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Abstract

Unstructured mesh particle-in-cell, PIC, simulations executing on the current and next
generation of massively parallel systems require new methods for both the mesh and
particles to achieve performance and scalability on GPUs. The traditional approach
to implementing PIC simulations define data structures and algorithms in terms of
particles with a full copy of the unstructured mesh on every process. To effectively
scale the unstructured mesh and particles, mesh-based PIC uses the unstructured mesh
as the predominant data structure with the particles stored in terms of the mesh enti-
ties. This paper details the PUMIPic library, a framework for developing efficient and
performance-portable mesh-based PIC simulations on GPU systems. A pseudo physics
simulation based on a five-dimensional gyro-kinetic code for modeling plasma physics
is used to examine the performance of PUMIPic. Scaling studies of the unstructured
mesh partition and number of particles are performed up to 4096 nodes of the Summit
system at Oak Ridge National Laboratory. The studies show that mesh-based PIC can
utilize a partitioned mesh and maintain scaling up to system limitations.
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Introduction

An important class of multiscale simulation is the Particle-in-Cell (PIC) method in
which particle tracking to capture fine-scale behaviors is coupled to fields defined in
terms of PDEs represented at the scale of the overall domain. The continued advance-
ment of massively parallel computing technologies along with the ability to effectively
scale PIC calculations on those systems is supporting the effective application of PIC
codes to the modeling of plasmas in fusion reactors [1, 2, 3, 4, 5], linear accelerators
[6] and other systems. An increasing number of high-performance plasma simulation
codes are currently, or planning to, take advantage of unstructured mesh methods that
can provide the required levels of field accuracy over general domains using the fewest
number of elements. The advantages of unstructured meshes come with a cost of larger,
more complex, data structures and more complex algorithms to achieve parallel scala-
bility.

PIC methods are implemented as a time advancing procedure in which the position
of particles is tracked as they move through a domain, driven by a field that is typically
a function of the position of the particles, and thus that field evolves as the particles
move. In the coupled case there are four steps carried out in each time advance [2, 3,
4, 7, 8, 9, 10]. Those steps are:

Field to Particle: The values of the current mesh-based fields that drive the particles
are associated with each particle through an appropriate interpolation procedure.

Particle Push: The particles are moved, or if you will, pushed, to a new location as a
function of the field and time step size.

Charge Deposition: The “charge” information associated with the particles is then
related to the domain definition such that the forcing function driving the field
evolution is updated.

Field Solve: The partial differential equations (PDEs) governing the field is then solved
using this updated forcing function.

Since the PDEs governing the domain fields can rarely be solved in closed form
over the domains of interest, the needed fields are solved numerically over a spatial
discretization that can range from a uniform grid to a graded unstructured mesh. Figure
1 gives a basic graphical description of the four PIC steps on a mesh. A key operation
that needs to be executed after each Particle Push step, is the determination of which
grid cell, or mesh element, each particle is within since this information is required by
the Field to Particle and Charge Deposition steps. In the case where the PIC method
is tracking particles through a uniform grid, this operation is trivially defined by the
particle coordinates. In this case, it is natural to drive the PIC code steps using an
independent particle data structure. In large scale computations executed on massively
parallel computers, this particle data structure must be distributed over the memory
spaces of a large number of processes.

When unstructured meshes are used, the determination of the element a particle
is located in after a push is not a one-step algebraic evaluation. Instead, it requires
a numerical evaluation process that includes explicit consideration of the geometric
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Figure 1: Depiction of the 4 main steps involved in an iteration of the PIC loop.

definition of the elements. To avoid the need to evaluate the required geometric cal-
culations involved with determining particle containment for the entire list of elements
until the element the particle is within is found, some form of search mechanism that
limits the number of elements that must be considered is employed.

A common approach to the implementation of a PIC method on an unstructured
grid is to extend the particle data structure to maintain knowledge of the mesh element
a particle is in at the current time and to introduce an independent mesh data structure.
When using independent particle and mesh data structures it is common to also intro-
duce a spatial data structure such as a uniform grid or spatial tree to support an efficient
search process to find the element the particle is contained in after a push. This ap-
proach can achieve good scaling and is reasonably performant, particularly for meshes
with little or no gradation, when there is a copy of the entire mesh maintained in each
process memory space. However, having a copy of the entire mesh on each process has
the obvious drawback of not being scalable with growing the mesh size past a point
dictated by the available memory on a process for the mesh. Since PIC implementa-
tions employ methods in which the number of particles is two or even three orders of
magnitude larger than the number of mesh elements, this approach has been satisfac-
tory. However, as more complex, both in terms of physics and geometric complexity,
systems are considered, there is a desire to employ distributed meshes with millions
of elements that are strongly graded. The use of independent particle and mesh data
structures which are both distributed complicates the implementation of efficient mem-
ory access patterns and, in the case of graded meshes, complicate the search process of
efficiently determining what element a moved particle is within.

The central goal of the approach presented in this paper is to be able to support hav-
ing both the particles and mesh distributed over the memory spaces of the processes
used in the parallel execution of the PIC simulation. Any effective implementation of
such an approach must carefully consider appropriate mechanisms to control interpro-
cess communications that may arise through the interactions of the particles and the
mesh. A possibility for doing this in the case of independent particle and mesh data
structures is to employ mechanisms that distribute closely related mesh elements and
particles. For example, the same background grid used to support the element search
process could be used. This paper presents an alternative approach in which the mesh
data structure is the core data structure and the particles can only be accessed through
the mesh. Since this approach maintains an explicit relationship of the particles to the
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mesh, there is no need for a secondary structure and search process to support main-
taining the relationship between them.

