
Using Hierarchical Parallelism to Accelerate the Solution of Many Small Partial
Differential Equations

Jacob Merson
Department of Mechanical,

Aerospace
and Nuclear Engineering

Rensselaer Polytechnic Institute
110 Eighth St. Troy, NY 12180

Email: mersoj@rpi.edu

Mark S. Shephard
Scientific Computation

Research Center
Rensselaer Polytechnic Institute
110 Eighth St. Troy, NY 12180

Email: shephard@rpi.edu

Abstract—This paper presents efforts to improve the hierar-
chical parallelism of a two scale simulation code. Two methods
to improve the GPU parallel performance were developed and
compared. The first used the NVIDIA Multi-Process Service
and the second moved the entire sub-problem loop into a
single kernel using Kokkos hierarchical parallelism and a
PackedView data structure. Both approaches improved parallel
performance with the second method providing the greatest
improvements.

1. Introduction

Hierarchical multiscale methods are commonly used to
model engineering materials which exhibit complex mi-
cromechanical behavior that is not easily captured with stan-
dard constitutive modeling [1], [2], [3], [4]. This behavior
is often caused by a material having a makeup of discrete
constituents such as atoms, molecules, fibers, etc. For a
two scale analysis the macroscale, or engineering scale,
partial differential equations are often discretized by finite
element methods. At each material point in the macroscale,
a microscale sub-problem made from discrete components
is solved to obtain the material constitutive properties at that
point. This information passing scheme is often referred to
as the FE2 scheme drawing from the fact that there are is a
finite element analysis occurring on two scales [1].

In our multiscale implementation we use parallelism at
multiple levels. On the macroscale, we use domain level
parallelism to break up our finite element mesh. This is im-
plemented using the SCOREC parallel unstructured meshing
infrastructure (PUMI) [5]. Each microscale sub-problem is
independent which leads to an “embarrassingly parallel”
algorithm. To couple the scales, we use the Adaptive Mul-
tiscale Simulation Infrastructure which breaks processors
on the target platform into an independent processor set
for each scale [6]. In our previous work, the individual
microscale sub-problems were not parallelized. Due to our
increased understanding of the sub-scale physics in our
problem of interest, we have increased the number of de-
grees of freedom in the microscale sub-problems by two to

three orders of magnitude [7], [8]. This increase in problem
size makes parallelization of the individual sub-problems
essential to performing analyses with physical relevance.

Due to the increased computational cost associated with
changes in the solution method described in section 2 and
the increase in microscale problem size, the solution to
the microscale problems became a performance bottleneck.
Therefore, we ported our code to use GPU parallelism for
the microscale problems. For our problem of interest, the
microscale problems often have less than 100,000 degrees
of freedom. This is not large enough to saturate the GPU
with our current analysis methods which primarily consists
of vector operations—similar to BLAS level 1 (See figure
1).

To achieve adequate GPU throughput, multiple mi-
croscale problems must be solved on each GPU at a time.
This was accomplished using two methods. The first was
using NVIDIA Multi-Process Service (MPS) which unin-
trusively allows multiple processes to launch GPU kernels
at a time [9]. Although MPS gave a good speedup, our
analysis was still limited by kernel launch overhead and
by the limited number of processors on each node to launch
GPU kernels from. Additionally, great care must be taken
to use MPS in an environment with multiple GPUs per
node because improper MPS setup causes a drastic reduction
in the weak scalability. The second method for increasing
GPU throughput was to pack multiple microscale problems
into a single kernel launch using the Kokkos hierarchical
parallelism construct [10]. A more thorough discussion of
this method is given in section 3. To aid in understanding
the selection of our parallelization strategy, a more com-
prehensive discussion of multiscale modeling techniques is
presented below.

