
Modelling and Simulation in Materials Science and Engineering

PAPER

Peierls–Nabarro stresses of dislocations in monoclinic
cyclotetramethylene tetranitramine (β-HMX)
To cite this article: Anirban Pal and Catalin R Picu 2018 Modelling Simul. Mater. Sci. Eng. 26 045005

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.113.130.215 on 04/04/2018 at 18:04

https://doi.org/10.1088/1361-651X/aab45a


Peierls–Nabarro stresses of dislocations in
monoclinic cyclotetramethylene
tetranitramine (β-HMX)

Anirban Pal and Catalin R Picu1

Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer
Polytechnic Institute, Troy, NY 12180, United States of America

E-mail: picuc@rpi.edu

Received 3 January 2018, revised 1 March 2018
Accepted for publication 6 March 2018
Published 4 April 2018

Abstract
HMX (cyclotetramethylene tetranitramine) is an energetic material which
releases substantial amounts of energy upon decomposition. The role of
defects and deformation in causing reaction initiation was discussed in the
literature but remains insufficiently understood. In this work, we identify,
using computational methods, the slip systems which are potentially active in
β-HMX and rank them in terms of their propensity for slip. To this end, we
develop first a tentative ranking based on the degree of steric hindrance
associated with slip. This is quantified using a geometric analog of the
γ-surface. Further, we use atomistic models to compute the Peierls–Nabarro
(PN) stress for the motion of dislocations in the slip systems with smallest
degree of steric hindrance. A complex mechanical behavior is observed,
including strong slip asymmetry, twinning and cleavage. The five systems
with the lowest PN stress are ( )[ ]011 011 , ( )[ ]011 100 , ( )[ ]101 010 , ( )[ ]101 101
and ( )[ ]021 100 . We conclude that the material has enough slip systems
available for supporting a generalized state of plastic strain provided the
twinning system ( )[ ]101 101 is taken into consideration and that the resolved
shear stress is at least 260MPa.
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1. Introduction

Plasticity in crystalline energetic materials has garnered attention owing to its proposed role in
thermo-mechanical energy localization or ‘hot spot’ formation during initiation [1–3]. The
ability of the crystal to dissipate strain energy associated with mechanical impact depends on
the formation and evolution of microstructural crystal defects such as dislocations, twins and
cracks. It has been shown that impact sensitivity depends on crystal orientation, the material
being more sensitive in orientations in which the shock produces limited plastic deformation
[4–6]. Thus, an accurate understanding of the properties of dislocations and twins in such
materials becomes important for controlling initiation and explosive safety.

Cyclotetramethylene tetranitramine (HMX) is an important secondary energetic material
used in a variety of plastic bonded explosives [7, 8]. The HMX molecule is centrosymmetric
and comprises an eight-membered chair-like ring of alternating carbon and nitrogen atoms,
with each nitrogen atom attached to a nitro group [9]. Among the various solid phases of the
crystal (α, β, γ, δ, ε) [10–12], the monoclinic β phase is stable in ambient conditions and has
the highest density [13].

Characterizing plasticity caused by mechanical deformation in β-HMX has been a subject of
several investigations. Palmer and Field [14] conducted compression, indentation, and etching
studies on HMX and reported the formation of ( )101 twins and { }011 cracks. The { }011 family
comprises the symmetrically equivalent ( )011 and ( )011 planes. Cady [15] also communicated
that strained HMX crystals form ( )101 twins which are reversible upon load removal when
created under small strains, and irreversible under large strains and at temperatures above 373 K.
The twin direction and mechanism were subsequently proposed by Armstrong et al [16] who
indicated that the twin system is ( )[ ]101 101 . Gallagher et al [17] carried out microhardness
indentation experiments on β-HMX, and identified the preferred slip planes as (001) and (101).
They inferred that the likely slip systems were (001)[100], ( )[ ]101 101 and (101)[010]. Dick et al
studied the elastic plastic shock response of HMX crystals via plate impact experiments, and
found that (010) shocks had larger elastic precursors than the {110} and {011} shocks [18]. This
was explained by the fact that {110} and {011} shocks can produce plastic deformation via
twinning and slip on the (101) and (001) planes, while {010} shocks did not lead to apparent
plasticity. Barton et al [19] used molecular simulations to identify seven slip systems (in P21/n
space group): (010)[100], {011}[100], { }[ ]011 111 , (101)[010], ( )[ ]101 101 , (001)[100], and
(110)[001]. These were implemented in a crystal plasticity model to study hotspots and pore
collapse under shock loading of single crystals.

This work is the first to systematically study dislocation stability and critical stresses in
β-HMX using computational methods. First, we introduce a procedure to estimate the degree
of steric hindrance during slip in various slip systems. This procedure is used to produce a
preliminary ranking of the most active slip systems. Further, we use molecular simulations to
estimate the Peierls–Nabarro (PN) stress, τPN, for dislocation motion in the slip systems with
lowest degree of steric hindrance. This information is then used to determine whether there
are enough slip systems in this material to accommodate a general state of plastic strain.

2. Models and procedures

β-HMX has a P21/n monoclinic unit cell (or P21/c [20]) with a=6.5347 Å, b=11.0296 Å,
c=7.3549 Å, β=102.689° and Z=2 molecules per cell, as obtained by diffraction
experiments performed at room temperature (295 K) [21, 22]. Atomistic simulations with the
Smith–Bharadwaj (SB) potential at 295 K [23], lead to the lattice constants a=6.58 Å
(+0.69%), b=10.45 Å (−5.25%), c=7.67 Å (+4.28%), β=98.6° (−3.98%) in
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reasonable agreement with experimental values (the deviation from experimental values are
given in parentheses). Simulations at 0 K using the same potential produce slightly different
lattice parameters a=6.54 Å, b=10.25 Å, c=7.60 Å and β=98.51°.

