
IMPROVING PARALLELISM OF SCIENTIFIC AND
ENGINEERING APPLICATIONS ON HETEROGENEOUS

SUPERCOMPUTERS

Gerrett Diamond

Submitted in Partial Fullfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Approved by:
Mark S. Shephard, Chair

George Slota
Barb Cutler
Onkar Sahni

Cameron W. Smith

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, New York

[August 2021]
Submitted August 2021



© Copyright 2021

by

Gerrett Diamond

All Rights Reserved

ii



CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Partitioning and Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Particle-In-Cell Framework for Efficient Operation on Accelerators . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. GENERALIZED MULTICRITERIA DIFFUSIVE LOAD BALANCING ON A MUL-
TIHYPERGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Partitioning and Load Balancing Methods . . . . . . . . . . . . . . . . . . . 9

2.1.1 Multilevel (Hyper)Graph Partitioning . . . . . . . . . . . . . . . . . . 10

2.1.2 Geometric Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Diffusive Partitioning Improvement . . . . . . . . . . . . . . . . . . . 12

2.2 Partitioned Multihypergraph Representation . . . . . . . . . . . . . . . . . . 13

2.3 Diffusive Load Balancing Method . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Generalization of Multicriteria Load Balancing . . . . . . . . . . . . . 18

2.3.3 Graph Distance Computation . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Mitigating Edge-Cut Increases . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. IMPROVING UNSTRUCTURED MESH PARTITIONS USING DIFFUSIVE MUL-
TICRITERIA GRAPH LOAD BALANCING METHODS . . . . . . . . . . . . . 26

3.1 Representing Unstructured Mesh Partitions as an N-graph . . . . . . . . . . 27

3.2 Improving Element-Partitioned Meshes . . . . . . . . . . . . . . . . . . . . . 29

3.3 Improving Vertex-Partitioned Meshes . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Boundary Layer Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Vertex-Based Unstructured Mesh Partition . . . . . . . . . . . . . . . 32

3.4 Improving Higher-Order Finite Element Partitions . . . . . . . . . . . . . . . 34

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



4. FRAMEWORK FOR DESIGNING MESH-BASED UNSTRUCTURED-MESH PA-
RTICLE-IN-CELL SIMULATIONS ON GPUS . . . . . . . . . . . . . . . . . . . . 37

4.1 Data Structures for Mesh-Based PIC . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Performance Portability . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Unstructured Mesh Structure . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Mesh Partitioning for PIC . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.4 Particle Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4.1 Storing Particle Data . . . . . . . . . . . . . . . . . . . . . . 51

4.1.4.2 Compressed Sparse Row . . . . . . . . . . . . . . . . . . . . 51

4.1.4.3 Sell-C-Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4.4 Array of Structs of Arrays . . . . . . . . . . . . . . . . . . . 55

4.2 Algorithms for Supporting PIC Operations . . . . . . . . . . . . . . . . . . . 57

4.2.1 Supporting Particle-Mesh Interactions . . . . . . . . . . . . . . . . . 57

4.2.2 Unstructured Mesh Field Synchronization . . . . . . . . . . . . . . . 58

4.2.3 Adjacency Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.4 Particle Structure Rebuild . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Particle Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Particle Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Overlapping Safe Zones . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Applying EnGPar to Balance Particles . . . . . . . . . . . . . . . . . 70

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. SUPPORTING MESH-BASED IMPLEMENTATIONS OF FUSION PLASMA PA-
RTICLE-IN-CELL SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Supporting XGCm Implementation . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Partitioning the XGC Domain . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Charge Deposition: Gyroaverage . . . . . . . . . . . . . . . . . . . . 78

5.1.3 Field Synchronization Between Planes . . . . . . . . . . . . . . . . . 80

5.1.4 Field Solve on PICparts . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Pseudo Physics Simulation for XGCm . . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Elliptical Particle Push . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Solve and Field to Particle . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3 Performance Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.3.1 Mesh Partition Scaling . . . . . . . . . . . . . . . . . . . . . 83

5.2.3.2 Plane Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Supporting GITRm Implementation . . . . . . . . . . . . . . . . . . . . . . . 84

iv



5.3.1 Particle Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Distance to Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 GITRm: Studying Large Particle Imbalance . . . . . . . . . . . . . . . . . . 88

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Partition Improvement on GPUs . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Optimized Use of Particle Structures . . . . . . . . . . . . . . . . . . 91

6.2.3 Evolving Mesh in PICparts . . . . . . . . . . . . . . . . . . . . . . . 91

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX A. ENGPAR LOAD BALANCING INPUTS . . . . . . . . . . . . . . . 110

v



LIST OF TABLES

3.1 Average number of mesh vertices per part. ©2018 IEEE. . . . . . . . . . . . . 30

4.1 PICpart and N-graph entity counts for an 11.4 million element mesh excluding
three layers from PICpart boundaries as the safe zone. . . . . . . . . . . . . . . 70

vi



LIST OF FIGURES

2.1 A mesh partitioned to four parts using global partitioning (left) and then locally
partitioned to eight parts (right). . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 (a) A seven triangle mesh surrounding one mesh vertex. (b) A graph using tra-
ditional edges to connect the graph vertices whose corresponding mesh elements
share the mesh vertex. (c) The N-graph construction using a hyperedge for the
mesh vertex and connecting the adjacent mesh elements in the N-graph. . . . . 14

2.3 (a) A 2D unstructured mesh. (b) N-graph construction with elements→vertices,
vertices→hyperedges. (c) Additional mesh edges are used for a second set of
hyperedges. Mesh labeling is shared in all three to correlate mesh entities to
graph entities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 A hyperedge cut across three parts A, B, and C. The cavity for each part has
size 4,2, and 3 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 The result of executing the ComputeCenters procedure on a hypergraph part
with three disconnected components. Filled boxes represent cut hyperedges and
boxes with an X are the topological centers for each component. The depths of
each hyperedge is listed adjacent to the boxes. . . . . . . . . . . . . . . . . . . 22

2.6 The result of executing the ComputeDistance procedure on the hypergraph part
from 2.5. Distances of each hyperedge is noted adjacent to each box. The vertex
labeled U represents the moment the two disjoint sets of the middle component
are unioned to form one set for the component. . . . . . . . . . . . . . . . . . . 23

3.1 An unstructured mesh of triangles and a quadrilateral (a), the N-graph for an
element-partitioning of the mesh with mesh vertices as hyperedges (b), the N-
graph for a vertex-partitioning of the mesh with mesh elements as hyperedges
(c), the N-graph for a higher-order element-partitioning of the mesh where two
hyperedge types are used one for mesh vertices (empty boxes) and one for mesh
edges (filled boxes) (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Vertex imbalance for the initial partitioning and the partitions created by En-
GPar and ParMA. Element imbalance is maintained below the 5% tolerance for
all cases. ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Time to balance for EnGPar and ParMA. ©2018 IEEE. . . . . . . . . . . . . . 30

3.4 Edge cut and imbalance for various values of β used to reduce the growth of edge
cut. Initial values from ParMETIS and β disabled are also provided. Vertex
imbalance is 5% for all cases. ©2018 IEEE. . . . . . . . . . . . . . . . . . . . 33

3.5 Edge cut and imbalance for the graph with collapsed boundary layer stacks using
values of β from 0.5 to 1.2 and with β disabled. Initial values from ParMETIS
are provided. Vertex imbalance is 5% for all cases. ©2018 IEEE. . . . . . . . . 33

vii



3.6 Imbalances of degrees of freedom (left) and mesh elements (right) before using
EnGPar and after running EnGPar on the N-graphs for one hyperedge type per
lower mesh dimension (Multiple) and one hyperedge type for all DOF holders
(Single). Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Depiction of the 4 main steps involved in an iteration of the PIC loop. . . . . . 38

4.2 Two-dimensional unstructured mesh partitioned using multi-level graph method
for field solve (left) and partitioned along principal direction of particle motion
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 PICpart generated for the part A using 5 layers of breadth-first traversal for the
left partition from Figure 4.2. Note that the part labeled B is also fully buffered. 46

4.4 Safe zone for PICpart A using three iterations of BFT from the part (left) and
excluding three layers from the edge of the PICpart (right). . . . . . . . . . . . 47

4.5 Example CSR offsets and values arrays. Each row represents one mesh element.
Each box in the values array is one particle. . . . . . . . . . . . . . . . . . . . 52

4.6 The storage of particles in a set of mesh elements (left) in a CSR (middle) and
two SCS (right) with no sorting and with sorting. Arrows on each structure
show the continous layout of memory. . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Sell-C-Sigma with full sorting and vertical slicing. Each box of entries represents
a block of work given to a block of threads. . . . . . . . . . . . . . . . . . . . . 54

4.8 An AoSoA with five SoAs with C = 5 each storing three types arrays for x, y,
and z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Particles stored in the CabM structure adjacent to the CSR and SCS for the
same particles. Each group of C entries represents one SoA assigned to the
element for that row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.10 Path of an adjacency search for a particle on a 2D triangular mesh using edge
adjacencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.11 Example SCS before rebuild (left) with element numbering to the left. New
parent elements of particles moving are listed within cells. The SCS after rebuild
(right) with a new memory allocation along with resorting of the rows. . . . . 65

4.12 Example SCS before rebuild (left) with element numbering to the left. New
parent elements of particles moving are listed within cells. The SCS after in-
place rebuild (right) using the same memory as the initial SCS. Darker cells
show the particles that moved to a new cell. . . . . . . . . . . . . . . . . . . . 66

4.13 Left: A section of a triangular mesh with four parts A, B, C, and D. Middle:
The three overlapping safe zones around the boundary between parts A and B.
Right: The subhypergraphs for each of the three overlapping safe zones. . . . . 69

viii



5.1 Left: A mesh of the plasma region of ITER tokamak up to the material wall.
Right: A cross section of the region depicting the different regions and major
points of the ITER model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Geometric model of a poloidal plane. Curves on the model represent flux curves
of constant magnetic flux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Partition of the poloidal plane with one part per flux face. The portion of the
edge region outside the separatrix makes up an additional part. . . . . . . . . . 77

5.4 Depiction of charge deposition approximation for one particle. Particle on vir-
tual plane V distributes contributions to gyro rings, g0 and g1, surrounding
mesh vertices of element particle is within. Points along the gyro rings project
contributions to poloidal planes P0 and P1 and deposit on mesh vertices. . . . 79

5.5 Simulation plots scaling PICparts from 6 to 192 with 2 to 48 mppg for 100
iterations of the particle loop. Normalized time (left) and breakdown on the
time of the major operations (right). . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Simulation plots scaling planes from 1 to 128 with 2 to 48 mppg for 100 iterations
of the particle loop. Normalized time (left) and breakdown on the time of the
major operations (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7 Left: The mesh entities where particles are initialized in the GITRm simulation.
Right: The path for some particles in GITRm. . . . . . . . . . . . . . . . . . 86

5.8 Particle imbalance across ten thousand iterations running GITRm with and
without load balancing for 50 million particles up to 400 million particles on 6
to 48 GPUs. Lower is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



ACKNOWLEDGMENT

This thesis and the years of research devoted to it owes thanks to many people who have

contributed and supported me. Thank you to my committee for helping me along my journey.

A special thanks to Cameron Smith who has served as a wonderful mentor for me since my

time as an undergraduate researcher. Thanks to my advisor, Mark Shephard for always

pushing me to progress in my research and provide the means for me to grow professionally.

Many thanks to my colleagues Dan Ibanez, Brian Granzow, Chonglin Zhang, Dhyan Nath

and many others who helped me understand concepts involved in our research and for their

time in development and debugging.

The opportunity to work on several of the most powerful supercomputers owes thanks

to the staff and system administrators at the Computational Center for Innovations, the

Texas Advanced Computing Center, the National Energy Research Scientific Computing

Center, Argonne National Laboratories, and Oak Ridge National Laboratories.

Finally, I’d like to thank my family, friends, and my cats who have supported me and

kept me striving for success these past years. A special thanks to Anthony Trubiano and my

two cats Pluot and Dango for keeping me company through the COVID pandemic.

x



ABSTRACT

The rising usage of heterogeneous supercomputers introduces both opportunities for in-

creased parallelism and challenges for efficient usage of the available hardware. Applications

running on heterogeneous supercomputers must adopt new methods to achieve performance

across two levels of parallelism. Inter-process parallelism defines coordination between pro-

cesses and intra-process parallelism within each process. This thesis presents research to-

wards improving inter-process and intra-process parallelism for applications that use complex

data structures such as distributed unstructured meshes.

Inter-process parallelism is defined by the coupled costs of the partition of load between

processes and the communications between processes required as a result of the partition.

To achieve optimal performance, partitions must divide computational load evenly between

processes while minimizing the additional costs of communications. This thesis addresses

improving inter-process parallelism using multicriteria partition improvement multicriteria

methods on a generalized structure for a broad set of potential applications. The partition

improvement methods are applied to different unstructured mesh setups with partitions up

to half a million processes.

In the case of heterogeneous supercomputers, intra-process parallelism is dictated by

the parallel hardware available to each process for performing computations. For most of

the current and next generation US systems, Graphic Processing Units (GPUs) are the

parallel hardware available on each node. This thesis addresses methods for intra-process

parallelism in the scope of particle-in-cell simulations with a novel approach to the storage of

the unstructured mesh and the particles for optimized performance on GPUs while utilizing

performance-portable methods for performance on future hardware. Scaling studies of these

methods are presented up to 4096 nodes of the Summit supercomputer with over a trillion

particles simulated.
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CHAPTER 1

INTRODUCTION

Scientists and engineers use simulations running on computers to model domains of interest

and perform virtual experiments to more efficiently expand our understanding for different

aspects of our world. To execute these simulations on computers the domains of interest

must be expressed as structures that can be operated on efficiently. Depending on the size

and complexity of the domain, different models may be employed. For many engineering

simulations including finite-element [1], finite-volume [2], and particle-in-cell [3] simulations,

unstructured meshes are commonly employed to model complex domains and accurately

examine the physical scenarios driving each simulation.

As simulations study broader domains and more complex physics, larger and faster

computers are required to accurately perform the calculations. When the simulations grow

beyond the capacity of a single computational unit or CPU, the simulations data and calcula-

tions must be partitioned across multiple processes and memory spaces on many CPUs that

perform calculations in parallel. The largest parallel computers used for these simulations

are referred to as supercomputers.

Simulations executing on massively parallel supercomputers must achieve a high level of

performance and scalability to properly utilize the available hardware. Performance on these

systems can be broken down into two categories, inter-process performance and intra-process

performance. Inter-process performance depends on the cost of communications between

processes used to synchronize the simulation. Additionally, the balance of computational

work across all processes is important for inter-process performance as processes that have

less work will spend more time idle waiting on the processes with more work. Intra-process

performance is the performance of the computational work given to each process. This

relates to the usage of the available computational hardware and the effective mitigation of

the hardware latencies.

1.1 Partitioning and Load Balancing

For gaining optimal inter-process performance, the key is to minimize the need for

communications between processes, optimize the necessary communications, and maintain

a well balanced load of computational work between processes. While the exact usage of

1
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inter-process communications is at the application level, the amount of data that needs

to be communicated and the balance of computational work is a direct result of how the

simulation data is partitioned across the processes. Applying partitioning and load balancing

techniques can successfully distribute work evenly while also minimizing the overlapping

data that requires communications. The most powerful of these methods for partitioning

unstructured meshes is the multilevel graph methods [4]–[8] that have been shown to scale

up to tens of thousands of processes [9]. However, these methods tend to fail at larger

process counts due to memory usage [10] and can only target one criteria for partitioning.

Diffusive methods have been used to improve the partitions of multilevel graph methods

to achieve partitions up to millions of processes and target multiple criteria simultaneously

[11]–[13]. Diffusive methods are also useful for evolving simulations where the computational

work load changes as the simulation progresses. Evolving simulations such as simulations

using mesh adaptation [14]–[17] and particle-in-cell simulations [18]–[21] require dynamic

load balancing throughout the simulation to maintain optimal performance. Expensive or

memory intensive methods such as multilevel graph methods can not be applied in this case

where as fast low-cost diffusive methods are an excellent choice [22], [23].

