NEW APPROACHES FOR ADJOINT-BASED ERROR ESTIMATION AND MESH ADAPTATION IN STABILIZED FINITE ELEMENT METHODS WITH AN EMPHASIS ON SOLID MECHANICS APPLICATIONS

Brian Neal Granzow

Submitted in Partial Fullfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Dr. Mark S. Shephard, Chair
Dr. Assad A. Oberai, Co-Chair
Dr. Antoinette M. Maniatty
Dr. Jason E. Hicken
Dr. Jeffrey W. Banks

Department of Mechanical, Aerospace, and Nuclear Engineering
Rensselaer Polytechnic Institute
Troy, New York

[May 2018]
Submitted January 2018
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION AND BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Outline</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Contributions</td>
<td>4</td>
</tr>
<tr>
<td>2. AN AUTOMATED APPROACH FOR PARALLEL ADJOINT-BASED ERROR ESTIMATION</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.2 A Review of Adjoint-Based Error Representations</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Galerkin Finite Element Methods</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Stabilized Finite Element Methods</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Software Components</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1 The Primal Problem</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 The Adjoint Problem</td>
<td>11</td>
</tr>
<tr>
<td>2.3.3 Error Estimation and Localization</td>
<td>12</td>
</tr>
<tr>
<td>2.3.4 Mesh Adaptation</td>
<td>13</td>
</tr>
<tr>
<td>2.3.5 In-Memory Integration of Components</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Template-Based Generic Programming</td>
<td>13</td>
</tr>
<tr>
<td>2.5 The Primal Problem</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1 Galerkin Finite Element Methods</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2 Stabilized Finite Element Methods</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3 Automated Solution Based on Residual Implementation</td>
<td>18</td>
</tr>
<tr>
<td>2.6 The Adjoint Problem</td>
<td>19</td>
</tr>
<tr>
<td>2.6.1 A Richer Space via Uniform Refinement</td>
<td>19</td>
</tr>
<tr>
<td>2.6.2 Discrete Adjoint Approximation</td>
<td>20</td>
</tr>
<tr>
<td>2.6.3 Automated Solution Based on Residual Formulation</td>
<td>21</td>
</tr>
<tr>
<td>2.7 Error Estimation</td>
<td>22</td>
</tr>
</tbody>
</table>
2.7.1 Two-Level Error Estimates ... 22
2.7.2 Modified Functional Error Estimate 23
2.7.3 Error Localization for Galerkin Methods 23
2.7.4 Error Localization for Stabilized Methods 24
2.7.5 Automated Error Localization Based on Residual Implementation . 24
2.8 Mesh Adaptation ... 26
2.9 Quantities of Interest ... 27
 2.9.1 Point-Wise Solution Component 27
 2.9.2 Integrated Solution Over a Sub-Domain 27
 2.9.3 Integrated von-Mises Stress Over a Sub-Domain 28
2.10 Results ... 29
 2.10.1 Poisson’s Equation .. 29
 2.10.2 A Cell Embedded in a Matrix 31
 2.10.3 Elastoplasticity in an Array of Solder Joints 37
2.11 Conclusions .. 42

3. ADJOINT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR STABILIZED FINITE DEFORMATION ELASTICITY 43
3.1 Introduction ... 43
3.2 Model Problem ... 45
 3.2.1 Strong Form .. 45
 3.2.2 Weak Form .. 46
 3.2.3 Stabilized Finite Element Formulation 47
 3.2.4 Linearization and Solution Strategy 49
3.3 Adjoint-Based Error Estimation 50
 3.3.1 Two-Level Error Estimation .. 50
 3.3.2 Choice of Fine Space ... 51
 3.3.3 Modified Functional Error Estimate 52
 3.3.4 Error Localization .. 53
3.4 Mesh Adaptation .. 55
3.5 Results ... 56
 3.5.1 Cook’s Membrane .. 56
 3.5.2 A Cell Embedded in a Matrix 61
3.6 Conclusions .. 67
4. A NON-UNIFORM REFINEMENT APPROACH FOR SOLVING ADJOINT PROBLEMS IN FUNCTIONAL ERROR ESTIMATION AND MESH ADAPTATION . 69
 4.1 Introduction ... 69
 4.2 Error Estimation with Two Levels 70
 4.2.1 Error Estimates ... 70
 4.2.2 A Simple A-Priori Analysis 71
 4.3 Choices for the Fine Space 72
 4.3.1 Uniform Refinement .. 72
 4.3.2 Long Edge Refinement 73
 4.3.3 Single Edge Refinement 74
 4.4 Mesh Adaptation .. 75
 4.4.1 Error Localization .. 75
 4.4.2 Mesh Size Field ... 76
 4.5 Results .. 77
 4.5.1 Effectivity Indices for Poisson’s Equation 77
 4.5.2 Mesh Adaptation for Poisson’s Equation 80
 4.6 Conclusions and Outlook .. 81

5. OUTPUT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR VARIATIONAL MULTISCALE METHODS ... 84
 5.1 Introduction and Motivation 84
 5.2 Review of VMS Methods ... 86
 5.2.1 Model Problem .. 86
 5.2.2 VMS Formulation ... 87
 5.2.3 Subgrid Model .. 89
 5.3 The Dual Problem .. 91
 5.3.1 Abstract Problem ... 91
 5.3.2 VMS Formulation ... 92
 5.3.3 Subgrid Model .. 93
 5.4 Error Estimation .. 94
 5.4.1 Continuous VMS Error Representations 95
 5.4.2 Subgrid Model Error Representations 96
 5.4.3 Subgrid Model Error Estimates 98
 5.4.4 Error Localization .. 99
 5.5 Mesh Adaptation .. 100
LIST OF TABLES

2.1 A list of TBGP evaluation operations used in the Goal application. In this table u^H is the primal solution vector, u^h_H is the prolongation of the solution vector to a richer space, s^H is a (potentially empty) vector of history-dependent mechanics state variables, s^h_H is the prolongation of the state to a richer space, z^h is the adjoint solution vector, R^H is the residual vector evaluated on the coarse space, R^h is the residual vector evaluated on the fine space, and J^H is the scalar QoI. .. 14

4.1 Approximated mesh size ratios for the Long and Single schemes for the first Poisson’s equation example. ... 79

5.1 Effectivity indices for a 1D advection-diffusion example with a global QoI. . . 103

5.2 Effectivity indices for a 2D advection-diffusion example with a global QoI. . . 103
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>A schematic for the generic programming model of PDEs.</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Example of a nested mesh (red edges) obtained via a uniform refinement of a base mesh (black edges) in three dimensions.</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Domain and initial mesh (left) for the Poisson’s equation example with the QoI point indicated in red, final adapted mesh (middle), and a close up of the upper-right hand corner of the final adapted mesh (right).</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Effectivity indices for the adaptive Poisson’s equation example.</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Errors for the point-wise QoI for the adaptive Poisson’s equation example.</td>
<td>32</td>
</tr>
<tr>
<td>2.6</td>
<td>Error convergence using uniform mesh refinement and adjoint-based error estimation for the adaptive Poisson’s equation example.</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Domains for the microglial cell example.</td>
<td>34</td>
</tr>
<tr>
<td>2.8</td>
<td>A close-up of the initial mesh (left) the mesh after 5 adaptive iterations (center) and the final adapted mesh (right) for the microglial cell example.</td>
<td>35</td>
</tr>
<tr>
<td>2.9</td>
<td>The parallel mesh partitioning for the initial mesh (left) and the final adapted mesh (right) for the microglial cell example.</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Breakdown of the CPU time spent for each portion of the adaptive process for the microglial cell example.</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>The solder joint array geometry (left) and the geometric specification of the integrated von-Mises QoI (right).</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Weak scaling for the Goal application.</td>
<td>39</td>
</tr>
<tr>
<td>2.13</td>
<td>The (x)-component of the adjoint displacement solution (left), and the pressure component of the adjoint solution (right).</td>
<td>40</td>
</tr>
<tr>
<td>2.14</td>
<td>The spatial distribution of errors as computed by adjoint-based error estimation for the solder joint array.</td>
<td>40</td>
</tr>
<tr>
<td>2.15</td>
<td>Cross-sectional view of the initial mesh for the solder joint geometry (left) and the final adapted mesh (right).</td>
<td>40</td>
</tr>
<tr>
<td>2.16</td>
<td>The initial mesh for the solder joint geometry (left) and the final adapted mesh (right).</td>
<td>41</td>
</tr>
<tr>
<td>2.17</td>
<td>Error convergence histories for the solder joint example problem with the integrated von-Mises stress QoI.</td>
<td>41</td>
</tr>
</tbody>
</table>
3.1 Cook’s membrane problem definition. 57
3.2 The pressure component p of the primal solution scaled by its maximal value (left), the pressure component z_p of the adjoint solution for the point-wise QoI $J_1(U)$, and the pressure component z_p of the adjoint solution for the integrated displacement QoI $J_2(U)$. ... 57
3.3 Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for the Cook’s membrane problem with the point-wise QoI $J_1(U)$. 58
3.4 Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for the Cook’s membrane problem with the integrated displacement QoI $J_2(U)$. 59
3.5 Effectivities for the point-wise QoI $J_1(U)$ for the Cook’s membrane problem. 60
3.6 Effectivities for the integrated displacement QoI $J_2(U)$ for the Cook’s membrane problem. 61
3.7 Errors for the point-wise QoI $J_1(U)$ for the Cook’s membrane problem. 62
3.8 Errors for the integrated displacement QoI $J_2(U)$ for the Cook’s membrane problem. 63
3.9 The computational geometry for the microglial cell problem. The inner-most surface represents the geometry of the microglial cell, the outer-most bounding box represents the extracellular matrix in which the cell is embedded, and the inner bounding box represents the domain over which the local integrated displacement QoI $J(U)$ is defined. 64
3.10 The applied tractions for the microglial cell problem. 64
3.11 The initial (light grey) and deformed (blue) geometry of the microglial cell before and after tractions are applied. 65
3.12 Initial mesh for the microglial cell problem (left) and final adapted mesh after 10 adaptive iterations (right). 65
3.13 Effectivity indices for the local integrated displacement QoI $J(U)$ for the microglial cell problem. 66
3.14 Errors for the local integrated displacement QoI $J(U)$ for the microglial cell problem. 67
3.15 Error convergence using uniform mesh refinement and adjoint-based adaptivity for the local integrated displacement QoI $J(U)$ for the microglial cell problem. 68
4.1 Edges of a base mesh (black) and a nested mesh refined with the Unif scheme (red) in two dimensions. 72
4.2 Edges of a base mesh (black) and a nested mesh refined with the Long scheme (red) in two dimensions. ... 73
4.3 Edges of a base mesh (black) and a nested mesh refined with the Single scheme (red) in two dimensions. ... 74
4.4 Effectivity indices using the Unif, Long, and Single refinement schemes for the Poisson example problem. ... 78
4.5 Ratio of adjoint problem degrees of freedom to primal problem degrees of freedom using the Unif, Long, and Single refinement schemes for the Poisson example problem. ... 79
4.6 Geometry and initial mesh used for the second Poisson’s equation example with the point of interest shown in red. ... 80
4.7 Error evolution for adaptive schemes for the second Poisson’s equation example. ... 81
4.8 The final adapted mesh using the Unif strategy to solve the adjoint problem (left) and a close-up of the upper right-hand corner of this mesh (right). 82
4.9 The final adapted mesh using the Long strategy to solve the adjoint problem (left) and a close-up of the upper right-hand corner of this mesh (right). 82
4.10 The final adapted mesh using the Single strategy to solve the adjoint problem (left) and a close-up of the upper right-hand corner of this mesh (right). 83
5.1 The primal solution u^h (left) and the dual solutions z^h corresponding to $J_1(u)$ (center) and $J_2(u)$ (right). ... 104
5.2 Initial meshes for the outputs $J_1(u)$ (left) and $J_2(u)$ (right). ... 105
5.3 Final adapted meshes for the output $J_1(u)$ using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes. ... 106
5.4 Convergence history for various adaptive schemes for the output $J_1(u)$. ... 106
5.5 Final adapted meshes for the output $J_2(u)$ using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes. ... 107
5.6 Convergence history for various adaptive schemes for the output $J_2(u)$. ... 107
ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Prof. Mark S. Shephard, for his guidance throughout my tenure as a graduate student. It was a great fortune to have been given the opportunity to join his research group. This work would not have been possible without his invaluable insights and his commitment to excellence in research. I would also like to thank my co-advisor, Prof. Assad A. Oberai, for his insightful guidance. Prof. Oberai introduced me to the variational multiscale method, which forms the basis for a significant portion of this work.

I would like to thank Prof. Antoinette M. Maniatty, Prof. Jason E. Hicken, and Prof. Jeffrey W. Banks for kindly serving on my doctoral committee, for the valuable education they’ve provided me through their courses, and for their helpfulness and willingness to answer questions that arose during my time as a graduate student.

The Scientific Computation Research Center provided a great working environment and I would like to thank its members. Max Bloomfield provided me with valuable guidance in both research and life during my time at RPI. Thanks, Max. I am grateful for the friendship and support of fellow graduate students Cameron Smith, Daniel Ibanez, Zhen Li, Li Dong, Alp Dener, Jared Crean, and Alvin Zhang.

I owe the creation of my career to Rod Douglass, who introduced me to the world of scientific computing while mentoring me at Los Alamos National Laboratory. Thanks, Rod.

Finally, I would like to extend my love and gratitude to my family: Kim, Howard, Rachel, and Noel. I would not be where I am today without their love and support.
In a finite element simulation, not all of the computed data is of equal importance. Rather, the goal of an engineering practitioner is often to accurately assess only a small number of critical outputs, such as the displacement at a point or the von-Mises stress over a domain. When these outputs can be expressed as functionals, a strategy known as adjoint-based error estimation can be employed to accurately assess output errors. Using this error information, mesh adaptation can then be utilized to reduce and control output errors. The use of adjoint-based error estimation and mesh adaptation is much more prevalent in computational fluid dynamics applications when compared to computational solid mechanics. This can in part be explained by the high level of expertise required to derive and implement adjoint-based error estimation routines in computational solid mechanics.

In this thesis, we present an approach to automate the process of adjoint-based error estimation and mesh adaptation to lower the barrier of entry for solid mechanics practitioners. This approach has been developed to be applicable to both Galerkin and stabilized finite element methods, but we mainly emphasize stabilized finite elements. In particular, we demonstrate the effectiveness of this approach for two and three dimensional problems in incompressible elasticity and elastoplasticity. Further, we demonstrate the ability of this approach to execute effectively on parallel machines.

The variational multiscale (VMS) method is a particular methodology that allows one to develop a stabilized finite element method. As a further research endeavor, we develop and investigate a novel approach for adjoint-based error estimation and mesh adaptation for VMS methods. In particular, we develop an approach for adjoint enrichment based on VMS techniques.
CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

Numerical simulation has become ubiquitous in engineering and scientific practice due to the continuing increase in power and accessibility of computational resources. For scientific and engineering applications, ensuring the accuracy and reliability of the computed numerical solution is of primary importance. For example, it is often necessary to design structural components for which the von-Mises stress in the component’s domain is less than a given material yield strength when subjected to a variety of loading conditions.

In the context of finite element methods, a posteriori error estimation and mesh adaptation provide useful tools for approximating and controlling the discretization error when solving partial differential equations (PDEs) (cf. [1]–[3]).

In an abstract finite element setting, one seeks to solve the variational problem: find \(u \in S \) such that

\[
\mathcal{R}(w; u) = 0 \quad \forall w \in V,
\]

where \(\mathcal{R} : S \times V \to \mathbb{R} \) is a semilinear form, linear in its first argument and potentially nonlinear in its second, and \(S \) and \(V \) are Hilbert spaces. Given the exact solution \(u \) to this problem and a corresponding finite element approximation \(u^H \), the discretization error is defined as \(e := u - u^H \). Traditional a posteriori error estimates attempt to bound or approximate the discretization error in a global norm \(\| e \| \), such as the energy norm induced by the underlying partial differential operator. In the past twenty years, though, adjoint-based techniques have been developed and utilized to obtain approximations \(\eta \) or approximate bounds \(\hat{\eta} \) for the error \(|J(u) - J(u^H)| \) in some physically meaningful functional \(J : S \to \mathbb{R} \), such that

\[
|J(u) - J(u^H)| \approx \eta < \hat{\eta}.
\]

Portions of this chapter have been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard, “An automated approach for parallel adjoint-based error estimation and mesh adaptation,” submitted for publication.
The use of adjoint (or duality) techniques for *a posteriori* error estimation can be traced back to Babuška and Miller [4]–[6] who explored the post-processing of functional quantities. These ideas were then expanded to the context of adaptive finite element methods by Johnson et al. [7]. Becker and Rannacher [8] developed an approach to functional *a posteriori* error estimation for Galerkin finite element methods called the *dual weighted residual* method. Giles and Pierce [9] developed an approach conceptually similar to the dual weighted residual method, but additionally concerned themselves with discretizations that lack Galerkin orthogonality, such as Godunov finite volume methods. Venditti and Darmofal [10]–[12] developed adjoint-based error estimates for arbitrary discretizations using discrete adjoint equations based on two-level discretization schemes. Prudhomme and Oden [13], [14] developed adjoint techniques to determine guaranteed upper and lower bounds for linear functionals in the context of linear variational problems.

Adjoint-based error estimation and mesh adaptation have been heavily adopted by the computational fluid dynamics (CFD) community [15]. This can in part be explained by the fact that the current increase in computing power alone may not be sufficient to accurately resolve quantities of interest (QoIs) in CFD applications, even when very finely generated *a priori* meshes are used [15]. However, despite its popularity in CFD, adjoint-based error estimation is not regularly applied to solid mechanics applications.

In the context of solid mechanics, adaptive adjoint-based error estimation has been used to study linear elasticity in two [16]–[18] and three [19] dimensions, two [20], [21] and three [22] dimensional elasto-plasticity, two dimensional thermoelasticity [23], two dimensional nonlinear elasticity [24], and two dimensional hyperelasticity [25]. We remark that in the majority of this literature, mesh adaptation is performed with structured adaptive mesh refinement using quadrilateral or hexahedral elements and without any discussion of parallelization. Additionally, none of these investigations apply the current state of the art capabilities of parallel three-dimensional unstructured mesh adaptation, as is currently the norm for CFD applications.

Perhaps one reason for this discrepancy is the fact that adjoint-based error estimation requires the development and implementation of a number of non-trivial steps. From a high-level, the following steps must be carried out to perform an adaptive adjoint-based error analysis:

1. Solve the original (primal) PDE of interest.
2. Using the primal solution, derive and solve an auxiliary adjoint PDE.

3. Enrich the solution to the adjoint PDE in some manner.

5. Localize the error to contributions at the mesh entity level.

6. Adapt the mesh based on the local error contributions.

Additionally, modern solid mechanics applications necessitate the use of parallel analysis, meaning each of these steps must execute effectively and efficiently on parallel machines.

Further, both the primal residual and functional QoI can be highly nonlinear in solid mechanics. Solving the primal and adjoint problems requires the linearization of the primal residual and the functional QoI with respect to the degrees of freedom of the problem. The derivation and numerical implementation of these linearizations can be time consuming and error-prone. As a result, adjoint-based error control has typically remained a tool for expert analysis with a high barrier of entry.

As a final observation, we note that unstructured mesh generation and adaptation is robust, reliable, and scalable for simplical elements. However, for solid mechanics applications with incompressibility constraints, such as isochoric plasticity or incompressible hyperelasticity, standard displacement-based Galerkin finite element discretizations are known to be unstable when using simplical elements. This fact may have further hindered the adoption of unstructured mesh adaptation for previous adaptive adjoint-based solid mechanics applications.

1.2 Outline

In order to make adjoint-based error estimation and mesh adaptation more accessible to practitioners of solid mechanics, we have developed a fully automated approach that addresses the difficulties outlined above. Specifically, we have developed a C++ application called Goal that automates steps 1-6 based solely on the inputs of a semilinear form \mathcal{R} and a functional QoI J for both Galerkin and stabilized finite element methods. Chapter 2 provides a review of the mathematical background required for adjoint-based error estimation and discusses in detail the approach we have developed to automate the process. In addition,
Chapter 2 provides examples that demonstrate this approach executes effectively on parallel machines.

Chapter 3 presents the governing equations for finite deformation elasticity and discusses the derivation of a stabilized mixed pressure-displacement finite element formulation for these equations. In this chapter, the automated approach developed in Chapter 2 is discussed specifically in the context of nonlinear elasticity, and is utilized to investigate several examples in incompressible elasticity. In particular, the automated approach is shown to yield effective error estimates in this context. Further, the ability of the Goal application to handle mesh adaptation in the presence of complex geometries is demonstrated by investigating a model problem arising from the study of a biological cell embedded in an extracellular matrix.

In Chapter 4, the automated approach presented in Chapter 2 is extended to investigate two novel approaches for solving the adjoint problem. These approaches proceed by solving the adjoint problem on a nested mesh obtained via non-uniform refinement so as to reduce the total number of degrees of freedom for the adjoint problem when compared to solving the adjoint problem on a mesh obtained with uniform refinement. However, these two approaches still maintain a physically meaningful global enrichment of the adjoint solution. This investigation demonstrates a key feature of the Goal software, in that it is flexible enough to be used to conduct novel research that falls outside of its original intended scope.

Finally, we investigate adjoint-based error estimation and mesh adaptation for variational multiscale (VMS) methods in Chapter 5. The VMS method provides a systematic approach to develop and derive stabilized finite element formulations for PDEs. In this chapter, we propose a novel strategy for enriching the solution to the adjoint problem based on VMS techniques. We use this enrichment to derive an adjoint-based error estimate for functional QoIs. In this chapter, we consider the advection-diffusion equation as a model problem with the intent that this approach will soon be implemented in the Goal application and applied to solid mechanics applications.

1.3 Contributions

This thesis centers around contributions made to perform and investigate adjoint-based error estimation and mesh adaptation while largely focusing on the area of solid mechanics. In the performance of the work for this thesis, novel contributions have been achieved by:
1. Developing and implementing an automated approach for adjoint-based error estimation that executes effectively on parallel machines.

2. Applying the automated approach to investigate adjoint-based error estimation and mesh adaptation for finite deformation elasticity with a stabilized finite element method.

3. Advancing the ability to perform adjoint-based error estimation and mesh adaptation for solid mechanics applications with complex geometries.

4. Applying the automated approach to conduct an investigation of a non-uniform refinement approach for solving adjoint problems.

5. Developing and investigating a novel approach for adjoint-based error estimation for variational multiscale finite element methods.
2.1 Introduction

To make adjoint-based error estimation and mesh adaptation more accessible to solid mechanics practitioners, we seek to fully automate its steps for execution on parallel machines. Specifically, we seek to develop software that automates steps 1-6 outlined in Chapter 1 based solely on the inputs of a semilinear form \mathcal{R} and a functional QoI J. We endeavor to develop this software to be applicable to both Galerkin and stabilized finite element methods.

Recently, Rognes and Logg [26] introduced a fully automated approach to goal-oriented error estimation and mesh adaptation for Galerkin finite element methods within the FEniCS [27] finite element framework. In this approach, the adjoint problem is derived in a discrete manner based on a user-implemented residual \mathcal{R} and a functional J. The adjoint problem is then solved on the same finite element space as used for the primal problem and enriched to a higher order polynomial space by solving local patch-wise problems. Based on the given semilinear form \mathcal{R}, error contributions are then localized to the element-level by solving local element problems to recover the strong form of the residual operator over element interiors and element boundaries. The total error in the functional QoI is then computed as the sum of these error contributions. As a final step, the mesh is adapted using conforming unstructured mesh refinement.

In this work, we present an approach for automating goal-oriented analysis that is distinct in several ways. First, we consider adjoint-based error estimation in the context of both Galerkin and stabilized finite element methods. Additionally, we propose solving the adjoint problem in a richer finite element space, obtained via uniform refinement, than the space used for the primal problem. To localize the error to the mesh entity level, we utilize a partition of unity based approach proposed by Richter and Wick [28]. This allows us to

This chapter has been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard, “An automated approach for parallel adjoint-based error estimation and mesh adaptation,” submitted for publication.
directly re-use the implemented semilinear form \mathcal{R} for error localization, eliminating the need to solve local element problems to recover the strong form residual. We also take advantage of fully unstructured conforming mesh adaptation, where the mesh can be coarsened as well as refined. As a final distinction, we highlight the ability of the proposed approach to execute on parallel machines.

In totality, our new approach can be described as follows. First, the primal problem is solved via Newton’s method, where the Jacobian of the semilinear form \mathcal{R} is obtained via automatic differentiation. The adjoint problem is derived in a discrete manner in a richer finite element space obtained by a uniform refinement of the initial mesh. The adjoint operator is derived by an application of automatic differentiation to the semilinear form \mathcal{R}, and the right-hand side of the adjoint problem is obtained by applying automatic differentiation to the functional J. An approximate error η is computed as a modified discrete adjoint weighted residual evaluated on the fine space. The error is then localized to mesh vertices using a variational localization approach by introducing a partition of unity into the weighting slot of the semilinear form \mathcal{R}. An approximate upper bound $\hat{\eta}$ is obtained by summing the absolute values of localized error contributions. Finally, the mesh is adapted by specifying a mesh size field, which defines the length of mesh edges over the mesh. We have implemented this approach in a C++ finite element application which we have called Goal [29].

Underlying this approach is the concept of template-based generic programming (TBGP) [30], [31], which has previously been used to automate the solution of PDEs as well as embedded advanced analysis features, such as sensitivity analysis and uncertainty quantification. From a high-level the TBGP approach consists of a gather phase, a compute phase, and a scatter phase. The present work extends the TBGP approach to include the automation of error localization, as required to drive mesh adaptation.

The remainder of this chapter is outlined as follows. First adjoint-based error estimation is reviewed for abstract Galerkin and stabilized variational problems. Next, a description of the software components utilized in this work is provided. In particular, each step of the automated adjoint-based analysis is discussed with respect to its utilized software components. A review of the concept of TBGP is then provided and its extension for the purposes of adjoint-based error estimation is discussed. A detailed description of each step in the adaptive adjoint-based process is then described. First the automated solution of the primal
problem is discussed. Then the automated derivation and solution of the adjoint problem is described. Next, the automation of error localization to drive mesh adaptation is outlined and mesh adaptation procedures are discussed. The implementation of several QoIs in the Goal application is reviewed. Finally, the effectiveness of the proposed automated approach is demonstrated for several applications.

2.2 A Review of Adjoint-Based Error Representations

In this section, a brief review of the derivation of adjoint-based error representations is provided for Galerkin finite element methods as outlined by Becker and Rannacher [8], and for stabilized finite element methods as outlined by Cyr et al. [32]. This review is intended to give context and serve as a road map for the remaining sections in this chapter.

Let S and V be Hilbert spaces, $R_g : S \to V$ and $R_g : S \to V$ be semilinear forms that are linear in their first argument and potentially nonlinear in their second argument. Let $S^H \subset S$ and $V^H \subset V$ be classical finite element function spaces, where H is a mesh-dependent parameter that denotes the fineness of the discretization. We introduce the following variational abstract model problem: find $u \in S$ such that

$$R_g(w; u) = 0 \quad \forall w \in V.$$ \hfill (2.1)

Similarly, we introduce the following abstract adjoint problem: find $z \in V$ such that

$$R'_g[u^H](w, z) = J'[u^H](w) \quad \forall w \in V,$$ \hfill (2.2)

where the prime indicates Fréchet linearization about the argument in square brackets, which can equivalently be expressed as the Gâteaux derivatives

$$J'[u^H](w) := \frac{d}{d\epsilon} J(u^H + \epsilon w)\big|_{\epsilon=0},$$ \hfill (2.3)

and

$$R'_g[u^H](w, z) := \frac{d}{d\epsilon} R_g(z; u^H + \epsilon w)\big|_{\epsilon=0}.$$ \hfill (2.4)

Here, $u^H \in S^H$ denotes some finite element approximation to the true solution u. The
purpose of the adjoint problem is to relate the original problem of interest to the functional quantity J, and it is this relationship that allows us to derive adjoint-based error representations. Further, we note that the adjoint solution z can be interpreted as the sensitivity of the QoI to perturbations in the primal PDE residual [15].

