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Interior Penalties for Summation-by-Parts
Discretizations of Linear Second-Order Differential
Equations

Jianfeng Yan · Jared Crean · Jason E.
Hicken

Abstract This work focuses on simultaneous approximation terms (SATs) for
multidimensional summation-by-parts (SBP) discretizations of linear second-order
partial differential equations with variable coefficients. Through the analysis of ad-
joint consistency and stability, we present several conditions on the SAT penalties
for general operators, including those operators that do not have nodes on their
boundary or do not correspond with a collocation discontinuous Galerkin method.
Based on these conditions, we generalize the modified scheme of Bassi and Rebay
(BR2) and the symmetric interior penalty Galerkin (SIPG) method to SBP-SAT
discretizations. Numerical experiments are carried out on unstructured grids with
triangular elements to verify the theoretical results.

1 Introduction

Recently, Fisher and Carpenter [1] showed that diagonal-norm summation-by-
parts (SBP) operators can be used to construct provably entropy-stable semi-
discretizations of the Euler and Navier-Stokes equations; see also [2]. This result is
significant because it opens the door to nonlinearly-stable, high-order discretiza-
tions that do not rely on exact integration. Such schemes have the potential to be
efficient and robust for industrially relevant problems.

The original theory in [1, 2] was developed for tensor-product operators based
on classical SBP finite-difference methods [3,4], so there have been several efforts
to generalize the results [5–9]. In particular, given the possible limitations of hex-
ahedral mesh generation, we are interesting in generalizing the theory to include
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multidimensional SBP operators [10], which can support more diverse element
shapes and nodal distributions for simulations on unstructured grids.

In order to develop entropy-stable discretizations of the Navier-Stokes equa-
tions for general SBP operators, both the inviscid and viscous terms must be
considered. For treatment of the inviscid terms in the context of multidimensional
SBP discretizations, we direct the interested reader to [8] and [9]. The present
work, which focuses on linear elliptic and parabolic operators, is motivated by
the entropy-stable treatment of the viscous terms in the Navier-Stokes equations.
Specifically, we are interested in the precise conditions for constructing accurate,
stable, and adjoint-consistent interior penalties that enforce boundary conditions
and inter-element coupling.

Interior penalties are known as simultaneous approximation terms (SATs) in
the SBP literature [11]. Penalties for second-order PDEs have been well studied
by both the SBP community [12–15] and the finite-element community (see the
review [16] and the references therein). Nevertheless, multidimensional SBP-SAT
discretizations introduce generalizations that have not, to the best of our knowl-
edge, been considered in the either the DG or the SBP-SAT literature.

– The DG literature assumes explicit basis functions, and several results in the
FE context rely on this assumption, e.g. the inverse trace inequalities of War-
burton and Hesthaven [17]. SBP operators do not have a unique underlying
basis, in general.

– The SBP-SAT literature typically assumes the interface nodes of adjacent el-
ements coincide. In those cases when nonconforming nodes are considered,
e.g. [13], the nodes are usually assumed to lie on the interface. In [15], the
authors consider tensor-product discretizations without nodes on the inter-
faces, but only the Baumann-Oden [18] penalty is investigated. Furthermore,
adjoint consistency is rarely addressed in the SBP literature and has not been
considered for operators whose nodes are strictly interior to the element.

Based on the above gaps, the objective of this work is to identify the condi-
tions on the SAT coefficient matrices to obtain multidimensional SBP-SAT dis-
cretizations that are simultaneously consistent, conservative, adjoint consistent,
and stable. In the process of meeting this goal, we generalize the modified scheme
of Bassi and Rebay (BR2) [19] and the symmetric interior penalty Galerkin (SIPG)
method [16,20,21] to multidimensional SBP discretizations. In addition, we show
how, in the SBP-SAT context, SIPG can be derived from BR2 using matrix anal-
ysis.

The remaining sections are organized as follows. We introduce our notation
and the model PDE in Section 2. Section 3 reviews the multidimensional SBP
definition and describes the matrices used to discretize various continuous oper-
ations. Section 4 then presents the SBP-SAT discretization of the model PDE.
Section 5 investigates the adjoint consistency of the discretization and delineates
the necessary adjoint-consistency conditions on the SAT penalties. The penalties
are further constrained by the energy-stability analysis in Section 6. The resulting
conditions are used to generalize the BR2 and SIPG methods to multidimensional
SBP discretizations in Section 7. Verification studies are provided in Section 8,
and a summary is provided in Section 9.
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2 Preliminaries

2.1 Notation

Functions are denoted with capital letters in calligraphic font; for example U ∈
L2(Ω) is a square-integrable function on the domain Ω. A function evaluated on
a node set is denoted by a lowercase letter in bold font. For example, the function
U evaluated at the nodes X = {(xi, yi)}ni=1 is given by

u =
[
U(x1, y1) U(x2, y2) · · · U(xn, yn)

]T
.

The space of polynomials of total degree p, or less, in x and y on Ω is denoted
by Pp(Ω). As with generic functions, a polynomial that is evaluated at the points
of X will be represented using its corresponding lowercase letter in bold font; for
example, for P ∈ Pp(Ω) we would have

p =
[
P(x1, y1) P(x2, y2) · · · P(xn, yn)

]T
.

Matrices are represented with an uppercase sans-serif type, for example A ∈
Rn×m. Unless indicated otherwise, a subscript indicates a vector or matrix evalu-
ated on a particular element or face. For example uκ and (Dx)κ are the solution
and derivative operator on element Ωκ, respectively.

2.2 The model parabolic PDE

We consider the following linear second-order parabolic PDE — or the correspond-
ing steady Poisson PDE — defined on the compact domain Ω ⊂ R2:

∂U
∂t

= ∇ · (Λ∇U) + F , ∀ (x, y) ∈ Ω, t ∈ [0, T ], (1)

where F ∈ L2(Ω) is a given source term, and

Λ ≡
[
λxx λxy
λyx λyy

]
is a symmetric, positive-definite tensor that is a smooth function of (x, y). The
parabolic PDE is provided with the initial condition

U(0, x, y) = U0(x, y), ∀ (x, y) ∈ Ω, (2)

where U0 ∈ L2(Ω). Finally, the PDE is supplied with the steady Dirichlet and
Neumann boundary conditions,

U(t, x, y) = UD(x, y), ∀ (x, y) ∈ ΓD,

(Λ∇U(t, x, y)) · n = UN (x, y), ∀ (x, y) ∈ ΓN ,
(3)

respectively, where n = [nx, ny]T is the outward pointing unit normal on the
boundary ∂Ω = ΓD ∪ΓN , with ∂Ω \ΓD = ΓN . Finally, we assume that the data
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— F , Λ, U0, UD, and UN — and the geometry are such that initial-boundary-value
problem (1)–(3) is well posed.

In addition to the above strong form of the PDE, we will also refer to an
associated weak formulation, specifically∫

Ω

V ∂U
∂t

dΩ = R(U ,V), ∀ V ∈ H1(Ω), (4)

where the spatial residual R(·, ·) : H1(Ω)×H1(Ω)→ R is defined by

R(U ,V) ≡ −
∫
Ω

(∇V)T Λ (∇U) dΩ +

∫
Ω

VF dΩ

+

∫
ΓN
VUN dΓ +

∫
ΓD
V (Λ∇U) · n dΓ +

∫
ΓD

(U − UD) (Λ∇V) · n dΓ.

The first four terms in R are obtained by multiplying (1) by an arbitrary test
function V ∈ H1(Ω), integrating over the domain Ω, applying integration by parts,
and then imposing the Neumann boundary conditions on ΓN . The last term in R
is the residual associated with the Dirichlet boundary conditions.

3 Discrete operators

3.1 multidimensional SBP operators

We adopt the definition of multidimensional SBP operators proposed in [10]. To
keep the presentation self-contained, the definition for an operator approximating
∂/∂x on a two dimensional domain is provided below. The definition for the SBP
operator approximating ∂/∂y is analogous.

Definition 1 Two-dimensional summation-by-parts operator: Consider an
open and bounded subdomain Ωκ ⊂ Ω with a piecewise-smooth boundary ∂Ωκ,
and nκ interior nodes Xκ = {(xi, yi)}nκi=1. The matrix Dx is a degree p SBP ap-
proximation to the first derivative ∂

∂x on the nodes Xκ if

1. for all P ∈ Pp(Ωκ), the vector Dxpκ is equal to ∂P/∂x at the nodes Xκ;
2. Dx = H−1Qx, where H is symmetric positive-definite, and;
3. Qx = Sx + 1

2Ex, where STx = −Sx, ETx = Ex, and Ex satisfies

pTExq =

∮
∂Ωκ

PQnxdΓ,

for all polynomials P,Q ∈ Pr(Ωκ), where r ≥ p, and nx is the x component of
n = [nx, ny]T, the outward pointing unit normal on ∂Ωκ.