The partitioning methods used for unstructured meshes are applicable to a range of

applications, but require being generalized for other models that exhibit similar characteris-

tics. The N-Graph Partitioner (EnGPar) has been developed to provide the diffusive methods

previously used for unstructured meshes to perform partition improvement on a range of do-

mains of interest including parallel unstructured meshes. EnGPar is shown to achieve similar

partition improvement for unstructured meshes faster than the direct unstructured mesh dif-

fusive tool on over half a million processes. EnGPar is also applied to perform dynamic load

balancing of particles in an unstructured mesh domain for particle-in-cell simulations.

Chapter 2 details methods developed in the EnGPar library and the improvements

to previous methods. EnGPar is applied to improve the partitions of unstructured meshes

in Chapter 3 including a comparison of EnGPar to its predecessor ParMA [13] and cases

that ParMA does not natively support. A method for performing dynamic load balancing

of particles for particle-in-cell simulations using a partitioned mesh is detailed in Chapter 4.

Usage of this method with results are included in Chapter 5.
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1.2 Particle-In-Cell Framework for Efficient Operation on Accel-

erators

Intra-process performance is achieved through proper usage of system hardware to

optimize the necessary calculations and memory accesses a simulation requires. This can

include usage of data structures that perform well on the underlying hardware, algorithms

that exploit the memory layout and hierarchy, etc. Optimizing intra-process performance

is further complicated on computers which include accelerators. Accelerators are additional

computational devices that perform many computations simultaneously resulting in much

faster calculation than the CPUs can perform. While accelerators can generally speed up

calculations, they introduce new challenges and limitations in the algorithms and data struc-

tures that can effectively utilize the hardware.

The inclusion of accelerators in supercomputers has been growing over the past gen-

erations of high-performance computing systems. The TOP500, a ranking list of the top

supercomputers in the world based on the performance of the LINPACK benchmark [24],

has seven of the top ten supercomputers as of November 2020 include an accelerator [25].

Graphic processing units (GPUs) have dominated the current and next generation of U.S.

based supercomputers including Summit [26]–[28] and Sierra [29], [30], the second and third

place respectively on the TOP500, that each use NVIDIA Tesla V100 GPUs. Usage of the

accelerators is essential to achieving performance on these machines as most computational

power is from the accelerators. For Summit, 98% of the FLOPs are provided by the GPUs

[31]. It is also important to design simulations running on accelerators to be performance-

portable across different architectures as the next generation of DOE machines each plan to

have GPU accelerators from a different vendor: Perlmutter with NVIDIA GPUs [32], Aurora

with Intel Xe [33], and Frontier with AMD GPUs [34]. Maintaining performant versions of

simulation codes for all of these architectures as well as future supercomputers is infeasible.

Performance-portable tools such as Kokkos [35], and RAJA [36] allow routines to be written

once and maintain performance on many different architectures.

Supercomputers with accelerators have two key factors that change how computing is

done compared to past architectures. First, is that programming for accelerators is different

than for CPUs. CPUs are good for complex computation and branching that melded well

to Multiple-Instruction Multiple-Data (MIMD) programming. The main hardware improve-

ments for CPUs is good cache performance by operating on data roughly in the order it
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was stored in memory. Accelerators have many simpler processing units that operate to-

gether requiring Single-Instruction Multiple-Data (SIMD) operations and avoid branching

when possible. Hardware performance for accelerators include coalescing memory for dif-

ferent threads and utilizing the SIMD width of the device to correctly align computations.

In order to utilize the device properly, different types of algorithms and data structures are

required that specifically take advantage of the hardware.

One class of high-performance computing simulation that ports well to GPUs is the

Particle-In-Cell (PIC) method [37]–[39]. These methods track particles as they move through

the simulation domain. Particles can be simultaneously operated on by the accelerators. Un-

structured mesh Particle-In-Cell simulations [40]–[44] use an unstructured mesh to represent

the complex geometry of the simulation domain. In this case, particles are tracked as they

move through the mesh elements and interact with the fields associated to the mesh and

other external background fields. The traditional approach to unstructured mesh PIC is

to distribute particles across processes and store a copy of the unstructured mesh on each

process. The particle data is extended to store the mesh element the particle is currently

within know as the particle’s parent element. An alternative method researched as part of

this thesis is to distribute both the unstructured mesh and the particles across processes.

Instead of the particles maintaining knowledge of the parent mesh element, the particles are

stored based on parent element so particles with the same parent element are grouped nearby

and accessed through the mesh elements. The Parallel Unstructured Mesh Infrastructure

for PIC (PUMIPic) is a library developed to support the implementation of PIC simulations

using this alternative method we call mesh-based PIC.

Chapter 4 describes the details of the structures and algorithms that make up the

PUMIPic library . The developments towards implementing mesh-based versions of the

plasma-physics PIC simulations XGC [42] and GITR [44] using the PUMIPic library are

included in Chapter 5.

1.3 Contributions

The research that comprises this thesis targets both the inter-process and intra-process

performance for massively parallel simulations. Inter-process performance is targeted through

the development of partition improvement methods for balancing and minimizing communi-

cations between processes. The EnGPar library was developed by the author that includes a
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multihypergraph data structure and the implementation of a generalized version of dynamic

load balancing methods previously developed by Smith [45]. Details of the EnGPar library

can be found in Chapter 2. Developments by the author are as follows:

1. The implementation of the N-graph, a multihypergraph allowing multiple edge types

and hyperedges that support connecting two or more vertices per edge.

2. Generalization of Smith’s dynamic load balancing algorithm to perform on the N-

graph for usage in a larger range of applications than element-partitioned unstructured

meshes.

3. Improvements to the most expensive operations of the load balancing algorithm for

faster performance.

Intra-process parallelism is explored in the context of unstructured mesh particle-in-

cell (PIC) simulations running on computers with GPUs. Developments by the author make

up the PUMIPic library for implementing scalable unstructured mesh-based PIC simula-

tions. Additional simulation specific algorithm implementations developed by the author

are included. These developments are covered in Chapter 4 that include:

1. Several data structures for storing particles in different formats on accelerators.

2. An extension to Omega h [46], [47], an accelerator based unstructured mesh data

structure, for better performance of particle-mesh interactions.

3. General algorithms for the support of PIC simulations.

4. Implementations of PIC calculations for GPUs to support applications.



6

1.4 Terminology

CPU Central Processing Unit: The component responsible for com-

putations and execution of programs with one or more process-

ing units.

Accelerator a component that accelerates computations through massive

on-device parallelism.

SIMD width The amount of data processed by a single unit of an accelerator.

GPU Graphics processing unit. An accelerator with a large number

of simple processing units that perform synchronized calcula-

tions.

2D/3D two-dimensional or three-dimensional

Unstructured Mesh A data structure made up of vertices, edges, faces, and regions

(for 3D meshes).

Mesh Element The highest dimensional entity in the mesh. Ex: faces in 2D

or regions in 3D

Graph A data structure made up of vertices connected by edges.

Hypergraph A graph with hyperedges that connect two or more vertices.

Multigraph A graph with multiple edges between the same vertices.

Part A subset of a data structure assigned to a process.

Partition A set of parts that make up the full data structure.

Cut Hyperedge A hyperedge is cut if it is on the boundary between two or more

parts.

Partition-Model

Boundary

The boundary between two parts. Ex: The partition-model

boundary of one part of a hypergraph is the set of cut hyper-

edges.

Degree The degree of an entity is the number of entities adjacent to it.

Ex: The degree of a hyperedge is the number of graph vertices

connected by the hyperedge.

Imbalance A qualitative measure of the computational load of a partition.

Calculated as max(load)/average(load).

Ki suffix denoting a multiplier of 1024. Example 16Ki is

16 ∗ 1024 = 16, 384
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1.5 Notation

The following details the notation used in this thesis for describing mesh entities, graph

entities, partitions, and associated statistics.

M = (M0, ...,Md) A d-dimension mesh with mesh entities of dimension 0

to d.

Md
i The ith mesh entity of dimension d.

{Md
i {M q}} The set of mesh entities of dimension q adjacent to the

ith mesh entity of dimension d.

G = (V,H1, ..., H t) A multihypergraph with vertices V and t sets of hyper-

edges H1, ..., H t.

{H t
i{V }} The set of graph vertices connected by the ith hyper-

edge of type t.

{Vi{H t}} The set of hyperedges of type t that connect vertex i to

other vertices.

P (T ) = (P0, ..., PN−1) A unique partition of a set T into N parts such that
N−1⋃
i=0

Pi = T and ∀i, j ∈ {0, ..., N − 1}, if i 6= j then

Pi ∩ Pj = ∅.
wp(T ) The sum of weights for a set of entities on process p.

Example: wp(V ) is the sum of weights associated to

the vertices on process p.

Ip(T ) The weighted imbalance of a set of entities T on process

p. Ip(T ) = wp(T )/avg(wp(T )|p=0,1,2...N−1).

I(T ) The max weighted imbalance across all processes for the

set of entities T .

P̄i = Pi ∪Bi The ith PICpart composed of part Pi ∈ P (Md) and

buffer Bi ⊂Md where Pi ∩Bi = ∅.
Si The safe mesh elements of a PICpart where all depen-

dencies are satisfied for operating on particles. Si ⊆ P̄i.



CHAPTER 2

GENERALIZED MULTICRITERIA DIFFUSIVE LOAD

BALANCING ON A MULTIHYPERGRAPH

For simulations utilizing complex relational data structures such as graphs and meshes

running on massively parallel supercomputers to execute efficiently, the structures must be

partitioned across all processes running such that the computational load associated to the

structures’ entities is evenly distributed. Partitioning the structures across processes incurs

an additional cost in terms of communications between the processes in order to synchronize

entities that exist on multiple processes. The partitioning of relational data structures is a

well studied problem [4]–[6], [8], [50]–[54] with many tools for creating partitions for use in

simulations [55]–[57]. One drawback for these partitioning methods is that they only target

one criteria for partitioning. For simulations where multiple criteria need to be satisfied

simultaneously the partitions are not satisfactory. This is common in unstructured mesh

simulations when degrees of freedom are associated to multiple dimensions of entities for

example vertices and edges. In these scenarios partitioning for one entity dimension may

lead to a poor balance of the other dimensions.

In evolving simulations where the computational load changes over time, repartitioning

the structures is required during execution to maintain even distribution of computation and

communication costs [14], [15], [18], [19]. In these cases, re-running static partitioning algo-

rithms is too expensive to be performed repetitively [10]. For better performance, efficient

dynamic load balancing strategies must be applied to the evolving structure.

An efficient set of algorithms to solve these challenges use diffusive load balancing tech-

niques. These algorithms perform load balancing across part boundaries and can be applied

in succession to perform multiple levels of partitioning. One such diffusive load balancer,

ParMA [13], [45], works directly on an element-based unstructured mesh data structure

Portions of this chapter previously appeared as: G. Diamond, C. W. Smith, and M. S. Shephard,
“Dynamic load balancing of massively parallel unstructured meshes,” in Proc. 8th Workshop Latest Adv.
Scalable Algorithms Large-Scale Syst., Denver, CO, USA, Nov. 2017, pp. 9:1–9:7. doi: 10.1145/3148226.

3148236

Portions of this chapter previously appeared as: G. Diamond, C. W. Smith, E. Yoon, and M. S. Shephard,
“Dynamic load balancing of plasma and flow simulations.,” in Proc. 8th Workshop Latest Adv. Scalable
Algorithms Large-Scale Syst., Dallas, TX, USA, Nov. 2018, pp. 73–80. doi: 10.1109/ScalA.2018.00013

8

https://doi.org/10.1145/3148226.3148236
https://doi.org/10.1145/3148226.3148236
https://doi.org/10.1109/ScalA.2018.00013
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PUMI [58]. ParMA utilizes mesh adjacencies to perform localized balancing through diffu-

sive migration from heavy parts to lighter neighbors. It has been shown that these operations

can be efficiently used to perform multi-criteria load balancing in order to improve the par-

tition that is returned by graph/hypergraph and geometric methods.

While ParMA has been used to improve partitions for several simulations using mesh

databases, there are applications that have different relation based data structures that have

similar partitioning requirements. Two examples of these structures are scale-free graphs

often used in computational social science to analyze social phenomena [59], [60] and vertex-

partitioned unstructured meshes which are sometimes used in computational fluid dynamic

simulations [61]. While the latter example can be handled in ParMA by converting the

vertex-partitioned mesh to PUMI’s element-partitioned mesh, there are some challenges to

appropriately account for the switch and it becomes more difficult to accurately approxi-

mate the load of each part. To extend ParMA’s capabilities to these other applications, we

present EnGPar. EnGPar utilizes an expanded graph structure that we call the N-graph to

provide a general representation of relation-based data. Using this graph structure, a new

implementation of ParMA’s diffusive load balancing algorithm is presented.

Existing multilevel, geometric and diffusive partitioning techniques are reviewed in

Section 2.1. Section 2.2 introduces the N-graph that load balancing is performed on. Sec-

tion 2.3 reviews the load balancing method used in ParMA and how it is generalized to the

N-graph to be applied to any relation based structure. New contributions to the diffusive

load balancer are described in Section 2.3.3 and Section 2.3.4.

2.1 Partitioning and Load Balancing Methods

In order for applications running with multiprocess parallelism to execute efficiently,

partitioning the computational units of work across the processes is required. While par-

titioning work load to more processors decreases the computational costs per process, an

additional cost for interprocess communication is incurred. Hendrickson and Devine [62] list

two requirements for effective partitioning techniques: 1) the computational work is well

balanced across all processes and 2) the time spent performing interprocess communication

is small. Since dynamic partitioning methods are executed at the runtime of the application,

Hendrickson and Devine list additional requirements for these methods as: 3) run fast in par-

allel, 4) memory usage is limited, 5) partitions should be updated incrementally, 6) provide
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the new communication pattern, and 7) should be easy incorporate in the simulation.

For applications with complex structures where data is highly connected and irregular,

managing the computation and communication costs while partitioning is a challenging prob-

lem. For structures that can be mapped to a graph, the most common existing techniques

include multilevel methods or geometric methods if spatial information is available.

2.1.1 Multilevel (Hyper)Graph Partitioning

Multilevel graph/hypergraph methods are powerful partitioning techniques for creating

high quality static partitions. The goal of multilevel partitioners is to distribute the vertices

across parts evenly while minimizing the edges cut across parts. Multilevel methods consist

of three phases. The first phase is coarsening where the graph is successively reduced in

complexity until a threshold is hit. The second phase creates an initial partition on the

fully-coarsened graph. The final phase reverses the coarsening operations while maintaining

the quality of the partition at each stage. Commonly used multilevel graph partitioners

include METIS/ParMETIS [50], PT-SCOTCH [55], and Chaco [56].

For structures with more complex connectivity, graphs do not properly account for

data that is not directly linked through one-to-one connections. Hypergraphs improve the

representation of the data by using hyperedges or nets that connect two or more vertices

together. Multilevel methods applied to hypergraphs have been shown to get better quality

partitions for structures that can benefit from hyperedges at the cost of longer time to

partition [51]–[53].

Multilevel methods are able to create high quality partitions satisfying the first two

requirements listed in Section 2.1. There are two challenges that limit the usability of

multilevel graph methods. The first is that the methods become memory intensive at large

part counts preventing scaling out beyond tens of thousands of parts [10]. As a result

requirement 4) is not satisfied by this class of methods for dynamic load balancing. The

scaling issue can be partially avoided by performing what is called local partitioning where

each part partitions itself into a new partition creating a larger global partition. Figure 2.1

shows a mesh being partitioned globally into four parts and then locally partitioned into two

parts each creating an eight-part partition. The problem with this approach is that each

local partitioning will at best maintain the same global quality as the original partition.

More likely, each additional level of partitioning results in worse global partition quality.
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Figure 2.1: A mesh partitioned to four parts using global partitioning (left)
and then locally partitioned to eight parts (right).

The second challenge is for applications with a richer data structure than a graph.

Multilevel graph methods focus partitioning vertices and minimizing edge cut. If the data

structure has computational costs associated with data that are not represented by the graph

vertices, then the imbalance of computation across parts will not be properly controlled by

the graph partition. This imbalance becomes more severe as the part counts increase. For

partitioning unstructured meshes, it has been shown that partitioning mesh elements using a

multilevel graph technique has resulted in large mesh vertex imbalances as part size increased

[12], [13].

