na · σσσ∇NbdvIII

)
uuub

= δvvva ·KKK(e)
σ,abuuub, (A.44)

where KKK
(e)
σ,ab is the initial-stress component of the tangent stiffness matrix relating nodes a

and b in element (e).

A.7 Derivation of Residual Form for NonLinear FEM

To apply the Newton-Raphson iteration procedure to Nonlinear FEM, one needs to

calculate the elasticity tensor. As shown above, the elasticity tensor is a 4-tensor that is

determined by taking directional derivatives of a potential energy with respect to second-

order tensors. Often times, it is non-trivial to handle the high-dimensionality of the elasticity

tensor. To bypass the need to handle the elasticity tensor, one can use auto differentiation,

which is implemented based on the residual form of the discretized virtual work. Since the

residual form of the discretized virtual work involves only up to a 2-tensor, the Cauchy

stress-tensor. Therefore, in this section the residual form of the discretized virtual work is

derived in detail.

A.7.1 Principle of Virtual Work

Based on chapter 5 of Ref. [98], the spatial virtual work equation is

δW (φ, δvvv) =

∫
v

σσσ : δddddv −
∫
v

fff · δvvvdv −
∫
∂v

ttt · δvvvda = 0, (A.45)

where σσσ is the Cauchy stress-tensor (2-tensor), fff is the body force per unit volume, and

ttt is the traction force per unit area (both 1-tensors). Note that Eq. (A.45) is a functional

of a trial solution φ (a trial configuration) and virtual velocity δvvv. In order to use FEM,

Eq. (A.45) must be discretized. Such a discretization can be obtained by interpolating the

current position with isoparametric elements (see Eq. (A.30)).
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A.7.2 Discretization

Analogous to chapter 9 of [98], the discretization of Eq. (A.45) is obtained by consid-

ering the contribution to δW (φ, δvvv) caused by a single virtual nodal velocity of element (e)

δvvv
(e)
a

δW (e)
a (φ,Naδvvv

(e)
a ) =

∫
v(e)

σσσ : (δvvv(e)a ⊗∇Na)dv −
∫
v(e)

fff ·Naδvvv
(e)
a dv −

∫
∂v(e)

ttt ·Naδvvv
(e)
a da = 0,

(A.46)

where the interpolations of Eqs. (A.31) and (A.35) have been used for δvvv and δddd, respectively,

in Eq. (A.45). Note that the symmetry of σσσ has been used to simplify the interpolation of

Eq. (A.35).

Observing that δvvv is independent of the integration and using the tensor relationship

σσσ : (δvvva ⊗∇Na) = δvvva ·σσσ∇Na (see Eq. (2.52b) of Ref. [98]), Eq. (A.46) can be simplified to

δW (e)
a (φ,Naδvvv

(e)
a ) = δvvv(e)a ·

(∫
v(e)

σσσ∇Nadv −
∫
v(e)

fff ·Nadv −
∫
∂v(e)

ttt ·Nada

)
= δvvv(e)a ·

(
TTT (e)
a −FFF (e)

a

)
= 0, (A.47)

where

TTT (e)
a ≡

∫
v(e)

σσσ∇Nadv and FFF (e)
a ≡

∫
v(e)

fff ·Nadv +

∫
∂v(e)

ttt ·Nada. (A.48)

The contribution to δW (φ, δvvv) from all nodes belonging to an element (e) is then

δW (e)(φ,
n∑
a=1

Naδvvv
(e)
a ) =

n∑
a=1

δvvv(e)a ·
(
TTT (e)
a −FFF (e)

a

)
= δvvv(e) ·

(
TTT (e) −FFF (e)

)
= 0, (A.49)

where n is the number of nodes in element (e). Since Eq. (A.49) must hold for arbitrary

values of δvvv(e) in each element of the FEM mesh, the elemental residual force emerges as

RRR(e) = TTT (e) −FFF (e). (A.50)

Note that the integrators in the biotissue code operate on the element level where TTT (e) and

FFF (e) are calculated.
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A.7.3 Implementation Details of the Internal Elemental Forces, TTT (e)

From Eqs. (A.48) and (A.49), the internal elemental forces are

TTT (e) =
n∑
a=1

TTT (e)
a =

n∑
a=1

∫
v(e)

σσσ∇Nadv

= σσσ
n∑
a=1

ng∑
i=1

Wi∇Na(ri, si, ti)det
(
JJJ (e)(ri, si, ti)

)
, (A.51)

where the volume integral has been replaced by a direct (non-tensor-product) Gauss quadra-

ture formula. The variables ng is the number of Gauss quadrature points, Wi is the weight

at the ith quadrature point, (ri, si, ti) are the coordinates of the parent domain at the ith

quadrature point, and JJJ (e) is the Jacobian of element (e).

Specific to the biotissue multi-scale code, an integrator acts on the each Gauss quadra-

ture point within an element. This integrator is responsible for calculating the term

IIIi ≡ σσσ
n∑
a=1

∇Na(ri, si, ti)det
(
JJJ (e)(ri, si, ti)

)

= det
(
JJJ (e)(ri, si, ti)

) n∑
a=1


σ11

∂Na
∂x

+ σ12
∂Na
∂y

+ σ13
∂Na
∂z

σ21
∂Na
∂x

+ σ22
∂Na
∂y

+ σ23
∂Na
∂z

σ31
∂Na
∂x

+ σ32
∂Na
∂y

+ σ33
∂Na
∂z

 (A.52)

and internal elemental forces becomes

TTT (e) =

ng∑
i=1

IIIi, (A.53)

The external elemental forces from Eq. (A.50) are implemented directly onto the

degrees of freedom of the global forcing vector during the linear system assembly stage.