The subsequent analysis is restricted to so-called diagonal-norm SBP operators,
that is, SBP operators for which H is a diagonal matrix with positive entries. In
this case, it was shown in [10] that the nodes Xκ and diagonal entries of H define
a cubature rule that is exact for polynomials of total degree 2p− 1. Thus, we have
the following approximation for sufficiently smooth functions U and V:

vTκ Hκuκ =

∫
Ωκ

VU dΩ + O(h2p), (5)
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where h is a linear measure of the size of Ωκ. Furthermore, the matrix operator
Qx can also be interpreted as an approximate integral [10]:

vTκ Qxuκ =

∫
Ωκ

V ∂U
∂x

dΩ + O(hmin(2p,r+1)). (6)

This interpretation of Qx, together with the accuracy of Ex in Definition 1, leads
directly to a high-order approximation of integration-by-parts:

vTκ Qxuκ + vTκ QTxuκ = vTκ Exuκ

⇒
∫
Ωκ

V ∂U
∂x

dΩ +

∫
Ωκ

U ∂V
∂x

dΩ =

∮
∂Ωκ

VUnx dΓ + O(hmin(2p,r+1)).

These relationships between the SBP matrices and integral bilinear forms will be
helpful when we relate the SBP discretization to weak-form finite-element dis-
cretizations.

3.2 Face-based operators

In order to define SATs for multidimensional SBP operators, we follow References
[22,23] and introduce interpolation/extrapolation operators from the SBP element
nodes to cubature nodes on the faces of the elements.

Consider an element Ωκ with a piecewise smooth boundary ∂Ωκ, and let γ ⊂
∂Ωκ denote one of its faces. Let Xγ = {(xj , yj)}nγj=1 ⊂ γ be a set of cubature

nodes with corresponding positive weights {bj}nγj=1 that is exact for polynomials
of degree 2r, where r ≥ p is the same integer appearing in Definition 1. The matrix
Rγκ ∈ Rnγ×nκ is a degree r interpolation/extrapolation operator from the SBP
nodes Xκ to the face nodes Xγ if, for all P ∈ Pr(Ωκ),

(Rγκpκ)j =

nκ∑
i=1

(Rγκ)jiP(xi, yi) = P(xj , yj), ∀j = 1, 2, . . . , nγ . (7)

In other words, Rγκ exactly interpolates/extrapolates polynomials of degree r,
where r ≥ p, from the volume nodes of element Ωκ to the nodes of its face γ.

For a given (strong) cubature rule of degree 2p−1 defined on Ωκ, it was shown
in [23] that there exists at least one SBP operator whose corresponding matrix Ex
has the decomposition

Ex =
∑

γ⊂∂Ωκ

RTγκNx,γBγRγκ, (8)

where Bγ = diag
(
b1, b2, . . . , bnγ

)
is an nγ × nγ diagonal matrix holding the cu-

bature weights for γ along its diagonal, and Nx,γ = diag
(
nx,1, nx,2, . . . , nx,nγ

)
is

an nγ × nγ diagonal matrix holding the x component of the outward unit normal
with respect to Ωκ at the cubature points of γ. We will assume in the following
analysis that the SBP operators are such that Ex has the decomposition (8), and
that the operators in the y direction have analogous decompositions.

Finally, we need to discretize the normal derivative operator, n · (Λ∇), at the
nodes of face γ. To this end, we introduce the diagonal matrices Λxx, Λxy, Λyx
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and Λyy, which store the Cartesian elements of the tensor Λ evaluated at the SBP
nodes. For example,

Λxx = diag (λxx(x1, y1), λxx(x2, y2), . . . , λxx(xn, yn)) . (9)

With these matrices, we can discretize the normal derivative operator as

Dγκ = Nx,γRγκ (ΛxxDx + ΛxyDy)κ + Ny,γRγκ (ΛyxDx + ΛyyDy)κ . (10)

Based on the accuracy of Dx, Dy, and Rγκ, the above discretization is exact for
U ∈ Pp(Ωκ) and Λ∇U ∈ Pr(Ωκ); therefore, since r ≥ p, Dγκ gives an order hp+1

approximation to the normal derivative at the nodes of γ.

4 SBP discretization of parabolic PDEs

This section describes the SBP-SAT discretization of (1). This discretization uses
the matrix operators we have already defined, as well as several yet-to-be-defined
operators. For future reference, Table 1 summarizes all the matrix operators with
a brief description of their purpose and the location in the text that provides a
more detailed definition.

Table 1: Summary of matrix operators used in the SBP-SAT discretization.

Matrix Description Refer to...

Hκ diagonal norm/mass matrix for element Ωκ Def. 1
Dx (Dy) SBP approximation of ∂/∂x (resp. ∂/∂y) Def. 1
Λxx, Λxy , Λyx, Λyy hold λxx, λxy , λyx, λyy along their diagonal Eq. (9)
Dκ discretization of ∇ · (Λ∇) Eq. (12)
Mκ used to discretize

∫
Ωκ

(∇V)TΛ(∇U) dΩ Prop. 1

Bγ diagonal matrix of cubature weights for face γ Eq. (8)
Nx,γ (Ny,γ) diagonal matrix of nx (resp. ny) for face γ Eq. (8)
Rγκ (Rγν) interpolate from nodes of κ (resp. ν) to nodes of γ Eq. (7)
Dγκ (Dγν) approximation of n · (Λ∇) on γ w.r.t. κ (resp. ν) Eq. (10)

T
(i)
γκ, i = 1, 2, 3, 4 penalty coefficients for interface γ of element Ωκ Eq. (16)

TDγ penalty coefficients for Dirichlet face γ of element Ωκ Eq. (17)

4.1 Discretization of spatial derivatives

Let Th =
⋃K
κ=1Ωκ denote a partition of the domain Ω into K SBP elements, where

Ωκ denotes the domain of the κth element. The discrete solution on element Ωκ
will be represented by the vector uκ ∈ Rnκ whose entries are the discrete solution
at the SBP nodes Xκ. The global discrete solution, denoted uh ∈ R

∑
nκ , is the

concatenation of all elementwise solutions.
Ignoring boundary conditions for the time being, a consistent SBP semi-discretization

of (1) on element Ωκ is given by

duκ
dt

= Dκuκ + fκ, (11)
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where fκ is F evaluated at the nodes of element Ωκ, and

Dκ =

{[
Dx Dy

] [Λxx Λxy
Λyx Λyy

] [
Dx
Dy

]}
κ

, (12)

is the SBP approximation of ∇ · (Λ∇) on element Ωκ, with Dx ∈ Rnκ×nκ and
Dy ∈ Rnκ×nκ being the first-derivative SBP operators in the x and y directions,
respectively; see Definition 1.

Remark 1 Based on the form of Dκ in (12), our discretization falls in the class of
“first-derivative twice” SBP approximations of the second-derivative. For classical
finite-difference methods with repeating interior stencils, applying the first deriva-
tive twice approximately doubles the stencil size and is typically less accurate [24];
however, the SBP operators that we intend to use are dense matrices similar to
spectral operators, for which applying the first derivative twice is “equivalent to
differentiation with an explicitly formed second-derivative operator” [11].

Before incorporating boundary conditions, it is worth pausing to draw the con-
nection between the strong-form discretization (11) and the integral weak form. To
relate the SBP discretization to the weak form, we will need the following proposi-
tion, which is a straightforward consequence of the properties in Definition 1 and
is stated without proof.

Proposition 1 Let Dκ be defined as in (12). Then, ∀ uκ, vκ ∈ Rnκ ,

vTκ HκDκuκ = −vTκ Mκuκ +
∑

γ⊂∂Ωκ

vTκ RTγκBγDγκuκ, (13)

where Mκ is the symmetric semi-definite matrix

Mκ =
[
DTx DTy

]
κ

[
HΛxx HΛxy
HΛyx HΛyy

]
κ

[
Dx
Dy

]
κ

.

Remark 2 Identity (13) is the SBP analog of integration by parts in the context
of the PDE (1); specifically, it is the discrete form of∫

Ωκ

V ∇ · (Λ∇U) dΩ = −
∫
Ωκ

(∇V)T Λ (∇U) dΩ +

∮
∂Ωκ

V (Λ∇U) · ndΓ.

This also demonstrates that SBP operators are closely related to mimetic finite-
difference methods; see, for example, [25] and the references therein.

To obtain the SBP weak form, we left multiply the strong form (11) by vTκ Hκ
and apply identity (13):

vTκ Hκ
duκ
dt

= −vTκ Mκuκ +
∑

γ⊂∂Ωκ

vTκ RTγκBγDγκuκ + vTκ Hκfκ. (14)

Each term in the above discretization can be related to an integral bilinear form
using the approximation properties of the matrices Hκ, (Qx)κ, and (Qy)κ — see (5)
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and (6) — as well as the accuracy of Rγκ, Bγ , and Dγκ. Indeed, for sufficiently
smooth functions U and V, (14) implies that

∫
Ωκ

V ∂U
∂t

dΩ = −
∫
Ωκ

(∇V)T Λ (∇U) dΩ

+
∑

γ⊂∂Ωκ

∫
γ

V (Λ∇U) · n dΓ +

∫
Ωκ

VF dΩ + O(hp+1),

In other words, satisfying the discrete weak form (14) implies that the continuous
weak form is satisfied to order hp+1.

4.2 Penalty terms enforcing continuity and boundary conditions

Boundary conditions and interelement continuity are enforced weakly by introduc-
ing penalty terms on the right-hand side of (11):

duκ
dt

= Dκuκ + fκ − H−1
κ sIκ (uh)− H−1

κ sBκ (uh,uD,uN ) . (15)

The vectors sIκ and sBκ are the interface and boundary SAT penalties, respectively,
which we define below. Briefly, these penalties involve linear combinations of the
(approximate) jumps in the function and its normal derivative across elements and
at the boundary. These jumps vanish for sufficiently smooth solutions ensuring that
the discretization is consistent.