2.2.1 Galerkin Finite Element Methods

The corresponding Galerkin finite element formulation of the abstract problem (2.1) can be stated as: find $u^H \in S^H$ such that

$$R_g(w^H; u^H) = 0 \quad \forall w^H \in V^H. \tag{2.5}$$

Let $e := u - u^H$ denote the discretization error. We can then derive an error representation for the functional J in terms of the adjoint solution z as follows:

$$J(u) - J(u^H) = J'[u^H](e) + \mathcal{O}(e^2)$$
$$= R_g'[u^H](e, z) + \mathcal{O}(e^2)$$
$$= R_g(z; u) - R_g(z; u^H) + \mathcal{O}(e^2)$$
$$= -R_g(z; u^H) + \mathcal{O}(e^2)$$
$$= -R_g(z - z^H; u^H) + \mathcal{O}(e^2). \tag{2.6}$$

Here, the first equality is due to the linearization [8] of the functional J, the second equality is due to the introduced adjoint problem (2.2), the third equality is due to the linearization [8] of the residual R_g, the fourth equality holds due to the definition of the abstract primal problem (2.1), and the fifth equality is due to Galerkin orthogonality, where z^H denotes the interpolant of z onto the space V^H. In reference to the notation introduced, the total residual semilinear form \mathcal{R} is given as $\mathcal{R} = R_g$.

2.2.2 Stabilized Finite Element Methods

A corresponding stabilized finite element method of the abstract problem (2.1) can be expressed as: find $u^H \in S^H$ such that

$$R_g(w^H; u^H) + R_\tau(w^H; u^H) = 0 \quad \forall w^H \in V^H. \tag{2.7}$$
Here \mathcal{R}_τ denotes a consistent stabilization residual that adds stability to the numerical scheme. We say that the stabilization is consistent if $\mathcal{R}_\tau(w^H;u) \to 0$ as $H \to 0$.

Again, we let $e := u - u^H$ denote the discretization error, and derive an error representation for the functional J as follows

$$J(u) - J(u^H) = J'(u^H)(e) + \mathcal{O}(e^2)$$

$$= \mathcal{R}_g'[u^H](e,z) + \mathcal{O}(e^2)$$

$$= \mathcal{R}_g(z;u) - \mathcal{R}_g(z;u^H) + \mathcal{O}(e^2)$$

$$= -\mathcal{R}_g(z;u^H) + \mathcal{O}(e^2)$$

$$= -\mathcal{R}_g(z - z^H;u^H) + \mathcal{R}_\tau(z^H;u^H) + \mathcal{O}(e^2).$$

Here, the first four equalities are obtained exactly as in the corresponding Galerkin finite element method. However, when we subtract the interpolant z^H of the adjoint solution z in the fifth equality, an additional term remains because the numerical scheme (2.7) lacks Galerkin orthogonality. In reference to the notation introduced, the total semilinear form \mathcal{R} is given as $\mathcal{R} = \mathcal{R}_g + \mathcal{R}_\tau$.

2.3 Software Components

An adaptive adjoint-based simulation requires the implementation and coordination of a number of non trivial components. Namely, the solution of a primal problem, the construction and solution of an auxiliary adjoint problem, an enrichment of the adjoint solution, the estimation and localization of the error, and mesh adaptation are all required steps in the adjoint-based adaptive process.

To implement each of these components for effective execution on parallel machines, we make use of two state of the art software suites. The first is PUMI [33], which contains tools to support unstructured mesh services on massively parallel machines. In particular, PUMI provides all of the necessary machinery to store, query, adapt, and dynamically load balance parallel unstructured meshes via a collection of modern C and C++ libraries. The second is Trilinos [34], [35], which provides a large variety of C++ packages to support multiphysics simulations on parallel machines. In particular, Trilinos provides the ability to store and solve sparse parallel linear systems, as well as tools to perform automatic differentiation.

Using these two software suites as building blocks, we have written a new C++ applica-
tion for adjoint-based error estimation and mesh adaptation with an emphasis on nonlinear solid mechanics. We have called this application Goal [29]. Below, we describe how these software components are utilized for each portion of the adaptive adjoint-based process, where the analysis is automated based only on the inputs of a semilinear form \mathcal{R} and a functional \mathcal{J}.

2.3.1 The Primal Problem

Based on an implemented weighted residual operator \mathcal{R}, the Goal application computes element-level residual vectors and element-level Jacobian matrices. The element-level Jacobian matrices are computed via automatic differentiation using the Trilinos library Sacado. Sacado provides efficient automatic differentiation using a C++ meta-programming technique called expression templates [36].

After the computation of a single element’s residual vector and Jacobian matrix, the Goal application performs a finite element assembly step to sum contributions to the global residual vector and global Jacobian matrix. To store and modify the global linear algebra objects, we utilize the Tpetra library provided by Trilinos. In particular, the Jacobian matrix is stored as a sparse compressed row storage matrix in parallel.

The primal problem is solved via Newton’s method, which requires iterative evaluations of the global residual vector and Jacobian matrix. For each Newton iteration, a global linear system must be solved. We solve this linear system iteratively in parallel using either a CG or GMRES solver provided the Trilinos library Belos [37]. Additionally, we perform algebraic multigrid preconditioning using the Trilinos library MueLu [38].

Once the primal problem has been solved, we utilize the PUMI library APF to store the finite element solution information at nodes and if necessary secondary solution information at integration points. Additionally, the APF library is used to provide shape function information and to query stored solution information during residual and Jacobian evaluations. Throughout the entire solution process, the PUMI mesh data structure is utilized to query mesh specific information.

2.3.2 The Adjoint Problem

To solve the adjoint problem in a richer finite element space than the one used for the primal problem, we make use of the underlying PUMI mesh data structure [39] and
the PUMI MeshAdapt software to create and store a uniformly refined nested mesh with
parent-child relations back to the original mesh. This relational information is implemented
in the Goal application, as it falls outside of the normal intended use case of the MeshAdapt
software, which concerns itself with fully unstructured conforming mesh adaptation via edge
splits, swaps, and collapses. However, the flexibility of the PUMI software allows us to
additionally construct data structures similar to those used in traditional adaptive mesh
refinement (AMR) with little implementation effort. Using the APF library and the parent-
child relational information, we are able to interrogate stored solution fields on both the
parent and nested meshes, which is required during the assembly of the adjoint problem.

On this finer mesh, element-level Jacobian matrices are computed using the Sacado
library, based on the Goal implementation of the operator \mathcal{R}. Additionally, element-level
derivatives of the functional quantity of interest J are computed with respect to degrees of
freedom of the problem, resulting in an element-level functional derivative vector.

After the computation of a single element’s Jacobian matrix and functional derivative
vector, the Goal application performs a finite element assembly step to sum contributions
to the global discrete adjoint matrix and the global functional derivative vector. Like the
primal problem, these global parallel linear objects are stored using the Tpetra library. The
global discrete adjoint operator and functional derivative vector fully define the linearized
adjoint problem, which we again precondition with algebraic multigrid techniques using the
MueLu library and solve using either CG or GMRES iterations using the Belos library. The
fine-space adjoint solution is then attached to the mesh using the APF library.

2.3.3 Error Estimation and Localization

The error estimation and localization routines are implemented entirely in the Goal
application. The error is localized by an evaluation of the stabilized weighted residual op-
erator \mathcal{R}, where the weight is chosen to be the adjoint solution multiplied by a partition of
unity. This error localization is discussed in further detail in Section 2.7. Based on these
element-level residual vectors, Goal performs finite element assembly of the global residual
vector, which is stored as a Tpetra vector. This vector represents an adjoint-weighted resid-
ual error estimate at each mesh vertex for each PDE equation in the fine mesh. The error is
attached to the vertices of the fine mesh using the APF library.
2.3.4 Mesh Adaptation

Once the error is stored on the vertices of the fine mesh, we interpolate it to element centers of the coarse mesh. The fine mesh data structures are then destroyed and the Goal application computes a mesh size field that seeks to equidistribute the error for an output mesh with N elements. This mesh size field is given as the input to the PUMI MeshAdapt software, which adapts the mesh with a sequence of edge splits, swaps, and collapses [40], [41] to satisfy the given mesh size field. As a final step, we utilize the PUMI library ParMA [42], [43] to perform diffusive load balancing to ensure parallel partitioning quality.

2.3.5 In-Memory Integration of Components

The coupling of the software components described above is done in-memory [44]. That is, there is no file-based communication of data from one analysis component to the next in the automated process. This in-memory coupling is a key ingredient for parallel analysis, where filesystem bandwidth is a critical bottleneck.

2.4 Template-Based Generic Programming

In this section, we provide a review of the concept of template-based generic programming for the evaluation and solution of PDEs [30], [31] and how it has been extended in the Goal application to automate the process of adjoint-based error estimation and mesh adaptation. For PDE applications, TBGP is broken into three major components, a seed or gather phase, a compute phase, and a scatter phase. The seed and scatter operations must be programmed specifically for each evaluation purpose. In contrast, the compute phase, where the PDE and QoI expressions are implemented, are written in a totally generic manner. Figure 2.1 pictorially represents this design philosophy.

We invoke this approach at the element-level, meaning for each element we perform the process: Gather \rightarrow Compute \rightarrow Scatter. By doing so, we reduce memory overhead and eliminate complications introduced by parallel computation [31]. Underlying the TBGP approach is the use of forward automatic differentiation (FAD) [45], which is discussed in further detail in Appendix A. The Goal application utilizes the Trilinos library Sacado [36] to perform automatic differentiation.

The purpose of the gather/seed operation is to collect information from global storage containers and ‘gather’ it to local element-level data structures. Further, any FAD deriva-
Fig. 2.1. A schematic for the generic programming model of PDEs.

Table 2.1. A list of TBGP evaluation operations used in the Goal application. In this table u^H is the primal solution vector, u^h_H is the prolongation of the solution vector to a richer space, s^H is a (potentially empty) vector of history-dependent mechanics state variables, s^h_H is the prolongation of the state to a richer space, z^h is the adjoint solution vector, R^H is the residual vector evaluated on the coarse space, R^h is the residual vector evaluated on the fine space, and J^H is the scalar QoI.

<table>
<thead>
<tr>
<th>Evaluation Type</th>
<th>Scalar Type</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>double</td>
<td>u^H, s^H</td>
<td>R^H</td>
</tr>
<tr>
<td>Jacobian</td>
<td>Sacado::FAD</td>
<td>u^H, s^H</td>
<td>$\frac{\partial R^H}{\partial u^H}$</td>
</tr>
<tr>
<td>Adjoint</td>
<td>Sacado::FAD</td>
<td>u^h_H, s^h_H</td>
<td>$\left[\frac{\partial R^h}{\partial u^h} \bigg</td>
</tr>
<tr>
<td>QoI</td>
<td>double</td>
<td>u^H, s^H</td>
<td>J^H</td>
</tr>
<tr>
<td>QoI Deriv</td>
<td>Sacado::FAD</td>
<td>u^h_H, s^h_H</td>
<td>$\left[\frac{\partial J^h}{\partial u^h} \bigg</td>
</tr>
<tr>
<td>Error</td>
<td>double</td>
<td>u^h_H, s^h_H, z^h</td>
<td>R^h</td>
</tr>
</tbody>
</table>

tive information is seeded during this operation, if necessary. For each evaluation type, the gather/seed operation initializes an array that physically represent the degrees of freedom associated with the current element, and initializes FAD variables’ derivative arrays to physically represent derivatives with respect to the degrees of freedom associated with the current element, when necessary. This degree of freedom array is templated on a scalar type ScalarT. For the Residual, QoI, and Error evaluation types, this scalar type corre-
Listing 2.1. The abstract Goal integrator class interface.

```cpp
1 class Integrator {
2 public:
3     Integrator();
4     virtual ~Integrator();
5     std::string const& get_name() { return name; }
6     virtual void set_time(double, double) {}  
7     virtual void pre_process(SolInfo*) {}  
8     virtual void set_element(int) {}  
9     virtual void gather(apf::MeshElement*) {}  
10    virtual void in_element(apf::MeshElement*) {}  
11    virtual void at_point(apf::Vector3 const&, double, double) {}  
12    virtual void out_element() {}  
13    virtual void scatter(SolInfo*) {}  
14    virtual void post_process(SolInfo*) {}  
15 protected:
16    std::string name;
```

responds to a C++ double. For the remaining evaluation types, this scalar type corresponds to a Sacado::FAD forward automatic differentiation variable type.

The compute phase computes local contributions to the equations or expressions of interest at the element level in terms of the degrees of freedom, as collected by the gather operation. The code for the compute phase is written in an entirely generic fashion, and is templated on a scalar type ScalarT. Templating the code used for the compute phase, along with appropriately chosen gather and scatter operations, allows the same code to be re-used for the distinct evaluation purposes listed in Table 2.1.

The scatter phase takes the local element-level data evaluated in the compute phase and ‘scatters’ it to the appropriate global data structure, as determined by the current evaluation operation. For instance, for the residual evaluation operation, local element-level residuals are evaluated in the compute phase and then summed into appropriate locations in the global residual vector during the scatter phase. Similarly, for the Jacobian evaluation operations, local element-level Jacobians are evaluated in the compute phase and the scatter operation sums these local contributions to appropriate locations in the global Jacobian matrix.

In the Goal application, we have considered six specific gather/scatter evaluation operations corresponding to the evaluation of the global residual vector, evaluation of the global Jacobian matrix, evaluation of the adjoint of the global Jacobian matrix, evaluation of the
functional QoI, evaluation of the derivative of the functional QoI, and evaluation of localized adjoint-weighted residual error estimates. Table 2.1 lists the inputs and outputs for these specific evaluation operations.

To realize these specific gather/scatter operations, we have implemented an abstract degree of freedom class and an abstract quantity of interest class that are both templated on a scalar type ScalarT. This scalar type is explicitly instantiated to either be a C++ double or a Sacado::FAD forward automatic differentiation variable type. Both the degree of freedom and QoI classes are equipped with gather and scatter methods, whose behavior changes based on an input parameter given to the class constructor. For the degree of freedom class, this parameter selects gather/scatter operations for either the residual, Jacobian, adjoint Jacobian, or adjoint-weighted residual error evaluations. Similarly, for the QoI class, this input parameter selects gather/scatter operations for either the evaluation of the QoI or the derivative of the QoI with respect to the problem degrees of freedom.

Previously, TBGP has been utilized in the multiphysics code Albany [46], [47] with the capability to perform the Residual, Jacobian, Adjoint, QoI, and QoI derivative evaluation operations shown in Table 2.1. To extend the abilities of TBGP to include adjoint-based error estimation, the Goal application implements the ability to perform the Adjoint and QoI derivative evaluations in a richer finite element space, as discussed in Section 2.6, a feature not previously available in existing TBGP codes. Further, the Goal application implements a novel evaluation type for the localization of the error, referred to as the Error evaluation type in Table 2.1. For this purpose, we have implemented an abstract weighting function class whose behavior changes based on the chosen evaluation type. This class evaluates the appropriate finite element weighting function values and gradients based on linear Lagrange basis functions for the Residual, Jacobian and Adjoint evaluation types. However, for the Error evaluation type, the behavior of the weighting function class is modified such that it evaluates the value and gradient of the adjoint solution z^h multiplied by a partition of unity. This abstraction of the weighting function class allows us to re-use the PDE implementation of the semilinear form \mathcal{R} to assemble a residual vector \mathcal{R}^h that represents an adjoint-weighted residual error estimate at each mesh vertex for each PDE equation in the richer finite element space, which is then used to drive mesh adaptation.

Listing 2.1 demonstrates the abstract integrator interface that has been implemented in the Goal application. The abstract degree of freedom, QoI, and weighting function classes
inherit from this base class. For each of these classes, the \texttt{gather} and \texttt{scatter} methods are implemented specifically for each appropriate evaluation type. The PDE equations in the Goal application are written as a combination of \texttt{Goal::Integrators}. Given an ordered array of integrators, the Goal application performs finite element assembly for every evaluation type in a generic manner, as outlined by Algorithm 1.

\begin{algorithm}
\caption{Assembly algorithm used in the Goal application}
\begin{algorithmic}
\State Given a mesh M and an ordered array of integrators I:
\State Call \texttt{pre_process} for each integrator i in I.
\For {each element set es in mesh M} \Do
\State Call \texttt{set_elem_set} for each integrator i in I.
\For {each element e in element set es} \Do
\State Call \texttt{gather} for each integrator i in I.
\State Call \texttt{in_elem} for each integrator i in I.
\For {each integration point ip in element e} \Do
\State Call \texttt{at_point} for each integrator i in I.
\EndFor
\State Call \texttt{out_elem} for each integrator i in I.
\State Call \texttt{scatter} for each integrator i in I.
\EndFor
\EndFor
\State Call \texttt{post_process} for each integrator i in I.
\end{algorithmic}
\end{algorithm}

2.5 The Primal Problem

2.5.1 Galerkin Finite Element Methods

We recall the definition of the abstract Galerkin finite element model problem, given by equation (2.5). In this context, the weighted residual form R_g is implemented in the Goal application. As an example, Listing 2.2 demonstrates the implementation of the Poisson residual $R_g(w; u) := (\nabla w, \nabla u) - (w, f)$ in the Goal application.

2.5.2 Stabilized Finite Element Methods

We recall the definition of the abstract stabilized finite element model problem, given by equation (2.7). In this context, both the weighted residual statement R_g and the stabilized weighted residual form R_τ are implemented in the Goal application. As an example, Listing 2.3 demonstrates the implementation of the pressure stabilization [48] residual $R_\tau(w; u)$ term
Listing 2.2. Poisson residual.

```cpp
template <typename ScalarT>
void Residual<ScalarT>::at_point(
apf::Vector3 const& p, double ipw, double dv) {
apf::Vector3 x(0,0,0);
apf::mapLocalToGlobal(elem, p, x);
double fval = eval(f, x[0], x[1], x[2], 0.0);
for (int n = 0; n < u->get_num_nodes(); ++n)
    for (int i = 0; i < num_dims; ++i)
        u->resid(n) += u->grad(i) * w->grad(n, i) * ipw * dv;
for (int n = 0; n < u->get_num_nodes(); ++n)
    u->resid(n) -= fval * w->val(n) * ipw * dv;
}
```

Listing 2.3. Pressure stabilization residual for mechanics.

```cpp
template <typename ScalarT>
void Stabilization<ScalarT>::at_point(
apf::Vector3 const& p, double ipw, double dv) {
double h = get_size(mesh, elem);
double tau = 0.5*c0*h*h/mu;
auto J = k->get_det_def_grad();
auto F = k->get_def_grad();
auto Cinv = inverse(transpose(F)*F);
for (int n = 0; n < p->get_num_nodes(); ++n)
    for (int i = 0; i < num_dims; ++i)
        for (int j = 0; j < num_dims; ++j)
            p->resid(n) += tau * J * Cinv(i, j) *
p->grad(i) * w->grad(n, j) * ipw * dv;
}
```

used in the Goal application for finite deformation solid mechanics. This stabilization term is discussed in greater detail in Section 2.10.2.

2.5.3 Automated Solution Based on Residual Implementation

For each element, we compute element level Jacobian matrices by applying automatic differentiation [45] to element-level contributions to the residual vector. For example, Listing 2.2 demonstrates how contributions to the element-level Poisson’s equation residual $R(w; u) = (\nabla w, \nabla u) - (w, f)$ are implemented. The element level Jacobian matrices are
then assembled into the global system Jacobian operator $J^H \in \mathbb{R}^{N \times N}$, given by

$$J^H = \frac{\partial R^H(u^H)}{\partial u^H}$$ \hspace{1cm} (2.9)

Listings 2.2 and 2.3 both demonstrate how element-level contributions to the semilinear forms R_g and R_{τ}, respectively, are computed in the Goal application. Notice that this code is templated on a scalar type `ScalarT`. When the scalar type is chosen as a C++ `double`, element-level contributions to the residual vector R^H are computed. When the scalar type is chosen as a Sacado forward automatic differentiation variable, element-level contributions to the Jacobian matrix J^H are computed. This illustrates a key concept of template-based generic programming, in that the governing equations need only be implemented once to compute a variety of additional information.

With the ability to fully assemble the Jacobian matrix J^H and the residual vector R^H, we solve the governing equations with Newton’s method, where we iterate over the steps

$$J^H(u^H_k) \delta u^H_k = -R^H(u^H_k)$$

$$u^H_{k+1} = u^H_k + \delta u^H_k,$$

until the convergence criterion $\|R^H(u^H)\|_2 < \epsilon$ is met for a user-specified tolerance ϵ. Here u^H_k denotes the solution vector at the k^{th} iteration obtained by solving the Newton linear system. For linear variational problems, we simply restrict ourselves to a single Newton linear solve, which reduces exactly to classical FEM assembly for linear problems.

2.6 The Adjoint Problem

2.6.1 A Richer Space via Uniform Refinement

The adjoint solution must be represented in a richer space than the one used for the primal problem to obtain meaningful error estimates. There are several strategies that are commonly used to obtain such a representation. First, the adjoint problem can be solved in the same finite element space as the primal problem and then be enriched to a higher order polynomial space [8] or a nested mesh [49] by some local patch-wise operation, or variational multiscale enrichment [50] can be used in the context of stabilized finite elements. Alternatively, the adjoint problem can be solved in a higher order polynomial space [51],
which we will refer to as p-enrichment. As a final option, the adjoint problem can be solved on a uniformly refined mesh [52], which we will refer to as h-enrichment.

In this work, we choose the h-enrichment approach for several reasons. First, we would like the adjoint solution to be as accurate as possible for error estimation purposes, so we choose to solve the adjoint problem in a globally richer finite element space. Additionally, for stabilized finite element methods, the use of p-enrichment would in general necessitate the use of higher order stabilization terms that vanish for lower-order finite element methods with simplical elements. These higher order terms are typically more difficult to implement than their lower order counterparts. Further, we remark that higher-order stabilized finite element methods are rarely used in practice, as stable higher-order mixed methods can usually be derived with fewer overall degrees of freedom [53]. Finally, we note that the unstructured mesh adaptation capabilities of the PUMI software make the h-enrichment approach readily available.

In the present context, we consider the term *uniform refinement* for triangles and tetrahedra to mean splitting each edge of the parent element at its midpoint. Or, in other words, creating new edges by connecting the midpoints of the parent element’s existing edges. The uniform refinement of a triangle results in 4 nested triangles and the uniform refinement of a tetrahedron results in 8 nested tetrahedra.

We have denoted the trial and test spaces used for the primal problem as \mathcal{S}^H and \mathcal{V}^H, respectively. We denote the trial and test spaces on the uniformly nested mesh as \mathcal{S}^h and \mathcal{V}^h, respectively, where $h < H$ is representative of a finer mesh size. Figure 2.2 illustrates the discretization for the coarse and fine trial and test spaces defined for a three dimensional geometry with a complex void inclusion.

2.6.2 Discrete Adjoint Approximation

Let $\mathbf{R}^h : \mathbb{R}^n \rightarrow \mathbb{R}^n$ denote the residual form of the system of nonlinear algebraic equations arising either from the Galerkin (2.5) or stabilized (2.7) model problem posed on the uniformly nested mesh. Let $\mathbf{u}^h_H := I^h_H \mathbf{u}^H$ denote the prolongation of the primal finite element solution onto the richer space \mathcal{S}^h via interpolation, Let $J^h : \mathbb{R}^n \rightarrow \mathbb{R}$ denote the discretization of the functional QoI on the uniformly nested fine space. We approximate the
adjoint problem (2.2) in a discrete manner [10]–[12], [15], by solving

$$\left[\frac{\partial R_h}{\partial u^h} \bigg|_{u^h_{\text{ref}}} \right]^T z^h = \left[\frac{\partial J^h}{\partial u^h} \bigg|_{u^h_{\text{ref}}} \right]^T.$$ \hspace{1cm} (2.11)

This allows us to automate the process of solving the adjoint problem, as discussed below. Here $z^h \in \mathbb{R}^n$ denotes the adjoint solution vector on the nested discretization.

2.6.3 Automated Solution Based on Residual Formulation

The construction of the Jacobian transpose matrix $\left[\frac{\partial R^h}{\partial u^h} \right]^T$ is performed in the same automated manner as the Jacobian for the primal problem. That is, for each element, we compute consistent element tangent stiffness matrices via automatic differentiation of element-level contributions to the residual vector. However, during the scatter phase of the template-based generic programming process, we transpose the element-level tangent matrices and sum them into global Jacobian adjoint matrix. The computation of the Jacobian adjoint is done using the same templated code that is used to compute the primal residual vector and the Jacobian matrix, as illustrated by listings 2.2 and 2.3.

Similarly, the construction of the functional derivative vector $\left[\frac{\partial J^h}{\partial u^h} \right]^T$ is done by evaluating derivatives of element-level contributions to the functional via automatic differ-
entiation. This results in element-level derivative vectors that are then assembled into the global functional derivative vector. Listings 2.4 and 2.5 illustrate the implementation of two quantities of interest in the Goal application. Once the Jacobian transpose matrix and functional derivative vector have been assembled, we solve the adjoint problem (2.11) using a sparse iterative solver in parallel.

2.7 Error Estimation

2.7.1 Two-Level Error Estimates

Following Venditti and Darmofal [10]–[12], we review adjoint-based error estimation using two discretization levels. The discrete residual form of the governing equations for a Galerkin (2.5) finite element method or a stabilized finite element method (2.7) posed on the fine space can be expressed as

\[R^h(u^h) = 0. \quad (2.12) \]

Taking Taylor expansions of the discrete residual \(R^h \) evaluated on the fine space and the discrete functional \(J^h \) evaluated on the fine space about the point \(u_H^h \) yields

\[R^h(u^h) = R^h(u_H^h) + \left[\frac{\partial R^h}{\partial u^h} \bigg|_{u_H^h} \right] (u^h - u_H^h) + \ldots \quad (2.13) \]

and

\[J^h(u^h) = J^h(u_H^h) + \left[\frac{\partial J^h}{\partial u^h} \bigg|_{u_H^h} \right] (u^h - u_H^h) + \ldots \quad (2.14) \]

respectively.

Using equation (2.12), the discretization error between the two spaces can be approximated to first order as

\[(u^h - u_H^h) \approx -\left[\frac{\partial R^h}{\partial u^h} \bigg|_{u_H^h} \right]^{-1} R^h(u_H^h), \quad (2.15) \]

which can then be substituted into the functional Taylor expansion (2.14) to obtain the
so-called adjoint weighted residual

\[J^h(u^h) - J^h(u^h_H) \approx -z^h \cdot R^h(u^h_H) \] \hspace{1cm} (2.16)

where \(z^h \) is the solution to the adjoint problem (2.11).