A.8 Governing Equation

The divergence of the macroscopic stress tensor, σ is derived by applying the Reynolds

transport theorem to the volume-averaged stress and invoking microscopic equilibrium:

σ
(M)
ij,i =

1

V (m)

∫
∂V (m)

(
s
(m)
ij − σ

(M)
ij

)
u
(m)
k,i nkdA

(m), (A.54)
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where the superscript m is applied to microscale quantities, and M is applied to macroscale

quantities. Also, u
(m)
k is the displacement of the RVE boundary on the microscale, nk is

the unit normal vector, and s
(m)
ij are elements of the microscopic stress tensor [48], [100]. A

volume averaging of s
(m)
ij is employed to obtain σ

(M)
ij

σ
(M)
ij =

1

V (m)

∫
V (m)

s
(m)
ij dV (m), (A.55)

where V (m) is the microscale volume [100].

From Eq. (A.54) we see that the conservation of momentum equation becomes:

σ
(M)
ij,i −

1

V (m)

∫
∂V (m)

(
s
(m)
ij − σ

(M)
ij

)
u
(m)
k,i nkdA

(m) = 0, (A.56)

The virtual work, δW , is obtained by multiplying Eq. (A.56) by a virtual velocity, δv

(also known as a test function), and integrating over the current volume:

δW =

∫
V (M)

(
σ
(M)
ij,i −

1

V (m)

∫
∂V (m)

(
s
(m)
ij − σ

(M)
ij

)
u
(m)
k,i nkdA

(m)

)
δv

(M)
j dV (M)

=

∫
V

(M)
0

(
σ
(M)
ij,i −

1

V (m)

∫
∂V (m)

(
s
(m)
ij − σ

(M)
ij

)
u
(m)
k,i nkdA

(m)

)
δv

(M)
j J (M)dV

(M)
0

=

∫
V

(M)
0

(
σ
(M)
ij,i −Q

(m/M)
j

)
δv

(M)
j J (M)dV

(M)
0

=

∫
V

(M)
0

(
divσ(M) −Q(m/M)

)
· δv(M)J (M)dV

(M)
0 , (A.57)

where J (M) is the Jacobian of the macroscale, and:

Q
(m/M)
j =

1

V (m)

∫
∂V (m)

(
s
(m)
ij − σ

(M)
ij

)
u
(m)
k,i nkdA

(m). (A.58)

Note that the superscript (m/M) indicates the quantity involves variables from both the

micro and macro scales.

Using the identity

div(σ · δvJ) = (σ : ∇δv)J + (δv · divσ)J + (σ · δv) · ∇J, (A.59)
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Eq. (A.57) becomes

δW =

∫
V

(M)
0

(
div(σ(M) · δv(M)J (M))− (σ(M) : ∇δv)J (M) − (σ(M) · δv(M)) · ∇J (M)

)
dV

(M)
0

−
∫
V

(M)
0

Q(m/M) · δv(M)J (M)dV
(M)
0 (A.60)

Further applying the divergence theorem we have

δW =

∫
∂V

(M)
0

n · σ(M)δv(M)J (M)dA
(M)
0

−
∫
V

(M)
0

(
(σ(M) : ∇δv)J (M) + (σ(M) · δv(M)) · ∇J (M)

)
dV

(M)
0

−
∫
V

(M)
0

Q(m/M) · δv(M)J (M)dV
(M)
0

=

∫
∂V

(M)
0

t(M) · δv(M)J (M)dA
(M)
0

−
∫
V

(M)
0

(
(σ(M) : ∇δv)J (M) + (σ(M) · δv(M)) · ∇J (M)

)
dV

(M)
0

−
∫
V

(M)
0

Q(m/M) · δv(M)J (M)dV
(M)
0

=

∫
V

(M)
0

(
(σ(M) : δd)J (M) + (σ(M) · δv(M)) · ∇J (M) +Q(m/M) · δv(M)J (M)

)
dV

(M)
0

−
∫
∂V

(M)
0

t(M) · δv(M)J (M)dA
(M)
0

= δWint − δWext = 0 (A.61)

where the virtual rate of deformation tensor, δd(M), can be used instead of ∇δv in the double

contraction with the Cauchy stress due to the symmetry of the Cauchy stress σ. Also, t(M)

is the traction vector.

A.9 Newton-Raphson Method and the Tangent-Stiffness Matrix

The Newton-Raphson procedure for solving a nonlinear set of equations is [98]

K(uk)δu = −R(uk), uk+1 = uk + δu, (A.62)
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where R is the out-of-balance force, K is the tangent stiffness matrix, and the superscript

k indicates the pseudo time step of the procedure. The left-hand-side of Eq. (A.62) is

determined from the directional derivative of R with respect to uk and in the direction of

δu:

K(uk)δu = DR(uk)[δu]

=
d

dε

∣∣∣∣
ε=0

R(uk + εδu)

=
dR

duk
d(uk + εδu)

dε

∣∣∣∣
ε=0

=
dR

duk
δu. (A.63)

In matrix form we have

[K(uk)][δu] =


∂R1

∂uk1

∂R1

∂uk2

∂R1

∂uk3
∂R2

∂uk1

∂R2

∂uk2

∂R2

∂uk3
∂R3

∂uk1

∂R3

∂uk2

∂R3

∂uk3



δu1

δu2

δu3

 , where [R] =


R1

R2

R3

 . (A.64)

To apply the Newton-Raphson procedure to our problem, the virtual work in Eq.

(A.57) must be linearized by taking the directional derivative of δW with respect to δv in

the direction of δu at the current coordinates x

DδW (x, δv)[δu] = DδWint(x, δv)[δu]−DδWext(x, δv)[δu]. (A.65)

Note that t and Q in Eq. (A.61) are assumed to be constant under a virtual displacement

δu.