Some of the low index planes with potential of being slip planes are indicated in figure 1.
Since there are two molecules per unit cell, two distinct parallel slip planes are available in
general for each crystal plane; these are labeled P1 and P2 in figure 1. For the (001) plane, P1
and P2 are equivalent. For the (101) and (011), the P1 plane is less sterically hindered and
therefore more likely to slip than P2. For the (021) plane, P1 and P2 are relatively similar but,
based on similar topological considerations, P1 is more likely to slip.

Figure 2 shows the projection of the β-HMX unit cell in the frame of various slip systems
considered in this study. Specifically, in figure 2 the slip plane normal is aligned with the
vertical axis (z-axis) and dislocations move in the horizontal direction (x-axis). The sign of the
applied shear stress is defined in the present discussion relative to these coordinate systems
and directions.

In principle, many more slip systems can be considered as potential carriers of plasticity.
Since the determination of the PN stress by atomistic simulations is computationally
expensive, it is necessary to develop a preliminary ranking of slip systems that present the
largest potential to be active. The classical way of addressing this problem requires selecting
systems with large interplanar spacing (ahkl) and shortest lattice vectors in the respective
plane, or potential Burgers vectors (bmnp). Here, hkl represents the index of the plane and mnp
represents the direction of the Burgers vector. Large values of the ahkl/bmnp ratio indicate
propensity to slip. This usually works well in monoatomic systems such as bcc and fcc metals
[24]. In molecular crystals, this procedure may not be optimal owing to the complex geometry
of the molecules and their packing.

Table 1 shows several slip systems cited in the literature for monoclinic β-HMX, ranked
in the order of ahkl/bmnp. We observe that the slip systems observed experimentally [17],

Figure 1. Several low index planes in β-HMX, with potential of being slip planes:
(a) (001), (b) (011), (c) (101) and (d) (021). The P1 plane is considered for slip for all
slip systems indicated, as it has equal or less steric hindrance compared to P2. The
horizontal axis is along a slip direction, while the vertical axis is the slip plane normal
(reciprocal coordinates). The (001) and (101) systems have been proposed in the
literature [17] as potential slip planes.
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Figure 2. Projections of the β-HMX unit cell in the frame aligned with the slip plane
normal (z-axis) and direction of dislocation motion (x-axis), for various slip systems
considered in this study. A positive applied shear stress produces dislocation motion in
the positive x-direction. The Burgers vector, indicating the direction of relative slip
across the slip plane, can be oriented either in the direction of the x-axis, or in some
other direction in the slip plane.

Table 1. Low index slip systems ranked in decreasing order of the ratio of interplanar
spacing to the Burgers vector length (ahkl/bmnp). The (011) planes, which are sym-
metrically equivalent to ( )011 , have the largest interplanar spacing and have the largest
ahkl/bmnp. The commonly reported slip systems, (001)[100], ( )[ ]101 101 and (101)[010]
(shown in bold) are ranked poorly by this method. The values in the table are computed
using lattice constants from diffraction experiments performed at room temperature
[22]. Given the packing considerations discussed in figure 2, the relevant interplanar
spacing for the (001) plane is = =a a 3.588 Å,hkl 002 while for the ( )010
plane, = =a a 5.515 Å.hkl 020

System (hkl)[mnp] ahkl/bmnp System (hkl)[mnp] ahkl/bmnp

(011)[100] 0.920 (001)[100] 0.549
(010)[100] 0.844 ( )[ ]101 010 0.489
(010)[001] 0.750 ( )[ ]011 011 0.454
(110)[001] 0.750 ( )[ ]110 110 0.431
(021)[100] 0.669 ( )[ ]121 101 0.443
( )[ ]101 101 0.620 (101)[101] 0.398
(120)[001] 0.567 (101)[010] 0.391
( )[ ]111 101 0.557
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(001)[100], ( )[ ]101 101 and (101)[010], are ranked poorly by this custom. This raises doubts
about the usefulness of the standard procedure in the case of molecular crystals.

Thus, a more reliable method that can be used to rank slip systems more accurately in
molecular crystals is needed. We propose a new identification method based on the degree
of steric hindrance or geometric overlap during slip. For given slip system, we consider the
geometry of the slip surface and compute a geometrical γ-surface based on the topological
overlap of molecules associated with relative rigid body motion across the respective slip
plane. To avoid confusion with the usual γ-surface, we denote these geometric γ-surfaces as
‘g-surfaces.’ The procedure requires defining first objects corresponding to individual
molecules. To this end, a Voronoi tessellation of the atoms in the molecular crystal is
created based on van der Waals radii of the atoms. The Voronoi cells are then grouped
according to the molecule they belong to and the shape of such a group reflects the volume
occupied by the molecule. This geometric representation of individual molecules is used to
construct entire slip surfaces, as shown in figure 3 for the (101) and (001) crystal planes of
β-HMX. On both sides of the slip surface, the Voronoi cell groups form crystalline clusters.
In the initial state, the clusters on opposite side of the glide plane match perfectly and there
is no overlap. Following the usual procedure of finding the γ-surface [25], the two clusters
across a given glide plane are tangentially displaced relative to each other while preserving
their relative distance in the direction perpendicular to the slip plane. The volumetric
overlap of the Voronoi clusters is determined and used as an estimate of the steric hindrance
during slip.

