
NEW APPROACHES FOR ADJOINT-BASED ERROR
ESTIMATION AND MESH ADAPTATION IN STABILIZED
FINITE ELEMENT METHODS WITH AN EMPHASIS ON

SOLID MECHANICS APPLICATIONS

Brian Neal Granzow

Submitted in Partial Fullfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Dr. Mark S. Shephard, Chair
Dr. Assad A. Oberai, Co-Chair
Dr. Antoinette M. Maniatty

Dr. Jason E. Hicken
Dr. Je↵rey W. Banks

Department of Mechanical, Aerospace, and Nuclear Engineering
Rensselaer Polytechnic Institute

Troy, New York

[May 2018]
Submitted January 2018

c� Copyright 2018

by

Brian Neal Granzow

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

ACKNOWLEDGMENT . xi

ABSTRACT . xii

1. INTRODUCTION AND BACKGROUND . 1

1.1 Introduction . 1

1.2 Outline . 3

1.3 Contributions . 4

2. AN AUTOMATED APPROACH FOR PARALLEL ADJOINT-BASED ERROR
ESTIMATION AND MESH ADAPTATION FOR STEADY-STATE PROBLEMS 6

2.1 Introduction . 6

2.2 A Review of Adjoint-Based Error Representations 8

2.2.1 Galerkin Finite Element Methods . 9

2.2.2 Stabilized Finite Element Methods 9

2.3 Software Components . 10

2.3.1 The Primal Problem . 11

2.3.2 The Adjoint Problem . 11

2.3.3 Error Estimation and Localization . 12

2.3.4 Mesh Adaptation . 13

2.3.5 In-Memory Integration of Components 13

2.4 Template-Based Generic Programming . 13

2.5 The Primal Problem . 17

2.5.1 Galerkin Finite Element Methods . 17

2.5.2 Stabilized Finite Element Methods 17

2.5.3 Automated Solution Based on Residual Implementation 18

2.6 The Adjoint Problem . 19

2.6.1 A Richer Space via Uniform Refinement 19

2.6.2 Discrete Adjoint Approximation . 20

2.6.3 Automated Solution Based on Residual Formulation 21

2.7 Error Estimation . 22

iii

2.7.1 Two-Level Error Estimates . 22

2.7.2 Modified Functional Error Estimate 23

2.7.3 Error Localization for Galerkin Methods 23

2.7.4 Error Localization for Stabilized Methods 24

2.7.5 Automated Error Localization Based on Residual Implementation . . 24

2.8 Mesh Adaptation . 26

2.9 Quantities of Interest . 27

2.9.1 Point-Wise Solution Component . 27

2.9.2 Integrated Solution Over a Sub-Domain 27

2.9.3 Integrated von-Mises Stress Over a Sub-Domain 28

2.10 Results . 29

2.10.1 Poisson’s Equation . 29

2.10.2 A Cell Embedded in a Matrix . 31

2.10.3 Elastoplasticity in an Array of Solder Joints 37

2.11 Conclusions . 42

3. ADJOINT-BASED ERROR ESTIMATION ANDMESH ADAPTATION FOR STA-
BILIZED FINITE DEFORMATION ELASTICITY 43

3.1 Introduction . 43

3.2 Model Problem . 45

3.2.1 Strong Form . 45

3.2.2 Weak Form . 46

3.2.3 Stabilized Finite Element Formulation 47

3.2.4 Linearization and Solution Strategy 49

3.3 Adjoint-Based Error Estimation . 50

3.3.1 Two-Level Error Estimation . 50

3.3.2 Choice of Fine Space . 51

3.3.3 Modified Functional Error Estimate 52

3.3.4 Error Localization . 53

3.4 Mesh Adaptation . 55

3.5 Results . 56

3.5.1 Cook’s Membrane . 56

3.5.2 A Cell Embedded in a Matrix . 61

3.6 Conclusions . 67

iv

4. A NON-UNIFORMREFINEMENT APPROACH FOR SOLVING ADJOINT PROB-
LEMS IN FUNCTIONAL ERROR ESTIMATION AND MESH ADAPTATION . 69

4.1 Introduction . 69

4.2 Error Estimation with Two Levels . 70

4.2.1 Error Estimates . 70

4.2.2 A Simple A-Priori Analysis . 71

4.3 Choices for the Fine Space . 72

4.3.1 Uniform Refinement . 72

4.3.2 Long Edge Refinement . 73

4.3.3 Single Edge Refinement . 74

4.4 Mesh Adaptation . 75

4.4.1 Error Localization . 75

4.4.2 Mesh Size Field . 76

4.5 Results . 77

4.5.1 E↵ectivity Indices for Poisson’s Equation 77

4.5.2 Mesh Adaptation for Poisson’s Equation 80

4.6 Conclusions and Outlook . 81

5. OUTPUT-BASED ERROR ESTIMATION ANDMESH ADAPTATION FOR VARI-
ATIONAL MULTISCALE METHODS . 84

5.1 Introduction and Motivation . 84

5.2 Review of VMS Methods . 86

5.2.1 Model Problem . 86

5.2.2 VMS Formulation . 87

5.2.3 Subgrid Model . 89

5.3 The Dual Problem . 91

5.3.1 Abstract Problem . 91

5.3.2 VMS Formulation . 92

5.3.3 Subgrid Model . 93

5.4 Error Estimation . 94

5.4.1 Continuous VMS Error Representations 95

5.4.2 Subgrid Model Error Representations 96

5.4.3 Subgrid Model Error Estimates . 98

5.4.4 Error Localization . 99

5.5 Mesh Adaptation . 100

v

5.5.1 Size Field Specification . 100

5.6 Results . 101

5.6.1 One Dimensional Example . 102

5.6.2 A Manufactured Solution . 103

5.6.3 Advection in an L-Shaped Domain 104

5.7 Conclusions . 108

6. CONCLUSIONS AND FUTURE WORK . 109

6.1 Conclusions . 109

6.2 Future Work . 109

6.2.1 Higher Order Finite Element Methods 109

6.2.2 Extending Capabilities to Quasi-Steady/Transient Problems 110

6.2.3 Extending VMS Techniques for Solid Mechanics 110

REFERENCES . 111

APPENDICES

A. FORWARD AUTOMATIC DIFFERENTIATION 120

A.1 Introduction . 120

A.2 Forward AD with Operator Overloading . 120

A.3 A Simple Example . 122

B. PROPOSITIONS FOR THE ADVECTION-DIFFUSION OPERATOR 124

B.1 Non-Homogeneous Boundary Conditions . 124

B.2 Derivation of the Advection-Di↵usion Adjoint Operator 125

B.3 Propositions Applied to the Advection-Di↵usion Operator 127

B.3.1 Proposition 2 . 129

B.3.2 Proposition 4 . 129

B.3.3 Proposition 5 . 131

vi

LIST OF TABLES

2.1 A list of TBGP evaluation operations used in the Goal application. In this
table uH is the primal solution vector, uh

H
is the prolongation of the solution

vector to a richer space, sH is a (potentially empty) vector of history-dependent
mechanics state variables, sh

H
is the prolongation of the state to a richer space,

zh is the adjoint solution vector, RH is the residual vector evaluated on the
coarse space, Rh is the residual vector evaluated on the fine space, and J

H is
the scalar QoI. 14

4.1 Approximated mesh size ratios for the Long and Single schemes for the first
Poisson’s equation example. 79

5.1 E↵ectivity indices for a 1D advection-di↵usion example with a global QoI. . . . 103

5.2 E↵ectivity indices for a 2D advection-di↵usion example with a global QoI. . . . 103

vii

LIST OF FIGURES

2.1 A schematic for the generic programming model of PDEs. 14

2.2 Example of a nested mesh (red edges) obtained via a uniform refinement of a
base mesh (black edges) in three dimensions. 21

2.3 Domain and initial mesh (left) for the Poisson’s equation example with the QoI
point indicated in red, final adapted mesh (middle), and a close up of the upper-
right hand corner of the final adapted mesh (right). 30

2.4 E↵ectivity indices for the adaptive Poisson’s equation example. 31

2.5 Errors for the point-wise QoI for the adaptive Poisson’s equation example. . . . 32

2.6 Error convergence using uniform mesh refinement and adjoint-based error esti-
mation for the adaptive Poisson’s equation example. 33

2.7 Domains for the microglial cell example. 34

2.8 A close-up of the initial mesh (left) the mesh after 5 adaptive iterations (center)
and the final adapted mesh (right) for the microglial cell example. 35

2.9 The parallel mesh partitioning for the initial mesh (left) and the final adapted
mesh (right) for the microglial cell example. 35

2.10 Breakdown of the CPU time spent for each portion of the adaptive process for
the microglial cell example. 36

2.11 The solder joint array geometry (left) and the geometric specification of the
integrated von-Mises QoI (right). 37

2.12 Weak scaling for the Goal application. 39

2.13 The x-component of the adjoint displacement solution (left), and the pressure
component of the adjoint solution (right). 40

2.14 The spatial distribution of errors as computed by adjoint-based error estimation
for the solder joint array. 40

2.15 Cross-sectional view of the initial mesh for the solder joint geometry (left) and
the final adapted mesh (right). 40

2.16 The initial mesh for the solder joint geometry (left) and the final adapted mesh
(right). 41

2.17 Error convergence histories for the solder joint example problem with the inte-
grated von-Mises stress QoI. 41

viii

3.1 Cook’s membrane problem definition. 57

3.2 The pressure component p of the primal solution scaled by its maximal value
(left), the pressure component zp of the adjoint solution for the point-wise QoI
J1(U), and the pressure component zp of the adjoint solution for the integrated
displacement QoI J2(U). 57

3.3 Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for
the Cook’s membrane problem with the point-wise QoI J1(U). 58

3.4 Initial mesh (left) and adapted mesh (right) at the fifth adaptive iteration for
the Cook’s membrane problem with the integrated displacement QoI J2(U). . . 59

3.5 E↵ectivities for the point-wise QoI J1(U) for the Cook’s membrane problem. . 60

3.6 E↵ectivities for the integrated displacement QoI J2(U) for the Cook’s membrane
problem. 61

3.7 Errors for the point-wise QoI J1(U) for the Cook’s membrane problem. 62

3.8 Errors for the integrated displacement QoI J2(U) for the Cook’s membrane
problem. 63

3.9 The computational geometry for the microglial cell problem. The inner-most
surface represents the geometry of the microgial cell, the outer-most bound-
ing box represents the extracellular matrix in which the cell is embedded, and
the inner bounding box represents the domain over which the local integrated
displacement QoI J(U) is defined. 64

3.10 The applied tractions for the microglial cell problem. 64

3.11 The initial (light grey) and deformed (blue) geometry of the microglial cell before
and after tractions are applied. 65

3.12 Initial mesh for the microglial cell problem (left) and final adapted mesh after
10 adaptive iterations (right). 65

3.13 E↵ectivity indices for the local integrated displacement QoI J(U) for the mi-
croglial cell problem. 66

3.14 Errors for the local integrated displacement QoI J(U) for the microglial cell
problem. 67

3.15 Error convergence using uniform mesh refinement and adjoint-based adaptivity
for the local integrated displacement QoI J(U) for the microglial cell problem. 68

4.1 Edges of a base mesh (black) and a nested mesh refined with the Unif scheme
(red) in two dimensions. 72

ix

4.2 Edges of a base mesh (black) and a nested mesh refined with the Long scheme
(red) in two dimensions. 73

4.3 Edges of a base mesh (black) and a nested mesh refined with the Single scheme
(red) in two dimensions. 74

4.4 E↵ectivity indices using the Unif, Long, and Single refinement schemes for the
Poisson example problem. 78

4.5 Ratio of adjoint problem degrees of freedom to primal problem degrees of free-
dom using the Unif, Long, and Single refinement schemes for the Poisson example
problem. 79

4.6 Geometry and initial mesh used for the second Poisson’s equation example with
the point of interest shown in red. 80

4.7 Error evolution for adaptive schemes for the second Poisson’s equation example. 81

4.8 The final adapted mesh using the Unif strategy to solve the adjoint problem
(left) and a close-up of the upper right-hand corner of this mesh (right). 82

4.9 The final adapted mesh using the Long strategy to solve the adjoint problem
(left) and a close-up of the upper right-hand corner of this mesh (right). 82

4.10 The final adapted mesh using the Single strategy to solve the adjoint problem
(left) and a close-up of the upper right-hand corner of this mesh (right). 83

5.1 The primal solution u
h (left) and the dual solutions zh corresponding to J1(u)

(center) and J2(u) (right). 104

5.2 Initial meshes for the outputs J1(u) (left) and J2(u) (right). 105

5.3 Final adapted meshes for the output J1(u) using the SPR (left), VMS1 (center),
and VMS2 (right) adaptive schemes. 106

5.4 Convergence history for various adaptive schemes for the output J1(u). 106

5.5 Final adapted meshes for the output J2(u) using the SPR (left), VMS1 (center),
and VMS2 (right) adaptive schemes. 107

5.6 Convergence history for various adaptive schemes for the output J2(u). 107

x

ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Prof. Mark S. Shephard, for his

guidance throughout my tenure as a graduate student. It was a great fortune to have been

given the opportunity to join his research group. This work would not have been possible

without his invaluable insights and his commitment to excellence in research. I would also

like to thank my co-advisor, Prof. Assad A. Oberai, for his insightful guidance. Prof. Oberai

introduced me to the variational multiscale method, which forms the basis for a significant

portion of this work.

I would like to thank Prof. Antoinette M. Maniatty, Prof. Jason E. Hicken, and Prof.

Je↵rey W. Banks for kindly serving on my doctoral committee, for the valuable education

they’ve provided me through their courses, and for their helpfulness and willingness to answer

questions that arose during my time as a graduate student.

The Scientific Computation Research Center provided a great working environment and

I would like to thank its members. Max Bloomfield provided me with valuable guidance in

both research and life during my time at RPI. Thanks, Max. I am grateful for the friendship

and support of fellow graduate students Cameron Smith, Daniel Ibanez, Zhen Li, Li Dong,

Alp Dener, Jared Crean, and Alvin Zhang.

I owe the creation of my career to Rod Douglass, who introduced me to the world of

scientific computing while mentoring me at Los Alamos National Laboratory. Thanks, Rod.

Finally, I would like to extend my love and gratitude to my family: Kim, Howard,

Rachel, and Noel. I would not be where I am today without their love and support.

xi

ABSTRACT

In a finite element simulation, not all of the computed data is of equal importance. Rather,

the goal of an engineering practitioner is often to accurately assess only a small number of

critical outputs, such as the displacement at a point or the von-Mises stress over a domain.

When these outputs can be expressed as functionals, a strategy known as adjoint-based error

estimation can be employed to accurately assess output errors. Using this error information,

mesh adaptation can then be utilized to reduce and control output errors. The use of adjoint-

based error estimation and mesh adaptation is much more prevalent in computational fluid

dynamics applications when compared to computational solid mechanics. This can in part

be explained by the high level of expertise required to derive and implement adjoint-based

error estimation routines in computational solid mechanics.

In this thesis, we present an approach to automate the process of adjoint-based error

estimation and mesh adaptation to lower the barrier of entry for solid mechanics practition-

ers. This approach has been developed to be applicable to both Galerkin and stabilized

finite element methods, but we mainly emphasize stabilized finite elements. In particular,

we demonstrate the e↵ectiveness of this approach for two and three dimensional problems

in incompressible elasticity and elastoplasticity. Further, we demonstrate the ability of this

approach to execute e↵ectively on parallel machines.

The variational multiscale (VMS) method is a particular methodology that allows one

to develop a stabilized finite element method. As a further research endeavor, we develop

and investigate a novel approach for adjoint-based error estimation and mesh adaptation for

VMS methods. In particular, we develop an approach for adjoint enrichment based on VMS

techniques.

xii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Numerical simulation has become ubiquitous in engineering and scientific practice due

to the continuing increase in power and accessibility of computational resources. For scientific

and engineering applications, ensuring the accuracy and reliability of the computed numerical

solution is of primary importance. For example, it is often necessary to design structural

components for which the von-Mises stress in the component’s domain is less than a given

material yield strength when subjected to a variety of loading conditions.

In the context of finite element methods, a posteriori error estimation and mesh adap-

tation provide useful tools for approximating and controlling the discretization error when

solving partial di↵erential equations (PDEs) (cf. [1]–[3]).

In an abstract finite element setting, one seeks to solve the variational problem: find

u 2 S such that

R(w; u) = 0 8w 2 V , (1.1)

where R : S ⇥ V ! R is a semilinear form, linear in its first argument and potentially

nonlinear in its second, and S and V are Hilbert spaces. Given the exact solution u to

this problem and a corresponding finite element approximation u
H , the discretization error

is defined as e := u � u
H . Traditional a posteriori error estimates attempt to bound or

approximate the discretization error in a global norm kek, such as the energy norm induced by

the underlying partial di↵erential operator. In the past twenty years, though, adjoint-based

techniques have been developed and utilized to obtain approximations ⌘ or approximate

bounds ⌘̂ for the error |J(u)� J(uH)| in some physically meaningful functional J : S ! R,
such that

|J(u)� J(uH)| ⇡ ⌘ < ⌘̂. (1.2)

Portions of this chapter have been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard,

“An automated approach for parallel adjoint-based error estimation and mesh adaptation,” submitted for

publication.

1

2

The use of adjoint (or duality) techniques for a posteriori error estimation can be

traced back to Babuška and Miller [4]–[6] who explored the post-processing of functional

quantities. These ideas were then expanded to the context of adaptive finite element methods

by Johnson et al. [7]. Becker and Rannacher [8] developed an approach to functional a

posteriori error estimation for Galerkin finite element methods called the dual weighted

residual method. Giles and Pierce [9] developed an approach conceptually similar to the

dual weighted residual method, but additionally concerned themselves with discretizations

that lack Galerkin orthogonality, such as Godunov finite volume methods. Venditti and

Darmofal [10]–[12] developed adjoint-based error estimates for arbitrary discretizations using

discrete adjoint equations based on two-level discretization schemes. Prudhomme and Oden

[13], [14] developed adjoint techniques to determine guaranteed upper and lower bounds for

linear functionals in the context of linear variational problems.

Adjoint-based error estimation and mesh adaptation have been heavily adopted by the

computational fluid dynamics (CFD) community [15]. This can in part be explained by the

fact that the current increase in computing power alone may not be su�cient to accurately

resolve quantities of interest (QoIs) in CFD applications, even when very finely generated

a priori meshes are used [15]. However, despite its popularity in CFD, adjoint-based error

estimation is not regularly applied to solid mechanics applications.

In the context of solid mechanics, adaptive adjoint-based error estimation has been

used to study linear elasticity in two [16]–[18] and three [19] dimensions, two [20], [21] and

three [22] dimensional elasto-plasticity, two dimensional thermoelasticity [23], two dimen-

sional nonlinear elasticity [24], and two dimensional hyperelasticity [25]. We remark that

in the majority of this literature, mesh adaptation is performed with structured adaptive

mesh refinement using quadrilateral or hexahedral elements and without any discussion of

parallelization. Additionally, none of these investigations apply the current state of the art

capabilities of parallel three-dimensional unstructured mesh adaptation, as is currently the

norm for CFD applications.

Perhaps one reason for this discrepancy is the fact that adjoint-based error estimation

requires the development and implementation of a number of non-trivial steps. From a high-

level, the following steps must be carried out to perform an adaptive adjoint-based error

analysis:

1. Solve the original (primal) PDE of interest.

3

2. Using the primal solution, derive and solve an auxiliary adjoint PDE.

3. Enrich the solution to the adjoint PDE in some manner.

4. Compute error estimates using an adjoint-weighted residual method.

5. Localize the error to contributions at the mesh entity level.

6. Adapt the mesh based on the local error contributions.

Additionally, modern solid mechanics applications necessitate the use of parallel analysis,

meaning each of these steps must execute e↵ectively and e�ciently on parallel machines.

Further, both the primal residual and functional QoI can be highly nonlinear in solid

mechanics. Solving the primal and adjoint problems requires the linearization of the primal

residual and the functional QoI with respect to the degrees of freedom of the problem. The

derivation and numerical implementation of these linearizations can be time consuming and

error-prone. As a result, adjoint-based error control has typically remained a tool for expert

analysis with a high barrier of entry.

As a final observation, we note that unstructured mesh generation and adaptation is ro-

bust, reliable, and scalable for simplical elements. However, for solid mechanics applications

with incompressibility constraints, such as isochoric plasticity or incompressible hyperelas-

ticity, standard displacement-based Galerkin finite element discretizations are known to be

unstable when using simplical elements. This fact may have further hindered the adop-

tion of unstructured mesh adaptation for previous adaptive adjoint-based solid mechanics

applications.

1.2 Outline

In order to make adjoint-based error estimation and mesh adaptation more accessible

to practitioners of solid mechanics, we have developed a fully automated approach that

addresses the di�culties outlined above. Specifically, we have developed a C++ application

called Goal that automates steps 1-6 based solely on the inputs of a semilinear form R and a

functional QoI J for both Galerkin and stabilized finite element methods. Chapter 2 provides

a review of the mathematical background required for adjoint-based error estimation and

discusses in detail the approach we have developed to automate the process. In addition,

4

Chapter 2 provides examples that demonstrate this approach executes e↵ectively on parallel

machines.

Chapter 3 presents the governing equations for finite deformation elasticity and dis-

cusses the derivation of a stabilized mixed pressure-displacement finite element formulation

for these equations. In this chapter, the automated approach developed in Chapter 2 is

discussed specifically in the context of nonlinear elasticity, and is utilized to investigate sev-

eral examples in incompressible elasticity. In particular, the automated approach is shown

to yield e↵ective error estimates in this context. Further, the ability of the Goal applica-

tion to handle mesh adaptation in the presence of complex geometries is demonstrated by

investigating a model problem arising from the study of a biological cell embedded in an

extracellular matrix.

In Chapter 4, the automated approach presented in Chapter 2 is extended to investigate

two novel approaches for solving the adjoint problem. These approaches proceed by solving

the adjoint problem on a nested mesh obtained via non-uniform refinement so as to reduce

the total number of degrees of freedom for the adjoint problem when compared to solving

the adjoint problem on a mesh obtained with uniform refinement. However, these two

approaches still maintain a physically meaningful global enrichment of the adjoint solution.

This investigation demonstrates a key feature of the Goal software, in that it is flexible

enough to be used to conduct novel research that falls outside of its original intended scope.

Finally, we investigate adjoint-based error estimation and mesh adaptation for varia-

tional multiscale (VMS) methods in Chapter 5. The VMS method provides a systematic

approach to develop and derive stabilized finite element formulations for PDEs. In this

chapter, we propose a novel strategy for enriching the solution to the adjoint problem based

on VMS techniques. We use this enrichment to derive an adjoint-based error estimate for

functional QoIs. In this chapter, we consider the advection-di↵usion equation as a model

problem with the intent that this approach will soon be implemented in the Goal application

and applied to solid mechanics applications.

1.3 Contributions

This thesis centers around contributions made to perform and investigate adjoint-based

error estimation and mesh adaptation while largely focusing on the area of solid mechanics.

In the performance of the work for this thesis, novel contributions have been achieved by:

5

1. Developing and implementing an automated approach for adjoint-based error estima-

tion that executes e↵ectively on parallel machines.

2. Applying the automated approach to investigate adjoint-based error estimation and

mesh adaptation for finite deformation elasticity with a stabilized finite element method.

3. Advancing the ability to perform adjoint-based error estimation and mesh adaptation

for solid mechanics applications with complex geometries.

4. Applying the automated approach to conduct an investigation of a non-uniform refine-

ment approach for solving adjoint problems.

5. Developing and investigating a novel approach for adjoint-based error estimation for

variational multiscale finite element methods.

CHAPTER 2

AN AUTOMATED APPROACH FOR PARALLEL

ADJOINT-BASED ERROR ESTIMATION AND MESH

ADAPTATION FOR STEADY-STATE PROBLEMS

2.1 Introduction

To make adjoint-based error estimation and mesh adaptation more accessible to solid

mechanics practitioners, we seek to fully automate its steps for execution on parallel ma-

chines. Specifically, we seek to develop software that automates steps 1-6 outlined in Chapter

1 based solely on the inputs of a semilinear form R and a functional QoI J . We endeavor to

develop this software to be applicable to both Galerkin and stabilized finite element methods.

Recently, Rognes and Logg [26] introduced a fully automated approach to goal-oriented

error estimation and mesh adaptation for Galerkin finite element methods within the FEniCS

[27] finite element framework. In this approach, the adjoint problem is derived in a discrete

manner based on a user-implemented residual R and a functional J . The adjoint problem is

then solved on the same finite element space as used for the primal problem and enriched to

a higher order polynomial space by solving local patch-wise problems. Based on the given

semilinear form R, error contributions are then localized to the element-level by solving local

element problems to recover the strong form of the residual operator over element interiors

and element boundaries. The total error in the functional QoI is then computed as the

sum of these error contributions. As a final step, the mesh is adapted using conforming

unstructured mesh refinement.

In this work, we present an approach for automating goal-oriented analysis that is

distinct in several ways. First, we consider adjoint-based error estimation in the context of

both Galerkin and stabilized finite element methods. Additionally, we propose solving the

adjoint problem in a richer finite element space, obtained via uniform refinement, than the

space used for the primal problem. To localize the error to the mesh entity level, we utilize

a partition of unity based approach proposed by Richter and Wick [28]. This allows us to

This chapter has been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard, “An automated

approach for parallel adjoint-based error estimation and mesh adaptation,” submitted for publication.

6

7

directly re-use the implemented semilinear formR for error localization, eliminating the need

to solve local element problems to recover the strong form residual. We also take advantage

of fully unstructured conforming mesh adaptation, where the mesh can be coarsened as well

as refined. As a final distinction, we highlight the ability of the proposed approach to execute

on parallel machines.

In totality, our new approach can be described as follows. First, the primal problem is

solved via Newton’s method, where the Jacobian of the semilinear form R is obtained via

automatic di↵erentiation. The adjoint problem is derived in a discrete manner in a richer

finite element space obtained by a uniform refinement of the initial mesh. The adjoint op-

erator is derived by an application of automatic di↵erentiation to the semilinear form R,

and the right-hand side of the adjoint problem is obtained by applying automatic di↵er-

entiation to the functional J . An approximate error ⌘ is computed as a modified discrete

adjoint weighted residual evaluated on the fine space. The error is then localized to mesh

vertices using a variational localization approach by introducing a partition of unity into

the weighting slot of the semilinear form R. An approximate upper bound ⌘̂ is obtained by

summing the absolute values of localized error contributions. Finally, the mesh is adapted

by specifying a mesh size field, which defines the length of mesh edges over the mesh. We

have implemented this approach in a C++ finite element application which we have called

Goal [29].

Underlying this approach is the concept of template-based generic programming (TBGP)

[30], [31], which has previously been used to automate the solution of PDEs as well as embed-

ded advanced analysis features, such as sensitivity analysis and uncertainty quantification.

From a high-level the TBGP approach consists of a gather phase, a compute phase, and a

scatter phase. The present work extends the TBGP approach to include the automation of

error localization, as required to drive mesh adaptation.

The remainder of this chapter is outlined as follows. First adjoint-based error estima-

tion is reviewed for abstract Galerkin and stabilized variational problems. Next, a description

of the software components utilized in this work is provided. In particular, each step of the

automated adjoint-based analysis is discussed with respect to its utilized software compo-

nents. A review of the concept of TBGP is then provided and its extension for the purposes

of adjoint-based error estimation is discussed. A detailed description of each step in the

adaptive adjoint-based process is then described. First the automated solution of the primal

8

problem is discussed. Then the automated derivation and solution of the adjoint problem is

described. Next, the automation of error localization to drive mesh adaptation is outlined

and mesh adaptation procedures are discussed. The implementation of several QoIs in the

Goal application is reviewed. Finally, the e↵ectiveness of the proposed automated approach

is demonstrated for several applications.

2.2 A Review of Adjoint-Based Error Representations

In this section, a brief review of the derivation of adjoint-based error representations is

provided for Galerkin finite element methods as outlined by Becker and Rannacher [8], and

for stabilized finite element methods as outlined by Cyr et al. [32]. This review is inteded to

give context and serve as a road map for the remaining sections in this chapter.

Let S and V be Hilbert spaces, Rg : S ! V and R⌧ : S ! V be semilinear forms that

are linear in their first argument and potentially nonlinear in their second argument. Let

SH ⇢ S and VH ⇢ V be classical finite element function spaces, whereH is a mesh-dependent

parameter that denotes the fineness of the discretization. We introduce the following varia-

tional abstract model problem: find u 2 S such that

Rg(w; u) = 0 8w 2 V . (2.1)

Similarly, we introduce the following abstract adjoint problem: find z 2 V such that

R0
g
[uH](w, z) = J

0[uH](w) 8w 2 V , (2.2)

where the prime indicates Fréchet linearization about the argument in square brackets, which

can equivalently be expressed as the Gâteaux derivatives

J
0[uH](w) :=

d

d✏
J(uH + ✏w)

��
✏=0

, (2.3)

and

R0
g
[uH](w, z) :=

d

d✏
Rg(z; u

H + ✏w)
��
✏=0

. (2.4)

Here, u
H 2 SH denotes some finite element approximation to the true solution u. The

9

purpose of the adjoint problem is to relate the original problem of interest to the functional

quantity J , and it is this relationship that allows us to derive adjoint-based error represen-

tations. Further, we note that the adjoint solution z can be interpreted as the sensitivity of

the QoI to perturbations in the primal PDE residual [15].