2. Multiscale Modeling of Biological Tissues

One particular application of these methods is to model
biological tissues which are made of constituent collagen
fiber networks. Typically, modeling biological tissues re-
quires large strain analysis because they are soft and physi-



ological strains can often exceed 50%. The FE2 method has
been extended to allow for large strains; however, the meth-
ods discussed in the literature utilize implicit finite element
methods for both analysis scales [2], [11]. Unfortunately,
the deformation of fiber networks is highly nonlinear and
the network can go through bifurcation points, or may not
be isostatic, i.e. the tangent stiffness matrix can be singular
during an analysis [12]. As a result, athermal fiber networks,
such as collagen networks, are typically modeled with ex-
plicit finite element methods [13], [14]. The use of a purely
explicit analysis for the sub-scale problems in a multiscale
analysis is problematic because kinetic energy is lost in
the microscale-to-macroscale coupling. Additionally, inertial
effects can change the microscale material properties. To
work around these issues, a dynamic relaxation method is
used for the microscale problems. Dynamic relaxation works
by mapping a static analysis to a damped dynamic explicit
one where the system residual is monitored for convergence
[15].

The use of the dynamic relaxation method at the mi-
croscale greatly improves the global strains which the mul-
tiscale method can achieve for fibrous materials, however
it imposes a significant computational cost. Our previous
studies have shown the multiscale analysis of biological
tissues at scale using homogeneous computing technologies
with MPI based parallelism [6], [16]. Due to the increased
computational cost of dynamic relaxation, physiologically
relevant problems are no longer accessible through MPI
based parallelism alone. Therefore, the microscale portions
of our analysis code have been ported to use GPU acceler-
ators.

The variability in GPU programming environments
across hardware vendors poses a significant challenge to
the maintainability of a GPU accelerated code which must
run on a variety of systems. Therefore, we chose to use the
Kokkos C++ library for GPU support. Kokkos is a C++ pro-
gramming model which is designed to enable performance
portability [10], [17]. The Kokkos team has committed to
maintaining support for all of the vendors who are providing
accelerators for the Department of Energy leadership class
computing resources (AMD, Intel, NVIDIA). This support
allows for writing a single version of the analysis code
that will run across most of the easily accessible GPU
accelerators.

3. Parallel Implementation

Figure 1 gives the basic dynamic relaxation algorithm
we used for the microscale sub-problems. This algorithm is
identical to a two step central difference method found in
any finite element text book, with the exception that the con-
vergence criteria is based on a force residual measurement
rather than time. Note that each sub-scale problem converges
at a different rate which can lead to load imbalance.

In the naive approach, this algorithm was carried out
using fused kernels for any subsequent operations with the
same loop characteristics. The benefits of kernel fusion have
been discussed extensively in the literature both for the case

Figure 1. Dynamic relaxation algorithm
1: Load mesh and compute edge connectivity
2: Compute the mesh connectivity array
3: Transfer the connectivity array to the device (GPU)
4: Set displacement boundary conditions on fixed nodes

(fixed dof vector operation)
5: Compute mass matrix (finite element integration)
6: GETINTERNALFORCES(u)
7: update accelerations (free dof vector operation)
8: repeat
9: Compute next time step

10: Partial velocity update (free dof vector operation)
11: Update displacements (free dof vector operation)
12: GETINTERNALFORCES(u)
13: Compute damping force (free dof vector operation)
14: Compute force residual (free dof vector reduction)
15: Update Accelerations (free dof vector operation)
16: Partial velocity update (free dof vector operation)
17: Optionally Check Energy Balance (3 vector reduc-

tions)
18: Update iteration count
19: until Force residual converged

of explicit ODEs, and general GPU computations [18], [19],
[20]. The GetInternalForces subroutine accounts for
two Kernel launches: the first to zero the internal force
vector, and the second to scatter the elemental internal
forces to the nodes. The current implementation uses atomic
operations to scatter the forces.

In this naive approach, a number of microscale sub-
problems were assigned to each MPI rank, and were ex-
ecuted serially with respect to each other within each rank.
Despite the use of GPU acceleration for the vector oper-
ations, this approach had poor performance for the sub-
scale problems with small numbers of degrees of freedom
when compared with a CPU-only implementation with se-
rial vector operations. To unintrusively improve this naive
approach, NVIDIA MPS was used to allow kernels from
multiple MPI ranks to run concurrently. The use of MPS
led to significant performance improvements for small DOF
problems compared with the naive case. Problem size and
number of simultaneous MPI ranks used with MPS can have
a drastic effect on performance. All MPS results presented
in section 4 use 32 MPI ranks per GPU which gives the best
performance in the range of problem sizes discussed here.