2.7.2 Modified Functional Error Estimate

Assume that the QoI converges at the rate \(k \), such that \(J - J^h(u^h_H) = cH^k \) and \(J - J^h(u^h) = ch^k \), where \(J \) denotes the exact value of the QoI. If the fine space is obtained via uniform mesh refinement, then the ratio of the fine mesh size to the coarse mesh size is given as \(\frac{h}{H} = \frac{1}{2} \). Consider the ratio

\[
\frac{J^h(u^h) - J^h(u^h_H)}{J - J^h(u^h_H)} = \frac{[J - J^h(u^h_H)] - [J - J^h(u^h)]}{J - J^h(u^h_H)} = \frac{cH^k - ch^k}{cH^k} = 1 - \left(\frac{h}{H} \right)^k = 1 - \left(\frac{1}{2} \right)^k
\] \hspace{1cm} (2.17)

in the limit as \(H \to 0 \) \([15]\). We call this ratio \(\alpha := 1 - (1/2)^k \). Let \(\eta \) denote an approximation to the functional error \(J - J^h(u^h_H) \). Let \(I \) denote the effectivity index given by

\[
I = \frac{\eta}{J - J^h(u^h_H)}.
\] \hspace{1cm} (2.18)

We would like to obtain error estimates \(\eta \) that lead to effectivity indices of \(I = 1 \) as \(H \to 0 \). To this end, we recall \(J^h(u^h) - J^h(u^h_H) \approx -z^h \cdot R^h(u^h_H) \) from equation (2.16) to obtain the scaled adjoint weighted residual error estimate

\[
\eta = -\frac{1}{\alpha} z^h \cdot R^h(u^h_H).
\] \hspace{1cm} (2.19)

2.7.3 Error Localization for Galerkin Methods

Following the approach of Richter and Wick \([28]\), we introduce a partition of unity \(\phi_i \), such that \(\sum_i \phi_i = 1 \), into the weighting function slot for the error estimate to localize
the error. In this work, the partition of unity is realized as linear Lagrange basis functions. This yields local error contributions \(\eta_i \) at the \(n_{vtx} \) mesh vertices in the mesh. Let \(z^h \in V^h \) be the finite element solution obtained by solving the discrete adjoint problem (2.11). We assume that this solution well approximates the continuous adjoint problem (2.2), such that \(z \approx z^h \). Let \(z^H \) denote the interpolant of \(z^h \) onto the coarse space \(V^H \). Recalling the error representation (2.6) for Galerkin finite elements, we obtain partition of unity-based correction indicators \(\eta_i \) in the following manner

\[
J(u) - J(u^H) \approx \sum_{i=1}^{n_{vtx}} -\mathcal{R}_g((z^h - z^H)\phi_i; u^H),
\]

(2.20)

2.7.4 Error Localization for Stabilized Methods

Error localization for the stabilized finite element formulation (2.7) proceeds in the same manner as the previous section. Let \(z^h \in V^h \) denote the finite element solution obtained by solving the discrete adjoint problem (2.11) and let \(z^H \) denote the interpolant of \(z^h \) onto the coarse space \(V^H \). Introducing a partition of unity into the error representation (2.8) for stabilized finite element methods with the approximation \(z \approx z^h \) yields the vertex-based correction indicators \(\eta_i \):

\[
J(u) - J(u^H) \approx \sum_{i=1}^{n_{vtx}} -\mathcal{R}_g((z^h - z^H)\phi_i; u^H) + \mathcal{R}_r(z^H\phi_i; u^H).
\]

(2.21)

Once correction indicators \(\eta_i \) have been evaluated, an approximate upper bound \(\hat{\eta} \) for the error is computed by summing the absolute value of the error contributions over all mesh vertices

\[
\hat{\eta} = \sum_{i=1}^{n_{vtx}} |\eta_i|.
\]

(2.22)

2.7.5 Automated Error Localization Based on Residual Implementation

During the assembly of the adjoint problem (2.11), the evaluation of element-level contributions to the residual vector evaluated on the fine space \(R^h(u^h_H) \) are necessarily computed by the machinery of forward automatic differentiation. Thus, during the scatter phase for the adjoint problem computation, we additionally sum element-level contributions
to the fine residual to assemble the global vector $R^h(u^h_H)$. This, along with the solution z^h to the adjoint problem (2.11) provides enough information to compute the adjoint-weighted residual estimate (2.19) in an automated fashion.

Again, we let $z^h \in V^h$ denote the finite element solution to the discrete adjoint problem (2.11) and let z^H denote the interpolant of z^h onto the coarse space V^H. We refer again to Listings 2.2 and 2.3, which illustrate implementations of Galerkin and stabilized semilinear forms R_g and R_τ, respectively, in the Goal application. Specifically, we remark that these residual evaluations contain the evaluation of weighting functions and their derivatives, given with calls to the methods $w->val(node)$ and $w->grad(node, dim)$, respectively. To localize the error in an automated fashion, we override the calls to these methods such that they return values of the adjoint solution multiplied by a partition of unity. For instance, at a given reference location ξ in a given element, the partition of unity-based weight for the Galerkin residual R_g is computed as

$$w->val(n) = ([z^h - z^H] \cdot \phi_n)\mid_{\xi}, \quad (2.23)$$

and its corresponding gradient is computed as

$$w->grad(n) = \nabla ([z^h - z^H] \cdot \phi_n)\mid_{\xi}. \quad (2.24)$$

Similarly, for the stabilized residual R_τ, the partition of unity-based adjoint weight is computed as

$$w->val(n) = [z^H \cdot \phi_n]\mid_{\xi}, \quad (2.25)$$

and its corresponding gradient is computed as

$$w->grad(n) = \nabla [z^H \cdot \phi_n]\mid_{\xi}. \quad (2.26)$$

In this manner, we have introduced partition of unity-based adjoint weights that have the same data type as the weights used for the computation of the primal and adjoint problems.

Using the adjoint weights in the error localization evaluation results in element-level residual vectors that correspond to contributions to the localized correction indicators η_h.
During the scatter phase of the error localization evaluation, we sum these element level contributions to the appropriate mesh vertices to compute the localized correction indicators η_i.

2.8 Mesh Adaptation

Given localized correction indicators η_i at mesh vertices, we compute element-level correction indicators η_e for $e = 1, 2, \ldots, n_{el}$, where n_{el} is the number of elements in the coarse discretization, by interpolating the vertex-based indicators to element centers and taking the result’s absolute value.

We then specify a mesh size field that defines the desired value of edge lengths over the mesh. From a high-level, we would like to specify this size field such that areas of the mesh that contribute strongly to the error in the QoI are refined, and areas of the mesh that are insensitive to the error are coarsened. Following Boussetta et al. [54], we specify a size field that attempts to equidistribute the error in an output adapted mesh with N target elements. Let p be the polynomial interpolant order for the chosen finite element method. In the present setting, $p = 1$. We first define the global quantity G as

$$G = \sum_{e=1}^{n_{el}} \left(\eta_e \right)^{\frac{2d}{2p+d}}. \quad (2.27)$$

This global quantity arises by considering a priori convergence rates for the input mesh and attempting to find an optimal mesh size for an output mesh with N elements. [54]. With this global quantity, new element sizes H_e^{new} are computed by scaling the previous element size H_e

$$H_e^{\text{new}} = \left(\frac{G}{N} \right)^{\frac{1}{d}} \left(\eta_e \right)^{\frac{-2}{2p+d}} H_e. \quad (2.28)$$

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we clamp the element size such that it is no smaller than one quarter and no greater than twice the previous element size. This clamping is performed to ensure that mesh adaptation is being driven by accurate error indicators.

$$\frac{1}{4} \leq \frac{H_e^{\text{new}}}{H_e} \leq 2. \quad (2.29)$$
2.9 Quantities of Interest

In this section, we review three quantities of interest that we have implemented in the Goal application. One benefit of the current automated approach is that additional quantities of interest can be rapidly prototyped and investigated with relative ease. Here, we refer to the domain discretized by the finite element mesh as Ω.

2.9.1 Point-Wise Solution Component

First, we consider the evaluation of a component u_i of the solution u at a given spatial location x. This functional can be expressed as

$$J(u) = \int_\Omega \delta(x - x_0) u_i \, d\Omega,$$

where δ is the Dirac delta function. We implement this quantity of interest as a discrete delta function, such that the right-hand side for the adjoint problem takes the form

$$\frac{\partial J^h}{\partial u^h} = \begin{bmatrix} 0 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0 & 0 \end{bmatrix}.$$

For this implementation, a mesh vertex is always placed at the spatial location x_0, the QoI derivative vector is zeroed out, and we place a one in the row of the QoI derivative vector that corresponds to the i^{th} component of the solution at the vertex.

2.9.2 Integrated Solution Over a Sub-Domain

Next, we consider the integrated solution over a sub-domain $\Omega_0 \subset \Omega$, which can be expressed as

$$J(u) = \int_{\Omega_0} \frac{1}{n_c} \sum_{i=1}^{n_c} u_i \, d\Omega.$$

Here, n_c denotes the number of components for the solution vector. As an example, Listing 2.4 demonstrates the Goal implementation for the QoI corresponding to the integrated displacement over a sub-domain.
Listing 2.4. Evaluation of the integrated displacement over a sub-domain.

```cpp
template <typename ScalarT>
void AvgDisp<ScalarT>::at_point(apf::Vector3 const&, double w, double dv) {
    for (int i = 0; i < numDims; ++i)
        this->elem_value += u->val(i) * w * dv;
    this->elem_value /= numDims;
}
```

2.9.3 Integrated von-Mises Stress Over a Sub-Domain

Finally, specifically for mechanics problems, we consider the evaluation of the von-Mises stress integrated over a sub-domain \(\Omega_0 \subset \Omega \), given as

\[
J(u) = \int_{\Omega_0} \sigma_{vm} \, d\Omega, \tag{2.33}
\]

where the von-Mises stress \(\sigma_{vm} \) is defined as

\[
\sigma_{vm} := \sqrt{\frac{3}{2} \sigma'_{ij} \sigma'_{ij}}. \tag{2.34}
\]

Here summation over repeated indices is implied and \(\sigma' = \sigma - \frac{1}{3} \text{tr}(\sigma) I \) denotes the deviatoric part of the Cauchy stress tensor \(\sigma \). The von-Mises stress is often used in yield criterion for elastoplastic constitutive models, and is hence of particular interest for solid mechanics design applications.

We note that this function \(J(u) \) has sources of nonlinearities from the deviatoric stress tensor \(\sigma' \) and further nonlinearities introduced by the definition of the von-Mises stress, which includes the square of deviatoric stress components and a square root operation. The linearization and implementation of this QoI, as required for adjoint-based error estimation, would be cumbersome at best without some kind of automated approach. In contrast, Listing 2.5 illustrates the simplicity of the relevant C++ code that implements integration point contributions to this specific QoI in the Goal application.
Listing 2.5. Evaluation of the integrated von-Mises stress over a sub-domain.

```cpp
template <typename ScalarT>
void AvgVM<ScalarT>::at_point(
apf::Vector3 const&, double w, double dv) {
    auto sigma = model->get_cauchy();
    ScalarT vm = compute_von_mises<ScalarT>(sigma);
    this->elem_value += vm * w * dv;
}
```

2.10 Results

2.10.1 Poisson’s Equation

As a first example, we investigate error estimation and mesh adaptation in Poisson’s equation for the model problem

$$\begin{cases}
-\nabla^2 u = f & x \in \Omega, \\
u = 0 & x \in \partial\Omega.
\end{cases} \tag{2.35}$$

This model problem leads to the Galerkin finite element method: find $u^H \in \mathcal{V}^H$ such that $\mathcal{R}_g(w^H; u^H) = 0$ for all $w^H \in \mathcal{V}^H$. Here the residual \mathcal{R}_g is defined as

$$\mathcal{R}_g(w^H; u^H) := (\nabla w^H, \nabla u^H) - (w^H, f), \tag{2.36}$$

and the space \mathcal{V}^H is given by

$$\mathcal{V}^H := \{u^h \in H^1(\Omega) : u^H = 0 \text{ on } \partial\Omega, u^H|_{\Omega_e} \in \mathbb{P}^1\}. \tag{2.37}$$

Here Ω_e denotes an element in a decomposition of the domain Ω into n_{el} non-overlapping elements such that $\cup_{e=1}^{n_{el}} \Omega_e = \Omega$ and $\Omega_i \cap \Omega_j = \emptyset$ if $i \neq j$. Additionally, \mathbb{P}^1 denotes the space of piecewise linear polynomials.

The domain is chosen to be $\Omega := [-1, 1] \times [-1, 1] \setminus [-\frac{1}{2}, \frac{1}{2}] \times [-\frac{1}{2}, \frac{1}{2}]$ as shown in Figure 2.3. The data is chosen to be $f = 1$ and we consider a point-wise QoI of the form $J(u) = \int_{\Omega} \delta(x - x_0) u \, d\Omega$, where the point of interest x_0 is chosen to be $x_0 = (0.75, 0.75)$. This problem was initially studied in the reference [55], where the QoI was determined to have a reference value of $J(u) = 0.0334474 \pm 1e-7$. Presently, we demonstrate that our
automated approach can reproduce the results for traditional adjoint-based error estimation found in [55].

Fig. 2.3. Domain and initial mesh (left) for the Poisson’s equation example with the QoI point indicated in red, final adapted mesh (middle), and a close up of the upper-right hand corner of the final adapted mesh (right).

Starting from the initial mesh shown in Figure 2.3, the steps:

Solve Primal → Solve Adjoint → Estimate Error → Adapt Mesh

were performed seven times. The adaptive simulation was run using 4 MPI ranks. The mesh size field was set according to equation (2.28) so that the target number of elements is twice that of the current mesh. Figure 2.3 also shows the final adapted mesh resulting from this procedure. We remark that the distribution of degrees of freedom in this mesh closely resembles the results obtained in reference [55].

We expect this functional to converge at the rate $k = 2$, such that the scaling factor α used in the estimate (2.19) is given as $\alpha = \frac{3}{4}$. We consider the “exact error” $\mathcal{E} = J(u) - J(u^H)$ and the effectivity index $\mathcal{I} = \frac{\eta}{\mathcal{E}}$, where η is the estimate given by equation (2.19). Here we have placed quotations around the term exact error because we have only approximated the exact value of the QoI $J(u)$, and not truly recovered its exact value. Figure 2.4 plots the effectivity index \mathcal{I} versus the number of degrees of freedom in the adaptive process. This plot demonstrates the ability of the error estimate to recover the “exact error” as $H \to 0$.

Figure 2.5 displays the evolution of various errors during the adaptive process. The “exact error” \mathcal{E} and the estimated error η are very close, as previously demonstrated by the effectivity index \mathcal{I}. Additionally, the approximated upper bound on the error $\hat{\eta}$ overestimates
Fig. 2.4. Effectivity indices for the adaptive Poisson’s equation example.

the error, but not to a large degree. This provides some indication that the correction indicators are effective in that they do not drastically overestimate error. Finally, we remark that an improved corrected QoI functional value can be computed as \(J^*(u^H) = J(u^H) + \eta \). Figure 2.5 demonstrates that this corrected value is nearly an order of magnitude more accurate than the computed functional value \(J(u^H) \) during the adaptive process.

Finally, Figure 2.6 demonstrates the evolution of the “exact error” for two adaptive strategies. The first strategy uniformly refines the mesh at each adaptive step and the second strategy performs the adjoint-based adaptive scheme developed in this work. We note that the error for the adjoint-based adaptive scheme converges faster than the uniform refinement scheme. Further, this convergence plot is consistent with the reference [55].

2.10.2 A Cell Embedded in a Matrix

Recently, the automated approach developed in this paper was applied to a stabilized mixed pressure-displacement finite element formulation [48] for the governing equations of finite deformation elasticity in a total Lagrangian setting [56] (see Chapter 3). For two and three dimensional problems in nonlinear elasticity, the automated approach was shown to
In this section, the parallelization of a biomechanical application presented in the reference [56] is discussed. First, the governing equations are briefly reviewed. For mixed pressure-displacement formulations in the Goal application, the Galerkin residual is defined as:

\[
\mathcal{R}_g(W^H; U^H) := \int_\Omega P : \nabla w^H \, d\Omega + \int_\Omega \left[\frac{p^H}{\kappa} - \frac{1}{2j}(j^2 - 1) \right] q^H \, d\Omega - \int_{\partial \Omega_h} h \cdot w \, d\Gamma, \tag{2.38}
\]
Fig. 2.6. Error convergence using uniform mesh refinement and adjoint-based error estimation for the adaptive Poisson’s equation example.

and the stabilization residual is defined as:

$$R_\tau(W^H; U^H) := \sum_{e=1}^{n_{el}} \int_{\Omega_e} \tau_e (jF^{-1}F^{-T} : (\nabla p^H \otimes \nabla q^H)) d\Omega. \quad (2.39)$$

Here, F is the deformation gradient, $j := \det(F)$, h is an applied traction over the boundary $\partial\Omega_h$, $P := j\sigma F^{-T}$ is the first Piola-Kirchhoff stress tensor, σ is the Cauchy stress tensor, n_{el} is the total number of elements in the mesh, and $\tau_e := \frac{c_0 H_e^2}{2\mu}$ is a mesh-dependent stabilization parameter, where c_0 is a non-negative stability constant, H_e denotes an element mesh size and μ denotes the bulk modulus. The Cauchy stress tensor is defined via a neo-Hookean constitutive relationship. The total solution vector is defined as $U^H := [u^H, p^H]$, where u^H corresponds to displacements and p^H corresponds to pressures. Similarly, the total weighting vector is defined as $W^H := [w^H, q^H]$, where w^H denotes a weighting function corresponding
to displacements and q^H is a weighting function corresponding to pressures. For a complete exposition, we refer the reader to Chapter 3.

![Fig. 2.7. Domains for the microglial cell example.](image)

We focus on a microglial cell with dimensions of about $20\mu m \times 20\mu m \times 20\mu m$ embedded in an extracellular matrix of dimension $100\mu \times 100\mu m \times 100\mu m$. The QoI is chosen to be a local integrated displacement $J(U) = \int_{\Omega_0} \frac{1}{3}(u_x + u_y + u_z) \, d\Omega$, defined over a box Ω_0 with dimensions $30\mu m \times 30\mu m \times 30\mu m$ that bounds the microglial cell. Figure 2.7 shows the geometry defining the microglial cell, the bounding box Ω_0, and the extracellular matrix. The shear modulus is defined as $\mu = 600$ Pa and Poisson’s ratio is set to be $\nu = 0.4999$.

To drive the problem, traction boundary conditions are imposed along the surface of the microglial cell. The magnitude of the applied traction \mathbf{h} is defined to be 10 times the distance to the center of the cell and its direction points inward towards the cell center. This traction is consistent with observed physical behavior [57]. Displacements $u_x = 0$, $u_y = 0$, and $u_z = 0$ are applied to the faces with constant minimum x-coordinate value, constant minimum y-coordinate value, and constant minimum z-coordinate value, respectively, to constrain rigid body rotations and translations.

Figure 2.8 demonstrates an initial mesh, which contains around 30,000 degrees of
freedom. From this initial mesh, the steps

Solve primal PDE \rightarrow Solve adjoint PDE \rightarrow Localize error \rightarrow Adapt mesh

were successively performed 10 times. During the adapt stage, the mesh size field was set such that desired number of elements N in the output mesh is 1.5 times the number of elements in the previous mesh, according to equation (2.28). Figure 2.8 additionally demonstrates the adapted meshes obtained at the fifth and final adaptive iteration. In particular, both coarsening and refinement is performed during the adaptive iterations.

The problem was run using 16 MPI ranks. Figure 2.9 demonstrates the parallel partitioning for the initial mesh and for the final adapted mesh obtained after 10 adjoint-based
adaptive iterations. To ensure partitioning quality, ParMA was utilized to guarantee the imbalance of vertices and elements across parallel partitions is no greater than 5%.

![Breakdown of CPU Timings per Adaptive Iteration](image)

Fig. 2.10. Breakdown of the CPU time spent for each portion of the adaptive process for the microglial cell example.

Figure 2.10 presents a breakdown of the total percentage of CPU time spent on each step in the adaptive analysis. For every adaptive iteration, the error localization (2.21) takes only a small percentage of the total CPU time, as it essentially amounts to an evaluation of the residual vector on the fine space. More interestingly, mesh adaptation initially accounts for about 20 percent of the total CPU time but decreases as the adaptive simulation progresses. This is explained by the fact that the initial adaptive iteration requires more work to optimally distribute the degrees of freedom for the functional QoI as compared to subsequent adaptive iterations. In addition to refinement and coarsening operations, the mesh adaptation step also performs *shape correction* to ensure elements are not too heavily skewed [40]. Finally, we note that the adjoint problem accounts for roughly 40 to
50 percent of the CPU time over the course of the adaptive simulation. While process of adjoint-based error estimation is not cheap for this example, we provide two justifying remarks. First, this problem required only 3 to 4 Newton iterations for each primal solve. For constitutive models with higher degrees of nonlinearity or for problems loaded to higher strains, it is not uncommon for Newton’s method to converge in 7 to 10 iterations. In these scenarios, the relative cost of adjoint-based error estimation is not as extreme. Second, for this computational price, we have achieved very accurate error estimates as shown in Chapter 3.

2.10.3 Elastoplasticity in an Array of Solder Joints

In this section, we investigate the utility of adjoint-based mesh adaptation for a thermomechanical analysis of an array of solder joints used in microelectronics fabrication. We consider a 6×6 array of solder joints sandwiched between two materials with distinct thermomechanical properties to model a portion of the process of ‘flip-chip’ manufacturing [58]. The full geometry is shown in Figure 2.11. We consider an elastoplastic constitutive model with a von-Mises yield surface and linear isotropic hardening, as given by Simo and Hughes [59] with a temperature correction for the stress tensor [60]. The top slab, solder joints, and bottom slab are modeled with the distinct material properties given in reference [58].

To drive the problem, the entirety of the domain is cooled from a reference temperature $T_{ref} = 393K$ to a resting temperature of $T_f = 318K$ in a single load step. The faces with minimum x, y, and z coordinate values were constrained to have zero displacements in the x, y, and z directions, respectively. As a QoI, we consider the integrated von-Mises stress given by equation (2.33) over three solder joints shown in yellow in Figure 2.11.

Fig. 2.11. The solder joint array geometry (left) and the geometric specification of the integrated von-Mises QoI (right).
The primal problem was solved on a sequence of uniformly refined meshes, starting with an initial mesh with about 1 million elements distributed over 16 MPI ranks, and finalizing with a mesh with over half a billion elements distributed over 8192 MPI ranks. For each solve, the work load for each mesh part (MPI rank) was held constant at approximately 70,000 elements. Figure 2.12 demonstrates weak scaling timing results for various aspects of the primal solve. In particular, we remark that the assembly of the residual vector and Jacobian matrix scale well as the number of MPI ranks increases. The preconditioning routine shows a slight increase in time as the number of MPI ranks increases, but this increase is not drastic. The time to solve the linear system, however, does not scale optimally. Improvements to parallel performance could likely be made by more finely tuning the preconditioning and linear solver routines for the specific problem, but this is outside the scope of the present work.

The approximate QoI, $J^H(u^H)$, was computed at each primal solve. Using the QoI evaluations from the finest three meshes, we performed Richardson extrapolation [61] to obtain a more accurate representation of the QoI. This value was given as $J(u) = 328.9$. We consider the extrapolated value to be the “true” QoI value and measure errors with respect to it. The expected convergence rate of the QoI is $k = 1$, which is confirmed by the Richardson extrapolation procedure.

From the same initial mesh used in the weak scaling study, we iteratively performed the steps:

Solve Primal \rightarrow Solve Adjoint \rightarrow Estimate Error \rightarrow Adapt Mesh

with a restart after each mesh adaptation using 128, 256, and 512 MPI ranks, such that the output number of elements N in the adapted mesh was targeted to be 1 million, 2 million, and 4 million elements, respectively. Figure 2.13 shows different components of the adjoint solution obtained during the adjoint-based adaptive process. Figure 2.14 shows the spatial distribution of the error for the given QoI as computed by the adjoint-based error estimation process. Unsurprisingly, the majority of the error is localized to the area which geometrically defines the QoI. However, there are also contributions to the error from nearby solder joints that decrease as the distance from the 3 QoI solder joints increases. These additional contributions to the error are mostly gathered at the interface between
solder joints and the underlying material slab, where von-Mises stress concentrations exist.

Figures 2.15 and 2.16 demonstrate the initial mesh used for the solder joint problem and the final adapted mesh obtained via adjoint-based adaptation. These figures clearly demonstrate that the 3 solder joints that define the QoI sub-domain are heavily refined, as expected. Additionally, notice that Figure 2.15 demonstrates that there is refinement at the left-most solder joint, which is not included in the geometric definition of the QoI. The adjoint-based error estimation procedure indicates that mesh must be refined in additional areas to accurately assess the QoI.

Figure 2.17 demonstrates the convergence history of the error in the functional QoI, as defined by the difference of the QoI obtained via Richardson extrapolation and the QoI approximated by the finite element solution. We compare the convergence for two adaptive
Fig. 2.13. The x-component of the adjoint displacement solution (left), and the pressure component of the adjoint solution (right).

Fig. 2.14. The spatial distribution of errors as computed by adjoint-based error estimation for the solder joint array.

Fig. 2.15. Cross-sectional view of the initial mesh for the solder joint geometry (left) and the final adapted mesh (right).
schemes, one achieved by successive uniform refinements of the mesh and the other achieved by adjoint-based error estimation. After 4 adaptive iterations, the adjoint-based adaptive procedure achieves nearly the same degree of accuracy as the uniform refinement procedure with two orders of magnitude fewer degrees of freedom.

Fig. 2.17. Error convergence histories for the solder joint example problem with the integrated von-Mises stress QoI.

Finally, we remark that automated parallel adaptive workflows have been developed in
reference [58]. As an avenue for future investigation, adjoint-based error estimation could be folded into these automated workflows. In particular, an automated primal analysis could be used to inform the actual selection of the QoI itself, which could then be accurately assessed using adjoint-based error estimation.

2.11 Conclusions

In this work, we have developed an automated approach for adjoint-based error estimation and mesh adaptation for execution on parallel machines. We have developed this approach to be applicable to both Galerkin and stabilized finite element methods. To realize this approach, we have extended the concept of template-based generic programming for PDE models to include the automatic localization of error contributions using a partition of unity-based localization approach. We have demonstrated that this approach is effective for a variety of example applications, including nonlinear elasticity and elastoplasticity.
CHAPTER 3
ADJOINT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR STABILIZED FINITE DEFORMATION ELASTICITY

3.1 Introduction

The purpose of this chapter is to develop an approach for functional error estimation and mesh adaptation using adjoint-based techniques for incompressible finite deformation elasticity. An important scenario where incompressible nonlinear elastic materials are utilized is the study of biological soft tissues [62]–[64]. Adjoint-based error estimation provides the ability to approximate discretization errors for a functional quantity of interest (QoI) [8], [10], [13], [65]–[68], such as point-wise displacements or stresses, or the integrated displacement over a sub-domain. Mesh adaptation utilizes local information obtained from error estimates to control discretization errors by adaptively modifying the computational mesh.

Previously, in the context of solid mechanics, adaptive adjoint-based error estimation has been used to study linear elasticity in two [16]–[18] and three [19] dimensional elasticity, two [20], [21] and three [22] dimensional elasto-plasticity, two dimensional thermoelasticity [23], two dimensional nonlinear elasticity [24], and two dimensional hyperelasticity [25]. In the vast majority of the previous literature, mesh adaptation is performed with structured adaptive mesh refinement using quadrilateral or hexahedral elements. However, for complex geometries such as those that arise in the study of biological tissues, mesh generation and mesh adaptation are reliable, robust, and scalable for simplical elements. This motivates us to consider triangular and tetrahedral elements.

It is well known that solid mechanics problems with incompressibility constraints perform poorly with linear displacement-based Galerkin finite element methods when using simplical elements. This motivates us to consider a mixed displacement-pressure based finite element formulation with an additional pressure stabilization term. This is in contrast to the work by Whiteley and Tavener [25], who utilized a Taylor-Hood type element to study

This chapter has been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard, “Adjoint-based error estimation and mesh adaptation for stabilized finite deformation elasticity,” submitted for publication.
adjoint-based error estimation in two-dimensional hyperelasticity.

In this work, we propose the following adaptive adjoint-based error estimation strategy. First, we solve the primal finite deformation elasticity problem with a stabilized mixed displacement-pressure finite element method. Next, we construct and solve a discrete adjoint problem in a finer space obtained via uniform mesh refinement. We then estimate the global error in a functional QoI with a scaled discrete adjoint weighted residual error estimate. To localize error estimates to the mesh entity level, we utilize a recently developed approach [28], [69] based on the insertion of partition of unity (PU) into the variational form of the adjoint-weighted residual error representation. Finally, utilizing these localized errors, we perform fully unstructured mesh adaptation utilizing a series of splits, swaps, and collapses.