With the majority of top supercomputers including some form of accelerators, in
most cases being GPUs, it is vital to employ data structures and algorithms that effec-
tively take advantage of the accelerators. For existing simulations running on CPUs
in serial and many-core codes parallelized using threads, the common approach to an
accelerator-based system is to focus on porting individual sections of code or kernels
one at a time to the GPU. In many cases, it is found that to gain performance, it is
necessary to modify the underlying data structures and layouts based on the needs of
the section of code being worked on. Since the approach presented in this paper is
based on a fundamental change in the underlying relationship of the mesh and par-
ticles data, the development of an effective implementation on accelerated systems
required development of appropriate mesh and particle data structures, as well as the
definition of the core kernel operations, that can support the effective execution of PIC
operations. This paper describes the Parallel Unstructured Mesh Infrastructure for PIC
library (PUMIPic) which is the result of that development.

The paper is structured as follows. First, data structures for the unstructured mesh
and particles for efficient usage in terms of on-process parallelism and multi-process
parallelism are detailed. Next, key operations and algorithms included in the PUMIPic
library for implementing PIC simulations are discussed. To demonstrate the perfor-
mance and scalability of PUMIPic, its use within pseudo physics simulation that in-
cludes the core PIC operations that interact with PUMIPic are presented. Finally, future
directions of research are outlined.

Related work

Designing data structures for simulations running on GPU accelerated machines
has new challenges unlike those designed for multi-core machines and, to some extent,
many-core machines. Data structures must take into account the massive multithread-
ing capability of GPUs and be conscious of the layout of memory on the device and
access patterns associated with the simulation to gain the most performance on these
devices. Furthermore, with the upcoming machines featuring different GPU architec-
tures, it is vital to construct data structures that can be used on the different hardware
and to be performance portable either automatically or through tuning of parameters.

Many different data structures have been proposed to maximize the locality and
alignment of memory accesses on GPUs. For matrix applications, several alternatives
to the commonly used Compressed Sparse Row structure have been analyzed [11].
The ELLPACK [12] structure adds zero entries to ensure all rows have an equal length
to align memory accesses. The structure also stores memory vertically which allows
threads of a warp to work on a row while accessing a contiguous block of memory. The
ELLPACK structure is best used on structured matrices due to the extra memory and
computation added by the non-zero entries. For matrices without a uniform structure,
a variant ELLPACK-R is suggested [13]. ELLPACK-R groups the rows into chunks
based on the SIMD width of the target hardware. The zero entries added to ELLPACK-
R are such that all rows within a chunk have the same length. This improves from the
original ELLPACK by reducing the memory footprint of the zero entries as well as
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reducing computations on zero entries. Further improvements to reduce the padding
are suggested by Kreutzer et al. [14, 15] with the Sell-C-σ structure. The Sell-C-
σ sorts the rows by the number of filled entries which when performing full sorting
minimizes the number of zero entries added to the structure.

In PIC, different implementations for GPUs have explored structures for storing
particles. Burau et al. [16] use a linked particle list to implement a PIC simulation with
structured meshes on GPUs. Each mesh element points to the list of particles within the
element. This structure allows particles to move quickly between the mesh elements,
however as Burau et al. explain when particles move between elements the order of
memory accesses becomes fragmented and leads to a reduction in the performance of
particle operations. A three-stage memory hierarchy [17] has been used to alleviate the
fragmentation problem by tiling particle data within a set of mesh elements.

Cabana [18] is a library for the storage of particle data for the traditional approach
to PIC simulations. Cabana uses an array of structures of arrays (AoSoA) to store
particle information aligned with and sized by the target hardware. Each struct of
arrays (SoA) maintains particle information for the SIMD width number of particles.
Then an array of the SoAs is created to store all particles. This results in the memory
accesses being aligned with the hardware and execution of the GPU.

Data structures for mesh-based PIC

For designing unstructured mesh-based PIC simulations, two core data structures
are needed: a mesh data structure and a particle data structure. An unstructured mesh
data structure on GPUs has to account for the complexity of storing and efficient access
to the necessary mesh adjacencies and field information. The particle data structure
must focus on efficient memory access of particle information and the interactions with
the mesh entities and fields.

With the three upcoming DOE leadership-class supercomputers, Aurora, Frontier,
and Perlmutter, each using a different vendor GPU with specific language and hardware
functionality, it is highly desirable to implement codes for GPUs to be portable across
the different hardware. To address the ability to port to different hardware, all data
structures in PUMIPIC use the Kokkos library [19] for data management and parallel
execution on the GPU. The remainder of this section covers the design choices for
storage of the unstructured mesh and particles for on process parallel execution and
multi-process parallelism.

Mesh data structure

PUMIPic’s mesh data structure is built on top of the Omega h library [20, 21].
Omega h is a performance portable unstructured mesh library designed for GPUs sup-
porting simplex elements in two or three dimensions. The structure is device default
such that all mesh entities and field data are allocated and remains on the device unless
explicitly transferred to the host. Omega h provides access to all mesh adjacencies
through compact arrays ordered to align adjacent entities.