2.1.2 Geometric Partitioning

Geometric methods utilize spatial information tied to the data instead of adjacency

information to quickly create partitions. Data is represented with spacial coordinates and

the relationship information is defined by distance; closer data is more strongly related.

Geometric methods have the advantage of being less memory intensive and computationally

cheaper than multilevel methods since only spatial information is required [10].

Common recursive methods, like recursive coordinate bisection [63] (RCB) and recur-

sive inertial bisection (RIB) [64], [65], recursively section the domain to create parts. RCB

cuts along coordinate axis and RIB cuts orthogonal to the longest direction. These meth-

ods have the same challenge as multilevel techniques as only one criteria is balanced when
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partitioning.

Space-filling curves (SFC) are another common geometric partitioning technique used

[10], [66]. SFC partitioning is a three step operation consisting of encoding, sorting and

splitting. Different SFC have been used to perform partitioning for different applications.

For unstructured meshes Hilbert and Morton curves are commonly used [67].

Geometric methods are known for their simplicity and fast partitioning of the domain.

The main problem with these methods is since there is no representation of connectivity in

these methods, communications costs of the resulting partition tend to be much higher than

those in multilevel partitions [66]. Similar to multilevel techniques, geometric methods only

partition for one goal and can have problems for simulations requiring multicriteria.

2.1.3 Diffusive Partitioning Improvement

Diffusive methods are used to improve partitions through migration of work to neigh-

boring parts. The two categories of diffusive methods are global and local methods. Global

diffusion are techniques that make migration decisions based on the entire partition. These

methods use global knowledge in order to minimize the total weight transferred or minimize

the max weight transferred between any two parts [68]–[71]. Obtaining and managing the

information of partitions globally incurs a large communication cost which scales poorly as

the number of processes increases.

Local methods make partitioning decisions based on neighborhood information [22],

[23], [72]. These methods have less communications required to gather information, but

cannot make the high-level partitioning decisions that global methods do. Without global

knowledge, poor original partitions can take much longer time to improve. Local methods

utilize heuristics to control how work is transferred between processes. Selection based

on part quality improvements have had success for partitioning graphs [73], [74]. Label

propagation with heuristics have been used to partition graphs with up to one trillion edges

[75], [76]. For unstructured meshes, similar heuristics have been used to create partitions for

over a million processes [11]–[13].

Since diffusive methods are fast and provide incremental updates to a partition, they

are good choices for simulations requiring dynamic load balancing [22], [23]. The usage of

multilevel or geometric partitioning methods to create high quality static partitions plus

utilizing diffusive partition improvement methods satisfy the requirements of dynamic load
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balancing of relational data structures[4], [45].

2.2 Partitioned Multihypergraph Representation

EnGPar interfaces to different partitioning procedures through a multihypergraph ab-

straction called the N-graph. A multigraph [54], [77] is a graph that supports multiple edges

between two vertices. A hypergraph allows for hyperedges that connect any number of ver-

tices. The N-graph is defined by a set of vertices V and n sets of hyperedges H0, ..., Hn−1.

The usage of hyperedges allows for better representation for complex dependencies found

in certain relational data structures such as unstructured meshes. Take for instance the

construction of an N-graph given a 3D unstructured mesh where mesh elements, M3, are

represented by graph vertices and mesh vertices, M0, are used for relations between graph

vertices. To represent the relationship of mesh vertices with regular graph edges, each graph

vertex will have an edge to every other graph vertex for each mesh element surrounding

the mesh vertex. With hyperedges, the relationship can be expressed with one hyperedge

that connects all of the graph vertices representing the mesh elements surrounding the mesh

vertex. To examine these two scenarios, let n be the number of mesh elements that bound a

certain mesh vertex. On average in a three-dimensional tetrahedron mesh, n is 23 [78]. To

represent this relation between all n graph vertices with regular graph edges would require
n(n−1)

2
edges. However, when using hyperedges one graph edge is created to represent the

mesh vertex with n connections between the graph vertices and hyperedges. This results

in a reduction in memory usage. Additionally, the usage of hyperedges has been shown to

more accurately represent the communications associated with mesh vertices for usage in

partitioning [51], [52]. Figure 2.2 gives an example 2D mesh where seven mesh elements

bound a mesh vertex (a). A graph using regular graph edges to represent the mesh is shown

in (b). In (c) the mesh is shown in the N-graph format using a hyperedge. In all figures

of hypergraphs, hyperedges are represented by boxes and lines stem from the box to the

vertices that are connected by the hyperedge. In (b) 21 graph edges are created for the one

mesh vertex while in (c) one hyperedge is added and seven connections between the graph

vertices and hyperedge.

Supporting multiple edge types in the N-graph allows representing multiple layers of

connection between the graph vertices. This is useful to represent applications that use

multidimensional data or complex levels of communication. One example is an unstructured
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Figure 2.2: (a) A seven triangle mesh surrounding one mesh vertex. (b) A
graph using traditional edges to connect the graph vertices whose
corresponding mesh elements share the mesh vertex. (c) The
N-graph construction using a hyperedge for the mesh vertex and
connecting the adjacent mesh elements in the N-graph.

mesh which have mesh vertices, mesh edges, and mesh faces (in three dimensions) that are

shared between mesh elements. To represent these data structures for a range of application

needs, the N-graph supports the arbitrary use of edge types to allow different configura-

tions for applications. Figure 2.3 depicts the mapping of a 2D unstructured mesh (a) to a

representation where mesh elements map to graph vertices and mesh vertices map to graph

hyperedges (b). In (c) a second mapping is shown where mesh edges are also mapped to a

second edge type in the graph. The labels of the entities in (a) are carried to (b) and (c) to

show which mesh entity is represented by the corresponding graph entity.

Figure 2.3: (a) A 2D unstructured mesh. (b) N-graph construction with
elements→vertices, vertices→hyperedges. (c) Additional mesh
edges are used for a second set of hyperedges. Mesh labeling is
shared in all three to correlate mesh entities to graph entities.
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2.3 Diffusive Load Balancing Method

EnGPar uses the diffusive load balancing techniques from ParMA [45] on the N-graph

structure to improve the partition of any relational data structure that can be mapped to the

N-graph. The method is to iteratively perform a series of steps until user specified criteria are

met or the algorithm can not improve the partition quality further. The metric of interest in

ParMA is the load metric used for partition quality is the imbalance, I(Md), of a set of mesh

entities of dimension d defined as the max weight across all processes divided by the average

weight. For example, when equal weights are used, the imbalance of mesh elements is the

maximum number of mesh elements on a single part divided by the average number of mesh

elements per part, across all processes. Algorithm 1 lists a general framework for the multi-

criteria load balancing procedures in ParMA. These steps are equivalently implemented on

the N-graph for use in EnGPar.

Algorithm 1 ParMA Load Balancing Framework

1: procedure Balance(mesh,dimensions)
2: for all d ∈ dimensions do
3: while imbalance of d > tolerance do RunStep(mesh,d)
4: if Balancing Stagnates then
5: break
6: end if
7: end while
8: end for
9: end procedure

10: procedure RunStep(mesh,d)
11: -Determine the neighboring parts and size of part boundaries.
12: -Compute the weight of the entities in dimension d
13: -Share the computed weight with each neighbor.
14: -Determine which neighbors that can receive more weight.
15: -Calculate how much weight to send to each neighbor.
16: -Construct an ordering of vertices to traverse the part boundary.
17: -Create migration plan that reduces the imbalance of dimension d.
18: -Adjust the plan to maintain balance of previous dimensions.
19: -Perform Migration
20: end procedure

ParMA’s load balancing begins by calling the Balance procedure on lines 1-9 given

the mesh and a set of priorities to balance in dimensions. For each priority, the RunStep

procedure is iteratively called for the current priority on lines 3-7 until the imbalance is

reduced below the tolerance or stagnation is detected. The RunStep procedure performs
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six stages to determine the diffusive load balancing of each step. The first step on line 11

determines who are the neighbors of each part and what is the size of the part boundaries

between them. The second computes the weight of the target dimension d and sends the

weight to the neighboring parts on lines 12 and 13. Then, the heavy parts decide which

neighbors to send weight to and how much to send on lines 14 and 15. The fourth stage

constructs an ordering of the entities on the boundary for selecting on line 16. Lines 17 and

18 select entities to be migrated to the neighboring parts. The selection of entities is covered

in more detail in Section 2.3.1. Finally, migration is performed to send the selected entities

to neighboring parts on line 19.

The dimensions input to the Balance procedure is an ordering of the criteria to be

balanced. It is interpreted such that earlier entries have higher priority and thus will be

balanced first and the reduced imbalance will be maintained in following steps. Line 18 of

Algorithm 1 adjusts the migration plan to ensure that the imbalance of completed dimensions

is not increased. An example of multi-criteria load balancing is the “vertex > element” case

for finite element methods when degrees of freedom are defined by the mesh vertices. The

degrees of freedom contain the largest portion of computational work in these simulations

and thus, make balancing the mesh vertices a top priority. However, these simulations also

require balancing the mesh elements for efficient linear system assembly. In this example

mesh vertices would be the first criteria followed up by mesh elements.

An additional metric of interest in EnGPar is the communication metric. The commu-

nication metric is evaluated based on the cut hyperedges in the partition. There are different

ways to define this cost [79]. Here we count the number of cut hyperedges to measure the

communication. A higher number of cut hyperedges results in more entities that will require

communications in the simulation. In general, EnGPar will be applied to partitions created

by multilevel methods that result in a very low edge-cut. So, the goal in EnGPar will be to

perform multicriteria load balancing with minimal increase to the edge-cut.

Additional consideration to improve the multi-criteria load balancing in EnGPar is

focused on two aspects of this algorithm. One is the generalization to support a larger range

of applications discussed in Section 2.3.2. The second is an improvement to one of the more

computational expensive operations in Section 2.3.3. A third addition to ParMA’s method

is to control the edge-cut when the degree of graph vertices is larger that is described in

Section 2.3.4.
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2.3.1 Selection

The selection step of the diffusive algorithm, lines 17-18, is where decisions are made on

which entities to migrate across part boundaries. At this stage, each process has determined

a set of targets that include the neighboring parts this process will send weight to and how

much weight to select. The selection decisions are made by constructing cavities defined by

a hyperedge H t
i that is cut on the boundary of two or more parts. The cavity includes all

of the on-part graph vertices in {H t
i{V }}. Figure 2.4 depicts a hyperedge cut across three

parts and the surrounding graph vertices connected by the hyperedge. The color of each

graph vertex depicts the part it belongs to. The cavity for part A would have size 4 and

could be selected to migrate to either parts B or C. Similar cavities exist on parts B and C

for the cut hyperedge with sizes 2 and 3 respectively.

A

C

B
Figure 2.4: A hyperedge cut across three parts A, B, and C. The cavity for

each part has size 4,2, and 3 respectively.

The cavities are sorted in two levels that aim to perform better migrations first. The

first sort is a topological distance sort of all cavities based on the distance from the topological

center of the part to the cut hyperedges. The goal of this sort is to reduce the edge-cut of the

part and diameter of the part by creating rounder parts with minimal topological surface

area [80], [81]. The topological sort is covered in more detail in Section 2.3.3 along with an

improvement to the algorithm used in ParMA. The second sort is by lower on-part degree

of the hyperedge first. Migrating cavities which have fewer on-part graph vertices first will

generally have a smaller increase to the edge-cut than high degree hyperedges. This greedy

heuristic is true when the degree of graph vertices is fairly uniform. In the case of ParMA,

which operates on element-partitioned unstructured meshes, the degree of the mesh element

is constant based on the element type, e.g. 4 mesh vertices per tetrahedron, 5 mesh vertices
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per pyramid, 8 mesh vertices per hexahedron etc. When the degree of graph vertices is non-

uniform, an additional check is used in EnGPar to control the increase in edge-cut. This

heuristic is described in Section 2.3.4.

After the cavities are sorted, the cavities are iterated over checking if any of the neigh-

boring processes that the hyperedge is cut across are in the set of targets and still need

more weight. If so, the cavity is selected that will set all graph vertices of the cavities to be

migrated to the neighboring process and the weight of those vertices is subtracted from the

target’s weight. Cavities are selected for migration until enough weight is selected for each

target or if all cavities have been processed.

2.3.2 Generalization of Multicriteria Load Balancing

Since ParMA works directly on PUMI [58], it can only support applications that can

map the structure to the PUMI element-partitioned mesh. Applications that use vertex-

partitioned meshes can be converted to the PUMI mesh, however there are challenges with

accurately expressing the partition to ParMA which cause the resulting partitions to have

worse quality than those produced for an element-partitioned application. Other relational

structures such as scale-free graphs [59], [60] cannot be expressed as an unstructured mesh

and would not be able to utilize ParMA. Since EnGPar is built on the N-graph, it natively

supports other relational data structures that can be expressed as a graph or hypergraph

without loss of the power of ParMA’s use of adjacencies for fast dynamic load balancing.

Beyond supporting other forms of data, many applications have different priorities of

balancing the different criteria. While ParMA is built to perform load balancing targeting

finite element applications, EnGPar takes a more general approach allowing users to define

the ordering and tolerances of criteria. This is highlighted in Algorithm 1 on line 11 with

the dimensions argument. This argument controls the ordering in which dimensions are

balanced with earlier dimensions having higher priority. In ParMA these inputs would be

defined by the balancer that is applied. Meaning that for ParMA to support additional

applications new balancers need to be defined for the user to use. In EnGPar the users can

use any ordering of priorities without any new development. This is done by providing a

richer user interface with inputs to control all necessary components of the diffusive balancing

procedure. Examples of using this interface are provided in Appedix 6.2.3.
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2.3.3 Graph Distance Computation

One of the optimizations in ParMA targets decreasing surface area across parts by

ordering the selection of mesh elements to migrate based on their topological distance from

the topological center of the part. The topological center of a part is the set of vertices that

are farthest from all partition model boundaries for that part. The depth of the part is the

topological distance from the topological center to the partition model boundary. A smaller

depth results in less edge-cut [45], [80]. Towards decreasing the depth of the part, entities

that have the greatest topological distance from the topological center are migrated first.

Several challenges arise in determining entities with the largest topological distance

due to the existence of disconnected components in the part. Disconnected components are

generally bad for partitions as there will be more partition model boundaries leading to

a higher edge-cut and more communications required. Ideally, we would like to have one

connected component or at a minimum decrease the size of other disconnected components

so the effect on edge-cut is minimized. To get an optimal ordering, the topological distances

of the disconnected components are offset such that components with lower depth get higher

priority. This leads to lower depth components being migrated first.

ParMA computes the graph distance using multiple breadth-first traversals (BFTs);

one traversal to find disconnected components, another to locate the topological centers of

each component, and another to compute the distance to each mesh vertex on the partition

model boundary. EnGPar reduces the number of traversals from three to two. This is done

by locating the disconnected components during the traversal to compute distances using a

disjoint set data structure [82], [83].

The disjoint set data structure is made up of sets that begin disjoint and are joined

together by the algorithm operating on them. The structure requires three operations to

function: MakeSet creates a new disjoint set, Union joins two disjoint sets together with

one set as the primary set, and Find that determines the primary disjoint set of a disjoint

set. For N disjoint sets, the runtime of each operation is O(1) for MakeSet and O(log(N))

for Union and Find. To aid the usage of disjoint sets in EnGPar’s distance computation

an additional operation is defined named Add that adds an element not in any disjoint set

to a disjoint set in O(1) time. This is important to note as this operation does not increase

the size N for the runtime of Union and Find.

EnGPar’s distance computation begins with determining the depths of every hyperedge
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in the part. Algorithm 2 lists the procedures for this operation. The algorithm begins with

the ComputeCenters procedure on lines 1-8. The procedure takes in the graph, G, and the

hyperedge type, t, used for creating cavities. The ComputeCenters procedure’s primary

operation is a BFT on line 6. The starting set for the BFT are all cut hyperedges of type t

gathered on line 4. The BFT procedure on lines 9-23 iterates over a queue of hyperedges to

be visited on lines 11-22. Each iteration pops the first hyperedge from the queue, line 12 and

if the hyperedge has not been visited in a previous iteration then it is visited on lines 13-21.