Since the loop in algorithm 1 executes millions of times
per macroscale simulation step, we observed that this ap-
proach had significant kernel launch overhead. To overcome
this, we moved the entire loop into a single kernel. This
was done using Kokkos hierarchical parallelism which uses
teams of threads to enable a 2D map to the hardware. The
CUDA reciprocal to this mechanism is launching a 1D grid
of 1D blocks. Since our sub-scale problems each have less
than 10,000 free degrees of freedom, we found that good
performance could be achieved by assigning one thread
team to each sub-scale problem. Here, we juxtapose the free



degrees of freedom which are those without any Dirichlet
constraints, to what we call degrees of freedom which
are all potential degrees of freedom. Unlike an implicit
FEM method, the constrained degrees of freedom cannot
be completely eliminated as they are needed for the internal
force computation. Reordering the fixed degrees of freedom
to a contiguous block at the end of the displacement array
allows most of the update algorithm to only operate on the
smaller proportion of free degrees of freedom (figure 1).

The choice of number of threads per team had a strong
effect on performance. The ideal number of threads per team
is a function of the microscale problem size. All presented
results use 512 threads per team, which provided a good
compromise for the performance of the smallest and largest
systems we tested.

A PackedView data structure which has similar se-
mantics to a Kokkos DualView was used to allow effective
access to N-D vector data within each thread team [21].
This data structure uses a row vector and value vector,
similar to those from compressed row storage (CRS), to
store the data associated with all sub-scale problems on the
current MPI rank in a contiguous array in memory. Each
sub-scale problem gains access to the correct portion of
memory through a Kokkos Subview. In some ways, this
structure is similar to a Kokkos View of Views. However,
with the current implementation the PackedView can not
be resized after initialization. A comprehensive performance
comparison between the PackedView data structure, and
View of Views has not been performed to date. This differs
from the StaticCrsGraph in Kokkos which cannot han-
dle non-integral datatypes, and does not have DualView
semantics.

Although moving the analysis loop inside of a single
kernel launch was effective for our problems of interest, it
can easily succumb to low performance from high register
pressure. Significant effort had to be made to reduce the
register pressure and ensure that multiple warps could be
concurrently scheduled. One mechanism we used to reduce
register pressure was to move some of the variables which
are carried across loop iterations such as the pseudo-time
and the loop iteration count into shared memory. We found
that performance gain from the reduction in register pressure
outweighed the loss in bandwidth from moving these vari-
ables to shared memory. The need to reduce register usage in
this single kernel implementation led us to favor a stripped-
down version of our algorithm which was specific to the
physical system at hand. In other words, flexibility of our
code had to be sacrificed to obtain improved performance
characteristics.

4. Results

The performance results presented here, are all computed
on a single Volta V100 GPU—part of an IBM AC922
node. Each AC922 node contains 2, 20 core IBM power
9 processors clocked at 3.15GHz, 512 GiB of RAM, and 6
Volta V100 GPUs. The code is compiled with version 16.1.0
of IBM’s XL compiler for host code, version 10.1 of Cuda,

5 10 15 20 25 30
Number of Concurrent Subproblems

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

Se
lf 

Sp
ee

du
p

Self Speedup vs. Number of Concurrent Subproblems
Free DOF

225
867
3531

Figure 2. Speedup of the naive loop based analysis normalized by the
number of concurrent sub-problems compared with the loop based single
sub-problem. A flat line corresponds to a linear increase in runtime. Each
data point is the mean of three analysis runs.

100 101 102 103

Number of Concurrent Subproblems

100

101

Se
lf 

Sp
ee

du
p

Self Speedup vs. Number of Concurrent Subproblems
Free DOF

225
867
3531

Figure 3. Speedup of the thread team based analysis normalized by the
number of concurrent sub-problems compared with the thread team based
single sub-problem. Each data point is the mean of three analysis runs.

and version 3.1 of Kokkos. The MPS results make use of
Spectrum MPI version 10.3.