The contributions of this work can be summarized as follows. First, we expand upon the existing literature in solid mechanics to account for stabilized finite element methods in adjoint-based error estimation. Additionally, we propose a simple error correction to the well-known adjoint-weighted residual [15] error estimate to obtain more accurate error estimates when uniform refinement is used to compute the adjoint solution. Next, we extend the PU-based error localization approach of Richter and Wick [28] to the context of stabilized finite element methods. Finally, we demonstrate that our adaptive adjoint-based error estimation approach can be applied to realistic three-dimensional engineering models, with greater geometric complexity than we have seen in the existing literature.

The remainder of this chapter proceeds as follows. First, we review the governing equations for a mixed displacement-pressure based formulation of nonlinear finite deformation elasticity. Next, we review the development of a mixed stabilized finite element method with equal order linear interpolants for displacements and pressures over simplical elements. We then review the so-called adjoint-weighted residual approach for functional error estimation using two discretization levels, as defined by a coarse and a fine space. After this review, We motivate our choice for the fine space, as achieved by uniform mesh refinement. We then introduce a modified, more accurate adjoint-weighted residual error estimate based on an \textit{a priori} analysis. Next, we discuss the localization of the error estimate to the mesh entity level by a recently developed PU approach, which we extend to stabilized finite element methods. We then apply adaptive adjoint-based analysis to a well known test case, the Cook’s membrane problem to validate and demonstrate the effectiveness of our approach. We then investigate and demonstrate the utility of adjoint-based error estimation and mesh
adaptation for a three-dimensional example, motivated by the study of a cell embedded in a matrix. Finally, we conclude by summarizing our results.

3.2 Model Problem

In this section, we introduce the governing equations for finite deformation elasticity in a total Lagrangian setting with a neo-Hookean constitutive model. We begin by presenting a mixed pressure-displacement formulation for the strong form of the underlying PDE. We then present the corresponding weak form of the PDE and review the derivation of a stabilized finite element formulation. We conclude by discussing the linearization and solution of the nonlinear system of equations resulting from the stabilized finite element formulation.

3.2.1 Strong Form

Let $B \subset \mathbb{R}^d$ denote the reference configuration of an open bounded domain with smooth boundary Γ, where d denotes the number of spatial dimensions. Let Γ be decomposed such that $\Gamma = \Gamma_g \cup \Gamma_h$, where $\Gamma_g \cap \Gamma_h = \emptyset$. Let $X \in B$ denote a point in the reference configuration which, after undergoing some deformation, is located at the point $x \in B_t$ in the deformed configuration at time t. Let $u := x - X$ denote the displacement vector. The deformation gradient is then defined as $F := I + \frac{\partial u}{\partial X}$, and we denote the determinant of the deformation gradient as $j := \det(F)$.

The balance of linear momentum in the absence of inertial and body forces leads to the following boundary value problem in the reference configuration:

$$\begin{cases}
-\nabla \cdot P = 0, & X \in B, \\
u = g, & X \in \Gamma_g, \\
P \cdot n = h, & X \in \Gamma_h.
\end{cases} \quad (3.1)$$

Here, $P := j \sigma F^{-T}$ denotes the first Piola-Kirchhoff stress tensor, g denotes an externally applied displacement, h denotes an externally applied traction, n denotes the unit outward normal to the boundary Γ_h, and σ denotes the Cauchy stress tensor.

We consider a neo-Hookean constitutive model, where the stress response is character-
ized by the relationship:

\[
\sigma = \mu j^{-\frac{2}{3}} \text{dev}(FF^T) + \frac{\kappa}{2j}(j^2 - 1) I. \tag{3.2}
\]

Here \(\mu \) denotes the shear modulus, \(\kappa \) denotes the bulk modulus, \(I \) is the second order identity tensor, and \(\text{dev}(\cdot) := (\cdot) - \frac{1}{3} \text{trace}(\cdot) I \) denotes the deviatoric component of a second order tensor. The stress is decomposed as \(\sigma = \sigma' + pI \) into deviatoric and volumetric components, \(\sigma' \) and \(pI \), respectively.

With this decomposition of the Cauchy stress tensor, the divergence of the first Piola-Kirchhoff stress tensor can be expressed as

\[
\nabla \cdot P = \nabla \cdot (j \sigma F^{-T})
= \nabla \cdot (j(\sigma' + pI)F^{-T})
= \nabla \cdot (j\sigma'F^{-T}) + \nabla \cdot (jpF^{-T})
= \nabla \cdot (j\sigma'F^{-T}) + jF^{-T}\nabla p. \tag{3.3}
\]

Here, we have used the Piola identity \(\nabla \cdot (jF^{-T}) = 0 \) in the fourth equality. Using the decomposition (3.3) and introducing the pressure (3.2) as an unknown variable, the model problem (3.1) can be written in mixed form as:

\[
\begin{align*}
- \nabla \cdot (j\sigma'F^{-T}) - jF^{-T} \nabla p &= 0, \quad X \in \mathcal{B}, \\
p - \frac{1}{2j}(j^2 - 1) &= 0, \quad X \in \mathcal{B}, \\
\mathbf{u} &= g, \quad X \in \Gamma_g, \\
P \cdot \mathbf{n} &= h, \quad X \in \Gamma_h.
\end{align*}
\tag{3.4}
\]

3.2.2 Weak Form

Let \(\mathcal{V}_u, \mathcal{V}_w, \) and \(\mathcal{V}_p \) denote the displacement trial space, the displacement test space, and the pressure trial and test space, respectively, defined as

\[
\mathcal{V}_u := \{ \mathbf{u} : \mathbf{u} \in \mathcal{H}^1(\mathcal{B})^d, \ \mathbf{u} = g \text{ on } \Gamma_g \}, \tag{3.5}
\]
\(\mathcal{V}_w := \{ w : w \in H^1(B)^d, \ w = 0 \text{ on } \Gamma_g \} \),

(3.6)

\(\mathcal{V}_p := \{ p : p \in L^2(B) \} \).

(3.7)

Here, \(H^1 \) denotes the Sobolev space of square-integrable functions with square integrable first derivatives and \(L^2 \) denotes the space of square-integrable functions. The weak form is obtained by multiplying the pressure equation by an arbitrary weighting function \(q \in \mathcal{V}_p \) and integrating over the domain \(\mathcal{B} \), and by multiplying the momentum equation by an arbitrary weighting function \(w \in \mathcal{V}_w \) and integrating by parts over the domain \(\mathcal{B} \). Letting \(\mathcal{S} := \mathcal{V}_u \times \mathcal{V}_p \), \(\mathcal{V} := \mathcal{V}_w \times \mathcal{V}_p \), \(U := [u, p] \), and \(W := [w, q] \), this process results in the weak form: find \(U \in \mathcal{S} \) such that

\[\mathcal{R}_g(W; U) = 0 \quad \forall \ W \in \mathcal{V}. \]

(3.8)

Here the Galerkin residual \(\mathcal{R}_g : \mathcal{V} \times \mathcal{S} \rightarrow \mathbb{R} \) is defined as

\[
\mathcal{R}_g(W; U) := \int_{\mathcal{B}} (j\sigma' F^{-T}) : \nabla w \ dV + \int_{\mathcal{B}} (jpF^{-T}) : \nabla w \ dV + \int_{\mathcal{B}} \left[\frac{p}{\kappa} - \frac{1}{2j(j^2 - 1)} \right] q \ dV - \int_{\Gamma_h} h \cdot w \ dA.
\]

(3.9)

3.2.3 Stabilized Finite Element Formulation

Consider a partitioning of the reference domain \(\mathcal{B} \) into \(n_{el} \) non-overlapping finite element sub-domains \(\mathcal{B}_e \) such that \(\mathcal{B} = \bigcup_{e=1}^{n_{el}} \mathcal{B}_e \) and \(\mathcal{B}_i \cap \mathcal{B}_j = \emptyset \) if \(i \neq j \). Let \(\mathcal{V}^H_u \subset \mathcal{V}_u \), \(\mathcal{V}^H_w \subset \mathcal{V}_w \), and \(\mathcal{V}^H_p \subset \mathcal{V}_p \) denote finite dimensional function spaces defined as:

\[\mathcal{V}^H_u = \{ u^H : u^H \in \mathcal{V}_u, \ u^H|_{x \in \mathcal{B}_e} \in P^1(\mathcal{B}_e)^d \} \],

(3.10)

\[\mathcal{V}^H_w = \{ w^H : w^H \in \mathcal{V}_w, \ w^H|_{x \in \mathcal{B}_e} \in P^1(\mathcal{B}_e)^d \} \],

(3.11)

\[\mathcal{V}^H_p = \{ p^H : p^H \in \mathcal{V}_p, \ p^H|_{x \in \mathcal{B}_e} \in P^1(\mathcal{B}_e) \}. \]

(3.12)
Here $\mathbb{P}^1(B_e)$ denotes the space of piecewise linear polynomials over elements $B_e, e = 1, 2, \ldots, n_{el}$.

We follow the approach of Maniatty et al. [48], [70], [71] to obtain a stabilized Petrov-Galerkin finite element formulation of the primal problem. This approach proceeds by multiplying the momentum equation by a perturbed weighting function of the form $w^H + \tau_e F^{-T} \nabla q^H$ and integrating over the reference domain B, and by multiplying the pressure equation by a weighting function q^H and integrating over the domain B.

Here $\tau_e = c_0 H_e^2 / 2\mu$ is a mesh-dependent stabilization parameter, where $H_e = \text{meas}(B_e)$ denotes a characteristic size of a given mesh element, μ denotes the shear modulus, c_0 denotes a non-dimensional, non-negative stability constant, $w^H \in \mathcal{V}_w^H$ is a displacement weighting function, and $q^H \in \mathcal{V}_p^H$ is a pressure weighting function. Additionally, $F^{-T} \nabla q^H$ represents the pull-back of the gradient of the pressure weighting function to the reference configuration.

This yields the following problem: find $(u^H, p^H) \in (\mathcal{V}_u^H, \mathcal{V}_p^H)$ such that for all $(w^H, q^H) \in (\mathcal{V}_w^H, \mathcal{V}_p^H)$

$$
- \int_B (\nabla \cdot P) \cdot w^H \, dV + \int_B \left[\frac{p^H}{\kappa} - \frac{1}{2} (j^2 - 1) \right] q^H \, dV + \sum_{e=1}^{n_{el}} \int_{B_e} (\nabla \cdot P) \cdot (\tau_e F^{-T} \nabla q^H) \, dV = 0.
$$

The first two terms on the left hand side of equation (3.13) yield the Galerkin residual $R_g(W^H; U^H)$ after integrating the left-most term by parts. The integrand of the third term on left hand side of equation (3.13) can be expressed as

$$
(\nabla \cdot P) \cdot (\tau_e F^{-T} \nabla q^H) = (\nabla \cdot j \sigma' F^{-T}) \cdot (\tau_e F^{-T} \nabla q^H) + (\tau_e j F^{-1} F^{-T}) : (\nabla p^H \otimes \nabla q^H).
$$

We remark that the first term in the right hand side of equation (3.14) evaluates to zero for simplical elements with linear shape functions, which we presently consider.

Let $S^H = \mathcal{V}_u^H \times \mathcal{V}_p^H, \mathcal{V}^H = \mathcal{V}_w^H \times \mathcal{V}_p^H, U^H = [u^H, p^H], \text{ and } W^H = \mathbf{w}^H, q^H]. \text{ Using equations (3.9) and (3.14) in the perturbed weak problem (3.13), we arrive at the stabilized finite element formulation: find } U^H \in S^H \text{ such that}

$$
R_g(W^H; U^H) + R_\tau(W^H; U^H) = 0 \quad \forall W^H \in \mathcal{V}^H.
$$
Here $\mathcal{R}_\tau : \mathcal{V}^H \times \mathcal{S}^H \to \mathbb{R}$ is the residual corresponding to the additional pressure stabilization, given by:

$$
\mathcal{R}_\tau(W^H; U^H) := \sum_{e=1}^{n_{el}} \int_{\Omega_e} \tau_e(jF^{-1}F^{-T}) : (\nabla p^H \otimes \nabla q^H) \, dV.
$$

(3.16)

We remark that we have introduced a consistent stabilization term, in that $\mathcal{R}_\tau \to 0$ as $H \to 0$.

3.2.4 Linearization and Solution Strategy

The stabilized finite element formulation (3.15) posed in residual form leads to a system of N nonlinear algebraic equations $\mathbf{R}^H : \mathbb{R}^N \to \mathbb{R}^N$, such that the numerical solution vector $\mathbf{U}^H \in \mathbb{R}^N$ of nodal coefficients satisfies

$$
\mathbf{R}^H(\mathbf{U}^H) = 0.
$$

(3.17)

We compute consistent element-level tangent stiffness matrices via automatic differentiation [72] of element-level contributions to the residual vector \mathbf{R}^H to assemble the system Jacobian $\mathbf{J}^H \in \mathbb{R}^{N \times N}$, defined as

$$
\mathbf{J}^H(\mathbf{U}^H) := \frac{\partial \mathbf{R}^H}{\partial \mathbf{U}^H} \Big|_{\mathbf{U}^H}.
$$

(3.18)

The full nonlinear problem (3.17) is then solved with Newton’s method, where we iterate over the steps

$$
\mathbf{J}^H(\mathbf{U}_k^H) \delta \mathbf{U}_k^H = -\mathbf{R}^H(\mathbf{U}_k^H),

\mathbf{U}_{k+1}^H = \mathbf{U}_k^H + \delta \mathbf{U}_k^H,
$$

(3.19)

until the convergence criterion $\|\mathbf{R}^H(\mathbf{U}^H)\|_2 < \epsilon$ is satisfied for some user-specified tolerance ϵ. Here \mathbf{U}_k^H denotes the solution vector at the k^{th} Newton iteration and $\delta \mathbf{U}_k^H$ denotes the incremental update at the k^{th} iteration obtained by solving the Newton linear system.
3.3 Adjoint-Based Error Estimation

In this section we derive an adjoint-based error estimation strategy to compute errors in functional quantities of interest. We begin by reviewing functional error estimation with two discretization levels, defined by a coarse space and a fine space. Next, we discuss and motivate our choice for the fine space. We then introduce a modified, more accurate functional error estimate based on a simple a priori analysis. Finally, we conclude by discussing how we localize the functional error to correction indicators at the mesh entity level.

3.3.1 Two-Level Error Estimation

Let \(J(U) \) denote a functional quantity that is of physical significance. We adopt a two-level error estimation strategy \([10]-[12], [15]\) to estimate the discretization error in \(J \). This strategy proceeds by defining a coarse space, defined in the present setting by the spaces \((S^H, V^H)\), and a fine space, \((S^h, V^h)\).

In addition to the system of nonlinear algebraic equations (3.17) defined on the coarse space \((S^H, V^H)\), the stabilized finite element formulation (3.15) posed in residual form on the fine space \((S^h, V^h)\) leads to a system of \(n \) nonlinear algebraic equations \(R^n : \mathbb{R}^n \rightarrow \mathbb{R}^n \) on the fine space, such that

\[
R^h(U^h) = 0,
\]

(3.20)

where \(U^h \in \mathbb{R}^n \) is understood to be the solution vector of nodal coefficients for the fine problem (3.20). Here \(n > N \). Similarly, the functional quantity of interest can be discretized on the coarse and fine spaces, resulting in \(J^H : \mathbb{R}^N \rightarrow \mathbb{R} \) and \(J^h : \mathbb{R}^n \rightarrow \mathbb{R} \), respectively.

Let \(U^h_H = I^h_H U^H \) denote the prolongation of the coarse solution \(U^H \) onto the fine space \(S^h \) via interpolation, where \(I^h_H : S^H \rightarrow S^h \). The residual equations on the coarse space can be expanded in a Taylor series about the prolongated coarse solution as

\[
R^h(U^h) = R^h(U^h_H) + \left[\frac{\partial R^h}{\partial U^h_H} \right]_{U^h_H} (U^h - U^h_H) + \ldots
\]

(3.21)

and similarly, the functional evaluated on the coarse space can be expanded about the
prolongated coarse solution as

\[J^h(U^h) = J^h(U^h_H) + \left[\frac{\partial J^h}{\partial U^h_H} \right] (U^h - U^h_H) + \ldots \] (3.22)

Using equation (3.20), the discretization error between the two spaces can be approximated to first order as

\[(U^h - U^h_H) \approx - \left[\frac{\partial R^h}{\partial U^h_H} \right]^{-1} R^h(U^h_H). \] (3.23)

This approximation can then be substituted into the functional Taylor expansion (3.22) to yield the so-called adjoint weighted residual,

\[J^h(U^h) - J^h(U^h_H) \approx - \left[\frac{\partial J^h}{\partial U^h_H} \right] \left[\frac{\partial R^h}{\partial U^h_H} \right]^{-1} R^h(U^h_H), \] (3.24)

where \(Z^h \in \mathbb{R}^n \) denotes the solution to the adjoint problem:

\[\left[\frac{\partial R^h}{\partial U^h_H} \right]^{T} Z^h = \left[\frac{\partial J^h}{\partial U^h_H} \right]^{T}. \] (3.25)

3.3.2 Choice of Fine Space

Several options exist for the choice of the fine space and the approximation of the adjoint problem (3.25). The fine space can be defined by uniformly refining the mesh, which we will refer to as \(h \)-enrichment, increasing the polynomial interpolation order, which we will refer to as \(p \)-enrichment, uniformly refining the mesh and increasing the polynomial order, which we will refer to as \(hp \)-enrichment, or by considering a finer space provided by variational multiscale techniques [50].

It is common to solve the adjoint problem (3.25) in the coarse space and then perform a reconstruction process to recover an approximation of the adjoint solution on the fine space [8], [49], [73], [74]. However, the most commonly used choices for reconstruction do not incorporate the underlying physics of the problem, and thus are not guaranteed to result in a more accurate approximation of the adjoint solution [15]. This motivates us to solve
the adjoint problem globally on the fine space \cite{75}, \cite{76}.

In the present work, we choose h-enrichment for the fine space. Along with the previously discussed accuracy considerations, we are motivated to do so for two additional reasons. First, the use of a higher order basis ala p-enrichment would necessitate the inclusion of the neglected higher order stabilization term in the expansion \eqref{eq:3.14}. This term is generally non-trivial to implement \cite{71}. Second, we remark that higher-order stabilized finite element methods with equal order interpolants are rarely used in practice, as one could use a Taylor-Hood type element \cite{53} to satisfy the Babuška-Brezzi condition with much fewer degrees of freedom than the corresponding stabilized finite element method with equal order interpolants.

3.3.3 Modified Functional Error Estimate

Consider that the functional of interest converges at the rate k, such that $J(U) - J^h(U_H^h) = cH^k$ and $J(U) - J^h(U^h) = ch^k$, where $J(U)$ is the exact value of the functional quantity of interest. We assume that the fine space is obtained via mesh refinement, such that $h_H = \frac{1}{2}$. Consider the ratio

$$
\frac{J^h(U^h) - J^h(U_H^h)}{J(U) - J^h(U_H^h)} = \frac{[J(U) - J^h(U_H^h)] - [J(U) - J^h(U^h)]}{J(U) - J^h(U_H^h)}
$$

$$
= \frac{cH^k - ch^k}{cH^k}
$$

$$
= 1 - \left(\frac{h}{H} \right)^k
$$

in the limit as $H \to 0$ \cite{15}. We denote this ratio as $\alpha := 1 - (1/2)^k$. Let η denote an approximation to the functional error $J(U) - J^h(U_H^h)$. Let \mathcal{I} denote the effectiveness index given by

$$
\mathcal{I} = \frac{\eta}{J(U) - J^h(U_H^h)}.
$$

(3.27)

Naturally, we would like to obtain error estimates η that lead to effectiveness indices of $\mathcal{I} = 1$ as $H \to 0$. To this end, we recall that $J^h(U^h) - J^h(U_H^h) \approx -Z^h \cdot R_h(U_H^h)$ from equation
(3.24) and obtain the scaled adjoint weighted residual error estimate

$$\eta = -\frac{1}{\alpha} Z^h \cdot R^h(U^H).$$

(3.28)

3.3.4 Error Localization

To drive mesh adaptation, it is necessary to localize contributions to the total error η to the mesh entity level to obtain correction indicators. One commonly used approached for finite volume and discontinuous Galerkin methods proceeds by considering a decomposition of the error estimate (3.28) into a sum of discrete adjoint weighted residuals over elements in the fine mesh. However, this approach is not optimal for continuous finite elements as it does not account for systematic inter-element cancellation, and the sum of the resulting correction indicators would lead to a considerable over-estimation of the functional error [15]. This, in turn, would lead to a sub-optimal adaptive strategy.

Traditional adjoint-weighted residual error estimates for continuous Galerkin finite element methods proceed by integrating the left hand side of equation (3.15) by parts over individual elements to recover strong-form volumetric and jump term contributions to the error. In this work, we utilize a recently introduced localization strategy by Richter and Wick [28] for its straightforward implementation and because it allows us to automate the adaptive process [77]. In this localization, adjoint-weighted residual error information from neighboring elements is gathered by introducing a partition of unity, leading to nodally-based correction indicators. In the context of solid mechanics, this approach has been used successfully for phase field fracture [69]. In this section, we extend this variational localization technique to stabilized finite element methods.

We begin by reviewing adjoint-based error estimation for stabilized finite element methods in a continuous setting, as outlined by Cyr et al. [32], for which we introduce the continuous linearized adjoint problem: find $Z \in \mathcal{V}$ such that

$$\mathcal{R}'_y[U^H](V, Z) = J'[U^H](V) \quad \forall V \in \mathcal{V}. \quad (3.29)$$

Here, the prime indicates Fréchet linearization with respect to the argument in the square brackets. The adjoint solution $Z := [z_u, z_p]$ is defined as a vector of the adjoint variable z_u corresponding to the primal displacement u and the adjoint variable z_p corresponding to the primal pressure p. The variable U^H denotes the solution to the stabilized finite element
problem (3.15) on the coarse space.

Let \(E := U - U^H \) denote the discretization error. With the introduction of the adjoint problem (3.29), a functional error representation can be derived in the following manner:

\[
J(U) - J(U^H) = J'(U^H)(E) + O(E^2)
= \mathcal{R}_g(U^H)(E, Z) + O(E^2)
= \mathcal{R}_g(Z; U) - \mathcal{R}_g(Z; U^H) + O(E^2)
= -\mathcal{R}_g(Z; U^H) + O(E^2)
= -\mathcal{R}_g(Z - Z^H; U^H) + \mathcal{R}_\tau(Z^H; U^H) + O(E^2).
\]

(3.30)

Here the first equality is due to the linearization [8] of the functional \(J \), the second equality is due to the definition of the adjoint problem (3.29), the third equality is due to the linearization [8] of the Galerkin residual semilinear form \(\mathcal{R}_g \), the fourth equality is due to Galerkin orthogonality, and the fifth equality holds by the definition of the stabilized finite element method (3.15). The variable \(Z^H \) denotes the interpolant of the adjoint solution \(Z \) onto the coarse finite element space \(S^H \).

Let \(Z^h \) denote the solution to the discrete adjoint problem (3.25) solved on the fine space. We assume that this solution well approximates the continuous adjoint problem (3.29), such that \(Z \approx Z^h \). The functional error is then approximated by neglecting higher order terms to obtain

\[
J(U) - J(U^H) \approx -\mathcal{R}_g(Z^h - Z^H; U^H) + \mathcal{R}_\tau(Z^H; U^H).
\]

(3.31)

Following the approach of Richter and Wick [28], we introduce a partition of unity \(\sum_i \phi_i = 1 \) into the weighting function slot for the error estimate to localize the error. In this work, this partition of unity is realized with linear Lagrange basis functions. This yields local level error contributions \(\eta_i \) at the \(n_{vtx} \) mesh vertices in the fine mesh, given as

\[
J(U) - J(U^H) \approx \sum_{i=1}^{n_{vtx}} \left[-\mathcal{R}_g((Z^h - Z^H)\phi_i; U^H) + \mathcal{R}_\tau(Z^H\phi_i; U^H) \right].
\]

(3.32)

We compute an approximate upper bound on the error by summing the absolute value of
the error contributions over all mesh vertices.

\[
\hat{\eta} = \sum_{i=1}^{n_{vtx}} |\eta_i|.
\] (3.33)

To compute an element-based correction indicator \(\eta_e \), we interpolate the value of the vertex-based error contributions \(\eta_i \) to element centers and then take the result’s absolute value.

3.4 Mesh Adaptation

To control discretization errors, we make use of conforming unstructured mesh adaptation. Mesh adaptation provides the means to modify the spatial discretization of the domain \(B \) such that the degrees of freedom are nearly optimally distributed with respect to the calculation of the QoI. We utilize the PUMI [33] software suite to perform a series of edge splits, swaps, and collapses [40], [41] to satisfy the input of a mesh size field. For isotropic mesh adaptation, which we presently consider, the mesh size field is defined as a scalar field that defines element edge lengths over the mesh. From a high-level, we would like to specify a mesh size field that refines in areas of the domain that strongly contribute to the error and coarsens the mesh in areas that are insensitive to the error.

To this end, we utilize a size field specification following Boussetta et al. [54] that attempts to equidistribute the error in an output adapted mesh with \(N \) target elements. Let \(p \) be the polynomial interpolant order for the chosen finite element method. In the present setting, \(p = 1 \). We first define the global quantity \(G \) as

\[
G = \sum_{e=1}^{n_{el}} (\eta_e)^{\frac{2d}{2p+d}}.
\] (3.34)

Using this computed quantity, new element mesh sizes \(H_{e}^{\text{new}} \) are determined by scaling the previous element size \(H_e \) according to the formula

\[
H_{e}^{\text{new}} = \left(\frac{G}{N} \right)^{\frac{1}{p}} (\eta_e)^{\frac{2}{2p+d}} H_e.
\] (3.35)

Additionally, to prevent excessive refinement or coarsening in a single adaptive step, we clamp the element size such that it is no smaller than one quarter and no greater than twice
the previous element size,

\[
\frac{1}{4} \leq \frac{H_{\text{new}}}{H_e} \leq 2.
\] (3.36)

As a further explanation, this clamping is performed to ensure that mesh adaptation is being driven by accurate correction indicators. That is, if the mesh were too heavily modified during a single adaptive iteration, the localized correction indicators would begin to lose accuracy on the modified mesh.

3.5 Results

3.5.1 Cook’s Membrane

In this section, we investigate two displacement-based quantities of interest for Cook’s membrane. The first QoI we consider is the \(y\)-component of displacement at the point \(X_0 = (44, 55)\) such that \(J_1(U) = \int_B \delta(X - X_0) \, u_y \, dV\). The second QoI we consider is the integrated displacement over the entire domain, such that \(J_2(U) = \int_B \frac{1}{2}(u_x + u_y) \, dV\). Figure 3.1 shows the geometry and loading conditions for the Cook’s membrane problem, where the left-most boundary is fixed in the \(x\) and \(y\) directions and a purely vertical traction of magnitude 10 is applied to the right-most boundary. For material properties, we choose the elastic modulus to be \(E = 1000\) and Poisson’s ratio as \(\nu = 0.4999\), such that the material is nearly incompressible. We choose the stabilization parameter to be \(c_0 = 1\). For both quantities of interest, we expect the convergence rate to be \(k = 2\), such that the scaling parameter \(\alpha = \frac{3}{4}\).

For each QoI, an initial mesh with a uniform size of \(H = 8\) was generated. Figures 3.3 and 3.4 show the initial mesh utilized for both the point-wise and integrated displacement QoIs. From these initial meshes, the steps

Solve primal PDE → Solve adjoint PDE → Localize error → Adapt mesh

were iteratively performed until a final mesh with about 10,000 degrees of freedom was produced. During each mesh adaptation, the size field was specified according to the equation (3.35) such that the desired number of elements \(N\) in the output mesh is twice the number of elements in the previous mesh.
Fig. 3.1. Cook’s membrane problem definition.