When a hyperedge is visited, the second adjacency hyperedges are iterated by a double for

loop, first over {HT
i {V }} on line 15 and then over {Vi{H t

j}} on line 16. Each second adjacent

hyperedge executes a kernel on line 17 in order to update any external values for the BFT.

For computing the depths the DepthKernel on lines 24-28 is used that sets the depth of

the second adjacent hyperedge, H t
j , to one more than the depth H t

i if the depth has not been

set previously. The final step for the BFT iteration is to add the second adjacent hyperedges

to the end of the queue on line 18. After the BFT is completed, every hyperedge will have

its depth set to be the smallest distance from any cut hyperedge. The hyperedges are then

sorted at the end of ComputeCenters on line 7. Figure 2.5 shows the depth values of

every hyperedge for a graph with three disconnected components. The cut hyperedges are

denoted with filled boxes. The topological centers of each component, the hyperedges with

greatest depth, are represented as boxes with an X in them. Note that at this stage the

disconnected components have yet to be determined and the noting of X is for clarity.

To compute the topological distances of each cut hyperedge, the depths are used to

determine the starting point for the second BFT. For this BFT, a secondary disjoint set

structure is maintained to aid in distinguishing the disconnected components. Algorithm 3

provides pseudocode for the distance computation. The ComputeDistance procedure on

lines 1-14 begins by retrieving the levels array that contains the list of hyperedges sorted

by highest depth first from the ComputeCenters procedure on line 2. Initialization of

the arrays for the BFT and a start distance value to 0 is on lines 3-5. The hyperedges that

make up the topological center for the deepest disconnected components are determined

in the SetSeedEdges procedure on line 6. This procedure on lines 15-29 finds the first

hyperedge in the levels list that has not been visited and stores the depth of the hyperedge

as max depth on lines 17-22. At first, this will be the first hyperedge as no hyperedges have

been visited yet and since the array is sorted max depth will be set to the largest depth of
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Algorithm 2 Find Topological Center

1: procedure ComputeCenters(G, t)
2: depth← array(|Ht|,−1)
3: visited← array(|Ht|, false)
4: init← cut hyperedges ∈ Ht

5: foreach Ht
i ∈ init: depth(Ht

i )← 0
6: BreadthFirstTraversal(init,G,DepthKernel)
7: return levels← Sort(G) . levels is an array of hyperedges in order of decreasing depth

8: end procedure
9: procedure BreadthFirstTraversal(seed, G, kernel)

10: Queue← seed
11: while Queue is not empty do
12: Ht

i ← Queue.pop()
13: if not visited(Ht

i ) then
14: visited(Ht

i )← true
15: for Vi ∈ {Ht

i{V }} do
16: for Ht

j ∈ {Vi{Ht}} do
17: kernel(Ht

i , G)
18: Queue.add(Ht

j)
19: end for
20: end for
21: end if
22: end while
23: end procedure
24: procedure DepthKernel(Ht

i , H
t
j)

25: if depth(Ht
j) == −1 then

26: depth(Ht
j)← depth(Ht

i ) + 1
27: end if
28: end procedure

any hyperedge. Then lines 23-27 gathers every hyperedge with depth = max depth that has

not been visited into init. The init set will be the initial queue of hyperedges for the second

BFT.

After the init set is created by SetSeedEdges, the disjoints sets structure is initialized

on line 8 where a disjoint set is created for each hyperedge in init. Then, the second BFT is

performed on line 10 using the same BreadthFirstTraversal procedure in Algorithm 2,

but with the DistanceKernel on lines 30-39. This kernel has additional operations for

updating the disjoint sets. For the visited hyperedge, H t
i and a second adjacent hyperedges,

H t
j , there are two cases that need to be handled: H t

j is not in a disjoint set or H t
j is in a

different set then H t
i . The first case is handled on lines 31-32 where H t

j is added to the

disjoint set of H t
i . The second case requires using the disjoint set’s Union function to join
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Figure 2.5: The result of executing the ComputeCenters procedure on a
hypergraph part with three disconnected components. Filled boxes
represent cut hyperedges and boxes with an X are the topological
centers for each component. The depths of each hyperedge is listed
adjacent to the boxes.

the sets of H t
i and H t

j on lines 33-34. The joining of two sets correlates to two of the initial

deepest hyperedges being on the same component. There is technically a third case when

H t
j is in the same set as H t

i , but in this case nothing needs to be done. Besides the logic

to handle the disjoint sets, the distance of the hyperedges is updated the same as in the

DepthKernel on lines 36-38.

With the completion of the BFT all hyperedges in the same components as the hy-

peredges in init will have their distances calculated. The number of remaining disjoint sets

as this stage is equal to the number of disconnected components with the same max depth.

Components with the same depth are distinguished by offsets the distances such that the

component with the fewest hyperedges are given highest priority in the UpdateDistance

procedure on lines 40-49. First, the disjoint sets are sorted by decreasing number size of the

sets on line 42. Then each disjoint set is processed to offset the distances of every hyperedge

within the set on lines 44-46. The distances are increased by distance update−start distance
where distance update is the max distance value of the previously processed disjoint set. For

the first disjoint set none of the distances are increased, but subsequent disjoint sets will be

updated due to the changing value of distance update on line 47.

For disconnected components with a lower depth than the max, the steps from lines 6-

13 are repeated. After the completion of each iteration, the start distance is updated to

one more than the max distance of the visited hyperedges. This results in the discon-
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nected components with lower depth to have a higher distance. In successive iterations the

SetSeedEdges procedure will return the next set of unvisited hyperedges with highest

depth for a new call to BreadthFirstTraversal. While multiple calls to Breadth-

FirstTraversal procedure are required in the second BFT, they total to visiting each

hyperedge in the graph once so the total runtime is equivalent to a single BFT of the full

part. Figure 2.6 depicts the distance computation on the three disconnected components

from the previous figure. The distances of each hyperedge is noted next to each hyperedge.

The left and middle components have the same depth so both are processed in the same call

to BreadthFirstTraversal. Three disjoint sets are created, one for the left component

and two for the middle component. While processing the second adjacencies through the

graph vertex labeled “union”, the two disjoint sets of the middle component are joined to

form one set resulting in one set for each component at the end of the BFT. The distances of

the middle component are increased because it is smaller. The right component is processed

in a second iteration of the while loop with start distance = 11 and one new disjoint set is

created.

5 4 4 10 10 13 14 13

4 3 3 3
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9
13

12122
2

8 8

11
1 1 2 7 7
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U

Figure 2.6: The result of executing the ComputeDistance procedure on the
hypergraph part from 2.5. Distances of each hyperedge is noted
adjacent to each box. The vertex labeled U represents the moment
the two disjoint sets of the middle component are unioned to form
one set for the component.

2.3.4 Mitigating Edge-Cut Increases

One drawback from performing the diffusive load balancing routine is that there may be

an increase in the communication cost of the partition. This is especially common when the



24

Algorithm 3 Compute Topological Distance
1: procedure ComputeDistance(G, t)
2: levels← ComputeCenters(G, t)
3: distance← array(|Ht|,−1)
4: visited← array(|Ht|, false)
5: start distance← 0
6: while init← SetSeedEdges(visited,levels) do . Label the vertices with the largest remaining depth. If none remain, then

break from the while loop.

7: disjoint sets← ∅
8: foreach Ht

i ∈ init: disjoint sets←MakeSet(Ht
i )

9: foreach Ht
i ∈ init: distance(Ht

i )← start distance
10: BreadthFirstTraversal(init,G,DistanceKernel)
11: UpdateDistance(disjoint sets, start distance)
12: start distance← max{distance(Ht)}+ 1
13: end while
14: end procedure
15: procedure SetSeedEdges(visited,levels)
16: init← ∅
17: for Ht

i ∈ levels do
18: if not visited(Ht

i ) then
19: max depth← depth(Ht

i )
20: break
21: end if
22: end for
23: for Ht

i ∈ levels do
24: if not visited(Ht

i ) and depth(Ht
i ) == max depth then

25: init← init ∪Ht
i

26: end if
27: end for
28: return init
29: end procedure
30: procedure DistanceKernel(Ht

i , G, Queue)
31: if not Find(Ht

j) then

32: Add(Find(Ht
i ), H

t
j)

33: else if Find(Ht
i ) != Find(Ht

j) then

34: Union(Ht
i ,H

t
j) . merge sets into one set

35: end if
36: if distance(Ht

j) == −1 then

37: distance(Ht
j)← distance(Ht

i ) + 1

38: end if
39: end procedure
40: procedure UpdateDistance(disjoint sets, start distance)
41: distance update← start distance
42: DS = Sort(disjoint sets) . Sort by decreasing size of sets

43: for D ∈ DS do
44: for Ht

i ∈ D do
45: distance(Ht

i )← distance(Ht
i ) + distance update− start distance

46: end for
47: distance update = max{distance(Ht

i ∈ D)}+ 1
48: end for
49: end procedure

original partition is created by a multilevel graph method as the main objective for multilevel

methods is to minimize the edge-cut in the graph. In ParMA, the heuristics for migrating

cavities by distance from the topological center and prioritizing smaller cavities over larger

cavities is sufficient because the degree of mesh elements, the number of lower dimentional

entities bounding a mesh element, is uniform based on the type of the element. Even in

a mixed mesh, where multiple types of mesh elements are used, the difference in degree is
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relatively small and will not have a large impact on the results of the partition. For EnGPar,

the N-graph allows supporting structures that will not have uniform degree. One such case,

is for vertex-partitioned meshes where the degree of mesh vertices can change drastically

throughout the mesh, especially in the case of a mixed mesh. For a 3D tetrahedral mesh,

the average number of mesh elements adjacent to a mesh vertex is 23 [78]. The N-graph

will have graph vertices with varying degree meaning that decisions on migrating cavities

has to take this into account otherwise poor decisions could result in a large increase to the

edge-cut and significantly more communications in the simulation.

To control the edge cut while balancing graphs with varying degree vertices, a new test

on the change of edge-cut is introduced in the selection step that cavities must pass in order

to be selected for migration. The test is evaluated by creating the set of second adjacent

hyperedges from the cut hyperedge that defines the cavity. Namely, for a cavity defined by

the cut hyperedge H t
i with vertices {H t

i{V }}, the second adjacent hyperedges are defined

as {H t
i{V {H t}}}. When a cavity is migrated, H t

i will no longer be a cut hyperedge, but

the hyperedges in {H t
i{V {H t}}} that are not cut hyperedges will become cut hyperedges.

The desire is to select cavities that have the fewest non-cut second-adjacent hyperedges. To

achieve this, the cut ratio is defined as the ratio of non-cut hyperedges to cut hyperedges in

{H t
i{V {H t}}}. If the cut ratio is small, then the increase to the edge-cut from migrating the

cavity will be smaller than a cavity with a larger ratio. A parameter β is defined such that

any cavity with a ratio greater than β will not be selected for migration. This test limits

the load balancing that can be performed based on how restrictive beta is set, but ensures

that the edge-cut will not grow uncontrollably.

2.4 Summary

EnGPar provides a generalized appraoch to partition improvement through the multi-

hypergraph structure called the N-graph. The diffusive load balancing methods previously

used in a parallel unstructured mesh library have been generalized to be applied on a wider

range of parallel data structures in EnGPar. Further improvements to the efficiency of the

algorithm’s distance computation were achieved through the use of disjoint sets. A new test

was created in the selection phase of the algorithm to mitigate the increase in edge-cut as

the imbalance is decreased for graphs with high degree vertices.



CHAPTER 3

IMPROVING UNSTRUCTURED MESH PARTITIONS USING

DIFFUSIVE MULTICRITERIA GRAPH LOAD BALANCING

METHODS

Massively parallel unstructured mesh simulations such as finite element [1] and finite

volume [2], [61] methods require efficient approaches to partitioning the mesh entities such

that computation costs are well balanced across processes and communication costs are

minimized. For a partitioned unstructured mesh, the computation costs are related to the

number of mesh entities on a process that work is performed on. The communication costs

are attributed to the mesh entities that are shared between processes that require updates.

There are several factors that drive the partitioning requirements for unstructured meshes

including how the mesh is stored in memory, the dimensions of mesh entities that make

up the computation and communication costs, the need for mesh adaptation [84]–[86] and

differences in the meshing of the domain such as boundary layers [87]–[89]. Multilevel or

geometric partitioning methods are sufficient tools for creating good quality partitions for

unstructured mesh applications when a single load balancing criteria is considered. When

there are multiple mesh entity dimensions that contribute to the computation costs addi-

tional partition improvement methods must be applied to create efficient partition especially

as the number of processes grows [10]. The extreme of this case is when computational

work is associated to each dimension of mesh entities such as in higher-order finite element

simulations [90]–[92].

In this chapter, we apply EnGPar to improve the partitions created by multilevel meth-

ods for cases stemming from unstructured finite element and finite volume simulations. Sec-

tion 3.1 introduces the three cases that EnGPar is applied to, namely an element-partitioned

mesh, vertex-partitioned mesh, and higher-order finite element case. For each case the con-

Portions of this chapter previously appeared as: G. Diamond, C. W. Smith, and M. S. Shephard,
“Dynamic load balancing of massively parallel unstructured meshes,” in Proc. 8th Workshop Latest Adv.
Scalable Algorithms Large-Scale Syst., Denver, CO, USA, Nov. 2017, pp. 9:1–9:7. doi: 10.1145/3148226.

3148236

Portions of this chapter previously appeared as: G. Diamond, C. W. Smith, E. Yoon, and M. S. Shephard,
“Dynamic load balancing of plasma and flow simulations.,” in Proc. 8th Workshop Latest Adv. Scalable
Algorithms Large-Scale Syst., Dallas, TX, USA, Nov. 2018, pp. 73–80. doi: 10.1109/ScalA.2018.00013
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struction of the N-graph for the unstructured mesh representation is described. Section 3.2

compares EnGPar to its predecessor ParMA for improving the partitions of an element-

partitioned unstructured mesh. Section 3.3 applies EnGPar to a mixed vertex-partitioned

mesh. A final case for higher-order finite element simulation in Section 3.4 compares two

different definitions of the N-graph that can be used by EnGPar to target the balance of

degrees of freedom.

3.1 Representing Unstructured Mesh Partitions as an N-graph

Parallel unstructured mesh simulations like finite volume and finite element methods

distribute the unstructured mesh in different ways to efficiently resolve data dependencies.

A partition of a mesh is typically defined by one dimension of mesh entities that is uniquely

partitioned. Other dimensions of mesh entities are duplicated as needed on the partition

model boundary to maintain the closure of mesh elements. For example, two common

partitions are element partitions and vertex partitions. In an element-partitioned mesh the

mesh elements are uniquely partitioned and lower dimension entities are duplicated to form

the closure of the on-part mesh elements. A vertex-partitioned mesh uniquely assigns vertices

to parts while the elements, and their closure, are copied along the boundary to any process

that shares them.

EnGPar can support any type of mesh partition using the general N-graph structure.

For a mesh partition, that uniquely partitions dimension d, for every Md
i in the mesh, a

graph vertex Vi is constructed. The hyperedges in the N-graph are constructed based on

the dimensions of mesh entities that require load balancing, have important simulation data

dependencies, or mesh entities that require communications. For mesh dimension t 6= d, the

set of hyperedges H t will be constructed with one hyperedge H t
j for every mesh entity M t

j .

Hyperedge H t
j will connect the set of vertices {H t

j{V }} such that for every Md
i ∈ {M t

j{Md}},
Vi ∈ {H t

j{V }}. Multiple different dimensions of mesh entities can be used to construct

multiple sets of hyperedges up to including every dimension in the N-graph if a simulation

requires balancing all dimensions of the mesh.