Omega h is used to store and operate on the mesh elements and fields on a single
process and GPU. In this regard, each process has its own instance of an Omega h
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mesh that does not know of the mesh on other processes. As discussed in the next sec-
tion, communications between mesh and fields between processes are handled through
PUMIPic to achieve the level of parallel operations desired for a PIC simulation.

Mesh partitioning for PIC

Partitioning an unstructured mesh is both a challenging and important problem.
The partitioning must have close balancing of computation across all processes while
also minimizing the communication costs that results from partitioning the mesh. Many
methods exist in practice for partitioning a mesh to balance computation and communi-
cation costs. Most notable are multi-level graph methods [22, 23], geometric methods
[24, 25, 26], and diffusive methods [27, 28, 29].

For PIC simulations, the difficulties of partitioning increase due to having to bal-
ance mesh computation and communication along with particle computation and mi-
grations across processes. Typically, the mesh is partitioned to optimize either the
field solve step or the interactions between the mesh and particles. Partitioning for the
mesh field solve considers evenly distributing the number of degrees of freedom across
processes and minimizing the number of degrees of freedom on the partition model
boundary. Partitioning for particles targets allowing particles to be distributed evenly
across processes and minimizing the migration of particles as the simulation evolves.
Constructing the partition along the principal direction of motion of particles is ideal
to maintain particle balance and minimize communications. Figure 2 shows two par-
titions of a two-dimensional mesh. The left mesh is partitioned using a multi-level
graph method for the field solve. The right mesh is partitioned along flux faces where
particles predominantly move within.

Figure 2: Two-dimensional unstructured mesh partitioned using multi-level graph method for field solve
(left) and partitioned along principal direction of particle motion (right).

Regardless of the approach to partitioning the mesh into a set of parts, to be referred
to as PICparts, it is important to minimize the communication of particle information
by ensuring that no communication is required during the execution of a single push
step. By defining each PICpart to have a core and substantial mesh overlap, and requir-
ing that the particles pushed on each PICpart in a single push step start in a location far
enough from the boundaries of the PICpart, in what is referred to as the PICpart’s safe
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zone, we ensure that the particles end up in an element on the PICpart after the current
push step. Note that particles that at the end of a push have moved into an element
outside the current owning PICpart’s safe zone will be migrated to a PICpart for which
that element is within its safe zone before the next push operation.

The first step in the definition of the PICparts is to define a unique partitioning of
the mesh such that each element is in a single part and the elements in a part are a good
set of neighbors with respect to where particles will move in a push operation. Each of
these unique parts will form the core part of a PICpart. The remainder of the PICpart
can be defined as any set of neighboring elements that provide a sufficient buffer such
that at least the core part will constitute the PICpart safe zone. In general, it is desirable
that the buffer is larger, so the safe zones of each PICpart will overlap to help control
the amount of particle migration required between steps and provide more flexibility in
the application of dynamic load balancing.

There are multiple options for selecting the set of buffer elements to be used for
a PICpart. An obvious choice is to select a number of neighboring elements in the
same way remote copies are defined in many PDE discretization methods [30]. For the
PIC applications developed to date, it was found that this would require four layers of
elements and it was determined that the data storage and update requirements if done
as standard remote copies were problematic.

The alternative approach used herein defines each PICpart as a core part and a
sufficient set of the neighboring parts to ensure that there is sufficient buffer with respect
to the core part. Although this approach yields PICparts with more elements than a
layerwise buffering would produce, it requires substantially less total data since it does
not require maintaining remote copy data associated with each element. This approach
also yields large safe zones that reduce particle migration and provides greater load
balancing options.

In cases where the memory requirement to store the entire mesh and required fields
on each PICpart is low, it is convenient for each PICpart to store the entire mesh. In
this case, a specific PICpart is a core and its buffer is the remaining PICparts that define
the mesh.

When the amount of memory required to store the entire mesh and required fields
is such that it is desirable to distribute the mesh, the buffer for each PICpart is only a
subset of the the initial set of parts defined by executing a breadth-first traversal (BFT)
out some number of layers from the boundary of the PICpart’s core part. Each part
reached during the BFT is buffered in the PICpart. An example PICpart constructed
using 4 layers of BFT buffering is shown in Figure 3. The PICpart is for the core part
labeled A which then fully buffers each core region within 4 iterations of BFT including
the non-adjacent part labeled B since elements in part B are included in the third layer
determined by the BFT. The safe zone is also constructed using BFT with fewer layers
than the buffering where the core region and each element reached by the BFT is in the
safe zone. However, this safe zone construction can be overridden by the simulation if
a different definition is required.

The BFT algorithm is implemented using a bottom-up approach [31]. In the bottom-
up approach, each iteration of the BFT processes has every mesh element check its
neighbors to see if it is visited this iteration. This is performed through a selected
lower dimension of entities called the bridge dimension. Each entity of the bridge di-
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Figure 3: PICpart generated for the core part A using 4 layers of breadth-first traversal (right) of the left
partition from Figure 2. Note that the part labeled B is also fully buffered.

mension first checks its upward adjacencies to elements if any have been visited in
a previous iteration. If at least one element has been visited then all of the upward
adjacent elements are visited in the current iteration of the BFT.

The bottom-up approach is better than the more traditional top-down approach for
many-core and GPU architectures when the frontier of the BFT is sufficiently large.
Since the starting point for the BFT is the entire core region, the iterations start with
a sufficiently large frontier such that using the bottom-up method is more performant
than the top-down.