2.2.1 Galerkin Finite Element Methods

The corresponding Galerkin finite element formulation of the abstract problem (2.1)

can be stated as: find u
H 2 SH such that

Rg(w
H ; uH) = 0 8wH 2 VH

. (2.5)

Let e := u� u
H denote the discretization error. We can then derive an error representation

for the functional J in terms of the adjoint solution z as follows:

J(u)� J(uH) = J
0[uH](e) +O(e2)

= R0
g
[uH](e, z) +O(e2)

= Rg(z; u)�Rg(z; u
H) +O(e2)

= �Rg(z; u
H) +O(e2)

= �Rg(z � z
H ; uH) +O(e2).

(2.6)

Here, the first equality is due to the linearization [8] of the functional J , the second equality is

due to the introduced adjoint problem (2.2), the third equality is due to the linearization [8]

of the residual Rg, the fourth equality holds due to the definition of the abstract primal

problem (2.1), and the fifth equality is due to Galerkin orthogonality, where zH denotes the

interpolant of z onto the space VH . In reference to the notation introduced, the total residual

semilinear form R is given as R = Rg.

2.2.2 Stabilized Finite Element Methods

A corresponding stabilized finite element method of the abstract problem (2.1) can be

expressed as: find u
H 2 SH such that

Rg(w
H ; uH) +R⌧ (w

H ; uH) = 0 8wH 2 VH
. (2.7)

10

Here R⌧ denotes a consistent stabilization residual that adds stability to the numerical

scheme. We say that the stabilization is consistent if R⌧ (wH ; u) ! 0 as H ! 0.

Again, we let e := u � u
H denote the discretization error, and derive an error repre-

sentation for the functional J as follows

J(u)� J(uH) = J
0[uH](e) +O(e2)

= R0
g
[uH](e, z) +O(e2)

= Rg(z; u)�Rg(z; u
H) +O(e2)

= �Rg(z; u
H) +O(e2)

= �Rg(z � z
H ; uH) +R⌧ (z

H ; uH) +O(e2).

(2.8)

Here, the first four equalities are obtained exactly as in the corresponding Galerkin finite

element method. However, when we subtract the interpolant z
H of the adjoint solution z

in the fifth equality, an additional term remains because the numerical scheme (2.7) lacks

Galerkin orthogonality. In reference to the notation introduced, the total semilinear form R
is given as R = Rg +R⌧ .

2.3 Software Components

An adaptive adjoint-based simulation requires the implementation and coordination

of a number of non trivial components. Namely, the solution of a primal problem, the

construction and solution of an auxiliary adjoint problem, an enrichment of the adjoint

solution, the estimation and localization of the error, and mesh adaptation are all required

steps in the adjoint-based adaptive process.

To implement each of these components for e↵ective execution on parallel machines, we

make use of two state of the art software suites. The first is PUMI [33], which contains tools

to support unstructured mesh services on massively parallel machines. In particular, PUMI

provides all of the necessary machinery to store, query, adapt, and dynamically load balance

parallel unstructured meshes via a collection of modern C and C++ libraries. The second is

Trilinos [34], [35], which provides a large variety of C++ packages to support multiphysics

simulations on parallel machines. In particular, Trilinos provides the ability to store and

solve sparse parallel linear systems, as well as tools to perform automatic di↵erentiation.

Using these two software suites as building blocks, we have written a new C++ applica-

11

tion for adjoint-based error estimation and mesh adaptation with an emphasis on nonlinear

solid mechanics. We have called this application Goal [29]. Below, we describe how these

software components are utilized for each portion of the adaptive adjoint-based process,

where the analysis is automated based only on the inputs of a semilinear form R and a

functional QoI J .

2.3.1 The Primal Problem

Based on an implemented weighted residual operatorR, the Goal application computes

element-level residual vectors and element-level Jacobian matrices. The element-level Jaco-

bian matrices are computed via automatic di↵erentiation using the Trilinos library Sacado.

Sacado provides e�cient automatic di↵erentiation using a C++ meta-programming technique

called expression templates [36].

After the computation of a single element’s residual vector and Jacobian matrix, the

Goal application performs a finite element assembly step to sum contributions to the global

residual vector and global Jacobian matrix. To store and modify the global linear algebra

objects, we utilize the Tpetra library provided by Trilinos. In particular, the Jacobian matrix

is stored as a sparse compressed row storage matrix in parallel.

The primal problem is solved via Newton’s method, which requires iterative evaluations

of the global residual vector and Jacobian matrix. For each Newton iteration, a global linear

system must be solved. We solve this linear system iteratively in parallel using either a CG

or GMRES solver provided the Trilinos library Belos [37]. Additionally, we perform algebraic

multigrid preconditioning using the Trilinos library MueLu [38].

Once the primal problem has been solved, we utilize the PUMI library APF to store the

finite element solution information at nodes and if necessary secondary solution information

at integration points. Additionally, the APF library is used to provide shape function infor-

mation and to query stored solution information during residual and Jacobian evaluations.

Throughout the entire solution process, the PUMI mesh data structure is utilized to query

mesh specific information.

2.3.2 The Adjoint Problem

To solve the adjoint problem in a richer finite element space than the one used for

the primal problem, we make use of the underlying PUMI mesh data structure [39] and

12

the PUMI MeshAdapt software to create and store a uniformly refined nested mesh with

parent-child relations back to the original mesh. This relational information is implemented

in the Goal application, as it falls outside of the normal intended use case of the MeshAdapt

software, which concerns itself with fully unstructured conforming mesh adaptation via edge

splits, swaps, and collapses. However, the flexibility of the PUMI software allows us to

additionally construct data structures similar to those used in traditional adaptive mesh

refinement (AMR) with little implementation e↵ort. Using the APF library and the parent-

child relational information, we are able to interrogate stored solution fields on both the

parent and nested meshes, which is required during the assembly of the adjoint problem.

On this finer mesh, element-level Jacobian matrices are computed using the Sacado

library, based on the Goal implementation of the operator R. Additionally, element-level

derivatives of the functional quantity of interest J are computed with respect to degrees of

freedom of the problem, resulting in an element-level functional derivative vector.

After the computation of a single element’s Jacobian matrix and functional derivative

vector, the Goal application performs a finite element assembly step to sum contributions

to the global discrete adjoint matrix and the global functional derivative vector. Like the

primal problem, these global parallel linear objects are stored using the Tpetra library. The

global discrete adjoint operator and functional derivative vector fully define the linearized

adjoint problem, which we again precondition with algebraic multigrid techniques using the

MueLu library and solve using either CG or GMRES iterations using the Belos library. The

fine-space adjoint solution is then attached to the mesh using the APF library.

2.3.3 Error Estimation and Localization

The error estimation and localization routines are implemented entirely in the Goal

application. The error is localized by an evaluation of the stabilized weighted residual op-

erator R, where the weight is chosen to be the adjoint solution multiplied by a partition of

unity. This error localization is discussed in further detail in Section 2.7. Based on these

element-level residual vectors, Goal performs finite element assembly of the global residual

vector, which is stored as a Tpetra vector. This vector represents an adjoint-weighted resid-

ual error estimate at each mesh vertex for each PDE equation in the fine mesh. The error is

attached to the vertices of the fine mesh using the APF library.

13

2.3.4 Mesh Adaptation

Once the error is stored on the vertices of the fine mesh, we interpolate it to element

centers of the coarse mesh. The fine mesh data structures are then destroyed and the Goal

application computes a mesh size field that seeks to equidistribute the error for an output

mesh with N elements. This mesh size field is given as the input to the PUMI MeshAdapt

software, which adapts the mesh with a sequence of edge splits, swaps, and collapses [40], [41]

to satisfy the given mesh size field. As a final step, we utilize the PUMI library ParMA [42],

[43] to perform di↵usive load balancing to ensure parallel partitioning quality.

2.3.5 In-Memory Integration of Components

The coupling of the software components described above is done in-memory [44]. That

is, there is no file-based communication of data from one analysis component to the next in

the automated process. This in-memory coupling is a key ingredient for parallel analysis,

where filesystem bandwidth is a critical bottleneck.

2.4 Template-Based Generic Programming

In this section, we provide a review of the concept of template-based generic program-

ming for the evaluation and solution of PDEs [30], [31] and how it has been extended in

the Goal application to automate the process of adjoint-based error estimation and mesh

adaptation. For PDE applications, TBGP is broken into three major components, a seed

or gather phase, a compute phase, and a scatter phase. The seed and scatter operations

must be programmed specifically for each evaluation purpose. In contrast, the compute

phase, where the PDE and QoI expressions are implemented, are written in a totally generic

manner. Figure 2.1 pictorially represents this design philosophy.

We invoke this approach at the element-level, meaning for each element we perform

the process: Gather ! Compute ! Scatter. By doing so, we reduce memory overhead

and eliminate complications introduced by parallel computation [31]. Underlying the TBGP

approach is the use of forward automatic di↵erentiation (FAD) [45], which is discussed in

further detail in Appendix A. The Goal application utilizes the Trilinos library Sacado [36]

to perform automatic di↵erentiation.

The purpose of the gather/seed operation is to collect information from global storage

containers and ‘gather’ it to local element-level data structures. Further, any FAD deriva-

14

Physics Code Legend

Gather

PDE terms

Scatter Global data structures

Local data structures

Generic template-based code

< ScalarT >

Gather/Scatter operations

Residual

Jacobian

Adjoint

QoI

QoI Deriv

Error

Fig. 2.1. A schematic for the generic programming model of PDEs.

Table 2.1. A list of TBGP evaluation operations used in the Goal application.
In this table uH is the primal solution vector, uh

H
is the prolongation of the

solution vector to a richer space, sH is a (potentially empty) vector of
history-dependent mechanics state variables, sh

H
is the prolongation of the state

to a richer space, zh is the adjoint solution vector, RH is the residual vector
evaluated on the coarse space, Rh is the residual vector evaluated on the fine

space, and J
H is the scalar QoI.

Evaluation Type Scalar Type Input Output

Residual double uH
, sH RH

Jacobian Sacado::FAD uH
, sH @R

H

@uH

Adjoint Sacado::FAD uh

H
, sh

H

h
@R

h

@uh

��
u
h

H

iT

QoI double uH
, sH J

H

QoI Deriv Sacado::FAD uh

H
, sh

H

h
@J

h

@uh

��
u
h

H

iT

Error double uh

H
, sh

H
, zh Rh

tive information is seeded during this operation, if necessary. For each evaluation type,

the gather/seed operation initializes an array that physically represent the degrees of free-

dom associated with the current element, and initializes FAD variables’ derivative arrays

to physically represent derivatives with respect to the degrees of freedom associated with

the current element, when necessary. This degree of freedom array is templated on a scalar

type ScalarT. For the Residual, QoI, and Error evaluation types, this scalar type corre-

15

Listing 2.1. The abstract Goal integrator class interface.

1 class Integrator {
2 public:
3 Integrator();
4 virtual ~Integrator();
5 std::string const& get_name() { return name; }
6 virtual void set_time(double, double) {}
7 virtual void pre_process(SolInfo*) {}
8 virtual void set_elem_set(int) {}
9 virtual void gather(apf::MeshElement*) {}
10 virtual void in_elem(apf::MeshElement*) {}
11 virtual void at_point(apf::Vector3 const&, double, double) {}
12 virtual void out_elem() {}
13 virtual void scatter(SolInfo*) {}
14 virtual void post_process(SolInfo*) {}
15 protected:
16 std::string name;

sponds to a C++ double. For the remaining evaluation types, this scalar type corresponds to

a Sacado::FAD forward automatic di↵erentiation variable type.

The compute phase computes local contributions to the equations or expressions of

interest at the element level in terms of the degrees of freedom, as collected by the gather

operation. The code for the compute phase is written in an entirely generic fashion, and is

templated on a scalar type ScalarT. Templating the code used for the compute phase, along

with appropriately chosen gather and scatter operations, allows the same code to be re-used

for the distinct evaluation purposes listed in Table 2.1.

The scatter phase takes the local element-level data evaluated in the compute phase and

‘scatters’ it to the appropriate global data structure, as determined by the current evaluation

operation. For instance, for the residual evaluation operation, local element-level residuals

are evaluated in the compute phase and then summed into appropriate locations in the global

residual vector during the scatter phase. Similarly, for the Jacobian evaluation operations,

local element-level Jacobians are evaluated in the compute phase and the scatter opeation

sums these local contributions to appropriate locations in the global Jacobian matrix.

In the Goal application, we have considered six specific gather/scatter evaluation oper-

ations corresponding to the evaluation of the global residual vector, evaluation of the global

Jacobian matrix, evaluation of the adjoint of the global Jacobian matrix, evaluation of the

16

functional QoI, evaluation of the derivative of the functional QoI, and evaluation of localized

adjoint-weighted residual error estimates. Table 2.1 lists the inputs and outputs for these

specific evaluation operations.

To realize these specific gather/scatter operations, we have implemented an abstract

degree of freedom class and an abstract quantity of interest class that are both templated on

a scalar type ScalarT. This scalar type is explicitly instantiated to either be a C++ double or

a Sacado::FAD forward automatic di↵erentiation variable type. Both the degree of freedom

and QoI classes are equipped with gather and scatter methods, whose behavior changes

based on an input parameter given to the class constructor. For the degree of freedom class,

this parameter selects gather/scatter operations for either the residual, Jacobian, adjoint

Jacobian, or adjoint-weighted residual error evaluations. Similarly, for the QoI class, this

input parameter selects gather/scatter operations for either the evaluation of the QoI or the

derivative of the QoI with respect to the problem degrees of freedom.

Previously, TBGP has been utilized in the multiphysics code Albany [46], [47] with the

capability to perform the Residual, Jacobian, Adjoint, QoI, and QoI derivative evaluation

operations shown in Table 2.1. To extend the abilities of TBGP to include adjoint-based

error estimation, the Goal application implements the ability to perform the Adjoint and QoI

derivative evaluations in a richer finite element space, as discussed in Section 2.6, a feature

not previously available in existing TBGP codes. Further, the Goal application implements

a novel evaluation type for the localization of the error, referred to as the Error evaluation

type in Table 2.1. For this purpose, we have implemented an abstract weighting function

class whose behavior changes based on the chosen evaluation type. This class evaluates the

appropriate finite element weighting function values and gradients based on linear Lagrange

basis functions for the Residual, Jacobian and Adjoint evaluation types. However, for the

Error evaluation type, the behavior of the weighting function class is modified such that it

evaluates the value and gradient of the adjoint solution z
h multiplied by a partition of unity.

This abstraction of the weighting function class allows us to re-use the PDE implementation

of the semilinear formR to assemble a residual vectorRh that represents an adjoint-weighted

residual error estimate at each mesh vertex for each PDE equation in the richer finite element

space, which is then used to drive mesh adaptation.

Listing 2.1 demonstrates the abstract integrator interface that has been implemented

in the Goal application. The abstract degree of freedom, QoI, and weighting function classes

17

inherit from this base class. For each of these classes, the gather and scatter methods are

implemented specifically for each appropriate evaluation type. The PDE equations in the

Goal application are written as a combination of Goal::Integrators. Given an ordered ar-

ray of integrators, the Goal application performs finite element assembly for every evaluation

type in a generic manner, as outlined by Algorithm 1.

Algorithm 1 Assembly algorithm used in the Goal application

Given a mesh M and an ordered array of integrators I:
Call pre process for each integrator i in I.
for each element set es in mesh M do

Call set elem set for each integrator i in I.
for each element e in element set es do

Call gather for each integrator i in I.
Call in elem for each integrator i in I.
for each integration point ip in element e do

Call at point for each integrator i in I.
end for
Call out elem for each integrator i in I.
Call scatter for each integrator i in I.

end for
end for
Call post process for each integrator i in I.

2.5 The Primal Problem

2.5.1 Galerkin Finite Element Methods

We recall the definition of the abstract Galerkin finite element model problem, given

by equation (2.5). In this context, the weighted residual form Rg is implemented in the Goal

application. As an example, Listing 2.2 demonstrates the implementation of the Poisson

residual Rg(w; u) := (rw,ru)� (w, f) in the Goal application.

2.5.2 Stabilized Finite Element Methods

We recall the definition of the abstract stabilized finite element model problem, given

by equation (2.7). In this context, both the weighted residual statementRg and the stabilized

weighted residual form R⌧ are implemented in the Goal application. As an example, Listing

2.3 demonstrates the implementation of the pressure stabilization [48] residualR⌧ (w; u) term

18

Listing 2.2. Poisson residual.

1 template <typename ScalarT>
2 void Residual<ScalarT>::at_point(
3 apf::Vector3 const& p, double ipw, double dv) {
4 apf::Vector3 x(0,0,0);
5 apf::mapLocalToGlobal(elem, p, x);
6 double fval = eval(f, x[0], x[1], x[2], 0.0);
7 for (int n = 0; n < u->get_num_nodes(); ++n)
8 for (int i = 0; i < num_dims; ++i)
9 u->resid(n) += u->grad(i) * w->grad(n, i) * ipw * dv;
10 for (int n = 0; n < u->get_num_nodes(); ++n)
11 u->resid(n) -= fval * w->val(n) * ipw * dv;
12 }

Listing 2.3. Pressure stabilization residual for mechanics.

1 template <typename ScalarT>
2 void Stabilization<ScalarT>::at_point(
3 apf::Vector3 const&, double ipw, double dv) {
4 double h = get_size(mesh, elem);
5 double tau = 0.5*c0*h*h/mu;
6 auto J = k->get_det_def_grad();
7 auto F = k->get_def_grad();
8 auto Cinv = inverse(transpose(F)*F);
9 for (int n = 0; n < p->get_num_nodes(); ++n)
10 for (int i = 0; i < num_dims; ++i)
11 for (int j = 0; j < num_dims; ++j)
12 p->resid(n) += tau * J * Cinv(i, j) *
13 p->grad(i) * w->grad(n, j) * ipw * dv;
14 }

used in the Goal application for finite deformation solid mechanics. This stabilization term

is discussed in greater detail in Section 2.10.2.

2.5.3 Automated Solution Based on Residual Implementation

For each element, we compute element level Jacobian matrices by applying automatic

di↵erentiation [45] to element-level contributions to the residual vector. For example, List-

ing 2.2 demonstrates how contributions to the element-level Poisson’s equation residual

R(w; u) = (rw,ru) � (w, f) are implemented. The element level Jacobian matrices are

19

then assembled into the global system Jacobian operator J H 2 RN⇥N , given by

J H =
@RH(uH)

@uH
(2.9)

Listings 2.2 and 2.3 both demonstrate how element-level contributions to the semilinear

forms Rg and R⌧ , respectively, are computed in the Goal application. Notice that this code

is templated on a scalar type ScalarT. When the scalar type is chosen as a C++ double,

element-level contributions to the residual vector RH are computed. When the scalar type

is chosen as a Sacado forward automatic di↵erentiation variable, element-level contributions

to the Jacobian matrix J H are computed. This illustrates a key concept of template-based

generic programming, in that the governing equations need only be implemented once to

compute a variety of additional information.

With the ability to fully assemble the Jacobian matrix J H and the residual vector RH ,

we solve the governing equations with Newton’s method, where we iterate over the steps

J H(uH

k
) �uH

k
= �RH(uH

k
)

uH

k+1 = uH

k
+ �uH

k
,

(2.10)

unitl the convergence criterion kRH(uH)k2 < ✏ is met for a user-specified tolerance ✏. Here

uH

k
denotes the solution vector at the k

th iteration obtained by solving the Newton linear

system. For linear variational problems, we simply restrict ourselves to a single Newton

linear solve, which reduces exactly to classical FEM assembly for linear problems.

2.6 The Adjoint Problem

2.6.1 A Richer Space via Uniform Refinement

The adjoint solution must be represented in a richer space than the one used for the

primal problem to obtain meaningful error estimates. There are several strategies that are

commonly used to obtain such a representation. First, the adjoint problem can be solved

in the same finite element space as the primal problem and then be enriched to a higher

order polynomial space [8] or a nested mesh [49] by some local patch-wise operation, or

variational multiscale enrichment [50] can be used in the context of stabilized finite elements.

Alternatively, the adjoint problem can be solved in a higher order polynomial space [51],

20

which we will refer to as p-enrichment. As a final option, the adjoint problem can be solved

on a uniformly refined mesh [52], which we will refer to as h-enrichment.

In this work, we choose the h-enrichment approach for several reasons. First, we would

like the adjoint solution to be as accurate as possible for error estimation purposes, so we

choose to solve the adjoint problem in a globally richer finite element space. Additionally, for

stabilized finite element methods, the use of p-enrichment would in general necessitate the

use of higher order stabilization terms that vanish for lower-order finite element methods with

simplical elements. These higher order terms are typically more di�cult to implement than

their lower order counterparts. Further, we remark that higher-order stabilized finite element

methods are rarely used in practice, as stable higher-order mixed methods can usually be

derived with fewer overall degrees of freedom [53]. Finally, we note that the unstructured

mesh adaptation capabilities of the PUMI software make the h-enrichment approach readily

available.

In the present context, we consider the term uniform refinement for triangles and

tetrahedra to mean splitting each edge of the parent element at its midpoint. Or, in other

words, creating new edges by by connecting the midpoints of the parent element’s existing

edges. The uniform refinement of a triangle results in 4 nested triangles and the uniform

refinement of a tetrahedron results in 8 nested tetrahedra.

We have denoted the trial and test spaces used for the primal problem as SH and VH ,

respectively. We denote the trial and test spaces on the uniformly nested mesh as Sh and

Vh, respectively, where h < H is representative of a finer mesh size. Figure 2.2 illustrates

the discretization for the coarse and fine trial and test spaces defined for a three dimensional

geometry with a complex void inclusion.

2.6.2 Discrete Adjoint Approximation

Let Rh : Rn ! Rn denote the residual form of the system of nonlinear algebraic

equations arising either from the Galerkin (2.5) or stabilized (2.7) model problem posed on

the uniformly nested mesh. Let uh

H
:= I

h

H
uH denote the prolongation of the primal finite

element solution onto the richer space Sh via interpolation, Let J
h : Rn ! R denote the

discretization of the functional QoI on the uniformly nested fine space. We approximate the

21

Fig. 2.2. Example of a nested mesh (red edges) obtained via a uniform
refinement of a base mesh (black edges) in three dimensions.

adjoint problem (2.2) in a discrete manner [10]–[12], [15], by solving

"
@Rh

@uh

����
u
h

H

#T

zh =

"
@J

h

@uh

����
u
h

H

#T

. (2.11)

This allows us to automate the process of solving the adjoint problem, as discussed below.

Here zh 2 Rn denotes the adjoint solution vector on the nested discretization.

2.6.3 Automated Solution Based on Residual Formulation

The construction of the Jacobian transpose matrix
⇥
@Rh

/@uh
⇤T

is performed in the

same automated manner as the Jacobian for the primal problem. That is, for each element,

we compute consistent element tangent sti↵ness matrices via automatic di↵erentiation of

element-level contributions to the residual vector. However, during the scatter phase of the

template-based generic programming process, we transpose the element-level tangent matri-

ces and sum them into global Jacobian adjoint matrix. The computation of the Jacobian

adjoint is done using the same templated code that is used to compute the primal residual

vector and the Jacobian matrix, as illustrated by listings 2.2 and 2.3.

Similarly, the construction of the functional derivative vector
⇥
@J

h
/@uh

⇤T
is done by

evaluating derivatives of element-level contributions to the functional via automatic di↵er-

22

entiation. This results in element-level derivative vectors that are then assembled into the

global functional derivative vector. Listings 2.4 and 2.5 illustrate the implementation of

two quantities of interest in the Goal application. Once the Jacobian transpose matrix and

functional derivative vector have been assembled, we solve the adjoint problem (2.11) using

a sparse iterative solver in parallel.

2.7 Error Estimation

2.7.1 Two-Level Error Estimates

Following Venditti and Darmofal [10]–[12], we review adjoint-based error estimation

using two discretization levels. The discrete residual form of the governing equations for a

Galerkin (2.5) finite element method or a stabilized finite element method (2.7) posed on

the fine space can be expressed as

Rh(uh) = 0. (2.12)

Taking Taylor expansions of the discrete residual Rh evaluated on the fine space and

the discrete functional Jh evaluated on the fine space about the point uh

H
yields

Rh(uh) = Rh(uh

H
) +

"
@Rh

@uh

����
u
h

H

#
(uh � uh

H
) + . . . (2.13)

and

J
h(uh) = J

h(uh

H
) +

"
@J

h

@uh

����
u
h

H

#
(uh � uh

H
) + . . . (2.14)

respectively.

Using equation (2.12), the discretization error between the two spaces can be approxi-

mated to first order as

(uh � uh

H
) ⇡ �

"
@Rh

@uh

����
u
h

H

#�1

Rh(uh

H
), (2.15)

which can then be substituted into the functional Taylor expansion (2.14) to obtain the

23

so-called adjoint weighted residual

J
h(uh)� J

h(uh

H
) ⇡ �zh ·Rh(uh

H
) (2.16)

where zh is the solution to the adjoint problem (2.11).

2.7.2 Modified Functional Error Estimate

Assume that the QoI converges at the rate k, such that J � J
h(uh

H
) = cH

k and

J � J
h(uh) = ch

k, where J denotes the exact value of the QoI. If the fine space is obtained

via uniform mesh refinement, then the ratio of the fine mesh size to the coarse mesh size is

given as h

H
= 1

2 . Consider the ratio

J
h(uh)� J

h(uh

H
)

J � Jh(uh

H
)

=

⇥
J � J

h(uh

H
)
⇤
�

⇥
J � J

h(uh)
⇤

J � Jh(uh

H
)

=
cH

k � ch
k

cHk

= 1�
✓
h

H

◆k

= 1�
✓
1

2

◆k

(2.17)

in the limit as H ! 0 [15]. We call this ratio ↵ := 1�(1/2)k. Let ⌘ denote an approximation

to the functional error J � J
h(uh

H
). Let I denote the e↵ectivity index given by

I =
⌘

J � Jh(uh

H
)
. (2.18)

We would like to obtain error estimates ⌘ that lead to e↵ectivity indices of I = 1 as H ! 0.

To this end, we recall Jh(uh)� J
h(uh

H
) ⇡ �zh ·Rh(uh

H
) from equation (2.16) to obtain the

scaled adjoint weighted residual error estimate

⌘ = � 1

↵
zh ·Rh(uh

H
). (2.19)

2.7.3 Error Localization for Galerkin Methods

Following the approach of Richter and Wick [28], we introduce a partition of unity

�i, such that
P

i
�i = 1, into the weighting function slot for the error estimate to localize

24

the error. In this work, the partition of unity is realized as linear Lagrange basis functions.

This yields local error contributions ⌘i at the nvtx mesh vertices in the mesh. Let zh 2 Vh

be the finite element solution obtained by solving the discrete adjoint problem (2.11). We

assume that this solution well approximates the continuous adjoint problem (2.2), such that

z ⇡ z
h. Let z

H denote the interpolant of z
h onto the coarse space VH . Recalling the

error representation (2.6) for Galerkin finite elements, we obtain partition of unity-based

correction indicators ⌘i in the following manner

J(u)� J(uH) ⇡
nvtxX

i=1

�Rg((z
h � z

H)�i ; u
H).| {z }

⌘i

(2.20)

2.7.4 Error Localization for Stabilized Methods

Error localization for the stabilized finite element formulation (2.7) proceeds in the

same manner as the previous section. Let zh 2 Vh denote the finite element solution obtained

by solving the discrete adjoint problem (2.11) and let zH denote the interpolant of zh onto

the coarse space VH . Introducing a partition of unity into the error representation (2.8)

for stabilized finite element methods with the approximation z ⇡ z
h yields the vertex-based

correction indicators ⌘i:

J(u)� J(uH) ⇡
nvtxX

i=1

�Rg((z
h � z

H)�i ; u
H) +R⌧ (z

H
�i ; u

H).| {z }
⌘i

(2.21)

Once correction indicators ⌘i have been evaluated, an approximate upper bound ⌘̂ for

the error is computed by summing the absolute value of the error contributions over all mesh

vetrices

⌘̂ =
nvtxX

i=1

|⌘i|. (2.22)

2.7.5 Automated Error Localization Based on Residual Implementation

During the assembly of the adjoint problem (2.11), the evaluation of element-level

contributions to the residual vector evaluated on the fine space Rh(uh

H
) are necessarily

computed by the machinery of forward automatic di↵erentiation. Thus, during the scatter

phase for the adjoint problem computation, we additionally sum element-level contributions

25

to the fine residual to assemble the global vector Rh(uh

H
). This, along with the solution zh

to the adjoint problem (2.11) provides enough information to compute the adjoint-weighted

residual estimate (2.19) in an automated fashion.