Fig. 3.2. The pressure component p of the primal solution scaled by its maximal value (left), the pressure component z_p of the adjoint solution for the point-wise QoI $J_1(U)$, and the pressure component z_p of the adjoint solution for the integrated displacement QoI $J_2(U)$.

The left-most figure of Figure 3.2 illustrates the pressure component p of the primal solution scaled by its maximal value. We remark that this result is consistent with previous literature [78]. The center and right-most figures of Figure 3.2 shows the pressure component z_p of the adjoint solution for the point-wise QoI $J_1(U)$ and the integrated displacement QoI $J_2(U)$, respectively. For the point-wise QoI, the adjoint solution z_p is highly localized to the point that defines the QoI and the corner of stress singularity.

To approximate the exact values of the quantities of interest, the primal problem was
Fig. 3.3. Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for the Cook’s membrane problem with the point-wise QoI $J_1(U)$.

solved on a “truth” mesh with about 1.5 million degrees of freedom. This mesh is finer at every spatial location than the final meshes produced by the two adaptive simulations. The reference value for the point-wise QoI on the truth mesh was computed to be $J_1(U) = 2.395627$ and the reference value for the integrated displacement QoI was computed to be $J_2(U) = 324.0948$.

We consider two different errors, the “exact error” $\mathcal{E} = J(U) - J^h(U^h_H)$ and the error $\mathcal{E}_h = J^h(U^h) - J^h(U^h_H)$ with respect to the functional evaluated on the fine mesh with mesh size H. Here we place quotations around the term “exact error” because we have only approximated $J(U)$ with high fidelity and have not obtained its actual exact value.

We recall the effectivity index (3.27) defined as $\mathcal{I} = \frac{\mathcal{E}}{\mathcal{E}}$ and additionally define a discrete effectivity index as $I_h = \frac{\mathcal{E}_h}{\mathcal{E}_h}$. An effectivity index of $\mathcal{I} = 1$ indicates that the error estimate η has exactly recovered the “true error”. Similarly, a discrete effectivity index of $I_h = 1$ indicates that the error estimate η has exactly recovered the error between the functional evaluated on the fine space and the functional evaluated on the coarse space. Figure 3.5 and Figure 3.6 plot the effectivity \mathcal{I} relative to the “exact error” and the effectivity I_h relative to the fine-space error, and demonstrates the ability of η to effectively estimate the error as
Fig. 3.4. Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for the Cook’s membrane problem with the integrated displacement QoI $J_2(U)$.

$H \rightarrow 0$ during the adaptive process for the chosen functional quantities. The small distance away from 1 in the discrete effectivity index \mathcal{I}_h represents the linearization error associated with the estimate η, introduced by the linearized adjoint problem (3.25).

Figure 3.7 and Figure 3.8 demonstrate the evolution of various errors throughout the adaptive process. First, we note that the “exact error” \mathcal{E} and the estimated error η are very close, as previously discussed. Next, we note that the estimated bound $\hat{\eta}$ on the functional error, computed as the sum of localized error contributions, overestimates the error, but only by a small factor. This provides some justification to expect that the derived correction indicators are well-suited to drive mesh adaptation. Finally, we remark that an improved corrected functional value $J^*(U^h_H)$ can be computed as the approximated functional value plus the estimated error, $J^*(U^h_H) = J^h(U^h_H) + \eta$. This corrected value tends to converge at a faster rate than the computed value $J^h(U^h_H)$. In particular, this corrected value can prove valuable for coarser discretizations, where the error in the corrected value is around two orders of magnitude smaller than the error in the computed value of the functional.

Figure 3.3 shows the adapted mesh after 5 adaptive cycles for the point-wise QoI.
Fig. 3.5. Effectivities for the point-wise QoI $J_1(U)$ for the Cook’s membrane problem.

We first note that the mesh is heavily refined in the upper left corner of the mesh, where there is a stress singularity. Without accurately resolving this singularity, so-called “pollution error” [79] will affect the accuracy of the finite element solution throughout the domain. This demonstrates that the adaptive adjoint-based procedure accurately identifies other sources of error that must be resolved even when a fully localized QoI is chosen. Similarly, Figure 3.4 shows the adapted mesh after 5 adaptive cycles for the integrated displacement QoI. Again there is heavy refinement in the corner with the stress singularity.

Interestingly, Figure 3.3 also illustrates that the adjoint-based adaptive procedure refines around the spatial location that defines the point-wise QoI. This may, in part, be explained by the fact that the data driving the adjoint problem is a discrete delta function. However, such refinement is unlikely to lead to an optimal distribution of degrees of freedom in the mesh. In essence, the Cook’s membrane problem is a cantilever beam and this result indicates that we must refine heavily at the end of the beam in order to accurately evaluate displacements at the beam tip. This is antithetical to engineering intuition and experience. Another factor leading to this result may be our choice of error localization. We have local-
Effectivities for the integrated displacement QoI $J_2(U)$ for the Cook’s membrane problem.

In this section, we apply adjoint-based error estimation and mesh adaptation to a three-dimensional problem that arises in the study of cellular biomechanics and mechanobiology. The problem of interest involves investigating a cell embedded in an extracellular matrix. The traction that this cell exerts on its surroundings directly influences cellular processes like migration and differentiation. Recently, Dong and Oberai [57] introduced a process to recover cellular tractions based on the solution of an inverse problem. For this inverse problem, it is assumed that displacements throughout the extracellular matrix are given with some uncertainty, and successive solutions of a forward problem are solved to recover the tractions driving the problem. Presently, we focus on accurately solving the forward problem.
in this process using adjoint-based error estimation. That is, given tractions imposed on the cellular membrane, we would like to solve for displacements in some region of the domain as accurately as possible.

Specifically, we focus on a microglial cell with dimensions of about $20 \mu m \times 20 \mu m \times 20 \mu m$ embedded in an extracellular matrix of dimension $100 \mu m \times 100 \mu m \times 100 \mu m$. We choose the QoI to be a local integrated displacement, $J(U) = \int_{B_0} \frac{1}{3} (u_x + u_y + u_z) \, dV$, defined over a $30 \mu m \times 30 \mu m \times 30 \mu m$ bounding box B_0 surrounding the microglial cell. Figure 3.9 shows the geometry defining the microglial cell, the extracellular matrix, and the local QoI domain B_0. For the extracellular matrix, the shear modulus $\mu = \frac{E}{2(1+\nu)}$ is set to be 600 Pa and Poisson’s ratio is set to be $\nu = 0.4999$, which is consistent with material properties for hydrogels [62]–[64].

To drive the problem, we impose traction boundary conditions along the surface of
Fig. 3.8. Errors for the integrated displacement QoI $J_2(U)$ for the Cook’s membrane problem.

the microglial cell. The magnitude of the traction h is defined to be 10 times the distance to the center of the microglial cell and its direction points inward toward the center of the microglial cell. The applied traction is shown in Figure 3.10. This traction serves to pull the extracellular matrix inwards towards the center of the microglial cell, which is consistent with observed physical behavior [57]. The deformation of the cell surface due to this applied traction is shown in Figure 3.11. To constrain rigid body translations and rotations, we prescribe displacements $u_x = 0$ on the face with constant minimum x-coordinate value, $u_y = 0$ on the face with constant minimum y-coordinate value, and $u_z = 0$ on the face with constant minimum z-coordinate value. As a reference value for the integrated displacement QoI, the primal problem was solved on a “truth” mesh with about 60 million degrees of freedom. The reference value for the QoI was computed to be $J(U) = -527.1453$.
Fig. 3.9. The computational geometry for the microglial cell problem. The inner-most surface represents the geometry of the microglial cell, the outer-most bounding box represents the extracellular matrix in which the cell is embedded, and the inner bounding box represents the domain over which the local integrated displacement QoI $J(U)$ is defined.

Fig. 3.10. The applied tractions for the microglial cell problem.

An initial mesh with about 30,000 degrees of freedom was generated, as shown in Figure 3.12. From this initial mesh, the steps

Solve primal PDE \rightarrow Solve adjoint PDE \rightarrow Localize error \rightarrow Adapt mesh
Fig. 3.11. The initial (light grey) and deformed (blue) geometry of the microglial cell before and after tractions are applied.

Fig. 3.12. Initial mesh for the microglial cell problem (left) and final adapted mesh after 10 adaptive iterations (right).

were iteratively performed 10 times. The mesh size field was specified according to equation (3.35) such that the desired number of elements N in the output mesh is 1.5 times the number of elements in the previous mesh.

We again consider the “exact error” $\mathcal{E} = J(U) - J^h(U^h_H)$ and the error $\mathcal{E}_h = J^h(U^h) - J^h(U^h_H)$ with respect to the functional evaluated on the fine mesh, and their effectivity indices $I = \frac{\mathcal{E}}{\mathcal{E}_h}$ and $I_h = \frac{\mathcal{E}_h}{\mathcal{E}}$, respectively. Here η denotes the error estimate computed by (3.28). We again expect that the functional will converge at the rate $k = 2$ and use the correction value $\alpha = \frac{3}{4}$.

Figure 3.13 plots the effectivity index I relative to the “exact error” and the effectivity index I_h relative to the fine space error. The small distance away from 1 in the discrete
Fig. 3.13. Effectivity indices for the local integrated displacement QoI $J(U)$ for the microglial cell problem.

effectivity index I_h is associated with the linearization error introduced by the adjoint problem. Additionally, the ability of the error estimate to recover the “exact error” as $H \to 0$ compared to the reference value is demonstrated by the effectivity I.

Figure 3.14 displays the evolution of various errors throughout the adaptive process. In particular, the “exact error” E and the estimated error η are very close, as previously noted by the effectivity index I. As for the Cook’s membrane problem the estimated error bound $\hat{\eta}$ overestimates the error, but not to a drastic degree. Finally, we remark that the corrected functional value, computed as $J^*(U^h_H) = J^h(U^h_H) + \eta$, is nearly two orders of magnitude more accurate at the final adaptive step, demonstrating the usefulness of adjoint-based error estimation.

Finally, we plot the evolution of the “exact error” for two adaptive strategies in Figure 3.15. We compare the convergence of errors for uniform mesh refinement and the developed adjoint-based adaptive scheme. The error is converging at a faster rate for the adjoint-based adaptive scheme. Further, the adjoint-based adaptive scheme achieves the same accuracy as the uniform refinement scheme with nearly an order of magnitude fewer degrees of freedom at
Fig. 3.14. Errors for the local integrated displacement QoI $J(U)$ for the microglial cell problem.

around 110,000 degrees freedom. This demonstrates the utility of adjoint-based adaptivity for solid mechanics problems.

3.6 Conclusions

In this chapter, we have developed an adjoint-based error estimation procedure for nonlinear finite deformation elasticity using a stabilized finite element method, where we have utilized a recently developed PU-based error localization strategy. We have demonstrated the ability of this approach to accurately estimate functional errors for a two-dimensional model problem. Further, we have demonstrated the utility of adaptive adjoint-based analysis in the context of a three-dimensional example problem motivated by the study of biological tissues. Future work includes analytically and numerically investigating the differences in
Convergence for integrated displacement QoI

Fig. 3.15. Error convergence using uniform mesh refinement and adjoint-based adaptivity for the local integrated displacement QoI $J(U)$ for the microglial cell problem.

the PU-based localization approach as compared to a more classical strong-form localization approach for localized point-wise quantities of interest.
CHAPTER 4
A NON-UNIFORM REFINEMENT APPROACH FOR SOLVING ADJOINT PROBLEMS IN FUNCTIONAL ERROR ESTIMATION AND MESH ADAPTATION

4.1 Introduction

Adjoint-based error estimation [8]–[13], [15], [80]–[82] is a tool used in numerical simulation to estimate the discretization error in physically meaningful output quantities. Combined with mesh adaptation, adjoint-based error estimation also provides the ability to control the discretization error. The process of adjoint-based error estimation relies on the introduction of an auxiliary adjoint problem, which is constructed using the solution to the original or primal problem of interest.

To obtain meaningful error estimates, the solution to the adjoint problem must be enriched in some manner. That is, it is necessary to obtain a representation of the adjoint solution in a richer space compared to the space used for the primal problem. Several strategies are commonly used to obtain an enriched adjoint representation. These approaches include solving the adjoint problem in a globally higher order polynomial space [51], solving the adjoint problem on a uniformly refined mesh [52], solving the adjoint problem in the same space as used for the primal problem and solving local patch-wise problems least squares problems [49] or performing patch-wise higher-order interpolation [8], and enriching the adjoint solution via variational multiscale methods [50].

Solving the adjoint problem in a globally higher order polynomial space or on a uniformly refined mesh is a computationally expensive proposition. On the other hand, solving the adjoint problem in the same space as used for the primal problem and enriching it via some local recovery operation may not be guaranteed to yield a more accurate adjoint solution. In this chapter, we propose a simple compromise and solve the adjoint problem on meshes obtained via non-uniform refinement.

The remainder of this chapter is structured as follows. First, we review adjoint-based error estimation for functional quantities using two discretization levels, a coarse space and a fine space. We then review three choices for the fine space obtained by refinement of
the mesh used for the coarse space. The first choice is the standard uniform refinement method, while the other two approaches form the fine space via non-uniform refinement. In each of these sections, we discuss the algorithm utilized to generate the fine space. We then investigate these three adjoint enrichment approaches when applied to examples in Poisson’s equation and conclude with a summary of the results.

4.2 Error Estimation with Two Levels

4.2.1 Error Estimates

Following Venditti and Darmofal [10]–[12], we review output-based error estimation using two discretization levels. Let V^h and V^H denote finite dimensional spaces such that $V^H \subset V^h$. We refer to V^h and V^H as the fine space and the coarse space, respectively. Let $R^H : \mathbb{R}^N \to \mathbb{R}^N$ denote the system of (potentially nonlinear) algebraic equations arising from a finite element discretization of a PDE on the coarse space V^H, such that the solution vector $u^H \in \mathbb{R}^N$ satisfies

$$R^H(u^H) = 0. \quad (4.1)$$

Similarly, let $R^h : \mathbb{R}^n \to \mathbb{R}^n$ denote the system of algebraic equations arising from a finite element discretization of the same PDE on the fine space V^h, such that

$$R^h(u^h) = 0, \quad (4.2)$$

where $u^h \in \mathbb{R}^n$ is the solution vector on the fine space and $n > N$.

Let $J^H : \mathbb{R}^N \to \mathbb{R}$ denote a discrete representation of a physically meaningful functional quantity on the coarse space V^H, and similarly let $J^h : \mathbb{R}^n \to \mathbb{R}$ denote the functional approximated on the fine space V^h. Let $u^h_H := \mathbf{I}^h_H u^H$ denote the prolongation of the coarse space solution u^H onto the fine space V^h via interpolation, where $\mathbf{I}^h_H : V^H \to V^h$.

The functional evaluated on the fine space $J(u^h)$ can be expanded in a Taylor series approximation about the prolonged coarse space solution u^h_H as

$$J^h(u^h) = J^h(u^h_H) + \left[\frac{\partial J^h}{\partial u^h} \right]_{u^h_H} (u^h - u^h_H) + \ldots \quad (4.3)$$
Similarly, the residual system of equations evaluated on the fine space $R_h(u^h)$ can be expanded about the prolonged coarse space solution u_{H}^h as

$$R_h(u^h) = R_h(u_{H}^h) + \left[\frac{\partial R_h}{\partial u^h} \right]_{u_{H}^h} (u^h - u_{H}^h) + \ldots \quad (4.4)$$

Using the governing relation (4.2) in the residual Taylor expansion (4.4) suggests a first order approximation for the discretization error between the spaces:

$$(u^h - u_{H}^h) \approx - \left[\frac{\partial R_h}{\partial u^h} \right]_{u_{H}^h} ^{-1} R_h(u_{H}^h). \quad (4.5)$$

Inserting the error approximation (4.5) into the functional Taylor expansion (4.3) suggests the error estimate:

$$J_h(u^h) - J_h(u_{H}^h) \approx - z_h \cdot R_h(u_{H}^h), \quad (4.7)$$

where $z_h \in \mathbb{R}^n$ is the solution to the so-called adjoint problem given by

$$\left[\frac{\partial R_h}{\partial u^h} \right]_{u_{H}^h} ^T z_h = - \left[\frac{\partial J_h}{\partial u^h} \right]_{u_{H}^h} ^T. \quad (4.8)$$

4.2.2 A Simple A-Priori Analysis

Consider that the functional of interest converges at the rate k, such that $J - J_h(u_{H}^h) = c H^k$ and $J - J_h(u^h) = c h^k$, where J is the exact value of the functional quantity of interest. Assume that the fine space is obtained via refinement of the coarse space. Consider the ratio

$$\frac{J_h(u^h) - J_h(u_{H}^h)}{J - J_h(u_{H}^h)} \approx - \frac{z_h \cdot R_h(u_{H}^h)}{J - J_h(u_{H}^h)} \quad (4.9)$$
which, as $H \to 0$, will tend towards [15]

$$\alpha := 1 - \left(\frac{h}{H} \right)^k.$$ \hspace{1cm} (4.10)

Let η denote our approximation to the functional error $J - J^h(u_h^h)$. Let \mathcal{I} denote the effectivity index given by

$$\mathcal{I} = \frac{\eta}{J - J^h(u_h^h)}.$$ \hspace{1cm} (4.11)

We would like error estimates \mathcal{E} that lead to effectivity indices of $\mathcal{I} = 1$ as $H \to 0$. To achieve this, we scale the two-level adjoint weighted residual estimate (4.7) by the inverse of the factor α, such that

$$\eta = -\frac{1}{\alpha} z^h \cdot R^h(u_h^h).$$ \hspace{1cm} (4.12)

4.3 Choices for the Fine Space

4.3.1 Uniform Refinement

![Fig. 4.1. Edges of a base mesh (black) and a nested mesh refined with the Unif scheme (red) in two dimensions.](image)

We first consider the traditional approach of using a uniformly refined mesh to solve the adjoint problem. We refer to this approach as the UNIF refinement approach. To perform
uniform refinement, every edge in the mesh is marked for refinement. The algorithm for uniform refinement is given in Algorithm 2. Figure 4.1 demonstrates an example of the Unif refinement approach applied to a base mesh. For the uniform refinement approach, we naturally choose the ratio \(\frac{h}{H} = \frac{1}{2} \), leading to the scaling parameter \(\alpha = 1 - \left(\frac{1}{2}\right)^k \).

\begin{algorithm}
\textbf{Algorithm 2} Uniform refinement algorithm
\begin{algorithmic}
\For {each edge \(e \) in mesh \(M \)}
\State mark edge \(e \) for refinement.
\EndFor
\end{algorithmic}
\end{algorithm}

4.3.2 Long Edge Refinement

![Fig. 4.2. Edges of a base mesh (black) and a nested mesh refined with the Long scheme (red) in two dimensions.](image)

Next, we consider an adaptive scheme that marks the longest edge in each element for refinement. We refer to this scheme as the Long edge refinement scheme. The Long edge refinement algorithm is outlined in Algorithm 3. Figure 4.2 illustrates the Long edge refinement algorithm applied to a base mesh.

Note that, for the Long edge refinement approach, some elements are split once while others are split multiple times. It follows then that there is no single global ratio \(\frac{h}{H} \) of the fine mesh size to the coarse mesh size. Presently, we approximate this ratio by taking the
average of all ratios of nested element sizes to their parent element size, given by

\[
\frac{h}{H} \approx \frac{1}{n_{el}} \sum_{e=1}^{n_{el}} \frac{h_e}{H_e},
\]

where \(n_{el}\) is the total number of elements in the nested mesh.

\begin{algorithm}
\begin{algorithmic}
\For {each element \(el\) in mesh \(M\)}
\For {each edge \(e\) in element \(el\)}
\If {\(e\) is longest edge in \(el\)}
mark edge \(e\) for refinement.
\EndIf
\EndFor
\EndFor
\end{algorithmic}
\caption{Long edge refinement algorithm}
\end{algorithm}

4.3.3 Single Edge Refinement

Finally, we consider a cheap refinement alternative to uniform refinement that attempts to only mark a single edge in each element for refinement. We refer to this approach as the Single edge refinement approach. To perform single edge refinement, a traversal of all edges in the mesh is performed. During this traversal, the first edge encountered is marked for refinement and the elements adjacent to that edge are tagged as ‘visited’. As the edges in the
mesh are traversed, each element adjacent to the edge is checked to see if it has already been encountered. If all adjacent elements have not been encountered, then the edge is marked for refinement. After this process has completed, some elements may be isolated, in that they have still not been marked as ‘visited’. Thus, for each element remaining that has not been marked as ‘visited’, we mark the first edge adjacent to the element for refinement. The single edge refinement algorithm is illustrated in Algorithm 4. Figure 4.3 demonstrates a mesh resulting from the application of the single edge refinement scheme. For the SINGLE scheme, we again approximate the ratio $\frac{h}{H}$ with equation (4.13).

Algorithm 4 Single edge refinement algorithm

```latex
initialize all elements to be ‘not visited’.

\begin{algorithm}
\begin{algorithmic}
\State for each edge $e$ in mesh $M$ do
\State \hspace{1em} let $S$ be the set elements adjacent to edge $e$.
\State \hspace{1em} if each element in $S$ is ‘not visited’ then
\State \hspace{2em} mark edge $e$ for refinement.
\State \hspace{2em} for each element $el$ in $S$ do
\State \hspace{3em} mark element $el$ as ‘visited’.
\State \hspace{2em} end for
\State \hspace{1em} end if
\State end for
\State for each element $el$ in mesh $M$ do
\State \hspace{1em} if $el$ is marked as ‘not visited’ then
\State \hspace{2em} let $S$ be the edges adjacent to element $el$
\State \hspace{2em} mark the first edge $e$ in $S$ for refinement
\State \hspace{1em} end if
\State end for
\end{algorithmic}
\end{algorithm}
```

4.4 Mesh Adaptation

4.4.1 Error Localization

It is necessary to localize contributions to the total error η to mesh entity level correction indicators to drive mesh adaptation. For finite volume and discontinuous Galerkin finite element methods, it is common to consider the discrete element-level adjoint weighted residuals of the form $z_e^h \cdot R_e^h$, where the subscript e denotes evaluations over elements. However, for continuous finite elements, this approach does not account for systematic inter-element cancellation [15], which could lead to a sub-optimal adaptive strategy.

Traditionally, for continuous Galerkin finite element methods, the error is localized by
integrating the residual by parts to recover strong form volumetric and jump contributions to the error over element interiors and boundaries, respectively. Presently, we utilize a localization strategy introduced by Richter and Wick [28] that proceeds by introducing a partition of unity ϕ_i, such that $\sum_i \phi_i = 1$, into the variational residual. In this localization, adjoint-weighted residual error information from neighboring elements is gathered to mesh vertices, leading to vertex-based correction indicators η_i, for $i = 1, 2, \ldots, n_{vtx}$. Here n_{vtx} denotes the number of vertices in the fine mesh. To obtain element-level correction indicators η_e, where $e = 1, 2, \ldots, n_{el}$, for the n_{el} elements in the space V^H, we interpolate the vertex-based indicators η_i to element centers in the coarse mesh. While a full discussion of this localization procedure is outside of the scope of the present work, we refer readers to [28], [69] to demonstrate how this approach is utilized for Galerkin finite element methods and [56] to demonstrate how this approach is utilized for stabilized finite element methods.

4.4.2 Mesh Size Field

Once element-level correction indicators η_e have been obtained, we drive conforming mesh adaptation by specifying a mesh size field. For isotropic mesh adaptation, which we presently consider, this mesh size field defines the desired lengths of edges over the mesh. We utilize a mesh size field as described by Boussetta et al. [54] that attempts to equidistribute the error in an output adapted mesh with N target elements. From a high level, this size field will refine the mesh in areas of the domain that contribute strongly to the error in the functional and coarsen the mesh in areas of the domain that weakly contribute to the error in the functional.

Let p be the polynomial interpolant order for the chosen finite element method. In the subsequent results section, we consider only $p = 1$. We first define the global quantity G as

$$G = \sum_{e=1}^{n_{el}} \left(\eta_e \right)^{\frac{2d}{2p+d}}. \quad (4.14)$$

From this global quantity, we compute new element size H_{e}^{new} by scaling previous element sizes H_e according to the formula

$$H_{e}^{new} = \left(\frac{G}{N} \right)^{\frac{1}{d}} \left(\eta_e \right)^{\frac{2}{2p+d}} H_e. \quad (4.15)$$
To ensure that mesh adaptation is being driven by accurate correction indicators and to prevent excessive coarsening and refinement in a single adaptive step, we additionally clamp new element sizes such that they are no smaller than one quarter and no greater than twice the previous element size,

\[
\frac{1}{4} \leq \frac{H_{e}^{\text{new}}}{H_{e}} \leq 2. \tag{4.16}
\]

Presently, we make use of the PUMI [33] software for mesh adaptation purposes. This software uses a sequence of edge splits, swaps, and collapses [40], [41] to locally modify the mesh to satisfy the input mesh size field.

\section{4.5 Results}

\subsection{4.5.1 Effectivity Indices for Poisson’s Equation}

As a first example, we investigate the effectivity of the error estimate (4.12) for the model problem:

\[
\begin{align*}
-\nabla^2 u &= f & \mathbf{x} \in \Omega, \\
 u &= 0 & \mathbf{x} \in \partial \Omega,
\end{align*}
\tag{4.17}
\]

when using the UNIF, LONG, and SINGLE approaches to solve the adjoint problem (4.8). The model problem leads to the Galerkin finite element method: find \(u^{H} \in \mathcal{V}^{H} \) such that

\[
(\nabla w^{H}, \nabla u^{H}) = (w, f) \quad \forall w^{H} \in \mathcal{V}^{H},
\tag{4.18}
\]

where \((w, u) := \int_{\Omega} wu \, d\Omega \) denotes the \(L^2 \) inner product over the space \(\mathcal{V}^{H} \), defined as

\[
\mathcal{V}^{H} := \{ u^{H} \in H^1(\Omega) : u^{H} = 0 \text{ on } \partial \Omega, \ u^{H}|_{\Omega_e} \in \mathbb{P}^1 \}.
\tag{4.19}
\]

Here \(\Omega_e \) denotes an element in a decomposition of the domain \(\Omega \) into \(n_{el} \) non-overlapping elements such that \(\cup_{e=1}^{n_{el}} \Omega_e = \Omega \) and \(\Omega_i \cap \Omega_j = \emptyset \) if \(i \neq j \). Additionally, \(\mathbb{P}^1 \) denotes the space of piecewise linear polynomials.

We choose the domain \(\Omega = [0, 1] \times [0, 1] \) and the data to be \(f = 2\pi^2 \sin(\pi x) \sin(\pi y) \) such that the exact solution is \(u(x, y) = \sin(\pi x) \sin(\pi y) \). We choose the functional quantity
to be $J(u) = \int_\Omega u \, d\Omega$, which has the exact value $J(u) = \frac{4}{\pi}$. With the proposed finite element method, we expect the functional to converge at the rate $k = 2$, which we use to determine the scaling parameter α as given by equation (4.10).

The model problem was solved with mesh sizes $H = \{\frac{1}{5}, \frac{1}{10}, \frac{1}{20}, \frac{1}{40}, \frac{1}{80}, \frac{1}{160}\}$. For each chosen mesh size, the discrete adjoint problem (4.8) was solved on fine spaces V^h generated by the UNIF, LONG, and SINGLE refinement schemes. An error estimate for the three schemes is then computed according to equation (4.12).

Figure 4.4. Effectivity indices using the Unif, Long, and Single refinement schemes for the Poisson example problem.

Figure 4.4 plots the effectivity index (4.11) for each of the three schemes at each chosen mesh size. Effectivity indices for the baseline UNIF method approach 1 in the limit as $H \to 0$ as expected. The effectivity indices obtained using the two non-uniform refinement approaches, are less accurate and do not appear to be asymptotically correct. This is perhaps not surprising, as we have considered a bulk average for the ratio $\frac{h}{H}$ for these two schemes, as shown in Table 4.1.

