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Abstract—The effective execution of unstructured mesh based
particle-in-cell, PIC, simulations on GPUs requires careful design
and implementation choices to ensure performance while main-
taining productive programmability. This paper overviews the
developing PUMIPic library that employs a set of mesh centric
data structures and algorithms upon which unstructured mesh
PIC simulation codes can be developed. Current performance
results for component tests on up to 96 GPUs of the Summit
system at Oak Ridge National Laboratory are presented.

Index Terms—unstructured mesh, particle-in-cell, plasma
physics

I. INTRODUCTION

An important class of multiscale simulation is the Particle-
in-Cell (PIC) method in which tracked particle motion is
coupled to fields described in terms of partial differential
equations that are discretized and solved for on meshes cover-
ing the domain of interest. The current and planned exascale
computers are now providing the level of computational power
required for the PIC method to be effectively applied to a wide
range of scientific and engineering problems. For example PIC
methods are being used in key simulations central to the design
and planned operation of the ITER fusion tokamak. Due to
their ability to deal with very general geometries and support
general anisotropic mesh gradations, these simulation codes
are increasingly employing unstructured mesh discretizations
of the simulation domains. The price that has to be paid
when using unstructured meshes is the need to employ more
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complex data structures and core mesh level operations than
those that are required when structured meshes are employed.
The need to attain performance on GPUs has only increased
the complexity of developing performant unstructured mesh
methods. The goal of developing the PUMIPic library pre-
sented in this paper is to provide the developers of PIC
simulation codes that want to employ unstructured meshes
with a set of GPU enabled, distributed mesh, data structures
and unstructured mesh operations upon which performant PIC
simulation codes can be developed.

Before presenting the PUMIPic library, section II briefly
overviews the steps and operations common to PIC simulations
emphasizing the mesh/particle interactions when unstructured
meshes are used. To provide a better appreciation of the com-
plexity of the operations and manipulations carried out, key
mesh/particle interactions that are executed by the XGC [1],
[2] fusion plasma gyrokinetics code are also outlined.

Section III introduces the key structures, operations and
supporting procedures that constitute the PUMIPic library. The
core data structure is the one that relates particles to the mesh
elements. To meet the need for effective GPU execution the
Sell-C-o structure proposed by Hoefler et.al. [3] for matrix-
based graph operations for efficient execution on GPUs is
being used. The Omega library [4] from Sandia National Labs
provides the unstructured mesh topology and field information
on GPUs. A layer is built on top of Omega to better support the
distribution of mesh entities for PIC simulations. Key opera-
tions using these structures are discussed including: adjacency
search for locating the new element of particles after a push
and field synchronizations for overlapping regions of mesh
entities across processes. The status of the implementation of
PUMIPic is presented in section IV while section V indicates
the initial results for key operations executed on up to 96 GPUs



of the Summit system at Oak Ridge National Laboratory.

II. UNSTRUCTURED MESH PIC SIMULATION

PIC codes perform a two scale information passing mul-
tiscale simulation in which particles capture the fine scale
behavior and PDE defined over the domain of interest capture
the coarse scale behavior. When the domains of interest are
non trivial the coarse scale PDE fields are solved using a
mesh based discretization technique. Given this, a most direct
implementation of a PIC simulation consist of four operations
that are executed at each time step of the simulation. The four
operations are:

o Particle Push where the particle positions are advanced
using information assigned to the particles based on the
current domain mesh fields.

o Particle-to-Mesh where, based on the new positions of
the particles, the mesh based fields driving the time
dependent global fields are updated.

o Field Solve where the domain level PDEs are solved
using a mesh based discretization to update the full set
of global mesh based fields for the current time step.

o Mesh-to-Particle where the particle level information
needed to push the particle for the next time step is
mapped from the mesh to the particles.

The effective parallel implementation of a PIC calculation
needs to define and maintain acceptable load balance while
minimizing the impact of data access/motion and communica-
tions. This is a substantial challenge in a two scale information
passing simulation where calculations are executed on two
different scales that must share data between them.

In the common case where the push operation is collision-
less (collisions in plasmas are often modeled by methods
that avoid the need to intersect particle trajectories), each
particle is advanced independently meaning that the push
of particles is embarrassingly parallel. However, the particle
to mesh operation requires interactions between the particle
data and the mesh data which must be determined based on
the relationship of the particle to mesh that has, in general,
changed due to the particle’s motion. The complexity of these
interactions may be substantial and are such that the proper
parallel implementation requires low level synchronization
to ensure correct calculations. To exemplify the types of
interactions that can occur, we consider the particle-to-mesh
process for electrons and ions in the XGC PIC code.