The definition used here for the volume of a molecule is somewhat related to the
procedure based on the Hirshfeld surface. Hu et al used the Hirshfeld partition to quantify
molecular packing in various crystal directions, which they related to steric hindrance and
subsequently, to impact sensitivity [26].

Figure 3. Slip surfaces for ( )101 and ( )001 planes. The ( )101 surface has smaller
protrusions and the degree of overlap associated with slip in any in-plane direction is
small. This is not the case for the ( )001 plane for which the overlap associated with
sliding in the [ ]010 direction is more pronounced than that associated with slip in the
[ ]100 direction. The periodicity of the ‘ridges’ of the ( )001 plane in the [ ]010 direction
is 10.25 Å, which corresponds to the lattice periodicity in this crystal direction. The
amplitude in the direction perpendicular to the plane is 2.8 times larger in the ( )001 case
compared with the ( )101 case. The molecular structure of the respective planes is
shown below each of the two slip surfaces. The continuous surface is the envelope of
the molecular structure.
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The slip surfaces provide qualitative indication as to which slip directions are likely. For
example, the (001) surface indicates that slip along [100], i.e. parallel to the ‘ridges’ in
figure 3, is much more likely than along [010]. For the (101) surface, slip along both low
index directions contained in the respective plane, i.e. [ ]101 and [010] is possible. This is in
agreement with a suggestion by Gallagher et al [17]. The degree of overlap corresponding to a
specific relative shift can be used to make this prediction more quantitative. Figure 4(a) shows
the top view of the (001) surface with one cell (representing a molecule) of the opposing
crystal surface represented in blue. The blue unit is shifted in arbitrary directions parallel to
the (001) plane. The resulting overlap normalized by the unit cell volume (Vcell=504 Å3) is
shown in figure 4(b).

This procedure provides only an approximate idea about the nature of slip since energetic
interactions are not considered. To obtain a definitive ranking of slip systems, the critical
stress for dislocation motion, i.e. the PN stress [24, 27], has to be evaluated. The PN stress is
computed using an atomistic model of a dislocation dipole in a large crystal domain with
periodic boundary conditions. The dipole is introduced in the model by displacing the centers
of mass (COMs) of all molecules according to the isotropic Volterra field and providing a
final rigid rotation to the system to correct the spurious error induced by the conditionally
convergent summation of the contribution of images [28]. This method is similar to that used
to calculate PN stresses in RDX [29].

A schematic representation of the model used to estimate the PN stress is shown in
figure 5. Edge dislocations of opposite signs are placed at (x=0.25 LX, z=0.25 LZ) and
(x=0.75 LX, z=0.75 LZ) (figure 5(a)). Screw dislocations of opposite signs are placed at
(x=0.5 LX, z=0.25 LZ) and (x=0.5 LX, z=0.75 LZ) as shown in figure 5(b)). In this
configuration, the dislocations are in equilibrium with all neighbors and the net force acting
on them vanishes. The system is subsequently relaxed at 0 K and 0 atm. using isothermal–
isostress (NσT) ensemble integrators [30]. The size of the model (Nx×Ny×Nz unit cells) in
the two directions in the plane x–z of figure 5 is selected such that 370 Å<Lx, Lz<380 Å in

Figure 4. (a) ( )001 Slip surface (red) and unit cell of the crystal layer above it (blue).
Moving the blue solid horizontally, in the (001) plane, in two directions results in steric
overlap between the red and blue solids. The volume of this overlap provides the
geometric g-surface shown in (b). The horizontal axes are normalized by the lattice
periodicity in the respective directions, specifically, the [ ]100 axis is normalized by

[ ]b 100 =6.54 Å, and the [ ]010 axis is normalized by [ ]b 010 =10.25 Å. The vertical axis
is normalized by the unit cell volume (Vcell=504 Å3).
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all cases. The model dimension in the y-direction in figure 5 is kept small (Ny=1). This
forces the dislocation line to remain straight during motion. Increasing values of the resolved
shear stress (σxz or σyz) are applied using the same ensemble (NσT) at 10−4 K and the
minimum stress that leads to dislocation motion is recorded. The temperature is kept finite
(but very close to 0 K) to assist the relaxation procedure.

The force field used for all models is the SB potential [23], which was developed using
quantum chemistry calculations to reproduce structural properties for HMX and dimethyl
dinitro methyldiamine. This potential was modified by scaling partial atomic charges by 25%
[31], to reproduce condense phase density and cohesive energy and is the one used in this
work. This potential reproduces experimental lattice constants, thermal expansion coeffi-
cients, heats of sublimation [31], elastic constants [32], phase transitions [33], thermal con-
ductivity [34], melting [35] and sublimation enthalpy [36] in HMX.

Voronoi tessellations are performed using the Voro++ software package [37], and unit
cells of β-HMX are obtained in various crystallographic systems using the GCCM package
[38]. The volumetric overlap is computed using Libigl [39] boolean mesh operations after
converting the Voronoi assemblies to stereolithography meshes via a custom code. Images of
the slip surfaces are rendered in Paraview [40]. All molecular simulations are performed with
LAMMPS (16 Feb 2016 version) [41]. The long-range Coulombic interactions were com-
puted in reciprocal K-space by a particle–particle particle-mesh solver with relative force
error of 10−4. The pair-wise interactions were cut-off at 15 Å. Input scripts and unit cell data
are provided in the supplementary information available online at stacks.iop.org/MSMS/26/
045005/mmedia.