Again, we let zh 2 Vh denote the finite element solution to the discrete adjoint problem

(2.11) and let zH denote the interpolant of zh onto the coarse space VH . We refer again to

Listings 2.2 and 2.3, which illustrate implementations of Galerkin and stabilized semilinear

forms Rg and R⌧ , respectively, in the Goal application. Specifically, we remark that these

residual evaluations contain the evaluation of weighting functions and their derivatives, given

with calls to the methods w->val(node) and w->grad(node, dim), respectively. To localize

the error in an automated fashion, we override the calls to these methods such that they

return values of the adjoint solution multiplied by a partition of unity. For instance, at a

given reference location ⇠ in a given element, the partition of unity-based weight for the

Galerin residual Rg is computed as

w->val(n) =
⇥
(zh � z

H) · �n

⇤��
⇠
, (2.23)

and its corresponding gradient is computed as

w->grad(n) = r
⇥
(zh � z

H) · �n

⇤��
⇠
. (2.24)

Similarly, for the stabilized residual R⌧ , the partition of unity-based adjoint weight is com-

puted as

w->val(n) =
⇥
z
H · �n

⇤��
⇠
, (2.25)

and its corresponding gradient is computed as

w->grad(n) = r
⇥
z
H · �n

⇤��
⇠
. (2.26)

In this manner, we have introduced partition of unity-based adjoint weights that have the

same data type as the weights used for the computation of the primal and adjoint problems.

Using the adjoint weights in the error localization evaluation results in element-level

residual vectors that correspond to contributions to the localized correction indicators ⌘i.

26

During the scatter phase of the error localization evaluation, we sum these element level

contributions to the appropriate mesh vertices to compute the localized correction indicators

⌘i.

2.8 Mesh Adaptation

Given localized correction indicators ⌘i at mesh vertices, we compute element-level

correction indicators ⌘e for e = 1, 2, . . . , nel, where nel is the number of elements in the

coarse discretization, by interpolating the vertex-based indicators to element centers and

taking the result’s absolute value.

We then specify a mesh size field that defines the desired value of edge lengths over

the mesh. From a high-level, we would like to specify this size field such that areas of the

mesh that contribute strongly to the error in the QoI are refined, and areas of the mesh

that are insensitive to the error are coarsened. Following Boussetta et al. [54], we specify a

size field that attempts to equidistribute the error in an output adapted mesh with N target

elements. Let p be the polynomial interpolant order for the chosen finite element method.

In the present setting, p = 1. We first define the global quantity G as

G =
nelX

e=1

(⌘e)
2d

2p+d . (2.27)

This global quantity arises by considering a priori convergence rates for the input mesh and

attempting to find an optimal mesh size for an output mesh with N elements. [54]. With

this global quanity, new element sizes H
new
e

are computed by scaling the previous element

size He

H
new
e

=

✓
G

N

◆ 1
d

(⌘e)
�2

2p+dHe. (2.28)

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we clamp

the element size such that it is no smaller than one quarter and no greater than twice the

previous element size. This clamping is performed to ensure that mesh adaptation is being

driven by accurate error indicators.

1

4
 H

new
e

He

 2. (2.29)

27

2.9 Quantities of Interest

In this section, we review three quantities of interest that we have implemented in

the Goal application. One benefit of the current automated approach is that additional

quantities of interest can be rapidly prototyped and investigated with relative ease. Here,

we refer to the domain discretized by the finite element mesh as ⌦.

2.9.1 Point-Wise Solution Component

First, we consider the evaluation of a component ui of the solution u at a given spatial

localtion x. This functional can be expressed as

J(u) =

Z

⌦

�(x� x0) ui d⌦, (2.30)

where � is the Dirac delta function. We implement this quantity of interest as a discrete

delta function, such that the right-hand side for the adjoint problem takes the form

@J
h

@uh
=

h
0 0 . . . 0 1 0 . . . 0 0

i
. (2.31)

For this implementation, a mesh vertex is always placed at the spatial location x0, the QoI

derivative vector is zeroed out, and we place a one in the row of the QoI derivative vector

that corresponds to the i
th component of the solution at the vertex.

2.9.2 Integrated Solution Over a Sub-Domain

Next, we consider the integrated solution over a sub-domain ⌦0 ⇢ ⌦, which can be

expressed as

J(u) =

Z

⌦0

1

nc

ncX

i=1

ui d⌦. (2.32)

Here, nc denotes the number of components for the solution vector. As an example, List-

ing 2.4 demonstrates the Goal implementation for the QoI corresponding to the integrated

displacement over a sub-domain.

28

Listing 2.4. Evaluation of the integrated displacement over a sub-domain.

1 template <typename ScalarT>
2 void AvgDisp<ScalarT>::at_point(
3 apf::Vector3 const&, double w, double dv) {
4 for (int i = 0; i < num_dims; ++i)
5 this->elem_value += u->val(i) * w * dv;
6 this->elem_value /= num_dims;
7 }

2.9.3 Integrated von-Mises Stress Over a Sub-Domain

Finally, specifically for mechanics problems, we consider the evaluation of the von-Mises

stress integrated over a sub-domain ⌦0 ⇢ ⌦, given as

J(u) =

Z

⌦0

�vm d⌦, (2.33)

where the von-Mises stress �vm is defined as

�vm :=

r
3

2
�0

ij
�0

ij
. (2.34)

Here summation over repeated indices is implied and �0 = �� 1
3tr(�)I denotes the deviatoric

part of the Cauchy stress tensor �. The von-Mises stress is often used in yield criterion for

elastoplastic constitutive models, and is hence of particular interest for solid mechanics design

applications.

We note that this funciton J(u) has sources of nonlinearities from the deviatoric stress

tensor �0 and further nonlinearites introduced by the definition of the von-Mises stress,

which includes the square of deviatoric stress components and a square root operation. The

linearization and implementation of this QoI, as required for adjoint-based error estimation,

would be cumbersome at best without some kind of automated approach. In contrast,

Listing 2.5 illustrates the simplicity of the relevant C++ code that implements integration

point contributions to this specific QoI in the Goal application.

29

Listing 2.5. Evaluation of the integrated von-Mises stress over a sub-domain.

1 template <typename ScalarT>
2 void AvgVM<ScalarT>::at_point(
3 apf::Vector3 const&, double w, double dv) {
4 auto sigma = model->get_cauchy();
5 ScalarT vm = compute_von_mises<ScalarT>(sigma);
6 this->elem_value += vm * w * dv;
7 }

2.10 Results

2.10.1 Poisson’s Equation

As a first example, we investigate error estimation and mesh adaptation in Poisson’s

equation for the model problem

8
<

:
�r2

u = f x 2 ⌦,

u = 0 x 2 @⌦.
(2.35)

This model problem leads to the Galerkin finite element method: find u
H 2 VH such that

Rg(wH ; uH) = 0 for all wH 2 VH . Here the residual Rg is defined as

Rg(w
H ; uH) := (rw

H
,ru

H)� (wH
, f), (2.36)

and the space VH is given by

VH := {uh 2 H
1(⌦) : uH = 0 on @⌦ , u

H |⌦e
2 P1}. (2.37)

Here ⌦e denotes an element in a decomposition of the domain ⌦ into nel non-overlapping

elements such that [nel

e=1⌦e = ⌦ and ⌦i \⌦j = ? if i 6= j. Additionally, P1 denotes the space

of piecewise linear polynomials.

The domain is chosen to be ⌦ := [�1, 1] ⇥ [�1, 1] \ [�1
2 ,

1
2] ⇥ [�1

2 ,
1
2] as shown in

Figure 2.3. The data is chosen to be f = 1 and we consider a point-wise QoI of the form

J(u) =
R
⌦ �(x � x0)u d⌦, where the point of interest x0 is chosen to be x0 = (0.75, 0.75).

This problem was initially studied in the reference [55], where the QoI was determined to

have a reference value of J(u) = 0.0334474 ± 1e-7. Presently, we demonstrate that our

30

automated approach can reproduce the results for traditional adjoint-based error estimation

found in [55].

Fig. 2.3. Domain and initial mesh (left) for the Poisson’s equation example
with the QoI point indicated in red, final adapted mesh (middle), and a close

up of the upper-right hand corner of the final adapted mesh (right).

Starting from the initial mesh shown in Figure 2.3, the steps:

Solve Primal ! Solve Adjoint ! Estimate Error ! Adapt Mesh

were performed seven times. The adaptive simulation was run using 4 MPI ranks. The

mesh size field was set according to equation (2.28) so that the target number of elements is

twice that of the current mesh. Figure 2.3 also shows the final adapted mesh resulting from

this procedure. We remark that the distribution of degrees of freedom in this mesh closely

resembles the results obtained in reference [55].

We expect this functional to converge at the rate k = 2, such that the scaling factor ↵

used in the estimate (2.19) is given as ↵ = 3
4 . We consider the “exact error” E = J(u)�J(uH)

and the e↵ectivity index I = ⌘

E , where ⌘ is the estimate given by equation (2.19). Here we

have placed quotations around the term exact error because we have only approximated the

exact value of the QoI J(u), and not truly recovered its exact value. Figure 2.4 plots the

e↵ectivity index I versus the number of degrees of freedom in the adaptive process. This

plot demonstrates the ability of the error estimate to recover the “exact error” as H ! 0.

Figure 2.5 displays the evolution of various errors during the adaptive process. The

“exact error” E and the estimated error ⌘ are very close, as previously demonstrated by the

e↵ectivity index I. Additionally, the approximated upper bound on the error ⌘̂ overestimates

31

10
2

10
3

10
4

0.8

0.9

1

Degrees of freedom

E
↵
e
c
t
iv
it
y
I
n
d
e
x

E↵ectivities for point-wise displacement QoI

Effectivity Index

Fig. 2.4. E↵ectivity indices for the adaptive Poisson’s equation example.

the error, but not to a large degree. This provides some indication that the correction

indicators are e↵ective in that they do not drastically overestimate error. Finally, we remark

that an improved corrected QoI functional value can be computed as J⇤(uH) = J(uH) + ⌘.

Figure 2.5 demonstrates that this corrected value is nearly an order of magnitude more

accurate than the computed functional value J(uH) during the adaptive process.

Finally, Figure 2.6 demonstrates the evolution of the “exact error” for two adaptive

strategies. The first strategy uniformly refines the mesh at each adaptive step and the second

strategy performs the adjoint-based adaptive scheme developed in this work. We note that

the error for the adjoint-based adaptive scheme converges faster than the uniform refinement

scheme. Further, this convergence plot is consistent with the reference [55].

2.10.2 A Cell Embedded in a Matrix

Recently, the automated approach developed in this paper was applied to a stabilized

mixed pressure-displacement finite element formulation [48] for the governing equations of

finite deformation elasticity in a total Lagrangian setting [56] (see Chapter 3). For two and

three dimensional problems in nonlinear elasticity, the automated approach was shown to

32

10
2

10
3

10
4

10
�5

10
�3

10
�1

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Errors in point-wise displacement QoI

Error in computed value

Estimated error bound

Estimated error

Error in corrected value

Fig. 2.5. Errors for the point-wise QoI for the adaptive Poisson’s equation
example.

e↵ectively estimate the error and provide improved error convergence rates via adjoint-based

mesh adaptation over uniform refinement.

In this section, the parallelization of a biomechanical application presented in the

reference [56] is discussed. First, the governing equations are briefly reviewed. For mixed

pressure-displacement formulations in the Goal application, the Galerkin residual is defined

as:

Rg(W
H ;UH) :=

Z

⌦

P : rwH d⌦+

Z

⌦


p
H


� 1

2j
(j2 � 1)

�
q
H d⌦�

Z

@⌦h

h ·w d�,
(2.38)

33

10
2

10
3

10
4

10
�3

10
�2

10
�1

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Convergence history for point-wise QoI

Uniform Refinement

Goal-Oriented Adaptation

Fig. 2.6. Error convergence using uniform mesh refinement and adjoint-based
error estimation for the adaptive Poisson’s equation example.

and the stabilization residual is defined as:

R⌧ (W
H ;UH) :=

nelX

e=1

Z

⌦e

⌧e(jF
�1F�T) : (rp

H ⌦rq
H) d⌦. (2.39)

Here, F is the deformation gradient, j := det(F), h is an applied traction over the boundary

@⌦h, P := j�F�T is the first Piola-Kirchho↵ stress tensor, � is the Cauchy stress tensor, nel

is the total number of elements in the mesh, and ⌧e :=
c0H

2
e

2µ is a mesh-dependent stabilization

parameter, where c0 is a non-negative stability constant, He denotes an element mesh size

and µ denotes the bulk modulus. The Cauchy stress tensor is defined via a neo-Hookean

constitutive relationship. The total solution vector is defined as UH := [uH
, p

H], where uH

corresponds to displacements and p
H corresponds to pressures. Similarly, the total weighting

vector is defined as WH := [wH
, q

H], where wH denotes a weighting function corresponding

34

to displacements and q
H is a weighting function corresponding to pressures. For a complete

exposition, we refer the reader to Chapter 3.

Fig. 2.7. Domains for the microglial cell example.

We focus on a microglial cell with dimensions of about 20µm⇥20µm⇥20µm embedded

in an extracellular matrix of dimension 100µ ⇥ 100µm ⇥ 100µm. The QoI is chosen to be

a local integrated displacement J(U) =
R
⌦0

1
3(ux + uy + uz) d⌦, defined over a box ⌦0 with

dimensions 30µm ⇥ 30µm ⇥ 30µm that bounds the microglial cell. Figure 2.7 shows the

geometry defining the microglial cell, the bounding box ⌦0, and the extracellular matrix.

The shear modulus is defined as µ = 600 Pa and Poisson’s ratio is set to be ⌫ = 0.4999.

To drive the problem, traction boundary conditions are imposed along the surface of

the microglial cell. The magnitude of the applied traction h is defined to be 10 times the

distance to the center of the cell and its direction points inward towards the cell center. This

traction is consistent with observed physical behavior [57]. Displacements ux = 0, uy = 0,

and uz = 0 are applied to the faces with constant minimum x-coordinate value, constant

minimum y-coordinate value, and constant minimum z-coordinate value, respectively, to

constrain rigid body rotations and translations.

Figure 2.8 demonstrates an initial mesh, which contains around 30, 000 degrees of

35

Fig. 2.8. A close-up of the initial mesh (left) the mesh after 5 adaptive
iterations (center) and the final adapted mesh (right) for the microglial cell

example.

freedom. From this initial mesh, the steps

Solve primal PDE ! Solve adjoint PDE ! Localize error ! Adapt mesh

were successively performed 10 times. During the adapt stage, the mesh size field was set such

that desired number of elements N in the output mesh is 1.5 times the number of elements

in the previous mesh, according to equation (2.28). Figure 2.8 additionally demonstrates

the adapted meshes obtained at the fifth and final adaptive iteration. In particular, both

coarsening and refinement is performed during the adaptive iterations.

Fig. 2.9. The parallel mesh partitioning for the initial mesh (left) and the final
adapted mesh (right) for the microglial cell example.

The problem was run using 16 MPI ranks. Figure 2.9 demonstrates the parallel parti-

tioning for the initial mesh and for the final adapted mesh obtained after 10 adjoint-based

36

adaptive iterations. To ensure partitioning quality, ParMA was utilized to guarantee the

imbalance of vertices and elements across parallel partitions is no greater than 5%.

2 4 6 8 10
0

20

40

60

80

100

Adaptive Iteration

%
C
P
U

T
im

e
Breakdown of CPU Timings per Adaptive Iteration

Primal Adjoint Localization Adapt

Fig. 2.10. Breakdown of the CPU time spent for each portion of the adaptive
process for the microglial cell example.

Figure 2.10 presents a breakdown of the total percentange of CPU time spent on

each step in the adaptive analysis. For every adaptative iteration, the error localization

(2.21) takes only a small percentage of the total CPU time, as it essentially amounts to

an evaluation of the residual vector on the fine space. More interestingly, mesh adaptation

initially accounts for about 20 percent of the total CPU time but decreases as the adaptive

simulation progresses. This is explained by the fact that the initial adaptive iteration requires

more work to optimally distribute the degrees of freedom for the functional QoI as compared

to subsequent adaptive iterations. In addition to refinement and coarsening operations,

the mesh adaptation step also performs shape correction to ensure elements are not too

heavily skewed [40]. Finally, we note that the adjoint problem accounts for roughly 40 to

37

50 percent of the CPU time over the course of the adaptive simulation. While process

of adjoint-based error estimation is not cheap for this example, we provide two justifying

remarks. First, this problem required only 3 to 4 Newton iterations for each primal solve.

For constitutive models with higher degrees of nonlinearity or for problems loaded to higher

strains, it is not uncommon for Newton’s method to converge in 7 to 10 iterations. In these

scenarios, the relative cost of adjoint-based error estimation is not as extreme. Second, for

this computational price, we have achieved very accurate error estimates as shown in Chapter

3.

2.10.3 Elastoplasticity in an Array of Solder Joints

In this section, we investigate the utility of adjoint-based mesh adaptation for a ther-

momechanical analysis of an array of solder joints used in microelectronics fabrication. We

consider a 6⇥6 array of solder joints sandwiched between two materials with distinct thermo-

mechanical properties to model a portion of the process of ‘flip-chip’ manufacturing [58]. The

full geometry is shown in Figure 2.11. We consider an elastoplastic constitutive model with

a von-Mises yield surface and linear isotropic hardening, as given by Simo and Hughes [59]

with a temperature correction for the stress tensor [60]. The top slab, solder joints, and

bottom slab are modeled with the distinct material properties given in reference [58].

To drive the problem, the entirety of the domain is cooled from a reference temperature

Tref = 393K to a resting temperature of Tf = 318K in a single load step. The faces with

minimum x, y, and z coordinate values were constrained to have zero displacements in the

x, y, and z directions, respectively. As a QoI, we consider the integrated von-Mises stress

given by equation (2.33) over three solder joints shown in yellow in Figure 2.11.

Fig. 2.11. The solder joint array geometry (left) and the geometric
specification of the integrated von-Mises QoI (right).

38

The primal problem was solved on a sequence of uniformly refined meshes, starting with

an initial mesh with about 1 million elements distributed over 16 MPI ranks, and finalizing

with a mesh with over half a billion elements distributed over 8192 MPI ranks. For each solve,

the work load for each mesh part (MPI rank) was held constant at approximately 70, 000

elements. Figure 2.12 demonstrates weak scaling timing results for various aspects of the

primal solve. In particular, we remark that the assembly of the residual vector and Jacobian

matrix scale well as the number of MPI ranks increases. The preconditioning routine shows a

slight increase in time as the number of MPI ranks increases, but this increase is not drastic.

The time to solve the linear system, however, does not scale optimally. Improvements to

parallel performance could likely be made by more finely tuning the preconditioning and

linear solver routines for the specific problem, but this is outside the scope of the present

work.

The approximate QoI, JH(uH), was computed at each primal solve. Using the QoI

evaluations from the finest three meshes, we performed Richardson extrapolation [61] to

obtain a more accurate representation of the QoI. This value was given as J(u) = 328.9.

We consider the extrapolated value to be the “true” QoI value and measure errors with

respect to it. The expected convergence rate of the QoI is k = 1, which is confirmed by the

Richardson extrapolation procedure.

From the same initial mesh used in the weak scaling study, we iteratively performed

the steps:

Solve Primal ! Solve Adjoint ! Estimate Error ! Adapt Mesh

with a restart after each mesh adaptation using 128, 256, and 512 MPI ranks, such that

the output number of elements N in the adapted mesh was targeted to be 1 million, 2

million, and 4 million elements, respectively. Figure 2.13 shows di↵erent components of

the adjoint solution obtained during the adjoint-based adaptive process. Figure 2.14 shows

the spatial distribution of the error for the given QoI as computed by the adjoint-based

error estimation process. Unsurprisingly, the majority of the error is localized to the area

which geometrically defines the QoI. However, there are also contributions to the error from

nearby solder joints that decrease as the distance from the 3 QoI solder joints increases.

These additional contributions to the error are mostly gathered at the interface between

39

10 100 1,000 10,000

20

40

60

80

100

MPI ranks / number of mesh parts

S
e
c
o
n
d
s

Weak scaling (70,000 elems per part)

Residual assembly

Jacobian assembly

Preconditioning

Linear Solve

Fig. 2.12. Weak scaling for the Goal application.

solder joints and the underlying material slab, where von-Mises stress concentrations exist.

Figures 2.15 and 2.16 demonstrate the intial mesh used for the solder joint problem

and the final adapted mesh obtained via adjoint-based adaptation. These figures clearly

demonstrate that the 3 solder joints that define the QoI sub-domain are heavily refined, as

expected. Additionally, notice that Figure 2.15 demonstrates that there is refinement at

the left-most solder joint, which is not included in the geometric definition of the QoI. The

adjoint-based error estimation procedure indicates that mesh must be refined in additional

areas to accurately assess the QoI.

Figure 2.17 demonstrates the convergence history of the error in the functional QoI,

as defined by the di↵erence of the QoI obtained via Richardson extrapolation and the QoI

approximated by the finite element solution. We compare the convergence for two adaptive

40

Fig. 2.13. The x-component of the adjoint displacement solution (left), and the
pressure component of the adjoint solution (right).

Fig. 2.14. The spatial distribution of errors as computed by adjoint-based error
estimation for the solder joint array.

Fig. 2.15. Cross-sectional view of the initial mesh for the solder joint geometry
(left) and the final adapted mesh (right).

41

Fig. 2.16. The initial mesh for the solder joint geometry (left) and the final
adapted mesh (right).

schemes, one achieved by successive uniform refinements of the mesh and the other achieved

by adjoint-based error estimation. After 4 adaptive iterations, the adjoint-based adaptive

procedure achieves nearly the same degree of accuracy as the uniform refinement procedure

with two orders of magnitude fewer degrees of freedom.

10
6

10
7

10
8

10
�1.5

10
�1

10
�0.5

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Convergence history for von-Mises QoI

Uniform refinement

Adjoint-based adaptivity

Fig. 2.17. Error convergence histories for the solder joint example problem
with the integrated von-Mises stress QoI.

Finally, we remark that automated parallel adaptive workflows have been developed in

42

reference [58]. As an avenue for future investigation, adjoint-based error estimation could be

folded into these automated workflows. In particular, an automated primal analysis could be

used to inform the actual selection of the QoI itself, which could then be accurately assessed

using adjoint-based error estimation.

2.11 Conclusions

In this work, we have developed an automated approach for adjoint-based error esti-

mation and mesh adaptation for execution on parallel machines. We have developed this

approach to be applicable to both Galerkin and stabilized finite element methods. To real-

ize this approach, we have extended the concept of template-based generic programming for

PDE models to include the automatic localization of error contributions using a partition of

unity-based localization approach. We have demonstrated that this approach is e↵ective for

a variety of example applications, including nonlinear elasticity and elastoplasticity.

CHAPTER 3

ADJOINT-BASED ERROR ESTIMATION AND MESH

ADAPTATION FOR STABILIZED FINITE DEFORMATION

ELASTICITY

3.1 Introduction

The purpose of this chapter is to develop an approach for functional error estimation

and mesh adaptation using adjoint-based techniques for incompressible finite deformation

elasticity. An important scenario where incompressible nonlinear elastic materials are utilized

is the study of biological soft tissues [62]–[64]. Adjoint-based error estimation provides the

ability to approximate discretization errors for a functional quantity of interest (QoI) [8], [10],

[13], [65]–[68], such as point-wise displacements or stresses, or the integrated displacement

over a sub-domain. Mesh adaptation utilizes local information obtained from error estimates

to control discretization errors by adaptively modifying the computational mesh.

Previously, in the context of solid mechanics, adaptive adjoint-based error estimation

has been used to study linear elasticity in two [16]–[18] and three [19] dimensional elasticity,

two [20], [21] and three [22] dimensional elasto-plasticity, two dimensional thermoelasticity

[23], two dimensional nonlinear elasticity [24], and two dimensional hyperelasticity [25]. In

the vast majority of the previous literature, mesh adaptation is performed with structured

adaptive mesh refinement using quadrilateral or hexahedral elements. However, for complex

geometries such as those that arise in the study of biological tissues, mesh generation and

mesh adaptation are reliable, robust, and scalable for simplical elements. This motivates us

to consider triangular and tetrahedral elements.

It is well known that solid mechanics problems with incompressibility constraints per-

form poorly with linear displacement-based Galerkin finite element methods when using

simplical elements. This motivates us to consider a mixed displacement-pressure based finite

element formulation with an additional pressure stabilization term. This is in contrast to

the work by Whiteley and Tavener [25], who utilized a Taylor-Hood type element to study

This chapter has been submitted to: B. N. Granzow, A. A. Oberai, and M. S. Shephard, “Adjoint-based

error estimation and mesh adaptation for stabilized finite deformation elasticity,” submitted for publication.

43

44

adjoint-based error estimation in two-dimensional hyperelasticity.

In this work, we propose the following adaptive adjoint-based error estimation strategy.

First, we solve the primal finite deformation elasticity problem with a stabilized mixed

displacement-pressure finite element method. Next, we construct and solve a discrete adjoint

problem in a finer space obtained via uniform mesh refinement. We then estimate the global

error in a functional QoI with a scaled discrete adjoint weighted residual error estimate. To

localize error estimates to the mesh entity level, we utilize a recently developed approach [28],

[69] based on the insertion of partition of unity (PU) into the variational form of the adjoint-

weighted residual error representation. Finally, utilizing these localized errors, we perform

fully unstructured mesh adaptation utilizing a series of splits, swaps, and collapses.

The contributions of this work can be summarized as follows. First, we expand upon

the existing literature in solid mechanics to account for stabilized finite element methods in

adjoint-based error estimation. Additionally, we propose a simple error correction to the well-

known adjoint-weighted residual [15] error estimate to obtain more accurate error estimates

when uniform refinement is used to compute the adjoint solution. Next, we extend the PU-

based error localization approach of Richter and Wick [28] to the context of stabilized finite

element methods. Finally, we demonstrate that our adaptive adjoint-based error estimation

approach can be applied to realistic three-dimensional engineering models, with greater

geometric complexity than we have seen in the existing literature.

The remainder of this chapter proceeds as follows. First, we review the governing equa-

tions for a mixed displacement-pressure based formulation of nonlinear finite deformation

elasticity. Next, we review the development of a mixed stabilized finite element method with

equal order linear interpolants for displacements and pressures over simplical elements. We

then review the so-called adjoint-weighted residual approach for functional error estimation

using two discretization levels, as defined by a coarse and a fine space. After this review, We

motivate our choice for the fine space, as achieved by uniform mesh refinement. We then

introduce a modified, more accurate adjoint-weighted residual error estimate based on an a

priori analysis. Next, we discuss the localization of the error estimate to the mesh entity

level by a recently developed PU approach, which we extend to stabilized finite element

methods. We then apply adaptive adjoint-based analysis to a well known test case, the

Cook’s membrane problem to validate and demonstrate the e↵ectiveness of our approach.

We then investigate and demonstrate the utility of adjoint-based error estimation and mesh

45

adaptation for a three-dimensional example, motivated by the study of a cell embedded in

a matrix. Finally, we conclude by summarizing our results.

3.2 Model Problem

In this section, we introduce the governing equations for finite deformation elasticity in

a total Lagrangian setting with a neo-Hookean constitutive model. We begin by presenting a

mixed pressure-displacement formulation for the strong form of the underlying PDE. We then

present the corresponding weak form of the PDE and review the derivation of a stabilized

finite element formulation. We conclude by discussing the linearization and solution of the

nonlinear system of equations resulting from the stabilized finite element formulation.

3.2.1 Strong Form

Let B ⇢ Rd denote the reference configuration of an open bounded domain with smooth

boundary �, where d denotes the number of spatial dimensions. Let � be decomposed such

that � = �g[�h, where �g\�h = ?. LetX 2 B denote a point in the reference configuration

which, after undergoing some deformation, is located at the point x 2 Bt in the deformed

configuration at time t. Let u := x�X denote the displacement vector. The deformation

gradient is then defined as F := I + @u

@X
, and we denote the determinant of the deformation

gradient as j := det(F).

The balance of linear momentum in the absence of inertial and body forces leads to

the following boundary value problem in the reference configuration:

8
>><

>>:

�r · P = 0, X 2 B,
u = g, X 2 �g,

P · n = h, X 2 �h.

(3.1)

Here, P := j�F�T denotes the first Piola-Kirchho↵ stress tensor, g denotes an externally

applied displacement, h denotes an externally applied traction, n denotes the unit outward

normal to the boundary �h, and � denotes the Cauchy stress tensor.