In XGC particles exist inside a 3D tokamak, while the
unstructured mesh is stored as a 2D cross section representing
poloidal planes around the tokamak. The position of a particle
is represented with p, z, ¢ where p and z define the in-plane
coordinate on the mesh and ¢ is the angle around the tokamak.
A particle’s parent element is defined as the element which
spatially contains the particle’s planar position. The parent
element is determined by projecting the particles position to
a ’virtual’ plane, V. The term ‘virtual’ is used as the particles
position along ¢ is fixed, to support a static mapping to ‘real’
planes where the particles contribute to mesh field values.
The hashed ellipse in Figure 1 depicts a virtual plane with
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Fig. 1. Scatter (particle-to-mesh) transformation for ions. The black disc
within the triangles is the particle being evaluated. The gray discs in the ion
sub-figures are mesh vertices. Scatter points along the gyro rings (e.g., the
rings labeled go and g1) are marked with small black dots.

a black disc marking the particle within the triangular parent
element. To perform the subsequent scatter (particle-to-mesh)
operation XGC must use field following projections to the
polodial planes ahead, R1, and behind, R0, it. The projection
is computed using the particle’s ¢ coordinate and the static
field-following background field. Note, the ¢ of the virtual
plane bisects the bounding real planes R0 and R1. The curved
line segment in Figure 1 represents the projection of a point
in the virtual plane to a point in the R0 and R1 planes. The
parent elements of the projected points are the ‘real’ elements
M? C RO and M? C RI1.

The projection process for ions uses gyro scattering. Given
the state of an ion, gyro scattering distributes ion information
to multiple mesh vertices on R0 and R1 following a predefined
pattern. For each mesh vertex the pattern is defined by a
series of concentric rings centered on the vertex. Along each
ring a number of points are defined; the black dots in the
top-middle and right gyro ring and scattering sub-figures of
Figure 1. Each of these point is projected to the RO and R1
planes using the field following projection operation. Weighted
field contributions from the ion are added to the bounding
vertices of the ‘real’ parent elements containing these points.
The vertices bounding the parent elements on R0 and R1 are
stored in the gyro scattering pattern associated with the source
vertex and its gyro ring number. For electrons, the projection
does not use gyro scattering. Instead the vertices of the parent
element of the electron are projected to RO and 1 where
weighted contributions are applied similarly as the ion gyro
scatter.

Given the use of the ‘virtual’ plane fixed at ¢ = 0, this
vertex-to-vertex mapping is precomputed for both electron and



ion scatter. At runtime the ion state defines the gyro radius r
at which information will be distributed. In Figure 1 the rings
bounding 7, depicted as gg and g;, are selected to receive
contributions from the particle marked with a black disc on
the virtual plane.

Storage of the gyro ring pattern for each mesh vertex
requires at most 2* 3% G * M integers where G is the number
of gyro rings, M is the number of points along each ring.
The factor of three accounts for the three vertices bounding
each element containing a point along each gyro ring while
the factor of two accounts for the projection onto the R0 and
R1 planes. If G and M are five and eight, respectively, then
each vertex will need to store at most 2 * 3 * 5 % 8 = 240
integers; 960B for four byte integers.

After all the particles are pushed and the mesh level fields
have been updated based on the new particle positions, the
updated mesh based fields must be evaluated. At this point this
is a purely mesh-based operation that must also be executed in
parallel to ensure scalability and effective parallel execution.
Typically this operation is not the dominate step in a PIC
simulation. For example, in the current XGC code this step
consist of a set of poloidal plane implicit finite element solves
that account for approximately 10 percent of the total time. In
implementations where the mesh is distributed, an issue that
does arise is that distribution of the mesh that is most effective
to support the mesh-based PDE analysis is likely different from
that which is optimal for the other three steps. It is clear the
cost of alternating between two different distributions of the
mesh for each time step would not be satisfactory and that one
wants to employ a distribution that is most effective for the
other three steps and make the mesh based solve as effective
as it can be based on that mesh distribution.

The mesh to particle step for ions is the inverse of the gyro
scatter step. For each mesh vertex bounding the parent element
of an ion the gyro scatter map is used to lookup the mapped
vertices and read their field values. The values from the parent
vertices of the ions are then interpolated to the ions position
within the element. Likewise, the electron mesh to particle
step is the inverse of the particle to mesh step.