Algorithm 1 provides pseudocode for constructing PICparts using bottom-up BFT
iterations. Lines 2-6 setup the initial state for the BFT. The visited array is filled with
true values for each element in the core part. The BFT algorithm is iteratively run on
lines 7-25. The bottom-up step on lines 8-20 runs each vertex checking if any of its
upward adjacent elements were visited in a previous iteration then setting all upward
adjacent elements to visited. At the end of each iteration, the visited next array is
copied to the visited array to set up the next iteration on line 21. Lines 22-24 constructs
the safe zone from the visited elements after the specified number of iterations for the
safe zone is performed. Then the mesh parts that include any visited elements are
designated to make up the buffer are collected at the end on lines 26-31.

Particle data structure

Particle information such as position and velocity must be stored on the GPU in
a structure that allows efficient access. For mesh-based PIC simulations, the main
requirement for the particle data structure is to group particles by the parent mesh
element. For performance on accelerators, it is important that the structure can be
evenly distributed to threads and mapped to the hardware memory layout and the access
pattern. As a library, it is also important that the particle data structure is tunable to
support different application characteristics. The characteristics present in the target
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Algorithm 1 pseudocode for pull-based BFT to construct buffer region and safe zone.
1: function BFT(mesh, sa f e layers, bu f f er layers, bridge dim)
2: visited = DeviceArray(mesh.num elems())
3: visited next = DeviceArray(mesh.num elems())
4: parallel for Element e in mesh do
5: visited[e] = mesh.isCoreRegion(e)
6: end parallel for
7: for iter = 0 to bu f f er layers do
8: parallel for Entity e of dimension bridge dim in mesh do
9: visit = f alse

10: for all Element n adjacent to e do
11: if visited[n] then
12: visit = true
13: end if
14: end for
15: if visit then
16: for all Element n adjacent to e do
17: visited next[n] = true
18: end for
19: end if
20: end parallel for
21: visited ← visited next
22: if iter = sa f e layers then
23: sa f e zone← visited next
24: end if
25: end for
26: bu f f er cores = DeviceArray(number of processes)
27: parallel for Element e in mesh do
28: if visited[e] then
29: bu f f er cores[mesh.owner(e)] = true
30: end if
31: end parallel for
32: return bu f f er cores, sa f e zone
33: end function

applications of PUMIPic include: up to 10,000 particles per element, uniform and non-
uniform particle distributions, particles will only traverse through a small number of
neighboring elements during a single iteration, and simulation defined representations
of particle data including multiple definitions of particles for a single simulation.

Sell-C-σ
The choice of data structure in PUMIPic to satisfy the requirements is a structure

from Kreutzer et al. called the Sell-C-σ (SCS) [15]. The structure was designed for
efficient use of sparse matrices for tunable performance on different architectures in-
cluding many-core and GPUs. The SCS stems from the commonly used Compressed-
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Sparse-Row (CSR) structure. The problem with the CSR on accelerators is that the
storage does not align well with GPU memory and access patterns. The SCS groups
rows into chunks of size C and orders the memory vertically through chunks and hori-
zontally across rows. The parameter C is set based on the SIMD width of the hardware
being run on allowing the structure to map to the memory layout and align memory
accesses with the hardware. Additional padding of empty cells is used to fill in the
rows such that each row in a chunk has the same length and perfectly aligns with the
hardware memory layout. A second parameter σ controls sorting the rows where sigma
ranges from 1, no sorting, to the number of rows, full sorting. For non-uniform distri-
butions, a higher σ will group longer rows which reduces the amount of padding and
excess computations performed at the cost of running a sorting routine.

Figure 4 shows the storage of particles on a set of mesh elements in a CSR and
two different SCS structures with C = 4 where the first uses no sorting (σ = 1) and
the second has full sorting (σ = 12). Each row represents one mesh element with an
entry in the row per particle within the mesh element. Arrows on the CSR and SCS
structures show the continuous layout in memory. Empty cells in either SCS structures
are padded cells with no particle data stored.

Mesh & Particles CSR Sell-4-1(no sorting) Sell-4-12(sorted)

{
{
{C
C

C

{ {CC

Figure 4: The storage of particles in a set of mesh elements (left) in a CSR (middle) and two SCS (right)
with no sorting and with sorting. Arrows on each structure show the continous layout of memory.

Further improvements to the SCS structure are suggested by Besta et al. in their
structure SlimSell [32]. For non-uniform distributions, there can be workload imbal-
ances between large chunks and small chunks. Besta et al. add vertical slicing to the
chunks so that approximately equal slices are distributed to blocks of threads as op-
posed to the uneven chunks. Figure 5 shows the SCS with vertical slices boxed as done
in PUMIPic.

To store all data associated with particles, a separate SCS structure is constructed
per requested type for the simulation. For example, take a particle being defined as
a three-dimensional position, three-dimensional velocity, and an integer. The particle
data structure would consist of three SCS structures. The first two would store 3 dou-
bles per entry while the third would store a single integer per entry. This approach
allows full customization of the data layout to control the data locality of particle infor-
mation within the particle data structure. Each particle datatype can be separated into
different SCS or combined into a single SCS by bundling the particle data into a single
structure.
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Figure 5: Sell-C-Sigma with full sorting and vertical slicing. Each box of entries represents a block of work
given to a block of threads.