In this chapter, three different unstructured mesh cases are presented for EnGPar

to improve the partitions of: an element-partitioned mesh, a vertex-partitioned mesh, and

a higher-order finite element case on an element-partitioned mesh. Figure 3.1 depicts a

2D mixed mesh of triangles and a quadrilateral (a) along with the N-graphs for each of
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the three cases (b-d). For the element-partitioned mesh case (b), the mesh elements are

represented as graph vertices with mesh vertices represented as hyperedges connecting the

mesh elements that are bounded by each mesh vertex. This case is tested in Section 3.2. The

vertex-partitioned mesh (c), has graph vertices representing the mesh vertices and hyperedges

representing the mesh elements connecting the mesh vertices which bound the same mesh

element. The vertex-partitioned mesh case is covered in Section 3.3.

The higher-order finite element case is a more expanded version of the element parti-

tioned case. In this case, the mesh elements are again represented by graph vertices and the

mesh entities with degrees of freedom (DOF) also named DOF holders are represented by hy-

peredges. With the flexibility of the N-graph there are different ways this can be represented

in EnGPar. Two approaches are explored, the first is one hyperedge type for each dimension

of DOF holders in the mesh. In Figure 3.1 (d) the N-graph has one hyperedge type for

mesh vertices labeled as empty boxes and a second for mesh edges depicted as filled boxes.

This first approach would be the approach used in ParMA with a “vertex=edge>element”

balancer. An alternative approach supported with the N-graph is to treat all DOF holders

as one hyperedge type. In this case both the empty and filled boxes would be one hyperedge

type for the graph in (d). Both approaches to improving the higher-order finite element

partitions are compared in Section 3.4.

(a) (b) (c) (d)

Figure 3.1: An unstructured mesh of triangles and a quadrilateral (a), the
N-graph for an element-partitioning of the mesh with mesh vertices
as hyperedges (b), the N-graph for a vertex-partitioning of the
mesh with mesh elements as hyperedges (c), the N-graph for a
higher-order element-partitioning of the mesh where two hyperedge
types are used one for mesh vertices (empty boxes) and one for
mesh edges (filled boxes) (d).
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3.2 Improving Element-Partitioned Meshes

Tests for the finite element case were run with a one billion element tetrahedral mesh

of an airplane’s vertical tail structure. EnGPar was run on the Mira BlueGene/Q system at

the Argonne Leadership Computing Facility [93] on partitions from 128Ki (128 ∗ 210) up to

512Ki parts. These partitions were created by using ParMETIS part k-way [9] globally up to

8Ki parts. Then METIS is run on each part locally to create the 128Ki to 512Ki partitions.

The initial mesh element imbalance is 2% and the mesh vertex imbalance ranges from 12%

for the 128Ki partition up to 53% at 512Ki parts.

We compare EnGPar to ParMA [13], a diffusive load balancer that works directly on

an unstructured mesh. Each tool is run on the partitions with the goal of balancing the

mesh vertices down to 5% while keeping the mesh element imbalance below 5%. Figures 3.2

shows the mesh vertex imbalance from ParMETIS and after EnGPar and ParMA are used.

Both tools significantly reduce the mesh vertex imbalance. For the 128Ki and 256Ki cases,

both reduce the imbalance to the target 5%. In the 512Ki case, EnGPar reduces the mesh

vertex imbalance to 6% while ParMA reduces to the target.
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Figure 3.2: Vertex imbalance for the initial partitioning and the partitions
created by EnGPar and ParMA. Element imbalance is maintained
below the 5% tolerance for all cases. ©2018 IEEE.

Figure 3.3 shows the runtime for each partition of ParMA and EnGPar. The timing

for EnGPar includes the construction of the N-graph and subsequent repartition of the mesh

after running EnGPar to fairly compare with ParMA which doesn’t require any conversions

of the mesh. In all cases EnGPar runs faster. The speedup ranges from 25% faster at the

256Ki case up to 54% faster for the 512Ki partition.

Table 3.1 shows the average number of vertices in the mesh for each case. This mea-
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Figure 3.3: Time to balance for EnGPar and ParMA. ©2018 IEEE.

surement is related to edge cut in the graph since more average vertices means more surface

area of the part and higher edge cut. ParMA slightly reduces the vertex counts in every

case. EnGPar increases slightly by around 1% for each case. As was mentioned for the

element-partitioned mesh, the edge cut limit metric was not required to avoid large increases

in edge cut.

Table 3.1: Average number of mesh vertices per part. ©2018 IEEE.

128Ki 256Ki 512Ki
Initial 2146.404 1138.881 611.673

ParMA 2141.965 1137.343 610.959
EnGPar 2148.310 1143.970 619.177

3.3 Improving Vertex-Partitioned Meshes

Experiments for the vertex-partitioned mesh case are performed on a 3D mixed un-

structured mesh. In the N-graph constructed for the vertex-partitioned meshes, the degree

of graph vertices is nonuniform. As such, the technique to mitigate increases in edge-cut

introduced in Section 2.3.4 is used for this case. An additional feature in this mesh that is

factored into the creationg of the N-graph is the existance of boundary layer stacks of prism

elements growing from the geometric model faces towards the interior. In Section 3.3.1 a

method for collapsing each the stacks of boundary layer mesh entities into a smaller set

of N-graph entities is discussed. We will analyze applying EnGPar to both the collapsed

boundary layer case and the case where the boundary layer is treated the same as the rest

of the mesh in Section 3.3.2.
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3.3.1 Boundary Layer Stacks

Semi-structured boundary layer element stacks growing from geometric model faces can

be used to reduce discretization errors and reduce mesh element count (i.e., versus a full un-

structured tetrahedral mesh) when there are strong gradients in fields normal to a geometric

model surface. Localizing a stack of elements, or vertices along the growth curve, can reduce

communications during a PDE solve that uses line relaxation pre-conditioning methods [94]

for improved convergence, and during mesh adaptation coarsening procedures [87]–[89].

Algorithm 4 details steps taken to combine the stacks for a vertex-partitioned mesh with

prismatic boundary layers. The algorithm loops over each vertex classified on a geometric

model face to see if it bounds a prism on lines 1-2. From each of these vertices, the algorithm

searches for the mesh edge that does not bound any triangles on lines 5-9. An edge that

only bounds quad faces is guaranteed to be the edge going up the prism elements. If this

edge is found, lines 10-14 find the other vertex that bounds this edge and repeats looking

for a new edge from this vertex. This process is continued until no edge is found since once

a tetrahedron or pyramid element is hit there will be no edges that are not adjacent to a

triangle. Note, the algorithm is simplified to assume each stack exists on a single process.

If this were not the case, topological information used to stitch parts together (i.e., which

processes have a copy of a given mesh entity and the pointer to the entity on the remote

process) would be queried and peer-to-peer communications required to complete the stack

traversal.

Algorithm 4 Boundary Layer Stack Collapse

1: for all vertices, v, classified on a geometric model face do
2: if v bounds a prism then
3: prev edge = NULL
4: next edge = NULL
5: for all edges, e, bounded by v do
6: if e bounds no triangles and is not prev edge then
7: next edge = e
8: end if
9: end for

10: if next edge is not NULL then
11: edge prev = e
12: v = other vertex(v, e)
13: goto 4:
14: end if
15: end if
16: end for
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To maintain the correct computational and communication load of the stacks, we

assign weights to the vertices and hyperedges that represent the stack. Each boundary layer

stack vertex accumulates the weight of the mesh vertices in the stack, while the hyperedges

accumulate the weight of the elements that share the same graph vertices. If the application

does not supply per-vertex and per element weights than a unit weight is assigned.

3.3.2 Vertex-Based Unstructured Mesh Partition

Experiments for the vertex-partitioned mesh application were done with a 57 million

mixed element mesh (i.e., tetrahedra, prisms, and pyramids) on up to 8192 processes. The

mesh is comprised of 32 million tetrahedron, 25 million prisms and 150 thousand pyramids.

As a vertex-partitioned mixed mesh, the graph vertex degree is non-uniform throughout the

mesh, so the edge-cut mitigation strategy is important for this situation. To measure the

effect of β, values from 0.5 to 1.2 are compared to the heuristic being disabled. Each test

runs 30 iterations of EnGPar’s edge balancer while strictly maintaining the vertex imbalance

at 5%. Figure 3.4 shows the edge cut and edge imbalances for each test; including the initial

values of the ParMETIS partitioned mesh. For the 8192 part case, with β disabled, EnGPar

reduces the edge imbalance by 24 percentage points while increasing the cut by 34%. Setting

β = 1.2 results in limiting the increase of the cut to 17% while reducing the imbalance by 18

percentage points. Results for β = 1.0 and β = 0.8 have similar effects following the trend

that lower values of the limit result in lower edge cuts and higher edge imbalance. When

β = 0.5, the edge cut increases by 1% while reducing the imbalance by 11 percentage points.

The best choice for β is specific to each application. The increase in edge cut means

that there will be more elements on each part as well as increased communication between

parts. If communication dominates a simulation’s scaling then the increase in edge cut,

and the associated increase in communications, may negate, or exceed, any savings from

improved balance. So, the partition from ParMETIS may be the best choice, or running

EnGPar with a low value for β like in the 0.5 case. However, if the application performance

is very sensitive to imbalance, then a increase in the edge cut would be worth the larger

decreases in imbalance as seen in the β = 0.8 and β = 1.2 cases.

For the boundary layer collapse, we use the same 57 million element mixed mesh. The

N-graph is built in serial from the mesh with the collapsed boundary layers and partitioned

out using global ParMETIS for the 1024 to 8192 partitions. Then, EnGPar is run for 30
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Figure 3.4: Edge cut and imbalance for various values of β used to reduce the
growth of edge cut. Initial values from ParMETIS and β disabled
are also provided. Vertex imbalance is 5% for all cases. ©2018
IEEE.

iterations to reduce the edge imbalance with the same set of values for β. Figure 3.5 shows

the edge cut and edge imbalance after partitioning with ParMETIS and after EnGPar. With

β disabled, there is a 41% point reduction in element imbalance with a 38% increase in edge

cut. The usage of β has a much larger affect than in the uncollapsed boundary layer case.

For a value of 1.2 there is a 35% point drop in imbalance with a 15% increase in edge cut.

Similar trends are seen for β = 1.0 and β = 0.8. The β = 0.5 case reduces the imbalance by

11 percentage points with a less than 1% increase in the edge cut.
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5% for all cases. ©2018 IEEE.
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3.4 Improving Higher-Order Finite Element Partitions

For higher-order finite element methods, different number of unknowns are defined on

each dimension of mesh entity based on the order of the finite element and the type of finite

element used. The computation costs for the simulation are directly related to the number of

unknowns a process has to solve for, while the communication costs are related to the number

of shared unknowns between processes. For these studies, we define degrees of freedom on

mesh vertices, mesh edges, and mesh faces. Weights are assigned to each entity as one for

mesh vertices, two for mesh edges, one for mesh triangles, and two for mesh quadrilaterals.

Experiments for the higher-order finite element case are performed on an element-

partitioning of a 57 million mixed element mesh on up to 8192 processes. The original

partitions of the mesh is created by ParMETIS globally to balance the mesh elements. The

goal for EnGPar is to balance the number of unknowns and then to rebalance the mesh

elements. For the two definitions of the N-graph for higher-order finite elements described

in Section 3.1, the number of unknowns associated to a specific mesh entity is set as the

weight of the hyperedge in the N-graph for that mesh entity. EnGPar is applied on each

partition from 1024 to 8192 processes. Experiments are run on the Theta system at the

Argonne Leadership Computing Facility.

For the N-graph with different hyperedge types for each dimension, the priority order

is mesh vertices, mesh edges, mesh faces and finally mesh elements. This means that En-

GPar will balance the hyperedges associated with the mesh vertices first, then balance the

hyperedges for mesh edges while maintaining the imbalance of mesh vertices, then the mesh

faces. Finally, the graph vertices that represent the mesh elements will be rebalanced while

maintaining the imbalance of the three types of hyperedges. For the second approach, where

the N-graph has one type of hyperedges for all degree of freedom holders, the priorities are

first to balance the hyperedges followed by the graph vertices. In both cases a tolerance of

1.05 is the goal for all dimensions.

Figure 3.6 shows the imbalance of DOFs and mesh elements before and after applying

EnGPar for both the hyperedge types for each lower dimension of mesh entities, labeled

“Multiple”, and when one hyperedge type for all DOF holders, labeled “Single”. For the

multiple hyperedge type case, EnGPar is able to reduce the imbalance of DOFs down from

1.3-1.55 in the initial partition to between 1.1-1.25. Balancing is unable to improve further

due to a combination of stagnation, and balancing each mesh dimension individually may not
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result in equivalently balancing the number of degrees of freedom. For the single hyperedge

type for all DOFs, the imbalance is reduced below the requested tolerance of 1.05 for 1024-

4096 parts and down to 1.052 for the 8192 partition. In this case, EnGPar is able to properly

balance all lower mesh dimensions simultaneously and achieve the desired imbalance.

For improving the imbalance of the mesh elements after finishing the degrees of freedom,

EnGPar reduces the imbalances 1.20-1.24 imbalances down to 1.15-1.18 in both the multiple

and single cases. The element imbalances are roughly .01 better for all partitions using the

N-graph with a single hyperedge type.
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Figure 3.6: Imbalances of degrees of freedom (left) and mesh elements (right)
before using EnGPar and after running EnGPar on the N-graphs
for one hyperedge type per lower mesh dimension (Multiple) and
one hyperedge type for all DOF holders (Single). Lower is better.

While the single case results in better quality partitions, the time cost is significantly

greater than for the multiple hyperedge types case. Each single hyperedge case takes about

four to five times longer than the same node multiple hyperedge case. Part of this increase in

time cost is because the single case is performing more iterations than the multiple case as the

single case does not stagnate and instead reaches the target imbalance of DOFs. The bigger

contribution to the increase in time to partition is the size of the hyperedges that are operated

on in each iteration. For the single case, each iteration operates on |M0| + |M1| + |M2|
hyperedges while the multiple case performs three different sets of iterations each with |M0|,
|M1|, and |M2| hyperedges respectively. Thus there is a tradeoff between using the single

case for the best partition of DOFs or a faster method using the multiple case with a higher

imbalance. The correct choice for this depends on how much the extra improvement to

imbalance decreases the time within the simulation.
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3.5 Summary

EnGPar’s fast diffusive load balancing method has been applied to improve the par-

titions of parallel unstructured meshes with over a billion elements and efficiently scales to

over half a million processes. The graph distance algorithm for ordering candidate bound-

ary entities for migration has been sped up compounding with a faster migration operation

resulting in EnGPar being 54% faster than ParMA at 512Ki processes. EnGPar is applied

to other unstructure mesh cases that can be more accurately represented with the N-graph

than in ParMA, namely vertex-partitioned meshes and higher-order finite element simula-

tions. Control mechanisms for mitigating the increase in edge cut for high-degree vertex

graphs was incorporated into the methods to achieve better partitions for vertex-partitioned

meshes.



CHAPTER 4

FRAMEWORK FOR DESIGNING MESH-BASED

UNSTRUCTURED-MESH PARTICLE-IN-CELL

SIMULATIONS ON GPUS

An important class of multiscale simulation is the Particle-in-Cell (PIC) method in

which particle tracking to capture fine-scale behaviors is coupled to fields defined in terms

of PDEs represented at the scale of the overall domain. The continued advancement of

massively parallel computing technologies along with the ability to effectively scale PIC

calculations on those systems is supporting the effective application of PIC codes to the

modeling of plasmas in fusion reactors [21], [42], [43], [96], [97], linear accelerators [98] and

other systems.

PIC methods are implemented as a time-advancing procedure in which the position

of particles is tracked as they move through a domain, driven by a field that is typically a

function of the position of the particles, and thus that field evolves as the particles move.

In the coupled case there are four steps carried out in each time advance [21], [43], [96],

[99]–[102]. Those steps are:

Field to Particle: The values of the current mesh-based fields that drive the particles are

associated with each particle through an appropriate interpolation procedure.

Particle Push: The particles are moved, or if you will, pushed, to a new location as a

function of the field and time step size.

Charge Deposition: The “charge” information associated with the particles is then related

to the domain definition such that the forcing function driving the field evolution is

updated.

Field Solve: The partial differential equations (PDEs) governing the field is then solved

using this updated forcing function and other potential system updates.