For element Ωκ the SAT interface penalties are defined by

sIκ (uh) =
∑
γ⊂ΓI

κ

[
RTγκ DTγκ

] [T
(1)
γκ T

(3)
γκ

T
(2)
γκ T

(4)
γκ

] [
Rγκuκ − Rγνuν
Dγκuκ + Dγνuν

]
, (16)

where we use ν to denote the generic index of the element sharing face γ with
the κth element, i.e., γ = Ωκ ∩Ων . Note that all the matrix operators defined for
Ωκ are defined analogously for Ων . For example, Rγν ∈ Rnγ×nν is an interpola-
tion/extrapolation operator from the nodes of Ων to the nodes of γ, and

Dγν = −Nx,γRγν (ΛxxDx + ΛxyDy)ν − Ny,γRγν (ΛyxDx + ΛyyDy)ν ,

is an approximation to the normal derivative at the nodes of γ with respect to Ων .
Recall that Nx,γ and Ny,γ hold the x and y components of n with respect to Ωκ,
so the sign of these matrices must be reversed for Dγν .

The matrices T
(i)
γκ ∈ Rnγ×nγ , i = 1, 2, 3, 4 appearing in the definition of sIκ

denote the SAT coefficient matrices for element Ωκ on face γ. We will assume that
these coefficient matrices are symmetric but are otherwise unspecified; it is the
primary objective of the subsequent analysis to determine the constraints on these

matrices that lead to adjoint consistency and stability. Note that T
(i)
γκ 6= T

(i)
γν in

general; that is, we do not assume ab initio that the coefficient matrices of two
adjacent elements are necessarily equal.
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The SAT boundary penalties are defined by

sBκ (uh,uD,uN ) =
∑
γ⊂ΓD

κ

[
RTγκ DTγκ

] [ TDγ
−Bγ

]
(Rγκuκ − uγD)

+
∑
γ⊂ΓN

κ

RTγκBγ(Dγκuκ − uγN ), (17)

where ΓDκ = ∂Ωκ ∩ ΓD and ΓNκ = ∂Ωκ ∩ ΓN . The vectors uγD and uγN in the
boundary penalties denote the functions UD and UN , respectively, evaluated at
the cubature nodes of face γ. TDγ is a coefficient matrix for the SAT on a Dirichlet

boundary face of Ωκ, and, as with the T
(i)
γκ, it will be constrained by the subsequent

analysis.
For those more familiar with finite-element discretizations, it may be helpful to

relate the penalties sIκ and sBκ to integral forms. To do so, we adopt the standard
definitions for the scalar and vector jump operators on interface γ; thus, if Uκ and
Uν denote the traces of U taken from the interior of Ωκ and Ων , respectively, and
nκ and nν denote the outward pointing normals with respective to Ωκ and Ων ,
then

JUK ≡ Uκnκ + Uνnν , and JΛ∇UK ≡ (Λ∇Uκ) · nκ + (Λ∇Uν) · nν .

To simplify the comparison between the SAT and integral penalties, we will assume

that T
(i)
γκ = Bγτ

(i)
κ , where the τ

(i)
κ , i = 1, 2, 3, 4, are scalars. However, this diagonal

assumption is not used in the subsequent analysis.
As we did for the weak form (14), we let vκ ∈ Rnκ be an arbitrary vector. Then,

under the assumption T
(i)
γκ = Bγτ

(i)
κ , the product between vκ and the interface

SAT can be interpreted as

vTκ s
I
κ (uh) ≈

∑
γ⊂ΓI

κ

∫
γ

[
V

(Λ∇V) · nκ

]T [
τ
(1)
κ τ

(3)
κ

τ
(2)
κ τ

(4)
κ

] [
JUK · nκ
JΛ∇UK

]
dΓ,

and the product between vκ and the boundary SAT can be interpreted as

vTκ s
B
κ (uh,uD,uN ) ≈

∑
γ⊂ΓD

κ

∫
γ

[
V

(Λ∇V) · nκ

]T [
τ (D)

−1

]
(Uκ − UD) dΓ

+
∑
γ⊂ΓN

κ

∫
γ

V ((Λ∇Uκ) · nκ − UN ) dΓ.

4.3 Face-based weak forms of the discretization

Left multiplying the strong-form discretization (15) by vTκ Hκ and using (13), we
arrive at

vTκ Hκ
duκ
dt

= −vTκ Mκuκ +
∑

γ⊂∂Ωκ

vTκ RTγκBγDγκuκ + vTκ Hκfκ

− vTκ sIκ (uh)− vTκ sBκ (uh,uD,uN ) . (18)
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The above equation is the element-based weak form of the discretization. For the
subsequent analysis, two equivalent face-based weak forms will prove more useful.
To obtain the first face-based weak formulation, we sum the element-based weak
form over all Ωκ. After rearrangement, this gives the SBP-SAT version of (4):∑

Ωκ∈Th

vTκ Hκ
duκ
dt

= Rh(uh, vh), ∀ vh ∈ R
∑
nκ ,

where the spatial residual on the right is defined by

Rh(uh, vh) ≡ −
∑

Ωκ∈Th

vTκ Mκuκ +
∑

Ωκ∈Th

vTκ Hκfκ

−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Dγκvκ
Dγνvν


T


T
(1)
γκ −T

(1)
γκ T

(3)
γκ − Bγ T

(3)
γκ

−T
(1)
γν T

(1)
γν T

(3)
γν T

(3)
γν − Bγ

T
(2)
γκ −T

(2)
γκ T

(4)
γκ T

(4)
γκ

−T
(2)
γν T

(2)
γν T

(4)
γν T

(4)
γν




Rγκuκ
Rγνuν
Dγκuκ
Dγνuν


−
∑
γ⊂ΓD

[
Rγκvκ
Dγκvκ

]T [
TDγ −Bγ
−Bγ 0

] [
Rγκuκ − uγD

Dγκuκ

]
+
∑
γ⊂ΓN

vTκ RTγκBγuγN . (19)

The residual definition (19) will be our starting point for the energy stability
analysis in Section 6.

Next, we derive an equivalent face-based residual that will be useful for the
adjoint analysis. Swapping the roles of uκ and vκ in the identity (13), and then
transposing and rearranging the result, we obtain

−vTκ Mκuκ = vTκ DTκHκuκ −
∑

γ⊂∂Ωκ

vTκ DTγκBγRγκuκ,

where we have used the symmetry of Mκ. Substituting this expression for−vTκ Mκuκ
into (19) produces

Rh(uh, vh) ≡
∑

Ωκ∈Th

vTκ DTκHκuκ +
∑

Ωκ∈Th

vTκ Hκfκ +
∑
γ⊂ΓD

vTκ DTγκBγuγD

−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Dγκvκ
Dγνvν


T


T
(1)
γκ −T

(1)
γκ T

(3)
γκ − Bγ T

(3)
γκ

−T
(1)
γν T

(1)
γν T

(3)
γν T

(3)
γν − Bγ

T
(2)
γκ + Bγ −T

(2)
γκ T

(4)
γκ T

(4)
γκ

−T
(2)
γν T

(2)
γν + Bγ T

(4)
γν T

(4)
γν




Rγκuκ
Rγνuν
Dγκuκ
Dγνuν


−
∑
γ⊂ΓD

[
Rγκvκ

]T [
TDγ −Bγ

] [Rγκuκ − uγD
Dγκuκ

]
+
∑
γ⊂ΓN

[
Rγκvκ
Dγκvκ

]T [
BγuγN
−BγRγκuκ

]
.

(20)

5 Adjoint consistency analysis

It is well known in the finite-element community that adjoint, or dual, consis-
tency is necessary for obtaining optimal error rates in the L2 norm [16]. More
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generally, adjoint consistency leads to superconvergent (integral) functional esti-
mates [21, 26–31], which can significantly improve the accuracy of outputs like
lift and drag when using high-order methods. Given the close connection between
SBP finite-difference methods and FE methods, it is perhaps not surprising that
tensor-product SBP discretizations also exhibit superconvergent functionals when
discretized in a dual consistent manner [32,33].

For the reasons listed above, adjoint consistency is a property that we would
like our multi-dimensional SBP discretizations to satisfy. Therefore, in the follow-
ing subsections, we investigate the constraints on the SAT penalties in (15) that
guarantee adjoint consistency. We begin by briefly reviewing the dual problem
associated with the steady version of (1).

5.1 A generic adjoint PDE: the continuous case

The adjoint depends on the primal PDE and a particular functional of interest.
For the following adjoint-consistency analysis, we consider the linear functional

J (U) =

∫
Ω

GU dΩ +

∫
ΓN
VNU dΓ −

∫
ΓD
VD (Λ∇U) · ndΓ, (21)

where G ∈ L2(Ω), VD ∈ L2(ΓD) and VN ∈ L2(ΓN ).
The adjoint, which we will denote by V, is the sensitivity of J (U) to perturba-

tions in the residual. This definition is made precise by the following variational
statement: find V ∈ H1(Ω) such that

R∗(V, δU) ≡ J ′[U ](δU) +R′[U ](δU ,V) = 0, ∀ δU ∈ H1(Ω), (22)

where the prime denotes Fréchet differentiation with respect to the quantity in the
brackets. For the linear output and residual under consideration,

J ′[U ](δU) =

∫
Ω

GδU dΩ +

∫
ΓN
VN δU dΓ −

∫
ΓD
VD (Λ∇δU) · ndΓ

and

R′[U ](δU ,V) = −
∫
Ω

(∇V)T Λ (∇δU) dΩ +

∫
ΓD
V (Λ∇δU) · n dΓ

+

∫
ΓD

δU (Λ∇V) · n dΓ.