III. PUMIPIC

The goal of the PUMIPic library is to provide a set of data
structures and services to support the development of unstruc-
tured mesh based PIC simulation codes. PUMIPic takes a mesh
centric perspective of the data structures which is not what
is commonly used in the development of PIC codes. More
specifically, in PUMIPic access to the particles must be done
through the mesh. The common approach taken in PIC codes is
to employ independent particle and mesh data structures and to
append information to the particle data structure indicating the
mesh element each particle is currently associated with. Since
the mesh data is substantially smaller than the particle data,
most implementations assume that the core mesh data needed
is small enough that a complete copy can be stored on each
process. In addition, these implementations employ a spatial
background grid, typically uniform, to support searches to

determine the association of particles with elements once they
have been pushed. At the basic level there are two concerns
with the more standard approach. The first is that scalability
with respect to the mesh is not possible since it is replicated
and not distributed. The second is that if a PIC code wants
to take advantage of graded anisotropic unstructured meshes,
more complex, and more expensive, search structures than a
uniform grid must be used. A less obvious concern for the
standard approach is that as the simulation progresses the
memory access patterns can degrade.

If one wants to have distributed data for both the mesh
and particles it is clear that having independent structures
for both will not be tractable since there will be no clear
means to effectively control the expensive interprocess com-
munications that are required. The approach taken in the
development of PUMIPic is to have the mesh as the core
distributed data structure and to relate the particles directly to
the mesh elements. This provides a consistent means to deal
with fully distributed PIC calculations and has specific data
access pattern advantages. Of course since the particles move
from element to element, there are complexities that must be
addressed for an effective execution.

PUMIPic’s core data structures for the unstructured mesh
and particles are natively designed for performant execution
on GPUs. An additional layer is built on top of the mesh
data structure for the specialized multi-process parallel design
for distributed mesh PIC in PUMIPic. PUMIPic also provides
operations that are required for unstructured mesh PIC simu-
lations. These operations include determining the new parent
elements of particles after a push, restructuring the particle
data structure with new parent elements, and synchronizing
field information associated with mesh entities across the
distributed mesh.

A. Mesh Data Structure

PUMIPic uses Omega [4] for maintaining the unstructured
mesh and field information on GPUs. Omega defaults all
memory and execution to the GPU ensuring minimum need
to transfer between the host and device. Omega provides
abstractions to common routines to perform mesh operations
in a data parallel approach.

B. Particle Data Structure

Since particle operations tend to dominate the computation
in PIC simulations, it is vital to have a particle data structure
that is optimized to support efficient operations on GPUs.
PUMIPic uses a structure called the Sell-C-o (SCS) [3]. The
SCS can be thought of as a rotated Compressed Sparse Row
(CSR) data structure. Figure 2 shows an example of converting
a matrix to CSR to SCS. The SCS groups rows into chunks of
size C which is equal to the SIMD width of the hardware being
run on. Each chunk is first ordered vertically then horizontally
through the rows of the chunk. Padding is added to the ends of
each row such that all rows in a chunk have the same length.
Additionally a parameter o controls sorting of the rows before
chunks are setup in order to decrease padding and evenly



distribute the workload within a chunk. Figure 2 includes two
SCS with no sorting and full sorting. The SCS with full sorting
has significantly less padding than no sorting: 12 to 32.
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Fig. 2. Conversion of a matrix (left) to Compressed Sparse Row (middle) to
Sell-C-o (right) with no sorting and full sorting [5].

The ordering of chunks and sizing to the SIMD width allows
the structure to map directly to the access patterns of the
hardware. Each chunk can be distributed to a team of threads
for efficient operation and memory access. However, highly
irregular data will result in an imbalance of work being sent
to each team. Besta et al. suggest using vertical slicing of
chunks to create approximately equal slices for operations [5].
Vertical slicing leads to more slices to operate on allowing
more concurrency and a better balance of work per team.

For usage as a particle data structure, the SCS has a row
for each element in the mesh. Cells are then added for each
particle in the element. To store all of the data associated with
a particle, an SCS is constructed for each piece of information
for a particle that are maintained throughout the simulation.
In order to support PIC simulations, the SCS must support
movement of particles between elements, addition and removal
of particles, and migration of particles between processes.