Portions of this chapter are to appear in: G. Diamond, C. W. Smith, C. Zhang, E. Yoon, and M. S.
Shephard, “PUMIPic: A mesh-based approach to unstructured mesh particle-in-cell on GPUs,” J. of Parallel
and Distrib. Comput., vol. 157, pp. 1–12, Nov. 2021. doi: 10.1016/j.jpdc.2021.06.004
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Figure 4.1: Depiction of the 4 main steps involved in an iteration of the PIC
loop.

Since the PDEs governing the domain fields can rarely be solved in closed form over

the domains of interest, the needed fields are solved numerically over a spatial discretization

that can range from a uniform grid to a graded unstructured mesh. Particles are represented

as distinct objects with properties that are tracked as they move throughout the domain

of the mesh. Figure 4.1 gives a basic graphical description of the four PIC steps on a

mesh. Structured grids are commonly used in PIC codes to represent the domain due to the

simplicity of storing and maintaining the mesh representation as well as interactions between

the mesh and particles [103]–[107]. For simulations with complex geometries or varying scales

of behavior, uniform structured meshes are ill-suited as a highly refined mesh is required to

achieve the desired accuracy. Adaptive mesh refinement is one method to reduce the issue by

refining the mesh where more accuracy is needed while coarsening the less important regions

[108], [109]. Alternatively, unstructured meshes can be used to more accurately represent

the domain and can provide the required levels of field accuracy over general domains using

the fewest number of unknowns [110]–[113]. The advantages of unstructured meshes come

with a cost of larger, more complex, data structures and more complex algorithms to achieve

parallel scalability.

A key piece of information that needs to be known for each particle throughout the

simulation, is the grid cell or mesh element, each particle is within, that we call the particle’s

parent element. This information is required by the Field to Particle and Charge Deposition

steps. In the case where the PIC method is tracking particles through a uniform grid, this

operation is trivially defined by the particle coordinates.

When unstructured meshes are used, the determination of the parent element after

a push is not a one-step algebraic evaluation. Instead, it requires a numerical evaluation
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process that includes explicit consideration of the geometric definition of the elements. To

avoid the need to evaluate the required geometric calculations involved with determining

particle containment for the entire list of elements until the element the particle is within

is found, some form of search mechanism that limits the number of elements that must be

considered is employed. The complexity of maintaining the knowledge of each particle’s

parent element introduces a coupling between the mesh data structure and the storage of

particles.

In large-scale computations executed on massively parallel computers, the PIC algo-

rithm introduces partitioning challenges due to the coupling between the mesh data struc-

ture and the particles. A common approach for parallel PIC is to partition the particle data

structure where each particle maintains knowledge of the mesh element the particle is in at

the current time while storing an independent mesh data structure that is copied on every

process. When using independent particle and mesh data structures it is common to also in-

troduce a spatial data structure such as a uniform grid or spatial tree to support an efficient

search process to find the element the particle is contained in after a push. This approach

can achieve good scaling and is reasonably performant, particularly for meshes with little or

no gradation. However, having a copy of the entire mesh on each process has the obvious

drawback of not being scalable with growing the mesh size past a point dictated by the

available memory on a process for the mesh. Since PIC implementations employ methods

in which the number of particles is two or even three orders of magnitude larger than the

number of mesh elements, this approach has been satisfactory. However, as more complex,

both in terms of physics and geometric complexity, systems are considered, there is a desire

to employ distributed meshes with millions of elements that are strongly graded. The use

of independent particle and mesh data structures which are both distributed complicates

the implementation of efficient memory access patterns and, in the case of graded meshes,

complicates the search process of efficiently determining what element a moved particle is

within.

The central goal of the approach presented in this chapter is to be able to support

having both the particles and mesh distributed over the memory spaces of the processes

used in the parallel execution of the PIC simulation. Any effective implementation of such

an approach must carefully consider appropriate mechanisms to control interprocess commu-

nications that arise through the interactions of the particles and the mesh. A possibility for
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doing this in the case of independent particle and mesh data structures is to employ mech-

anisms that distribute closely related mesh elements and particles. For example, the same

background grid used to support the element search process could be used. This chapter

presents an alternative approach that we will refer to as the mesh-based approach in which

the mesh data structure is the core data structure and the particles are stored based on their

parent elements for access based on the mesh elements. Since this approach maintains an

explicit relationship of the particles to the mesh, there is no need for a secondary structure

and search process to support maintaining the relationship between them.

With the majority of top supercomputers including some form of accelerators, in most

current US systems being GPUs, it is vital to employ data structures and algorithms that

effectively take advantage of the accelerators. The PIC algorithm have been shown to have

good performance improvements when porting from CPU to GPU [114], [115]. Parallel

PIC codes have been employed for structured meshes such as PIConGPU that utilize linked

lists for storing particles [38]. The EMPIRE-PIC [116] code performs parallel PIC on an

unstructured mesh using the Trilinos suite[117] including Kokkos [35] for performance on

accelerators. The Cabana library [118] has shown good performance using an Array-of-

Structs-of-Arrays for storing particles on GPUs for various PIC codes [119]. The porting of

plasma-physics PIC codes such as XGC [42], [120], GITR [44] show there is great potential

for improved performance using GPUs for PIC applications.

This chapter presents the PUMIPic library that takes the aformentioned mesh-based

approach for PIC simulations to provide the necessary data structures and key algorithms

for implementing PIC codes on GPUs. The library includes a partitioned unstructured

mesh data structure that uses extensive buffering to improve the control of inter-process

communications and optimization of particle migrations between processes. Different data

structures for the storage of particles in PUMIPic are presented that all maintain the storage

of particles based on the mesh element. Key algorithms for performing the four main stages of

the PIC algorithm are detailed. Notably, this chapter includes the algorithms for supporting

particle and mesh interactions, synchronizing fields across the partitioned mesh, determining

the new parent elements after particles move, and updating the particle data structure based

on new parent elements.

As the simulation evolves and particles continously move between processes, the bal-

ance of work associated with particles may become uneven across the GPUs. To maintain
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the balance of particles, a method for dynamic load balancing is presented using the En-

GPar library that exploits the specifics of PUMIPic’s mesh partition to reassign particles

efficiently.

The remaining sections of this chapter are as follows. The core data structures for

storage and operation on GPUs for the unstructured mesh and particles are detailed in

Section 4.1. Section 4.2 details the core operations in PUMIPic to support the development

of PIC simulations using the library. Load balancing for particles on a fixed mesh using

EnGPar is discussed in Section 4.3. Results for using the PUMIPic library in PIC simulations

is provided in Chapter 5.

4.1 Data Structures for Mesh-Based PIC

For designing unstructured mesh-based PIC simulations, two core data structures are

needed: a mesh data structure and a particle data structure. An unstructured mesh data

structure on GPUs has to account for the complexity of storing and efficient access to the

necessary mesh adjacencies and field information. The particle data structure must focus on

efficient memory access of particle information and the interactions with the mesh entities

and fields.

4.1.1 Performance Portability

With the three upcoming DOE leadership-class supercomputers, Aurora, Frontier, and

Perlmutter, each using a different vendor GPU with specific languages and hardware func-

tionality, it is highly desirable to implement codes for GPUs to be portable across different

hardware. Writing GPU specific code in each low-level language for each new hardware

device would be ineffient and difficult to manage as a code base grows. To avoid managing

different versions of code there exists several programming models that supply abstractions

for operating on various architectures. Compiler directive based approaches such as OpenMP

[121] and OpenACC [122] use pragmas to annotate the code where parallel operations are to

be carried out. Library approaches like Kokkos [35], Raja [36] and OCCA [123] provide an

abstraction layer that can be used to write one implementation of the code and use different

backends for different targeted hardware.

To address the ability to port to different hardware, all data structures in PUMIPic

use the Kokkos library [35] for data management and parallel execution on GPUs. The
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structures in PUMIPic take a device-default approach where data is initialized on the GPU

and remains in GPU memory unless the host needs to perform operations on the data such

as performing communications between processes. The remainder of this section covers the

design choices for storage of the unstructured mesh and particles for on process parallel

execution and multi-process parallelism.

4.1.2 Unstructured Mesh Structure

For unstructured mesh PIC, the unstructured mesh data structure is the key structure

that discretizes the domain for storing field information and performing the field solve of the

governing equations. An unstructured mesh data structure is composed of a geometric model,

mesh entities, mesh adjacencies, and field information attributed to the mesh entities [78].

The geometric model is the high level representation of the domain with information tied

to the model entities such as material properties, boundary conditions, etc.. The mesh

entities include vertices M0, edges M1, faces M2, and regions M3 in 3D. Mesh entities are

classified on geometric model entities to define the entities on the boundary and specific

physical quantities related to different portions of the mesh. Mesh adjacencies describe the

connection between mesh entities. Most notably are the first order adjacencies {Mdi
k {Mdj}}

that is the set of mesh entities of dimension dj that are adjacent to the kth mesh entity of

dimension di. The field information is attached to mesh entities in order to store physical

quantities of interest in the simulation.

There are different choices for the storage of mesh entities and their adjacencies with

trade-offs between memory consumption and access time to query adjacencies [78]. A full

mesh representation explicitly stores all mesh entities [124]. This is useful in the case where

fields are defined on all dimensions of mesh entities or when explicit iteration of each di-

mension is needed such as for mesh adaptation. When some dimensions of mesh entities are

not stored it is referred to as a reduced representation. Storing more mesh adjacencies has

the benefit of improved runtime at the cost of storing more memory especially for upward

adjacencies, {Mdi
k {Mdj}} where dj > di. For example, the average number of mesh regions

adjacent to a mesh vertex in a tetrahedral mesh is 23. A complete mesh representation

stores a sufficient set of the mesh adjacencies that allow O(1) lookup for any individual mesh

adjacency [124]. For individual mesh adjacencies one can build missing adjacencies by using

set intersections for downward adjacencies and set unions for upward adjacencies [124].
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A distributed unstructured mesh has additional complications for storage around the

partition model boundary. Given a unique partition of the mesh elements into N parts,

P (Md) = P0, ..., PN−1 where Pi ∩ Pj = ∅, the lower dimensional entities on the boundary of

each part will be shared with the neighboring parts. These entities classified on the partition

model boundary will exist on each part that share them and a method must be used to be

able to communicate between the copies such as using remote copies [124], [125] where each

shared entity maintains a list of the copies on each other part that share it.

PUMIPic’s mesh data structure is built on top of the Omega h library [46], [47].

Omega h is a performance portable unstructured mesh library designed for GPUs sup-

porting two and three dimensional meshes. The structure takes a device default approach

where all mesh entities, mesh adjacencies and field data are allocated and remains on the

device unless explicitly transferred to the host. Omega h stores the one-level downward

adjacencies,{Mdi
k {Mdj}} where dj = di − 1, as compact arrays. Other mesh adjacencies are

constructed and maintained when the application requests them either as compact arrays

for downward adjacencies or as compressed sparse row formats for upward adjacencies. At

a start of an application the Omega h mesh is input. This operation is of O(n) where n is

the number of mesh entities. Omega h includes procedures that can be executed during the

input process to construct any of the additional adjacencies that the application would like

stored. The execution of these procedures maintains the O(n) input cost. In our applications

of Omega h we define a sufficient set of adjacencies to yield a complete representation where

any adjacency can be obtained in O(1) time. This is done since the applications developed

in this thesis employ many of the 12 possible first order adjacencies. If an application only

needs very specific additional adjacencies past those already stored, then defining only those

additional adjacencies is fine even if the resulting set is not a complete representation since

there will be no request for an adjacency that requires O(n) operations.

Omega h is used to store and operate on the mesh elements and fields on a single process

and GPU. In this regard, each process has its own instance of an Omega h mesh that does

not know of the mesh on other processes or the shared entities between the processes. As

discussed in the next section, an expanded partitioning of the mesh is desireable that is not

supported using Omega h’s distributed mesh capabilities. As such the distribution of mesh

entities and fields between processes are handled through PUMIPic to achieve the level of

parallel operations desired for a PIC simulation.
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4.1.3 Mesh Partitioning for PIC

Partitioning an unstructured mesh is both a challenging and important problem for

distributed mesh applications. Recall from Chapter 2 that the partition must balance the

computational costs across all processes while also minimizing the communication costs that

result from partitioning the mesh. The most common methods for partitioning meshes are

multi-level graph methods [7], [9], geometric methods [63], [65], [67], and diffusive methods

[11], [13], [22]. Details of these methods were covered in Section 2.1.

For PIC simulations, the difficulties of partitioning increase due to having to bal-

ance mesh computation and communication along with particle computation and migrations

across processes. Typically, the mesh is partitioned to optimize either the field solve step

or the interactions between the mesh and particles. Partitioning for the mesh field solve

considers evenly distributing the number of degrees of freedom across processes and mini-

mizing the number of degrees of freedom on the partition model boundary. Partitioning for

particles targets allowing particles to be distributed evenly across processes and minimiz-

ing the migration of particles as the simulation evolves. Constructing the partition along

the principal direction of motion of particles is ideal to maintain particle balance and mini-

mize communications. Figure 4.2 shows two partitions of a two-dimensional mesh. The left

mesh is partitioned using a multilevel graph method for the field solve. The right mesh is

partitioned along flux faces where particles predominantly move within.

Figure 4.2: Two-dimensional unstructured mesh partitioned using multi-level
graph method for field solve (left) and partitioned along principal
direction of particle motion (right).
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Regardless of the approach to partitioning, in PUMIPic, the partition of the mesh

is expanded with surrounding mesh entities to create what we call PICparts in order to

minimize the communication of particle information by ensuring that no communication is

required during the execution of a single push step. Given a unique partition, P (Md), of

the d-dimension mesh, M , into N parts P0, P1, ...PN−1, we define a buffer, Bi, for each part

that consists of layers of mesh elements surrounding the part Pi. The ith PICpart is the

closure of the mesh elements in the set Pi = Pi ∪ Bi. We denote a subset of Pi as the safe

zone, Si which represents the set of mesh elements that can have particles on the PICpart.

Si is defined such that any particles in these mesh elements are guarenteed to have all field

information required to perform operations and the particle will not be pushed outside the

PICpart during the push operation. Note that particles that at the end of a push have moved

into an element not in Si will be migrated to a PICpart for which that element is within

its safe zone before the next push operation. To ensure a particle can be safe in any mesh

element, we require that for every element Md
j ∈ Pi, M

d
j ∈ Si.

The first step to creating PICparts is to define Bi for each part Pi. There are multiple

options for selecting the set of buffer elements to be used for a PICpart. An obvious choice

is to select a number of neighboring elements in the same way remote copies are defined in

many PDE discretization methods [125]. For the PIC applications developed to date, it was

found that this would require four layers of elements and it was determined that the data

storage and update requirements if done as standard remote copies were problematic.

The alternative approach used herein defines Bi as the union of a set of the nearby

parts Pj for j 6= i to ensure that there is sufficient buffer with respect to Pi. Although this

approach yields PICparts with more elements than a layerwise buffering would produce, it

requires substantially less total data since it does not require maintaining remote copy data

associated with each element. This approach also yields large safe zones that reduce particle

migration and provides greater load balancing options.

In cases where the memory requirement to store the entire mesh and required fields on

each PICpart is low, it is convenient for each PICpart to store the entire mesh. In this case,

Bi =
⋃

j 6=i Pj.

When the amount of memory required to store the entire mesh and required fields is

such that it is desirable to distribute the mesh, the Bi is a strict subset of the the initial

set of parts defined by executing a breadth-first traversal (BFT) out some number of layers
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from the boundary of the Pi. Bi is constructed as the union of every part reached during

the BFT. An example PICpart constructed using five layers of BFT buffering is shown in

Figure 4.3. The PICpart is for the part labeled A which then fully buffers each part within

five iterations of BFT including the non-adjacent part labeled B since elements in part B

are included in the third layer determined by the BFT.