To obtain the strong-form of the adjoint PDE, we assume that V is sufficiently
smooth and apply integration by parts to the appropriate terms in (22). This
produces a sum of integrals over Ω, ΓN , and ΓD that vanishes for all δU :

R∗(V, δU) =

∫
Ω

δU [∇ · (Λ∇V) + G] dΩ +

∫
ΓN

δU [VN − (Λ∇V) · n] dΓ

+

∫
ΓD

(V − VD) (Λ∇δU) · n dΓ = 0. (23)
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The integrands in the above integrals must be zero, since δU ∈ H1(Ω) is otherwise
arbitrary, and we conclude that the adjoint satisfies the following PDE:

∇ · (Λ∇V) + G = 0, ∀ (x, y) ∈ Ω,

V = VD, ∀ (x, y) ∈ ΓD,

(Λ∇V) · n = VN , ∀ (x, y) ∈ ΓN .

(24)

5.2 Functional discretization and the discrete adjoint equation

We discretize the functional (21) as

Jh(uh) :=
∑

Ωκ∈Th

gTκ Hκuκ +
∑
γ⊂ΓN

vTγNBγRγκuκ −
∑
γ⊂ΓD

vTγDBγDγκuκ

+
∑
γ⊂ΓD

vTγDTDγ (Rγκuκ − uγD), (25)

where vγN and vγD denote VN and VD, respectively, evaluated at the cubature
nodes of the generic face γ, and

gTκ = [G(x0) G(x1) . . . G(xnκ)]. (26)

Remark 3 The first three terms in (25) are direct discretizations of the first three
terms in (21). The fourth term in (25) is an order hr+1 term; the interpola-
tion/extrapolation operators are exact for degree r ≥ p polynomials, so Rγκuκ =
uγD + O(hr+1). This last term in Jh is included for adjoint consistency [21].

To derive the discrete adjoint equation, we will follow a process analogous
to the continuous adjoint derivation. To this end, we begin with the SBP-SAT
version of (22). Note that in the finite-dimensional case, the Fréchet derivatives
are equivalent to the usual derivative, so we have

R∗h(vh, δuh) = J ′h[uh](δuh) +R′h[uh](δuh, vh)

= δuTh
∂

∂uh
Jh(uh) + δuTh

∂

∂uh
Rh(uh, vh) = 0, ∀ δuh ∈ R

∑
nκ .

The term involving the partial derivative of Jh is

δuTh
∂

∂uh
Jh(uh) =

∑
Ωκ∈Th

δuTκHκgκ +
∑
γ⊂ΓN

δuTκRTγκBγvγN

+
∑
γ⊂ΓD

[
Rγκδuκ
Dγκδuκ

]T [
TDγ
−Bγ

]
vγD.

Next, for the term involving the partial derivative of Rh, we make use of (20). We
replace uκ with δuκ, since uκ appears linearly in Rh, eliminate constant terms,
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and transpose the result:

δuTh
∂

∂uh
Rh(uh, vh) =

∑
Ωκ∈Th

δuTκHκDκvκ

−
∑
γ⊂ΓI


Rγκδuκ
Rγνδuν
Dγκδuκ
Dγνδuν


T


T
(1)
γκ −T

(1)
γν T

(2)
γκ + Bγ −T

(2)
γν

−T
(1)
γκ T

(1)
γν −T

(2)
γκ T

(2)
γν + Bγ

T
(3)
γκ − Bγ T

(3)
γν T

(4)
γκ T

(4)
γν

T
(3)
γκ T

(3)
γν − Bγ T

(4)
γκ T

(4)
γν




Rγκvκ
Rγνvν
Dγκvκ
Dγνvν


−
∑
γ⊂ΓD

[
Rγκδuκ
Dγκδuκ

]T [
TDγ
−Bγ

]
Rγκvκ −

∑
γ⊂ΓN

δuTκRTγκBγDγκvκ.

Summing these terms, we obtain the discrete, SBP-SAT version of (23):

R∗h(vh, δuh) =
∑

Ωκ∈Th

δuTκHκ [Dκvκ + gκ]

−
∑
γ⊂ΓI


Rγκδuκ
Rγνδuν
Dγκδuκ
Dγνδuν


T


T
(1)
γκ −T

(1)
γν T

(2)
γκ + Bγ −T

(2)
γν

−T
(1)
γκ T

(1)
γν −T

(2)
γκ T

(2)
γν + Bγ

T
(3)
γκ − Bγ T

(3)
γν T

(4)
γκ T

(4)
γν

T
(3)
γκ T

(3)
γν − Bγ T

(4)
γκ T

(4)
γν




Rγκvκ
Rγνvν
Dγκvκ
Dγνvν


−
∑
γ⊂ΓD

[
Rγκδuκ
Dγκδuκ

]T [
TDγ
−Bγ

]
(Rγκvκ − vγD)−

∑
γ⊂ΓN

δuTκRTγκBγ(Dγκvκ − vγN )

= 0

Since δuh is arbitrary in R∗h(vh, δuh), we can set δuν = 0 and δuκ = ei, where
ei is the ith column of the nκ×nκ identity. Making these choices, and multiplying
the result by H−1

κ , we obtain the SBP-SAT discretization of the strong form of the
adjoint equation on element Ωκ:

Dκvκ + gκ − H−1
κ (sIκ)∗(vh)− H−1

κ (sBκ )∗(vh, vD, vN ) = 0, (27)

where the adjoint SAT penalties for the interfaces are

(sIκ)∗ (vh) =
∑
γ⊂ΓI

κ

[
RTγκ DTγκ

] [ T
(1)
γκ −T

(1)
γν T

(2)
γκ + Bγ −T

(2)
γν

T
(3)
γκ − Bγ T

(3)
γν T

(4)
γκ T

(4)
γν

]
Rγκvκ
Rγνvν
Dγκvκ
Dγνvν

 ,
(28)

and the penalties for the boundaries are

(sBκ )∗ (uh,uD,uN ) =
∑
γ⊂ΓD

κ

[
RTγκ DTγκ

] [ TDγ
−Bγ

]
(Rγκvκ − vγD)

+
∑
γ⊂ΓN

κ

RTγκBγ(Dγκvκ − vγN ).
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5.3 Adjoint consistency

The question we are interested in answering is, under what conditions is (27) an
accurate discretization of (24)? This is answered by the following theorem.

Theorem 1 The primal discretization (15) and functional discretization (25) pro-
duce an adjoint discretization, (27), that has a truncation error of order hp+1 pro-
vided the exact adjoint V is sufficiently smooth on Ω and the SAT penalty matrices
satisfy

T(1)
γκ = T(1)

γν , T(2)
γκ + T(2)

γν = −Bγ ,

T(3)
γκ + T(3)

γν = Bγ , T(4)
γκ = T(4)

γν .
(29)

Proof Clearly the sum Dκvκ + gκ in (27) is an order hp+1 discretization of the
adjoint PDE in (24). Indeed, Dκ is the same operator used in the primal discretiza-
tion.

The boundary SAT, (sBκ )∗, introduces an error that is also O(hp+1). To see this,
recall that Rγκ and Dγκ are exact for polynomials of degree p, and vγD and vγN
are the exact boundary values evaluated at the nodes of γ. Thus, the differences
Rγκvκ−vγD and Dγκvκ−vγN vanish for polynomial solutions of degree p or less.

To show that the interface SAT is order hp+1, it is sufficient to show that
(sIκ)∗ (vh) = 0 for polynomial solutions V ∈ Pp(Ω). For these polynomials, the
interpolation/extrapolation and normal-derivative operators are exact, so the in-
terpolated values on either side of face γ are equal:

Rγκvκ = Rγνvν ≡ vγ , and Dγκvκ = −Dγνvν ≡ v′γ .

Substituting these identities into the adjoint interface SATs (28) gives

(sIκ)∗ (vh) =
∑
γ⊂ΓI

κ

[
RTγκ DTγκ

] [ T
(1)
γκ − T

(1)
γν T

(2)
γκ + T

(2)
γν + Bγ

T
(3)
γκ + T

(3)
γν − Bγ T

(4)
γκ − T

(4)
γν

] [
vγ
v′γ

]
.

The 2× 2 block matrix in the above sum vanishes under the conditions (29), and
we have adjoint consistency to order hp+1. ut

Remark 4 (Conservation) As shown in [16], adjoint consistency implies conserva-
tion. Therefore, if the conditions (29) are satisfied the SBP-SAT discretization will
be elementwise conservative, in the sense that

∑
Ωκ∈T ′

h
1THκduκ/dt depends only

on the boundary faces of T ′h when fκ = 0, for any subset of elements T ′h ⊂ Th. To
see this, take vκ = 1 and vν = 1 in (20), and make use of Dκ1 = 0, Dγκ1 = 0,
Dγν1 = 0, and Rγκ1 = Rγν1 = 1.