The SCS satisfies the requirement for a mesh-based particle data structure as the
particles in an element are accessible from the equivalent row in the SCS. The tuning of
σ and vertical slicing allow near-even distribution of workload to threads while the pa-
rameter C and padding allow tunable performance on different accelerator hardware in
terms of memory layout and access pattern. These parameters also allow the structure
to be adapted to the different simulation characteristics including particle distribution
and density.

Algorithms to support PIC operations

Mesh Field Synchronization
To maintain dynamic mesh field information across processes, it is necessary to

perform field synchronizations each iteration. This synchronization is performed after
the charge deposition operation. Each process has contributions associated with the
mesh entities that must be summed before the solve operation. Due to the additional
buffering included in the PICparts, there is a significant amount of data that must be
communicated across processes. When the PICparts are constructed with full buffering
of the mesh, field synchronization can be performed using a single reduction across all
ranks. The general approach for distributed mesh buffering is to use a fan-in fan-out
communication protocol leveraging the full part buffer regions.

The fan-in fan-out algorithm is a three-stage approach shown in algorithm 2. The
three steps on lines 1-5 are the fan-in, reduction, and fan-out. The fan-in phase sends
contributions of each core region that makes up the PICpart to the owning process of
the core region shown on lines 6-11. Since the mesh field is ordered by the core region
and each core is fully buffered this is done by a bulk communication of a contiguous
block of memory for each core region in the same order on the sending and receiving
process. After the fan-in phase, the contributions of each copy of the field for the
locally owned core region are reduced using an operation such as sum, max, or min on
lines 12-17. As a result of using nonblocking communications, the reduction is done
as each copy of the field is received. This allows overlapping the communication and
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computation as the field contributions can be transferred to the GPU and then reduced
as each one is received. Then, the fan-out phase is performed on lines 18-23 by sending
the reduced field of the core region to each of the PICparts that buffer it. Again taking
advantage of bulk communication of contiguous memory.

Algorithm 2 pseudocode for fan-in fan-out algorithm for mesh field synchronization.
1: function FieldSync(picpart, f ield, reduction op)
2: FanIn(picpart, f ield)
3: Reduction(picpart, f ield, reduction op)
4: FanOut(picpart, f ield)
5: end function
6: function FanIn(picpart, f ield)
7: for all Core regions p in picpart do
8: Nonblocking Send f ield[p] to p
9: Nonblocking Recv f ield[sel f ] from p

10: end for
11: end function
12: function Reduction(picpart, f ield, reduction op)
13: for i in 1 to number of core regions in picpart do
14: Wait for field f from any picpart p
15: Reduce f into f ield[sel f ] using reduction op
16: end for
17: end function
18: function FanOut(picpart, f ield)
19: for all Core regions p in picpart do
20: Nonblocking Send f ield[sel f ] to p
21: Nonblocking Recv f ield[p] from p
22: end for
23: end function

Particle Search

The push operation moves the particles to new positions. In addition to record-
ing the new position, the parent element the particle is within after moving must be
recorded before the next PIC operation. There are two approaches to locating the new
parent elements of particles. The first is to construct a spatial data structure, such as
a uniform grid or spatially-based tree decomposition, over the domain to quickly find
the potential elements a particle may be within [33]. An alternative approach which
we call adjacency search is to directly use mesh topology to iteratively step toward the
new parent element starting at the old element. This is done by determining an exit face
from the current element towards the particle’s position using some set of testing cri-
teria [34, 35]. Adjacency search is more performant than using a spatial data structure
when particles move a short distance each iteration, where short distance means that
the number of elements a particle traverses through a single push operation is at most
a few. This aligns with the plasma physics simulations that PUMIPic targets wherein a
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given iteration most particles either do not leave the element they start in or move no
more than two or three elements in any iteration. Additionally, no additional data struc-
ture needs to be allocated for adjacency search so there is both a memory and runtime
improvement.

In PUMIPic, adjacency search is implemented using barycentric coordinates and
ray tracing to determine the exit face. Since particles often remain within the element
after a single push, the first step in determining the new parent element is to calcu-
late its barycentric coordinates for the element it started within. If all the barycentric
coordinates are valid the particle has remained within the same element. If any of the
barycentric coordinates are invalid, the exit face is determined by the invalid barycen-
tric coordinate plus ray tracing when needed to resolve edge cases. This method is
iteratively applied until all particles have valid barycentric coordinates for the new
element. Figure 6 shows an example particle and its path through elements using ad-
jacency search. An additional result from using the adjacency search algorithm is that
if a particle’s path passes through a domain model boundary, the collision is recorded
and passed back to the simulation to perform the specific wall interactions appropriate
for the simulation.

Figure 6: Path of a particle through a 2D triangular mesh using edge adjacencies.