Figures 2 and 3 show the runtime of a single sub-
problem divided by runtime normalized by the number
of concurrent sub-problems. This gives a measure of the
speedup of a single sub-problem when computed in a
concurrent batch. Since we are using the analysis tech-
nique’s own single sub-problem runtime as a baseline for
the speedup, we call this the “self speedup”. For the naive
loop based case (figure 2), we see the self speedup is very
flat which indicates the expected linear increase in run-
time. The smallest problem size sees a slight self speedup.
When thread team based parallelization is used, a significant
self speedup is observed (figure 3). Here we see a initial
regime of linear self speedup and a plateau regime for
large numbers of concurrent sub-problems. In this initial
linear scaling regime, the runtime remains flat since the
numerical workload is not large enough to overcome the



100 101 102 103

Number of Concurrent Subproblems

10 1

100

101

102

103

Sp
ee

du
p

Team MPS

Speedup vs. Number of Concurrent Subproblems
Free DOF

225
867
3531

Figure 4. Speedup of the team based (solid line) and MPS based (dashed
line) analysis over the naive approach. The MPS lines correspond to
launching GPU kernels from 32 MPI ranks simultaneously. Each data point
is the mean of three analysis runs.

kernel launch latency. Interestingly, the initial self speedup
is almost identical for each of the problem sizes we tried.
The plateau region show that as the number of degrees of
freedom in the problem increase, the self speedup decreases.

Figure 4 shows the speedup of the thread team based
and MPS based analysis methods over the naive loop based
approach. In this plot, we see an initial linear scaling and
a plateau region. We observe that as the problem size
increases, the speedup obtained from the team thread based
method decreases. This is likely due to a reduction in
percentage of the problem which resides in the cache. We
also observe that MPS based parallelism does provide some
speedup over the naive approach, but it is not as effective as
the thread team based approach. Also, for MPS, the speedup
plateau does not depend on the problem size. One way to
interpret these results is that for maximum efficiency, at least
80 concurrent sub-problems should be run on each GPU.
Since the V100 has 80 SMs (streaming multiprocessors),
this is consistent with each Kokkos team (CUDA block)
occupying a single SM.

The speedups achieved using thread team parallelism tell
a compelling story that moving an analysis loop inside of a
single heavy weight kernel can be an effective optimization
mechanism for problems that need to solve many problems
which cannot saturate the GPU on their own. Although MPS
seemed like it might be a reasonable solution, it suffered
from still incurring a high kernel call latency due to the
many kernels which were being called inside of a hot loop.
Additionally, the MPS solution was not able to make as
effective use of the cache since many different sub-scale
problems were competing to be scheduled simultaneously,
and each sub-scale problem that was scheduled in an inter-
leaved fashion would cause cache misses.

Acknowledgments

This work was supported in part by the National Insti-
tutes of Health (NIH) through Grant No. U01 AT010326-

06. Also, this material is based upon work supported by the
National Science Foundation Graduate Research Fellowship
under Grant No. DGE-1744655.

References

[1] F. Feyel and J.-L. Chaboche, “FE2 multiscale approach for
modelling the elastoviscoplastic behaviour of long fibre SiC/Ti
composite materials,” Computer Methods in Applied Mechanics
and Engineering, vol. 183, no. 3, pp. 309–330, Mar. 2000.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0045782599002248

[2] R. Smit, W. Brekelmans, and H. Meijer, “Prediction of the
mechanical behavior of nonlinear heterogeneous systems by multi-
level finite element modeling,” Computer Methods in Applied
Mechanics and Engineering, vol. 155, no. 1-2, pp. 181–192, Mar.
1998. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0045782597001394

[3] C. Miehe, “Computational micro-to-macro transitions for discretized
micro-structures of heterogeneous materials at finite strains based
on the minimization of averaged incremental energy q,” Comput.
Methods Appl. Mech. Engrg., p. 33, 2003.