6 Energy analysis

The objective of this section is to further constrain the SAT penalty matrices
based on the conditions for discrete energy stability. Analogous conditions can
then be used to obtain entropy-stable discretizations of the viscous terms in the
Navier-Stokes equations.
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6.1 Energy analysis of the discrete homogeneous problem

Before presenting the conditions for energy stability, we first simplify the penalty
matrices based on the adjoint consistency conditions (29). In particular, we will
drop the dependence of the T(1) and T(4) matrices on the elements:

T(1)
γκ = T(1)

γν ≡ T(1)
γ , and T(4)

γκ = T(4)
γν ≡ T(4)

γ .

In addition, we will also assume that

T(3)
γκ − T(2)

γκ = Bγ . (30)

This is not strictly required by the adjoint-consistency analysis, but by the desire
to make the 4x4 block matrix in (19) symmetric; symmetric discretizations have
been shown to improve the accuracy with which discontinuous Galerkin methods
approximate the eigenvalues of the Laplacian [34]. Note that (30), together with

the conditions of Theorem 1, implies that T
(3)
γκ = −T

(2)
γν , T

(3)
γν = −T

(2)
γκ , and T

(3)
γν −

T
(2)
γν = Bγ , which, in turn, imply the symmetry of the 4x4 block matrix in (19).

We will need the following lemma for the stability analysis. The purpose of
the lemma is to shift the volume terms in the residual Rh to the faces, so that
these terms can contribute to the semi-definiteness of the interface terms. This
idea generalizes the “borrowing trick” employed in [11] to multidimensional SBP
operators.

Lemma 1 For each face γ of element Ωκ, let αγκ > 0 be given such that
∑
γ⊂Γκ αγκ =

1. Then the SBP-SAT residual Rh corresponding to the homogeneous version of
the initial-boundary-value problem (1)–(3) — that is, with F = 0, UD = 0, and
UN = 0 — can be written as

Rh(uh, vh) =

−
∑
γ⊂ΓI


Rγκvκ
Rγνvν
Fκvκ
Fνvν


T


T
(1)
γ −T

(1)
γ T

(2)
γκCγκ −T

(2)
γν Cγν

−T
(1)
γ T

(1)
γ −T

(2)
γκCγκ T

(2)
γν Cγν

CTγκT
(2)
γκ −CTγκT

(2)
γκ αγκΛ∗κ

−CTγνT
(2)
γν CTγνT

(2)
γν αγνΛ∗ν




Rγκuκ
Rγνuν
Fκuκ
Fνuν


−
∑
γ⊂ΓI

[
Dγκvκ
Dγνvν

]T [
T

(4)
γ T

(4)
γ

T
(4)
γ T

(4)
γ

] [
Dγκuκ
Dγνuν

]

−
∑
γ⊂ΓD

[
Rγκvκ
Fκvκ

]T [
TDγ −BγCγκ

−CTγκBγ αγκΛ∗κ

] [
Rγκuκ
Fκuκ

]
, (31)

where we have introduced the matrices

Fκ =

{[
Λxx Λxy
Λyx Λyy

] [
Dx
Dy

]}
κ

, Cγκ =
[
Nx,γRγκ Ny,γRγκ

]
,

Fν =

{[
Λxx Λxy
Λyx Λyy

] [
Dx
Dy

]}
ν

, Cγν = −
[
Nx,γRγν Ny,γRγν

]
,

and

Λ∗κ =

{[
Λxx Λxy
Λyx Λyy

]−1 [
H

H

]}
κ

, Λ∗ν =

{[
Λxx Λxy
Λyx Λyy

]−1 [
H

H

]}
ν
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Proof The full proof follows from straightforward algebra and is omitted; however,
we will highlight two observations that make the connection between (31) and (19)
clearer. First, we note that

CγκFκ = Dγκ and CγνFν = Dγν .

Second, the elemental matrix Mκ can be decomposed as

Mκ =

[
Dx
Dy

]T
κ

[
HΛxx HΛxy
HΛyx HΛyy

]
κ

[
Dx
Dy

]
κ

=
∑
γ⊂Γκ

αγκFTκΛ∗κFκ.

ut

We will now state and prove the main energy-stability result.

Theorem 2 Consider the homogeneous version of (1)–(3), where F = 0, UD = 0,
and UN = 0. The SBP-SAT discretization of this initial-boundary-value problem
has a non-increasing solution norm, with respect to the H matrix, provided

T(1)
γ − T(2)

γκCγκ
(
αγκΛ∗κ

)−1
CTγκT(2)

γκ − T(2)
γν Cγν

(
αγνΛ∗ν

)−1
CTγνT(2)

γν � 0, (32)

TDγ − BγCγκ
(
αγκΛ∗κ

)−1
CTγκBγ � 0, (33)

and T(4)
γ � 0, (34)

where A � 0 indicates that A is positive semi-definite.

Proof The SBP-SAT discretization of the homogeneous equation is given by∑
κ∈Th

vTκ Hκ
dwκ
dt

= Rh(wh, vh),

where Rh(wh, vh) is defined in (31). If we can show that Rh(wh,wh) ≤ 0 for all
wh, then we will have

∑
κ∈Th w

T
κHκdwκ/dt ≤ 0 and the desired result will follow.

The scalar Rh(wh,wh) is nonpositive if the symmetric matrices in the three
sums of (31) are positive semi-definite. We begin by considering the matrix that
appears in the sum over the faces of the Dirichlet boundary:[

TDγ −BγCγκ
−CTγκBγ αγκΛ∗κ

]
� 0.

Since, αγκΛ∗κ is positive definite, the above matrix is positive semi-definite if the
associated Schur complement is positive semi-definite:

TDγ − BγCγκ
(
αγκΛ∗κ

)−1
CTγκBγ � 0,

which is precisely the condition (33).

Next, consider the matrix involving T
(4)
γ in (31):[

T
(4)
γ T

(4)
γ

T
(4)
γ T

(4)
γ

]
=

[
1 1
1 1

]
⊗ T(4)

γ ,

where ⊗ denotes the Kronecker product. Since the eigenvalues of [ 1 1
1 1 ] are zero and

two, it follows from the spectral theory of Kronecker products that the eigenvalues
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of the above matrix are twice the eigenvalues of T
(4)
γ and nγ zeros. Thus, we require

that T
(4)
γ � 0.

Finally, we analyze the matrix containing T
(1)
γ . Similar to the matrix in the

boundary-face sum, we make use of the fact that αγκΛ∗κ and αγνΛ∗ν are positive
definite to conclude that the 4 × 4 block matrix is positive semi-definite if the
Schur complement is also positive semi-definite, i.e.[

1 −1
−1 1

]
⊗

{
T(1)
γ −

[
T

(2)
γκCγκ T

(2)
γν Cγν

] [(αγκΛ∗κ)−1

(αγνΛ∗ν)−1

] [
CTγκT

(2)
γκ

CTγνT
(2)
γν

]}
� 0.

The eigenvalues of
[

1 −1
−1 1

]
are zero and two; thus, to ensure that the above

Kronecker product is positive semi-definite, we must require that

T(1)
γ − T(2)

γκCγκ
(
αγκΛ∗κ

)−1
CTγκT(2)

γκ − T(2)
γν Cγν

(
αγνΛ∗ν

)−1
CTγνT(2)

γν � 0,

which is condition (32). ut

7 Generalization of existing methods

In Sections 5 and 6 we obtained sufficient conditions that allow us to construct
different schemes with adjoint consistency and energy stability. In this section we
show that these conditions can be used to recover two popular interior penalty
methods used in FE methods, namely, the modified scheme of Bassi and Rebay
(BR2) [19] and the symmetric interior penalty method (SIPG) [21,35].

While the stability conditions of Theorem 2 depend on T
(2)
γκ and T

(2)
γν , there

remains considerable flexibility in the values adopted for these matrices, provided
they satisfy (30) and the conditions in Theorem 1. Additionally, although a pos-

itive semi-definite T
(4)
γκ may influence the accuracy and continuity of solutions, it

is not necessary nor is it sufficient to guarantee coercivity of the bilinear form.
Accordingly, a simple and effective choice for the penalty matrices is

T(3)
γκ = −T(2)

γκ =
1

2
Bγ ,

T(4)
γκ = T(4)

γν = 0,

which are the values used for the remainder of the paper. Note that other choices
are possible that lead to asymmetric or one-sided schemes, such as the compact
discontinuous Galerkin scheme [36], but these are not considered in this paper.

We now investigate two specific expressions for T
(1)
γ and TDγ and show how

these are related to BR2 and SIPG.

7.1 The modified scheme of Bassi and Rebay (BR2)

Based on the stability analysis in Section 6, specifically Theorem 2, a straightfor-
ward choice for the SAT penalties is

T(1)
γ =

1

4
Bγ
[
Cγκ

(
αγκΛ∗κ

)−1
CTγκ + Cγν

(
αγνΛ∗ν

)−1
CTγν

]
Bγ , (35)

TDγ = BγCγκ
(
αγκΛ∗κ

)−1
CTγκBγ . (36)
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We now show that the above penalty matrices generalize the modified scheme
of Bassi and Rebay [19] to multidimensional SBP discretizations. For ease of ex-
position, we will consider the scalar constant-coefficient diffusion case, that is

Λ =

[
λxx λxy
λyx λyy

]
= λ

[
1

1

]
.

A similar analysis with a spatially varying tensor Λ gives the same conclusion. In
addition, we will only focus on the interface penalty of BR2, since the relationship
to TDγ is similar.