We consider a neo-Hookean constitutive model, where the stress response is character-

46

ized by the relationship:

� = µj
� 5

3dev(FF T)| {z }
�0

+


2j
(j2 � 1)

| {z }
p

I. (3.2)

Here µ denotes the shear modulus,  denotes the bulk modulus, I is the second order identity

tensor, and dev(·) := (·) � 1
3trace(·)I denotes the deviatoric component of a second order

tensor. The stress is decomposed as � = �0+pI into deviatoric and volumetric components,

�0 and pI, respectively.

With this decomposition of the Cauchy stress tensor, the divergence of the first Piola-

Kirchho↵ stress tensor can be expressed as

r · P = r · (j�F�T)

= r · (j(�0 + pI)F�T)

= r · (j�0F�T) +r · (jpF�T)

= r · (j�0F�T) + jF�Trp.

(3.3)

Here, we have used the Piola identity r · (jF�T) = 0 in the fourth equality. Using the

decomposition (3.3) and introducing the pressure (3.2) as an unknown variable, the model

problem (3.1) can be written in mixed form as:

8
>>>>>><

>>>>>>:

�r · (j�0F�T)� jF�Trp = 0, X 2 B,
p

k
� 1

2j
(j2 � 1) = 0, X 2 B,

u = g, X 2 �g,

P · n = h, X 2 �h.

(3.4)

3.2.2 Weak Form

Let Vu, Vw, and Vp denote the displacement trial space, the displacement test space,

and the pressure trial and test space, respectively, defined as

Vu := {u : u 2 H1(B)d , u = g on �g}, (3.5)

47

Vw := {w : w 2 H1(B)d , w = 0 on �g}, (3.6)

Vp := {p : p 2 L
2(B) }. (3.7)

Here, H1 denotes the Sobolev space of square-integrable functions with square integrable

first derivatives and L
2 denotes the space of square-integrable functions. The weak form is

obtained by multiplying the pressure equation by an arbitrary weighting function q 2 Vp and

integrating over the domain B, and by multiplying the momentum equation by an arbitrary

weighting functionw 2 Vw and integrating by parts over the domain B. Letting S := Vu⇥Vp,

V := Vw ⇥ Vp, U := [u, p], and W := [w, q], this process results in the weak form: find

U 2 S such that

Rg(W ;U) = 0 8W 2 V . (3.8)

Here the Galerkin residual Rg : V ⇥ S ! R is defined as

Rg(W ;U) :=

Z

B
(j�0F�T) : rw dV +

Z

B
(jpF�T) : rw dV+

Z

B


p


� 1

2j
(j2 � 1)

�
q dV �

Z

�h

h ·w dA.
(3.9)

3.2.3 Stabilized Finite Element Formulation

Consider a partitioning of the reference domain B into nel non-overlapping finite el-

ement sub-domains Be such that B = [nel

e=1Be and Bi \ Bj = ? if i 6= j. Let VH

u
⇢ Vu,

VH

w
⇢ Vw, and VH

p
⇢ Vp denote finite dimensional function spaces defined as:

VH

u
= {uH : uH 2 Vu , uH |X2Be

2 P1(Be)
d}, (3.10)

VH

w
= {wH : wH 2 Vw , wH |X2Be

2 P1(Be)
d}, (3.11)

VH

p
= {pH : pH 2 Vp , p

H |X2Be
2 P1(Be)}. (3.12)

48

Here P1(Be) denotes the space of piecewise linear polynomials over elements Be, e = 1, 2, . . . , nel.

We follow the approach of Maniatty et al. [48], [70], [71] to obtain a stabilized Petrov-

Galerkin finite element formulation of the primal problem. This approach proceeds by

multiplying the momentum equation by a perturbed weighting function of the form wH +

⌧eF
�Trq

H and integrating over the reference domain B, and by multiplying the pressure

equation by a weighting function q
H and integrating over the domain B.

Here ⌧e = c0H
2
e

2µ is a mesh-dependent stabilization parameter, where He = meas(Be)

denotes a characteristic size of a given mesh element, µ denotes the shear modulus, c0

denotes a non-dimensional, non-negative stability constant, wH 2 VH

w
is a displacement

weighting function, and q
H 2 VH

p
is a pressure weighting function. Additionally, F�Trq

H

represents the pull-back of the gradient of the pressure weighting function to the reference

configuration.

This yields the following problem: find (uH
, p

H) 2 (VH

u
,VH

p
) such that for all (wH

, q
H) 2

(VH

w
,VH

p
)

�
Z

B
(r · P) ·wH dV+

Z

B


p
H


� 1

2j
(j2 � 1)

�
q
H dV+

nelX

e=1

Z

Be

(r · P) · (⌧eF�Trq
H) dV = 0.

(3.13)

The first two terms on the left hand side of equation (3.13) yield the Galerkin residual

Rg(W
H ;UH) after integrating the left-most term by parts. The integrand of the third term

on left hand side of equation (3.13) can be expressed as

(r · P) · (⌧eF�Trq
H) = (r · j�0F�T) · (⌧eF�Trq

H)+

(⌧ejF
�1F�T) : (rp

H ⌦rq
H).

(3.14)

We remark that the first term in the right hand side of equation (3.14) evaluates to zero for

simplical elements with linear shape functions, which we presently consider.

Let SH = VH

u
⇥ VH

p
, VH = VH

w
⇥ VH

p
, UH = [uH

, p
H], and WH = [wH

, q
H]. Using

equations (3.9) and (3.14) in the perturbed weak problem (3.13), we arrive at the stabilized

finite element formulation: find UH 2 SH such that

Rg(W
H ;UH) +R⌧ (W

H ;UH) = 0 8WH 2 VH
. (3.15)

49

HereR⌧ : VH⇥SH ! R is the residual corresponding to the additional pressure stabilization,

given by:

R⌧ (W
H ;UH) :=

nelX

e=1

Z

Be

⌧e(jF
�1F�T) : (rp

H ⌦rq
H) dV. (3.16)

We remark that we have introduced a consistent stabilization term, in that R⌧ ! 0 as

H ! 0.

3.2.4 Linearization and Solution Strategy

The stabilized finite element formulation (3.15) posed in residual form leads to a system

of N nonlinear algebraic equations RH : RN ! RN , such that the numerical solution vector

UH 2 RN of nodal coe�cients satisfies

RH(UH) = 0. (3.17)

We compute consistent element-level tangent sti↵ness matrices via automatic di↵erentiation

[72] of element-level contributions to the residual vector RH to assemble the system Jacobian

J H 2 RN⇥N , defined as

J H(UH) :=
@RH

@UH

����
U

H

. (3.18)

The full nonlinear problem (3.17) is then solved with Newton’s method, where we iterate

over the steps

J H(UH

k
) �UH

k
= �RH(UH

k
)

UH

k+1 = UH

k
+ �UH

k
,

(3.19)

until the convergence criterion kRH(UH)k2 < ✏ is satisfied for some user-specified tolerance

✏. Here UH

k
denotes the solution vector at the k

th Newton iteration and �UH

K
denotes the

incremental update at the k
th iteration obtained by solving the Newton linear system.

50

3.3 Adjoint-Based Error Estimation

In this section we derive an adjoint-based error estimation strategy to compute errors

in functional quantities of interest. We begin by reviewing functional error estimation with

two discretization levels, defined by a coarse space and a fine space. Next, we discuss and

motivate our choice for the fine space. We then introduce a modified, more accurate func-

tional error estimate based on a simple a priori analysis. Finally, we conclude by discussing

how we localize the functional error to correction indicators at the mesh entity level.

3.3.1 Two-Level Error Estimation

Let J(U) denote a functional quantity that is of physical significance. We adopt a

two-level error estimation strategy [10]–[12], [15] to estimate the discretization error in J .

This strategy proceeds by defining a coarse space, defined in the present setting by the spaces

(SH
,VH), and a fine space, (Sh

,Vh).

In addition to the system of nonlinear algebraic equations (3.17) defined on the coarse

space (SH
,VH), the stabilized finite element formulation (3.15) posed in residual form on

the fine space (Sh
,Vh) leads to a system of n nonlinear algebraic equations Rn : Rn ! Rn

on the fine space, such that

Rh(Uh) = 0, (3.20)

where Uh 2 Rn is understood to be the solution vector of nodal coe�cients for the fine

problem (3.20). Here n > N . Similarly, the functional quantity of interest can be discretized

on the coarse and fine spaces, resulting in J
H : RN ! R and J

h : Rn ! R, respectively.
Let Uh

H
= Ih

H
UH denote the prolongation of the coarse solution UH onto the fine

space Sh via interpolation, where Ih

H
: SH ! Sh. The residual equations on the coarse

space can be expanded in a Taylor series about the prolongated coarse solution as

Rh(Uh) = Rh(Uh

H
) +

"
@Rh

@Uh

����
U

h

H

#
(Uh �Uh

H
) + . . . (3.21)

and similarly, the functional evaluated on the coarse space can be expanded about the

51

prolongated coarse solution as

J
h(Uh) = J

h(Uh

H
) +

"
@J

h

@Uh

����
U

h

H

#
(Uh �Uh

H
) + . . . (3.22)

Using equation (3.20), the discretization error between the two spaces can be approxi-

mated to first order as

(Uh �Uh

H
) ⇡ �

"
@Rh

@Uh

����
U

h

H

#�1

Rh(Uh

H
). (3.23)

This approximation can then be substituted into the functional Taylor expansion (3.22) to

yield the so-called adjoint weighted residual,

J
h(Uh)� J

h(Uh

H
) ⇡ �

"
@J

h

@Uh

����
U

h

H

#"
@Rh

@Uh

����
U

h

H

#�1

| {z }
Z

h

Rh(Uh

H
), (3.24)

where Zh 2 Rn denotes the solution to the adjoint problem:

"
@Rh

@Uh

����
U

h

H

#T

Zh =

"
@J

h

@Uh

����
U

h

H

#T

. (3.25)

3.3.2 Choice of Fine Space

Several options exist for the choice of the fine space and the approximation of the

adjoint problem (3.25). The fine space can be defined by uniformly refining the mesh, which

we will refer to as h-enrichment, increasing the polynomial interpolation order, which we

will refer to as p-enrichment, uniformly refining the mesh and increasing the polynomial

order, which we will refer to as hp-enrichment, or by considering a finer space provided by

variational multiscale techniques [50].

It is common to solve the adjoint problem (3.25) in the coarse space and then perform

a reconstruction process to recover an approximation of the adjoint solution on the fine

space [8], [49], [73], [74]. However, the most commonly used choices for reconstruction do

not incorporate the underlying physics of the problem, and thus are not guaranteed to result

in a more accurate approximation of the adjoint solution [15]. This motivates us to solve

52

the adjoint problem globally on the fine space [75], [76].

In the present work, we choose h-enrichment for the fine space. Along with the pre-

viously discussed accuracy considerations, we are motivated to do so for two additional

reasons. First, the use of a higher order basis ala p-enrichment would necessitate the inclu-

sion of the neglected higher order stabilization term in the expansion (3.14). This term is

generally non-trivial to implement [71]. Second, we remark that higher-order stabilized finite

element methods with equal order interpolants are rarely used in practice, as one could use

a Taylor-Hood type element [53] to satisfy the Babuška-Brezzi condition with much fewer

degrees of freedom than the corresponding stabilized finite element method with equal order

interpolants.

3.3.3 Modified Functional Error Estimate

Consider that the functional of interest converges at the rate k, such that J(U) �
J
h(Uh

H
) = cH

k and J(U)� J
h(Uh) = ch

k, where J(U) is the exact value of the functional

quantity of interest. We assume that the fine space is obtained via mesh refinement, such

that h

H
= 1

2 . Consider the ratio

J
h(Uh)� J

h(Uh

H
)

J(U)� Jh(Uh

H
)

=

⇥
J(U)� J

h(Uh

H
)
⇤
�

⇥
J(U)� J

h(Uh)
⇤

J(U)� Jh(Uh

H
)

=
cH

k � ch
k

cHk

= 1�
✓
h

H

◆k

= 1�
✓
1

2

◆k

(3.26)

in the limit as H ! 0 [15]. We denote this ratio as ↵ := 1 � (1/2)k. Let ⌘ denote an

approximation to the functional error J(U) � J
h(Uh

H
). Let I denote the e↵ectivity index

given by

I =
⌘

J(U)� Jh(Uh

H
)
. (3.27)

Naturally, we would like to obtain error estimates ⌘ that lead to e↵ectivity indices of I = 1

as H ! 0. To this end, we recall that Jh(Uh) � J
h(Uh

H
) ⇡ �Zh ·Rh(Uh

H
) from equation

53

(3.24) and obtain the scaled adjoint weighted residual error estimate

⌘ = � 1

↵
Zh ·Rh(Uh

H
). (3.28)

3.3.4 Error Localization

To drive mesh adaptation, it is necessary to localize contributions to the total error ⌘

to the mesh entity level to obtain correction indicators. One commonly used approached for

finite volume and discontinuous Galerkin methods proceeds by considering a decomposition

of the error estimate (3.28) into a sum of discrete adjoint weighted residuals over elements

in the fine mesh. However, this approach is not optimal for continuous finite elements as

it does not account for systematic inter-element cancellation, and the sum of the resulting

correction indicators would lead to a considerable over-estimation of the functional error [15].

This, in turn, would lead to a sub-optimal adaptive strategy.

Traditional adjoint-weighted residual error estimates for continuous Galerkin finite el-

ement methods proceed by integrating the left hand side of equation (3.15) by parts over

individual elements to recover strong-form volumetric and jump term contributions to the

error. In this work, we utilize a recently introduced localization strategy by Richter and

Wick [28] for its straightforward implementation and because it allows us to automate the

adaptive process [77]. In this localization, adjoint-weighted residual error information from

neighboring elements is gathered by introducing a partition of unity, leading to nodally-based

correction indicators. In the context of solid mechanics, this approach has been used suc-

cessfully for phase field fracture [69]. In this section, we extend this variational localization

technique to stabilized finite element methods.

We begin by reviewing adjoint-based error estimation for stabilized finite element meth-

ods in a continuous setting, as outlined by Cyr et al. [32], for which we introduce the con-

tinuous linearized adjoint problem: find Z 2 V such that

R0
g
[UH](V ,Z) = J

0[UH](V) 8 V 2 V . (3.29)

Here, the prime indicates Fréchet linearization with respect to the argument in the square

brackets. The adjoint solution Z := [zu, zp] is defined as a vector of the adjoint variable

zu corresponding to the primal displacement u and the adjoint variable zp corresponding to

the primal pressure p. The variable UH denotes the solution to the stabilized finite element

54

problem (3.15) on the coarse space.

Let E := U�UH denote the discretization error. With the introduction of the adjoint

problem (3.29), a functional error representation can be derived in the following manner:

J(U)� J(UH) = J
0[UH](E) +O(E2)

= R0
g
[UH](E,Z) +O(E2)

= Rg(Z;U)�Rg(Z;UH) +O(E2)

= �Rg(Z;UH) +O(E2)

= �Rg(Z �ZH ;UH) +R⌧ (Z
H ;UH) +O(E2).

(3.30)

Here the first equality is due to the linearization [8] of the functional J , the second equal-

ity is due to the definition of the adjoint problem (3.29), the third equality is due to the

linearization [8] of the Galerkin residual semilinear form Rg, the fourth equality is due to

Galerkin orthogonality, and the fifth equality holds by the definition of the stabilized finite

element method (3.15). The variable ZH denotes the interpolant of the adjoint solution Z

onto the coarse finite element space SH .

Let Zh denote the solution to the discrete adjoint problem (3.25) solved on the fine

space. We assume that this solution well approximates the continuous adjoint problem

(3.29), such that Z ⇡ Zh. The functional error is then approximated by neglecting higher

order terms to obtain

J(U)� J(UH) ⇡ �Rg(Z
h �ZH ;UH) +R⌧ (Z

H
,UH). (3.31)

Following the approach of Richter and Wick [28], we introduce a partition of unity
P

i
�i = 1 into the weighting function slot for the error estimate to localize the error. In

this work, this partition of unity is realized with linear Lagrange basis functions. This yields

local level error contributions ⌘i at the nvtx mesh vertices in the fine mesh, given as

J(U)� J(UH) ⇡
nvtxX

i=1

�Rg((Z
h �ZH)�i ; U

H) +R⌧ (Z
H
�i ; U

H).| {z }
⌘i

(3.32)

We compute an approximate upper bound on the error by summing the absolute value of

55

the error contributions over all mesh vertices.

⌘̂ =
nvtxX

i=1

|⌘i|. (3.33)

To compute an element-based correction indicator ⌘e, we interpolate the value of the vertex-

based error contributions ⌘i to element centers and then take the result’s absolute value.

3.4 Mesh Adaptation

To control discretization errors, we make use of conforming unstructured mesh adapta-

tion. Mesh adaptation provides the means to modify the spatial discretization of the domain

B such that the degrees of freedom are nearly optimally distributed with respect to the

calculation of the QoI. We utilize the PUMI [33] software suite to perform a series of edge

splits, swaps, and collapses [40], [41] to satisfy the input of a mesh size field. For isotropic

mesh adaptation, which we presently consider, the mesh size field is defined as a scalar field

that defines element edge lengths over the mesh. From a high-level, we would like to specify

a mesh size field that refines in areas of the domain that strongly contribute to the error and

coarsens the mesh in areas that are insensitive to the error.

To this end, we utilize a size field specification following Boussetta et al. [54] that

attempts to equidistribute the error in an output adapted mesh with N target elements. Let

p be the polynomial interpolant order for the chosen finite element method. In the present

setting, p = 1. We first define the global quantity G as

G =
nelX

e=1

(⌘e)
2d

2p+d . (3.34)

Using this computed quantity, new element mesh sizes Hnew
e

are determined by scaling the

previous element size He according to the formula

H
new
e

=

✓
G

N

◆ 1
d

(⌘e)
�2

2p+dHe. (3.35)

Additionally, to prevent excessive refinement or coarsening in a single adaptive step, we

clamp the element size such that it is no smaller than one quarter and no greater than twice

56

the previous element size,

1

4
 H

new
e

He

 2. (3.36)

As a further explanation, this clamping is performed to ensure that mesh adaptation is being

driven by accurate correction indicators. That is, if the mesh were too heavily modified

during a single adaptive iteration, the localized correction indicators would begin to lose

accuracy on the modified mesh.

3.5 Results

3.5.1 Cook’s Membrane

In this section, we investigate two displacement-based quantities of interest for Cook’s

membrane. The first QoI we consider is the y-component of displacement at the point

X0 = (44, 55) such that J1(U) =
R
B �(X �X0) uy dV . The second QoI we consider is the

integrated displacement over the entire domain, such that J2(U) =
R
B

1
2(ux+uy) dV . Figure

3.1 shows the geometry and loading conditions for the Cook’s membrane problem, where

the left-most boundary is fixed in the x and y directions and a purely vertical traction of

magnitude 10 is applied to the right-most boundary. For material properties, we choose the

elastic modulus to be E = 1000 and Poisson’s ratio as ⌫ = 0.4999, such that the material

is nearly incompressible. We choose the stabilization parameter to be c0 = 1. For both

quantities of interest, we expect the convergence rate to be k = 2, such that the scaling

parameter ↵ = 3
4 .

For each QoI, an initial mesh with a uniform size of H = 8 was generated. Figures 3.3

and 3.4 show the initial mesh utilized for both the point-wise and integrated displacement

QoIs. From these initial meshes, the steps

Solve primal PDE ! Solve adjoint PDE ! Localize error ! Adapt mesh

were iteratively performed until a final mesh with about 10, 000 degrees of freedom was

produced. During each mesh adaptation, the size field was specified according to the equation

(3.35) such that the desired number of elements N in the output mesh is twice the number

of elements in the previous mesh.

57

Fig. 3.1. Cook’s membrane problem definition.

Fig. 3.2. The pressure component p of the primal solution scaled by its
maximal value (left), the pressure component zp of the adjoint solution for the
point-wise QoI J1(U), and the pressure component zp of the adjoint solution for

the integrated displacement QoI J2(U).

The left-most figure of Figure 3.2 illustrates the pressure component p of the primal

solution scaled by its maximal value. We remark that this result is consistent with previous

literature [78]. The center and right-most figures of Figure 3.2 shows the pressure component

zp of the adjoint solution for the point-wise QoI J1(U) and the integrated displacement QoI

J2(U), respectively. For the point-wise QoI, the adjoint solution zp is highly localized to the

point that defines the QoI and the corner of stress singularity.

To approximate the exact values of the quantities of interest, the primal problem was

58

Fig. 3.3. Initial mesh (left) and adapted mesh (right) at the fifth adaptive
iteration for the Cook’s membrane problem with the point-wise QoI J1(U).

solved on a “truth” mesh with about 1.5 million degrees of freedom. This mesh is finer

at every spatial location than the final meshes produced by the two adaptive simulations.

The reference value for the point-wise QoI on the truth mesh was computed to be J1(U) =

2.395627 and the reference value for the integrated displacement QoI was computed to be

J2(U) = 324.0948.

We consider two di↵erent errors, the “exact error” E = J(U)� J
h(Uh

H
) and the error

Eh = J
h(Uh) � J

h(Uh

H
) with respect to the functional evaluated on the fine mesh with

mesh size H

2 . Here we place quotations around the term “exact error” because we have

only approximated J(U) with high fidelity and have not obtained its actual exact value.

We recall the e↵ectivity index (3.27) defined as I = ⌘

E and additionally define a discrete

e↵ectivity index as Ih = ⌘

Eh
. An e↵ecitivty index of I = 1 indicates that the error estimate

⌘ has exactly recovered the “true error”. Similarly, a discrete e↵ectivity index of Ih = 1

indicates that the error estimate ⌘ has exactly recovered the error between the functional

evaluated on the fine space and the functional evaluated on the coarse space. Figure 3.5 and

Figure 3.6 plot the e↵ectivity I relative to the “exact error” and the e↵ectivity Ih relative

to the fine-space error, and demonstrates the ability of ⌘ to e↵ectively estimate the error as

59

Fig. 3.4. Initial mesh (left) and adapted mesh (right) at the fifth adaptive
iteration for the Cook’s membrane problem with the integrated displacement

QoI J2(U).

H ! 0 during the adaptive process for the chosen functional quantities. The small distance

away from 1 in the discrete e↵ectivity index Ih represents the linearization error associated

with the estimate ⌘, introduced by the linearized adjoint problem (3.25).

Figure 3.7 and Figure 3.8 demonstrate the evolution of various errors throughout the

adaptive process. First, we note that the “exact error” E and the estimated error ⌘ are very

close, as previously discussed. Next, we note that the estimated bound ⌘̂ on the functional

error, computed as the sum of localized error contributions, overestimates the error, but

only by a small factor. This provides some justification to expect that the derived correction

indicators are well-suited to drive mesh adaptation. Finally, we remark that an improved

corrected functional value J
⇤(Uh

H
) can be computed as the approximated functional value

plus the estimated error, J⇤(Uh

H
) = J

h(Uh

H
) + ⌘. This corrected value tends to converge

at a faster rate than the computed value J
h(Uh

H
). In particular, this corrected value can

prove valuable for coarser discretizations, where the error in the corrected value is around

two orders of magnitude smaller than the error in the computed value of the functional.

Figure 3.3 shows the adapted mesh after 5 adaptive cycles for the point-wise QoI.

60

10
3

10
4

0.8

0.9

1

Degrees of freedom

E
↵
e
c
t
iv
it
y
I
n
d
e
x

E↵ectivities for point-wise displacement QoI

Relative to exact error

Relative to fine-space error

Fig. 3.5. E↵ectivities for the point-wise QoI J1(U) for the Cook’s membrane
problem.

We first note that the mesh is heavily refined in the upper left corner of the mesh, where

there is a stress singularity. Without accurately resolving this singularity, so-called “pollution

error” [79] will a↵ect the accuracy of the finite element solution throughout the domain. This

demonstrates that the adaptive adjoint-based procedure accurately identifies other sources

of error that must be resolved even when a fully localized QoI is chosen. Similarly, Figure 3.4

shows the adapted mesh after 5 adaptive cycles for the integrated displacement QoI. Again

there is heavy refinement in the corner with the stress singularity.

Interestingly, Figure 3.3 also illustrates that the adjoint-based adaptive procedure re-

fines around the spatial location that defines the point-wise QoI. This may, in part, be

explained by the fact that the data driving the adjoint problem is a discrete delta function.

However, such refinement is unlikely to lead to an optimal distribution of degrees of freedom

in the mesh. In essence, the Cook’s membrane problem is a cantilever beam and this result

indicates that we must refine heavily at the end of the beam in order to accurately evaluate

displacements at the beam tip. This is antithetical to engineering intuition and experience.

Another factor leading to this result may be our choice of error localization. We have local-

61

10
2

10
3

10
4

0.6

0.8

1

Degrees of freedom

E
↵
e
c
t
iv
it
y
I
n
d
e
x

E↵ectivities for integrated displacement QoI

Relative to exact error

Relative to fine-space error

Fig. 3.6. E↵ectivities for the integrated displacement QoI J2(U) for the Cook’s
membrane problem.

ized the error based on a PU-based weak form statement (3.32), where derivatives are left

on the weighting function term Z. This, in turn, may lead to a heavier emphasis on the

local point-wise location during the adaptive process. We leave investigation into this area

as an avenue for future study.

3.5.2 A Cell Embedded in a Matrix

In this section, we apply adjoint-based error estimation and mesh adaptation to a three-

dimensional problem that arises in the study of cellular biomechanics and mechanobiology.

The problem of interest involves investigating a cell embedded in an extracellular matrix.

The traction that this cell exerts on its surroundings directly influences cellular processes

like migration and di↵erentiation. Recently, Dong and Oberai [57] introduced a process

to recover cellular tractions based on the solution of an inverse problem. For this inverse

problem, it is assumed that displacements throughout the extracellular matrix are given with

some uncertainty, and successive solutions of a forward problem are solved to recover the

tractions driving the problem. Presently, we focus on accurately solving the forward problem

62

10
3

10
4

10
�4

10
�2

10
0

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Errors in point-wise displacement QoI

Error in computed value

Estimated error bound

Estimated error

Error in corrected value

Fig. 3.7. Errors for the point-wise QoI J1(U) for the Cook’s membrane problem.

in this process using adjoint-based error estimation. That is, given tractions imposed on the

cellular membrane, we would like to solve for displacements in some region of the domain as

accurately as possible.

Specifically, we focus on a microglial cell with dimensions of about 20µm⇥20µm⇥20µm

embedded in an extracellular matrix of dimension 100µm⇥ 100µm⇥ 100µm. We choose the

QoI to be a local integrated displacement, J(U) =
R
B0

1
3(ux + uy + uz) dV , defined over a

30µm ⇥ 30µm ⇥ 30µm bounding box B0 surrounding the microglial cell. Figure 3.9 shows

the geometry defining the microglial cell, the extracellular matrix, and the local QoI domain

B0. For the extracellular matrix, the shear modulus µ = E

2(1+⌫) is set to be 600 Pa and

Poisson’s ratio is set to be ⌫ = 0.4999, which is consistent with material properties for

hydrogels [62]–[64].

To drive the problem, we impose traction boundary conditions along the surface of

63

10
2

10
3

10
4

10
�4

10
�2

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Errors in integrated displacement QoI

Error in computed value

Estimated error bound

Estimated error

Error in corrected value

Fig. 3.8. Errors for the integrated displacement QoI J2(U) for the Cook’s
membrane problem.

the microglial cell. The magnitude of the traction h is defined to be 10 times the distance

to the center of the microglial cell and its direction points inward toward the center of the

microglial cell. The applied traction is shown in Figure 3.10. This traction serves to pull

the extracellular matrix inwards towards the center of the microglial cell, which is consistent

with observed physical behavior [57]. The deformation of the cell surface due to this applied

traction is shown in Figure 3.11. To constrain rigid body translations and rotations, we

prescribe displacements ux = 0 on the face with constant minimum x-coordinate value,

uy = 0 on the face with constant minimum y-coordinate value, and uz = 0 on the face with

constant minimum z-coordinate value. As a reference value for the integrated displacement

QoI, the primal problem was solved on a “truth” mesh with about 60 million degrees of

freedom. The reference value for the QoI was computed to be J(U) = �527.1453.

64

Fig. 3.9. The computational geometry for the microglial cell problem. The
inner-most surface represents the geometry of the microgial cell, the

outer-most bounding box represents the extracellular matrix in which the cell
is embedded, and the inner bounding box represents the domain over which

the local integrated displacement QoI J(U) is defined.

Fig. 3.10. The applied tractions for the microglial cell problem.

An initial mesh with about 30, 000 degrees of freedom was generated, as shown in

Figure 3.12. From this initial mesh, the steps

Solve primal PDE ! Solve adjoint PDE ! Localize error ! Adapt mesh

65

Fig. 3.11. The initial (light grey) and deformed (blue) geometry of the
microglial cell before and after tractions are applied.