The linearized virtual work in the biotissue code is

DδW (x, δv(M))[δu(M)] =

∫
V (M)

(
δd

(M)
ij c

(M)
ijkl ε

(M)
kl + σ

(M)
ij

∂δu
(M)
j

∂x
(M)
i

∂δv
(M)
i

∂x
(M)
j

)
dV

−
∫
∂V (M)

t
(M)
i δv

(M)
i dA(M) −Q(M)

i δv
(M)
j , (A.66)

where e and ε are the Eulerian (or Almansi) strain tensor and small-strain tensor, respec-

tively, and δd is the virtual rate of deformation tensor:
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e =
1

2
(I − b−1)

ε =
1

2

(
∇u+ (∇u)T

)
b = FF T (A.67)

δd =
1

2

(
∇δv + (∇δv)T

)
. (A.68)

The linearization in Eq. (A.66) can be cast into the framework of the Newton-Raphson

procedure in Eq. (A.62) by discretization via shape functions:

δu(M) =
n∑
a=1

Nau
(M)
a

δv(M) =
n∑
a=1

Naδv
(M)
a

δd(M) =
1

2

n∑
a=1

(δv(M)
a ⊗∇Na +∇Na ⊗ δv(M)

a )

δε(M) =
1

2

n∑
a=1

(u(M)
a ⊗∇Na +∇Na ⊗ u(M)

a ), (A.69)

where Na is the ath node of the shape function and n is the number of nodes contained

in each shape function. The discretized form of Eq. (A.66) is obtained by applying the

approximations in Eq. (A.69)

DδW (x, Naδv
(M)
a )[Nbδu

(M)
b ] = δv

(M),a
i

(∫
V (e)

∂Na

∂x
(M)
j

c
(M)
ijkl

∂Nb

∂x
(M)
l

dV (e)

)
δu

(M),b
k (A.70)

In the multiscale formulation, the Cauchy stresses and their derivatives in Eq. (A.66):

σij and
∂σij
∂ekl

, (A.71)

are evaluated from calculations at the microscale representative volume elements (RVEs).
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In order to write the stress derivative in matrix form, Voigt notation is used.

[σ(i)] ≡



σ11

σ22

σ33

σ23

σ13

σ12


, [e(i)] ≡



e11

e22

e33

e23

e13

e12


, and

[
∂σ(i)
∂e(j)

]
≡



∂σ11
∂e11

∂σ11
∂e22

∂σ11
∂e33

∂σ11
∂e23

∂σ11
∂e13

∂σ11
∂e12

∂σ22
∂e11

∂σ22
∂e22

∂σ22
∂e33

∂σ22
∂e23

∂σ22
∂e13

∂σ22
∂e12

∂σ33
∂e11

∂σ33
∂e22

∂σ33
∂e33

∂σ33
∂e23

∂σ33
∂e13

∂σ33
∂e12

∂σ23
∂e11

∂σ23
∂e22

∂σ23
∂e33

∂σ23
∂e23

∂σ23
∂e13

∂σ23
∂e12

∂σ13
∂e11

∂σ13
∂e22

∂σ13
∂e33

∂σ13
∂e23

∂σ13
∂e13

∂σ13
∂e12

∂σ12
∂e11

∂σ12
∂e22

∂σ12
∂e33

∂σ12
∂e23

∂σ12
∂e13

∂σ12
∂e12


(A.72)

where the parenthesis around the subscripts indicate the use of Voigt notation.



APPENDIX B

Soft Tissue Micro-scale Derivation

B.1 Microscale Forces on Fiber Nodes

Prior to the volume averaging described in Eq. (C.1), the forces that act on the fiber

nodes in the RVE must be calculated and are determined from the equilibrium nodal positions

of each fiber in the RVE via

F ≡ EA

B
[exp(Bε)− 1], (B.1)

where E is the linear modulus of the fiber, A is the cross-sectional area of the fiber, B is a

constant, and ε is the fiber’s Green strain (along its axis).

Rotating the green strain along the principal axis of the truss, we see that the green

strain can be written as:

ε ≡ 1

2

(
λ2 − 1

)
, (B.2)

where λ is the fiber stretch ratio [100].

The force on fiber node b, T b, is defined in terms of the scalar F as

T b = Fn, (B.3)

where T b = T bi ei and the unit vector n is determined from the current end coordinates, xa

and xb at nodes a and b of a fiber, respectively, by

n =
1

l(x)
(xb − xa), (B.4)

where x = xiei, the superscript indicates the node of which the position describes, and l(x)

is the current length of the fiber given by

l(x) =
√

(xb − xa) · (xb − xa). (B.5)
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Note that the definitions in Eqs. (B.3) through (B.5) are based on the convention that the

force acting on nodes b and a are positive and negative, respectively, when the corresponding

fiber element is loaded in tension.

Consequently, T a = −T b. The equilibrium fiber node positions in a RVE (xb and xa

of each fiber) are determined via a Newton-Raphson method.

B.2 Microscale Tangent Stiffness Tensor

In order to find the equilibrium fiber-node positions in the RVEs via the Newton-

Raphson procedure, we need to define the tangent stiffness tensor. The tangent stiffness

tensor is determined by taking the directional derivative of T b (we can equivalently take

the directional derivative of T a, in which case the result will be equal and opposite) in the

direction of the displacement of the fiber, u ≡ ub − ua:

DT b[u] = DFn[u]

=
EA

B

(
D{exp(Bε)− 1}[u]n+Dn[u]{exp(Bε)− 1}

)
=

EA

B

(
Rn+ S{exp(Bε)− 1}

)
, (B.6)

where the notation Df(x)[u] denotes the directional derivative of f(x) in the direction of

u, and

R ≡ D{exp(Bε)− 1}[u] and S ≡ Dn[u]. (B.7)

To obtain a more useful form of Eq. (B.6), R and S can be written out explicitly by

expanding the directional derivative and using λ ≡ l(x)/L, and Eq. (B.2):

D{exp(Bε)− 1}[u] = B exp(Bε)Dε[u]

=
0.5B

L2
exp(Bε)D(l2(x)− 1)[u]

=
B

L2
exp(Bε)l(x)n · (ub − ua)

= R (B.8)
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We also have:

Dn[u] = D
1

l(x)
(xb − xa)[u]

= D
1

l(x)
[u](xb − xa) +D(xb − xa)[u]

1

l(x)

= − 1

l2(x)
n · (ub − ua)(xb − xa) + (ub − ua) 1

l(x)

=
(ub − ua)− n · (ub − ua)n

l(x)

= S. (B.9)

Finally, substituting Eqs. (B.8) and (B.9) into Eq. (B.6) we arrive at:

DT b[u] =
EA

B

[(
B

L2
exp(Bε)l(x)n · (ub − ua)

)
n

+

(
(ub − ua)− n · (ub − ua)n

l(x)

)
{exp(Bε)− 1}

]
=

[
EA

L2
exp(Bε)l(x)− F

l(x)

]
(n · (ub − ua)n) +

F

l(x)
(ub − ua)

=

[
EAl(x)

L2
exp(Bε)− F

l(x)

]
(n⊗ n)3×3(u

b − ua) +
F

l(x)
I3×3 · (ub − ua),

(B.10)

where the property of the tensor product,

(u⊗ v)w = (w · v)u (B.11)

has been used.

B.2.1 Matrix Equations

Also note, the directional derivative for node a is DT a(x)[u] = −DT b(x)[u] since

T a(x) = −T b(x).

Equation (B.10) can be rearranged into matrix form. For a single fiber element e, the
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directional derivative in matrix form is

DT (e)(x(e))[u(e)] = K(e)u(e) =

K(e)
aa K

(e)
ab

K
(e)
ba K

(e)
bb

ua
ub

 , (B.12)

where

K(e)
aa = K

(e)
bb = k(n⊗ n)3x3 +

F

l(x)
I3x3, and K

(e)
ab = K

(e)
ba = −K(e)

bb , (B.13)

and

k ≡ EAl(x)

L2
exp(Bε)− F

l(x)
. (B.14)

Additionally,

(n⊗ n)3x3 =


cos(α) cos(α) cos(α) cos(β) cos(α) cos(γ)

cos(β) cos(α) cos(β) cos(β) cos(β) cos(γ)

cos(γ) cos(α) cos(γ) cos(β) cos(γ) cos(γ)

 and I3x3 =


1 0 0

0 1 0

0 0 1

 ,(B.15)

with

cos(α) =
xb1 − xa1
l(x)

, cos(β) =
xb2 − xa2
l(x)

, and cos(γ) =
xb3 − xa3
l(x)

(B.16)

and

ua = (xai − xbi)ei and ub = (xbi − xai )ei. (B.17)

Therefore, ua = −ub. Using the above relationships, Eq. (B.13) can be written in matrix

form as

K(e)
aa =


k cos(α) cos(α) + F

l(x)
k cos(α) cos(β) k cos(α) cos(γ)

k cos(β) cos(α) k cos(β) cos(β) + F
l(x)

k cos(β) cos(γ)

k cos(γ) cos(α) k cos(γ) cos(β) k cos(γ) cos(γ) + F
l(x)

 (B.18)

The Newton-Raphson method for a single fiber element is

K(e)δu(e) = −T (e), where u(e),t+1 = u(e),t + δu(e), (B.19)

and the superscripts t + 1 and t denote the current and next iterations, respectively. In
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matrix form, u(e) and T (e) are

u(e) =

ua
ub

(e)

=



xa1

xa2

xa3

xb1

xb2

xb3



(e)

and T (e) =

T a

T b

(e)

= F



(xa1−xb1)
l(x)

(xa2−xb2)
l(x)

(xa3−xb3)
l(x)

(xb1−xa1)
l(x)

(xb2−xa2)
l(x)

(xb3−xa3)
l(x)



(e)

= F



− cos(α)

− cos(β)

− cos(γ)

cos(α)

cos(β)

cos(γ)



(e)

,(B.20)

where the superscript (e) denotes that Eq. (B.20) is for a single fiber element.



APPENDIX C

Multi-scale Coupling Derivation

C.1 Calculation of Volume-Averaged Stress

According to Stylianopoulos and Barocas, the macroscopic stress tensor, Sij, is deter-

mined from the forces, T fj , that act on the nodes f of a fiber element in the direction j

through a volume averaging process given by

Sij =
1

V

∑
bcl

xfi T
f
j , (C.1)

where the summation is over fiber nodes that lie on the boundary faces of a representative

volume element (RVE) and bcl stands for boundary cross link. The volume average is over

the current volume of the RVE, V , and xfi is the ith-component (i=1,2, or 3) of the positions

of fiber node f that is on the boundary face of the RVE [48], [101].

C.2 Micro-scale

C.2.1 Cauchy Stress

The macroscopic stress tensor is obtained by applying Gauss’s theorem to Eq. (A.55)

σ
(M)
ij =

1

V (m)

∫
V (m)

s
(m)
ij dV (m)

=
1

V (m)

∫
V (m)

(s
(m)
kj x

(m)
i,k )dV (m)

=
1

V (m)

∫
V (m)

(s
(m)
kj x

(m)
i ),kdV

(m) − 1

V (m)

∫
V (m)

s
(m)
kj,kx

(m)
i dV (m)

=
1

V (m)

∫
∂V (m)

nks
(m)
kj x

(m)
i dA(m)

=
1

V (m)

∫
∂V (m)

x
(m)
i t

(m)
j dA(m), (C.2)
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where nks
(m)
kj = t

(m)
j is the the traction exerted on the boundaries of the RVE. The second

line comes from noticing s
(m)
ij = s

(m)
kj δki, and xk,i = δki. The simplification in the fourth

line makes use of the microscale momentum balance (e.g. sij,i = 0). In discrete form, the

macroscopic stress becomes

σ
(M)
ij =

1

V (m)

∑
n∈bcl

nx
(m)
i

nT
(m)
j (C.3)

where nx
(m)
i is the ith coordinate of the cross-link on the boundary of the RVE (bcl), and

nT
(m)
j is the jth component of the internal force of a cross-link on the boundary.