Figure 5. Dislocation dipole setup (for edge (a) and screw (b) dislocations) used to
compute PN stresses. The positions of edge dislocations are indicated by^ while screw
dislocations are indicated by ∮ . The glide plane is normal to the z-axis. The Burgers

vector is along the x-axis for edge dislocations and along the dislocation line (which
may or may not be aligned with the y-axis) for screw dislocations. The applied stress
for glide is σxz and σyz for edge and screw dislocations, respectively. Dislocations move
in the x-direction in all cases.
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3. Results

3.1. Geometric g-surfaces

As discussed above, we construct g-surfaces in order to rank slip systems in terms of the steric
hindrance associated with slip. This method considers the geometry of molecules and their
packing and hence incorporates more information than the simple estimate based on a bhkl mnp

(table 1). This method is applied to all major slip system candidates and leads to a preliminary
ranking of slip systems. This allows reducing the number of systems for which the much more
expensive atomistic PN calculations are performed. The g-surfaces for the major slip planes
are presented in this section.

3.1.1. (001) plane. The ( )[ ]001 100 system was suggested by Gallagher et al [17] based on
indentation experiments to be among the prominent candidates for slip. The normalized
g-surface for the ( )001 plane is shown in figure 6(a) and values are normalized with Vcell. It
has a saddle point of magnitude 0.084 Vcell when sampled along the [100] direction, and a
saddle of magnitude 0.179 Vcell when sampled along the [010] direction. This indicates that
the steric hindrance for slip along [100] is much lower than that for slip along [010]
(figure 6(b)). Thus, slip is more likely to happen in this plane in the [100] direction, which is
consistent with Gallagher’s suggestion. The lack of minima at positions other than those
corresponding to the lattice periodicity (see e.g. the [110] trace in figure 6(b)) indicate that the
formation of partial dislocations is unlikely.

3.1.2. (101) plane. Experiments by Gallagher et al [17] also indicate that slip is likely along
( )[ ]101 101 and is possible along ( )[ ]101 010 . The normalized g-surface for the ( )101 plane is
shown in figure 7(a). The surface is relatively flat compared to that for the ( )001 plane
(figure 6). The maximum values of the normalized overlap for relative sliding along [ ]101 and
[ ]010 are 0.048 and 0.069, respectively (figure 7(b)). These values are low compared to those
for the ( )[ ]001 100 system (figure 6), and slip may occur in both low index directions in this
plane. This conclusion agrees with experimental findings. Formation of partials is unlikely as
the minima close to the center of the field in figure 7(a) are relatively shallow.

Figure 6. (a) Contour map of the normalized g-surface for the ( )001 P1 plane. The
horizontal and vertical axes are normalized by 6.54 Å and 10.25 Å, respectively. The
values of the map are normalized by Vcell. (b) Line projections of the g-surface in (a)
along [ ]100 , [ ]010 , and [ ]110 . t represents the coordinate in the respective direction
normalized by the periodicity in that direction.
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3.1.3. ð010Þ plane. The normalized g-surface for the ( )010 plane is shown in figure 8(a). The
saddle point along [ ]100 is 0.045 Vcell, lower than that along [ ]001 , which in 0.076 Vcell

(figure 8(b)). This suggests that slip along both directions is possible, and that [100] is the
easier glide direction. A maximum in the central region of the map of figure 8(a) suggests
that, once again, the formation of partials in this slip system is unlikely.

3.1.4. ð011Þ plane. The normalized g-surface for the ( )011 plane is shown in figure 9(a). This
map exhibits interesting features. There is a well comprising two minima in the central region
of the map in figure 9(a), which suggests that partials may form in this slip system. The low
values of the maximum normalized overlap along [ ]100 and [ ]011 (0.084 Vcell and 0.078 Vcell,
respectively, figure 9(b)) suggest that slip in both directions is likely. It is important to note
that this plane was reported as a cleavage plane in [14].

Figure 7. (a) Contour map of the normalized g-surface for the ( )101 P1 plane. The
horizontal and vertical axes are normalized by 10.73 Å and 10.25 Å respectively. The
values of the map are normalized by Vcell. (b) Line projections of the g-surface in (a)
along [ ]101 , [ ]010 , and [ ]111 . t represents the coordinate in the respective direction
normalized by the periodicity in that direction.

Figure 8. (a) Contour map of the g-surface for the ( )010 P1 plane. The horizontal and
vertical axes are normalized by 7.60 Å and 6.54 Å respectively. The values of the map
are normalized by Vcell. (b) Line projections of the g-surface in (a) along [ ]001 , [ ]100 ,
and [ ]101 . t represents the coordinate in the respective direction normalized by the
periodicity in that direction.
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3.1.5. ð021Þ plane. The normalized g-surface for the ( )021 plane is shown in figure 10(a).
This surface is similar to that corresponding to the ( )001 plane (figure 6). The saddle point for
the low overlap [100] direction has a value of 0.084 Vcell which is low enough to warrant slip
along [ ]100 . Thus, slip is more likely to happen in this plane along [100] than along [ ]012 , for
which the maximum normalized overlap is large, 0.325 (figure 10(b)). The absence of other
minima on the g-surface indicates that partial formation is unlikely.

3.1.6. Summary of the g-surface analysis. Geometric g-surfaces for several other low index
slip planes (11 planes and 22 systems in total) are constructed and the results are presented in
table 2. The g-surfaces provide information related to the steric hindrance during slip. This
analysis needs to be supplemented with information related to the energy per unit length of
the dislocation line. Since the system tends to minimize the total stored strain energy, only

Figure 9. (a) Contour map of the normalized g-surface for the ( )011 P1 plane. The
horizontal and vertical axes are normalized by 6.54 Å and 12.76 Å respectively. The
values of the map are normalized by Vcell. (b) Line projections of the g-surface in (a)
along [ ]100 , [ ]011 , and [ ]111 . t represents the coordinate in the respective direction
normalized by the periodicity in that direction.