The penalties in the BR2 method that correspond with the matrix T
(1)
γ are of

the form

CBR2

∫
∂Ωκ∩ΓI

Vκ
1

2

[
nx
(
Lγx,κ + Lγx,ν

)
+ ny

(
Lγy,κ + Lγy,ν

)]
dΓ, (37)

where CBR2 is a positive constant. Here, the scalar lifting operators, Lγx,κ and
Lγy,κ, are defined by the variational statements∫

Ωκ

VκLγx,κ dΩ =
1

2

∫
γ

Vκλ(Uκ − Uν)nx dΓ, ∀Vκ ∈ Pp(Ωκ),

and

∫
Ωκ

VκLγy,κ dΩ =
1

2

∫
γ

Vκλ(Uκ − Uν)ny dΓ, ∀Vκ ∈ Pp(Ωκ),

where Uκ and Uν denote the finite-dimensional solution on the elements Ωκ and
Ων , respectively, and Vκ denotes the test function on Ωκ.

The multidimensional SBP discretizations of the lifting-operator variational
statements are

vTκ Hκl
γ
x,κ =

λ

2
vTκ RTγκBγNx,γ(Rγκuκ − Rγνuν), ∀ vκ ∈ Rnκ ,

and vTκ Hκl
γ
y,κ =

λ

2
vTκ RTγκBγNy,γ(Rγκuκ − Rγνuν), ∀ vκ ∈ Rnκ ,

where lγx,κ ∈ Rnκ and lγy,κ ∈ Rnκ are the discrete lifting operators. Choosing
vκ appropriately (i.e. as elements of the identity matrix), we obtain the explicit
expressions

lγx,κ =
λ

2
H−1
κ RTγκBγNx,γ(Rγκuκ − Rγνuν),

and lγy,κ =
λ

2
H−1
κ RTγκBγNy,γ(Rγκuκ − Rγνuν).

Next, we turn to the SBP discretization of the BR2 penalty (37). Using the
above expressions for lγx,κ and lγy,κ, and the analogous ones for lγx,ν and lγy,ν , we
obtain the discretization

CBR2

2
vTκ RTγκBγ

[
Nx,γ(Rγκl

γ
x,κ + Rγνl

γ
x,ν) + Ny,γ(Rγκl

γ
y,κ + Rγνl

γ
y,ν)

]
=
CBR2

4
vTκ RTγκBγλ

[
(Nx,γRγκH−1

κ RTγκBγNx,γ + Ny,γRγκH−1
κ RTγκBγNy,γ)

+(Nx,γRγνH−1
ν RTγνBγNx,γ + Ny,γRγνH−1

ν RTγνBγNy,γ)
]

(Rγκuκ − Rγνuν)

= vTκ RTγκTBR2(Rγκuκ − Rγνuν),
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where

TBR2 =
CBR2

4
Bγλ

[
(Nx,γRγκH−1

κ RTγκBγNx,γ + Ny,γRγκH−1
κ RTγκBγNy,γ)

+(Nx,γRγνH−1
ν RTγνBγNx,γ + Ny,γRγνH−1

ν RTγνBγNy,γ)
]

=
CBR2

4
Bγ

{[
Nx,γRγκ Ny,γRγκ

] [λH−1
κ

λH−1
κ

] [
RTγκNx,γ
RTγκNy,γ

]
+
[
Nx,γRγν Ny,γRγν

] [λH−1
ν

λH−1
ν

] [
RTγνNx,γ
RTγνNy,γ

]}
Bγ

=
CBR2

4
Bγ
[
Cγκ(Λ∗κ)−1CTγκ + Cγν(Λ∗ν)−1CTγν

]
Bγ .

In the above derivation, we reversed the direction of Nx,γ and Ny,γ for element Ων ,
and we used the fact that diagonal matrices commute to express BγNx,γ = Nx,γBγ
and BγNy,γ = Ny,γBγ .

From the above expression for TBR2, we see that (35) is indeed the SBP gen-
eralization of the BR2 penalty (37) with CBR2 = α−1

γκ . We will henceforth refer to
this scheme as SAT-BR2.

Remark 5 To the best of our knowledge, this is the first time the SBP-SAT gen-
eralization of the BR2 scheme has been presented. This is significant, because it
provides a means of implementing the popular BR2 scheme with multidimensional
SBP operators that do not have underlying basis functions.

7.2 The symmetric interior penalty method (SIPG)

A disadvantage of the SAT-BR2 penalties is that their T
(1)
γ and TDγ matrices can

be computationally expensive to evaluate. This is not an issue for linear prob-
lems — since these matrices can be precomputed and stored if sufficient memory
is available — but it can be an issue in nonlinear problems when the diffusion
coefficient(s) depend on the state.

In contrast to dense penalty matrices, the symmetric interior penalty method

(SIPG) [21,35,37] uses diagonal (or block diagonal for systems) T
(1)
γ and TDγ with

a single parameter that is chosen to be sufficiently large to ensure stability. In
this section, we demonstrate how the multidimensional SBP-SAT generalization
of SIPG can be derived from the conditions in Theorem 2. First, we need the
following lemma.

Lemma 2 Let (λmax)κ be the largest eigenvalue of
[

Λxx Λxy
Λyx Λyy

]
κ

and let ‖A‖2 =√
ρ(AAT ) denote the matrix 2-norm. Then

BγCγκ
(
αγκΛ∗κ

)−1
CTγκBγ �

(λmax)κ‖B
1
2
γRγκH

− 1
2

κ ‖22
αγκ

Bγ . (38)

Proof We recall a few facts that will be useful. The matrices Bγ , Nx,γ , and Ny,γ are
diagonal; therefore, they commute with one another. Furthermore, the diagonal
matrix Bγ holds positive cubature weights on its diagonal, so it can be factored
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as Bγ = B
1
2
γB

1
2
γ . For similar reasons we can write Hκ = H

1
2
κH

1
2
κ . Finally, Nx,γNTx,γ +

Ny,γNTy,γ = I, since Nx,γ and Ny,γ hold the x and y components of the unit normal
along γ.

Now, let uγ ∈ Rnγ be an arbitrary solution on the nodes of the face γ. Then
products with uγ and the matrix on the left of (38) can be bounded as follows:

uTγ BγCγκ
(
αγκΛ∗κ

)−1
CTγκBγuγ

=
1

αγκ
uTγ Bγ

[
Nx,γRγκ Ny,γRγκ

] [H−1
κ

H−1
κ

] [
Λxx Λxy
Λyx Λyy

] [
RTγκNTx,γ
RTγκNTy,γ

]
Bγuγ

≤ (λmax)κ
αγκ

uTγ B
1
2
γ

[
Nx,γ Ny,γ

]{[1
1

]
⊗
(

B
1
2
γRγκH−1

κ RTγκB
1
2
γ

)}[NTx,γ
NTy,γ

]
B

1
2
γuγ

≤ (λmax)κ‖B
1
2
γRγκH

− 1
2

κ ‖22
αγκ

uTγ B
1
2
γ

[
Nx,γ Ny,γ

] [NTx,γ
NTy,γ

]
B

1
2
γuγ

≤ (λmax)κ‖B
1
2
γRγκH

− 1
2

κ ‖22
αγκ

uTγ Bγuγ .

The desired result follows from the above inequality, since uγ is arbitrary. ut

We can now state the SAT-SIPG penalties that lead to energy stability.

Theorem 3 The discretization (15) is energy stable if

T(1)
γ = δ(1)γ Bγ , and TDγ = δDγ Bγ , (39)

where

δ(1)γ =
(λmax)κ‖B

1
2
γRγκH

− 1
2

κ ‖22
4αγκ

+
(λmax)ν‖B

1
2
γRγνH

− 1
2

ν ‖22
4αγν

,

δDγ =
(λmax)κ‖B

1
2
γRγκH

− 1
2

κ ‖22
αγκ

.

Proof The proof follows from Lemma 2, the conditions in Theorem 2, and the

aforementioned choice T
(3)
γκ = −T

(2)
γκ = 1

2Bγ . ut

Remark 6 The approximations that lead to SAT-SIPG produce a more conserva-
tive bound, on the one hand, but a cheaper penalty (than SAT-BR2), on the other
hand. However, this assumes that we can precompute (λmax)κ on each element.
For nonlinear problems, we recommend replacing this value with an estimate for
the upper bound of the spectral radius of the tensor Λ over all nodes of κ; otherwise
the computational advantage of SAT-SIPG over SAT-BR2 will be compromised.

Remark 7 To the best of our knowledge, this is the first time the SIPG penalty
has been related to BR2 using straightforward matrix analysis.

The SIPG penalty parameters δ
(1)
γ and δDγ are similar to those given by Shah-

bazi [37]. Indeed, we have verified that they are identical for degree p operators
on simplex elements with constant-coefficient scalar diffusion, provided
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1. the SBP matrices Hκ and Bγ and their corresponding nodes define cubature
rules that are exact for polynomials of degree 2p, and;

2. the number of SBP nodes is equal to the number of basis functions for Pp.

When these two conditions are satisfied the SBP cubatures reproduce the L2 norm
on the volume and face exactly, so the inverse trace inequalities of Warburton and
Hesthaven apply [17]. However, in general, Hκ is only exact for polynomials of
degree 2p − 1 and there are more SBP nodes than basis functions in Pp, so the

penalties given here differ from [37]. Furthermore, the penalties δ
(1)
γ and δDγ are

more general than those provided in [37], because they are applicable to spatially
varying tensor diffusion and elements other than simplices.