After the buffer is constructured, the safe zone, Si is determined using one of two

approaches. The first is an overly conservative method that uses fewer layers of the BFT

performed for determining the buffer. Any element found within the BFT is in Si as well

as every element in Pi. The second method performs a BFT for a set of iterations starting

from the PICpart boundary defined as the lower dimension mesh entities on the boundary

between the PICpart and parts that are neither Pi nor in Bi. In the second method, every

element not reached in the BFT is in Si. The second approach creates a much larger set of

safe elements leading to fewer migrations and higher potential for particle load balancing to

occur. Figure 4.4 shows example usage of both safe zone methods for the PICpart in Figure

4.3. The simulation can also provide a different definition for Si if a more physics-dependent

definition of safe elements is required.

Figure 4.3: PICpart generated for the part A using 5 layers of breadth-first
traversal for the left partition from Figure 4.2. Note that the part
labeled B is also fully buffered.

The BFT algorithm is implemented using a bottom-up approach [126]. In the bottom-

up approach, each iteration of the BFT processes has every mesh element check its neighbors

to see if it is visited this iteration. This is performed through a selected lower dimension

of entities called the bridge dimension. Each entity of the bridge dimension first checks its

upward adjacencies to elements if any have been visited in a previous iteration. If at least
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Figure 4.4: Safe zone for PICpart A using three iterations of BFT from the
part (left) and excluding three layers from the edge of the PICpart
(right).

one element has been visited then all of the upward adjacent elements are visited in the

current iteration of the BFT.

The bottom-up approach is better than the more traditional top-down approach for

many-core and GPU architectures when the frontier of the BFT is sufficiently large. Since

the starting point for the BFT is the entire part, the iterations start with a sufficiently large

frontier such that using the bottom-up method is more performant than the top-down.

Algorithm 5 provides pseudocode for constructing PICparts using bottom-up BFT

iterations. Lines 2-6 setup the initial state for the BFT. The visited array is filled with true

values for each element in the part, Pi. The BFT algorithm is iteratively run on lines 7-

13. Each iteration executes the BFTIteration procedure on line 8 to perform one layer

of the bottom-up BFT on lines 22-36. The bottom-up BFT iterates over all mesh entities

M b
j ∈ M bridge dim to operate on the mesh elements in {M b

j {Md}}. The first loop over the

adjacent mesh elements on lines 25-29 checks if any of the mesh elements have been visited

in a previous iteration. If at least one element was previously visited then {M b
j {Md}} is

iterated over a second time setting all of the elements as visited in this iteration by setting

visited next to be true on lines 30-34. After each call to BFTIteration, the visited next

array is copied to the visited array to set up the next iteration on line 9. When using the

conservative method to construct the safe zone, lines 10-12 constructs the safe zone from the

visited elements after the specified number of iterations for the safe zone is performed. After

the BFT is completed, the mesh parts that include any visited elements are designated to

make up the buffer on lines 14-19.
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Algorithm 5 pseudocode for pull-based BFT to construct buffer region and safe zone.

1: function BFT(M , safe layers, buffer layers, bridge dim)
2: visited = DeviceArray(|Md|)
3: visited next = DeviceArray(|Md|)
4: parallel for Element Md

i in Pi do
5: visited[Md

i ] = true
6: end parallel for
7: for iter = 0 to buffer layers do
8: BFTIteration(M , visited, visited next)
9: visited← visited next

10: if iter = safe layers then
11: safe zone← visited next
12: end if
13: end for
14: buffer parts = DeviceArray(number of processes)
15: parallel for Element Md

i ∈M do
16: if visited[Md

i ] then
17: buffer parts[owner(Md

i )] = true
18: end if
19: end parallel for
20: return buffer parts, safe zone
21: end function
22: function BFTIteration(M , visited, visited next)
23: parallel for Entity M b

i ∈M bridge dim do
24: visit = false
25: for all Element Md

j ∈ {M b
i {Md}} do

26: if visited[Md
j ] then

27: visit = true
28: end if
29: end for
30: if visit then
31: for all Element Md

j ∈ {M b
i {Md}} do

32: visited next[Md
j ] = true

33: end for
34: end if
35: end parallel for
36: end function

When constructing the safe zone with the second method, a separate BFT is performed

after Algorithm 5. Algorithm 6 lists pseudocode for this construction of the safe zone. The

ConstructSafe procedure on lines 1-21 takes in the PICpart, M , and a number of layers

for the BFT. Lines 2-10 perform setup for the BFT by creating the visited and visited next



49

arrays. For every mesh entitiy M b
i ∈ M bridge dimension on the PICpart boundary, the mesh

elements Md
j ∈ {M b

i {Md}} are set to be visited during this setup. The bottom-up BFT

is then executed for layers iterations on lines 11-14. This loop calls the BFTIteration

procedure from Algorithm 5 on line 12 followed by copying the visited next array into

visited to prepare for the following iteration. After the BFT is completed, the safe zone is

constructed on lines 15-19 by adding every element in the PICpart that was not visited in

the BFT to the safe zone.

Algorithm 6 Algorithm for constructing the safe zone from the boundary of the PICpart

function ConstructSafe(M , layers)
visited = DeviceArray(|Md|)
visited next = DeviceArray(|Md|)
parallel for Entity M b

i ∈M bridge dimension do
if M b

i on PICpart boundary then
for all Element Md

j ∈ {M b
i {Md}} do

visited[Md
j ] = true

end for
end if

end parallel for
for iter = 0 to layers do

BFTIteration(M , visited, visited next)
visited← visited next

end for
parallel for Element Md

i ∈M do
if !visited[Md

i ] then
safe zone←Md

i

end if
end parallel for
return safe zone

end function

4.1.4 Particle Data Structure

Particle information such as position and velocity must be stored on the GPU in a

structure that allows efficient access. For mesh-based PIC simulations, the main require-

ment for the particle data structure is to group particles by the parent mesh element. For

performance on accelerators, it is important that the structure can be evenly distributed to

threads and mapped to the hardware memory layout and the access pattern. As a library, it

is also important that the particle data structure is tunable to support different application
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characteristics and be performant across different hardware. The characteristics present in

the target applications of PUMIPic include: up to 10,000 particles per element, uniform

and non-uniform particle distributions, particles will only traverse through a small number

of neighboring elements during a single iteration, and simulation-defined representations of

particle data including multiple definitions of particles for a single simulation.

To begin thinking about data structures to store particles based on mesh elements it

is important to first note that this relationship of particles in elements can be described as

an NxM matrix where N is the number of elements and M is the number of particles. The

values of entry i, j is 1 if particle j is in element i and 0 otherwise. This matrix is extremely

sparse as each parrticle will only have one nonzero entry. Many different data structures

have been proposed to maximize the locality and alignment of memory accesses on GPUs

for matrix applications. Several alternatives to the commonly used Compressed Sparse Row

structure have been analyzed [127]. The ELLPACK [128] structure adds zero entries to ensure

all rows have an equal length to align memory accesses. The structure also stores memory

vertically which allows threads of a warp to work on a row while accessing a contiguous

block of memory. The ELLPACK structure is best used on structured matrices due to

the extra memory and computation added by the non-zero entries. For matrices without a

uniform structure, a variant ELLPACK-R is suggested [129]. ELLPACK-R groups the rows

into chunks based on the SIMD width of the target hardware. The zero entries added to

ELLPACK-R are such that all rows within a chunk have the same length. This improves

from the original ELLPACK by reducing the memory footprint of the zero entries as well

as reducing computations on zero entries. Further improvements to reduce the padding are

suggested by Kreutzer et al. [130], [131] with the Sell-C-σ structure. The Sell-C-σ sorts

the rows by the number of filled entries which when performing full sorting minimizes the

number of zero entries added to the structure.

Directly for PIC, different implementations for GPUs have explored structures for

storing particles. Burau et al. [38] use a linked particle list to implement a PIC simulation

with structured meshes on GPUs. Each mesh element points to the list of particles within the

element. This structure allows particles to move quickly between the mesh elements, however

as Burau et al. explain when particles move between elements the order of memory accesses

becomes fragmented and leads to a reduction in the performance of particle operations. A

three-stage memory hierarchy [37] has been used to alleviate the fragmentation problem by
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tiling particle data within a set of mesh elements.

Cabana [118] is a library for the storage of particle data for the traditional approach

to PIC simulations. Cabana uses an array of structures of arrays (AoSoA) to store particle

information aligned with and sized by the target hardware. Each struct of arrays (SoA)

maintains particle information for the SIMD width number of particles. Then an array of

the SoAs is created to store all particles. This results in the memory accesses being aligned

with the hardware and execution of the GPU.

4.1.4.1 Storing Particle Data

To support simulation-defined particles including multiple different particles during a

single simulation, the structures in PUMIPic must be designed generally for arbitrary data.

The use of variadic templates in C++ allows the simulation to define all the data types that

make up a particle. For example, if a particle is defined by its three-dimensional coordinates,

velocity, and an id, the data types would be defined with six doubles and one integer type.

PUMIPic provides abstractions and helper functions to create collections of particle types

and operate on them as needed to work with PUMIPic’s API. The particle structure is

templated on the collection of data types representing the particle. Thus different types

of particles can be maintained for one simulation in separate particle structures that are

templated on different sets of data types. The following sections review the different particle

structures implemented in PUMIPic. For each structure when referring to particles or the

values associated with them this refers to all of the data types that define a particle.

4.1.4.2 Compressed Sparse Row

One of the most commonly used structures in high-performance computing applications

to store a sparse matrix is the Compressed Sparse Row or CSR. The CSR consists of two

one-dimensional arrays, the first an offsets array length N + 1 and the second a values

array sized the number of nonzeroes in the matrix. In the case of our particle data structure,

the values array is length M . The values array stores each nonzero of the original matrix

grouped by the nonzeroes in the same row. The entries of the offset array index into the

values array such that offsets[i] is the first index for row i in the values array. Additionally,

offsets[i + 1] − 1 is the last index for row i in the values array. This structure allows the

NxM particle matrix to be reduced in memory to N + M . Accounting for D particle data
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types the memory usage is N + D ∗M as only one offsets array is needed for each of the

D values arrays. Figure 4.5 shows an example CSR structure with offsets on the left and

values on the right. The arrows on the values array show the order of continuous memory

entries.

Values

{ {CC

Offsets

0

8
11

15

22
24

30
39

45
49

56

58

64

Figure 4.5: Example CSR offsets and values arrays. Each row represents one
mesh element. Each box in the values array is one particle.

The CSR is a simply designed structure that is both easy to implement and use which

can capture the mesh to particle relationship with minimal memory usage. However, this

structure has problems when performing on accelerators. One important characteristic of

accelerators is the Single-Instruction-Multiple-Data (SIMD) width that is the amount of data

that can be processed by a thread for one instruction simultaneously. Ideally, the data should

be split into SIMD Width continuous array entries to perform operations simultaneously.

For the CSR the work is first broken into each row which has the number of nonzero entries

in that row. In general, the length of the row cannot be broken into SIMD Width chunks

and thus there will be wasted resources when operating on the accelerator. Figure 4.5 has

an example SIMD Width labeled C at the bottom of the values array showing that each

row is unable to be split evenly. Another concern with the CSR is when the distribution of

nonzeroes is non-uniform across the rows. In this case, each thread assigned to a row will

have adifferent amount of work which will result in inefficient execution on accelerators.
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4.1.4.3 Sell-C-Sigma

A structure that is more designed for accelerators based on the CSR is a structure from

Kreutzer et al. called the Sell-C-σ (SCS) [131]. The structure was designed for efficient use of

sparse matrices for tunable performance on different architectures including many-core and

GPUs. The SCS targets solving the CSR’s problem by aligning the data to GPU memory

and access patterns. The SCS groups rows into chunks of size C and orders the memory

vertically through chunks and horizontally across rows. The parameter C is set based on

the SIMD width of the hardware being run on allowing the structure to map to the memory

layout and align memory accesses with the hardware. Additional padding of empty cells is

used to fill in the rows such that each row in a chunk has the same length and perfectly

aligns with the hardware memory layout. A second parameter σ controls sorting the rows

where sigma ranges from 1, no sorting, to the number of rows, full sorting. For non-uniform

distributions, a higher σ will group longer rows which reduces the amount of padding and

excess computations performed at the cost of running a sorting routine.

Figure 4.6 shows the storage of particles on a set of mesh elements in a CSR and two

different SCS structures with C = 4 where the first uses no sorting (σ = 1) and the second

has full sorting (σ = 12). Each row represents one mesh element with an entry in the row

per particle within the mesh element. Arrows on the CSR and SCS structures show the

continuous layout in memory. Empty cells in either SCS structures are padded cells with no

particle data stored.

Mesh & Particles CSR Sell-4-1(no sorting) Sell-4-12(sorted)

{
{
{C
C

C

{ {CC

Figure 4.6: The storage of particles in a set of mesh elements (left) in a CSR
(middle) and two SCS (right) with no sorting and with sorting.
Arrows on each structure show the continous layout of memory.



54

Further improvements to the SCS structure are suggested by Besta et al. in their

structure SlimSell [132]. As mentioned for the CSR in the previous section, when the dis-

tribution of particles to elements is non-uniform there will be workload imbalances between

large chunks and small chunks. Besta et al. add vertical slicing to the chunks so that approx-

imately equal slices are distributed to blocks of threads as opposed to the uneven chunks.

An additional parameter V controls the horizontal length of each slice such that each chunk

is split into slices of length V . Figure 4.7 shows the SCS with vertical slices boxed as done in

PUMIPic. Only the last slices of each chunk will have a different workload which is bounded

by the parameters C and V .

Figure 4.7: Sell-C-Sigma with full sorting and vertical slicing. Each box of
entries represents a block of work given to a block of threads.

The addition of more breaks into the structure comes with more memory usage than

the CSR. Given we have N elements and M particles with D data types per particle, let P be

the number of padded entries and S be the total number of slices across all chunks. The SCS

with vertical slicing has three one-dimensional arrays. The first is an offsets array similar to

the CSR. The size of the offsets array is equal to the S and each entry denotes the starting

index of the ith slice. The second is the values arrays sized M + P . The third array is a

mask per entry in the values array which states whether the entry is a particle or a padded

cell also sized M +P . This results in a total of (D+ 1)(M +P ) +S. P and S are dependent

on the choices of the parameters C, σ, and V as well as the distribution of the particles

across elements. The number of slices can be upper bounded by S <
⌈M + P

C ∗ V
⌉

+
⌈N
C

⌉
since
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each slice stores C ∗ V particles except the last slice in each chunk. There are
⌈N
C

⌉
chunks

which each could have one extra slice at the end. For P , Besta et al. [132] note the effects

for padding are negligible for larger values of σ such as σ >
√
N because the added sorting

leads to minimal padding in the structure.

The SCS satisfies the requirement for a mesh-based particle data structure as the

particles in an element are accessible from the equivalent row in the SCS. The tuning of σ

and vertical slicing allow near-even distribution of workload to threads while the parameter

C and padding allow tunable performance on different accelerator hardware in terms of

memory layout and access pattern. These parameters also allow the structure to be adapted

to the different simulation characteristics including particle distribution and density using

V to account for the imbalance of particles across elements.

4.1.4.4 Array of Structs of Arrays

A structure designed for accelerators that is used in traditional PIC simulations is the

Array of Structs of Arrays (AoSoA) [133]–[135]. The AoSoA is as its name states an array

where each entry is a Struct of Arrays (SoA) where each inner array has fixed length C.

C is generally based on the SIMD Width of the accelerator while the outer array is sized

with enough structs to fit all the data needed. For M particles, the size of the outer array

would be
⌈
M
C

⌉
. The last struct in the AoSoA may not be filled with particles. To maintain

the fixed-length inner arrays, the last struct is padded similar to the SCS. The number of

arrays in the struct is dependent on the different types of data that need to be associated

with each particle. Figure 4.8 shows an example AoSoA with one struct shown containing

three arrays x, y, and z and C = 5.

On its own, the AoSoA does not satisfy the requirement for us to relate particles to

the mesh elements they are associated with. In traditional PIC simulations, there is an

array in each struct that stores the element each particle is within. To use the AoSoA in a

mesh-based PIC simulation an additional indexing layer is added to attribute SoAs to mesh

elements. In this scheme, mesh element i with Mi particles will be assigned
⌈Mi

C

⌉
SoAs

that are continuous in the outer array. An additional offsets array is used to provide the

starting index in the AoSoA for each element. Figure 4.9 shows an example AoSoA next to

the previous CSR and SCS examples. Each row of the AoSoA represents an element. Each

box of C = 4 entries is an SoA for the element of that row. Note in this version of the
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Figure 4.8: An AoSoA with five SoAs with C = 5 each storing three types
arrays for x, y, and z.