Figure 10. (a) Contour map for the g-surface for the ( )021 P1 plane. The horizontal and
vertical axes are normalized by 6.54 Å and 18.33 Å respectively. The values of the map
are normalized by Vcell. (b) Line projections of the g-surface in (a) along [ ]100 , [ ]012 ,
and [ ]112 . t represents the coordinate in the respective direction normalized by the
periodicity in that direction.
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dislocations of lowest energy per unit length of the dislocation line can be stabilized. This
specific energy is quantified using the pre-logarithmic factor of the dislocation strain energy
computed in anisotropic elasticity, =K K b b ,mg m ganiso where Kmg is the pre-logarithmic
energy tensor and b is the Burgers vector [42]. We combine this energetic parameter with that
resulting from the overlap analysis and use the product ( )K V Vaniso overlap cell to generate a
ranking of slip systems. A low value for this combined parameter for a slip system indicates
higher likelihood that dislocations can be stabilized and can glide in the respective system.

Table 2 shows the values of these parameters for all systems considered in the study. The
experimentally suggested slip systems, ( )[ ]001 100 , ( )[ ]101 101 and ( )[ ]101 010 , are shown in
bold. The new criterion performs better than that used in the ranking of table 1; all
experimentally observed slip systems are among the top 8 in this ranking. System ( )[ ]001 100
moves from position 9 in table 1 to position 2.

Table 2. Ranking of low index slip systems in terms of the composite parameter,
( )K V V ,aniso overlap cell representing the normalized steric overlap ( )V Voverlap cell and the

strain energy per unit length of dislocation line (proportional to Kaniso). Entries shown
in bold indicate slip systems inferred based on experimental observations [17]. The
shaded region of the table indicates slip systems for which PN stress calculations are
performed. For the ( )011 plane, the partial system ( )[ ]011 0111

2
is included since the

g-surface provides evidence for partial formation. Elastic constants used for computing
Kaniso are provided.

Plane
type Plane Direction Voverlap/Vcell

Kaniso

(10−9 J m−1)
( )K V Vaniso overlap cell

(10−9 J m−1)

P1 ( )010 [ ]100 0.045 0.3401 0.0152
P1 ( )001 [ ]100 0.084 0.3407 0.0286
P1 ( )011 ½[ ]011 0.078 0.3615 0.0283
P1 ( )021 [ ]100 0.084 0.3557 0.0299
P1 ( )011 [ ]100 0.084 0.3569 0.0300
P1 ( )010 [ ]001 0.076 0.4893 0.0371
P1 ( )101 [ ¯]101 0.048 0.9394 0.0450
P1 ( )101 [ ]010 0.069 0.9009 0.0618
P1 ( )100 [ ]001 0.137 0.4597 0.0628
P1 ( )110 [ ]001 0.137 0.4660 0.0637
P1 ( )120 [ ]001 0.139 0.4735 0.0658
P1 ( )101 [ ]010 0.069 0.9737 0.0668
P1 ( )011 [ ]011 0.078 1.4459 0.1134
P2 ( )111 [ ]101 0.125 0.9396 0.1177
P1 ( )001 [ ]010 0.175 0.8373 0.1463
P1 ( )100 [ ]010 0.179 0.8226 0.1474
P1 ( )110 [ ]110 0.139 1.3164 0.1835
P1 ( )111 [ ]101 0.375 0.6532 0.2450
P1 ( )101 [ ]101 0.456 0.6834 0.3119
P2 ( )111 [ ]110 0.250 1.2718 0.3180
P1 ( )111 [ ]110 0.269 1.3956 0.3753
P1 ( )120 [ ]210 0.325 2.4952 0.8109
P1 ( )021 [ ]012 0.325 2.7371 0.8904

Note. Elastic constants [32] used for computing the pre-logarithmic factor K :aniso C11=22.2,
C22=23.9, C33=23.4, C44=9.2, C55=11.1, C66=10.1, C12=9.6, C13=13.2,
C23=13.0, C15=−0.1, C25=4.7, C35=1.6, C46=2.5 (GPa).
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Since the overlap analysis does not incorporate detailed energetics and does not account
for molecular flexibility and the finite width of dislocations, its results can be only considered
qualitative. This underlines the need for atomistic PN stress calculations. We select the top
eight systems in table 2 for this purpose. We aim to identify a sufficient number of systems
that can accommodate a generic plastic strain. Further, the largest PN stress value among all
these systems indicates the level of global stress needed to produce generic plasticity in this
material.

3.2. Peierls–Nabarro stresses

Dislocations are setup and relaxed according to the procedure outlined in section 2. Here we
discuss the Burgers profiles and present the PN stresses for dislocations in selected slip
systems (shaded area of table 2). The core profiles are evaluated using the standard procedure
[43], by calculating the relative displacement of molecular COMs across the respective glide
plane (ux(x), uy(x)), with directions x and y defined in figure 5. An arctan function of the form

= --( ) (( ) )u x b x x wtan 1
0 is fit to ux(x) (or uy(x)) such to infer the width of the dislocation

core (w). Here b represents the magnitude of the Burgers vector in the respective system.
Generally, a core of smaller width is expected to have a higher PN stress than a core of larger
width [27].

The dislocation setup is relaxed at 0 K using molecular simulations and the core is
deemed to be stable if no cleavage is observed and if the core does not cross-slip to a different
crystal plane. The dislocation is then loaded by applying a shear stress on the boundary of the
model, and the stress at which the dislocation moves is recorded as the PN stress. In some
cases, cleavage starting from the core is observed under stress or the dislocation cross-slips
instead of steadily moving along the desired glide plane. This occurs when the crystal
accommodates the applied shear stress by adopting a different configuration, incompatible
with slip. Such cases are labeled ‘unstable’ in the present discussion.