In addition to tracking particles as they move through the mesh, most PIC appli-
cations will want to determine where particles hit the outer boundaries, and, when
present, interior boundaries that demark interior components. Since the Omega h [21]
data structure maintains a complete mesh topological hierarchy of mesh regions, faces,
edges, and vertices, as well as maintaining knowledge of when mesh faces, edges, and
vertices are part of an exterior or interior boundary [36], it is easy to determine when
particles hit these boundaries, thus allowing the ability to include physics associated
with such interactions. In fact, in one PIC application, we are currently developing
using PUMIPic, there are specific physics terms that must be accounted for even when
particles are very close to boundaries. Since accounting for these terms is expensive
and their contribution outside the region close to the boundary is negligible, procedures
are being developed that employ the mesh topology information to activate those terms
only when particles are approaching either an interior or exterior boundary.
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Particle Structure Rebuild
After the particles are pushed and the new parent elements are determined using

adjacency search, the particle structure must regroup the particles by the new parent
elements. This regrouping, referred to from here on as rebuild, in general, is performed
by fully reconstructing the particle data structure. The choice to fully reconstruct the
SCS as opposed to supporting a growth mechanism is largely due to the parallelism
supported on a GPU. Supporting a per element growing structure would result in a large
amount of contention between the concurrent threads of a GPU. Reconstructing the
data structure is done through data-parallel operations per particle along with efficient
reductions that are better designed for running on GPUs.

The rebuild algorithm constructs a new particle data structure with the new distri-
bution of particles. Then, the particle information is copied from the old structure to the
new structure and finishes by destroying the old structure. Figure 7 shows an example
of rebuild being performed. On the left is the SCS with filled cells and padded cells
with element rows labeled on the side. Numbers inside the cells represent the element
the particle is moving into, while no label means the particle did not leave its previous
parent element. The right side of the figure shows the new SCS after rebuild. Note the
element labels are in a different order now to maintain the sorting
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Figure 7: Example SCS before rebuild (left) with element numbering to the left. New parent elements of
particles moving are listed within cells. The SCS after rebuild (right) with a new memory allocation along
with resorting of the rows.

An alternative approach to rebuild is to utilize the padding of the SCS. Instead of
copying the data from an old structure to a new structure, rebuild can be performed
in-place by copying the particles moving to a new element into the padded cells of
the element. The in-place rebuild can only be performed when each element receiving
particles has at least as many padded cells as incoming particles. If this is not the case,
then the full reconstruction rebuild is used. The occurrence of in-place rebuild can be
increased by adding additional padding to each element when the SCS is constructed
at the cost of more memory usage.

Figure 8 performs in-place rebuild on the same example from Figure 7. In this case,
the right SCS uses the same memory as the original SCS after performing rebuild.
Darker cells depict the new location of particles that have moved to a new element.
Note that in-place rebuild does not perform sorting of the rows based on length. Along
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with the empty cells left throughout the structure, it is still ideal to perform a full rebuild
after several iterations to improve the data layout.
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Figure 8: Example SCS before rebuild (left) with element numbering to the left. New parent elements of
particles moving are listed within cells. The SCS after in-place rebuild (right) using the same memory as the
initial SCS. Darker cells show the particles that moved to a new cell.

An additional capability of the rebuild step is to introduce new particles or remove
particles from the system. For the full rebuild algorithm, new particles are added when
creating the new particle structure and removed particles are ignored as if they were
padded cells resulting in their omission from the new data structure. The in-place
rebuild has to account for the new particles when checking if the in-place operation
is possible. Particles leaving the system can act as padded cells allowing particles to
replace those entries in the current rebuild.

Particle Migration
For particles that were pushed to an element outside the safe zone of the process, the

particles must be migrated to a new process such that they are well within the safe zone
of the new process. Due to the overlapping of PICparts, there are many processes that
a particle can be migrated to. A straightforward strategy is to send migrating particles
to the process which has the new parent element within its core. This guarantees the
particles are always sent to a process that the element is within the safe zone. However,
continuous execution of this strategy over several iterations will likely result in an
imbalance of the particles across the processes. In this case, load balancing will be
required to reassign particles across overlapping regions of safe zones across processes.
An approach to this load balancing has been explored previously [37]. Implementing
this routine efficiently for GPUs is a work in progress.

The particle migration routine is performed prior to the rebuild of the particle data
structure such that the migrated particles can be added to the new process during the
same rebuild. The migration routine communicates all particle data from the old pro-
cess to the new process and is collected as new particles on the receiving process.
Then the migrated particles are marked as left the simulation on the old process. The
migrated particle information is passed onto the rebuild routine which will add the mi-
grated particles as new particles to the particle data structure. On the old process, since

16



the particles are marked as leaving the simulation, these particles are ignored when
performing rebuild and will be deleted.

By default, the particle migration routine does not know which processes it will
be communicating particles between. As such, the routine must perform an all-to-
all communication to receive the counts of particles being sent and received on all
processes. Alternatively, this all-to-all communication can be vastly reduced by using
the partition of the mesh and PICparts. Particles can only be migrated between two
processes that overlap PICparts. Since PICparts are a collection of cores, the process
owners of each core that makes up the local PICpart is all that is needed for determining
the process being sent to and received from.

Pseudo Plasma Simulation

We are currently working on the development of PUMIPic based implementations
of two plasma physics codes, GITR and XGC. GITR [38, 39] is a plasma impurity
transport code in which the PUMIPic implementation is using a fully 3D mesh to track
the impurities as they move through the plasma and interact with the vessel wall. XGC
[40, 41] is a 5D gyro-kinetic code specifically designed for the modeling of tokamak
edge plasma physics. As outlined below XGC employs a specialized discretization
of the tokamak geometry. The performance test performed here carry out core XGC
PIC operations using the overall methods for data transfer and mesh-based operations
used in XGC, but with simplified pseudo physics calculations. Using simplified pseudo
physics allows us to focus on evaluating the performance of PUMIPic.