However, even though the error estimates themselves obtained by the LONG and SINGLE schemes may not be suitable for application purposes, these schemes may still be suitable
Table 4.1. Approximated mesh size ratios for the Long and Single schemes for the first Poisson’s equation example.

<table>
<thead>
<tr>
<th>H</th>
<th>$H_{\text{LONG}} : \frac{h}{H}$</th>
<th>$H_{\text{SINGLE}} : \frac{h}{H}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{5}$</td>
<td>0.6344</td>
<td>0.8198</td>
</tr>
<tr>
<td>$\frac{1}{10}$</td>
<td>0.6323</td>
<td>0.8212</td>
</tr>
<tr>
<td>$\frac{1}{20}$</td>
<td>0.6325</td>
<td>0.8204</td>
</tr>
<tr>
<td>$\frac{1}{40}$</td>
<td>0.6490</td>
<td>0.8183</td>
</tr>
<tr>
<td>$\frac{1}{80}$</td>
<td>0.6477</td>
<td>0.8202</td>
</tr>
<tr>
<td>$\frac{1}{160}$</td>
<td>0.6467</td>
<td>0.8195</td>
</tr>
</tbody>
</table>

to drive mesh adaptation at a cheaper cost than the full Unif approach. Figure 4.5 demonstrates the decrease in the total number of degrees of freedom for the adjoint problem for the Long and Single schemes as compared to the Unif scheme. This motivates us to consider an adaptive example for Poisson’s equation in the next section.

Effectivity indices for the Poisson example

![Effectivity indices graph](image)

Fig. 4.5. Ratio of adjoint problem degrees of freedom to primal problem degrees of freedom using the Unif, Long, and Single refinement schemes for the Poisson example problem.
4.5.2 Mesh Adaptation for Poisson’s Equation

In this example, we again consider the governing equations for Poisson’s equation, as given in the previous section. However, we now choose the forcing function f to be $f = 1$ and the domain $\Omega := [-1, 1] \times [-1, 1] \setminus \left(\left[-\frac{1}{2}, \frac{1}{2} \right] \times \left[-\frac{1}{2}, \frac{1}{2} \right] \right)$. Further, we consider the point-wise quantity of interest $J(u) = \int_{\Omega} \delta(\mathbf{x} - \mathbf{x}_0) u \, d\Omega$, where the point of interest is chosen to be $\mathbf{x}_0 = (0.75, 0.75)$. We again expect the functional to converge at the rate $k = 2$. The domain and point-wise QoI location are shown in Figure 4.6. The value of the quantity of interest was determined to have a value of $J(u) = 0.0334473 \pm 1e-7$ in the reference [55].

Fig. 4.6. Geometry and initial mesh used for the second Poisson’s equation example with the point of interest shown in red.

We performed the steps:

Solve Primal \rightarrow Solve Adjoint \rightarrow Estimate Error \rightarrow Adapt Mesh

7 times, starting from the initial mesh shown in Figure 4.6. We solve the adjoint problem with three different methods on nested meshes obtained with the Unif, Long, and Single refinement schemes. At each adaptive step, the mesh size field was set according to equation (4.15), such that the target number of elements N is twice that of the current mesh.

Figure 4.7 illustrates the convergence history for the error $J(u) - J(u^H)$ for the three adaptive schemes obtained with the Unif (Goal Uniform), the Long (Goal Long), and the Single strategies, along with the error obtained by solving the primal problem with successively uniformly refined meshes (Uniform). The rate of convergence for the Unif scheme agrees with the reference [55]. Additionally, the error for both the Long and Single
schemes converges at a rate almost near the Unif scheme.

Figure 4.8 illustrates the final adapted mesh obtained using the Unif strategy to solve the adjoint problem. The distribution of degrees of freedom in this mesh closely resembles the results obtained in reference [55]. However, using the Long and Single to solve the adjoint problem results in final adapted meshes that appear to be largely unsuitable for application analysis, as shown in Figures 4.9 and 4.10, even though these meshes result in more accurate functional evaluations as compared to uniform refinement.

4.6 Conclusions and Outlook

We have developed two alternative approaches to uniform refinement for performing enriched adjoint solves in adjoint-based error estimation with two discretization levels. We
have applied this approach to Poisson’s equation. While the number of degrees of freedom for the adjoint solve for these two alternative approaches decreases significantly when
Fig. 4.10. The final adapted mesh using the Single strategy to solve the adjoint problem (left) and a close-up of the upper right-hand corner of this mesh (right).

compared to the more traditional approach of solving the adjoint problem on a uniformly refined mesh, the present outlook indicates that these approaches are not yet suitable for practical applications. That is, when performing adjoint-based error estimation with the two novel approaches, effectivity indices are not asymptotically correct. Additionally, the meshes obtained with adaptive adjoint-based analysis display qualitatively different features when compared to the uniform refinement approach.

It is possible that more accurate error estimates could be obtained by considering the total functional error as the sum of element-level contributions

\[
J^h(u^h) - J^h(u^h_H) \approx \sum_{e=1}^{n_{el}} - \frac{1}{\alpha_e} z_e^h \cdot R_e^h(u^h_H),
\]

where we have replaced the approximated ratio (4.13) with the exact element-level ratio, \(\alpha_e = 1 - \left(\frac{h_e}{H_e} \right)^k \). Here, the subscript \(e \) denotes the element-level contributions to the corresponding global quantity. Additionally, it is possible that more suitable meshes may be obtained during the adaptive process if a size field smoothing algorithm is utilized. We leave investigation into these areas as a suggestion for future work.
CHAPTER 5
OUTPUT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR VARIATIONAL MULTISCALE METHODS

5.1 Introduction and Motivation

Stabilized finite element methods have been used to effectively solve a wide variety of problems where standard Galerkin methods are known to be unstable. Among these problems are the advective-diffusive equations [83], [84], Stokes flow [85], [86], and the Navier-Stokes equations [87]–[89]. The variational multiscale (VMS) method, as developed by Hughes et al. [90], [91], provides a systematic approach to derive a stabilized finite element method. From a high level, the VMS approach decomposes the solution u to a partial differential equation (PDE) into coarse-scale components \overline{u} and fine-scale components u', where the fine-scale solution is represented or approximated analytically.

A posteriori error estimation is a common tool to assess the accuracy and reliability of a finite element solution [1]. In the original developments of the VMS method, it was suggested that approximations to the fine-scale solution $u' = u - \overline{u}$ could be used to derive a posteriori error estimates [90]. Since then, numerous studies have utilized VMS techniques in the context of a posteriori error estimation. Hauke et al. [92], [93] investigated the using the fine-scale solution as an explicit error estimator in the context of advective transport problems. Masud et al. [94] derived explicit and implicit error estimates for the global discretization error for a mixed form of nearly incompressible elasticity, and then later extended these techniques to nonlinear elasticity formulations [95]. Larson and Målqvist [96] investigated approximating the fine-scale solution via local patch-wise problems, and derived an a posteriori error estimate for the solution in the energy norm for use in an adaptive finite element method.

Traditional a posteriori error estimates attempt to bound the error in a given norm. More recently developed duality-based a posteriori error estimates [15] seek to approximate the error in an output quantity that can be expressed as a functional $J(u)$. For example,

outputs corresponding to the lift or drag over an airfoil may be of primary interest for a numerical study. In general, output-based error estimates based on duality techniques require the solution of an auxiliary dual problem. In contrast, the original PDE of interest is referred to as the primal problem. Using the solution \(z \) to the dual problem, output error estimates are written, in part, as the product of two terms [8], [68]. The first term involves the residual \(R_u^h \) of the primal PDE evaluated at the finite element solution. The second term, typically referred to as the weighting term, involves the difference \(z - I^h z \) between the exact dual solution and the nodal interpolant of the exact dual solution onto the finite element space used to approximate the primal problem.

The exact dual \(z \) solution is generally unknown, and thus must be approximated to obtain functional error estimates. Note that if the dual solution is approximated in the same finite element space as used for the primal problem, then the weighting term in the output error estimate is identically zero. Thus some form of enrichment to the dual solution is required. Several enrichment procedures are commonly used. One approach is to approximate the exact dual solution in a globally richer finite element space than the one used for the primal problem. Another approach involves solving the dual problem using the same finite element space as used for the primal problem and enriching the dual solution via projection. Yet another approach involves using a priori estimates to bound the interpolation error in the dual solution.

In this chapter we propose a novel strategy for output-based error estimation, whereby the dual solution is enriched by the fine-scale dual solution \(z' \) using VMS techniques. This is achieved by the introduction of a general representation \(\mathcal{E}_2 \) for functional errors in VMS methods. Using this general representation, we introduce simple approximations to the fine and coarse scale solutions for both the primal and dual problems to derive an error estimate \(\eta_2 \).

We then seek to demonstrate the utility of this error representation in adaptive finite elements. This is achieved in part by comparison to a recently proposed explicit output-based error representation \(\mathcal{E}_1 \) that utilizes VMS techniques to entirely circumvent the solution of an auxiliary dual problem [97]. We prove that error estimates \(\eta_1 \approx \mathcal{E}_1 \) and \(\eta_2 \approx \mathcal{E}_2 \) based on this explicit error representation and the newly proposed VMS technique, respectively, are identical. However, we demonstrate that localization of the explicit error estimate \(\eta_1 \) is insufficient to drive mesh adaptation for local output quantities, whereas the estimate \(\eta_2 \)
performs well.

The remainder of this chapter is structured as follows. We begin by presenting a review of the derivation of a VMS method for an abstract Dirichlet primal problem. Then we introduce simple approximations to the fine-scale solution u' and the coarse-scale solution \overline{u} to obtain a computable numerical subgrid method for the primal problem. Next, we introduce an auxiliary dual problem to relate the output $J(u)$ to the primal problem. We then derive a VMS and subgrid method for the dual problem. Using the VMS methods for the primal and dual problems, we derive a general expression E_2 for representing output errors in VMS methods, as well as the previously proposed error representation E_1. Then, utilizing the approximations made for the primal and dual subgrid models, we derive error estimates $\eta_1 \approx E_1$ and $\eta_2 \approx E_2$ and demonstrate that these two quantities are identical. Next, we discuss the localization of these error estimates to element-level error indicators and how these indicators are used to drive mesh adaptation procedures. Then we investigate the effectiveness of error estimates η_1 and η_2 for one and two dimensional example problems. We conclude by investigating the ability of the estimates η_1 and η_2 to drive mesh adaptation to accurately compute output quantities $J(u)$.

5.2 Review of VMS Methods

5.2.1 Model Problem

Let $\Omega \subset \mathbb{R}^d$ be an open bounded domain with smooth boundary $\partial \Omega$, where d is the number of spatial dimensions of the domain. Let V be a Hilbert space equipped with the norm $\| \cdot \|_V$ and inner product $(\cdot, \cdot)_V$ such that $V = \{ u \in H(\Omega) : u|_{\partial \Omega} = 0 \}$, where $H(\Omega)$ is a Hilbert space defined over the domain Ω. Let V^* be the dual space of V and $(\cdot, \cdot)_{V^*}$ denote the dual pairing between the two spaces given by $V(v, u)_{V^*} = \int_{\Omega} vu \, d\Omega$. Let $L : V \to V^*$ be a linear differential operator. Let $f \in V^*$ be given data. We consider the abstract model problem of finding $u \in V$ such that

$$
\begin{cases}
L u = f, & x \in \Omega, \\
u = 0, & x \in \partial \Omega.
\end{cases}
$$

(5.1)

In B.1 we discuss extending this model problem to account for non-homogeneous Dirichlet and Neumann boundary conditions.
We define the residual operator \(\mathcal{R} : \mathcal{V} \to \mathcal{V}^* \) as \(\mathcal{R} u := f - Lu \), and we refer to (5.1) as the *primal problem*. The equivalent weak form of the primal problem can be stated as: find \(u \in \mathcal{V} \) such that

\[
\langle v, Lu \rangle_{\mathcal{V}^*} = \langle v, f \rangle_{\mathcal{V}^*} \quad \forall v \in \mathcal{V}.
\]

5.2.2 VMS Formulation

In this section, we review the foundations of the VMS method, as developed by Hughes et al. [90] and later refined by Hughes and Sangalli [91]. The basis of the method is the introduction of a sum decomposition of the solution \(u \) such that \(u = \pi + u' \). Here \(\pi \in \overline{\mathcal{V}} \) corresponds to the computable *coarse-scale* solution, while \(u' \in \mathcal{V}' \) is associated with unresolved *fine-scales* of the solution. Further, it is assumed that the coarse-scale space \(\overline{\mathcal{V}} \) and fine-scale space \(\mathcal{V}' \) are closed subspaces of \(\mathcal{V} \) and that \(\overline{\mathcal{V}} \oplus \mathcal{V}' = \mathcal{V} \).

Using this sum decomposition, the weak form of the primal problem can be restated: find \(\pi + u' \in \mathcal{V} \) such that

\[
\langle v, L(\pi + u') \rangle_{\mathcal{V}^*} = \langle v, f \rangle_{\mathcal{V}^*} \quad \forall v \in \mathcal{V},
\]

which can be split into the two subproblems: find \(\pi + u' \in \mathcal{V} \) such that

\[
\langle \pi, L\pi \rangle_{\mathcal{V}^*} + \langle v, Lu' \rangle_{\mathcal{V}^*} = \langle \pi, f \rangle_{\mathcal{V}^*} \quad \forall \pi \in \overline{\mathcal{V}},
\]

\[
\langle v', L\pi \rangle_{\mathcal{V}^*} + \langle v', Lu' \rangle_{\mathcal{V}^*} = \langle v', f \rangle_{\mathcal{V}^*} \quad \forall v' \in \mathcal{V}'.
\]

The goal of the VMS method is to eliminate the fine-scale solution \(u' \) from the first sub-problem (5.4) by expressing \(u' \) in terms of the coarse-scale solution \(\pi \). This results in a coarse-scale model involving only \(\pi \) that can then be solved numerically. However, the two sub-problems are not currently well-posed in terms of uniqueness. To ensure uniqueness, an optimality condition \(\phi(\cdot) \) is chosen, for example \(\phi(\cdot) = \| \cdot \|^2_{H^1(\Omega)} \) or \(\phi(\cdot) = \| \cdot \|^2_{L^2(\Omega)} \). The...
problem is then reposed in the optimal context:

$$
\min_{\overline{\pi}} \phi(u - \overline{\pi}),
$$

s.t.

$$
\begin{align*}
\overline{\pi} & \in \overline{V}, \\
u' & \in V', \\
L(\overline{\pi} + u') = f,
\end{align*}
$$

(5.6)

The success of Hughes and Sangalli [91] is in showing that this optimality criteria defines a projector $P : V \rightarrow \overline{V}$ onto the coarse-scale space such that $Pu' = 0$. Additionally, the projector P implicitly defines the fine-scale space $V' = \{v \in V : Pv = 0\}$. Using this projector, Hughes and Sangalli then show that the fine-scale solution can be analytically represented as:

$$
u' = \left(G - G P^T (P G P^T)^{-1} P G \right) R \overline{\pi},
$$

(5.7)

where $G = L^{-1}$ is the classical Green’s operator and G' is the so-called fine-scale Green’s operator. Similarly, the fine-scale solution can be written in terms of the so-called fine-scale Green’s function $g'(x; y)$ as

$$
u'(y) = \int_{\Omega} g'(x; y)(R \overline{\pi})(x) d\Omega_x,
$$

(5.8)

where $g'(x; y)$ is defined by the operator G'.

Let L^* be the adjoint operator of L such that

$$\nu(u, Lu)_{L^*} = \nu^*(L^* u, v) \quad \forall u, v \in V.
$$

(5.9)

We note that this equation represents the definition of the adjoint operator L^* and does not place any restriction on L. When L is self adjoint, we have the identity $L^* = L$, otherwise L^* and L are different. However, equation (5.9) holds in either case.

Using the definition of the adjoint (5.9) and the representation of the fine-scale solution
(5.7), the first sub-problem (5.4) can be restated as: find \(\overline{\mathbf{u}} \in \overline{V} \) such that

\[
\nu \langle \overline{\mathbf{v}}, \mathbf{L} \overline{\mathbf{u}} \rangle_{\mathcal{V}} + \nu \langle \mathbf{L}^* \overline{\mathbf{v}}, \mathcal{G}^* \mathcal{R} \overline{\mathbf{u}} \rangle_{\mathcal{V}} = \nu \langle \overline{\mathbf{v}}, f \rangle_{\mathcal{V}}, \quad \forall \overline{\mathbf{v}} \in \overline{V}.
\] (5.10)

We refer to this equation as the continuous variational multiscale formulation of the primal problem. For use in later derivations, we rewrite this formulation as:

\[
\nu \langle \mathbf{L}^* \overline{\mathbf{v}}, \mathcal{G}^* \mathcal{R} \overline{\mathbf{u}} \rangle_{\mathcal{V}} = \nu \langle \overline{\mathbf{v}}, \mathcal{R} \overline{\mathbf{u}} \rangle_{\mathcal{V}}, \quad \forall \overline{\mathbf{v}} \in \overline{V},
\] (5.11)

recalling the definition of the primal residual operator \(\mathcal{R} \mathbf{u} := f - \mathbf{L} \mathbf{u} \).

5.2.3 Subgrid Model

In practice, the continuous VMS model (5.10) is approximated by a finite element method. We refer to this approximate model as the subgrid model, as is common in the literature. The first step in this approximation is to choose the coarse-scale space to be a finite dimensional subspace, that is \(\overline{V} = \mathcal{V}^h \), and partition the domain \(\Omega \) into \(n_{el} \) non-overlapping finite element subdomains \(\Omega^e \) with boundaries \(\partial \Omega^e \) for \(e = 1, 2, \ldots, n_{el} \).

Next we note that an exact representation for the fine-scale Green’s function \(g'(x; y) \) (and the fine-scale Green’s operator \(\mathcal{G}' \)) is generally not obtainable. Thus, we must introduce an approximation for the fine-scale Green’s function to accurately represent the fine-scale solution (5.8). To this end, we introduce the so-called element-level Green’s function \(g^e(x; y) \), defined over element interiors as

\[
\begin{cases}
\mathbf{L}^* g^e(x; y) = \delta(x - y), & x \in \Omega^e, \\
g^e(x; y) = 0, & x \in \partial \Omega^e,
\end{cases}
\] (5.12)

such that \(g'(x; y) \approx g^e(x; y) \).

Note that this approximation assumes that the fine-scale solution \(u' \) vanishes on element boundaries \(\partial \Omega^e \). Hughes and Sangalli [91] show that, in one spatial dimension, the choice of an \(H^1 \) optimality condition \(\phi = \| \cdot \|_{H^1}^2 \) results in a completely local fine-scale Green’s function. That is, when \(d = 1 \), the \(H^1 \) optimality condition ensures the equivalence of the fine-scale Green’s function \(g'(x; y) \) and the element-level Green’s function \(g^e(x; y) \). This result provides justification for approximating the fine-scale Green’s function as the element-
level Green’s function and motivates us to only consider $\phi(\cdot) = \| \cdot \|_{H^1}$ in this work.

As a further simplification, we approximate the element-level Green’s function by its \textit{average} value over the element interior, and denote this value by τ^e, which can be expressed as:

$$
\tau^e = \frac{1}{\text{meas}(\Omega_e)} \int_{\Omega_e} \int_{\Omega_e} g^e(x; y) \, dx \, dy.
$$

(5.13)

We note that more accurate approximations for the element-level Green’s function can be made. For instance, Oberai and Pinsky [98] approximate the element-level Green’s function by a polynomial scalar function involving \textit{moments} of the element-level Green’s function. We leave investigation into this area as a consideration for future work.

With this final approximation, the subgrid model can be written as: find $u^h \in \mathcal{V}^h$ such that

$$
\nu \langle v^h, \mathcal{L} u^h \rangle_{\mathcal{V}^h} + \nu \nu \langle \mathcal{L}^* v^h, \tau^e \mathcal{R} u^h \rangle_{\mathcal{V}^h} = \nu \langle v^h, f \rangle_{\mathcal{V}^h}, \quad \forall v^h \in \mathcal{V}^h,
$$

(5.14)

or equivalently as: find $u^h \in \mathcal{V}^h$ such that

$$
\nu \nu \langle \mathcal{L}^* v^h, \tau^e \mathcal{R} u^h \rangle_{\mathcal{V}^h} = \nu \langle v^h, \mathcal{R} u^h \rangle_{\mathcal{V}^h}, \quad \forall v^h \in \mathcal{V}^h,
$$

(5.15)

where we have approximated the fine-scale solution over element interiors as

$$
u^|_{\Omega_e} \approx \tilde{u}^|_{\Omega_e} = \tau^e \mathcal{R} u^h.
$$

(5.16)

Here $\nu \langle \cdot, \cdot \rangle_{\mathcal{V}^h}$ denotes the ‘broken’ dual pairing over element interiors given by

$$
\nu \nu \langle u, v \rangle_{\mathcal{V}^h} = \sum_{e=1}^{n_{el}} \nu \nu \langle u, v \rangle_{\mathcal{V}^h},
$$

(5.17)

where we have denoted the dual pairing over a single element interior as

$$
\nu \nu \langle u, v \rangle_{\mathcal{V}^e} = \int_{\Omega_e} uv \, d\Omega.
$$

(5.18)

We emphasize that the approximations made to the fine-scale solution imply that the subgrid model (5.14) is an approximation to the continuous VMS formulation (5.10), which
in turn implies that the subgrid solution u^h is an approximation to the coarse-scale solution u. With this in mind, we can express the exact solution u as

$$u = u^h + u' + \tilde{u}$$

(5.19)

where $\tilde{u} = (\bar{u} - u^h) + (u' - \bar{u}')$ represents the approximation errors in the coarse and fine-scale solutions.

Remark 1. The finite element method is derived from the weak form of a partial differential equation that has been integrated by parts. Thus instead of the duality pairing used in equation (5.14) it makes use of the L_2 inner product, and the finite element subgrid model derived from the variational multiscale method is given by:

$$A(v^h, u^h) + (L^* v^h, \tau^e R u^h)_{\Omega} = l(v^h) \quad \forall v \in \mathcal{V}.$$

(5.20)

where $A(\cdot, \cdot)$ is the bilinear form associated with the operator L, $(\cdot, \cdot)_{\Omega}$ is the broken L_2 inner product defined on element interiors, and $l(\cdot)$ is the linear functional associated with the forcing function f.

5.3 The Dual Problem

5.3.1 Abstract Problem

Let $J(u) : \mathcal{V} \to \mathbb{R}$ be a linear functional corresponding to a physically meaningful quantity of interest. We assume that $J(u)$ can be expressed as

$$J(u) = \langle q, u \rangle_{\mathcal{V}},$$

(5.21)

where $q \in \mathcal{V}^*$. Following standard duality-based approaches for a posteriori error estimation [8], [15], [68], [99] we introduce the dual problem : find $z \in \mathcal{V}$ such that

$$\langle L^* z, v \rangle_{\mathcal{V}} = \langle q, v \rangle_{\mathcal{V}} \quad \forall v \in \mathcal{V}.$$

(5.22)
The equivalent strong form of the dual problem can be written as: find \(z \in \mathcal{V} \) such that

\[
\begin{align*}
\mathcal{L}^* z &= q, \quad x \in \Omega, \\
0 &= \mathcal{L}^* z, \quad x \in \partial \Omega.
\end{align*}
\] (5.23)

We define the residual operator \(\mathcal{R}^*: \mathcal{V} \to \mathcal{V}^* \) of the dual problem as \(\mathcal{R}^* z := q - \mathcal{L}^* z \).

5.3.2 VMS Formulation

If the primal problem necessitates the use of numerical stabilization, it is also likely that solving the dual problem (5.22) with a Galerkin finite element method will yield spurious oscillations in the dual solution [32]. To prevent non-physical behavior in the dual solution, we also solve the dual problem with a VMS method. Cyr et al. [32] call this approach the stabilization of the adjoint. This is in contrast to deriving a dual problem directly from the primal subgrid model (5.14), which Cyr et al. refer to as the adjoint of the stabilization.

Let \(\mathcal{V}_d \) and \(\mathcal{V}_0 \) be closed subspaces of \(\mathcal{V} \). Obtaining a VMS formulation for the dual problem proceeds in exactly the same manner as the primal problem. First a sum decomposition of the dual solution \(z \) is assumed such that \(z = \bar{z} + z' \), where \(\bar{z} \in \mathcal{V}_d \) and \(z' \in \mathcal{V}_0 \). The weak form of the dual problem (5.22) is then written as two sub-problems, whose solutions are uniquely determined by an optimality condition \(\phi_d(\cdot) \) imposed on the coarse-scale solution \(\bar{z} \). As with the primal model, we will only consider the \(H^1 \) optimality condition \(\phi_d(\cdot) = \| \cdot \|^2_{H^1} \). However, we note that one could potentially choose different optimality conditions for both the primal and dual problems. We leave investigation into this area as an open research topic.

The optimality condition defines a projector \(\mathcal{P}_d : \mathcal{V} \to \overline{\mathcal{V}}_d \) onto the coarse-scale subspace such that \(\mathcal{P}_d z' = 0 \), and this projector implicitly defines the fine-scale subspace as \(\overline{\mathcal{V}}_d = \{ v \in \mathcal{V} : \mathcal{P}_d v = 0 \} \). If we let \(\mathcal{G}_d \) denote the classical Green’s operator for the dual problem, such that \(\mathcal{G}_d = (\mathcal{L}^*)^{-1} \), then the fine-scale dual solution can be represented as:

\[
z' = \left(\mathcal{G}_d - \mathcal{G}_d \mathcal{P}_d^T \left(\mathcal{P}_d \mathcal{G}_d \mathcal{P}_d^T \right)^{-1} \mathcal{P}_d \mathcal{G}_d \right) \mathcal{R}^* \bar{z},
\] (5.24)

where \(\mathcal{G}_d' \) is the dual fine-scale Green’s operator. Similarly, the fine-scale solution can be
written in terms of the dual fine-scale Green’s function, \(g'_d(x; y) \), as:

\[
z'(y) = \int_{\Omega} g'_d(x; y) (R^\ast \bar{z})(x) \, d\Omega_x,
\]

(5.25)

where \(g'_d(x; y) \) is defined by the operator \(G'_d \). Using this representation of the fine-scale dual solution, the continuous variational multiscale formulation of the dual problem is stated as:

\[
\nu^\ast \langle L^\ast \bar{z}, \bar{v} \rangle_V + \nu \langle G'_d R^\ast \bar{z}, L\bar{v} \rangle_V = \nu^\ast \langle q, \bar{v} \rangle_V \quad \forall \bar{z} \in \overline{V}_d.
\]

(5.26)

Recalling the definition of the dual residual operator \(R^\ast := q - L^\ast \), we can rewrite equation (5.26) as:

\[
\nu \langle G'_d R^\ast \bar{z}, L\bar{v} \rangle_V = \nu^\ast \langle R^\ast \bar{z}, \bar{v} \rangle_V \quad \forall \bar{z} \in \overline{V}_d.
\]

(5.27)

5.3.3 Subgrid Model

To derive a corresponding subgrid model to the VMS formulation of the dual problem (5.26), we will assume that the coarse-scale spaces for the primal and dual problem are chosen to be the same, such that \(\overline{V} = \overline{V}_d \). Additionally, we will consider approximations made using the same finite dimensional subspace \(\overline{V} = \overline{V}^h \) and discretization as used for the primal subgrid model. We first approximate the dual fine-scale Green’s function \(g'_d(x; y) \) using the dual element-level Green’s function, defined over element interiors as

\[
\begin{align*}
\mathcal{L}_e g''_d(x; y) &= \delta(x - y), \quad x \in \Omega^e, \\
g''_d(x; y) &= 0, \quad x \in \partial \Omega^e
\end{align*}
\]

(5.28)

such that \(g'_d(x; y) \approx g''_d(x; y) \).