3.2.1. Dislocation stability and Burgers profiles. For most slip systems considered, the core is
narrow and does not split into partials. This confirms the expectations based on the g-surface
analysis. The Burgers profiles for the ( )[ ]001 100 edge and ( )[ ]001 100 screw dislocations are
shown in figure 11. These profiles are typical of most of the slip systems considered. The

Figure 11. Burgers profile for (a) edge dislocations and (b) screw dislocations in the
( )[ ]001 100 system. The axes are normalized by [ ]b 100 and [ ]b ,010 with [ ]b 100 =6.54 Å
and [ ]b 010 =10.25 Å.
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cores are narrow, with a width of 4.15 Å and 3.53 Å respectively and exhibit minimal
distortion in the direction perpendicular to the Burgers vector.

A notable exception is the core profile for edge and screw dislocations in the ( )[ ]011 011
system (figure 12). This core splits into partials of width 4.3 Å, 8.42 Å for edges and 7.27 Å,
5.6 Å for screw, separated by a stacking fault. Note that the distance between the two partials
is small, which indicates that the corresponding staking fault energy is large. This can be
understood from the framework of the ( )011 g-surface (figure 9), which exhibits a well in the
center of the field. Each partial has edge and screw components. For the edge dislocation case,
the net Burgers vector is in the [ ]011 direction (along the x-axis), and the partials have equal
edge and screw components. The screw component of these partials is * [ ]b0.1 011

(figure 12(a)). For the screw dislocation (figure 12(b)), the Burgers vector is oriented in
the [ ]011 direction, along the dislocation line. Therefore, the Burgers vector is not
perpendicular to the x-axis or to the glide direction. This specific orientation renders ux≠0
and uy<1 at the left end of figure 12(b). The width of all stable cores is reported in table 3.

3.2.2. Peierls–Nabarro stress. The PN stress is the minimum stress required to move an
isolated dislocation in the absence of thermal activation at 0 K. This threshold stress is
computed for all slip systems in the shaded area of table 2.

Figure 12. Burgers profile for (a) edge dislocations and (b) screw dislocations in the
( )[ ]011 011 system. The axes are normalized by the length of the Burgers vectors
indicated, with [ ]b 011 =12.76 Å and [ ]b 100 =6.54 Å. Both edge and screw dislocations
split into partials of roughly equal Burgers vectors. The position of the partials is
indicated with vertical lines which also mark the spatial extent of the stacking fault.

Table 3. Core widths for stable dislocations in select slip systems. The values marked
by * indicate widths of partials.

Plane [hkl] Burgers [mnp] Edge core width (Å) Screw core width (Å)

(010) [100] 3.39 5.33
(010) [001] 3.37 4.95
(101) [010] 13.29 7.78
(101) [ ]101 5.01 8.28
(011) [100] 5.84 3.92
(011) [ ]011 4.30, 8.42* 7.27, 5.60*

(001) [100] 4.15 3.53
(021) [100] 4.32 2.77
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For the ( )001 plane, ( )[ ]001 100 edge and screw dislocations are considered. The edge
dislocation is stable in the absence of an applied stress and moves at a minimum stress of
−0.47 GPa. The application of a positive resolved shear stress (relative to the coordinate
system in figure 2) causes the dislocation to become unstable leading to cleavage along the
( )101 plane. Therefore, slip in the positive direction is not possible. The screw dislocation
core is also stable in the absence of far field stress and moves under an applied stress of
0.55 GPa. When the direction of stress is reversed, the dislocation splits into two identical
screw dislocations that cross-slip along ( )011 and ( )011 planes, respectively. Thus, screw and
edge dislocations glide asymmetrically, in opposite directions.

For the ( )101 plane we consider two slip directions: [ ]010 and [ ]101 . For the ( )[ ]101 010
system, the edge dislocation moves under a minimum applied stress of −0.26 and 0.28 GPa in
the two directions of the x-axis (figure 2), while the screw dislocation moves under minimum
applied stresses of −0.12 GPa and 0.11 GPa, respectively, indicating that this slip system is
likely to be active. This is consistent with conclusions obtained by Gallagher et al [17]. In the
unloaded state, the core of the edge dislocation in this system acquires a screw component,
but the separation between partials is small. As the core moves, the partials become better
defined. This indicates that the γ-surface for the (101) plane has a minimum corresponding to
a stable stacking fault, although the g-surface for this plane (figure 7) does not show such
distinct minimum.

For the ( )[ ]101 101 system, the behavior is quite different for edge and screw dislocations.
For edge dislocations, the core relaxes to form a twin of limited extent as shown in figure 13.
Upon application of positive shear stress in the frame of figure 13, the length of the twin
increases. Upon application of negative shear stress, the twin length decreases, the core
becomes compact (undissociated) and further dislocation slip is observed (the dislocation
moves to the right, figure 13). Clearly this behavior cannot be explained entirely by edge
dislocation motion, and hence computation of PN stresses for this system is not meaningful.
This is in agreement with experimental observations which indicate that (101) is twinning
composition plane [15]. For screw dislocations, slip is observed in both directions, but the PN
stress is asymmetric, i.e. −0.39 GPa and 0.13 GPa in the negative and positive directions of
the x-axis (figure 2), respectively.