C. Mesh Partitioning for Particle Push

For distributed-mesh PIC, the unstructured mesh is par-
titioned across processes where each process is assigned
ownership of a collection of elements. The set of mesh
elements owned by the process and their closure make up a
core ‘part’. Additionally, each process must maintain sufficient
neighboring mesh information to perform particle calculations
and particle-mesh interactions without communications. The
core part and neighboring information constitute a PICpart.
Figure 3 shows a PICpart constructed with a core region plus
several layers of buffered elements.

Fig. 3. From left to right: Partitioned mesh, core part, buffer around core
part, PICpart

In a past version of PUMIPic, buffering was done using
layers of elements off the part boundary as shown in Figure 3.
This approach had memory problems when the overlap of
buffers was large due to the mesh data structure maintaining
remote copy information for each copy of a given mesh entity.
In the new version of PUMIPic, full parts are buffered around
the boundary instead of layers of elements as seen in Figure 5.

Constructing PICparts with additional elements beyond
those that satisfy the field dependency of particles comes
with an increased memory cost. Offsetting this cost is an
increase in mesh field synchronization performance via bulk
communications. On each part a global entity numbering
enables single-instruction multi-thread (SIMT) parallel array
operations for sending, receiving, and updating the large arrays
of part field data.

As particles move around a PICpart, some will move too
close to the edge of the buffer and will not be able to perform
all mesh-particle interactions or be in danger of being pushed
outside the domain of the PICpart. Any element that cannot
guarantee a particle will remain on process after a push or
cannot perform an interaction is referred to as unsafe. If a
particle moves to an unsafe element then the particle must
be moved to a PICpart where its element is in the safe zone.
Determining unsafe elements prior to running the simulation
is not straight forward and is different per simulation. Instead,
PUMIPic labels the elements of the owned part and a small
portion of the buffer elements as safe and migrates the particles
when they leave the safe elements. Assuming a conservative
strategy is taken to assign safe elements then particles will be
migrated before entering the unsafe region of the PICpart.

Continuous migration of particles due to leaving the safe
zone of a PICpart can lead to an imbalance of particles. Since
the PICparts have overlapping regions of buffered elements,
there is the capability to employ dynamic load balancing to
maintain a better balance of particles by exchanging particles
within the buffered regions. Diamond et.al. [6] discuss an
approach to perform dynamic load balancing on distributed
mesh PIC with consideration of the safe zone.

D. Adjacency Search

After each particle push operation, particles are displaced
to a new position. As such, some particles will be pushed
to a new element. In order to find the new element the
particles belongs to, an adjacency walk procedure is used
called adjacency search. This operation starts at the initial
element for each particle and iterates to adjacent elements
until the new element is found. Figure 4 depicts the path of a
particle through a 2D mesh using edge adjacencies.

E. SCS Rebuild/Migration

Once the new parent element of each particle is computed,
the SCS structure must be reconstructed to properly account
for the changes. First particles that have moved outside the
safe elements of a PICpart must be migrated to a PICpart
where they will be in a safe element. Once all particles on a
process are within safe elements of the PICparts the SCS is



Fig. 4. Path of a particle through a 2D triangular mesh using edge adjacencies.

rebuilt by moving particles to their new parent element and
reapplying sorting and padding to fill the structure’s format.

F. Field Synchronization

A common mesh operation on a distributed mesh is field
synchronization. This operation takes values of a field across
multiple processes and combines the values to get the full
value of the field across all mesh entities. Since PUMIPic
buffers entire parts to make up PICparts, field synchroniza-
tions can be done by exchanging the large field data arrays
associated with each part. Additional care must be taken at
the boundary of PICparts, as lower dimension entities exist
on PICparts that do not have a full copy of the parts.

IV. IMPLEMENTATION

PUMIPic [7], Parallel Unstructured Mesh Infrastructure
for Particle-in-cell, is an open source library being designed
for performance running on supercomputers with GPUs. For
performance portability, Kokkos [8] is used to abstract memory
access and parallel execution on GPUs. Implementation details
for the particle data structure, PICparts, and the operations in
PUMIPic are discussed below.

A. Particle Data Structure

The implementation of the SCS for PUMIPic’s particle
structure is designed to support different applications’ defini-
tion of a particle. As such, the storage for each particle consists
of an application defined set of statically sized datatypes. The
particle structure maintains an SCS for each data type that
uses the same indexing scheme.

In order to hide the complexity of the SCS and its indexing
scheme, an abstraction of the parallel loops is provided for
users. Algorithm 1 shows the necessary code to perform a loop
over elements/particles in the SCS. Line 1 declares a lambda
to perform some operation. Line 2 uses a mask to ignore the
padded entries of the SCS. Line 6 runs the lambda over the
SCS on the GPU.