We further approximate the fine-scale dual solution \(z' \) by writing it as the product of a scalar function \(\tau'^{\ast}_d \) times the dual residual operating on the coarse-scale solution. The scalar function is given as:

\[
\tau'^{\ast}_d = \frac{1}{\text{meas}(\Omega^e)} \int_{\Omega^e} \int_{\Omega^e} g''_d(x; y) \, d\Omega_x \, d\Omega_y.
\]

(5.29)
The dual subgrid model can then be written as: find $z^h \in \mathcal{V}^h$ such that

$$
\nu \langle \mathcal{L}^* z^h, v^h \rangle_{\mathcal{V}} + \nu \langle \tau_d^e \mathcal{R}^* z^h, \mathcal{L} v^h \rangle_{\mathcal{V}} = \nu \langle q, v^h \rangle_{\mathcal{V}} \quad \forall v^h \in \mathcal{V}^h,
$$

(5.30)

or equivalently as: find $z^h \in \mathcal{V}^h$ such that

$$
\nu \langle \tau_d^e \mathcal{R}^* z^h, \mathcal{L} v^h \rangle_{\mathcal{V}} = \nu \langle \mathcal{R}^* z^h, v^h \rangle_{\mathcal{V}} \quad \forall v^h \in \mathcal{V}^h,
$$

(5.31)

where we have approximated the fine-scale dual solution over element interiors as

$$
z'|_{\Omega_e} \approx \tilde{z}'|_{\Omega_e} = \tau_d^e \mathcal{R}^* z^h.
$$

(5.32)

We note that the exact dual solution can be expressed as the sum

$$
z = z^h + \tilde{z}' + \tilde{z},
$$

(5.33)

where $\tilde{z} = (z - z^h) + (z' - \tilde{z}')$ represents the approximation errors in the coarse and fine-scale solutions.

Remark 2. The finite element version of the dual subgrid model corresponding to equation (5.30) is written using the L_2 inner product as:

$$
A(z^h, v^h) + (\tau_d^e \mathcal{R}^* z^h, \mathcal{L} v^h)_{\Omega} = J(v^h) \quad \forall v \in \mathcal{V}^h,
$$

(5.34)

where $A(\cdot, \cdot)$ is the bilinear form associated with the operator \mathcal{L}, and $(\cdot, \cdot)_{\Omega}$ is the broken L_2 inner product defined on element interiors.

5.4 Error Estimation

In this section, we develop a general framework for output-based error estimation in VMS methods. We first develop two error representations for output quantities in the continuous VMS setting. Next, we discuss the role of the approximations made in both the primal and dual subgrid models. Finally, we introduce two error estimates for output quantities. We prove that the error estimates are identical. However, we demonstrate the superiority of one estimate over the other in the context of error localization needed to drive
mesh adaptation.

5.4.1 Continuous VMS Error Representations

Proposition 1. For any solution \(u = u' + \bar{u} \) to the continuous VMS formulation (5.10), we have the error representation

\[
E_1 = J(u) - J(\bar{u}) = J(u').
\]

(Proof. The result follows directly from the linearity of \(J(\cdot) \) and the sum decomposition \(u = u' + \bar{u} \). \)

This error representation is used by Hauke and Fuster [97] to derive an explicit *a posteriori* error estimate for output quantities. The error estimate only involves an approximation \(\bar{u}' \) to the fine-scale solution \(u' \) and completely avoids the solution of a dual problem. However, when \(q \) is chosen to be a *local* forcing function for the dual problem (e.g. a function which is non-zero only over a subdomain of the total domain), error estimates derived from this representation fail to provide useful information when they are localized to the element level. Such error localization is critical to drive mesh adaptation and is discussed in detail later.

Proposition 2. For any solutions \(u = u' + \bar{u} \) to the continuous VMS formulation (5.10) and \(z = z' + \bar{z} \) to the continuous dual VMS formulation (5.26), we have the error representation

\[
E_2 = J(u) - J(\bar{u}) = \nu (G'_d R^* \bar{z}, R\bar{u})_\nu + \nu (L^* \bar{z}, G' R\bar{u})_\nu.
\]

(5.36)
Proof.

\[J(u) - J(\pi) = \langle q, u \rangle_{\mathcal{V}} - \langle q, \pi \rangle_{\mathcal{V}} \]

by (5.21)

\[= \langle \mathcal{L}^* z, u \rangle_{\mathcal{V}} - \langle \mathcal{L}^* z, \pi \rangle_{\mathcal{V}} \]

by (5.22)

\[= \langle z, \mathcal{L} u \rangle_{\mathcal{V}^*} - \langle z, \mathcal{L} \pi \rangle_{\mathcal{V}^*} \]

by (5.9)

\[= \langle z, f \rangle_{\mathcal{V}^*} - \langle z, \mathcal{L} \pi \rangle_{\mathcal{V}^*} \]

by (5.2)

\[= \langle z, \mathcal{R} \pi \rangle_{\mathcal{V}^*} \]

by definition, linearity

\[= \langle z', \mathcal{R} \pi \rangle_{\mathcal{V}^*} + \langle \mathcal{L}^* z, \mathcal{R} \pi \rangle_{\mathcal{V}^*} \]

by definition, linearity

\[= \langle z', \mathcal{R} \pi \rangle_{\mathcal{V}^*} + \langle \mathcal{L}^* z, \mathcal{G} \mathcal{R} \pi \rangle_{\mathcal{V}} \]

by (5.11)

\[= \langle \mathcal{G}' \mathcal{R}^* z, \mathcal{R} \pi \rangle_{\mathcal{V}^*} + \langle \mathcal{L}^* z, \mathcal{G}' \mathcal{R} \pi \rangle_{\mathcal{V}} \] .

by (5.24)

This error representation suggests a general approach to output-based error estimation for VMS methods, where the only approximation made to this point is that the coarse-scale subspace for the primal and dual problems are equal, such that \(\mathcal{V} = \mathcal{V}_d \). To derive computable error estimates, exact representations or approximations must be known for the fine-scale Green’s operators and the coarse-scale solutions for both the primal and dual problems.

5.4.2 Subgrid Model Error Representations

We now derive error representations that arise by introducing the approximations made in the primal and dual subgrid models.

Proposition 3. For any solutions \(u \) to the primal model (5.2) and \(u^h \) to the primal subgrid model (5.14), we have the error representation

\[\hat{E}_1 = J(u) - J(u^h) = \langle q, \mathcal{R} u^h \rangle^\Omega_{\mathcal{V}} + \langle q, \bar{u} \rangle_{\mathcal{V}} . \]

(5.37)
Proof.

\[J(u) - J(u^h) = \nu \langle g, u \rangle_V - \nu \langle g, u^h \rangle_V \]
by (5.21)
\[= \nu \langle g, u - u^h \rangle_V \]
by linearity
\[= \nu \langle g, \tilde{u}' + \tilde{u} \rangle_V \]
by (5.19)
\[= \nu \langle g, \tilde{u}' \rangle_V + \nu \langle g, \tilde{u} \rangle_V \]
by linearity
\[= \nu \langle g, \tau^e R u^h \rangle_\Omega' + \nu \langle g, \tilde{u} \rangle_V. \]
by (5.16)

\[\square \]

Proposition 4. For any solutions \(u \) to the primal model (5.2), \(z \) to the dual model (5.22), \(u^h \) to the primal subgrid model (5.14) and \(z^h \) to the dual subgrid model (5.30), we have the error representation

\[\hat{E}_2 = J(u) - J(u^h) \]
\[= \nu \langle \tau^e R^* z^h, R u^h \rangle_\Omega' + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' + \nu \langle \tilde{z}, R u^h \rangle_{\nu^*}. \]

(5.38)

Proof.

\[J(u) - J(u^h) \]
\[= \nu \langle g, u \rangle_V - \nu \langle g, u^h \rangle_V \]
by (5.21)
\[= \nu \langle \mathcal{L}^* z, u \rangle_V - \nu \langle \mathcal{L}^* z, u^h \rangle_V \]
by (5.22)
\[= \nu \langle z, \mathcal{L} u \rangle_{\nu^*} - \nu \langle z, \mathcal{L} u^h \rangle_{\nu^*} \]
by (5.9)
\[= \nu \langle z, f \rangle_{\nu^*} - \nu \langle z, L u^h \rangle_{\nu^*} \]
by (5.2)
\[= \nu \langle z, R u^h \rangle_{\nu^*} \]
by definition
\[= \nu \langle z, R u^h \rangle_{\nu^*} - \nu \langle z, R u^h \rangle_{\nu^*} + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' \]
by (5.15)
\[= \nu \langle z - z^h, R u^h \rangle_{\nu^*} + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' \]
by linearity
\[= \nu \langle z', \tilde{z}, R u^h \rangle_{\nu^*} + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' \]
by (5.33)
\[= \nu \langle \tilde{z}', \tilde{z}, R u^h \rangle_{\nu^*} + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' + \nu \langle \tilde{z}, R u^h \rangle_{\nu^*} \]
by linearity
\[= \nu \langle \tau^e R^* z^h, R u^h \rangle_\Omega' + \nu \langle \mathcal{L}^* z^h, \tau^e R u^h \rangle_\Omega' + \nu \langle \tilde{z}, R u^h \rangle_{\nu^*}. \]
by (5.32)

\[\square \]
5.4.3 Subgrid Model Error Estimates

In general, the approximation errors \tilde{u} and \tilde{z} are unknown. This suggests the error estimates $\eta_1 \approx \hat{E}_1$ and $\eta_2 \approx \hat{E}_2$ that are obtained by setting $\tilde{u} = 0$ in (5.37) and $\tilde{z} = 0$ in (5.38), and are given below:

\[
\eta_1 = \nu \langle q, \tau^e \mathcal{R}u^h \rangle_{\Omega'}, \tag{5.39}
\]

\[
\eta_2 = \nu \langle \tau^e \mathcal{R}^* z^h, \mathcal{R}u^h \rangle_{\Omega'} + \nu \langle \mathcal{L}^* z^h, \tau^e \mathcal{R}u^h \rangle_{\Omega'}. \tag{5.40}
\]

Proposition 5. For any solutions u^h to the primal subgrid model (5.14) and z^h to the dual subgrid model (5.30) the error estimates η_1 and η_2 are identical.

Proof. Note that if the stabilization parameters τ^e and τ_d^e for the primal and dual problems are equal, we obtain the desired result since

\[
\eta_2 = \nu \langle \tau^e \mathcal{R}^* z^h, \mathcal{R}u^h \rangle_{\Omega'} + \nu \langle \mathcal{L}^* z^h, \tau^e \mathcal{R}u^h \rangle_{\Omega'} \quad \text{by assumption}
\]

\[
= \nu \langle \mathcal{R}^* z^h + \mathcal{L}^* z^h, \tau^e \mathcal{R}u^h \rangle_{\Omega'} \quad \text{by linearity}
\]

\[
= \nu \langle q, \tau^e \mathcal{R}u^h \rangle_{\Omega'} \quad \text{by definition}
\]

\[
= \eta_1.
\]

Using the given definitions (5.13) and (5.29), we note that a sufficient condition for the equality $\tau^e = \tau_d^e$ is: $g^e(x; y) = g_d^e(y; x)$. This is verified via the following argument:

\[
\mathcal{L}^* g^e(x; y) = \delta(x - y) \quad \text{by (5.12)}
\]

\[
\implies \int_{\Omega^e} g_d^e(x; z) \mathcal{L}^* g^e(x; y) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega
\]

\[
\implies \int_{\Omega^e} \mathcal{L} g_d^e(x; z) g^e(x; y) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega
\]

\[
\implies \int_{\Omega^e} \delta(x - z) g^e(x; y) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega \quad \text{by (5.28)}
\]

\[
\implies g^e(z; y) = g_d^e(y; z).
\]

Here we remark that the identity (5.9) holds for arbitrary smooth domains Ω and for a
function space \mathcal{V} whose members vanish on the boundary $\partial \Omega$. As such, we employ the element-level identity:

\[\mathcal{V}(v, \mathcal{L}u)^{\Omega^e}_{\mathcal{V}} = \mathcal{V} \langle \mathcal{L}^* v, u \rangle^{\Omega^e}_{\mathcal{V}} \quad \forall u, v \in \mathcal{V}^e \]

(5.41)

to derive the third equality above, where $\mathcal{V}^e = \{ u \in \mathcal{V} : u = 0 \text{ on } \partial \Omega^e \}$.

5.4.4 Error Localization

We now demonstrate that even though η_1 and η_2 are identical global error estimates, their localization to element-level error estimates is very different. This localization yields positive values at the element level called error indicators which are necessary to drive mesh adaptation. We compute error indicators by bounding the two error estimates η_1 and η_2 from above using the triangle inequality, such that:

\[|\eta_1| \leq \sum_{e=1}^{n_{el}} \eta^e_1, \]

(5.42)

and

\[|\eta_2| \leq \sum_{e=1}^{n_{el}} \eta^e_2. \]

(5.43)

Here the error indicator for the error estimate η_1 is given as

\[\eta^e_1 = |\mathcal{V} \langle q, \mathcal{R} u^h \rangle^{\Omega^e}_{\mathcal{V}} |, \]

(5.44)

and the error indicator for the error estimate η_2 is given as

\[\eta^e_2 = |\mathcal{V} \langle \mathcal{R}^* z^h, \mathcal{R} u^h \rangle^{\Omega^e}_{\mathcal{V}} | + |\mathcal{V} \langle \mathcal{L}^* z^h, \mathcal{R} u^h \rangle^{\Omega^e}_{\mathcal{V}} |. \]

(5.45)

Note that the indicator η^e_1 is only non-zero over elements for which the dual forcing function $q|_{\Omega^e}$ is non-zero. This indicates that only elements for which $q|_{\Omega} \neq 0$ provide contributions to the error $J(u) - J(u^h)$, which is generally not true. As a thought experiment, consider an advective problem for which the dual forcing function q is defined to be 1 over some subdomain $\Omega^s \subset \Omega$ and 0 elsewhere. Any discretization errors introduced upstream of
the subdomain Ω^s will be propagated via advection to the subdomain itself, thus affecting the accuracy of the computed output quantity. However, the indicator η_1^e will indicate that the elements upstream of the subdomain provide no contributions to the output error, as these elements are located outside of the subdomain Ω^s, whereas this would not be the case for η_2^e.

5.5 Mesh Adaptation

Mesh adaptation provides a means to modify the spatial discretization of a PDE to obtain greater solution accuracy with a given amount of computing power. Presently, we make use of conformal unstructured local mesh modification that performs sequences of edge splits, swaps, and collapses [41] [40] using the PUMI [33] software suite. Mesh adaptation is driven by the concept of a mesh size field, which defines element edge lengths at all locations in the mesh. The mesh size field is determined by the localized error indicators to perform mesh refinement in areas that strongly contribute to the error and perform mesh coarsening in areas that do not strongly contribute to the error.

5.5.1 Size Field Specification

Let N be a desired target number of mesh elements. Let η^e denote a computed element-level error indicator defined for all $e = 1, 2, \ldots, n_{el}$. Let p be the expected polynomial order of convergence for a chosen finite element method. Following Boussetta et al. [54], we utilize a size field specification that aims to provide an output adapted mesh with N elements. First, we define the global quantity G as

$$G = \sum_{e}^{n_{el}} (\eta^e)^{\frac{2d}{2p+d}}. \quad (5.46)$$

Once G has been computed, new element-level sizes h_{new}^e are determined by scaling the previous element size h_e according to the formula

$$h_{\text{new}}^e = \left(\frac{G}{N} \right)^{\frac{1}{d}} (\eta^e)^{\frac{2}{2p+d}} h^e. \quad (5.47)$$

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we prescribe that the new element size be no smaller than half the previous element size and no greater
than twice the previous element size.

\[\frac{1}{2} \leq \frac{h_{\text{new}}}{h_{e}} \leq 2. \]

(5.48)

5.6 Results

In this section, we investigate output-based error estimation and mesh adaptation as applied to a model scalar, steady state advection diffusion problem, defined by the linear operator

\[\mathcal{L} := -\kappa \nabla^2 + a \cdot \nabla. \]

(5.49)

Here, \(\kappa \) is a coefficient corresponding to the diffusivity strength and \(a \) is a coefficient corresponding to the advective transport. The adjoint operator is readily found (see B.2) to be

\[\mathcal{L}^* = -\kappa \nabla^2 - a \cdot \nabla, \]

(5.50)

which is simply another advection-diffusion operator with the advective direction opposite that of the original operator. The bilinear form \(A(\cdot, \cdot) \) associated with the operator \(\mathcal{L} \) is given as

\[A(v, u) = (\nabla v, \kappa \nabla u) + (v, a \cdot \nabla u) \]

(5.51)

where \((\cdot, \cdot) \) denotes the \(L_2 \) inner product.

The mesh Peclét number \(\alpha \) is given by \(\alpha := \frac{h|a|}{2\kappa} \), where \(h = \text{meas}(\Omega_e) \) is a characteristic measure of the mesh element size. In one dimension, the stabilization parameter \(\tau_e \) is given [90] as:

\[\tau_e = \frac{h}{2|a|} (\coth \alpha + \frac{1}{\alpha}). \]

(5.52)

The parameter \(\tau_e \) exactly solves (5.13) in one spatial dimension, but we emphasize that utilizing this parameter in two spatial dimensions introduces yet another approximation to the fine-scale solution.
For a chosen functional output quantity $J(u)$, the effectivity index is defined as

$$I = \frac{J(u) - J(u_h)}{\eta},$$

(5.53)

the ratio of the exact error to the estimated error. The effectivity index provides a measure of the degree to which the error is underestimated. An effectivity index of $I = 1$ is desirable, as it indicates the error estimate has exactly recovered the error.

For each numerical example, the primal and dual problems are solved using the same finite element discretization. That is the same finite element basis functions and the same finite element mesh are used to solve the primal and dual problems. The mesh used in each example consists of simplical elements in one or two dimensions, and the finite element subspace \mathcal{V}^h is defined by piecewise linear Lagrange shape functions. The primal problem is given by equation (5.20) and the dual problem is given by equation (5.34), where we emphasize that homogeneous Dirichlet boundary conditions are applied to both the primal and dual problems. Finally, we note that we have provided B.3 to concretely demonstrate the propositions derived in Section 5.4.

5.6.1 One Dimensional Example

Let $\Omega = \{x : x \in [0, 1]\}$. We choose the forcing function for the primal to be $f = 1$, and the functional quantity of interest $J(u) = \int_{\Omega} u \, d\Omega$, such that $q = 1$ for the dual problem. The diffusivity coefficient is chosen to be $\kappa = 0.001$ and the advective coefficient $a = 1$. The exact solution to the primal PDE (5.1) is

$$u(x) = \frac{1}{a} \left(x - \frac{\exp(ax)}{\exp(\frac{a}{\kappa})} - 1 \right),$$

(5.54)

and the exact value for the chosen quantity of interest is $J(u) = 0.499$.

We investigate the accuracy of the error estimate obtained by $\eta = \eta_1 = \eta_2$. Table 5.1 shows the computed functional quantity of interest and the effectivity indices for the one-dimensional problem solved on meshes with n_{el} elements with mesh size $h = \frac{1}{n_{el}}$. For each chosen mesh size, the effectivity index is exactly one meaning the error estimate η exactly recovers the output error. It is well known (c.f. [90]) that our choice of τ^e results in a solution u^h that is nodally exact. For this reason, it is unsurprising that the output error is exactly recovered for this example.
Table 5.1. Effectivity indices for a 1D advection-diffusion example with a global QoI.

<table>
<thead>
<tr>
<th>n_{el}</th>
<th>α</th>
<th>$J(u^h)$</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.000e+01</td>
<td>4.5000e-01</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td>2.500e+01</td>
<td>4.7500e-01</td>
<td>1.000</td>
</tr>
<tr>
<td>40</td>
<td>1.250e+01</td>
<td>4.8750e-01</td>
<td>1.000</td>
</tr>
<tr>
<td>80</td>
<td>6.250e+00</td>
<td>4.9375e-01</td>
<td>1.000</td>
</tr>
<tr>
<td>160</td>
<td>3.125e+00</td>
<td>4.9686e-01</td>
<td>1.000</td>
</tr>
</tbody>
</table>

5.6.2 A Manufactured Solution

Let $\Omega = \{x : x \in [0, 1] \times [0, 1]\}$. Let e_i and e_j be unitary vectors in the x and y directions, respectively. We choose the advective coefficient to be $a = e_i + e_j$, the diffusive coefficient to be $\kappa = 0.001$, and the forcing function f such that the exact solution is given by

$$u(x, y) = \sin(\pi x)\sin(\pi y).$$

(5.55)

The quantity of interest is chosen to be $J(u) = \int_{\Omega} u \, d\Omega$, such that the dual forcing function is $q = 1$. The exact value of the quantity of interest is $J(u) = \frac{4}{\pi^2} \approx 0.405284$. Again, we investigate the effectivity of the error estimate $\eta = \eta_1 = \eta_2$ for meshes with uniformly n_{el} uniformly distributed triangular elements. Table 5.2 shows effectivity indices obtained for various meshes. As the mesh size decreases and the number of elements increases, the effectivity index tends to one.

Table 5.2. Effectivity indices for a 2D advection-diffusion example with a global QoI.

<table>
<thead>
<tr>
<th>n_{el}</th>
<th>$J(u^h)$</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>4.0493e-01</td>
<td>1.083</td>
</tr>
<tr>
<td>800</td>
<td>4.0512e-01</td>
<td>1.023</td>
</tr>
<tr>
<td>3200</td>
<td>4.0521e-01</td>
<td>1.009</td>
</tr>
<tr>
<td>12800</td>
<td>4.0525e-01</td>
<td>1.004</td>
</tr>
<tr>
<td>51200</td>
<td>4.0527e-01</td>
<td>1.001</td>
</tr>
</tbody>
</table>
5.6.3 Advection in an L-Shaped Domain

Let \(\Omega = \{ x : x \in [0,1] \times [0,1] \cup [0,1] \times [-1,0] \cup [-1,0] \times [0,1] \} \). Let \(e_i \) and \(e_j \) be unitary vectors in the \(x \) and \(y \) direction, respectively. We choose the advective coefficient to be \(a = -e_i + e_j \), the diffusive coefficient to be \(\kappa = 0.001 \), and the forcing function \(f = 1 \). We investigate adaptivity for two output quantities: \(J_1(u) = \int_\Omega u \, d\Omega \) and \(J_2(u) = \int_\Omega q_2 u \, d\Omega \), where \(q_2 \) is defined as

\[
q_2 := \begin{cases}
1 & \text{if } -0.95 \leq x \leq -0.5 \text{ and } 0.5 \leq y \leq 0.95 \\
0 & \text{otherwise.}
\end{cases}
\] (5.56)

That is, \(q_2 \) samples the solution \(u^h \) on a square patch in the upper right corner of the domain \(\Omega \). The primal solution \(u^h \) and the dual solutions corresponding to the two quantities of interest are shown in Figure 5.1. Note that the primal solution contains steep gradients at the two left-most surfaces and the upper surface of the L-shaped domain.

![Fig. 5.1. The primal solution \(u^h \) (left) and the dual solutions \(z^h \) corresponding to \(J_1(u) \) (center) and \(J_2(u) \) (right).](image)

We investigate the ability of four adaptive schemes to accurately assess the two functional quantities. Each scheme proceeds by iteratively performing the steps

Solve primal PDE \(\rightarrow \) Localize error \(\rightarrow \) Adapt mesh.

The first adaptive scheme, referred to as UNIF, remeshes the entire domain with a uniform size field. For the two output quantities, errors are computed for the meshes generated with the mesh sizes \(h = \{ \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64} \} \). In principle, the step to localize the error is not required for this scheme.

For comparison to more traditional energy-based methods, the second adaptive scheme
is chosen based on a Zienkiewicz-Zhu type error estimate [100] [101], whereby error indicators are computed as the difference between solution gradients ∇u^h that are discontinuous between elements and a nodally smoothed approximation to the gradient $(\nabla u^h)^*$ that is obtained via a least-squares fit over a patch of elements. Once error indicators are computed, the size field is set according to the size field equation (5.47) such that the target number of elements N is twice the number of elements in the previous mesh. We refer to this scheme as the superconvergent patch recovery (SPR) adaptive scheme.

The third and fourth adaptive schemes are based on the error indicators η_1^e and η_2^e, respectively, and are referred to as the VMS1 and VMS2 adaptive schemes, respectively. Again, once the error indicators have been computed, the size field is set according to the size field equation (5.47) such that the target number of elements N is twice the number of elements in the previous mesh. We note that the scheme VMS2 is the only one which necessitates the solution of the dual PDE model, which is implicitly included in the ‘Localize error’ step.

![Fig. 5.2. Initial meshes for the outputs $J_1(u)$ (left) and $J_2(u)$ (right).](image)

For each quantity of interest, an initial mesh with a uniform size of $h = \frac{1}{4}$ was generated as shown in Figure 5.2. From this initial mesh, each adaptive scheme was run until meshes with over 10,000 degrees of freedom were produced. The exact values of the two output quantities were computed on ‘truth’ meshes, which are finer at every spatial location in the domain when compared to the meshes obtained via the four adaptive schemes. The values of the quantities of interest were found to be $J_1(u) = 1.6588688371$ and $J_2(u) = 0.23109653499$.

Figure 5.3 shows the meshes obtained at the final iteration of the SPR, VMS1, and VMS2 adaptive schemes for the global output quantity $J_1(u)$. As expected, the SPR scheme strongly refines the mesh in areas where the gradient changes drastically. These areas include
Fig. 5.3. Final adapted meshes for the output $J_1(u)$ using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes.

Fig. 5.4. Convergence history for various adaptive schemes for the output $J_1(u)$.

The left-most and upper-most surfaces of the L-shaped domain where boundary layers in the solution exist, as well as the diagonal downstream of the reentrant corner where there is a sudden change in the solution magnitude. In addition to performing mesh refinement in the areas that the SPR scheme targets, the VMS1 and VMS2 also refine the mesh along the diagonal upstream of the reentrant corner to accurately resolve features of the dual solution z^h. For the global quantity $J_1(u)$, the VMS1 and VMS2 schemes yield final
meshes with very similar characteristics. At each iteration in the adaptive schemes, the output error $|J_1(u) - J_1(u^h)|$ was computed. Figure 5.4 displays the convergence histories for each adaptive scheme. Unsurprisingly, the VMS1 and VMS2 adaptive schemes compute the output error more accurately than the SPR and UNIF with a comparable number of degrees of freedom.

Fig. 5.5. Final adapted meshes for the output $J_2(u)$ using the SPR (left), VMS1 (center), and VMS2 (right) adaptive schemes.

Fig. 5.6. Convergence history for various adaptive schemes for the output $J_2(u)$.

Figure 5.5 displays the output meshes at the final iteration of the SPR, VMS1, and
VMS2 adaptive schemes for the local output quantity $J_2(u)$. Again, it is clear that the SPR strongly refines the mesh in areas where the gradient changes drastically. The VMS1 scheme only performs mesh refinement over the square subdomain over which q_2 is non-zero and does not seek accurately resolve the mesh to capture features of the primal or dual solutions. In contrast, the VMS2 strongly refines the mesh over the square subdomain of interest, while also resolving areas upstream of the domain to accurately account for the features of the primal and dual solutions. For the output quantity $J_2(u)$, convergence histories for each adaptive scheme are shown in Figure 5.6. It is clear from both the convergence diagram and final adapted mesh for the VMS1 scheme that the VMS1 scheme is completely insufficient to drive mesh adaptation for a locally defined output quantity. On the other hand, the VMS2 adaptive scheme is able to compute the output quantity with much greater accuracy than the UNIF and SPR schemes when using a comparable number of degrees of freedom.