The g-surface analysis indicates that slip is likely to occur in the ( )010 plane along the
[ ]100 direction (table 2). However, the atomistic analysis leads to a different conclusion. It is

Figure 13. Core structure for the ( )[ ]101 101 edge dislocation. A locally twinned region
forms to the left of the core, which appears as a gap after relaxation. This local twin
elongates away from the core (to the left in this image) on application of positive shear
stress, and shrinks, eventually closing the gap and slipping via dislocation motion,
when the direction of stress is reversed.
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observed that edge dislocation cores are stable if no far field is applied but become unstable
leading to cleavage along ( )110 and ( )110 planes once either a positive or negative resolved
shear stress is applied. Screw dislocations, which have stable narrow cores in the unloaded
state, cross-slip to the ( )011 and ( )011 planes upon shear loading in the negative and positive
directions, respectively.

For the ( )[ ]010 001 system, edge dislocation cores are stable at zero applied stress, but
produce cleavage along ( )011 and ( )011 upon negative and positive shear loading,
respectively. For screw dislocations in this system, extended defect domains are seen near
the core when load is applied, while the dislocation remains stationary. These domains
comprise molecules that are rotated and distorted relative to the perfect crystal configuration.
Thus, this system is found to be unsuitable for slip. This emphasizes again the limitations of
the excluded-volume based geometric g-surfaces.

The ( )021 g-surface indicates that slip is likely only along [ ]100 (figure 10). Edge
dislocations in the ( )[ ]021 100 slip system are mobile, with the PN stresses in the two
directions of the respective crystal axis being −0.43 and 0.51 GPa. Screw dislocations in this
system are stable in the absence of stress, but cross-slip along ( )011 planes upon shear loading
in either direction.

The g-surface and unloaded core profile analyses for the ( )011 plane indicates that
partials may form when the Burgers vector is oriented in the [ ]011 direction. The PN stress
computed for the ( )[ ]011 011 edge system is 0.4 GPa. This is the stress required to move the
entire dislocation. The partials are identical and move at the same critical stress. For the
reverse loading direction, the partials collapse, and the dislocation becomes unstable, leading
to cleavage along ( )011 . For the screw dislocation in the ( )[ ]011 011 slip system, glide is
observed once the applied resolved shear stress exceeds −0.05 and 0.12 GPa in the two
directions of the [ ]011 axis. This dislocation is also split into partials (figure 12(b)). For the
( )[ ]011 100 system, the compact edge dislocation core moves at a PN stress of −0.26 GPa. For
positive shear stresses, the cores became unstable and cleavage is observed along the ( )111
plane. Screw dislocations on this system exhibit the largest PN stresses of all systems
considered, i.e. −0.75 and 0.32 GPa in the two directions along [100].

Table 4 presents a summary of this discussion and the PN stresses computed for the
various slip systems considered. The three systems reported by Gallagher et al [18] are shows
in bold and are seen to be active either in slip, or slip and twinning. Three additional slip
systems, namely ( )[ ]011 011 , ( )[ ]011 100 and ( )[ ]021 100 , are observed to be active and are
reported in table 4.

It is important to underline that slip asymmetry is the norm for all systems considered.
Slip asymmetry is unusual in FCC lattices, but is observed in BCC. However, the asymmetry
in HMX is much more pronounced than in most other materials. Slip asymmetry was also
observed in RDX [44] and was associated with the relative orientation of nitro groups of
molecules across the glide plane. The asymmetry reported here is associated with both steric
and energetic interactions and is significantly more pronounced than in RDX.

Most systems exhibit complex behavior, beyond slip asymmetry. Dislocations may be
mobile in one direction but become unstable or cross-slip when loaded in the opposite
direction. An interesting example is the ( )[ ]001 100 slip system, in which we observe core
instability, cross-slip and dislocation glide depending on the direction of loading. Likewise,
edge and screw dislocations behave differently in any given system. These complexities are,
to a large extent, a consequence of molecular packing (steric effects) and are nuanced by
energetic interactions. Their presence makes developing coarse grained representations of slip
in this molecular crystal quite a daunting task.
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Table 4. Selected slip systems for β-HMX, their overlap values, and PN stresses. Both edge and screw dislocations are considered for each system
and PN values are reported for the two possible loading directions (see figures 2 and 5 for the definition of the positive direction relative to the
molecular orientation in the perfect crystal). Systems sustaining slip of at least one type of dislocation are highlighted in gray. Slip systems indicated
in bold have been observed experimentally [17]. In the table, ‘unstable’ indicates that cleavage occurs upon loading starting from the dislocation
core, ‘twin’ indicates that a twin nucleus forms upon relaxation of the core and this twin grows when the load is applied, ‘twin and slip’ indicates
that the twin nucleus decreases in size and regular dislocation slip is observed when the load is applied in the respective direction. In the case labeled
‘point defect domains’, a domain of rotated and distorted molecules forms in the vicinity of the core upon loading and the core does not move.

Selected slip system Edge dislocation Screw dislocation

Plane Burgers direction *( )K V Vaniso overlap cell (10−9 J m−1) σxz<0 (GPa) σxz>=0 (GPa) σyz<0 (GPa) σyz>=0 (GPa)

(010) [100] 0.0152 Unstable Unstable Cross-slip on ( )011 Cross-slip on ( )011
(001) [100] 0.0286 −0.47 Unstable Cross-slip on { }011 0.55
(011) [ ¯]011 0.0283 Unstable 0.40 −0.05 0.12
(011) [100] 0.0300 −0.26 Unstable −0.75 0.32
(021) [100] 0.0299 −0.42 0.5 Cross-slip on ( )011 Cross-slip on ( )011
(010) [001] 0.0371 Unstable Unstable Point defect domains
(101) [101̄] 0.0450 Twin and slip Twin −0.39 0.13
(101) [010] 0.0618 −0.26 0.28 −0.12 0.11
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4. Discussion