Fig. 3.12. Initial mesh for the microglial cell problem (left) and final adapted
mesh after 10 adaptive iterations (right).

were iteratively performed 10 times. The mesh size field was specified according to equation

(3.35) such that the desired number of elements N in the output mesh is 1.5 times the

number of elements in the previous mesh.

We again consider the “exact error” E = J(U)�J
h(Uh

H
) and the error Eh = J

h(Uh)�
J
h(Uh

H
) with respect to the functional evaluated on the fine mesh, and their e↵ectivity

indices I = ⌘

E and Ih = ⌘

Eh
, respectively. Here ⌘ denotes the error estimate computed by

(3.28). We again expect that the functional will converge at the rate k = 2 and use the

correction value ↵ = 3
4 .

Figure 3.13 plots the e↵ectivity index I relative to the “exact error” and the e↵ectivity

index Ih relative to the fine space error. The small distance away from 1 in the discrete

66

10
4.5

10
5

10
5.5

0.8

0.9

1

Degrees of freedom

E
↵
e
c
t
iv
it
y
I
n
d
e
x

E↵ectivities for integrated displacement QoI

Relative to exact error

Relative to fine-space error

Fig. 3.13. E↵ectivity indices for the local integrated displacement QoI J(U) for
the microglial cell problem.

e↵ectivity index Ih is associated with the linearization error introduced by the adjoint prob-

lem. Additionally, the ability of the error estimate to recover the “exact error” as H ! 0

compared to the reference value is demonstrated by the e↵ectivity I.
Figure 3.14 displays the evolution of various errors throughout the adaptive process. In

particular, the “exact error” E and the estimated error ⌘ are very close, as previously noted

by the e↵ectivity index I. As for the Cook’s membrane problem the estimated error bound

⌘̂ overestimates the error, but not to a drastic degree. Finally, we remark that the corrected

functional value, computed as J
⇤(Uh

H
) = J

h(Uh

H
) + ⌘, is nearly two orders of magnitude

more accurate at the final adaptive step, demonstrating the usefulness of adjoint-based error

estimation.

Finally, we plot the evolution of the “exact error” for two adaptive strategies in Figure

3.15. We compare the convergence of errors for uniform mesh refinement and the developed

adjoint-based adaptive scheme. The error is converging at a faster rate for the adjoint-based

adaptive scheme. Further, the adjoint-based adaptive scheme achieves the same accuracy as

the uniform refinement scheme with nearly an order of magnitude fewer degrees of freedom at

67

10
4.5

10
5

10
5.5

10
�4

10
�3

10
�2

10
�1

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Errors in integrated displacement QoI

Error in computed value

Estimated error bound

Estimated error

Error in corrected value

Fig. 3.14. Errors for the local integrated displacement QoI J(U) for the
microglial cell problem.

around 110, 000 degrees freedom. This demonstrates the utility of adjoint-based adaptivity

for solid mechanics problems.

3.6 Conclusions

In this chapter, we have developed an adjoint-based error estimation procedure for

nonlinear finite deformation elasticity using a stabilized finite element method, where we have

utilized a recently developed PU-based error localization strategy. We have demonstrated

the ability of this approach to accurately estimate functional errors for a two-dimensional

model problem. Further, we have demonstrated the utility of adaptive adjoint-based analysis

in the context of a three-dimensional example problem motivated by the study of biological

tissues. Future work includes analytically and numerically investigating the di↵erences in

68

10
5

10
6

10
�2.5

10
�2

10
�1.5

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Convergence for integrated displacement QoI

Uniform refinement

Adjoint-based adaptivity

Fig. 3.15. Error convergence using uniform mesh refinement and adjoint-based
adaptivity for the local integrated displacement QoI J(U) for the microglial cell

problem.

the PU-based localization approach as compared to a more classical strong-form localization

approach for localized point-wise quantities of interest.

CHAPTER 4

A NON-UNIFORM REFINEMENT APPROACH FOR

SOLVING ADJOINT PROBLEMS IN FUNCTIONAL ERROR

ESTIMATION AND MESH ADAPTATION

4.1 Introduction

Adjoint-based error estimation [8]–[13], [15], [80]–[82] is a tool used in numerical simu-

lation to estimate the discretization error in physically meaningful output quantities. Com-

bined with mesh adaptation, adjoint-based error estimation also provides the ability to con-

trol the discretization error. The process of adjoint-based error estimation relies on the

introduction of an auxiliary adjoint problem, which is constructed using the solution to the

original or primal problem of interest.

To obtain meaningful error estimates, the solution to the adjoint problem must be

enriched in some manner. That is, it is necessary to obtain a representation of the adjoint

solution in a richer space compared to the space used for the primal problem. Several

strategies are commonly used to obtain an enriched adjoint representation. These approaches

include solving the adjoint problem in a globally higher order polynomial space [51], solving

the adjoint problem on a uniformly refined mesh [52], solving the adjoint problem in the

same space as used for the primal problem and solving local patch-wise problems least

squares problems [49] or performing patch-wise higher-order interpolation [8], and enriching

the adjoint solution via variational multiscale methods [50].

Solving the adjoint problem in a globally higher order polynomial space or on a uni-

formly refined mesh is a computationally expensive proposition. On the other hand, solving

the adjoint problem in the same space as used for the primal problem and enriching it via

some local recovery operation may not be guaranteed to yield a more accurate adjoint so-

lution. In this chapter, we propose a simple compromise and solve the adjoint problem on

meshes obtained via non-uniform refinement.

The remainder of this chapter is structured as follows. First, we review adjoint-based

error estimation for functional quantities using two discretization levels, a coarse space and

a fine space. We then review three choices for the fine space obtained by refinement of

69

70

the mesh used for the coarse space. The first choice is the standard uniform refinement

method, while the other two approaches form the fine space via non-uniform refinement. In

each of these sections, we discuss the algorithm utilized to generate the fine space. We then

investigate these three adjoint enrichment approaches when applied to examples in Poisson’s

equation and conclude with a summary of the results.

4.2 Error Estimation with Two Levels

4.2.1 Error Estimates

Following Venditti and Darmofal [10]–[12], we review output-based error estimation

using two discretization levels. Let Vh and VH denote finite dimensional spaces such that

VH ⇢ Vh. We refer to Vh and V
H as the fine space and the coarse space, respectively. Let

RH : RN ! RN denote the system of (potentially nonlinear) algebraic equations arising

from a finite element discretization of a PDE on the coarse space VH , such that the solution

vector uH 2 RN satisfies

RH(uH) = 0. (4.1)

Similarly, let Rh : Rn ! Rn denote the system of algebraic equations arising from a finite

element discretization of the same PDE on the fine space Vh, such that

Rh(uh) = 0, (4.2)

where uh 2 Rn is the solution vector on the fine space and n > N .

Let JH : RN ! R denote a discrete representation of a physically meaningful functional

quantity on the coarse space VH , and similarly let J
h : Rn ! R denote the functional

approximated on the fine space Vh. Let uh

H
:= Ih

H
uH denote the prolongation of the coarse

space solution uH onto the fine space Vh via interpolation, where Ih

H
: VH ! Vh.

The functional evaluated on the fine space J(uh) can be expanded in a Taylor series

approximation about the prolonged coarse space solution uh

H
as

J
h(uh) = J

h(uh

H
) +

"
@J

h

@uh

����
u
h

H

#
(uh � uh

H
) + . . . (4.3)

71

Similarly, the residual system of equations evaluated on the fine space Rh(uh) can be ex-

panded about the prolonged coarse space solution uh

H
as

Rh(uh) = Rh(uh

H
) +

"
@Rh

@uh

����
u
h

H

#
(uh � uh

H
) + . . . (4.4)

Using the governing relation (4.2) in the residual Taylor expansion (4.4) suggests a first order

approximation for the discretization error between the spaces:

(uh � uh

H
) ⇡ �

"
@Rh

@uh

����
u
h

H

#�1

Rh(uh

H
). (4.5)

Inserting the error approximation (4.5) into the functional Taylor expansion (4.3) suggests

the error estimate:

J
h(uh)� J

h(uh

H
) ⇡ �

"
@J

h

@uh

����
u
h

H

#"
@Rh

@uh

����
u
h

H

#�1

Rh(uh

H
), (4.6)

which can be re-written in terms of an adjoint variable zh as

J
h(uh)� J

h(uh

H
) ⇡ �zh ·Rh(uh

H
), (4.7)

where zh 2 Rn is the solution to the so-called adjoint problem given by

"
@Rh

@uh

����
u
h

H

#T

zh = �
"
@J

h

@uh

����
u
h

H

#T

. (4.8)

4.2.2 A Simple A-Priori Analysis

Consider that the functional of interest converges at the rate k, such that J�J
h(uh

H
) =

cH
k and J � J

h(uh) = ch
k, where J is the exact value of the functional quantity of interest.

Assume that the fine space is obtained via refinement of the coarse space. Consider the ratio

J
h(uh)� J

h(uh

H
)

J � Jh(uh

H
)

⇡ �zh ·Rh(uh

H
)

J � Jh(uh

H
)

(4.9)

72

which, as H ! 0, will tend towards [15]

↵ := 1�
✓
h

H

◆k

. (4.10)

Let ⌘ denote our approximation to the functional error J � J
h(uh

H
). Let I denote the

e↵ectivity index given by

I =
⌘

J � Jh(uh

H
)
. (4.11)

We would like error estimates E that lead to e↵ectivity indices of I = 1 as H ! 0. To

achieve this, we scale the two-level adjoint weighted residual estimate (4.7) by the inverse of

the factor ↵, such that

⌘ = � 1

↵
zh ·Rh(uh

H
). (4.12)

4.3 Choices for the Fine Space

4.3.1 Uniform Refinement

Fig. 4.1. Edges of a base mesh (black) and a nested mesh refined with the Unif
scheme (red) in two dimensions.

We first consider the traditional approach of using a uniformly refined mesh to solve the

adjoint problem. We refer to this approach as the Unif refinement approach. To perform

73

uniform refinement, every edge in the mesh is marked for refinement. The algorithm for

uniform refinement is given in Algorithm 2. Figure 4.1 demonstrates an example of the

Unif refinement approach applied to a base mesh. For the uniform refinement approach, we

naturally choose the ration h

H
= 1

2 , leading to the scaling parameter ↵ = 1�
�
1
2

�k
.

Algorithm 2 Uniform refinement algorithm

for each edge e in mesh M do
mark edge e for refinement.

end for

4.3.2 Long Edge Refinement

Fig. 4.2. Edges of a base mesh (black) and a nested mesh refined with the Long
scheme (red) in two dimensions.

Next, we consider an adaptive scheme that marks the longest edge in each element

for refinement. We refer to this scheme as the Long edge refinement scheme. The Long

edge refinement algorithm is outlined in Algorithm 3. Figure 4.2 illustrates the Long edge

refinement algorithm applied to a base mesh.

Note that, for the Long edge refinement approach, some elements are split once while

others are split multiple times. It follows then that there is no single global ratio h

H
of the

fine mesh size to the coarse mesh size. Presently, we approximate this ratio by taking the

74

average of all ratios of nested element sizes to their parent element size, given by

h

H
⇡ 1

nel

nelX

e=1

he

He

, (4.13)

where nel is the total number of elements in the nested mesh.

Algorithm 3 Long edge refinement algorithm

for each element el in mesh M do
for each edge e in element el do

if e is longest edge in el then
mark edge e for refinement.

end if
end for

end for

4.3.3 Single Edge Refinement

Fig. 4.3. Edges of a base mesh (black) and a nested mesh refined with the
Single scheme (red) in two dimensions.

Finally, we consider a cheap refinement alternative to uniform refinement that attempts

to only mark a single edge in each element for refinement. We refer to this approach as the

Single edge refinement approach. To perform single edge refinement, a traversal of all edges

in the mesh is performed. During this traversal, the first edge encountered is marked for

refinement and the elements adjacent to that edge are tagged as ‘visited’. As the edges in the

75

mesh are traversed, each element adjacent to the edge is checked to see if it has already been

encountered. If all adjacent elements have not been encountered, then the edge is marked

for refinement. After this process has completed, some elements may be isolated, in that

they have still not been marked as ‘visited’. Thus, for each element remaining that has not

been marked as ‘visited’, we mark the first edge adjacent to the element for refinement. The

single edge refinement algorithm is illustrated in Algorithm 4. Figure 4.3 demonstrates a

mesh resulting from the application of the single edge refinement scheme. For the Single

scheme, we again approximate the ratio h

H
with equation (4.13).

Algorithm 4 Single edge refinement algorithm

initialize all elements to be ‘not visited’.
for each edge e in mesh M do

let S be the set elements adjacent to edge e.
if each element in S is ‘not visited’ then

mark edge e for refinement.
for each element el in S do

mark element el as ‘visited’.
end for

end if
end for
for each element el in mesh M do

if el is marked as ‘not visited’ then
let S be the edges adjacent to element el
mark the first edge e in S for refinement

end if
end for

4.4 Mesh Adaptation

4.4.1 Error Localization

It is necessary to localize contributions to the total error ⌘ to mesh entity level correc-

tion indicators to drive mesh adaptation. For finite volume and discontinuous Galerkin finite

element methods, it is common to consider the discrete element-level adjoint weighted resid-

uals of the form zh

e
·Rh

e
, where the subscript e denotes evaluations over elements. However,

for continuous finite elements, this approach does not account for systematic inter-element

cancellation [15], which could lead to a sub-optimal adaptive strategy.

Traditonally, for continuous Galerkin finite element methods, the error is localized by

76

integrating the residual by parts to recover strong form volumetric and jump contributions

to the error over element interiors and boundaries, respectively. Presently, we utilize a

localization strategy introduced by Richter and Wick [28] that proceeds by introducing a

partition of unity �i, such that
P

i
�i = 1, into the variational residual. In this localization,

adjoint-weighted residual error information from neighboring elements is gathered to mesh

vertices, leading to vertex-based correction indicators ⌘i, for i = 1, 2, . . . , nvtx. Here nvtx

denotes the number of vertices in the fine mesh. To obtain element-level correction indicators

⌘e, where e = 1, 2, . . . , nel, for the nel elements in the space VH , we interpolate the vertex-

based indicators ⌘i to element centers in the coarse mesh. While a full discussion of this

localization procedure is outside of the scope of the present work, we refer readers to [28], [69]

to demonstrate how this approach is utilized for Galerkin finite element methods and [56] to

demonstrate how this approach is utilized for stabilized finite element methods.

4.4.2 Mesh Size Field

Once element-level correction indicators ⌘e have been obtained, we drive conforming

mesh adaptation by specifying a mesh size field. For isotropic mesh adaptation, which we

presently consider, this mesh size field defines the desired lengths of edges over the mesh. We

utilize a mesh size field as described by Boussetta et al. [54] that attempts to equidistribute

the error in an output adapted mesh with N target elements. From a high level, this size

field will refine the mesh in areas of the domain that contribute strongly to the error in the

functional and coarsen the mesh in areas of the domain that weakly contribute to the error

in the functional.

Let p be the polynomial interpolant order for the chosen finite element method. In the

subsequent results section, we consider only p = 1. We first define the global quantity G as

G =
nelX

e=1

(⌘e)
2d

2p+d . (4.14)

From this global quantity, we compute new element size H
new
e

by scaling previous element

sizes He according to the formula

H
new
e

=

✓
G

N

◆ 1
d

(⌘e)
�2

2p+dHe. (4.15)

77

To ensure that mesh adaptation is being driven by accurate correction indicators and

to prevent excessive coarsening and refinement in a single adaptive step, we additionally

clamp new element sizes such that they are no smaller than one quarter and no greater than

twice the previous element size,

1

4
 H

new
e

He

 2. (4.16)

Presently, we make use of the PUMI [33] software for mesh adaptation purposes. This

software uses a sequence of edge splits, swaps, and collapses [40], [41] to locally modify the

mesh to satisfy the input mesh size field.

4.5 Results

4.5.1 E↵ectivity Indices for Poisson’s Equation

As a first example, we investigate the e↵ectivity of the error estimate (4.12) for the

model problem:

8
<

:
�r2

u = f x 2 ⌦,

u = 0 x 2 @⌦,
(4.17)

when using the Unif, Long, and Single approaches to solve the adjoint problem (4.8).

The model problem leads to the Galerkin finite element method: find u
H 2 VH such that

(rw
H
,ru

H) = (w, f) 8wH 2 VH
, (4.18)

where (w, u) :=
R
⌦ wu d⌦ denotes the L

2 inner product over the space VH , defined as

VH := {uh 2 H
1(⌦) : uH = 0 on @⌦ , u

H |⌦e
2 P1}. (4.19)

Here ⌦e denotes an element in a decomposition of the domain ⌦ into nel non-overlapping

elements such that [nel

e=1⌦e = ⌦ and ⌦i \⌦j = ? if i 6= j. Additionally, P1 denotes the space

of piecewise linear polynomials.

We choose the domain ⌦ = [0, 1] ⇥ [0, 1] and the data to be f = 2⇡2 sin(⇡x) sin(⇡y)

such that the exact solution is u(x, y) = sin(⇡x) sin(⇡y). We choose the functional quantity

78

to be J(u) =
R
⌦ u d⌦, which has the exact value J(u) = 4

⇡2 . With the proposed finite element

method, we expect the functional to converge at the rate k = 2, which we use to determine

the scaling parameter ↵ as given by equation (4.10).

The model problem was solved with mesh sizes H = {1
5 ,

1
10 ,

1
20 ,

1
40 ,

1
80 ,

1
160}. For each

chosen mesh size, the discrete adjoint problem (4.8) was solved on fine spaces Vh generated by

the Unif, Long, and Single refinement schemes. An error estimate for the three schemes

is then computed according to equation (4.12).

10
�2

10
�1

0

0.5

1

Mesh size (H)

E
↵
e
c
t
iv
it
y
in
d
e
x
(
I)

E↵ectivity indices for the Poisson example

Unif

Long

Single

Fig. 4.4. E↵ectivity indices using the Unif, Long, and Single refinement
schemes for the Poisson example problem.

Figure 4.4 plots the e↵ectivity index (4.11) for each of the three schemes at each

chosen mesh size. E↵ectivity indices for the baseline Unif method approach 1 in the limit

as H ! 0 as expected. The e↵ectivity indices obtained using the two non-uniform refinement

approaches, are less accurate and do not appear to be asymptotically correct. This is perhaps

not surprising, as we have considered a bulk average for the ratio h

H
for these two schemes,

as shown in Table 4.1.

However, even though the error estimates themselves obtained by the Long and Sin-

gle schemes may not be suitable for application purposes, these schemes may still be suitable

79

Table 4.1. Approximated mesh size ratios for the Long and Single schemes for
the first Poisson’s equation example.

H Long : h

H
Single : h

H

1
5 0.6344 0.8198
1
10 0.6323 0.8212
1
20 0.6325 0.8204
1
40 0.6490 0.8183
1
80 0.6477 0.8202
1

160 0.6467 0.8195

to drive mesh adaptation at a cheaper cost than the full Unif approach. Figure 4.5 demon-

strates the decrease in the total number of degrees of freedom for the adjoint problem for the

Long and Single schemes as compared to the Unif scheme. This motivates us to consider

an adaptive example for Poisson’s equation in the next section.

10
�2

10
�1

2

3

4

Mesh size (H)

a
d
jo
in
t
d
o
fs

/
p
r
im

a
l
d
o
fs

E↵ectivity indices for the Poisson example

Unif

Long

Single

Fig. 4.5. Ratio of adjoint problem degrees of freedom to primal problem
degrees of freedom using the Unif, Long, and Single refinement schemes for the

Poisson example problem.

80

4.5.2 Mesh Adaptation for Poisson’s Equation

In this example, we again consider the governing equations for Poisson’s equation, as

given in the previous section. However, we now choose the forcing function f to be f = 1

and the domain ⌦ := [�1, 1]⇥ [�1, 1] \ [�1
2 ,

1
2]⇥ [�1

2 ,
1
2]. Further, we consider the point-wise

quantity of interest J(u) =
R
⌦ �(x � x0)u d⌦, where the point of interest is chosen to be

x0 = (0.75, 0.75). We again expect the functional to converge at the rate k = 2. The domain

and point-wise QoI location are show in Figure 4.6. The value of the quantity of interest

was determined to have a value of J(u) = 0.0334473± 1e-7 in the reference [55].

Fig. 4.6. Geometry and initial mesh used for the second Poisson’s equation
example with the point of interest shown in red.

We performed the steps:

Solve Primal ! Solve Adjoint ! Estimate Error ! Adapt Mesh

7 times, starting from the initial mesh shown in Figure 4.6. We solve the adjoint problem

with three di↵erent methods on nested meshes obtained with the Unif, Long, and Single

refinement schemes. At each adaptive step, the mesh size field was set according to equation

(4.15), such that the target number of elements N is twice that of the current mesh.

Figure 4.7 illustrates the convergence history for the error J(u)� J(uH) for the three

adaptive schemes obtained with the Unif (Goal Uniform), the Long (Goal Long), and

the Single strategies, along with the error obtained by solving the primal problem with

successively uniformly refined meshes (Uniform). The rate of convergence for the Unif

scheme agrees with the reference [55]. Additionally, the error for both the Long and Single

81

10
2

10
3

10
4

10
�3

10
�2

10
�1

Degrees of freedom

R
e
la
t
iv
e
E
r
r
o
r

Convergence history for point-wise QoI

Uniform

Goal Uniform

Goal Long

Goal Single

Fig. 4.7. Error evolution for adaptive schemes for the second Poisson’s
equation example.

schemes converges at a rate almost near the Unif scheme.

Figure 4.8 illustrates the final adapted mesh obtained using the Unif strategy to solve

the adjoint problem. The distribution of degrees of freedom in this mesh closely resemembles

the results obtained in reference [55]. However, using the Long and Single to solve the

adjoint problem results in final adapted meshes that appear to be largely unsuitable for

application analysis, as shown in Figures 4.9 and 4.10, even thought these meshes result in

more accurate functional evaluations as compared to uniform refinement.

4.6 Conclusions and Outlook

We have developed two alternative approaches to uniform refinement for performing

enriched adjoint solves in adjoint-based error estimation with two discretization levels. We

82

Fig. 4.8. The final adapted mesh using the Unif strategy to solve the adjoint
problem (left) and a close-up of the upper right-hand corner of this mesh

(right).

Fig. 4.9. The final adapted mesh using the Long strategy to solve the adjoint
problem (left) and a close-up of the upper right-hand corner of this mesh

(right).

have applied this approach to Poisson’s equation. While the number of degrees of free-

dom for the adjoint solve for these two alternative approaches decreases significantly when

83

Fig. 4.10. The final adapted mesh using the Single strategy to solve the adjoint
problem (left) and a close-up of the upper right-hand corner of this mesh

(right).

compared to the more traditional approach of solving the adjoint problem on a uniformly

refined mesh, the present outlook indicates that these approaches are not yet suitable for

practical applications. That is, when performing adjoint-based error estimation with the

two novel approaches, e↵ectivity indices are not asymptotically correct. Additionally, the

meshes obtained with adaptive adjoint-based analysis display qualitatively di↵erent features

when compared to the uniform refinement approach.

It is possible that more accurate error estimates could be obtained by considering the

total functional error as the sum of element-level contributions

J
h(uh)� J

h(uh

H
) ⇡

nelX

e=1

� 1

↵e

zh

e
·Rh

e
(uh

H
), (4.20)

where we have replaced the approximated ratio (4.13) with the exact element-level ratio, ↵e =

1�
⇣

he

He

⌘k

. Here, the subscript e denotes the element-level contributions to the corresponding

global quantity. Additionally, it is possible that more suitable meshes may be obtained during

the adaptive process if a size field smoothing algorithm is utilized. We leave investigation

into these areas as a suggestion for future work.

CHAPTER 5

OUTPUT-BASED ERROR ESTIMATION AND MESH

ADAPTATION FOR VARIATIONAL MULTISCALE METHODS

5.1 Introduction and Motivation

Stabilized finite element methods have been used to e↵ectively solve a wide variety

of problems where standard Galerkin methods are known to be unstable. Among these

problems are the advective-di↵usive equations [83], [84], Stokes flow [85], [86], and the

Navier-Stokes equations [87]–[89]. The variational multiscale (VMS) method, as developed

by Hughes et al. [90], [91], provides a systematic approach to derive a stabilized finite ele-

ment method. From a high level, the VMS approach decomposes the solution u to a partial

di↵erential equation (PDE) into coarse-scale components u and fine-scale components u
0,

where the fine-scale solution is represented or approximated analytically.

A posteriori error estimation is a common tool to assess the accuracy and reliability

of a finite element solution [1]. In the original developments of the VMS method, it was

suggested that approximations to the fine-scale solution u
0 = u�u could be used to derive a

posteriori error estimates [90]. Since then, numerous studies have utilized VMS techniques

in the context of a posteriori error estimation. Hauke et al. [92], [93] investigated the using

the fine-scale solution as an explicit error estimator in the context of advective transport

problems. Masud et al. [94] derived explicit and implicit error estimates for the global dis-

cretization error for a mixed form of nearly incompressible elasticity, and then later extended

these techniques to nonlinear elasticity formulations [95]. Larson and Målqvist [96] inves-

tigated approximating the fine-scale solution via local patch-wise problems, and derived an

a posteriori error estimate for the solution in the energy norm for use in an adaptive finite

element method.

Traditional a posteriori error estimates attempt to bound the error in a given norm.

More recently developed duality-based a posteriori error estimates [15] seek to approximate

the error in an output quantity that can be expressed as a functional J(u). For example,

This chapter previously appeared as: B. N. Granzow, M. S. Shephard, and A. A. Oberai, “Output-

based error estimation and mesh adaptation for variational multiscale methods.” Comput. Methods in Appl.
Mechanics and Eng., vol. 322, pp. 331-459, Aug. 2017.

84

85

outputs corresponding to the lift or drag over an airfoil may be of primary interest for

a numerical study. In general, output-based error estimates based on duality techniques

require the solution of an auxiliary dual problem. In contrast, the original PDE of interest

is referred to as the primal problem. Using the solution z to the dual problem, output error

estimates are written, in part, as the product of two terms [8], [68]. The first term involves

the residual Ru
h of the primal PDE evaluated at the finite element solution. The second

term, typically referred to as the weighting term, involves the di↵erence z � I
h
z between

the exact dual solution and the nodal interpolant of the exact dual solution onto the finite

element space used to approximate the primal problem.

The exact dual z solution is generally unknown, and thus must be approximated to

obtain functional error estimates. Note that if the dual solution is approximated in the same

finite element space as used for the primal problem, then the weighting term in the output

error estimate is identically zero. Thus some form of enrichment to the dual solution is re-

quired. Several enrichment procedures are commonly used. One approach is to approximate

the exact dual solution in a globally richer finite element space than the one used for the

primal problem. Another approach involves solving the dual problem using the same finite

element space as used for the primal problem and enriching the dual solution via projection.

Yet another approach involves using a priori estimates to bound the interpolation error in

the dual solution.

In this chapter we propose a novel strategy for output-based error estimation, whereby

the dual solution is enriched by the fine-scale dual solution z
0 using VMS techniques. This

is achieved by the introduction of a general representation E2 for functional errors in VMS

methods. Using this general representation, we introduce simple approximations to the fine

and coarse scale solutions for both the primal and dual problems to derive an error estimate

⌘2.

We then seek to demonstrate the utility of this error representation in adaptive finite

elements. This is achieved in part by comparison to a recently proposed explicit output-based

error representation E1 that utilizes VMS techniques to entirely circumvent the solution of

an auxiliary dual problem [97]. We prove that error estimates ⌘1 ⇡ E1 and ⌘2 ⇡ E2 based

on this explicit error representation and the newly proposed VMS technique, respectively,

are identical. However, we demonstrate that localization of the explicit error estimate ⌘1

is insu�cient to drive mesh adaptation for local output quantities, whereas the estimate ⌘2

86

performs well.

The remainder of this chapter is structured as follows. We begin by presenting a review

of the derivation of a VMS method for an abstract Dirichlet primal problem. Then we

introduce simple approximations to the fine-scale solution u
0 and the coarse-scale solution

u to obtain a computable numerical subgrid method for the primal problem. Next, we

introduce an auxiliary dual problem to relate the output J(u) to the primal problem. We

then derive a VMS and subgrid method for the dual problem. Using the VMS methods

for the primal and dual problems, we derive a general expression E2 for representing output

errors in VMS methods, as well as the previously proposed error representation E1. Then,

utilizing the approximations made for the primal and dual subgrid models, we derive error

estimates ⌘1 ⇡ E1 and ⌘2 ⇡ E2 and demonstrate that these two quantities are identical.

Next, we discuss the localization of these error estimates to element-level error indicators

and how these indicators are used to drive mesh adaptation procedures. Then we investigate

the e↵ectivity of error estimates ⌘1 and ⌘2 for one and two dimensional example problems.