[4] P. Kanouté, D. P. Boso, J. L. Chaboche, and B. A. Schrefler,
“Multiscale Methods for Composites: A Review,” Archives of
Computational Methods in Engineering, vol. 16, no. 1, pp. 31–75,
Mar. 2009. [Online]. Available: http://link.springer.com/10.1007/
s11831-008-9028-8

[5] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, “PUMI:
Parallel Unstructured Mesh Infrastructure,” ACM Transactions on
Mathematical Software, vol. 42, no. 3, pp. 1–28, May 2016. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2935754.2814935

[6] W. R. Tobin, “The Adaptive Multiscale Simulation Infrastructure,”
Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, Ny, Jul.
2018.

[7] A. S. Shahsavari and R. C. Picu, “Size effect on mechanical
behavior of random fiber networks,” International Journal of Solids
and Structures, vol. 50, no. 20, pp. 3332–3338, Oct. 2013.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0020768313002382

[8] J. Merson and R. Picu, “Size Effects in Random Fiber Networks
Controlled by the Use of Generalized Boundary Conditions,” Under
Review, 2020.

[9] NVIDIA, “Multi-Process Service,” NVIDIA Corporation, Tech. Rep.,
Aug. 2019. [Online]. Available: https://docs.nvidia.com/deploy/pdf/
CUDA Multi Process Service Overview.pdf

[10] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos: En-
abling manycore performance portability through polymorphic mem-
ory access patterns,” Journal of Parallel and Distributed Computing,
vol. 74, no. 12, pp. 3202–3216, Dec. 2014. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0743731514001257

[11] C. Miehe, “Numerical computation of algorithmic (consistent)
tangent moduli in large-strain computational inelasticity,” Computer
Methods in Applied Mechanics and Engineering, vol. 134,
no. 3-4, pp. 223–240, Aug. 1996. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/0045782596010195

[12] A. J. Licup, A. Sharma, and F. C. MacKintosh, “Elastic regimes of
subisostatic athermal fiber networks,” Physical Review E, vol. 93,
no. 1, Jan. 2016. [Online]. Available: https://link.aps.org/doi/10.
1103/PhysRevE.93.012407

[13] M. R. Islam, G. Tudryn, R. Bucinell, L. Schadler, and R. C.
Picu, “Stochastic continuum model for mycelium-based bio-
foam,” Materials & Design, vol. 160, pp. 549–556, Dec. 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0264127518307482



[14] S. Deogekar and R. C. Picu, “On the strength of random
fiber networks,” Journal of the Mechanics and Physics of
Solids, vol. 116, pp. 1–16, Jul. 2018. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0022509618301285

[15] P. Underwood, “Dynamic Relaxation,” in Computational Method for
Transient Analysis, 1986, vol. 1, pp. 245–263. [Online]. Available:
https://ci.nii.ac.jp/naid/10009833325/

[16] V. W. L. Chan, W. R. Tobin, S. Zhang, B. A. Winkelstein, V. H.
Barocas, M. S. Shephard, and C. R. Picu, “Image-based multi-scale
mechanical analysis of strain amplification in neurons embedded in
collagen gel,” Computer Methods in Biomechanics and Biomedical
Engineering, pp. 1–16, Nov. 2018. [Online]. Available: https:
//www.tandfonline.com/doi/full/10.1080/10255842.2018.1538414

[17] “Kokkos C++ Performance Portability Programming EcoSystem: The
Programming Model: Parallel Execution and Memory Abstraction
- kokkos/kokkos,” Kokkos. [Online]. Available: https://github.com/
kokkos/kokkos

[18] M. Korch and T. Werner, “Accelerating explicit ODE methods on
GPUs by kernel fusion,” Concurrency and Computation: Practice
and Experience, vol. 30, no. 18, p. e4470, 2018. [Online]. Available:
http://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4470

[19] G. Wang, Y. Lin, and W. Yi, “Kernel Fusion: An Effective Method for
Better Power Efficiency on Multithreaded GPU,” in 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications Int’l
Conference on Cyber, Physical and Social Computing, Dec. 2010,
pp. 344–350.

[20] M. Wahib and N. Maruyama, “Scalable Kernel Fusion for Memory-
Bound GPU Applications,” in SC ’14: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking,
Storage and Analysis, Nov. 2014, pp. 191–202.

[21] J. Merson, “Kokkos-packed-data.” [Online]. Available: https://github.
com/jacobmerson/kokkos-packed-data