In practice, we define SBP operators on a reference element and employ a co-
ordinate transformation for each element in the physical domain. Therefore, some
remarks are warranted regarding the implementation of the SAT-SIPG penalties
when coordinate transformations are used. Let x(ξ) be an affine and bijective co-
ordinate transformation from reference space, ξ = [ξ, η]T ∈ Ωξ, to physical space.
When such a coordinate mapping is used with SAT-SIPG penalties, (λmax)κ cor-
responds to the largest eigenvalue of[

JΛxx JΛxy
JΛyx JΛyy

]
κ

,

where J is a diagonal matrix holding the determinant of the mapping Jacobian at

each node of Ωκ. In addition, the penalties matrices T
(1)
γ and TDγ in (39) must be

multiplied by the squared norm of the scaled contravariant basis vectors at the
face nodes, i.e., the diagonal matrix whose jth entry is∥∥∥[J (nξ∇ξ + nη∇η)]j

∥∥∥2 , ∀j = 1, 2, . . . , nγ ,

where J = det(∂x/∂ξ) is the determinant of the mapping Jacobian, ∇ξ and ∇η
are the contravariant basis vectors, and nξ and nη are the components of the unit

normal on face γ in reference space. Note that the squared norm ‖B
1
2
γRγκH

− 1
2

κ ‖22
can be pre-computed in reference space.

8 Numerical experiments

This section presents some numerical experiments to verify the theory developed
in Sections 5, 6, and 7. For these experiments, we consider two families of SBP
operators developed for simplex elements.

SBP-Ω: These operators have strictly internal nodes, and the number of nodes
is equal to the number of basis functions in Pp(Ωξ); therefore, the SBP-SAT
discretizations based on these operators are essentially equivalent to collocation
discontinuous-Galerkin finite-element methods. For the degree p = 1 and p = 2
operators, the SBP norm is a 2p degree cubature, while for p = 3 and p = 4,
the norm is a degree 2p − 1 cubature. Thus, for constant coefficient-diffusion,
the SIPG penalty is identical to Shahbazi’s for p = 1 and p = 2, while it is
different for p = 3 and p = 4 (see the discussion in Section 7.2). The SBP-Ω
operators were first presented in [23]; see also [22].
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Table 2: The SBP-Ω and SBP-Γ operators for the triangle. The open circles denote
the locations of the SBP nodes, while the black squares denote the locations of
the face cubature points (for a given degree p SBP operator, the face cubatures
are the same for both families).

degree

family p = 1 p = 2 p = 3 p = 4

SBP-Ω

3 nodes 6 nodes 10 nodes 15 nodes

SBP-Γ

3 nodes 7 nodes 12 nodes 18 nodes

SBP-Γ : These operators were designed to have p + 1 nodes on each face; conse-
quently, the interpolation operator Rγκ uses only those nodes that lie on face γ.
With the exception of p = 1, the SBP-Γ operators have more SBP nodes than
basis functions in Pp(Ωξ). For this reason, there are no (known) basis functions
associated with these operators for p > 1; they are finite-difference operators
but not finite-element operators. The SBP-Γ operators were presented in [10].

Table 2 summarizes the SBP-Ω and SBP-Γ operators considered in this work. For
further details on the construction of these operators, please see [10] and [23].

The SAT-SIPG and SAT-BR2 generalizations in Section 7 are implemented
with face-weight parameters, αγκ, computed using the face area as follows:

αγκ =


A(γ)

A(ΓIκ ) + 2A(ΓDκ )
, γ ∈ ΓI ,

2A(γ)

A(ΓIκ ) + 2A(ΓDκ )
, γ ∈ Γ,

where the function A(γ) computes the size of face γ, i.e., length in 2D and area
in 3D. The condition

∑
γ⊂Γκ αγκ = 1 required in Lemma 1 is clearly satisfied by

the above definition.

Remark 8 As noted above, the interpolation operator Rγκ for the SBP-Γ dis-
cretizations depends only on the nodes on the boundary of γ, so the cost of ap-
plying Rγκ or RTγκ is O(p) in two-dimensions. In three dimensions, the SBP-Γ
operators have (p + 1)(p + 2)/2 nodes on each face and the cost of applying the
interpolation operator and its transpose is O(p2). A consequence of this sparsity
structure of Rγκ, as well as the norm Hκ being diagonal, is that the SAT-BR2
penalty matrix TBR2 has an asymptotic cost of O(p) and O(p2) in two and three
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dimensions, respectively, when SBP-Γ operators are used. In contrast, the SBP-Ω
operators require dense extrapolation operators, so the cost of applying Rγκ and
RTγκ — and, consequently, the cost of TBR2 — scales as O(p2) in two dimensions
and O(p3) in three dimensions.

In all cases the time derivative is discretized using the second-order accurate
Crank-Nicolson method.

8.1 Description of continuous problem

We use the method of manufactured solutions to construct an analytical solution
to the problem (1)–(3). We consider a unit-square domain, Ω = [0, 1]2, and define
the manufactured solution and tensor diffusion to be

U(t, x, y) = e−t sin(2πx) sin(2πy)

and Λ =

[
x2 + 1 xy
xy y2 + 1

]
,

(40)

respectively. The source term F is found by substituting Λ and U into (1). Homo-
geneous Dirichlet boundary conditions are applied along the boundaries of Ω.

We will assess adjoint consistency indirectly by verifying that we achieve func-
tional superconvergence. For this purpose we define the functional

J (t) =

∫
Ω

U(t, x, y)2dΩ =
1

4
e−2t, (41)

which is a special case of (21) with VN = 0 and VD = 0.

8.2 Accuracy study

The first experiment is intended to study the accuracy of the primal discretization
as well as verifying the adjoint consistency analysis; for the former we examine
solution accuracy while for the latter we examine functional accuracy.

Remark 9 The primal and adjoint solution must be accurate to order hp+1 to
obtain O(h2p) accurate functionals [16,21]. Therefore, obtaining 2p-rate supercon-
vergent functionals provides an indirect verification of adjoint consistency.

To assess the solution error at some time t, we use the L2 error with the
element integrals approximated using the SBP matrix Hκ scaled appropriately by
the (affine) mapping Jacobian. For the functional error we use εJ (t) ≡ |J (t) −
Jh(t)|, where Jh(t) is discretized as shown in (25).

The discretization is advanced in time using Crank-Nicolson with a step size
of ∆t = 10−5 until t = 0.01 units (i.e. 1000 time steps). We consider four grids
with K = 128, 288, 648, and 1458 uniform triangular elements. The coarsest mesh
is shown in Figure 1a. The nominal element size is given by h ≡ 1/

√
K/2.

The solution error at the final time, t = 0.01 units, is plotted versus h in
Figures 2a and 2b for the SBP-Ω and SBP-Γ operators, respectively. In all cases
the discretizations display p + 1 convergence rates. For this particular problem,
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(a) Coarsest mesh, K = 128 (b) Perturbed mesh, 16× 16

Fig. 1: Example meshes used for numerical experiments.

the discretizations based on SBP-Γ operators are somewhat more accurate using
SAT-SIPG penalties, and the SBP-Ω operators have slightly lower errors with
SAT-BR2 penalties.

Figures 2c and 2d plot the functional errors at t = 0.01 for the SBP-Ω and SBP-
Γ operators, respectively. Here we observe rates of approximately 2p, which agrees
with the theoretical order of convergence for adjoint-consistent discretizations of
integral functionals [21, 32]. The only significant outlier is the p = 2 SBP-Γ dis-
cretization with SAT-SIPG penalties, which does not display its asymptotic-error
behavior on the grids considered; however, it is interesting that this scheme is
significantly more accurate than the other p = 2 discretizations.

Finally, we note that, for p > 1, the functional errors of the SBP-Γ discretiza-
tions are noticeably smaller than the corresponding SBP-Ω discretizations. This
is opposite the trend observed for multi-dimensional SBP discretizations of advec-
tion problems [22,23]. Further study and analysis is necessary to explain why one
operator performs better for advection problems while the other performs better
for diffusion problems.

8.3 Tightness of the stability bound and energy stability

In Section 6 we proved the sufficiency of the stability conditions, but not the

necessity. Therefore, scaling T
(1)
γ and TD by a relaxation factor σ ∈ (0, 1] may

still yield a stable bilinear form. To some degree, such a relaxation factor can
serve as a measure of the tightness of the stability conditions. For example, overly
conservative SAT penalties will allow for a relaxation factor σ � 1; on the other
hand, a necessary and sufficient stability condition would only permit σ ≥ 1.

To study the tightness of the stability conditions, we investigate the effect of
scaling the penalties on the spectra of the SBP-SAT discretizations. In particular,
we compute the eigenvalues of the global stiffness matrix A(σ), which is based
on the bilinear form (19) with Λ defined by (40); the dependence of A(σ) on the
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(a) L2 error, SBP-Ω (b) L2 error, SBP-Γ

(c) functional error, SBP-Ω (d) functional error, SBP-Γ

Fig. 2: L2 solution and functional errors at the final time versus element size h.

relaxation factor comes about because T
(1)
γ and TD are scaled by σ, as described

above. The penalties are mesh dependent, so we consider the less ideal but more
realistic mesh shown in Figure 1b for this study. This mesh is extremely rough
and almost tangled; indeed, the largest angle in the mesh is 179.90°.