We conclude by investigating the ability of the estimates ⌘1 and ⌘2 to drive mesh adaptation

to accurately compute output quantities J(u).

5.2 Review of VMS Methods

5.2.1 Model Problem

Let ⌦ ⇢ Rd be an open bounded domain with smooth boundary @⌦, where d is the

number of spatial dimensions of the domain. Let V be a Hilbert space equipped with the

norm k · kV and inner product (·, ·)V such that V = {u 2 H(⌦) : u|@⌦ = 0}, where H(⌦) is a

Hilbert space defined over the domain ⌦. Let V⇤ be the dual space of V and Vh·, ·iV⇤ denote

the dual pairing between the two spaces given by Vhv, uiV⇤ =
R
⌦ vu d⌦. Let L : V ! V⇤ be

a linear di↵erential operator. Let f 2 V⇤ be given data. We consider the abstract model

problem of finding u 2 V such that

8
<

:
Lu = f, x 2 ⌦,

u = 0, x 2 @⌦.
(5.1)

In B.1 we discuss extending this model problem to account for non-homogeneous Dirichlet

and Neumann boundary conditions.

87

We define the residual operator R : V ! V⇤ as Ru := f �Lu, and we refer to (5.1) as

the primal problem. The equivalent weak form of the primal problem can be stated as: find

u 2 V such that

Vhv,LuiV⇤ = Vhv, fiV⇤ 8 v 2 V . (5.2)

5.2.2 VMS Formulation

In this section, we review the foundations of the VMS method, as developed by Hughes

et al. [90] and later refined by Hughes and Sangalli [91]. The basis of the method is the

introduction of a sum decomposition of the solution u such that u = u + u
0. Here u 2

V corresponds to the computable coarse-scale solution, while u
0 2 V 0 is associated with

unresolved fine-scales of the solution. Further, it is assumed that the coarse-scale space V
and fine-scale space V 0 are closed subspaces of V and that V � V 0 = V .

Using this sum decomposition, the weak form of the primal problem can be restated:

find u+ u
0 2 V such that

Vhv,L(u+ u
0)iV⇤ = Vhv, fiV⇤ 8 v 2 V , (5.3)

which can be split into the two subproblems: find u+ u
0 2 V such that

Vhv,LuiV⇤ + Vhv,Lu0iV⇤ = Vhv, fiV⇤ 8 v 2 V , (5.4)

Vhv0,LuiV⇤ + Vhv0,Lu0iV⇤ = Vhv0, fiV⇤ 8 v0 2 V 0
. (5.5)

The goal of the VMS method is to eliminate the fine-scale solution u
0 from the first

sub-problem (5.4) by expressing u
0 in terms of the coarse-scale solution u. This results in a

coarse-scale model involving only u that can then be solved numerically. However, the two

sub-problems are not currently well-posed in terms of uniqueness. To ensure uniqueness, an

optimality condition �(·) is chosen, for example �(·) = k · k2
H1(⌦) or �(·) = k · k2

L2(⌦). The

88

problem is then reposed in the optimal context:

min
u

�(u� u),

s.t.

8
>>>><

>>>>:

u 2 V ,

u
0 2 V 0

,

L(u+ u
0) = f,

(5.6)

The success of Hughes and Sangalli [91] is in showing that this optimality criteria

defines a projector P : V ! V onto the coarse-scale space such that Pu
0 = 0. Additionally,

the projector P implicitly defines the fine-scale space V 0 = {v 2 V : Pv = 0}. Using this

projector, Hughes and Sangalli then show that the fine-scale solution can be analytically

represented as:

u
0 =

⇣
G � GPT

�
PGPT

��1 PG
⌘

| {z }
G0

Ru, (5.7)

where G = L�1 is the classical Green’s operator and G 0 is the so-called fine-scale Green’s

operator. Similarly, the fine-scale solution can be written in terms of the so-called fine-scale

Green’s function g
0(x;y) as

u
0(y) =

Z

⌦

g
0(x;y)(Ru)(x) d⌦x, (5.8)

where g
0(x;y) is defined by the operator G 0.

Let L⇤ be the adjoint operator of L such that

Vhv,LuiV⇤ = V⇤hL⇤
v, uiV 8 u, v 2 V . (5.9)

We note that this equation represents the definition of the adjoint operator L⇤ and does not

place any restriction on L. When L is self adjoint, we have the identity L⇤ = L, otherwise
L⇤ and L are di↵erent. However, equation (5.9) holds in either case.

Using the definition of the adjoint (5.9) and the representation of the fine-scale solution

89

(5.7), the first sub-problem (5.4) can be restated as: find u 2 V such that

Vhv,LuiV⇤ + V⇤hL⇤
v,G 0RuiV = Vhv, fiV⇤ 8 v 2 V . (5.10)

We refer to this equation as the continuous variational multiscale formulation of the primal

problem. For use in later derivations, we rewrite this formulation as:

V⇤hL⇤
v,G 0RuiV = Vhv,RuiV⇤ 8 v 2 V , (5.11)

recalling the definition of the primal residual operator Ru := f � Lu.

5.2.3 Subgrid Model

In practice, the continuous VMS model (5.10) is approximated by a finite element

method. We refer to this approximate model as the subgrid model, as is common in the

literature. The first step in this approximation is to choose the coarse-scale space to be

a finite dimensional subspace, that is V = Vh, and partition the domain ⌦ into nel non-

overlapping finite element subdomains ⌦e with boundaries @⌦e for e = 1, 2, . . . , nel.

Next we note that an exact representation for the fine-scale Green’s function g
0(x;y)

(and the fine-scale Green’s operator G 0) is generally not obtainable. Thus, we must introduce

an approximation for the fine-scale Green’s function to accurately represent the fine-scale

solution (5.8). To this end, we introduce the so-called element-level Green’s function g
e(x;y),

defined over element interiors as

8
<

:
L⇤

g
e(x;y) = �(x� y), x 2 ⌦e

,

g
e(x;y) = 0, x 2 @⌦e

,

(5.12)

such that g0(x;y) ⇡ g
e(x;y).

Note that this approximation assumes that the fine-scale solution u
0 vanishes on element

boundaries @⌦e. Hughes and Sangalli [91] show that, in one spatial dimension, the choice

of an H
1 optimality condition � = k · k2

H1 results in a completely local fine-scale Green’s

function. That is, when d = 1, the H
1 optimality condition ensures the equivalence of

the fine-scale Green’s function g
0(x;y) and the element-level Green’s function g

e(x;y). This

result provides justification for approximating the fine-scale Green’s function as the element-

90

level Green’s function and motivates us to only consider �(·) = k · kH1 in this work.

As a further simplification, we approximate the element-level Green’s function by it’s

average value over the element interior, and denote this value by ⌧e, which can be expressed

as:

⌧e =
1

meas(⌦e)

Z

⌦e

Z

⌦e

g
e(x;y) d⌦x d⌦y. (5.13)

We note that more accurate approximations for the element-level Green’s function can be

made. For instance, Oberai and Pinsky [98] approximate the element-level Green’s function

by a polynomial scalar function involving moments of the element-level Green’s function.

We leave investigation into this area as a consideration for future work.

With this final approximation, the subgrid model can be written as: find u
h 2 Vh such

that

V
⌦
v
h
,Luh

↵
V⇤ + V⇤

⌦
L⇤

v
h
, ⌧eRu

h
↵⌦0

V = V
⌦
v
h
, f

↵
V⇤ 8 vh 2 Vh

, (5.14)

or equivalently as: find u
h 2 Vh such that

V⇤
⌦
L⇤

v
h
, ⌧eRu

h
↵⌦0

V = V
⌦
v
h
,Ru

h
↵
V⇤ 8 vh 2 Vh

, (5.15)

where we have approximated the fine-scale solution over element interiors as

u
0��
⌦e

⇡ eu0��
⌦e

= ⌧eRu
h
. (5.16)

Here V⇤h·, ·i⌦
0

V denotes the ‘broken’ dual pairing over element interiors given by

V⇤hu, vi⌦
0

V =
nelX

e=1

V⇤hu, vi⌦
e

V , (5.17)

where we have denoted the dual pairing over a single element interior as

V⇤hu, vi⌦
e

V =

Z

⌦e

uv d⌦. (5.18)

We emphasize that the approximations made to the fine-scale solution imply that the

subgrid model (5.14) is an approximation to the continuous VMS formulation (5.10), which

91

in turn implies that the subgrid solution u
h is an approximation to the coarse-scale solution

u. With this in mind, we can express the exact solution u as

u = u
h + eu0 + eu (5.19)

where eu = (u�u
h)+(u0�eu0) represents the approximation errors in the coarse and fine-scale

solutions.

Remark 1. The finite element method is derived from the weak form of a partial di↵erential

equation that has been integrated by parts. Thus instead of the duality pairing used in

equation (5.14) it makes use of the L2 inner product, and the finite element subgrid model

derived from the variational multiscale method is given by:

A(vh, uh) + (L⇤
v
h
, ⌧eRu

h)⌦0 = l(vh) 8 v 2 V . (5.20)

where A(·, ·) is the bilinear form associated with the operator L, (·, ·)⌦0 is the broken L2

inner product defined on element interiors, and l(·) is the linear functional associated with

the forcing function f .

5.3 The Dual Problem

5.3.1 Abstract Problem

Let J(u) : V ! R be a linear functional corresponding to a physically meaningful

quantity of interest. We assume that J(u) can be expressed as

J(u) = V⇤hq, uiV , (5.21)

where q 2 V⇤. Following standard duality-based approaches for a posteriori error estimation

[8], [15], [68], [99] we introduce the dual problem : find z 2 V such that

V⇤hL⇤
z, viV = V⇤hq, viV 8 v 2 V . (5.22)

92

The equivalent strong form of the dual problem can be written as: find z 2 V such that

8
<

:
L⇤

z = q, x 2 ⌦,

z = 0, x 2 @⌦.
(5.23)

We define the residual operator R⇤ : V ! V⇤ of the dual problem as R⇤
z := q � L⇤

z.

5.3.2 VMS Formulation

If the primal problem necessitates the use of numerical stabilization, it is also likely that

solving the dual problem (5.22) with a Galerkin finite element method will yield spurious

oscillations in the dual solution [32]. To prevent non-physical behavior in the dual solution,

we also solve the dual problem with a VMS method. Cyr et al. [32] call this approach the

stabilization of the adjoint. This is in contrast to deriving a dual problem directly from the

primal subgrid model (5.14), which Cyr et al. refer to as the adjoint of the stabilization.

Let Vd and V 0
d
be closed subspaces of V . Obtaining a VMS formulation for the dual

problem proceeds in exactly the same manner as the primal problem. First a sum decom-

position of the dual solution z is assumed such that z = z + z
0, where z 2 Vd and z

0 2 V 0
d
.

The weak form of the dual problem (5.22) is then written as two sub-problems, whose solu-

tions are uniquely determined by an optimality condition �d(·) imposed on the coarse-scale

solution z. As with the primal model, we will only consider the H
1 optimality condition

�d(·) = k · k2
H1 . However, we note that one could potentially choose di↵erent optimality

conditions for both the primal and dual problems. We leave investigation into this area as

an open research topic.

The optimality condition defines a projector Pd : V ! Vd onto the coarse-scale sub-

space such that Pdz
0 = 0, and this projector implicitly defines the fine-scale subspace as

Vd = {v 2 V : Pdv = 0}. If we let Gd denote the classical Green’s operator for the dual

problem, such that Gd = (L⇤)�1, then the fine-scale dual solution can be represented as:

z
0 =

⇣
Gd � GdPT

d

�
PdGdPT

d

��1 PdGd

⌘

| {z }
G0
d

R⇤
z, (5.24)

where G 0
d
is the dual fine-scale Green’s operator. Similarly, the fine-scale solution can be

93

written in terms of the dual fine-scale Green’s function, g0
d
(x;y), as:

z
0(y) =

Z

⌦

g
0
d
(x;y)(R⇤

z)(x) d⌦x, (5.25)

where g0
d
(x;y) is defined by the operator G 0

d
. Using this representation of the fine-scale dual

solution, the continuous variational multiscale formulation of the dual problem is stated as:

find z 2 Vd such that

V⇤hL⇤
z, viV + VhG 0

d
R⇤

z,LviV⇤ = V⇤hq, viV 8 z 2 Vd. (5.26)

Recalling the definition of the dual residual operator R⇤ := q �L⇤, we can rewrite equation

(5.26) as:

VhG 0
d
R⇤

z,LviV⇤ = V⇤hR⇤
z, viV 8 z 2 Vd. (5.27)

5.3.3 Subgrid Model

To derive a corresponding subgrid model to the VMS formulation of the dual problem

(5.26), we will assume that the coarse-scale spaces for the primal and dual problem are

chosen to be the same, such that V = Vd. Additionally, we will consider approximations

made using the same finite dimensional subspace V = Vh and discretization as used for the

primal subgrid model. We first approximate the dual fine-scale Green’s function g
0
d
(x;y)

using the dual element-level Green’s function, defined over element interiors as

8
<

:
Lge

d
(x;y) = �(x� y), x 2 ⌦e

,

g
e

d
(x;y) = 0, x 2 @⌦e

,

(5.28)

such that g0
d
(x;y) ⇡ g

e

d
(x;y).

We further approximate the fine-scale dual solution z
0 by writing it as the product of a

scalar function ⌧e
d
times the dual residual operating on the coarse-scale solution. The scalar

function is given as:

⌧e
d
=

1

meas(⌦e)

Z

⌦e

Z

⌦e

g
e

d
(x;y) d⌦x d⌦y. (5.29)

94

The dual subgrid model can then be written as: find z
h 2 Vh such that

V⇤
⌦
L⇤

z
h
, v

h
↵
V + V

⌦
⌧e
d
R⇤

z
h
,Lvh

↵⌦0

V⇤ = V⇤
⌦
q, v

h
↵
V 8 vh 2 Vh

, (5.30)

or equivalently as: find z
h 2 Vh such that

V
⌦
⌧e
d
R⇤

z
h
,Lvh

↵⌦0

V⇤ = V⇤
⌦
R⇤

z
h
, v

h
↵
V 8 vh 2 Vh

, (5.31)

where we have approximated the fine-scale dual solution over element interiors as

z
0��
⌦e

⇡ ez0
��
⌦e

= ⌧e
d
R⇤

z
h
. (5.32)

We note that the exact dual solution can be expressed as the sum

z = z
h + ez0 + ez, (5.33)

where ez = (z�z
h)+(z0�ez0) represents the approximation errors in the coarse and fine-scale

solutions.

Remark 2. The finite element version of the dual subgrid model corresponding to equation

(5.30) is written using the L2 inner product as:

A(zh, vh) + (⌧e
d
R⇤

z
h
,Lvh)⌦0 = J(vh) 8 v 2 Vh

, (5.34)

where A(·, ·) is the bilinear form associated with the operator L, and (·, ·)⌦0 is the broken L2

inner product defined on element interiors.

5.4 Error Estimation

In this section, we develop a general framework for output-based error estimation

in VMS methods. We first develop two error representations for output quantities in the

continuous VMS setting. Next, we discuss the role of the approximations made in both

the primal and dual subgrid models. Finally, we introduce two error estimates for output

quantities. We prove that the error estimates are identical. However, we demonstrate the

superiority of one estimate over the other in the context of error localization needed to drive

95

mesh adaptation.

5.4.1 Continuous VMS Error Representations

Proposition 1. For any solution u = u
0 + u to the continuous VMS formulation (5.10), we

have the error representation

E1 = J(u)� J(u) = J(u0). (5.35)

Proof. The result follows directly from the linearity of J(·) and the sum decomposition

u = u
0 + u.

This error representation is used by Hauke and Fuster [97] to derive an explicit a poste-

riori error estimate for output quantities. The error estimate only involves an approximation

eu0 to the fine-scale solution u
0 and completely avoids the solution of a dual problem. How-

ever, when q is chosen to be a local forcing function for the dual problem (e.g. a function

which is non-zero only over a subdomain of the total domain), error estimates derived from

this representation fail to provide useful information when they are localized to the element

level. Such error localization is critical to drive mesh adaptation and is discussed in detail

later.

Proposition 2. For any solutions u = u
0+u to the continuous VMS formulation (5.10) and

z = z
0 + z to the continuous dual VMS formulation (5.26), we have the error representation

E2 = J(u)� J(u) = VhG 0
d
R⇤

z,RuiV⇤ + V⇤hL⇤
z,G 0RuiV . (5.36)

96

Proof.

J(u)� J(u) = V⇤hq, uiV � V⇤hq, uiV by (5.21)

= V⇤hL⇤
z, uiV � V⇤hL⇤

z, uiV by (5.22)

= Vhz,LuiV⇤ � Vhz,LuiV⇤ by (5.9)

= Vhz, fiV⇤ � Vhz,LuiV⇤ by (5.2)

= Vhz,RuiV⇤ by definition, linearity

= Vhz0,RuiV⇤ + Vhz,RuiV⇤ by definition, linearity

= Vhz0,RuiV⇤ + V⇤hL⇤
z,G 0RuiV by (5.11)

= VhG 0
d
R⇤

z,RuiV⇤ + V⇤hL⇤
z,G 0RuiV . by (5.24)

This error representation suggests a general approach to output-based error estimation

for VMS methods, where the only approximation made to this point is that the coarse-

scale subspace for the primal and dual problems are equal, such that V = Vd. To derive

computable error estimates, exact representations or approximations must be known for

the fine-scale Green’s operators and the coarse-scale solutions for both the primal and dual

problems.

5.4.2 Subgrid Model Error Representations

We now derive error representations that arise by introducing the approximations made

in the primal and dual subgrid models.

Proposition 3. For any solutions u to the primal model (5.2) and u
h to the primal subgrid

model (5.14), we have the error representation

Ê1 = J(u)� J(uh) = V⇤
⌦
q, ⌧eRu

h
↵⌦0

V + V⇤hq, euiV . (5.37)

97

Proof.

J(u)� J(uh) = V⇤hq, uiV � V⇤
⌦
q, u

h
↵
V by (5.21)

= V⇤
⌦
q, u� u

h
↵
V by linearity

= V⇤hq, eu0 + euiV by (5.19)

= V⇤hq, eu0i⌦
0

V + V⇤hq, euiV by linearity

= V⇤
⌦
q, ⌧eRu

h
↵⌦0

V + V⇤hq, euiV . by (5.16)

Proposition 4. For any solutions u to the primal model (5.2), z to the dual model (5.22),

u
h to the primal subgrid model (5.14) and z

h to the dual subgrid model (5.30), we have the

error representation

Ê2 = J(u)� J(uh)

= V
⌦
⌧e
d
R⇤

z
h
,Ru

h
↵⌦0

V⇤ + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V + V
⌦
ez,Ru

h
↵
V⇤ .

(5.38)

Proof.

J(u)� J(uh)

= V⇤hq, uiV � V⇤
⌦
q, u

h
↵
V by (5.21)

= V⇤hL⇤
z, uiV � V⇤

⌦
L⇤

z, u
h
↵
V by (5.22)

= Vhz,LuiV⇤ � V
⌦
z,Luh

↵
V⇤ by (5.9)

= Vhz, fiV⇤ � V
⌦
z,Luh

↵
V⇤ by (5.2)

= V
⌦
z,Ru

h
↵
V⇤ by definition

= V
⌦
z,Ru

h
↵
V⇤ � V

⌦
z
h
,Ru

h
↵
V⇤ + V⇤

⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V by (5.15)

= V
⌦
z � z

h
,Ru

h
↵
V⇤ + V⇤

⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V by linearity

= V
⌦
ez0 + ez,Ru

h
↵
V⇤ + V⇤

⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V by (5.33)

= V
⌦
ez0,Ru

h
↵⌦0

V⇤ + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V + V
⌦
ez,Ru

h
↵
V⇤ by linearity

= V
⌦
⌧e
d
R⇤

z
h
,Ru

h
↵⌦0

V⇤ + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V + V
⌦
ez,Ru

h
↵
V⇤ . by (5.32)

98

5.4.3 Subgrid Model Error Estimates

In general, the approximation errors eu and ez are unknown. This suggests the error

estimates ⌘1 ⇡ Ê1 and ⌘2 ⇡ Ê2 that are obtained by setting eu = 0 in (5.37) and ez = 0 in

(5.38), and are given below:

⌘1 = V⇤
⌦
q, ⌧eRu

h
↵⌦0

V , (5.39)

⌘2 = V
⌦
⌧e
d
R⇤

z
h
,Ru

h
↵⌦0

V⇤ + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V . (5.40)

Proposition 5. For any solutions uh to the primal subgrid model (5.14) and z
h to the dual

subgrid model (5.30) the error estimates ⌘1 and ⌘2 are identical.

Proof. Note that if the stabilization parameters ⌧e and ⌧e
d
for the primal and dual problems

are equal, we obtain the desired result since

⌘2 = V
⌦
⌧e
d
R⇤

z
h
,Ru

h
↵⌦0

V⇤ + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V

= V⇤
⌦
R⇤

z
h
, ⌧eRu

h
↵⌦0

V + V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦0

V by assumption

= V⇤
⌦
R⇤

z
h + L⇤

z
h
, ⌧eRu

h
↵⌦0

V by linearity

= V⇤
⌦
q, ⌧eRu

h
↵⌦0

V by definition

= ⌘1.

Using the given definitions (5.13) and (5.29), we note that a su�cient condition for the

equality ⌧e = ⌧e
d
is: ge(x;y) = g

e

d
(y;x). This is verified via the following argument:

L⇤
g
e(x;y) = �(x� y) by (5.12)

=)
Z

⌦e

g
e

d
(x; z)L⇤

g
e(x;y) d⌦ =

Z

⌦e

g
e

d
(x; z)�(x� y) d⌦

=)
Z

⌦e

Lge
d
(x; z)ge(x;y) d⌦ =

Z

⌦e

g
e

d
(x; z)�(x� y) d⌦

=)
Z

⌦e

�(x� z)ge(x;y) d⌦ =

Z

⌦e

g
e

d
(x; z)�(x� y) d⌦ by (5.28)

=) g
e(z;y) = g

e

d
(y; z).

Here we remark that the identity (5.9) holds for arbitrary smooth domains ⌦ and for a

99

function space V whose members vanish on the boundary @⌦. As such, we employ the

element-level identity:

Vhv,Lui
⌦e

V⇤ = V⇤hL⇤
v, ui⌦

e

V 8u, v 2 Ve (5.41)

to derive the third equality above, where Ve = {u 2 V : u = 0 on @⌦e}.

5.4.4 Error Localization

We now demonstrate that even though ⌘1 and ⌘2 are identical global error estimates,

their localization to element-level error estimates is very di↵erent. This localization yields

positive values at the element level called error indicators which are necessary to drive mesh

adaptation. We compute error indicators by bounding the two error estimates ⌘1 and ⌘2

from above using the triangle inequality, such that:

|⌘1| 
nelX

e=1

⌘
e

1, (5.42)

and

|⌘2| 
nelX

e=1

⌘
e

2. (5.43)

Here the error indicator for the error estimate ⌘1 is given as

⌘
e

1 = | V⇤
⌦
q, ⌧eRu

h
↵⌦e

V |, (5.44)

and the error indicator for the error estimate ⌘2 is given as

⌘
e

2 = | V
⌦
⌧e
d
R⇤

z
h
,Ru

h
↵⌦e

V⇤ |+ | V⇤
⌦
L⇤

z
h
, ⌧eRu

h
↵⌦e

V |. (5.45)

Note that the indicator ⌘
e

1 is only non-zero over elements for which the dual forcing

function q|⌦e is non-zero. This indicates that only elements for which q|⌦ 6= 0 provide

contributions to the error J(u)�J(uh), which is generally not true. As a thought experiment,

consider an advective problem for which the dual forcing function q is defined to be 1 over

some subdomain ⌦s ⇢ ⌦ and 0 elsewhere. Any discretization errors introduced upstream of

100

the subdomain ⌦s will be propagated via advection to the subdomain itself, thus a↵ecting

the accuracy of the computed output quantity. However, the indicator ⌘e1 will indicate that

the elements upstream of the subdomain provide no contributions to the output error, as

these elements are located outside of the subdomain ⌦s, whereas this would not be the case

for ⌘e2.

5.5 Mesh Adaptation

Mesh adaptation provides a means to modify the spatial discretization of a PDE to

obtain greater solution accuracy with a given amount of computing power. Presently, we

make use of conformal unstructured local mesh modification that performs sequences of edge

splits, swaps, and collapses [41] [40] using the PUMI [33] software suite. Mesh adaptation is

driven by the concept of a mesh size field, which defines element edge lengths at all locations

in the mesh. The mesh size field is determined by the localized error indicators to perform

mesh refinement in areas that strongly contribute to the error and perform mesh coarsening

in areas that do not strongly contribute to the error.

5.5.1 Size Field Specification

Let N be a desired target number of mesh elements. Let ⌘e denote a computed element-

level error indicator defined for all e = 1, 2, . . . , nel. Let p be the expected polynomial order

of convergence for a chosen finite element method. Following Boussetta et al. [54], we utilize

a size field specification that aims to provide an output adapted mesh with N elements.

First, we define the global quantity G as

G =
nelX

e

(⌘e)
2d

2p+d . (5.46)

Once G has been computed, new element-level sizes h
e

new are determined by scaling the

previous element size he according to the formula

h
e

new =

✓
G

N

◆ 1
d

(⌘e)
�2

2p+d h
e
. (5.47)

Finally, to prevent excessive refinement or coarsening in a single adaptive step, we prescribe

that the new element size be no smaller than half the previous element size and no greater

101

than twice the previous element size.

1

2
 h

e

new

he
 2. (5.48)

5.6 Results

In this section, we investigate output-based error estimation and mesh adaptation as

applied to a model scalar, steady state advection di↵usion problem, defined by the linear

operator

L := �r2 + a ·r. (5.49)

Here,  is a coe�cient corresponding to the di↵usivity strength and a is a coe�cient cor-

responding to the advective transport. The adjoint operator is readily found (see B.2) to

be

L⇤ = �r2 � a ·r, (5.50)

which is simply another advection-di↵usion operator with the advective direction opposite

that of the original operator. The bilinear form A(·, ·) associated with the operator L is

given as

A(v, u) = (rv,ru) + (v,a ·ru) (5.51)

where (·, ·) denotes the L2 inner product.

The mesh Peclét number ↵ is given by ↵ := h|a|
2 , where h = meas(⌦e) is a characteristic

measure of the mesh element size. In one dimension, the stabilization parameter ⌧e is

given [90] as:

⌧e =
h

2|a|(coth↵ +
1

↵
). (5.52)

The parameter ⌧e exactly solves (5.13) in one spatial dimension, but we emphasize that

utilizing this parameter in two spatial dimensions introduces yet another approximation to

the fine-scale solution.

102

For a chosen functional output quantity J(u), the e↵ectivity index is defined as

I =
J(u)� J(uh)

⌘
, (5.53)

the ratio of the exact error to the estimated error. The e↵ectivity index provides a measure

of the degree to which the error is underestimated. An e↵ectivity index of I = 1 is desirable,

as it indicates the error estimate has exactly recovered the error.

For each numerical example, the primal and dual problems are solved using the same

finite element discretization. That is the same finite element basis functions and the same

finite element mesh are used to solve the primal and dual problems. The mesh used in

each example consists of simplical elements in one or two dimensions, and the finite element

subspace Vh is defined by piecewise linear Lagrange shape functions. The primal problem

is given by equation (5.20) and the dual problem is given by equation (5.34), where we

emphasize that homogeneous Dirichlet boundary conditions are applied to both the primal

and dual problems. Finally, we note that we have provided B.3 to concretely demonstrate

the propositions derived in Section 5.4.

5.6.1 One Dimensional Example

Let ⌦ = {x : x 2 [0, 1]}. We choose the forcing function for the primal to be f = 1,

and the functional quantity of interest J(u) =
R
⌦ u d⌦, such that q = 1 for the dual problem.

The di↵usivity coe�cient is chosen to be  = 0.001 and the advective coe�cient a = 1. The

exact solution to the primal PDE (5.1) is

u(x) =
1

a

✓
x�

exp(ax

)� 1

exp(a

)� 1

◆
(5.54)

and the exact value for the chosen quantity of interest is J(u) = 0.499.

We investigate the accuracy of the error estimate obtained by ⌘ = ⌘1 = ⌘2. Table 5.1

shows the computed functional quantity of interest and the e↵ectivity indices for the one-

dimensional problem solved on meshes with nel elements with mesh size h = 1
nel

. For each

chosen mesh size, the e↵ectivity index is exactly one meaning the error estimate ⌘ exactly

recovers the output error. It is well known (c.f. [90]) that our choice of ⌧e results in a solution

u
h that is nodally exact. For this reason, it is unsurprising that the output error is exactly

recovered for this example.