C.2.2 Cauchy-Stress Derivative

The derivative of the Cauchy stress is evaluated by using Eq. (C.3) and applying the

chain rule.

∂σ
(M)
ij

∂u
(M)
k

=
∂σ

(M)
ij

∂cu
(m)
l

∂cu
(m)
l

∂u
(M)
k

=

[
∂

∂cu
(m)
l

(
1

V (m)

)∑
n∈bcl

nx
(m)
i

nT
(m)
j +

1

V (m)

∂

∂cu
(m)
l

(∑
n∈bcl

nx
(m)
i

nT
(m)
j

)]
∂cu

(m)
l

∂u
(M)
k

=

[
∂

∂cu
(m)
l

(
1

V (m)

)
s
(m)
ij +

1

V (m)

∂s
(m)
ij

∂cu
(m)
l

]
∂cu

(m)
l

∂u
(M)
k

=

[
1

V (m)

∂s
(m)
ij

∂cu
(m)
l

− 1

(V (m))2
∂V (m)

∂cu
(m)
l

s
(m)
ij

]
∂cu

(m)
l

∂u
(M)
k

, (C.4)

where cu
(m)
l is the lth corner (left superscript c) displacement at the microscale (right super-

script (m)) and s
(m)
ij ≡

∑
n∈bcl

nx
(m)
i

nT
(m)
j . Since our RVE is a hexahedron, the subscript l

ranges from 1 to 24; 8 corner nodes × 3 degrees of freedom per corner node. From Eq. (C.4),

the calculation of the stress derivatives involves the calculation of three different derivatives:

∂s
(m)
ij

∂cu
(m)
l

,
∂V (m)

∂cu
(m)
l

, and
∂cu

(m)
l

∂u
(M)
k

, (C.5)

where the first two involve only microscale quantities and the third links the micro and macro

scales.

To come up with these derivatives we had to note the equivalence of taking the deriva-
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tive with respect to the current coordinate x, and the displacement u. This is show in the

following chain rule:

∂f(x)

∂x
=
∂f(x)

∂u

∂u

∂x
=
∂f(x)

∂u

∂(x−X)

∂x
=
∂f(x)

∂u
(C.6)

C.2.2.1 Derivative of sij with Respect to RVE Corner Coordinates

Applying the chain rule, the derivative of sij can be written as

∂sij
∂xRVE

l

=
∂sij
∂xk

∂xk
∂xRVE

l

=
∂

∂xk

(∑
n∈bcl

xni T
n
j

)
∂xk
∂xRVE

l

=
∑
n∈bcl

(
∂xni
∂xk

T nj + xni
∂T nj
∂xk

)
∂xk
∂xRVE

l

=
∑
n∈bcl

(
δikT

n
j + xni

∂T nj
∂xk

)
∂xk
∂xRVE

l

(C.7)

where xk is the kth coordinate of the fiber nodes in the RVE; the subscript k ranges from 1

to N fn
dof ≡ 3 dofs × number of fiber nodes. Since

∂Tnj
∂xk

is the (j, k)th element of the tangent-

stiffness matrix for cross-links on the boundary, the terms within the parenthesis in Eq. (C.7)

are available from the force balance of the fiber network in the RVE.

At this point, we still need to determine the derivative of fiber-node coordinates of the

RVE (xk) with respect to the corner-node coordinates of the RVE (xRV El ). A relationship

between xk and xRV El is obtained by considering how the internal fiber forces (i.e., the

residual on fiber network) changes with respect to xRV El (i.e., the displacements at the RVE

corner nodes):

∂R

∂xRV E
=

∂R

∂xRV E

∣∣∣∣
x

+
∂R

∂x

∣∣∣∣
xRV E

∂x

∂xRV E
, (C.8)

where

R ≡


T1

T2
...

TNfn
dof

 , xRV E ≡

xRV E1

xRV E2

...

xRV E24

 , and x ≡


x1

x2
...

xNfn
dof

 . (C.9)
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In Eq. (C.8) the change in residual with respect to xRV E has 2 contributions: change due

to (1) RVE corner-node displacements when interior-nodes are fixed and (2) interior-node

displacements when RVE corner-nodes are fixed. When the forces in the fiber network are

balanced, ∂R/∂xRV E = 0, and the derivative ∂x/∂xRV E needed to evaluate Eq. (C.7) can

be determined by:
∂x

∂xRV E
= −

(
∂R

∂x

∣∣∣∣
xRV E

)−1
∂R

∂xRV E

∣∣∣∣
x

. (C.10)

As ∂R/∂x|xRV E is the tangent-stiffness matrix, we are able to determine ∂x/∂xRV E once

∂R/∂xRV E|x is known. Note that the inverse of the tangent-stiffness matrix has already

been evaluated when performing the Newton-Raphson procedure for balancing the force of

the fiber network.

The change of residual with respect to xRV E while the interior nodes are fixed is

calculated by a geometric argument. To illustrate this calculation, consider a single fiber

node that lies on the boundary of the RVE box:[
∂R

∂xRV E

∣∣∣∣
x

]
=

∂T1
∂xRV E1

∂T1
∂xRV E2

∂T1
∂xRV E3

· · · ∂T1
∂xRV E22

∂T1
∂xRV E23

∂T1
∂xRV E24

∂T2
∂xRV E1

∂T2
∂xRV E2

∂T2
∂xRV E3

· · · ∂T2
∂xRV E22

∂T2
∂xRV E23

∂T2
∂xRV E24

∂T3
∂xRV E1

∂T3
∂xRV E2

∂T3
∂xRV E3

· · · ∂T3
∂xRV E22

∂T3
∂xRV E23

∂T3
∂xRV E24



A1

A
I3×3
...