We will denote the eigenvalues of A(σ) by µi(σ), i = 1, 2, . . . , (
∑K
κ=1 nκ). Ac-

cording to the theory developed in Sections 6 and 7 the maximum eigenvalue
should be non-positive, maxi µi(σ = 1) ≤ 0, since the discretizations are symmet-
ric negative-semi-definite. However, as we decrease σ we expect some eigenvalues
to eventually become positive. The question we are interested in answering is, how
small does σ need to be for this to happen?
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 3: Spectra of the SBP-Γ , SAT-BR2 discretizations as a function of the penalty
relaxation factor σ.

Figure 3 plots the spectra for the discretizations based on the SBP-Γ operators
with scaled SAT-BR2 penalties. The spectra are plotted in horizontal sets adjacent
to the corresponding value of the relaxation parameter σ, which is varied from
σ = 1 to σ = 0.2 in increments of 0.05. As σ is decreased the spurious eigenvalues
shift right until one or more of the eigenvalues becomes positive; see Section 8.4
for further discussion of the spurious eigenvalues and the spectrum more generally.

The dashed lines in the subfigures of Figure 3 connect the largest (positive)
eigenvalue from each spectrum, and the last two points on this line are extrap-
olated to estimate the critical relaxation factor, σ(crit), below which the scheme
is unstable. For the SBP-Γ operators with SAT-BR2 penalties we see that the
critical relaxation factor is approximately 0.6 for this rough mesh, which suggests
that the stability bound is relatively tight — in the sense that it is not orders of
magnitude larger than necessary.

Table 3 lists the critical relaxation factors for all combinations of operators and
penalties considered. The critical relaxation factors are less than one for all the
discretizations, which is consistent with the conditions in Theorem 2. In general,
σ(crit) is larger for the SBP-Γ operators, indicating that the bound is tighter for
these operators. Furthermore, as expected, the critical relaxation factor is larger
for SAT-BR2 than it is for SAT-SIPG, since the latter is essentially a conservative
bound on the former.

To complement the above study of σ(crit), we solve the homogeneous problem
(F = 0, and UD = 0) using two different relaxation factors for each family of SBP
operators: σ = 1, 0.3 for SBP-Ω and σ = 1, 0.45 for SBP-Γ . The smaller, unstable
values of σ are chosen based on the results in Table 3. As mentioned in Section 6,
the solution of the SBP-SAT discretization will have a decreasing energy, provided
the stability conditions of Theorem 2 are satisfied.
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Table 3: Critical relaxation factors, σ(crit), that indicate the tightness of the sta-
bility bound for the four discretizations considered.

SBP-Ω SBP-Γ

degree (p) SAT-BR2 SAT-SIPG SAT-BR2 SAT-SIPG

1 0.325 0.320 0.661 0.637
2 0.369 0.333 0.577 0.455
3 0.364 0.315 0.622 0.455
4 0.416 0.354 0.574 0.450

For this experiment, we again use the 16×16 perturbed mesh shown in Figure
1b and a time step of ∆t = 10−3. For the initial condition, we generate random
values at the collocation nodes, and both the scaled and unscaled cases use the
same initial condition for a given SBP operator and degree p.

Figure 4 plots the L2 solution energy versus time: the upper and lower figures
correspond to scaled and unscaled penalties, respectively. As can be seen, all so-
lutions based on scaled penalties (i.e. σ = 0.3, 0.45) diverge eventually, even those
cases for which the energy reduces below 10−5. In contrast, the energy for solutions
corresponding to unscaled penalties (i.e., σ = 1) is monotonically decreasing, as
expected.

8.4 Accuracy of the spectra and conditioning

We conclude the results by investigating the accuracy of the spectra and the related
conditioning of the discretizations. In order to compare with analytical eigenvalues,
we consider the Laplace operator with unit diffusion, Λ = [ 1 0

0 1 ], on the domain
[0, 1]2. In this case, the analytical eigenvalues for the Laplacian are given by

µ
(exact)
i,j = π2(i2 + j2), ∀ i, j = 1, 2, 3, . . . .

For this study, the eigenvalues for the discretizations are based on the matrix1

H−1A, where H denotes the global mass matrix and A denotes the global stiffness
matrix defined by the bilinear form in (19). The discretizations are formed on the
course uniform mesh shown in Figure 1a. In all cases we use unscaled penalties
(σ = 1).

Figure 5 plots the relative error in the eigenvalues, defined below, for the four
discretizations under consideration:

relative eigenvalue error ≡
∣∣∣µi,j/µ(exact)

i,j − 1
∣∣∣ ,

where µi,j denotes an eigenvalue of H−1A. The errors are plotted versus eigenvalue
index, which corresponds to ordering the eigenvalues in non-decreasing magnitude.

1 Equivalently, we can consider the generalized eigenvalue problem Avi,j = µi,jHvi,j ; see,
for example, [38, Chapter 8]
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(a) SBP-Ω, σ = 0.3 (b) SBP-Γ , σ = 0.45

(c) SBP-Ω, σ = 1 (d) SBP-Γ , σ = 1

Fig. 4: Energy history of homogeneous problem advanced in time using Crank-
Nicolson. Symbols are spaced logarithmically for clarity.

As expected, we see that all the schemes accurately capture the low-frequency
modes, and that the error in these modes is decreased significantly by using higher-
order schemes. At the other extreme, the high-frequency modes are poorly esti-
mated. For analogous DG schemes, it is known that the high-frequency eigenvalues
of H−1A are associated with spurious discontinuous modes [34,38,39].

There is only one notable difference between the subplots in Figure 5. There is
a range of eigenvalues between index 600 and 1000 that the SBP-Γ discretizations
capture accurately relative to the SBP-Ω discretizations. The difference is not
related to the number of nodes per element, because even the p = 1 discretizations
exhibit this difference; recall, both the SBP-Γ and SBP-Ω operators have 3 nodes
per element. This may, in part, explain why the SBP-Γ discretizations produce
smaller functional and solution errors for second-order PDEs — as discussed in
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(a) SBP-Ω with SAT-BR2 (b) SBP-Γ with SAT-BR2

(c) SBP-Ω with SAT-SIPG (d) SBP-Γ with SAT-SIPG

Fig. 5: Relative error in the spectra of the spatial discretizations on the uniform
8× 8 mesh in Fig. 1a. Symbols are spaced logarithmically for clarity.

Section 8.2 — but this merely shifts the burden to explaining why these operators
have better spectral-approximation properties.

Table 4 lists the condition numbers of the stiffness matrix, A, for the discretiza-
tions considered. As with conventional DG schemes, the condition number grows
rapidly with p, which is a consequence of the spurious eigenvalues associated with
the high-frequency, discontinuous modes. The resulting semi-discrete problem is
stiff and is best solved using an implicit time-marching method. Of course, large
condition numbers are also a concern for implicit solution methods. However, the
linear system that arises in implicit methods is a linear combination of the diagonal
mass matrix and the stiffness matrix, and the combination has more favorable con-
ditioning; see [39] for the DG case. Furthermore, in the context of iterative Krylov
solvers, the largest eigenvalues can be effectively eliminated using a smoother, e.g.
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Table 4: Condition numbers of the Laplace-equation bilinear forms on the uniform
8× 8 grid with scalar unit diffusion.

SBP-Ω SBP-Γ

degree (p) SAT-BR2 SAT-SIPG SAT-BR2 SAT-SIPG

1 782.84 887.51 256.14 254.29
2 2870.19 3253.98 1463.22 1601.83
3 10175.81 11604.45 4670.38 5066.73
4 19249.23 22339.10 14541.89 15305.40

Gauss-Seidel or ILU preconditioners, since these eigenvalues are associated with
high-frequency modes.

9 Summary and Conclusions

We generalized the SAT methodology to accommodate multi-dimensional SBP dis-
cretizations of second-order PDEs, including SBP operators whose volume nodes
do not coincide with a boundary cubature. We considered a general form of SAT
that uses dense penalty coefficient matrices on each face of the SBP elements.
Starting with this general framework, we carried out analyses of adjoint consistency
and energy stability, and, based on these analyses, we determined parameter-free
conditions on the coefficient matrices that guarantee a conservative, energy-stable,
primal-consistent, and adjoint-consistent discretization.

In contrast with previous finite-element analyses of interior penalties, the SAT
conditions given here apply to general (tensor) diffusion coefficients and arbitrary
elements. Furthermore, the conditions are entirely algebraic. Using the properties
of SBP operators, our analysis accounts for inexact integration explicitly from the
beginning.

Two popular interior penalty methods used in the FE community, BR2 and
SIPG, were generalized to multi-dimensional SBP-SAT discretizations. We demon-
strated that the SIPG penalty can be obtained from BR2 using straightforward
matrix analysis; to the best of our knowledge, this algebraic connection has not
been previously reported.

Several numerical test cases were carried out to verify the analysis and compare
the performance of SAT-BR2 and SAT-SIPG when applied in conjunction with
two families of SBP operators: the so-called SBP-Γ and SBP-Ω operators. Mesh
refinement studies confirmed that the discretizations achieve design order and that
they produce superconvergent functionals; the latter was used to establish adjoint
consistency. Energy stability was demonstrated using an extremely skewed mesh.
Furthermore, our stability bound was shown to be relatively tight in the sense
that a scaling factor applied to one of the SATs could not be reduced below one
order of magnitude without causing instability. Finally, the spectra of the spatial
discretization was shown to be consistent with analogous discontinuous Galerkin
methods.
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