103

Table 5.1. E↵ectivity indices for a 1D advection-di↵usion example with a global
QoI.

nel ↵ J(uh) I

10 5.000e+01 4.5000e-01 1.000
20 2.500e+01 4.7500e-01 1.000
40 1.250e+01 4.8750e-01 1.000
80 6.250e+00 4.9375e-01 1.000
160 3.125e+00 4.9686e-01 1.000

5.6.2 A Manufactured Solution

Let ⌦ = {x : x 2 [0, 1] ⇥ [0, 1]}. Let ei and ej be unitary vectors in the x and y

directions, respectively. We choose the advective coe�cient to be a = ei + ej , the di↵usive

coe�cient to be  = 0.001, and the forcing function f such that the exact solution is given

by

u(x, y) = sin(⇡x) sin(⇡y). (5.55)

The quantity of interest is chosen to be J(u) =
R
⌦ u d⌦, such that the dual forcing function

is q = 1. The exact value of the quantity of interest is J(u) = 4
⇡2 ⇡ .405284. Again,

we investigate the e↵ectivity of the error estimate ⌘ = ⌘1 = ⌘2 for meshes with uniformly

nel uniformly distributed triangular elements. Table 5.2 shows e↵ectivity indices obtained

for various meshes. As the mesh size decreases and the number of elements increases, the

e↵ectivity index tends to one.

Table 5.2. E↵ectivity indices for a 2D advection-di↵usion example with a global
QoI.

nel J(uh) I

200 4.0493e-01 1.083
800 4.0512e-01 1.023
3200 4.0521e-01 1.009
12800 4.0525e-01 1.004
51200 4.0527e-01 1.001

104

5.6.3 Advection in an L-Shaped Domain

Let ⌦ = {x : x 2 [0, 1] ⇥ [0, 1] [[0, 1] ⇥ [�1, 0] [[�1, 0] ⇥ [0, 1]}. Let ei and ej be

unitary vectors in the x and y direction, respectively. We choose the advective coe�cient to

be a = �ei + ej , the di↵usive coe�cient to be  = 0.001, and the forcing function f = 1.

We investigate adaptivity for two output quantities: J1(u) =
R
⌦ u d⌦ and J2(u) =

R
⌦ q2u d⌦,

where q2 is defined as

q2 :=

8
><

>:

1 if �0.95  x  �0.5 and 0.5  y  0.95

0 otherwise.
(5.56)

That is, q2 samples the solution u
h on a square patch in the upper right corner of the domain

⌦. The primal solution u
h and the dual solutions corresponding to the two quantities of

interest are shown in Figure 5.1. Note that the primal solution contains steep gradients at

the two left-most surfaces and the upper surface of the L-shaped domain.

Fig. 5.1. The primal solution u
h (left) and the dual solutions z

h corresponding
to J1(u) (center) and J2(u) (right).

We investigate the ability of four adaptive schemes to accurately assess the two func-

tional quantities. Each scheme proceeds by iteratively performing the steps

Solve primal PDE ! Localize error ! Adapt mesh.

The first adaptive scheme, referred to as UNIF, remeshes the entire domain with a uniform

size field. For the two output quantities, errors are computed for the meshes generated with

the mesh sizes h = {1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64}. In principle, the step to localize the error is not required

for this scheme.

For comparison to more traditional energy-based methods, the second adaptive scheme

105

is chosen based on a Zienkiewicz-Zhu type error estimate [100] [101], whereby error indica-

tors are computed as the di↵erence between solution gradients ru
h that are discontinuous

between elements and a nodally smoothed approximation to the gradient (ru
h)⇤ that is ob-

tained via a least-squares fit over a patch of elements. Once error indicators are computed,

the size field is set according to the size field equation (5.47) such that the target number of

elements N is twice the number of elements in the previous mesh. We refer to this scheme

as the superconvergent patch recovery (SPR) adaptive scheme.

The third and fourth adaptive schemes are based on the error indicators ⌘
e

1 and ⌘
e

2,

respectively, and are referred to as the VMS1 and VMS2 adaptive schemes, respectively.

Again, once the error indicators have been computed, the size field is set according to the

size field equation (5.47) such that the target number of elements N is twice the number

of elements in the previous mesh. We note that the scheme VMS2 is the only one which

necessitates the solution of the dual PDE model, which is implicitly included in the ‘Localize

error’ step.

Fig. 5.2. Initial meshes for the outputs J1(u) (left) and J2(u) (right).

For each quantity of interest, an initial mesh with a uniform size of h = 1
4 was generated

as shown in Figure 5.2. From this initial mesh, each adaptive scheme was run until meshes

with over 10, 000 degrees of freedom were produced. The exact values of the two output

quantities were computed on ‘truth’ meshes, which are finer at every spatial location in the

domain when compared to the meshes obtained via the four adaptive schemes. The values of

the quantities of interest were found to be J1(u) = 1.6588688371 and J2(u) = 0.23109653499.

Figure 5.3 shows the meshes obtained at the final iteration of the SPR, VMS1, and

VMS2 adaptive schemes for the global output quantity J1(u). As expected, the SPR scheme

strongly refines the mesh in areas where the gradient changes drastically. These areas include

106

Fig. 5.3. Final adapted meshes for the output J1(u) using the SPR (left), VMS1
(center), and VMS2 (right) adaptive schemes.

10
2

10
3

10
4

10
�3

10
�2

10
�1

1.44

Degrees of freedom

|J
1
(
u
)
�

J
1
(
u
h
)
|

UNIF

SPR

VMS1

VMS2

Fig. 5.4. Convergence history for various adaptive schemes for the output J1(u).

the left-most and upper-most surfaces of the L-shaped domain where boundary layers in the

solution exist, as well as the diagonal downstream of the reentrant corner where there is

a sudden change in the solution magnitude. In addition to performing mesh refinement

in the areas that the SPR scheme targets, the VMS1 and VMS2 also refine the mesh

along the diagonal upstream of the reentrant corner to accurately resolve features of the

dual solution z
h. For the global quantity J1(u), the VMS1 and VMS2 schemes yield final

107

meshes with very similar characteristics. At each iteration in the adaptive schemes, the

output error |J1(u) � J1(uh)| was computed. Figure 5.4 displays the convergence histories

for each adaptive scheme. Unsurprisingly, the VMS1 and VMS2 adaptive schemes compute

the output error more accurately than the SPR and UNIF with a comparable number of

degrees of freedom.

Fig. 5.5. Final adapted meshes for the output J2(u) using the SPR (left), VMS1
(center), and VMS2 (right) adaptive schemes.

10
2

10
3

10
4

10
�5

10
�3

10
�1

1.94

Degrees of freedom

|J
2
(
u
)
�

J
2
(
u
h
)
|

UNIF

SPR

VMS1

VMS2

Fig. 5.6. Convergence history for various adaptive schemes for the output J2(u).

Figure 5.5 displays the output meshes at the final iteration of the SPR, VMS1, and

108

VMS2 adaptive schemes for the local output quantity J2(u). Again, it is clear that the SPR

strongly refines the mesh in areas where the gradient changes drastically. The VMS1 scheme

only performs mesh refinement over the square subdomain over which q2 is non-zero and does

not seek accurately resolve the mesh to capture features of the primal or dual solutions. In

contrast, the VMS2 strongly refines the mesh over the square subdomain of interest, while

also resolving areas upstream of the domain to accurately account for the features of the

primal and dual solutions. For the output quantity J2(u), convergence histories for each

adaptive scheme are shown in Figure 5.6. It is clear from both the convergence diagram and

final adapted mesh for the VMS1 scheme that the VMS1 scheme is completely insu�cient

to drive mesh adaptation for a locally defined output quantity. On the other hand, the

VMS2 adaptive scheme is able to compute the ouptut quantity with much greater accuracy

than the UNIF and SPR schemes when using a comparable number of degrees of freedom.

5.7 Conclusions

For VMS methods, we have proposed a novel approach to enriching the dual solution for

duality-based functional error estimation using VMS techniques. We have demonstrated the

utility of this technique to drive mesh adaptation to accurately compute output quantities.

Future work includes investigating the e↵ect of choosing di↵erent optimality conditions

�(·) and �d(·) for the primal and dual problems, respectively, extending error estimates to

account for nonlinearities in both the PDE model and in the functional output quantity,

investigating the e↵ect of utilizing more accurate approximations to the fine-scale primal

and dual solutions, and extending the arguments presented to a mixture of non-homogeneous

Dirichlet and Nuemann boundary conditions.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We have presented an automated approach for adjoint-based error estimation and mesh

adaptation to approximate and control the discretization error associated with functional

quantities. In scenarios when these functional quantities correspond to physically meaningful

outputs, such as the average von-Mises stress over a sub-domain, we have demonstrated that

this approach can provide e↵ective error estimates and meaningfully adapt the mesh to reduce

the functional discretization error. In particular, we have developed and implemented this

approach to be applicable to stabilized finite element methods and have demonstrated its

ability to e↵ectively estimate and control errors in a variety of applications in solid mechanics.

Importantly, we have demonstrated that this approach is applicable to applications with

complex three-dimensional geometries. Further, we have demonstrated the ability of this

approach to execute e↵ectively on parallel machines. We have extended the automated

approach to investigate two novel strategies for solving adjoint problems on non-uniformly

refined nested meshes. Finally, we have developed and investigated a novel approach for

adjoint-based error estimation and mesh adaptation in the context of variational multiscale

finite element methods. For the purposes of mesh adaptation, we have demonstrated the

superiority of this approach when compared to a previously developed error estimate.

6.2 Future Work

6.2.1 Higher Order Finite Element Methods

In this work, we have preferred to utilize low-order stabilized finite element methods to

provide numerical stability in solid mechanics applications with incompressibility constraints.

Taylor-Hood type elements provide another approach to develop stable discretizations in the

finite element method, where displacements are represented with basis functions of order

p + 1 and pressures are represented with basis functions of order p. This leads to a more

involved finite element assembly process. The techniques used in the Goal application could

be extended to accommodate such elements to allow for the investigation of adjoint-based

109

110

error estimation and mesh adaptation for higher-order finite element methods.

6.2.2 Extending Capabilities to Quasi-Steady/Transient Problems

The examples presented in this work have been either steady-state examples or quasi-

steady examples loaded in a single load step. The Goal application currently has the ability

to perform multiple load steps and solve the adjoint problem either at the end of each load

step or at the end of the total number of load steps to estimate errors in functional quantities

of interest. This approach is mathematically valid for constitutive models that lack history-

dependent variables, such as neo-Hookean elasticity. However, for constitutive models with

history dependence, an error is introduced by the choice of step size, even if the problem is

not truly transient. A natural extension of the current work is to consider multiple quasi-

steady load steps for constitutive models with history-dependent variables and truly transient

problems with inertial terms included in the balance of linear momentum residual. In these

scenarios, the mathematical analysis requires the adjoint problem to be solved backwards in

time. In parallel, the e↵ective implementation of such a backwards in time adjoint problem

is an ongoing research topic in the CFD community.

6.2.3 Extending VMS Techniques for Solid Mechanics

We have developed and investigated enriching the adjoint solution with variational

multiscale (VMS) techniques and estimating errors in linear functional QoIs in the context

of a linear advection-di↵usion model problem. These techniques should be analysed in the

context of nonlinear variational problems and QoIs. In the Goal application, we have addi-

tionally included the ability to solve the adjoint problem on the same finite element space

as used for the primal problem. This provides a convenient pretext to implement VMS ad-

joint enrichment routines in the Goal application, and investigate error estimates obtained

as such.

REFERENCES

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Anal-
ysis. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2011.

[2] T. Grätsch and K.-J. Bathe, “A posteriori error estimation techniques in practical finite
element analysis,” Comput. & Structures, vol. 83, no. 4-5, pp. 235–265, Dec. 2005.

[3] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement techniques,”
J. of Comput. and Appl. Math., vol. 50, no. 1-3, pp. 67–83, May. 1994.

[4] I. Babuška and A. Miller, “The post-processing approach in the finite element method,
Part 1: Calculation of displacements, stresses and other higher derivatives of the dis-
placements,” Int. J. for Numerical Methods. in Eng., vol. 20, no. 6, pp. 1085–1109,
Jun. 1984.

[5] ——, “The post-processing approach in the finite element method, Part 2: The cal-
culation of stress intensity factors,” Int. J. for Numerical Methods. in Eng., vol. 20,
no. 6, pp. 1111–1129, Jun. 1984.

[6] ——, “The post-processing approach in the finite element method, Part 3: A posteriori
error estimates and adaptive mesh selection,” Int. J. for Numerical Methods. in Eng.,
vol. 20, no. 12, pp. 2311–2324, Dec. 1984.

[7] K. Eriksson, D. Estep, P. Hansbo, and C. Johnshon, Computational Di↵erential Equa-
tions, 2nd ed. New York, NY, USA: Cambridge Univ. Press, 1996.

[8] R. Becker and R. Rannacher, “An optimal control approach to a posteriori error esti-
mation in finite element methods,” Acta Numerica, vol. 10, pp. 1–102, May. 2001.

[9] M. B. Giles and N. A. Pierce, “Chapter 2 - Adjoint error correction for integral out-
puts,” in Error Estimation and Adaptive Discretization Methods in Computational
Fluid Dynamics. Berlin, Germany: Springer, 2016, pp. 47–95.

[10] D. A. Venditti and D. L. Darmofal, “Adjoint error estimation and grid adaptation for
functional outputs: Application to quasi-one-dimensional flow,” J. of Comput. Physics,
vol. 164, no. 1, pp. 204–227, Oct. 2000.

[11] ——, “Grid adaptation for functional outputs: Application to two-dimensional inviscid
flows,” J. of Comput. Physics, vol. 176, no. 1, pp. 40–69, Feb. 2002.

[12] ——, “Anisotropic grid adaptation for functional outputs: Application to two-
dimensional viscous flows,” J. Comput. Phys., vol. 187, no. 1, pp. 22–46, May. 2003.

111

112

[13] S. Prudhomme and J. T. Oden, “On goal-oriented error estimation for elliptic problems:
Application to the control of pointwise errors,” Comput. Methods in Appl. Mechanics
and Eng., vol. 176, no. 1-4, pp. 313–331, Jul. 1999.

[14] J. T. Oden and S. Prudhomme, “Goal-oriented error estimation and adaptivity for
the finite element method,” Comput. & Math. with Applications, vol. 41, no. 5-6, pp.
735–756, Mar. 2001.

[15] K. J. Fidkowski and D. L. Darmofal, “Review of output-based error estimation and
mesh adaptation in computational fluid dynamics,” AIAA J., vol. 49, no. 4, pp. 673–
694, Apr. 2011.

[16] R. Rannacher and F.-T. Suttmeier, “A feed-back approach to error control in finite
element methods: Application to linear elasticity,” Comput. Mechanics, vol. 19, no. 5,
pp. 434–446, Apr. 1997.

[17] E. Stein, M. Rüter, and S. Ohnimus, “Error-controlled adaptive goal-oriented modeling
and finite element approximations in elasticity,” Comput. Methods in Appl. Mechanics
and Eng., vol. 196, no. 37, pp. 3598–3613, Aug. 2007.

[18] O. A. González-Estrada, E. Nadal, J. Ródenas, P. Kerfriden, S. P.-A. Bordas, and
F. Fuenmayor, “Mesh adaptivity driven by goal-oriented locally equilibrated super-
convergent patch recovery,” Comput. Mechanics, vol. 53, no. 5, pp. 957–976, May.
2014.

[19] S. S. Ghorashi, J. Amani, A. Bagherzadeh, and T. Rabczuk, “Goal-oriented error
estimation and mesh adaptivity in three-dimensional elasticity problems,” presented
at the WCCM XI-ECCM V-ECFD VI, Barcelona, Spain, 2014.

[20] R. Rannacher and F.-T. Suttmeier, “A posteriori error control in finite element methods
via duality techniques: Application to perfect plasticity,” Comput. Mechanics, vol. 21,
no. 2, pp. 123–133, Mar. 1998.

[21] ——, “A posteriori error estimation and mesh adaptation for finite element models in
elasto-plasticity,” Comput. Methods in Appl. Mechanics and Eng., vol. 176, no. 1-4,
pp. 333–361, Jul. 1999.

[22] S. S. Ghorashi and T. Rabczuk, “Goal-oriented error estimation and mesh adaptivity
in 3D elastoplasticity problems,” Int. J. of Fracture, vol. 203, pp. 3–19, Jan. 2017.

[23] E. Rabizadeh, A. S. Bagherzadeh, and T. Rabczuk, “Adaptive thermo-mechanical
finite element formulation based on goal-oriented error estimation,” Comput. Materials
Science, vol. 102, pp. 27–44, May. 2015.

[24] F. Larsson, P. Hansbo, and K. Runesson, “Strategies for computing goal-oriented a
posteriori error measures in non-linear elasticity,” Int. J. for Numerical Methods in
Eng., vol. 55, no. 8, pp. 879–894, Aug. 2002.

113

[25] J. Whiteley and S. Tavener, “Error estimation and adaptivity for incompressible hy-
perelasticity,” Int. J. for Numerical Methods. in Eng., vol. 99, no. 5, pp. 313–332, Apr.
2014.

[26] M. E. Rognes and A. Logg, “Automated goal-oriented error control I: Stationary varia-
tional problems,” SIAM J. on Scientific Comput., vol. 35, no. 3, pp. C173–C193, May.
2013.

[27] A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Di↵erential Equations
by the Finite Element Method: The FEniCS Book. Heidelberg, Germany: Springer,
2012.

[28] T. Richter and T. Wick, “Variational localizations of the dual weighted residual esti-
mator,” J. of Comput. and Appl. Math., vol. 279, pp. 192–208, May. 2015.

[29] B. N. Granzow. Goal GitHub Repository. (2017) [Online]. Available: https://github.
com/bgranzow/goal, Accessed on: Dec. 1, 2017.

[30] R. P. Pawlowski, E. T. Phipps, and A. G. Salinger, “Automating embedded anal-
ysis capabilities and managing software complexity in multiphysics simulation, Part
I: Template-based generic programming,” Scientific Programming, vol. 20, no. 2, pp.
197–219, Apr. 2012.

[31] R. P. Pawlowski, E. T. Phipps, A. G. Salinger, S. J. Owen, C. M. Siefert, and M. L.
Staten, “Automating embedded analysis capabilities and managing software complex-
ity in multiphysics simulation, Part II: Application to partial di↵erential equations,”
Scientific Programming, vol. 20, no. 3, pp. 327–345, Jul. 2012.

[32] E. C. Cyr, J. Shadid, and T. Wildey, “Approaches for adjoint-based a posteriori analysis
of stabilized finite element methods,” SIAM J. on Scientific Comput., vol. 36, no. 2,
pp. A766–A791, Apr. 2014.

[33] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, “PUMI: Parallel unstruc-
tured mesh infrastructure,” ACM Trans. on Math. Software, vol. 42, no. 3, pp. 17–45,
Jun. 2016.

[34] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda
et al., “An overview of the Trilinos project,” ACM Trans. on Math. Software, vol. 31,
no. 3, pp. 397–423, Sep. 2005.

[35] M. A. Heroux and J. M. Willenbring, “A new overview of the Trilinos project,” Scien-
tific Programming, vol. 20, no. 2, pp. 83–88, Mar. 2012.

[36] E. Phipps and R. Pawlowski, “E�cient expression templates for operator overloading-
based automatic di↵erentiation,” in Recent Advances in Algorithmic Di↵erentiation.
Berlin, Germany: Springer, 2012, pp. 309–319.

https://github.com/bgranzow/goal
https://github.com/bgranzow/goal

114

[37] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, “Amesos2 and Belos:
Direct and iterative solvers for large sparse linear systems,” Scientific Programming,
vol. 20, no. 3, pp. 241–255, Jan. 2012.

[38] A. Prokopenko, J. J. Hu, T. A. Wiesner, C. M. Siefert, and R. S. Tuminaro, “MueLu
users guide 1.0,” Sandia Nat. Lab., Albuquerque, NM, USA, Tech. Rep. SAND2014-
18874, Oct. 2014.

[39] D. Ibanez and M. S. Shephard, “Modifiable array data structures for mesh topology,”
SIAM J. on Scientific Comput., vol. 39, no. 2, pp. C144–C161, Apr. 2017.

[40] X. Li, M. S. Shephard, and M. W. Beall, “3D anisotropic mesh adaptation by mesh
modification,” Comput. Methods in Appl. Mechanics and Eng., vol. 194, no. 48, pp.
4915–4950, Nov. 2005.

[41] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard, “Parallel anisotropic 3D mesh
adaptation by mesh modification,” Eng. with Comp., vol. 21, no. 3, pp. 247–258, Jan.
2006.

[42] C. W. Smith, M. Rasquin, D. Ibanez, K. E. Jansen, and M. S. Shephard, “Improving
unstructured mesh partitions for multiple criteria using mesh adjacencies,” SIAM J.
Scientific Comput., to be published.

[43] G. Diamond, C. W. Smith, and M. S. Shephard, “Dynamic load balancing of massively
parallel unstructured meshes,” in Proc. of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, Denver, CO, USA, Denver, CO, USA,
Nov. 2017.

[44] C. W. Smith, B. Granzow, D. Ibanez, O. Sahni, K. E. Jansen, and M. S. Shephard, “In-
memory integration of existing software components for parallel adaptive unstructured
mesh workflows,” in Proc. of the XSEDE16 Conf. on Diversity, Big Data, and Science
at Scale, Miami, FL, USA, Miami, FL, USA, Jul. 2016.

[45] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques of
Algorithmic Di↵erentiation, 2nd ed. Philadelphia, PA, USA: Soc. for Ind. & Appl.
Math., 2008.

[46] A. G. Salinger, R. A. Bartett, Q. Chen, X. Gao, G. Hansen, I. Kalashnikova et al., “Al-
bany: A component-based partial di↵erential equation code built on trilinos.” Sandia
Nat. Lab., Albuquerque, NM, USA, Tech. Rep. SAND2013-8430J, Nov. 2013.

[47] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price, “Albany/FE-
LIX: A parallel, scalable and robust, finite element, first-order Stokes approximation
ice sheet solver built for advanced analysis,” Geoscientific Model Development, vol. 8,
no. 4, pp. 1197–1220, Apr. 2015.

[48] B. Ramesh and A. M. Maniatty, “Stabilized finite element formulation for elastic–
plastic finite deformations,” Comput. Methods in Appl. Mechanics and Eng., vol. 194,
no. 6, pp. 775–800, Feb. 2005.

115

[49] M. Nemec and M. J. Aftosmis, “Adjoint error estimation and adaptive refinement for
embedded-boundary Cartesian meshes,” presented at the 18th AIAA Computational
Fluid Dynamics Conf., Miami, FL, USA, 2007.

[50] B. N. Granzow, M. S. Shephard, and A. A. Oberai, “Output-based error estimation
and mesh adaptation for variational multiscale methods,” Comput. Methods in Appl.
Mechanics and Eng., vol. 322, pp. 441–459, Aug. 2017.

[51] K. J. Fidkowski, “Output error estimation strategies for discontinuous galerkin dis-
cretizations of unsteady convection-dominated flows,” Int. J. for Numerical Methods
in Eng., vol. 88, no. 12, pp. 1297–1322, May. 2011.

[52] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, “Parallel scalable
adjoint-based adaptive solution of variable-viscosity stokes flow problems,” Comput.
Methods in Appl. Mechanics and Eng., vol. 198, no. 21, pp. 1691–1700, May. 2009.

[53] C. Taylor and P. Hood, “A numerical solution of the Navier-Stokes equations using
the finite element technique,” Comput. & Fluids, vol. 1, no. 1, pp. 73–100, Jan. 1973.

[54] R. Boussetta, T. Coupez, and L. Fourment, “Adaptive remeshing based on a posteriori
error estimation for forging simulation,” Comput. Methods in Appl. Mechanics and
Eng., vol. 195, no. 48, pp. 6626–6645, Oct. 2006.

[55] W. Bangerth. Deal ii Step 14. (2017) [Online]. Available: https://www.dealii.org/8.4.
0/doxygen/deal.II/step 14.html, Accessed on: Dec. 1, 2017.

[56] B. N. Granzow, A. A. Oberai, and M. S. Shephard, “Adjoint-based error estimation and
mesh adaptation for stabilized finite deformation elasticity,” submitted for publication.

[57] L. Dong and A. A. Oberai, “Recovery of cellular traction in three-dimensional nonlinear
hyperelastic matrices,” Comput. Methods in Appl. Mechanics and Eng., vol. 314, pp.
296–313, Feb. 2017.

[58] M. O. Bloomfield, Z. Li, B. Granzow, D. A. Ibanez, A. A. Oberai, G. A. Hansen
et al., “Component-based workflows for parallel thermomechanical analysis of arrayed
geometries,” Eng. with Comput., vol. 33, no. 3, pp. 509–517, Jul. 2017.

[59] J. C. Simo and T. J. Hughes, Computational Inelasticity. New York, NY, USA:
Springer, 2006.

[60] Z. Li, M. O. Bloomfield, and A. A. Oberai, “Simulation of finite-strain inelastic phe-
nomena governed by creep and plasticity,” Comput. Mechanics, to be published.

[61] L. F. Richardson, “The approximate arithmetical solution by finite di↵erences of phys-
ical problems involving di↵erential equations, with an application to the stresses in
a masonry dam,” Philosophical Trans. of the Royal Society of London, vol. 210, pp.
307–357, Jan. 1911.

https://www.dealii.org/8.4.0/doxygen/deal.II/step_14.html
https://www.dealii.org/8.4.0/doxygen/deal.II/step_14.html

116

[62] W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen,
“Measurement of mechanical tractions exerted by cells in three-dimensional matrices,”
Nature Methods, vol. 7, pp. 969–971, Dec. 2010.

[63] M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen et al.,
“Tensional homeostasis and the malignant phenotype,” Cancer Cell, vol. 8, no. 3, pp.
241–254, Sep. 2005.

[64] D. E. Discher, P. Janmey, and Y.-l. Wang, “Tissue cells feel and respond to the sti↵ness
of their substrate,” Science, vol. 310, no. 5751, pp. 1139–1143, Nov. 2005.

[65] M. B. Giles and E. Süli, “Adjoint methods for PDEs: A posteriori error analysis and
postprocessing by duality,” Acta Numerica, vol. 11, pp. 145–236, Jan. 2002.

[66] J. Peraire and A. Patera, “Bounds for linear-functional outputs of coercive partial
di↵erential equations: Local indicators and adaptive refinement,” Studies in Appl. Me-
chanics, vol. 47, pp. 199–216, Jan. 1998.

[67] M. Braack and A. Ern, “A posteriori control of modeling errors and discretization
errors,” Multiscale Modeling & Simulation, vol. 1, no. 2, pp. 221–238, Jul. 2003.

[68] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Di↵erential
Equations. Basel, Switzerland: Birkhäuser Basel, 2013.

[69] T. Wick, “Goal functional evaluations for phase-field fracture using PU-based DWR
mesh adaptivity,” Comput. Mechanics, vol. 57, no. 6, pp. 1017–1035, Mar. 2016.

[70] O. Klaas, A. Maniatty, and M. S. Shephard, “A stabilized mixed finite element method
for finite elasticity: Formulation for linear displacement and pressure interpolation,”
Comput. Methods in Appl. Mechanics and Eng., vol. 180, no. 1, pp. 65–79, Nov. 1999.

[71] A. M. Maniatty, Y. Liu, O. Klaas, and M. S. Shephard, “Higher order stabilized fi-
nite element method for hyperelastic finite deformation,” Comput. Methods in Appl.
Mechanics and Eng., vol. 191, no. 13, pp. 1491–1503, Jan. 2002.

[72] Q. Chen, J. T. Ostien, and G. Hansen, “Automatic di↵erentiation for numerically
exact computation of tangent operators in small-and large-deformation computational
inelasticity,” presented at the TMS 2014: 143rd Annual Meeting & Exhibition, San
Diego, CA, USA, 2014.

[73] J. Lu, “An a posteriori error control framework for adaptive precision optimization us-
ing discontinuous Galerkin finite element method,” Ph.D. dissertation, Dept. of Aero-
nautics and Astronautics, Massachussetts Inst. of Technology, 2005.

[74] K. J. Fidkowski and D. L. Darmofal, “Output-based adaptive meshing using trian-
gular cut cells,” Aerospace Comput. Design Lab., Massachusetts Inst. of Technology,
Cambridge, MA, USA, Tech. Rep. 06-02, Oct. 2006.

117

[75] T. J. Barth and M. G. Larson, “A posteriori error estimates for higher order godunov
finite volume methods on unstructured meshes,” NASA Ames Research Center, Mo↵et
Field, CA, USA, Tech. Rep. NAS-02-001, Feb. 2002.

[76] R. Hartmann and P. Houston, “Adaptive discontinuous Galerkin finite element meth-
ods for the compressible Euler equations,” J. of Comput. Physics, vol. 183, no. 2, pp.
508–532, Dec. 2002.