Algorithm 1 Example pseudocode to loop over SCS particles
1: lambda = LAMBDA (element_id, particle_id, mask) {
2: if mask is true then
3 Perform operation on particle

4: end if

5.

6

scs.parallel_for(lambda);

Fig. 5. A partitioned mesh (left), the PICpart for part A with minimum
buffering (middle), and the PICpart for part A with 6 layers of BFS buffering
(right)

B. PICparts

PUMIPic supports different methods to construct the buffer-
ing for PICparts and designating the safe elements. Given
the initial partition of the mesh, the buffering is constructed
from one of three methods: full, minimum, or breadth-first
search (BFS). The full case buffers the entire mesh for each
PICpart. This is equivalent to traditional PIC where each
process maintains a copy of the entire mesh. Full buffering
is used when the memory cost of the mesh is not an issue.
Minimum buffers only the parts adjacent to the boundary of the
owned part. This method can be too conservative depending
on the mesh partition. The BFS method is a safer method
that buffers parts within a number of layers of a topological
breadth-first search. This approach captures parts that are close
to the boundary of the owned part but not directly adjacent.
Figure 5 shows a partition of a mesh and PICparts for one part
using minimum and BFS buffering. With minimum buffering
the PICpart lacks mesh entities near the part boundary that are
required in some PIC simulations.

The safe zone can be constructed with the same three
methods as the buffering. Full safe zone is only possible to
use when the buffer is also full. Minimum designates only the
owned part as safe which is too conservative and will lead to
more particle migrations. The BFS sets all elements within a
breadth-first traversal from the owned part to be safe and is
the best choice when the mesh is distributed.

C. Adjacency Search

Given a particle within an element, its current position,
and a destination position computed by the push operation,
a walk to adjacent elements via M/ ¢~! mesh entities (edges
bounding faces in 2D or faces bounding elements in 3D) is
performed. The walk is executed on the GPU by running a
sequence of parallel SCS lambdas over the particles within a
loop that terminates once all particles have reached the element
containing their destination position. The first parallel lambda
computes the barycentric coordinates (u,v,w for triangles)
for the destination position and the current element. If the
position is contained within the element, [u,v,w] >= 0,
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Fig. 6. A triangle and a point outside it marked with a black dot. The three
barycentric coordinates u, v, w are depicted as the area of the sub-triangles
formed by an edge and the point. Coordinate w has the minimum value and
is associated with mesh edge M Zd

then the particle is set as ‘done’. Otherwise, the mesh entity
M2~ associated with the minimum coordinate is marked as
the next entity to traverse. For example, Figure 6 depicts the
minimum coordinate w associated with mesh edge M for the
point (black dot) outside the triangle. Next, a lambda checks
if the marked entities are classified on the geometric model
boundary. If so, application specific particle-wall interactions
are computed. Next, remaining particles set their next element
to be the upward adjacent element of the marked entity that
is not the current element. An iteration of the while loop is
completed by running a parallel reduction over the particles
to see if any particles are not ‘done’. If particles remain, loop
execution continues.

D. SCS Rebuild and Migration

The rebuild routine combines two updates to the particle
structure on process. Primarily, particles are regrouped by their
new parent elements. Additionally new particles can be added
to the system. Rebuild involves constructing a new SCS with
different indexing and padding. To avoid allocating the data
every rebuild, two copies of the SCS are maintained and each
rebuild fills the inactive SCS and swaps the two structures.
This results in roughly two times the memory being used
throughout the simulation. Reallocation of the arrays only
happens if the rebuild requires a larger structure either because
new particles have been added or more padding was required.

Particle migration is built on top of the rebuild routine. First
particle data is communicated to the new process it belongs to.
The particles migrated away are treated as leaving the system
and particles that are received are supplied to the rebuild
routine as new particles being added to the SCS.

E. Field Synchronization

Field Synchronization in PUMIPic is performed through
bulk communications using a fan-in, fan-out approach. In the
first step, field information on buffered copies of a part are
sent to the owner of each part. Then a reduction is performed
on each part. Followed by the fan-out phase sending the result
from the owned part to the non-owned copies. Since the mesh
is consistently ordered across all PICparts, the fields can be
communicated and operated on as a contiguous block with
SIMT parallel array operations. Note, when every PICpart
contains the entire domain this operation is optimized by
performing an MPI_Allreduce on the entire field across all
processes.