5.7 Conclusions

For VMS methods, we have proposed a novel approach to enriching the dual solution for duality-based functional error estimation using VMS techniques. We have demonstrated the utility of this technique to drive mesh adaptation to accurately compute output quantities. Future work includes investigating the effect of choosing different optimality conditions $\phi(\cdot)$ and $\phi_d(\cdot)$ for the primal and dual problems, respectively, extending error estimates to account for nonlinearities in both the PDE model and in the functional output quantity, investigating the effect of utilizing more accurate approximations to the fine-scale primal and dual solutions, and extending the arguments presented to a mixture of non-homogeneous Dirichlet and Neumann boundary conditions.
CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We have presented an automated approach for adjoint-based error estimation and mesh adaptation to approximate and control the discretization error associated with functional quantities. In scenarios when these functional quantities correspond to physically meaningful outputs, such as the average von-Mises stress over a sub-domain, we have demonstrated that this approach can provide effective error estimates and meaningfully adapt the mesh to reduce the functional discretization error. In particular, we have developed and implemented this approach to be applicable to stabilized finite element methods and have demonstrated its ability to effectively estimate and control errors in a variety of applications in solid mechanics. Importantly, we have demonstrated that this approach is applicable to applications with complex three-dimensional geometries. Further, we have demonstrated the ability of this approach to execute effectively on parallel machines. We have extended the automated approach to investigate two novel strategies for solving adjoint problems on non-uniformly refined nested meshes. Finally, we have developed and investigated a novel approach for adjoint-based error estimation and mesh adaptation in the context of variational multiscale finite element methods. For the purposes of mesh adaptation, we have demonstrated the superiority of this approach when compared to a previously developed error estimate.

6.2 Future Work

6.2.1 Higher Order Finite Element Methods

In this work, we have preferred to utilize low-order stabilized finite element methods to provide numerical stability in solid mechanics applications with incompressibility constraints. Taylor-Hood type elements provide another approach to develop stable discretizations in the finite element method, where displacements are represented with basis functions of order $p + 1$ and pressures are represented with basis functions of order p. This leads to a more involved finite element assembly process. The techniques used in the Goal application could be extended to accommodate such elements to allow for the investigation of adjoint-based
error estimation and mesh adaptation for higher-order finite element methods.

6.2.2 Extending Capabilities to Quasi-Steady/Transient Problems

The examples presented in this work have been either steady-state examples or quasi-steady examples loaded in a single load step. The Goal application currently has the ability to perform multiple load steps and solve the adjoint problem either at the end of each load step or at the end of the total number of load steps to estimate errors in functional quantities of interest. This approach is mathematically valid for constitutive models that lack history-dependent variables, such as neo-Hookean elasticity. However, for constitutive models with history dependence, an error is introduced by the choice of step size, even if the problem is not truly transient. A natural extension of the current work is to consider multiple quasi-steady load steps for constitutive models with history-dependent variables and truly transient problems with inertial terms included in the balance of linear momentum residual. In these scenarios, the mathematical analysis requires the adjoint problem to be solved backwards in time. In parallel, the effective implementation of such a backwards in time adjoint problem is an ongoing research topic in the CFD community.

6.2.3 Extending VMS Techniques for Solid Mechanics

We have developed and investigated enriching the adjoint solution with variational multiscale (VMS) techniques and estimating errors in linear functional QoIs in the context of a linear advection-diffusion model problem. These techniques should be analysed in the context of nonlinear variational problems and QoIs. In the Goal application, we have additionally included the ability to solve the adjoint problem on the same finite element space as used for the primal problem. This provides a convenient pretext to implement VMS adjoint enrichment routines in the Goal application, and investigate error estimates obtained as such.
REFERENCES

APPENDIX A
FORWARD AUTOMATIC DIFFERENTIATION

A.1 Introduction

Automatic differentiation (AD) is a useful technique to computationally evaluate analytic derivatives (to machine precision) of a given function. Numerical software is necessarily executed as a sequence of elementary operations, and AD operates by applying the chain rule to this sequence of elementary operations. There are two standard modes of AD, forward and reverse, as well as two methods of implementing the technique, operator overloading and source code transformation. Presently, we consider the forward mode of automatic differentiation using operator overloading in the context of the C++ programming language. For an excellent comprehensive overview of automatic differentiation, see [45].

A.2 Forward AD with Operator Overloading

C++ provides the capability to overload standard operators such as +, −, ⋅, and / for custom data types. In scientific computing, operator overloading is convenient in that it allows developers the ability to program using a notation much closer the the target mathematical notation. A common example in scientific computing is the use of operator overloading to implement matrix multiplication. Say we have defined a C++ dense matrix container called MyMatrix. Using operator overloading, a developer can define matrix multiplication specific behavior for the ⋅ operator for the MyMatrix variable. Listing A.1 demonstrates the convenience of using operator overloading to multiply two MyMatrix objects.

Listing A.1. Using operator overloading for a custom matrix class.

1 MyMatrix A = ...
2 MyMatrix B = ...
3 MyMatrix C = A*B;

In the forward mode AD, a C++ class variable container is defined that stores both a scalar value x that corresponds the value of the variable and a derivative array x' that corresponds the values of derivatives of the variable with repect to chosen independent variables. The computer program is then written in terms of these AD variables. At the beginning
<table>
<thead>
<tr>
<th>Operation</th>
<th>Derivative rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c = a \pm b$</td>
<td>$c' = a' \pm b'$</td>
</tr>
<tr>
<td>$c = ab$</td>
<td>$c' = ab' + ba'$</td>
</tr>
<tr>
<td>$c = a/b$</td>
<td>$c' = (a'b - b'a)/b^2$</td>
</tr>
<tr>
<td>$c = \sin(a)$</td>
<td>$c' = \cos(a)a'$</td>
</tr>
<tr>
<td>$c = \cos(a)$</td>
<td>$c' = -\sin(a)a'$</td>
</tr>
<tr>
<td>$c = \exp(a)$</td>
<td>$c' = \exp(a)a'$</td>
</tr>
<tr>
<td>$c = \log(a)$</td>
<td>$c' = a'/a$</td>
</tr>
</tbody>
</table>

of the program, appropriate AD variables are initialized to their appropriate values, and seeded. Seeding refers to appropriately setting the derivative array of the AD variables. For example, the i^{th} variable in a system of n independent variables could be represented as:

$$x_i \begin{bmatrix} \frac{\partial x_i}{\partial x_1}, \frac{\partial x_i}{\partial x_2}, \ldots, \frac{\partial x_i}{\partial x_n} \end{bmatrix}, \quad (A.1)$$

where x_i is the variable value and the terms contained in the brackets represent the AD variable’s derivative array. To appropriately seed the derivative array, all values then become zero except for the i^{th} component, which becomes 1.

$$x_i \begin{bmatrix} 0, 0, \ldots, 1, \ldots, 0, 0 \end{bmatrix}. \quad (A.2)$$

Over the course of the execution of the software program, intermediate derivative arrays are updated via operator overloading when a new operator is encountered. The operators are overloaded with definitions from basic calculus rules. For example, the result for the derivative array of an AD variable a times another AD variable b using the overloaded \cdot operator would result in

$$a \cdot b \begin{bmatrix} a' \cdot b + a \cdot b' \end{bmatrix}, \quad (A.3)$$

where the resultant value of the AD variable is simply the multiplied value $a \cdot b$, but the derivative array is updated according to the product rule. Here $a' \cdot b$ is the scalar value of the AD variable b times a’s derivative array and $a \cdot b'$ is the scalar value of a times b’s derivative array.

Now, if we program the computation of a given function $f(x_i), i = 1, 2, \ldots, n$, with AD variables, we necessarily obtain both the value of the function f and its gradient $\nabla f = f'$.
This is by virtue of the fact that derivatives have been propagated forward through the code from the *seed* point to the evaluation of \(f \).

From an implementation point of view, automatic differentiation via operator overloading is attractive in that existing codes can be easily modified to obtain gradient information. For example, consider a code that uses doubles for all of its evaluation types. A developer could simply replace appropriate instances of ‘double’ in the code with the appropriate AD type name. Through very little development cost, gradient information is obtained.

A.3 A Simple Example

To further illustrate the concept of forward AD, we present a simple example using Sandia’s Sacado automatic differentiation library and examine it in depth. Listing A.2 presents a simple example of the computation of three functions using forward automatic differentiation and displays the resulting values and gradients of the evaluated functions.

Listing A.2. A simple forward AD example.

```cpp
#include <Sacado.hpp>
typedef Sacado::Fad::DFad<double> FAD;
FAD f(FAD x, FAD y) { return x + y; }
FAD g(FAD x, FAD y) { return x * y; }
int main() {
    FAD x = 2.0;
    FAD y = 3.0;
    x.diff(0,2);
    y.diff(1,2);
    std::cout << x << std::endl;
    std::cout << y << std::endl;
    std::cout << f(x,y) << std::endl;
    std::cout << g(x,y) << std::endl;
    std::cout << f(x,y) * g(x,y) << std::endl;
}
```

Line 1 includes the Sacado header, which is an automatic differentiation library developed by Sandia National Laboratories. Line 2 declares the forward AD type to be called
FAD. Line 3 declares \(f \) to be the sum of two AD variables \(x \) and \(y \). Line 4 declares \(g \) to be the product of two AD variables \(x \) and \(y \). Line 10 initializes the AD variable \(x \) to a value of 2 and line 12 seeds \(x \) to be the 1st variable in a system of 2 independent variables. Line 11 initializes the AD variable \(y \) to a value of 3 and line 13 seeds \(y \) to be the 2nd variable in a system of 2 independent variables. Lines 14-18 print the results of evaluating various functions.

The output from this simple example program is shown below:

\[
\begin{align*}
x & : \quad 2 \ [\ 1 \ 0 \] \\
y & : \quad 3 \ [\ 0 \ 1 \] \\
f & : \quad 5 \ [\ 1 \ 1 \] \\
g & : \quad 6 \ [\ 3 \ 2 \] \\
f \cdot g & : \quad 30 \ [\ 21 \ 16 \]
\end{align*}
\]

Naturally, the value of \(x = 2 \) and \(y = 3 \), as we initialized them to be. Similarly, the derivative array of \(x \) shows that \(\frac{\partial x}{\partial x} = 1 \) and \(\frac{\partial x}{\partial y} = 0 \) and the derivative array of \(y \) shows that \(\frac{\partial y}{\partial x} = 0 \) and \(\frac{\partial y}{\partial y} = 1 \).

The value of \(f(x, y) = z + y \) is given as \(2 + 3 = 5 \), and its derivative array is updated according to operator overloading of the + operator as the sum of \(x \)'s derivative array and \(y \)'s derivative array:

\[
f' = x' + y' = [1 \ 0] + [0 \ 1] = [1 \ 1]. \quad (A.4)
\]

The value of \(g(x, y) = x \cdot y \) is given as \(2 \cdot 3 = 6 \), and its derivative array is updated according to operator overloading of the \(\cdot \) operator as the sum of \(x' \) times \(y \) and \(y' \) times \(x \):

\[
g' = x' \cdot y + x \cdot y' = [1 \ 0] \cdot 3 + 2 \cdot [0 \ 1] = [3 \ 2]. \quad (A.5)
\]

Finally, the value of \(h(x, y) = f(x, y) \cdot g(x, y) \) is computed as \(6 \cdot 5 = 30 \), and its derivative array is computed by propogating \(f' \) and \(g' \) through the code as:

\[
h' = f' \cdot g + f \cdot g' = [1 \ 1] \cdot 6 + 5 \cdot [3 \ 2] = [21 \ 16]. \quad (A.6)
\]
B.1 Non-Homogeneous Boundary Conditions

Extensions to non-homogeneous Dirichlet boundary conditions for the primal model, given as

\[
\begin{align*}
\mathcal{L}u = f, \quad &x \in \Omega, \\
u = g, \quad &x \in \partial\Omega,
\end{align*}
\]
(B.1)

can readily be made by introducing the decomposition \(u = u_0 + \tilde{g} \), where \(\text{tr}(\tilde{g}) = g \). The problem is then reposed as a homogeneous Dirichlet problem given by

\[
\begin{align*}
\mathcal{L}u_0 = f + \mathcal{L}\tilde{g}, \quad &x \in \Omega, \\
u_0 = 0, \quad &x \in \partial\Omega,
\end{align*}
\]
(B.2)

where all arguments made previously can be applied to this modified formulation, provided \(f + \mathcal{L}\tilde{g} \in \mathcal{V}^* \).

Extensions to non-homogeneous Neumann boundary conditions require additional investigation. To proceed, consider the primal problem given as

\[
\begin{align*}
\mathcal{L}u = f, \quad &x \in \Omega, \\
u = 0, \quad &x \in \partial\Omega_D, \\
Bu = h, \quad &x \in \partial\Omega_N,
\end{align*}
\]
(B.3)

where \(\Omega_D \cup \Omega_N = \Omega \) and \(\Omega_D \cap \Omega_N = \{\emptyset\} \). Multiplying the left hand side of the primal problem (B.3) by an arbitrary test function \(v \) and integrating by parts over the domain...
twice yields the relationship

$$\int_{\Omega} v\mathcal{L}u \, d\Omega + \int_{\partial\Omega} vBu \, d\Gamma = \int_{\Omega} \mathcal{L}^*vu \, d\Omega + \int_{\partial\Omega} B^*vu \, d\Gamma. \quad (B.4)$$

All subsequent derivations would need to be made considering this relationship, which involves the boundary operator B, rather than relationship (5.9) which has been used extensively in this paper.

B.2 Derivation of the Advection-Diffusion Adjoint Operator

Let $\mathcal{L} : \mathcal{V} \to \mathcal{V}^*$ be the steady-state, constant coefficient operator utilized in section 5.6:

$$\mathcal{L}u := -\kappa \nabla^2 u + \mathbf{a} \cdot \nabla u, \quad (B.5)$$

such that $\mathcal{V} = H^1_0(\Omega)$ and $\mathcal{V}^* = H^{-1}(\Omega)$. To determine the corresponding operator: \mathcal{L}^* that satisfies the adjoint property:

$$\langle \mathcal{V}^*, \langle z, \mathcal{L}u \rangle_{\mathcal{V}} = \langle \mathcal{V}^*, \langle \mathcal{L}^*z, u \rangle_{\mathcal{V}^*} \quad \forall u, z \in H^1_0(\Omega), \quad (B.6)$$
we multiply $\mathcal{L}u$ by an arbitrary function $z \in H^1_0(\Omega)$ and repeatedly apply the divergence theorem. This proceeds as follows:

$$\nu(z, \mathcal{L}u)_\nu = \int_{\Omega} z (\kappa \nabla^2 u + a \cdot \nabla u) \, d\Omega$$

$$= - \int_{\Omega} z \kappa \nabla^2 u \, d\Omega + \int_{\Omega} z a \cdot \nabla u \, d\Omega$$

$$= - \int_{\partial \Omega} z \kappa \nabla u \cdot \mathbf{n} \, d\Gamma + \int_{\Omega} \kappa \nabla z \cdot \nabla u \, d\Omega + \int_{\partial \Omega} (za u) \cdot \mathbf{n} \, d\Gamma - \int_{\Omega} a \cdot \nabla zu \, d\Omega$$

$$= \int_{\Omega} \kappa \nabla z \cdot \nabla u \, d\Omega - \int_{\Omega} a \cdot \nabla zu \, d\Omega$$

$$= \int_{\partial \Omega} (\kappa \nabla zu) \cdot \mathbf{n} \, d\Gamma - \int_{\Omega} \kappa \nabla^2 zu \, d\Omega - \int_{\Omega} a \cdot \nabla zu \, d\Omega$$

$$= - \int_{\Omega} \kappa \nabla^2 zu \, d\Omega - \int_{\Omega} a \cdot \nabla zu \, d\Omega$$

$$= \int_{\Omega} (-\kappa \nabla^2 z - a \cdot \nabla z) u \, d\Omega$$

$$= \nu(z, \mathcal{L}u)_\nu = \nu(\mathcal{L}^*z, u)_\nu \quad \forall u, z \in H^1_0(\Omega).$$

Here the third equality is achieved by application of the divergence theorem to both terms, the fourth equality holds since $z \in H^1_0(\Omega)$, the fifth equality is achieved by application of the divergence theorem to the leftmost term, and the sixth equality holds since $u \in H^1_0(\Omega)$. Thus, the operator $\mathcal{L}^* : H^1_0(\Omega) \to H^{-1}(\Omega)$ is defined as

$$\mathcal{L}^*z := -\kappa \nabla^2 z - a \cdot \nabla z. \quad (B.7)$$

We make the observation that there has been a sign change for the advective term since the operator \mathcal{L} is not self-adjoint. This sign change, however, is absorbed in the definition of the operator \mathcal{L}^* and in no way introduces a sign change in the fundamental property:

$$\nu(z, \mathcal{L}u)_\nu = \nu(\mathcal{L}^*z, u)_\nu \quad \forall u, z \in H^1_0(\Omega). \quad (B.8)$$
B.3 Propositions Applied to the Advection-Diffusion Operator

We restate the adjoint property (B.8) as

\[\int_{\Omega} z(-\kappa \nabla^2 u + \mathbf{a} \cdot \nabla u) \, d\Omega = \int_{\Omega} (-\kappa \nabla^2 z - \mathbf{a} \cdot \nabla z) u \, d\Omega \quad \forall \, u, z \in H^1_0(\Omega). \]

(B.9)

We now define the primal problem as:

\[\begin{cases}
-\kappa \nabla^2 u + \mathbf{a} \cdot \nabla u = f, & \mathbf{x} \in \Omega, \\
u = 0, & \mathbf{x} \in \partial \Omega,
\end{cases} \]

(B.10)

corresponding to equation (5.1), where \(f \in H^{-1}(\Omega) \). We note that the primal residual operator is given as:

\[\mathcal{R} u := f + \kappa \nabla^2 u - \mathbf{a} \cdot \nabla u. \]

(B.11)

We define the continuous variational multiscale formulation of the primal problem as: find \(\overline{u} \in \overline{V} \) such that

\[\int_{\Omega} (-\kappa \nabla^2 \overline{v} - \mathbf{a} \cdot \nabla \overline{v}) \mathcal{G}' \mathcal{R} \overline{u} \, d\Omega = \int_{\Omega} \overline{v} \mathcal{R} \overline{u} \, d\Omega \quad \forall \, \overline{v} \in H^1_0(\Omega), \]

(B.12)

corresponding to equation (5.11), where we leave the fine-scale Green’s operator \(\mathcal{G}' : H^{-1}(\Omega) \to H^1_0(\Omega) \) as an unspecified abstract operator. Here we note that \(\mathcal{G}' \mathcal{R} \overline{u} \in H^1_0(\Omega) \). Let \(\mathcal{V}^h \subset V \) denote a classical finite element space consisting of piecewise linear functions defined over a discretization of the domain \(\Omega \). The primal subgrid model can then be stated as: find \(u^h \in \mathcal{V}^h \) such that

\[\sum_{e=1}^{n_{el}} \int_{\Omega_e} (-\kappa \nabla^2 v^h - \mathbf{a} \cdot \nabla v^h)(\tau^e \mathcal{R} u^h) \, d\Omega = \int_{\Omega} v^h \mathcal{R} u^h \, d\Omega \quad \forall \, v^h \in \mathcal{V}^h, \]

(B.13)

corresponding to equation (5.15), where we leave \(\tau^e \) unspecified.

We define the dual problem as:

\[\begin{cases}
-\kappa \nabla^2 z - \mathbf{a} \cdot \nabla z = q, & \mathbf{x} \in \Omega, \\
z = 0, & \mathbf{x} \in \partial \Omega,
\end{cases} \]

(B.14)
corresponding to equation (5.23), where $q \in H^{-1}(\Omega)$. We note that the dual residual operator is given as:

$$\mathcal{R}^* z := q + \kappa \nabla^2 z + a \cdot \nabla z.$$ \hfill (B.15)

We define the continuous variational multiscale formulation of the dual problem as: find $\overline{z} \in \overline{V}$ such that

$$\int_{\Omega} \mathcal{G}_d' \mathcal{R}^* \overline{z}(-\kappa \nabla^2 \overline{v} + a \cdot \nabla \overline{v}) \, d\Omega = \int_{\Omega} \mathcal{R}^* \overline{z} \overline{v} \, d\Omega \quad \forall \, \overline{v} \in H^1_0(\Omega),$$ \hfill (B.16)

corresponding to equation (5.27), where again we leave the dual fine-scale Green’s operator $\mathcal{G}_d' : H^{-1}(\Omega) \rightarrow H^1_0(\Omega)$ unspecified. We note that $\mathcal{G}_d' \mathcal{R}^* \overline{z} \in H^1_0(\Omega)$ The dual subgrid model can then be stated as: find $z^h \in V^h$ such that

$$\sum_{e=1}^{n_{el}} \int_{\Omega} (\tau^e_d \mathcal{R}^* z^h)(-\kappa \nabla^2 v^h + a \cdot \nabla v^h) \, d\Omega = \int_{\Omega} \mathcal{R}^* z^h v^h \, d\Omega \quad \forall \, v^h \in V^h,$$ \hfill (B.17)

corresponding to equation (5.31), where we leave τ^e_d unspecified.
B.3.1 Proposition 2

For any solutions $u = u' + \pi$ to the continuous VMS formulation (B.12) and $z = z' + \pi$ to the continuous dual VMS formulation (B.16), we derive the error representation:

\[
J(u) - J(\pi) = \int_{\Omega} qu \, d\Omega - \int_{\Omega} q\pi \, d\Omega \\
= \int_{\Omega} (-\kappa \nabla^2 z - a \cdot \nabla z) u \, d\Omega - \int_{\Omega} (-\kappa \nabla^2 \pi - a \cdot \nabla \pi) \pi \, d\Omega \\
= \int_{\Omega} z (-\kappa \nabla^2 u + a \cdot \nabla u) \, d\Omega - \int_{\Omega} z (-\kappa \nabla^2 \pi + a \cdot \nabla \pi) \, d\Omega \\
= \int_{\Omega} zf \, d\Omega - \int_{\Omega} z (-\kappa \nabla^2 \pi + a \cdot \nabla \pi) \, d\Omega \\
= \int_{\Omega} zR\pi \, d\Omega \\
= \int_{\Omega} z' R\pi \, d\Omega + \int_{\Omega} z\pi R\pi \, d\Omega \\
= \int_{\Omega} z' R\pi \, d\Omega + \int_{\Omega} (-\kappa \nabla^2 \pi - a \cdot \nabla \pi) G' R\pi \, d\Omega \\
= \int_{\Omega} (G'_d R^* \pi) \mathcal{R} \pi \, d\Omega + \int_{\Omega} (-\kappa \nabla^2 \pi - a \cdot \nabla \pi) G' R\pi \, d\Omega \\
= \nu \langle G'_d R^* \pi, \mathcal{R} \pi \rangle_{\mathcal{V}} + \nu \langle L^* \pi, G' R\pi \rangle_{\mathcal{V}}.
\]

Here the first equality is by definition (5.21), the second equality is due to the dual PDE (B.14), the third equality is due to the fundamental relation (B.9), the fourth equality is due to the primal PDE (B.10), the fifth equality is due to the definition of the primal residual (B.11), the sixth equality is due to the sum decomposition of the dual solution $z = z' + \pi$, the seventh equality is due to the continuous variational formulation of the primal problem (B.12), the eight equality is due to the definition of the fine-scale dual solution (5.24), and the ninth equality is due to the definition of the duality pairing we have chosen.

B.3.2 Proposition 4

For any solutions u to the primal model (5.2), z to the dual model (5.22), u^h to the primal subgrid model (5.14) and z^h to the dual subgrid model (5.30), we derive the error
representation

\[J(u) - J(u^h) = \int_{\Omega} qu \, d\Omega - \int_{\Omega} qu^h \, d\Omega \]

\[= \int_{\Omega} (-\kappa \nabla^2 z - a \cdot \nabla z) u \, d\Omega - \int_{\Omega} (-\kappa \nabla^2 z - a \cdot \nabla z) u^h \, d\Omega \]

\[= \int_{\Omega} z(-\kappa \nabla^2 u + a \cdot \nabla u) \, d\Omega - \int_{\Omega} z(-\kappa \nabla^2 u^h + a \cdot \nabla u^h) \, d\Omega \]

\[= \int_{\Omega} zf \, d\Omega - \int_{\Omega} z(-\kappa \nabla^2 u^h + a \cdot \nabla u^h) \, d\Omega \]

\[= \int_{\Omega} zR u^h \, d\Omega \]

\[= \int_{\Omega} zR u^h \, d\Omega - \int_{\Omega} z^h R u^h \, d\Omega + \]

\[\sum_{e=1}^{n_{el}} \int_{\Omega} (-\kappa \nabla^2 z^h - a \cdot \nabla z^h)(\tau^e R u^h) \, d\Omega \]

\[= \int_{\Omega} (z - z^h) R u^h + \sum_{e=1}^{n_{el}} \int_{\Omega} (-\kappa \nabla^2 z^h - a \cdot \nabla z^h)(\tau^e R u^h) \, d\Omega \]

\[= \int_{\Omega} (z' + \tilde{z}) R u^h + \sum_{e=1}^{n_{el}} \int_{\Omega} (-\kappa \nabla^2 z^h - a \cdot \nabla z^h)(\tau^e R u^h) \, d\Omega \]

\[= \int_{\Omega} \tilde{z}' R u^h + \sum_{e=1}^{n_{el}} \int_{\Omega} (-\kappa \nabla^2 z^h - a \cdot \nabla z^h)(\tau^e R u^h) \, d\Omega + \]

\[\int_{\Omega} \tilde{z} R u^h \]

\[= \int_{\Omega} (\tau^e_d R^* z^h) R u^h + \sum_{e=1}^{n_{el}} \int_{\Omega} (-\kappa \nabla^2 z^h - a \cdot \nabla z^h)(\tau^e R u^h) \, d\Omega + \]

\[\int_{\Omega} \tilde{z} R u^h , \]

where the first equality is by definition (5.21), the second equality is due to the dual PDE (B.14), the third equality is due to the fundamental relationship (B.9), the fourth equality is due to the primal PDE (B.10), the fifth equality is due to the definition of the primal residual (B.11), the sixth equality is due to the primal subgrid model (B.13) (where we have added and subtracted equal terms), the seventh equality is due to linearity, the eighth equality is due to the decomposition of the dual solution (5.19), the ninth equality is due to linearity, and the tenth equality is due to the fine-scale approximation to the dual solution (5.32).
B.3.3 Proposition 5

We first note that the derivation in B.2 can be carried out in exactly the same manner for $u, z \in H_0^1(\Omega^e)$ to obtain the result:

$$
\int_{\Omega^e} z(-\kappa \nabla^2 u + a \cdot \nabla u) \, d\Omega = \int_{\Omega^e} (-\kappa \nabla^2 z - a \cdot \nabla z) u \, d\Omega \quad \forall \, u, z \in H_0^1(\Omega^e).
$$

(B.18)

We note that the problem (5.12) defining the primal element-level Green’s function implies that $g^e(x; y) \in H_0^1(\Omega^e)$. Similarly, the dual element-level Green’s function satisfies $g_d^e(x; y) \in H_0^1(\Omega^e)$ from equation (5.28). With this information, we utilize the relationship (B.18) to verify that $g^e(x; y) = g_d^e(x; y)$, even though the operator \mathcal{L} is not self-adjoint.

$$
-\kappa \nabla^2 g^e(x; y) - a \cdot \nabla g^e(x; y) = \delta(x - y)
\implies \int_{\Omega^e} g_d^e(x; z)(-\kappa \nabla^2 g^e(x; y) - a \cdot \nabla g^e(x; y)) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega
\implies \int_{\Omega^e} (-\kappa \nabla^2 g_d^e(x; z) + a \cdot \nabla g_d^e(x; z)) g^e(x; y) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega
\implies \int_{\Omega^e} \delta(x - z) g^e(x; y) \, d\Omega = \int_{\Omega^e} g_d^e(x; z) \delta(x - y) \, d\Omega
\implies g^e(z; y) = g_d^e(y; z),
$$

Here the first equality is due to the definition of the primal element-level Green’s function (5.12), the second equality is achieved by multiplying by the dual element-level Green’s function and integrating over the element domain, the third equality is due to the fundamental relationship (B.18), and the fourth equality is due to the definition of the dual element-level Green’s function (5.28).