[77] B. N. Granzow, A. A. Oberai, and M. S. Shephard, “An automated approach for par-
allel adjoint-based error estimation and mesh adaptation,” submitted for publication.

[78] J. Ostien, J. Foulk, A. Mota, and M. Veilleux, “A 10-node composite tetrahedral finite
element for solid mechanics,” Int. J. for Numerical Methods in Eng., vol. 107, no. 13,
pp. 1145–1170, Feb. 2016.

[79] I. Babuška, T. Strouboulis, A. Mathur, and C. Upadhyay, “Pollution-error in the h-
version of the finite-element method and the local quality of a-posteriori error estima-
tors,” Finite Elements in Anal. and Design, vol. 17, no. 4, pp. 273–321, Jan. 1994.

[80] N. A. Pierce and M. B. Giles, “Adjoint and defect error bounding and correction for
functional estimates,” J. of Comput. Physics, vol. 200, no. 2, pp. 769–794, Nov. 2004.

[81] S. Prudhomme, J. T. Oden, T. Westermann, J. Bass, and M. E. Botkin, “Practical
methods for a posteriori error estimation in engineering applications,” Int. J. for Nu-
merical Methods. in Eng., vol. 56, no. 8, pp. 1193–1224, Jan. 2003.

[82] J. M. Connors, J. W. Banks, J. A. Hittinger, and C. S. Woodward, “A method to
calculate numerical errors using adjoint error estimation for linear advection,” SIAM
J. on Numerical Anal., vol. 51, no. 2, pp. 894–926, Mar. 2013.

[83] L. P. Franca, S. L. Frey, and T. J. Hughes, “Stabilized finite element methods: I.
Application to the advective-di↵usive model,” Comput. Methods in Appl. Mechanics
and Eng., vol. 95, no. 2, pp. 253–276, Mar. 1992.

[84] T. J. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element formulation for
computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-
di↵usive equations,” Comput. Methods in Appl. Mechanics and Eng., vol. 73, no. 2,
pp. 173–189, May. 1989.

[85] T. J. Hughes, L. P. Franca, and M. Balestra, “A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A sta-
ble Petrov-Galerkin formulation of the Stokes problem accommodating equal-order
interpolations,” Comput. Methods in Appl. Mechanics and Eng., vol. 59, no. 1, pp.
85–99, Nov. 1986.

[86] T. Barth, P. Bochev, M. Gunzburger, and J. Shadid, “A taxonomy of consistently sta-
bilized finite element methods for the Stokes problem,” SIAM J. on Scientific Comput.,
vol. 25, no. 5, pp. 1585–1607, Jul. 2004.

118

[87] A. N. Brooks and T. J. Hughes, “Streamline upwind Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-
Stokes equations,” Comput. Methods in Appl. Mechanics and Eng., vol. 32, no. 1, pp.
199–259, Sep. 1982.

[88] L. P. Franca and S. L. Frey, “Stabilized finite element methods: II. The incompressible
Navier-Stokes equations,” Comput. Methods in Appl. Mechanics and Eng., vol. 95,
no. 2, pp. 209–233, Sep. 1992.

[89] T. E. Tezduyar, S. Mittal, S. Ray, and R. Shih, “Incompressible flow computations with
stabilized bilinear and linear equal-order-interpolation velocity-pressure elements,”
Comput. Methods in Appl. Mechanics and Eng., vol. 95, no. 2, pp. 221–242, Mar.
1992.

[90] T. J. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, “The variational multiscale
method: A paradigm for computational mechanics,” Comput. Methods in Appl. Me-
chanics and Eng., vol. 166, no. 1, pp. 3–24, Nov. 1998.

[91] T. J. Hughes and G. Sangalli, “Variational multiscale analysis: The fine-scale Green’s
function, projection, optimization, localization, and stabilized methods,” SIAM J. on
Numerical Anal., vol. 45, no. 2, pp. 539–557, Mar. 2007.

[92] G. Hauke, M. H. Doweidar, and M. Miana, “The multiscale approach to error estima-
tion and adaptivity,” Comput. Methods in Appl. Mechanics and Eng., vol. 195, no. 13,
pp. 1573–1593, Feb. 2006.

[93] G. Hauke, D. Fuster, and M. H. Doweidar, “Variational multiscale a-posteriori er-
ror estimation for multi-dimensional transport problems,” Comput. Methods in Appl.
Mechanics and Eng., vol. 197, no. 33, pp. 2701–2718, Jan. 2008.

[94] A. Masud, T. J. Truster, and L. A. Bergman, “A variational multiscale a posteriori
error estimation method for mixed form of nearly incompressible elasticity,” Comput.
Methods in Appl. Mechanics and Eng., vol. 200, no. 47, pp. 3453–3481, Mar. 2011.

[95] A. Masud and T. J. Truster, “A framework for residual-based stabilization of incom-
pressible finite elasticity: Stabilized formulations and f methods for linear triangles
and tetrahedra,” Comput. Methods in Appl. Mechanics and Eng., vol. 267, pp. 359–
399, Dec. 2013.

[96] M. G. Larson and A. Målqvist, “Adaptive variational multiscale methods based on
a posteriori error estimation: energy norm estimates for elliptic problems,” Comput.
Methods in Appl. Mechanics and Eng., vol. 196, no. 21, pp. 2313–2324, Apr. 2007.

[97] G. Hauke and D. Fuster, “Variational multiscale a posteriori error estimation for quan-
tities of interest,” J. of Appl. Mechanics, vol. 76, no. 2, pp. 21 201–21 207, Jan. 2009.

[98] A. A. Oberai and P. M. Pinsky, “A multiscale finite element method for the Helmholtz
equation,” Comput. Methods in Appl. Mechanics and Eng., vol. 154, no. 3, pp. 281–297,
Mar. 1998.

119

[99] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, “Introduction to adaptive methods
for di↵erential equations,” Acta Numerica, vol. 4, pp. 105–158, Jan. 1995.

[100] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery and a posteriori
error estimates. Part 1: The recovery technique,” Int. J. for Numerical Methods. in
Eng., vol. 33, no. 7, pp. 1331–1364, May. 1992.

[101] ——, “The superconvergent patch recovery and a posteriori error estimates. Part 2:
Error estimates and adaptivity,” Int. J. for Numerical Methods. in Eng., vol. 33, no. 7,
pp. 1365–1382, May. 1992.

APPENDIX A

FORWARD AUTOMATIC DIFFERENTIATION

A.1 Introduction

Automatic di↵erentiation (AD) is a useful technique to computationally evaluate ana-

lytic derivatives (to machine precision) of a given function. Numerical software is necessarily

executed as a sequence of elementary operations, and AD operates by applying the chain rule

to this sequence of elementary operations. There are two standard modes of AD, forward

and reverse, as well as two methods of implementing the technique, operator overloading and

source code transformation. Presently, we consider the forward mode of automatic di↵eren-

tiation using operator overloading in the context of the C++ programming language. For an

excellent comprehensive overview of automatic di↵erentiation, see [45].

A.2 Forward AD with Operator Overloading

C++ provides the capability to overload standard operators such as +,�, ⇤, and / for

custom data types. In scientific computing, operator overloading is convenient in that it

allows developers the ability to program using a notation much closer the the target mathe-

matical notation. A common example in scientific computing is the use of operator overload-

ing to implement matrix multiplication. Say we have defined a C++ dense matrix container

called MyMatrix. Using operator overloading, a developer can define matrix multiplication

specific behavior for the ⇤ operator for the MyMatrix variable. Listing A.1 demonstrates the

convenience of using operator overloading to multiply two MyMatrix objects.

Listing A.1. Using operator overloading for a custom matrix class.

1 MyMatrix A = ...

2 MyMatrix B = ...

3 MyMatrix C = A*B;

In the forward mode AD, a C++ class variable container is defined that stores both a

scalar value x that corresponds the value of the variable and a derivative array x0 that corre-

sponds the values of derivatives of the variable with repsect to chosen independent variables.

The computer program is then written in terms of these AD variables. At the beginning

120

121

Operation Derivative rule
c = a± b c0 = a0 ± b0

c = ab c0 = ab0 + ba0

c = a/b c0 = (a0
b� b0a)/b2

c = sin(a) c0 = cos(a)a0

c = cos(a) c0 = � sin(a)a0

c = exp(a) c0 = exp(a)a0

c = log(a) c0 = a0
/a

of the program, appropriate AD variables are initialized to their appropriate values, and

seeded. Seeding refers to appropriately setting the derivative array of the AD variables. For

example, the i
th variable in a system of n independent variables could be represented as:

xi [
@xi

@x1
,
@xi

@x2
, . . . ,

@xi

@xn

], (A.1)

where xi is the variable value and the terms contained in the brackets represent the AD

variable’s derivative array. To appropriately seed the derivative array, all values then become

zero except for the i
th component, which becomes 1.

xi [0, 0, . . . , 1, . . . , 0, 0]. (A.2)

Over the course of the execution of the software program, intermediate derivative arrays

are updated via operator overloading when a new operator is encouterd. The operators

are overloaded with definitions from basic calclulus rules. For example, the result for the

derivative array of an AD variable a times another AD variable b using the overloaded ⇤
operator would result in

a · b [a0 · b+ a · b0], (A.3)

where the resultant value of the AD variable is simply the multiplied value a · b, but the

derivative array is updated according to the product rule. Here a0 ·b is the scalar value of the
AD variable b times a’s derivative array and a · b0 is the scalar value of a times b’s derivative

array.

Now, if we program the computation of a given function f(xi), i = 1, 2, . . . , n, with AD

variables, we necessarily obtain both the value of the function f and its gradient rf = f 0.

122

This is by virtue of the fact that derivatives have been propogated forward through the code

from the seed point to the evaluation of f .

From an implementation point of view, automatic di↵erentiation via operator overload-

ing is attractive in that existing codes can be easily modified to obtain gradient information.

For example, consider a code that uses doubles for all of its evaluation types. A developer

could simply replace appropriate instances of ‘double‘ in the code with the appropriate AD

type name. Through very little development cost, gradient information is obtained.

A.3 A Simple Example

To further illustrate the concept of forward AD, we present a simple example using

Sandia’s Sacado automatic di↵erentiation library and examine it in depth. Listing A.2

presents a simple example of the computation of three functions using forward automatic

di↵erentiation and displays the resulting values and gradients of the evaluated functions.

Listing A.2. A simple forward AD example.

1 #include <Sacado.hpp>

2 typedef Sacado::Fad::DFad<double> FAD;

3 FAD f(FAD x, FAD y) { return x + y; }

4 FAD g(FAD x, FAD y) { return x * y; }

5 int main() {

6 FAD x = 2.0;

7 FAD y = 3.0;

8 x.diff(0,2);

9 y.diff(1,2);

10 std::cout << x << std::endl;

11 std::cout << y << std::endl;

12 std::cout << f(x,y) << std::endl;

13 std::cout << g(x,y) << std::endl;

14 std::cout << f(x,y) * g(x,y) << std::endl;

15 }

Line 1 includes the Sacado header, which is an automatic di↵erentiation library devel-

oped by Sandia National Laboratories. Line 2 declares the forward AD type to be called

123

FAD. Line 3 declares f to be the sum of two AD variables x and y. Line 4 declares g to be

the product of two AD variables x and y. Line 10 initializes the AD variable x to a value

of 2 and line 12 seeds x to be the 1st variable in a system of 2 independent variables. Line

11 initializes the AD variable y to a value of 3 and line 13 seeds y to be the 2nd variable

in a system of 2 independent variables. Lines 14-18 print the results of evaluating various

functions.

The output from this simple example program is shown below

x: 2 [1 0]

y: 3 [0 1]

f: 5 [1 1]

g: 6 [3 2]

f*g: 30 [21 16]

Naturally, the value of x = 2 and y = 3, as we initialized them to be. Similarly, the derivative

array of x shows that @x

@x
= 1 and @x

@y
= 0 and the derivative array of y shows that @y

@x
= 0

and @y

@y
= 1.

The value of f(x, y) = z + y is given as 2 + 3 = 5, and its derivative array is updated

according to operator overloading of the + operator as the sum of x’s derivative array and

y’s derivative array:

f 0 = x0 + y0 = [1 0] + [0 1] = [1 1]. (A.4)

The value of g(x, y) = x · y is given as 2 · 3 = 6, and its derivative array is updated

according to operator overloading of the ⇤ operator as the sum of x0 times y and y0 times x:

g0 = x0 · y + x · y0 = [1 0] · 3 + 2 · [0 1] = [3 2]. (A.5)

Finally, the value of h(x, y) = f(x, y) · g(x, y) is computed as 6 ⇤ 5 = 30, and its

derivative array is computed by propogating f 0 and g0 through the code as:

h0 = f 0 · g + f · g0 = [1 1] · 6 + 5 · [3 2] = [21 16]. (A.6)

APPENDIX B

PROPOSITIONS FOR THE ADVECTION-DIFFUSION

OPERATOR

B.1 Non-Homogeneous Boundary Conditions

Extensions to non-homogeneous Dirichlet boundary conditions for the primal model,

given as

8
<

:
Lu = f, x 2 ⌦,

u = g, x 2 @⌦,
(B.1)

can readily be made by introducing the decomposition u = u0 + eg, where tr(eg) = g. The

problem is then reposed as a homogeneous Dirichlet problem given by

8
<

:
Lu0 = f + Leg, x 2 ⌦,

u0 = 0, x 2 @⌦,
(B.2)

where all arguments made previously can be applied to this modified formulation, provided

f + Leg 2 V⇤.

Extensions to non-homogeneous Neumann boundary conditions require additional in-

vestigation. To proceed, consider the primal problem given as

8
>><

>>:

Lu = f x 2 ⌦,

u = 0, x 2 @⌦D

Bu = h x 2 @⌦N ,

(B.3)

where ⌦D [⌦N = ⌦ and ⌦D \ ⌦N = {?}. Multiplying the left hand side of the primal

problem (B.3) by an arbitrary test function v and integrating by parts over the domain

This chapter previously appeared as: B. N. Granzow, M. S. Shephard, and A. A. Oberai, “Output-

based error estimation and mesh adaptation for variational multiscale methods.” Comput. Methods in Appl.
Mechanics and Eng., vol. 322, pp. 331-459, Aug. 2017.

124

125

twice yields the relationship

Z

⌦

vLu d⌦+

Z

@⌦N

vBu d� =

Z

⌦

L⇤
vu d⌦+

Z

@⌦N

B
⇤
vu d�. (B.4)

All subsequent derivations would need to be made considering this relationship, which in-

volves the boundary operator B, rather than relationship (5.9) which has been used exten-

sively in this paper.

B.2 Derivation of the Advection-Di↵usion Adjoint Operator

Let L : V ! V⇤ be the steady-state, constant coe�cient operator utilized in section

5.6:

Lu := �r2
u+ a ·ru, (B.5)

such that V = H
1
0 (⌦) and V⇤ = H

�1(⌦). To determine the corresponding operator: L⇤ that

satisfies the adjoint property:

V⇤hz,LuiV = VhL⇤
z, uiV⇤ 8 u, z 2 H

1
0 (⌦), (B.6)

126

we multiply Lu by an arbitrary function z 2 H
1
0 (⌦) and repeatedly apply the divergence

theorem. This proceeds as follows:

Vhz,LuiV⇤ =

Z

⌦

z(�r2
u+ a ·ru) d⌦

= �
Z

⌦

zr2
u d⌦+

Z

⌦

za ·ru d⌦

= �
Z

@⌦

zru · n d�+

Z

⌦

rz ·ru d⌦+
Z

@⌦

(zau) · n d��
Z

⌦

a ·rzu d⌦

=

Z

⌦

rz ·ru d⌦�
Z

⌦

a ·rzu d⌦

=

Z

@⌦

(rzu) · n d��
Z

⌦

r2
zu d⌦�

Z

⌦

a ·rzu d⌦

= �
Z

⌦

r2
zu d⌦�

Z

⌦

a ·rzu d⌦

=

Z

⌦

(�r2
z � a ·rz)u d⌦

= V⇤hL⇤
z, uiV .

Here the third equality is achieved by application of the divergence theorem to both terms,

the fourth equality holds since z 2 H
1
0 (⌦), the fifth equality is achieved by application of

the divergence theorem to the leftmost term, and the sixth equality holds since u 2 H
1
0 (⌦).

Thus, the operator L⇤ : H1
0 (⌦) ! H

�1(⌦) is defined as

L⇤
z := �r2

z � a ·rz. (B.7)

We make the observation that there has been a sign change for the advective term since the

operator L is not self-adjoint. This sign change, however, is absorbed in the definition of the

operator L⇤ and in no way introduces a sign change in the fundamental property:

Vhz,LuiV⇤ = V⇤hL⇤
z, uiV 8 u, z 2 H

1
0 (⌦). (B.8)

127

B.3 Propositions Applied to the Advection-Di↵usion Operator

We restate the adjoint property (B.8) as

Z

⌦

z(�r2
u+ a ·ru) d⌦ =

Z

⌦

(�r2
z � a ·rz)u d⌦ 8 u, z 2 H

1
0 (⌦). (B.9)

We now define the primal problem as:

8
<

:
�r2

u+ a ·ru = f, x 2 ⌦,

u = 0, x 2 @⌦,
(B.10)

corresponding to equation (5.1), where f 2 H
�1(⌦). We note that the primal residual

operator is given as:

Ru := f + r2
u� a ·ru. (B.11)

We define the continuous variational multiscale formulation of the primal problem as: find

u 2 V such that

Z

⌦

(�r2
v � a ·rv)G 0Ru d⌦ =

Z

⌦

vRu d⌦ 8 v 2 H
1
0 (⌦), (B.12)

corresponding to equation (5.11), where we leave the fine-scale Green’s operator G 0 : H�1(⌦) !
H

1
0 (⌦) as an unspecified abstract operator. Here we note that G 0Ru 2 H

1
0 (⌦). Let Vh ⇢ V

denote a classical finite element space consisting of piecewise linear functions defined over

a discretization of the domain ⌦. The primal subgrid model can then be stated as: find

u
h 2 Vh such that

nelX

e=1

Z

⌦e

(�r2
v
h � a ·rv

h)(⌧eRu
h) d⌦ =

Z

⌦

v
hRu

h d⌦ 8 vh 2 Vh
, (B.13)

corresponding to equation (5.15), where we leave ⌧e unspecified.

We define the dual problem as:

8
<

:
�r2

z � a ·rz = q, x 2 ⌦,

z = 0, x 2 @⌦,
(B.14)

128

corresponding to equation (5.23), where q 2 H
�1(⌦). We note that the dual residual operator

is given as:

R⇤
z := q + r2

z + a ·rz. (B.15)

We define the continuous variational multiscale formulation of the dual problem as: find

z 2 V such that

Z

⌦

G 0
d
R⇤

z(�r2
v + a ·rv) d⌦ =

Z

⌦

R⇤
zv d⌦ 8 v 2 H

1
0 (⌦), (B.16)

corresponding to equation (5.27), where again we leave the dual fine-scale Green’s operator

G 0
d
: H�1(⌦) ! H

1
0 (⌦) unspecified. We note that G 0

d
R⇤

z 2 H
1
0 (⌦) The dual subgrid model

can then be stated as: find z
h 2 Vh such that

nelX

e=1

Z

⌦e

(⌧e
d
R⇤

z
h)(�r2

v
h + a ·rv

h) d⌦ =

Z

⌦

R⇤
z
h
v
h d⌦ 8 vh 2 Vh

, (B.17)

corresponding to equation (5.31), where we leave ⌧e
d
unspecified.

129

B.3.1 Proposition 2

For any solutions u = u
0 + u to the continuous VMS formulation (B.12) and z = z

0 + z

to the continuous dual VMS formulation (B.16), we derive the error representation:

J(u)� J(u) =

Z

⌦

qu d⌦�
Z

⌦

qu d⌦

=

Z

⌦

(�r2
z � a ·rz)u d⌦�

Z

⌦

(�r2
z � a ·rz)u d⌦

=

Z

⌦

z(�r2
u+ a ·ru) d⌦�

Z

⌦

z(�r2
u+ a ·ru) d⌦

=

Z

⌦

zf d⌦�
Z

⌦

z(�r2
u+ a ·ru) d⌦

=

Z

⌦

zRu d⌦

=

Z

⌦

z
0Ru d⌦+

Z

⌦

zRu d⌦

=

Z

⌦

z
0Ru d⌦+

Z

⌦

(�r2
z � a ·rz)G 0Ru d⌦

=

Z

⌦

(G 0
d
R⇤

z)Ru d⌦+

Z

⌦

(�r2
z � a ·rz)G 0Ru d⌦

= VhG 0
d
R⇤

z,RuiV⇤ + V⇤hL⇤
z,G 0RuiV .

Here the first equality is by definition (5.21), the second equality is due to the dual PDE

(B.14), the third equality is due to the fundamental relation (B.9), the fourth equality is due

to the primal PDE (B.10), the fifth equality is due to the definition of the primal residual

(B.11), the sixth equality is due to the sum decomposition of the dual solution z = z
0 + z,

the seventh equality is due to the continuous variational formulation of the primal problem

(B.12), the eight equality is due to the definition of the fine-scale dual solution (5.24), and

the ninth equality is due to the definition of the duality pairing we have chosen.

B.3.2 Proposition 4

For any solutions u to the primal model (5.2), z to the dual model (5.22), uh to the

primal subgrid model (5.14) and z
h to the dual subgrid model (5.30), we derive the error

130

representation

J(u)� J(uh) =

Z

⌦

qu d⌦�
Z

⌦

qu
h d⌦

=

Z

⌦

(�r2
z � a ·rz)u d⌦�

Z

⌦

(�r2
z � a ·rz)uh d⌦

=

Z

⌦

z(�r2
u+ a ·ru) d⌦�

Z

⌦

z(�r2
u
h + a ·ru

h) d⌦

=

Z

⌦

zf d⌦�
Z

⌦

z(�r2
u
h + a ·ru

h) d⌦

=

Z

⌦

zRu
h d⌦

=

Z

⌦

zRu
h d⌦�

Z

⌦

z
hRu

h d⌦+

nelX

e=1

Z

⌦

(�r2
z
h � a ·rz

h)(⌧eRu
h) d⌦

=

Z

⌦

(z � z
h)Ru

h +
nelX

e=1

Z

⌦

(�r2
z
h � a ·rz

h)(⌧eRu
h) d⌦

=

Z

⌦

(ez0 + ez)Ru
h +

nelX

e=1

Z

⌦

(�r2
z
h � a ·rz

h)(⌧eRu
h) d⌦

=

Z

⌦

ez0Ru
h +

nelX

e=1

Z

⌦

(�r2
z
h � a ·rz

h)(⌧eRu
h) d⌦+

Z

⌦

ezRu
h

=

Z

⌦

(⌧e
d
R⇤

z
h)Ru

h +
nelX

e=1

Z

⌦

(�r2
z
h � a ·rz

h)(⌧eRu
h) d⌦+

Z

⌦

ezRu
h
,

where the first equality is by definition (5.21), the second equality is due to the dual PDE

(B.14), the third equality is due to the fundamental relationship (B.9), the fourth equality is

due to the primal PDE (B.10), the fifth equality is due to the definition of the primal residual

(B.11), the sixth equality is due to the primal subgrid model (B.13) (where we have added

and subtracted equal terms), the seventh equality is due to linearity, the eighth equality is

due to the decomposition of the dual solution (5.19), the ninth equality is due to linearity,

and the tenth equality is due to the fine-scale approximation to the dual solution (5.32).

131

B.3.3 Proposition 5

We first note that the derivation in B.2 can be carried out in exactly the same manner

for u, z 2 H
1
0 (⌦

e) to obtain the result:

Z

⌦e

z(�r2
u+ a ·ru) d⌦ =

Z

⌦e

(�r2
z � a ·rz)u d⌦ 8 u, z 2 H

1
0 (⌦

e).
(B.18)

We note that the problem (5.12) defining the primal element-level Green’s function implies

that ge(x;y) 2 H
1
0 (⌦

e). Similarly, the dual element-level Green’s function satisfies ge
d
(x;y) 2

H
1
0 (⌦

e) from equation (5.28). With this information, we utilize the relationship (B.18) to

verify that ge(x;y) = g
e

d
(x;y), even though the operator L is not self-adjoint.

� r2
g
e(x;y)� a ·rg

e(x;y) = �(x� y)

=)
Z

⌦e

g
e

d
(x; z)(�r2

g
e(x;y)� a ·rg

e(x;y)) d⌦ =
Z

⌦e

g
e

d
(x; z)�(x� y) d⌦

=)
Z

⌦e

(�r2
g
e

d
(x; z) + a ·rg

e

d
(x; z))ge(x;y) d⌦ =

Z

⌦e

g
e

d
(x; z)�(x� y) d⌦

=)
Z

⌦e

�(x� z)ge(x;y) d⌦ =

Z

⌦e

g
e

d
(x; z)�(x� y) d⌦

=) g
e(z;y) = g

e

d
(y; z),

Here the first equality is due to the definition of the primal element-level Green’s function

(5.12), the second equality is achieved by multiplying by the dual element-level Green’s func-

tion and integrating over the element domain, the third equality is due to the fundamental

relationship (B.18), and the fourth equality is due to the definition of the dual element-level

Green’s function (5.28).

	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	INTRODUCTION AND BACKGROUND
	Introduction
	Outline
	Contributions

	AN AUTOMATED APPROACH FOR PARALLEL ADJOINT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR STEADY-STATE PROBLEMS
	Introduction
	A Review of Adjoint-Based Error Representations
	Galerkin Finite Element Methods
	Stabilized Finite Element Methods

	Software Components
	The Primal Problem
	The Adjoint Problem
	Error Estimation and Localization
	Mesh Adaptation
	In-Memory Integration of Components

	Template-Based Generic Programming
	The Primal Problem
	Galerkin Finite Element Methods
	Stabilized Finite Element Methods
	Automated Solution Based on Residual Implementation

	The Adjoint Problem
	A Richer Space via Uniform Refinement
	Discrete Adjoint Approximation
	Automated Solution Based on Residual Formulation

	Error Estimation
	Two-Level Error Estimates
	Modified Functional Error Estimate
	Error Localization for Galerkin Methods
	Error Localization for Stabilized Methods
	Automated Error Localization Based on Residual Implementation

	Mesh Adaptation
	Quantities of Interest
	Point-Wise Solution Component
	Integrated Solution Over a Sub-Domain
	Integrated von-Mises Stress Over a Sub-Domain

	Results
	Poisson's Equation
	A Cell Embedded in a Matrix
	Elastoplasticity in an Array of Solder Joints

	Conclusions

	ADJOINT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR STABILIZED FINITE DEFORMATION ELASTICITY
	Introduction
	Model Problem
	Strong Form
	Weak Form
	Stabilized Finite Element Formulation
	Linearization and Solution Strategy

	Adjoint-Based Error Estimation
	Two-Level Error Estimation
	Choice of Fine Space
	Modified Functional Error Estimate
	Error Localization

	Mesh Adaptation
	Results
	Cook's Membrane
	A Cell Embedded in a Matrix

	Conclusions

	A NON-UNIFORM REFINEMENT APPROACH FOR SOLVING ADJOINT PROBLEMS IN FUNCTIONAL ERROR ESTIMATION AND MESH ADAPTATION
	Introduction
	Error Estimation with Two Levels
	Error Estimates
	A Simple A-Priori Analysis

	Choices for the Fine Space
	Uniform Refinement
	Long Edge Refinement
	Single Edge Refinement

	Mesh Adaptation
	Error Localization
	Mesh Size Field

	Results
	Effectivity Indices for Poisson's Equation
	Mesh Adaptation for Poisson's Equation

	Conclusions and Outlook

	OUTPUT-BASED ERROR ESTIMATION AND MESH ADAPTATION FOR VARIATIONAL MULTISCALE METHODS
	Introduction and Motivation
	Review of VMS Methods
	Model Problem
	VMS Formulation
	Subgrid Model

	The Dual Problem
	Abstract Problem
	VMS Formulation
	Subgrid Model

	Error Estimation
	Continuous VMS Error Representations
	Subgrid Model Error Representations
	Subgrid Model Error Estimates
	Error Localization

	Mesh Adaptation
	Size Field Specification

	Results
	One Dimensional Example
	A Manufactured Solution
	Advection in an L-Shaped Domain

	Conclusions

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work
	Higher Order Finite Element Methods
	Extending Capabilities to Quasi-Steady/Transient Problems
	Extending VMS Techniques for Solid Mechanics

	REFERENCES
	FORWARD AUTOMATIC DIFFERENTIATION
	Introduction
	Forward AD with Operator Overloading
	A Simple Example

	PROPOSITIONS FOR THE ADVECTION-DIFFUSION OPERATOR
	Non-Homogeneous Boundary Conditions
	Derivation of the Advection-Diffusion Adjoint Operator
	Propositions Applied to the Advection-Diffusion Operator
	Proposition 2
	Proposition 4
	Proposition 5