A8

A
I3×3

 , (C.11)

where A is the total area of the face on which the fiber node lies and Ai is the portion of

the RVE face enclosed by the fiber node and the ith RVE corner node; Ai is nonzero only for

fiber nodes that lie on one of the RVE faces. See Fig. C.1 for a schematic of Ai/A, where

the blue dot represents a fiber node that lies on an RVE face, the black dots represent the 4

nodes of an RVE face. The total area of the RVE face is A = A1+A2+A3+A4.. To form the

full of ∂R/∂xRV E|x, every fiber node must be considered. Since each fiber node contributes

three rows to the matrix, the dimensions of ∂R/∂xRV E|x is 3 ×N fn
dof by 24 (number of RVE

corner nodes × 3 dofs per corner node).
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Fig. C.1: Two-dimensional schematic of Ai/A

C.2.2.2 Derivative of V with Respect to RVE Corner Coordinates

The volume can be calculated in the parent domain by

V =

∫ 1

−1

∫ 1

−1

∫ 1

−1
detJ edξ1dξ2dξ3 =

∫ 1

−1

(∫ 1

−1

(∫ 1

−1
detJ edξ1

)
dξ2

)
dξ3, (C.12)

which has been written in terms of three consecutive integrals. In the biotissue code, the

integrals are evaluated using the Gauss integration formula where Eq. (C.12) becomes

V =

Ngp∑
i=1

Ngp∑
j=1

Ngp∑
k=1

WiWjWkdetJ e(ξ
(i)
1 , ξ

(j)
2 , ξ

(k)
3 ) (C.13)

where Ngp is the number of Gauss integration points, Wi is the weight of the ith integration

point, J e is the Jacobian matrix, and ξ
(j)
i is the ith component of the jth integration point.

Note that V is the volume for a hexahedron where Ngp = 2, Wi = 1, and ξ
(j)
i = ±1/

√
3.

The derivative of the Volume with respect to the RVE corner coordinates can be written

in index notation as

∂V

∂xRV El

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

∂

∂xRV El

(detJ e) dξ1dξ2dξ3

=

Ngp∑
i=1

Ngp∑
j=1

Ngp∑
k=1

WiWjWk
∂

∂xRV El

(
detJ e(ξ

(i)
1 , ξ

(j)
2 , ξ

(k)
3 )
)
, (C.14)
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where we have applied the Gauss integration formula (c.f., Eq. (C.13)). The derivative of

detJ e(ξ
(i)
1 , ξ

(j)
2 , ξ

(k)
3 ) is

∂

∂xRV El

(
detJ e(ξ

(i)
1 , ξ

(j)
2 , ξ

(k)
3 )
)

=

=
∂

∂xRV El

[x,ξ1 (y,ξ2z,ξ3 − z,ξ2y,ξ3)− y,ξ1 (x,ξ2z,ξ3 − z,ξ2x,ξ3)

+z,ξ1 (x,ξ2y,ξ3 − y,ξ2x,ξ3)]
∣∣∣∣
ξ1=ξ

(i)
1 ,ξ2=ξ

(j)
2 ,ξ3=ξ

(k)
3

. (C.15)

To illustrate, the x, y, z components of the derivative for the “first” node of the hexahedron

(xRV E1 , xRV E2 , xRV E3 ) are explicitly written out:

∂detJ e

∂xRV E1

=
∂x,ξ1
∂xRV E1

(y,ξ2z,ξ3 − z,ξ2y,ξ3)− y,ξ1
(
∂x,ξ2
∂xRV E1

z,ξ3 − z,ξ2
∂x,ξ3
∂xRV E1

)
+ z,ξ1

(
∂x,ξ2
∂xRV E1

y,ξ3 − y,ξ2
∂x,ξ3
xRV E1

)

= det


∂x,ξ1
∂xRV E1

y,ξ1 z,ξ1
∂x,ξ2
∂xRV E1

y,ξ2 z,ξ2
∂x,ξ3
∂xRV E1

y,ξ3 z,ξ3

 = det


∂N6hex

1

∂ξ1
y,ξ1 z,ξ1

∂N6hex
1

∂ξ2
y,ξ2 z,ξ2

∂N6hex
1

∂ξ3
y,ξ3 z,ξ3


∂detJ e

∂xRV E2

= x,ξ1

(
∂y,ξ2
∂xRV E2

z,ξ3 − z,ξ2
∂y,ξ3
∂xRV E2

)
− ∂y,ξ1
∂xRV E2

(x,ξ2z,ξ3 − z,ξ2x,ξ3)

+ z,ξ1

(
x,ξ2

∂y,ξ3
∂xRV E2

− ∂y,ξ2
∂xRV E2

x,ξ3

)

= det


x,ξ1

∂y,ξ1
∂xRV E2

z,ξ1

x,ξ2
∂y,ξ2
∂xRV E2

z,ξ2

x,ξ3
∂y,ξ3
∂xRV E2

z,ξ3

 = det


x,ξ1

∂N6hex
2

∂ξ1
z,ξ1

x,ξ2
∂N6hex

2

∂ξ2
z,ξ2

x,ξ3
∂N6hex

2

∂ξ3
z,ξ3


∂detJ e

∂xRV E3

= x,ξ1

(
y,ξ2

∂z,ξ3
∂xRV E3

− ∂z,ξ2
∂xRV E3

y,ξ3

)
− y,ξ1

(
x,ξ2

∂z,ξ3
∂xRV E3

− ∂z,ξ2
∂xRV E3

x,ξ3

)
+

∂z,ξ1
∂xRV E3

(x,ξ2y,ξ3 − y,ξ2x,ξ3)

= det


x,ξ1 y,ξ1

∂z,ξ1
∂xRV E2

x,ξ2 y,ξ2
∂z,ξ2
∂xRV E2

x,ξ3 y,ξ3
∂z,ξ3
∂xRV E2

 = det


x,ξ1 z,ξ1

∂N6hex
3

∂ξ1

x,ξ2 z,ξ2
∂N6hex

3

∂ξ2

x,ξ3 z,ξ3
∂N6hex

3

∂ξ3

 . (C.16)

Note that the formula for the derivatives for each component of the “second” to



126

“eighth” nodes of the hexahedron are essentially the same, with the only difference be-

ing the shape function: N6hex
l with l = 4 to 24 for components corresponding to the second

to eighth nodes. The relationship ∂x,ξi/∂x
RV E
j = ∂N6hex

j /∂ξi was used in Eq. (C.16).