A single crystal accommodates a generic plastic strain defined by six independent plastic
strain components if it has five independent slip systems [45]. In order to determine whether
β-HMX fulfills this condition, we adopt the procedure used by Groves and Kelly [46], and
described in Hirth [43]. The slip systems discussed in section 3 exhibit complex behavior. In
this analysis we consider a system to be active if either screw or edge dislocations exhibit
bidirectional glide. We also include system ( )[ ]001 100 in which bidirectional slip is
accommodated by the combination of edge and screw dislocations. Thus, eight slip systems
are selected (six are highlighted in table 4 and all eight are shown in table 5), which include
the experimentally observed ( )[ ]001 100 , ( )[ ]101 101 and ( )[ ]101 010 systems, as well as the
( )[ ]021 100 and four systems on the two equivalent { }011 planes.

This analysis indicates that out of the 56 (8C5) combinations of groups of five slip
systems considered, 22 combinations can accommodate general plastic strain. It is now
possible to indicate the range of PN stress that needs to be applied for the activation of five
independent slip systems. The systems with the lowest PN stress (in either positive or
negative glide directions) are ( )[ ]101 010 , ( )[ ]101 101 , ( )[ ]011 011 and ( )[ ]011 011 , which are
all active once the respective resolved shear stress is equal to, or larger than 130MPa.
However, these systems are insufficient to accommodate an arbitrary plastic strain. The
addition of the ( )[ ]011 100 and ( )[ ]011 100 systems leads to a set which allows for generalized
slip, but this requires a minimum resolved shear stress of 260MPa. It is important to note that
the twinning system ( )[ ]101 101 must be included in the list of active systems in all cases
(table 5). Therefore, twinning is necessary in order for the crystal to accommodate a gen-
eralized plastic strain, a situation similar to HCP metals [47]. The analysis is approximate as it
does not account for slip asymmetry and contrasting behaviors of edge and screw
dislocations.

It is important to reconsider the limitations of this study. These results are exact (subject
to model limitations) at 0 K. The threshold stresses at higher temperatures are expected to be
smaller than those listed in table 4. Based on the observation that thermal activation of
systems with high energy barriers for slip (and high PN stress) is less efficient than thermal
activation of slip in systems with low barrier, we conjecture that increasing the temperature
will preferentially reduce the critical stress of the low PN stress systems, and hence the overall
ranking will not be significantly affected.

A further limitation of the present analysis is the constraint that dislocation lines remain
straight under load. This is imposed by the periodic boundary conditions imposed in the
y-direction in figure 5, and the associated small model size in the respective direction, which
preclude kink nucleation.

In addition, non-Schmid effects representing the influence of the normal stress acting in
the direction perpendicular to the glide plane on the PN stress, are likely to be significant in
these crystals. These issues are subjects for further study.

5. Conclusion

Motivated by the potential role of slip and plasticity in reaction initiation, slip systems in
β-HMX are identified and characterized using geometric analysis and molecular simulations.
The geometric gamma surface, based on the volumetric overlap parameter, offers an intuitive
and cost-effective way to rank slip systems. For the experimentally observed slip planes,
( )001 and ( )101 , the overlap surfaces give good indication of which slip directions are likely.
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Table 5. Components of macroscopic strain resulting from unit slip in specific slip systems.

Slip system Plane normal Burgers vector ε11 ε22 ε33 ε23 ε13 ε12

( )[ ]001 100 (0 0 1) [1, 0, 0] 0.0 0.0 0.0 0.0 0.5 0.0
( )[ ]101 101 (0.7, 0, 0.714) [0.714, 0, −0.7] 0.5 0.0 −0.5 0.0 0.01 0.0
( )[ ]101 010 (0.7, 0, 0.714) [0, 1, 0] 0.0 0.0 0.0 0.357 0.0 0.35
( )[ ]021 100 (0, 0.826, 0.564) [1, 0, 0] 0.0 0.0 0.0 0.0 0.282 0.413
( )[ ]011 011 (0, 0.591, 0.807) [0.088, 0.803, −0.589] 0.0 0.475 −0.475 0.15 0.035 0.026
( )[ ]011 100 (0, 0.591, 0.807) [1, 0, 0] 0.0 0.0 0.0 0.0 0.403 0.295
( )[ ]011 011 (0, 0.591, −0.807) [−0.088, 0.803, 0.589] 0.0 0.475 −0.475 −0.15 0.035 −0.026
( )[ ]011 100 (0, 0.591, −0.807) [1, 0, 0] 0.0 0.0 0.0 0.0 −0.403 0.295
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The PN stresses for the various slip systems shortlisted by the overlap procedure are
computed using atomistic simulations. The results indicate that all dislocation cores are
compact except for the ( )[ ]011 011 system which exhibits core splitting for both edge and
screw cases. The slip planes suitable for dislocation glide are ( ) ( ) ( )001 , 101 , 021 and { }011 .
The independent slip analysis indicates that these systems are sufficient for accommodating a
general state of plastic strain, but that the twinning system must be always included in the list.

This study provides information that may be useful for developing mesoscale simulations
aimed at illuminating the role of crystalline slip in hotspot initiation. In dislocation dynamics
simulations, the PN stress is used as an activation stress for dislocation glide on various slip
systems. Although the PN stress at ambient conditions is unknown, an Arrhenius type
expression for activation energy (estimated from the PN stress) can be used as a first
approximation. This analysis provides a ranking of slip systems which is likely to persist at
finite temperatures. Furthermore, the geometric gamma surfaces can be used for other
molecular crystals, as an efficient instrument towards inferring available slip systems.
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