For the lower dimension mesh entities (mesh vertices, edges
and faces in 3D) on PICpart boundaries, a halo-exchange is
performed to collect contributions from boundaries to the own-
ing part. The reduction is applied to these entities along with
the field information gathered in the bulk communications.
Then updated field values are returned to the buffered entities.
The halo exchange utilizes a static mapping to account for the
different ordering of the boundary entities on the PICparts in
which the entities exist.

MPI Communications for particle migration and field syn-
chronization are performed by copying GPU memory to host
memory and then communicating between CPUs. Usage of
CUDA-aware MPI where no explicit host-to-device copy is
required is currently being tested for particle migration, but is
not currently in use.

V. INITIAL TESTS

Initial testing of the key operations described in Section IV
was performed on the IBM AC922 Summit system at Oak
Ridge National Laboratory [9]. In all tests one MPI process is
used per GPU and all six GPUs on each node are used. Each
process has a full copy of the mesh, as done in XGC, with a
safe zone defined based on the BFS method described in 2?.
The non-full safe zone enables testing of the particle migra-
tion and synchronization operations. Particles are uniformly
distributed within the mesh elements classified on geometric
model faces defined by closed magnetic flux curves shown in
Figure 7. No particles are created outside the last closed curve.
Tests execute 100 iterations of particle push, adjacency search,
particle structure rebuild, particle migration, gyro scattering
particle to mesh, and mesh field synchronization on the 24
thousand triangle mesh [10] depicted in Figure 7. The particle
push operation used in these initial tests is a non-physical
proxy for the XGC push that moves each particle along an
elliptical path centered near the central mesh vertex. Likewise,
the gyro scattering procedure does not project the gyro ring
to the forward and back planes following the background
mesh field as done in XGC; the gyro ring is centered on the
mid-plane mesh vertex on the forward and back plane. This
simplification captures the highly irregular data access pattern
that is the key performance limiter for the particle to mesh
operation.

Figure 8 plots the rate at which iterations are executed in
terms of millions of particles per second. Figure 9 plots the
weak scaling efficiency. For both plots higher values indicate
better performance. As the number of particles per GPU (PPG)
increases the rate at which push iterations are completed
increases. Relative to six GPUs, the 36 GPU push iteration
rate is 5.2 times higher for two million PPG, and 4.2 times
higher for 48 million PPG. This trend is reflected in the weak
scaling plot where two million PPG has an efficiency of 87%
on 36 GPUs while 48 million PPG is only 70%.

Figure 10 depicts the timing of each operation on one
GPU to 36 GPUs with 48 million PPG. Note, each depicted
operation is preceded with an MPI_Barrier to isolate it from
imbalances in the prior operations. Figures 8 and 9 were



Fig. 7. Simmetrix [11] generated XGC mesh with 24 thousand triangles and
58 geometric model faces defined by magnetic field flux curves.
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Fig. 8. Millions of particles pushed per second with 2 million to 48 million
particles per GPU on up to 36 GPUs.

created from runs without barriers. A partial cause of weak
scaling loss is the increased time spent in the particle migration
operation (labelled ‘migration’). From 6 GPUs to 24 GPUs the
migration cost increases from 5.6 seconds to 9.9 seconds and
remains nearly constant from 24 to 36 GPUs. More studies
are needed to determine the source of this behavior.

An additional test with 1.4 billion particles was performed
on 96 GPUs; approximately 15 million PPG. The test was
on a mesh with 126k triangles and 99 geometric model
faces formed by closed flux curves. Initial particle distribution
and PICPart creation follow the approach of the previously
described test; a full mesh copy on each process, a BES defined
safe zone, and uniform particle distribution within the last
closed flux curve. Weak scaling on 96 GPUs, from 36 GPUs,
is 86% and has a push rate of 4,372 million particles pushed
per second, versus 1,867 on 36 GPUs. The times of each
operation are listed in Table 1. Performance of push, search,
rebuild are at most 5% slower in the 96 GPU run. A minimal
change in the run time of these operations is expected as they
require no inter-process (MPI) communications. Scaling is
mostly lost in migration where an increase of 18% is observed.
Field synchronization cost increases by 35% in the 96 GPU

Weak Scaling Efficiency

% Efficiency (t1/tN*100)

GPUs

Fig. 9. Weak scaling efficiency of 100 push iterations with 2 million to 48
million particles per GPU on up to 36 GPUs.