C.2.2.3 Derivative of RVE Corner Coordinates with Respect to Finite-Element

Displacements

The matrix [∂xRV E/∂uk] has dimensions of 24 (8 RVE corner nodes × 3 dofs per node)

× 12 (4 FE tetrahedron nodes × 3 dofs per node) for each element:

[
∂xRV E

∂uk

]
=



∂xRV E1

∂uk1

∂xRV E1

∂uk2

∂xRV E1

∂uk3

∂xRV E1

∂uk10

∂xRV E1

∂uk11

∂xRV E1

∂uk12
∂xRV E2

∂uk1

∂xRV E2

∂uk2

∂xRV E2

∂uk3
· · · ∂xRV E2

∂uk10

∂xRV E2

∂uk11

∂xRV E2

∂uk12
∂xRV E3

∂uk1

∂xRV E3

∂uk2

∂xRV E3

∂uk3

∂xRV E3

∂uk10

∂xRV E3

∂uk11

∂xRV E3

∂uk12
...

...
∂xRV E22

∂uk1

∂xRV E22

∂uk2

∂xRV E22

∂uk3

∂xRV E22

∂uk10

∂xRV E22

∂uk11

∂xRV E22

∂uk12
∂xRV E23

∂uk1

∂xRV E23

∂uk2

∂xRV E23

∂uk3
· · · ∂xRV E23

∂uk10

∂xRV E23

∂uk11

∂xRV E23

∂uk12
∂xRV E24

∂uk1

∂xRV E24

∂uk2

∂xRV E24

∂uk3

∂xRV E24

∂uk10

∂xRV E24

∂uk11

∂xRV E24

∂uk12



=



∆N
(1)
1 I3×3 ∆N

(1)
2 I3×3 ∆N

(1)
3 I3×3 ∆N

(1)
4 I3×3

∆N
(2)
1 I3×3 ∆N

(2)
2 I3×3 ∆N

(2)
3 I3×3 ∆N

(2)
4 I3×3

∆N
(3)
1 I3×3 ∆N

(3)
2 I3×3 ∆N

(3)
3 I3×3 ∆N

(3)
4 I3×3

∆N
(4)
1 I3×3 ∆N

(4)
2 I3×3 ∆N

(4)
3 I3×3 ∆N

(4)
4 I3×3

∆N
(5)
1 I3×3 ∆N

(5)
2 I3×3 ∆N

(5)
3 I3×3 ∆N

(5)
4 I3×3

∆N
(6)
1 I3×3 ∆N

(6)
2 I3×3 ∆N

(6)
3 I3×3 ∆N

(6)
4 I3×3

∆N
(7)
1 I3×3 ∆N

(7)
2 I3×3 ∆N

(7)
3 I3×3 ∆N

(7)
4 I3×3

∆N
(8)
1 I3×3 ∆N

(8)
2 I3×3 ∆N

(8)
3 I3×3 ∆N

(8)
4 I3×3


, (C.17)

where

∆N
(k)
j I3×3 ≡


∆N

(k)
j 0 0

0 ∆N
(k)
j 0

0 0 ∆N
(k)
j


∆N

(k)
j ≡ N4tet

j (ξk1 , ξ
k
2 , ξ

k
3 )−N4tet

j (ξgp1 , ξ
gp
2 , ξ

gp
3 ). (C.18)
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In the matrix of Eq. (C.17), each 3 × 3 submatrix describes the relationship between the

degrees of freedom of an RVE corner node and an FE node. These relationships are approx-

imated as 3 × 3 diagonal matrices where the diagonal terms are calculated as the difference

between the jth (j ranges from 1 to 4 for tetrahedron) shape function at the barycentric

coordinate of the kth RVE corner-node and that at the barycentric coordinate of the Gauss

integration point (c.f., Eq. (C.18)). The implicit assumption in this method is that the

difference in scale between the RVE and FE entity is substantial.

C.3 Derivative of Macroscopic Stress With Respect to FE Node

Positions

As discussed in Section C.1, the macroscale stresses are calculated from the equilib-

rium fiber-node positions of each fiber element within a RVE. Since the macroscale stresses

explicitly depend on the fiber-node positions, a natural first step is to consider the derivative

of the macroscopic stress with respect to the fiber-node positions.

The directional derivative of Sij is

DSij[u] = D

(
1

V

∑
bcl

xfi T
f
j

)
[u]

= D

(
1

V

)
[u]
∑
bcl

xfi T
f
j +

1

V

∑
bcl

[
xfiDT

f
j [u] +Dxfi [u]T fj

]
= D

(
1

V

)
[u]V Sij +

1

V

∑
bcl

Cf
ij, (C.19)

where

Cf
ij ≡ xfiDT

f
j [u] +Dxfi [u]T fj

= xfi
∂T fj

∂xfk
ufk +

∂xfi
∂xfk

ufkT
f
j , (C.20)

where Cf
ij is for a single fiber node (as indicated by the superscript f). The summation in

Eq. (C.19) account for all fiber nodes that lie on the RVE boundary. As seen in Eq. (C.19),

the directional derivative of Sij requires the calculation of Cf
ij and the directional derivative

of 1/V .
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C.3.1 Calculation of Cf
ij