Figure 9: Toroidal representation of a tokamak with two poloidal planes.

In an XGC simulation, the tokamak domain is discretized into a set of cross sections
perpendicular to the toroidal direction referred to as poloidal planes shown in Figure 9.
A poloidal plane is represented by a two-dimensional unstructured mesh of triangles.
The same unstructured mesh is used for each poloidal plane. The interior domain
between adjacent poloidal planes can be considered as an extrusion of the triangles
around the tokamak through which the particles traverse. Figure 10 shows an example
model for a poloidal plane. Although the particles representing the ions and electrons
are moving at a very high velocity, they are generally field following meaning that they
will mostly stay near the same flux surface. XGC takes advantage of this by defining
a nearly field-following mesh using a set of curves of constant magnetic flux in the
definition of the domain (see Figure 10) and its mesh.
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Figure 10: Model of a poloidal planes. Curves on the model represent flux curves of equal field values.

As noted in the Particle Migration section, in order to minimize the number of
particles migrated, it is ideal to partition the mesh along with the motion of particles.
Therefore, the core of each PICpart is defined by a number of adjacent flux faces. The
buffer of each PICpart will be some number of flux faces around the core. The partition
on the right in Figure 2 shows such a partition with one flux face per core.

The notion of poloidal planes adds additional partitioning of work necessary be-
yond the partition of the unstructured mesh. With simulations using 96 poloidal planes
[42] and upwards of 128 or more poloidal planes [43], storing all necessary mesh fields
for a given PICpart for all poloidal planes would be impossible in the GPU memory.
Thus, partitioning the planes is required. In this study, the planes are partitioned such
that each process stores the fields associated with two adjacent planes.

Particle Push

The goal of defining a push routine for the pseudo simulation is to approximate
the general behavior of particles, without needing to define all of the physical routines
required to accurately push particles. The desired behavior is that particles move few
elements per iteration and generally move within flux faces. To achieve this, particles
are pushed in an elliptical pattern around the center of the poloidal plane. The ellipse
that each particle is pushed along is designed such that particles are roughly moving
within a flux face. The distance each particle moves per iteration is controlled based on
the distance from the center to ensure every particle moves only a short distance. In the
toroidal direction, particles are pushed at a constant rate each iteration. This push rou-
tine accurately triggers the particle migration and rebuild of the particle data structure,
but requires little computation per iteration and does not represent the computational
cost of a real simulation’s push.
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Particle to Mesh

After the particle push, the charge deposition phase occurs where particles add
contributions of charge onto the mesh fields. In a poloidal plane based simulation, this
involves every particle depositing onto the mesh vertices of the two poloidal planes
surrounding the particle. As a 5D gyro-kinetic code, XGC is only following the mean
path of the particles. Since the fast gyro motion that is not tracked is not small with
respect to the mesh size, using simple mean path location charge deposition on the
mesh via simple interpolation is not sufficient since this would only deposit charge to
three mesh vertices. Two methods can be used to approximate the gyro-motion, using
gyroaveraging matrices [44] or defining a set of gyro rings for each vertex [45, 46]. In
this study, we use the gyro ring method. The general idea is that each mesh vertex is
surrounded by several gyro rings. Points along the rings are projected to the poloidal
planes along field lines to distribute contributions on to the mesh vertices. Figure 11
depicts the steps of the approximation. First, a particle’s position is projected to a
virtual plane, V, that resides halfway between the two surrounding planes, P0 and P1.
The mesh element on V containing the projected particle is found using adjacency
search. Each vertex of the element distributes contributions on two gyro rings, g0
and g1, based on particle properties. Each point along the gyro rings are projected to
planes P0 and P1. The mesh elements of these projected points are again found and
contributions are divided between the vertices of these elements.

Figure 11: Depiction of charge deposition approximation for one particle. Particle on virtual plane V dis-
tributes contributions to gyro rings, g0 and g1, surrounding mesh vertices of element particle is within. Points
along the gyro rings project contributions to poloidal planes P0 and P1 and deposit on mesh vertices.

Due to the number of projections and indirection of this approximation method, a
mapping is constructed once at the beginning of the simulation from each mesh vertex
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to the projected mesh vertices on both surrounding planes. This reduces the operation
to a projection to V followed by a lookup on the mapping based on particle properties.

Solve and Field to Particle

The pseudo simulation forgoes both the mesh field solve and field to particle phases.
The field to particle phase follows similar calculations and data access patterns as the
particle to mesh phase and as such were not implemented for the pseudo simulation.
The field solve phase involves the solution of a Poisson equation [47] with extensive
research in performing the field solve efficiently [33]. Implementing these operations
is left for future work as part of the physically accurate simulation in development.

In place of these operations, the resulting field from charge deposition is accumu-
lated across all processes such that each process has the same values for equivalent
planes across all PICparts. This requires synchronization in the toroidal direction as
well as utilizing PUMIPic’s field synchronization across PICparts.

Performance Study

Scaling experiments are performed on the Summit supercomputer using a two-
million triangle mesh executing 100 iterations of the particle loop. Scaling studies
are performed using a constant number of particles per GPU as the number of nodes
increases. Each node is configured to use one core per GPU for a total of six MPI
ranks and six GPUs per node. Two sets of scaling studies are performed. First, the
number of PICparts that the mesh is partitioned into is increased. This scaling has
both weak scaling in terms of particles and strong scaling in terms of mesh entities per
process. Then for a constant mesh partition, the number of poloidal planes is increased
representing pure weak scaling in terms of particles.