Time per operation: 48 million particles-GPU
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Fig. 10. Time spent in each push operation with 48 million particles per GPU.
Each operation is preceded with an MPI_Barrier to isolate the operation from
imbalance.

run, but relative to other operations, it takes an insignificant
amount of time. Understanding the source of the migration
cost increase (system network noise, mesh distribution and the
induced communication graph, particle load imbalance, etc.)
is the focus of ongoing testing efforts.

GPUs

time (sec.)
operation | 36 96
push 0.0063 | 0.0054
search 5.4 5.7
rebuild 7.1 7.3
migration | 2.7 3.2
scatter 0.95 0.98
sync 0.17 0.23

TABLE I

TIME SPENT IN EACH OPERATION FOR A 36 AND 96 GPU RUN WITH 15
AND 16 MILLION PPG, RESPECTIVELY. EACH OPERATION IS PRECEDED
WITH AN MPI_BARRIER TO ISOLATE THE OPERATION FROM IMBALANCE.



VI. CLOSING REMARKS AND FUTURE WORK

Current progress for the PUMIPic library was presented
for distributed-mesh PIC simulations. The library provides
structures and operations for performance and usability on
GPUs. Weak scaling studies showed 70%-86% efficiency for
the experiments up to 48 million particles per GPU on up
to 36 GPUs. Weak scaling degradation is a result of particle
migration which includes the majority of communications in
the simulation. Performance is also being restrained by the
rebuild operation on the particle structure due to large amounts
of data movement required. An additional experiment with a
larger mesh and 1.4 billion particles was ran on 96 and 36
GPUs. Initial results again indicate that a significant source of
scaling loss is in particle migration. Ongoing testing efforts
are underway to quantify these losses and sources of load
imbalance.

Moving forward additional attention will be focused on
improving the performance of the key operations slowing
down simulations and reducing weak scaling efficiency. Pri-
marily this is the SCS rebuild operation. Rebuild requires
optimizations to avoid memory allocation and minimize data
movement. Foreseeable improvements to rebuild will result
from taking advantage of the fact that for a given push
most particles do not leave the starting element. With this in
mind, a more efficient shuffling procedure can be employed
to minimize the movement of data. Further improvements are
expected from finer optimization of operations and the imple-
mentation of load balancing for the new PUMIPic library.

While some operations do not achieve the expected per-
formance for the proxy simulations, the PUMIPic library
includes the necessary steps to begin building real physical
PIC simulations. When a significant portion of the physics
for these simulations have been implemented using PUMIPic,
additional comparisons will be analyzed against the existing
CPU and GPU implementations to get a more detailed result
for PUMIPic.
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APPENDIX A —DKOKKOS_ENABLE_CUDA=ON \

. —DKOKKOS_ENABLE_CUDA_LAMBDA=ON \
ARTIFACT DESCRIPTION APPENDIX: TOWARD _DKOKKOS_ENABLE_DEBUG=OFF \
ACCELERATED UNSTRUCTURED MESH PARTICLE-IN-CELL —DKOKKOS_ENABLE_PROFILING=ON \
A Abstract —DCMAKE_INSTALL,_PREFIX=$PWD/ install
. Abstrac
. . . . make install
Information is provided to execute the test cases described '
in Section V of the ScalA19 workshop paper titled “Toward To build Omega_h:
Accelerated Unstructured Mesh Particle-in-Cell”. kk=/path/to/kokkos/install
kksrc=/path/to/kokkos/
B. Description export CMAKE_PREFIX_PATH=$kk : SCMAKE_PREFIX_PATH
. export OMPI_CXX=$kksrc/bin/nvcc_wrapper #spectrum is based on openmpi
1) Check-list: export PATH=$CUDA_DIR/ bin : SPATH
« Algorithm: Unstructured mesh particle-in-cell export LD_LIBRARY_PATH=$CUDA_DIR/ lib64 : SLD_LIBRARY_PATH
. Progrz.lm:. psedoPXGCm mkdir build
« Compilation: GNU GCC cd build
o Transformations:
« Data set: github.com/SCOREC/pumipic-data Cmakg > s PWD) install
« Hardware: OLCF Summit: IBM AC922 BUILD SHARED, Tieeopr o e
o Output: github.com/SCOREC/pumipic-docs/tree/scalal9 —DOmega_h_USE_CUDA=ON \
o Publicly available?: Yes —DOmega_h_USE_MPI=ON \
. . . —DCMAKE_CXX_COMPILER=mpiCC
2) How software can be obtained: The specific versions 7D0mega_h_CXX_WARNLNGSE’I’OFF> \
(via Git SHALI hash) of the libraries, along with the name of —ggmffa-h];gs;&mﬂ;kﬁ;ﬁ@g/(\:M §
. . . . - OKKOS = 1 aKe
the GitHub repo (prefix with https://github.com to open in a -
web browser), used to execute the tests are listed below. make install
e PUMIPic: To build particle_structures:
SCOREC/puml_plC 6ea3foc omega_h=/path/to/omega_h/install/
« particle_structures: export CMAKE_PREFIX_PATH=$omega_h: SCMAKE_PREFIX_PATH
SCOREC/particle_structures db90ede mkdir build
e Omega: cd build
SNLComputation/omega_h 66209¢0 cmake .
o Kokkos: —DCMAKE_CXX_COMPILER=mpiCC \
—DENABLE_KOKKOS=ON \
kokkos/kokkos 2983b80 —DPS_ENABLE_DEBUG_SYMBOLS=ON \
3) Hardware dependencies: The experiments were per- *B(’é%ii‘éﬁk%%‘fﬁi&m SPWD/ insiall
. . — ] ] =$PWD/ insta
formed on the Summit IBM AC922 system at Oak Ridge
National Laboratory. make install