The term Cf
ij in Eq. (C.20) can be explicitly written out as

[
Cf
ij

]
=


xf1

∂T f1
∂xfk

ufk +
∂xf1
∂xfk

ufkT
f
1 xf1

∂T f2
∂xfk

ufk +
∂xf1
∂xfk

ufkT
f
2 xf1

∂T f3
∂xfk

ufk +
∂xf1
∂xfk

ufkT
f
3

xf2
∂T f1
∂xfk

ufk +
∂xf2
∂xfk

ufkT
f
1 xf2

∂T f2
∂xfk

ufk +
∂xf2
∂xfk

ufkT
f
2 xf2

∂T f3
∂xfk

ufk +
∂xf2
∂xfk

ufkT
f
3

xf3
∂T f1
∂xfk

ufk +
∂xf3
∂xfk

ufkT
f
1 xf3

∂T f2
∂xfk

ufk +
∂xf3
∂xfk

ufkT
f
2 xf3

∂T f3
∂xfk

ufk +
∂xf3
∂xfk

ufkT
f
3



=


xf1

∂T f1
∂xfk

ufk + uf1T
f
1 xf1

∂T f2
∂xfk

ufk + uf1T
f
2 xf1

∂T f3
∂xfk

ufk + uf1T
f
3

xf2
∂T f1
∂xfk

ufk + uf2T
f
1 xf2

∂T f2
∂xfk

ufk + uf2T
f
2 xf2

∂T f3
∂xfk

ufk + uf2T
f
3

xf3
∂T f1
∂xfk

ufk + uf3T
f
1 xf3

∂T f2
∂xfk

ufk + uf3T
f
2 xf3

∂T f3
∂xfk

ufk + uf3F
f
3

 , (C.21)

where

T a1 ≡ −F cos(α), T a2 ≡ −F cos(β), T a3 ≡ −F cos(γ), and T ai = −T bi , (C.22)

and the second equality in Eq. (C.21) uses the relationship

∂xfi
∂xfk

= δik. (C.23)

Since Cf
ij = Cf

ji in Eq. (C.21), only the six terms on the upper triangle of the matrix are

unique. Consequently, the matrix in Eq. (C.21) can be rewritten as a matrix-vector product



Cf
11

Cf
12

Cf
13

Cf
22

Cf
23

Cf
33


=



xf1
∂T f1
∂xf1

+ T f1 xf1
∂T f1
xf2

xf1
∂T f1
xf3

xf1
∂T f2
∂xf1

+ T f2 xf1
∂T f2
xf2

xf1
∂T f2
xf3

xf1
∂T f3
∂xf1

+ T f3 xf1
∂T f3
xf2

xf1
∂T f3
xf3

xf2
∂T f2
∂xf1

xf2
∂T f2
xf2

+ T f2 xf2
∂T f2
xf3

xf2
∂T f3
∂xf1

xf2
∂T f3
xf2

+ T f3 xf2
∂T f3
xf3

xf3
∂T f3
∂xf1

xf3
∂T f3
xf2

x3
∂T f3
xf3

+ T f3




uf1

uf2

uf3

 . (C.24)

Furthermore, since Cf
ij = Cf

ji, the off diagonal terms (i.e., Cf
12, C

f
13, and Cf

23) can be expressed
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as averages:

xf1
∂T f1
xf1

+ T f1 xf1
∂T f1
xf2

xf1
∂T f1
xf3

1
2

(
xf1

∂T f2
xf1

+ xf2
∂T f1
∂xf1

+ T f2

)
1
2

(
xf1

∂T f2
xf2

+ xf2
∂T f1
∂xf2

+ T f1

)
1
2

(
xf1

∂T f2
xf3

+ xf2
∂T f1
∂xf3

)
1
2

(
xf1

∂T f3
xf1

+ xf3
∂T f1
∂xf1

+ T f3

)
1
2

(
xf1

∂T f3
xf2

+ xf3
∂T f1
xf2

)
1
2

(
xf1

∂T f3
xf3

+ xf3
∂T f1
xf3

+ T f1

)
xf2

∂T f2
xf1

xf2
∂T f2
xf2

+ T f2 xf2
∂T f2
xf3

1
2

(
xf2

∂T f3
xf1

+ xf3
∂T f2
xf1

)
1
2

(
xf2

∂T f3
xf2

+ xf3
∂T f2
xf2

+ T f3

)
1
2

(
xf2

∂T f3
xf3

+ xf3
∂T f2
xf3

+ T f2

)
xf3

∂T f3
xf1

xf3
∂T f3
xf2

xf3
∂T f3
xf3

+ T f3




uf1

uf2

uf3



(C.25)

Note that ∂T fi /∂x
f
j is the i, jth element of Eq. (B.18) when f = a. Note that the matrix

explicitly written out in Eq. (C.25) constitutes a single fiber node of the variable ttdSdy.

The full ttdSdy variable, which is of size 6 × num dof, is constructed when summing over

all boundary nodes (see summation in Eq. (C.19)).

C.3.2 Directional Derivative of 1/V

In order to determine the directional derivative of Sij in Eq. (C.19), we need to also

determine D (1/V ) [u]:

D
1

V
[u] =

∂(1/V )

∂xfi
ufi = − 1

V 2

(
∂V

∂xfi
ufi

)
. (C.26)

Equation (C.26) can be further written in matrix form as:

D
1

V
[u] = − 1

V 2

[
∂(V )

∂xf1

∂(V )

∂xf2

∂(V )

∂xf3

]
uf1

uf2

uf3

 . (C.27)
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C.3.3 Combining Everything Together

Substituting Eq. (C.26) in Eq. (C.19) we obtain

DSij[u] =
1

V

∑
bcl

(
xfi
∂T fj

∂xfk
ufk +

∂xfi
∂xfk

ufkT
f
j

)
− 1

V 2

(
∂V

∂xfk
ufk

)
V Sij

=
1

V

[∑
bcl

(
xfi
∂T fj

∂xfk
+
∂xfi
∂xfk

T fj

)
− ∂V

∂xfk
Sij

]
ufk (C.28)