Mesh Partition Scaling
The mesh partition scaling study is performed using one poloidal plane with six

to 192 PICparts using BFS buffering. This study requires one Summit node for the
lower case ranging up to 32 nodes for the 192 PICpart case. The pseudo simulation
is executed with up to 48 million particles per GPU (mppg). Figure 12 presents the
results from the simulation. The left plot shows the total time which is normalized by
the single node experiment. Some increase in performance is gained by the partitioning
of the mesh which is greater seen for lower particle counts. For four mppg there is
up to a 55% decrease in time at 192 PICparts and a 7% decrease at 48 mppg. For
larger particle counts, the particle operations dominate the computation and as a result,
the scaling of the mesh has less of an effect on the total runtime. The scaling of the
mesh also exhibits the expected diminishing performance gains. Around 90% of the
reduction in runtime is achieved by 48 PICparts across the particle counts. For the
given mesh entity count, partitioning the mesh further does not significantly decrease
the PICpart size resulting in a majority of the part to be comprised of the buffer. This
results in no additional performance gains to the mesh-based operations.

The right plot of Figure 12 shows the timing of the operations involved in each
time step for the 48-mppg case. The six operations included in the figure are the parti-
cle push represented by the push line, the reconstruction of the particle structure labeled
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rebuild, the adjacency search labeled search, the particle to mesh or charge deposition
phase labeled deposition, particle migration labeled migration, and the field synchro-
nization step labeled sync. The predominately mesh-based operations are search and
sync. As the number of PICparts increases, the cost for these operations decreases until
flattening out. The rebuild operation is the dominant operation which is expected as it
is the most data movement intensive operation. The remaining operations see no sig-
nificant changes from scaling the mesh and the number of nodes used including particle
migration.
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Figure 12: Simulation plots scaling PICparts from 6 to 192 with 2 to 48 mppg for 100 iterations of the
particle loop. Normalized time (left) and breakdown on the time of the major operations (right)

Plane Scaling
The pure weak scaling study is performed by using the 192-PICpart partition with

BFS buffering for the two-million element mesh and scaling the number of poloidal
planes from one to 128. At 128 poloidal planes, the simulation uses 4096 of the 4608
nodes available on Summit. Results are presented with up to 48 mppg. Results are
shown in Figure 13. Weak scaling efficiency is presented in the left plot. Scaling up to
256 nodes shows increased time by up to 30% at 4 mppg and 5% at 48 mppg. Scaling
from 256 nodes up to 4096 nodes shows only fluctuations in total time with no major
increase. The timing of the same major operations shown in the mesh scaling figures
for 48 mppg is shown in the right plot. The increase in time scaling up to 256 nodes
is caused by the migration and rebuild operations. All other operations show no major
increase in time cost.

Closing Remarks and Future Work

The PUMIPic library was presented for developing distributed mesh-based particle
in cell simulations. The library includes data structures for efficient storage of the
mesh and particles and implementations of common operations required for PIC on
GPUs. Scaling studies are performed up to 4096 nodes of the Summit supercomputer
using a two million element mesh with up to 1.1 trillion particles. Scaling the mesh
partition and weak scaling of the particles achieved between 7-55% decrease in time
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Figure 13: Simulation plots scaling planes from 1 to 128 with 2 to 48 mppg for 100 iterations of the particle
loop. Normalized time (left) and breakdown on the time of the major operations (right)

with larger decreases in time seen at lower particles per GPU. Purely weak-scaling with
a fixed mesh partition resulted in increases of time between 5-30% with less increase
for larger counts of particles per GPU.

The performance studies show good weak scaling with respect to the number of par-
ticles when scaling both the number of PICparts and the number of planes that make up
the computational problem. The next major step for the PUMIPic library is to imple-
ment a physically realistic simulation using the structures described here. Equivalent
simulations for GITR [38, 39] and XGC [40, 41] using PUMIPic are ongoing work.
Once simulations are implemented using PUMIPic, the performance can be compared
between the traditional methods and PUMIPic to determine the effectiveness of our
mesh-based approach to PIC simulations.

To further analyze the performance of the Sell-C-Sigma structure as a particle data
structure, additional underlying data structures will be explored on GPUs. Current de-
velopment is being done to implement the particle data structure in PUMIPic using the
Cabana AoSoA [18]. Similarly, structures such as the CSR and SIMD width based
structures will be implemented to compare with the Sell-C-Sigma. Given that the re-
build and migration operations are two of the biggest time consuming operations in
the scaling studies, further structures with more efficient reconstruction of the data will
be explored.

Another major time component from the studies is the adjacency search method.
While our barycentric coordinate plus ray tracing is faster than using a spatial data
structure and correctly manages edge cases, alternative approaches to adjacency search
will be explored such as those presented by Chordá et al. [35] and Macpherson et al.
[34].

In the pseudo physics simulation used in our scaling study particles remained well
balanced due to the controlled motion of the particles. In a real physical simulation,
it is expected that there will be an issue with particle load balance as the simulation
evolves. As such, a dynamic particle load balancing strategy must be implemented
to maintain even computation cost across the GPUs. Previously, a method for load
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balancing was explored on CPUs exploiting the overlapping regions of mesh to perform
efficient diffusive balancing of particles. Implementing this method on GPUs is a work
in progress.
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