4) Software dependencies: PUMIPic depends on the fol- To build PUMIPic:
lowing libraries listed above in addition to CUDA 10 and B . .
i N X ps=/path/to/particle_structures/install/
an MPI-3 implementation. The Summit runs used CUDA  export CMAKE_PREFIX_PATH=$ps : SCMAKE_PREFIX_PATH
10.1.168 and Spectrum MPI 10.3.0.1-20190611. mkdir build
5) Datasets: The input meshes and partition files are 10-  cd build
cated in the GitHub repo: github.com/SCOREC/pumipic-docs/

cmake

tree/scalal9 —DCMAKE_CXX_COMPILER=mpiCC \
—DPP_ENABLE_DEBUG_SYMBOLS=ON \
C. Installation —DPP_ENABLE_OPT=ON \

—DIS_TESTING=ON \

For Summit we load the following modules: _DTEST_DATA_DIR=SPWD / . . / pumipic—data

module swap x1 gcc/7.4.0 .
module load cuda/10.1.168 cmake make

and the following modules were provided by default: .
i1 0.2 0 D. Experiment workflow
si/5.0.2.p

xalt/1.1.3 The job submission scripts used to run the test cases are located in the github.com/
Isf—tools /2.0 SCOREC/pumipic-docs/tree/scalal9 repo on GitHub in the scalal9/results sub-directory.
darshan—runtime /3.1.7 To submit the sweep from 6 to 36 GPUs for 2 to 48 million particles per GPU run
DefApps the following command:

s t —mpi/10.3.0.1 —20190611
spectrum—mp1 #edit the project id in submit.sh

To build Kokkos: cp /path/to/scalal9/results/submitSweep.sh
cp
mkdir build /path/to/scalal9/results/401311 _itg24k_mfull_sbfs_il00_nl —6/«_n6t36/subr
cd build cp /path/to/scalal9/results/401311 _itg24k_mfull_sbfs_i100_nl —6/%_n6t36/r
#edit the paths in runPXGCmSweep.sh for the input mesh and partition fil
cmake .. \ ./submitSweep . sh
—DCMAKE_CXX_COMPILER=/path/to/kokkos/bin/nvcc_wrapper \
—DKOKKOS_ARCH=Volta70 \ Likewise, to run the 96 GPU case with 16 million particles per GPU run the following

—DKOKKOS_ENABLE_SERIAL=ON \ commands:



cp /path/to/scalal9/results/501211_itgl26k_mfull_sbfs_i100_nl16/+_n16t96/runPXGCmSweep.sh
#edit the paths in runPXGCmSweep.sh for the input mesh and partition files

#uncomment the indicated lines in submitSweep.sh for running the 96 GPU case

./ submitSweep . sh

E. Evaluation and expected result

Expected results are located in the github.com/SCOREC/pumipic-docs/tree/scalal9
Tepo.

Timing plots of are produced by running the Python pandas/numpy/matplotlib script
plot.py in the results/+1itgx directories.

Note, there is a unresolved race condition in the code that prevents some executions
of the 96 GPU case from completing successfully.