AoSoA the last SoA of each element will have padded entries if the number of particles is

not divisible by C.

CSR Sell-4-12(sorted)

{
{
{C
C

C

{ {CC

CabM

{ { {CC C

Figure 4.9: Particles stored in the CabM structure adjacent to the CSR and
SCS for the same particles. Each group of C entries represents one
SoA assigned to the element for that row.

In PUMIPic, the implementation of the mesh-based AoSoA is built off Cabana [118].

Cabana is a library for using AoSoA in traditional PIC simulations. Within PUMIPic,

the offsets array is added on top of the Cabana library resulting in the structure we call

CabanaM (CabM). With the addition of the offsets array, CabM satisfies the requirements

of grouping particles in the same elements together in memory. Each thread performs work

on an SoA leading to an equal distribution of work regardless of the distribution of particles

to elements. Since C is set based on the SIMD Width of the accelerator the layout of data
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matches the access pattern of the accelerator. So CabM also satisfies the requirements laid

out for our particle structure.

The memory usage of CabM is the memory usage of an AoSoA plus the offsets array.

As with the SCS, the exact memory usage is dependent on the parameter C. For N mesh

elements and M particles and D particle data types, let P be the number of padded entries.

The size of the outer array is
⌈M + P

C

⌉
while summing all of the SoAs together results in a

total of D ∗ (M + P ) entries. The offsets array is sized N so the total memory usage of

CabM is D ∗ (M + P ) +
⌈M + P

C

⌉
+N . We can upper bound P since only the last SoA of

each element will contain padded cells by P < (N − 1) ∗ C.

4.2 Algorithms for Supporting PIC Operations

4.2.1 Supporting Particle-Mesh Interactions

For the Field to Particle, Charge Deposition, and Particle Push steps, it is vital to have

efficient ability to interact between the fields associated to mesh entities and the particles.

In PUMIPic, it is important to abstract these operations such that the different options

of particle structures can be switched out seamlessly in a PIC code. As such, PUMIPic

provides its own ParallelFor API that facilitates operating on the particles of a given

mesh element. The ParallelFor API executes a user defined operation on the GPU for

each particle individually. The indexing details of each particle structure is hidden from the

user that results in both easy development for the user and allows the application to easily

change which particle structure the simulation uses.

Algorithm 7 shows the general format of using the ParallelFor API. On lines 1-5

the user defines a lambda that would include the code to operate on a single particle. The

three arguments provided here are the parent element’s index, elm index, the particle index,

ptcl index, and the mask that identifies if the index refers to a real particle or a padded

cell like found in the Sell-C-Sigma structure. In many cases the mask is used as shown

on line 2 to only operate on indices that represent real particles. However, when possible

the mask can be ignored to avoid branch divergence and improve performance on the GPU.

Within the lambda, operation specific code is written that can utilize the mesh fields and

mesh adjacencies using elm index or the particle’s data using ptcl index. The execution of

the lambda on the GPU for all particles is done by the call to ParallelFor on line 6.
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Algorithm 7 Format for performing iteractions between the mesh and particles using
PUMIPic

1: lambda =PS LAMBDA(elm index, ptcl index, mask) {
2: if mask == true then
3: Perform operations using elm index and ptcl index.
4: end if
5: }
6: ParallelFor(ptcls, lambda)

4.2.2 Unstructured Mesh Field Synchronization

To maintain dynamic mesh field information across processes, it is necessary to perform

field synchronizations each iteration. This synchronization is performed after the charge de-

position operation. Each process has contributions associated with the mesh entities stored in

a field that must be accumulated before the solve operation. Due to the additional buffering

included in the PICparts, there is a significant amount of data that must be communicated

across processes. When the PICparts are constructed with full buffering of the mesh, field

synchronization can be performed using a single reduction across all processes. The general

approach for distributed mesh buffering is to use a fan-in fan-out communication protocol

[136] leveraging the full part buffer regions. An important characteristic of the PICpart

definition used in this algorithm is that buffering is communitive in other words if Pi has Pj

buffered then Pj has Pi buffered.

The fan-in fan-out algorithm is a three-stage approach shown in Algorithm 8. The

algorithm begins with a field defined on the mesh entities of the PICpart Pi containing the

contributions on process i. The FieldSync procedure has three steps on lines 1-5: FanIn,

Reduction, and FanOut. The FanIn procedure on lines 6-11 iterates over each part,

Pj, in the buffer Bi to perform non-blocking communication with each process j. On line 8

the field values associated to the mesh entities in Pj are sent to process j. Similarly, the

field values associated to the mesh entities in Pi are recieved into local copies from process

j on line 9. Since the mesh field is ordered by part and each part is fully buffered the

communications are done by bulk communications of contiguous blocks of memory for each

part in the same order on the sending and receiving process.

After FanIn, the contributions of each copy of the field for the mesh entities in Pi

are reduced using the reduction op such as sum, max, or min in the Reduction procedure

on lines 12-17. For each part in the buffer, a wait on the nonblocking receive in FanIn is
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performed on line 14. Once the copy of the field contributions associated to Pi is receieved

from process j it is reduced using the reduction op on line 15. While the algorithm lists this

as a loop through each process sequentially, using the MPI WaitAny function allows this

loop to be processed in the order the communications are received.

The FanOut procedure follows the Reduction operation in order to send the reduced

values to each buffered process on lines 18-24 . This operation similar to the FanIn procedure

loops over each part in the buffer Bi to perform nonblocking communications. For each

buffered part, Pj, the reduced field values associated to Pi are sent to process j on line 20

while the reduced field values associated to Pj are received on line 21. This time the receive

communication is copied directly into the field instead of a temporary copy. The final step

is to wait for all of the nonblocking communications to complete on line 23.

Algorithm 8 pseudocode for fan-in fan-out algorithm for mesh field synchronization.

1: function FieldSync(Pi, field, reduction op)
2: FanIn(Pi, field)
3: Reduction(Pi, field, reduction op)
4: FanOut(Pi, field)
5: end function
6: function FanIn(Pi, field)
7: for all Pj ∈ Bi do
8: Nonblocking Send field[Pj] to process j
9: Nonblocking Recv temporary copy of field[Pi] from process j

10: end for
11: end function
12: function Reduction(Pi, field, reduction op)
13: for Pj ∈ Bi do
14: Wait for field f from any process j
15: Reduce f into field[Pi] using reduction op
16: end for
17: end function
18: function FanOut(Pi, field)
19: for all Pj ∈ Bi do
20: Nonblocking Send field[Pi] to process j
21: Nonblocking Recv field[Pj] from process j
22: end for
23: Wait for all communications to finish
24: end function
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4.2.3 Adjacency Search

The push operation moves the particles to new positions. In addition to recording the

new position, the parent element the particle is within after moving must be recorded before

the next PIC operation. There are two approaches to locating the new parent elements

of particles. The first is to construct a spatial data structure, such as a uniform grid or

spatially-based tree decomposition, over the domain to quickly find the potential elements

a particle may be within [137]. An alternative approach that we call adjacency search is to

directly use mesh topology to iteratively step toward the new parent element starting at the

old element. Adjacency search is more performant than using a spatial data structure when

particles move a short distance each iteration, where short distance means that the number

of elements a particle traverses through a single push operation is at most a few. This aligns

with the plasma physics simulations that PUMIPic targets wherein a given iteration most

particles either do not leave the element they start in or move no more than two or three

elements in any iteration. Additionally, no additional data structure needs to be allocated

for adjacency search so there is both a memory and runtime improvement.

Adjacency search is an iterative algorithm where each iteration an exit face from the

current element towards the new particle position is determined using a set of testing criteria

[138]–[142]. Figure 4.10 shows an example particle and its path through elements using

adjacency search. The open circle is the particle’s original position and the closed circle is

the particle’s new position. Each arrow represents one iteration of the search moving across

an edge to the next iteration’s parent element. If a correct testing criteria is used then the

search will converge to the mesh element the new particle position is in.

The general form of determining the exit face can be written as: given a particle’s

original position po, its final position pf , and the current iteration’s mesh element Md
i that

is bounded by N vertices M0
1 , ...M

0
N , find an exit face Md−1

j ∈ {Md
i {Md−1}}.We will assume

without loss of generality that the vertices M0
1 , ...,M

0
N are ordered counter-clockwise around

the element. There are different choices for criteria to determine the exit face that have

tradeoffs in terms of runtime cost, code complexity, and proper care of edge cases. Zhou and

Lechziner [143] for a 2D mesh suggest using the cross product between the vector M0
kM

0
k+1

and the vector M0
kpf . The sign of the z-component of the cross product that we will denote

as Lk reveals the direction the particle’s new position from the mesh edge bounded by M0
k

and M0
k+1. Namely, Lk > 0 means the particle is to the left of the edge and Lk < 0 means
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Figure 4.10: Path of an adjacency search for a particle on a 2D triangular
mesh using edge adjacencies.

to the right. Lk = 0 is a special case meaning the particle’s final position is along the edge.

This test called the particle-to-the-left or P2L test by Chordá et. al. [139] is performed for

each edge until an edge with Lk < 0 is found where that edge is determined as the exit face.

If Lk >= 0 for all edges then pf is inside the current element. Chordá et. al. note that

this method can fail in special cases where the search will circle around the final element

indefinitely. A robust approach by Chen and Pereira [144] combines the P2L test with the

particle’s path to move directly towards pf . First, the P2L test is performed on each edge of

the mesh element to determine all possible exit faces with Lk < 0. The possible exit face that

intersects the line from po to pf is selected as the exit face for the iteration. This approach is

more robust and requires fewer iterations, at the cost of increased computation by performing

the line intersections. Chordá et. al. [139] suggests a method which determines if the particle

path intersects the edge first. For this method a second test is defined named trajectory-to-

the-left or T2L that calculates Tk as the z-component of the cross product between poM
0
k

and popf . The T2L test determines the direction the particle trajectory is from the given

vertex M0
k . Again, Tk > 0 means the particle trajectory is to the left of the vertex while

Tk < 0 means the path is to the right of the vertex. For each mesh edge bounded by the

vertices M0
k and M0

k+1 the T2L test is performed for both vertices. If the signs of Tk and

Tk+1 differ then the particle path crosses the edge. For the edges that pass this test the P2L

test is calculated and if Lk < 0 then this edge is the exit face for the iteration. This method

was shown to be faster than the previous methods.
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Chordá et. al. [139] also discuss extensions of these methods to 3D. For the Zhou

and Lechziner [143] method, the P2L test is redefined in 3D space as the particle-towards-

the-inside or P2I test that is checked for each face of the mesh region. The P2I for the

face, M2
j tests all adjacent triplets of vertices M0

i , M0
i+1, and M0

i+2 in {M2
j {M0}} ordered

counterclockwise to the vector M0
i+1pf by the calculation in Equation 4.1. The first face to

fail the P2I test is the exit face and if the test passes for all faces of the region then the

parent element is found. Chordá et. al. note that in 3D the chance of this algorithm circling

the final element is significantly larger than the 2D case.

Sign[(M0
i+2M

0
i+1 ×M0

i+1M
0
i ) ·M0

i+1pf ] > 0 (4.1)

For the Chen and Pereira method, Chordá et. al. suggest the method could be extended

to calculate the particle path’s intersection with the cell face. They note that in 3D this

intersection calculation is significantly more expensive to compute. Also noted is that for

the case of nonplanar faces the calculation is more complex. Macpherson [138] et. al. detail

a method that supports the case of nonplanar faces for convex mesh regions by computing

two values λa and λc for each face of the region using the region’s center Cc, the face’s center,

Cf , and the normal of the face S. Equation 4.2 details the computation of λa and λc.

λa =
(Cf − po) · S
(pf − po) · S

λc =
(Cf − Cc) · S
(pf − Cc) · S

(4.2)

λa tests for faces that the particle path crosses, which is determined when 0 ≤ λa ≤ 1.

When the particle’s final position is close to a mesh vertex, the nonplanar faces can cause

the lambdaa test to result in the wrong element being found. So, the lambdac tests the faces

if the particle starting position is the center of the region as in general this will determine

the same exit face, but not have issues related to being near the nonplanar face. For all faces

where 0 ≤ λc ≤ 1, the face with the smallest lambdaa is determined as the exit face. The

process terminates when lambdac < 0 or lamdbac > 0 for all faces of the region.

In PUMIPic, since the mesh only uses simplex elements, adjacency search is imple-

mented using barycentric coordinates and line-face intersections in 3D to determine the exit

face. To determine if a particle is in its new parent element barycentric coordinates of pf in

the current element are calculated. If all three, in 2D, or four, in 3D, coordinates are positive

then the particle is in its parent element. This check is performed at the beginning of the
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search procedure to determine all of the particles that have not left their original element to

reduce the number of particles that need to be searched.

To determine the exit face, the barycentric coordinates for pf in Md
i are used. The

face opposite the vertex M0
k with the largest negative Bk is selected as the exit face. When

an application requires knowledge of intersections with the model boundary, line-face inter-

sections are calculated to determine the point of intersection, Xj between the particle path

popf and the plane the mesh face is on. The line-face intersections may also be used to more

accurately determine the exit face along the path of the particle that will be included in the

discussion of it here. First, the unit normal, N , in the direction out of the tetrahedron is

computed as shown in Equation 4.3.

N =
−−−−→
M0

0M
0
1 ×
−−−−→
M0

0M
0
2 (4.3)

The two inner products Io and If are computed by Equation 4.4. If Io >= 0 and

If >= 0 then the particle path intersects the face and is moving out of the tetrahedron.

Io = 〈
−−−→
poM

0
0 , N〉, If = 〈

−−−→
poM

0
0 , N〉 (4.4)

The intersection point, Xj, is then determined using Equation 4.5. To determine if

Xj is within the bounds of the triangle, barycentric coordinates, B0, B1, B2, for Xj in the

triangle Md−1
j are calculated. If Bk > 0 for all k then Md−1

j is the exit face.

Xj = po +
Io

〈−−→popf , N〉
(−−→popf ) (4.5)

The barycentric coordinate method is an efficient choice for determining the exit face

as the calculations are already performed in order to determine if the element has reached

its new parent element. However, the problem is that this method moves towards the

particle’s final position in the direction of greatest motion instead of along the particle

path. In geometries with small holes in the mesh that particles may be moving around,

the barycentric coordinate method may incorrectly calculate or miss wall collisions that the

line-face intersection method would capture more accurately. Optimizing the search routine

between the usage of the fast barycentric coordinate calculation vs the more expensive line-

face intersections is left for future work. In applications using the PUMIPic library, the

adjacency search is set to use line-face intersections if either wall collisions need to be kept
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track or if the geometry has holes, otherwise the barycentric coordinates are used.

4.2.4 Particle Structure Rebuild

After the particles are pushed and the new parent elements are determined using adja-

cency search, the particle structure must regroup the particles by the new parent elements.

This regrouping, referred to from here on as rebuild, in general, is performed by fully recon-

structing the particle data structure. The choice to fully reconstruct the SCS as opposed

to supporting a growth mechanism is largely due to the parallelism supported on a GPU.

Supporting a per element growing structure would result in a large amount of contention

between the concurrent threads of a GPU. When only performing a small number of up-

dates it is efficient to support these incremental updates on the GPU [145], however when a

majority of the structure needs changes then full reconstruction is the fastest solution [145],

[146]. Reconstructing the data structure is done through data-parallel operations per particle

along with efficient reductions that are better designed for running on GPUs. The general

approach presented in this section will be shown in terms of the SCS particle structure, but

the same method is applied for all particle data structures.

The rebuild algorithm constructs a new particle data structure with the new distri-

bution of particles. Then, the particle information is copied from the old structure to the

new structure and finishes by destroying the old structure. Figure 4.11 shows an example

of rebuild being performed. On the left is the SCS with filled cells and padded cells with

element rows labeled on the side. Numbers inside the cells represent the element the particle

is moving into, while no label means the particle did not leave its previous parent element.

The right side of the figure shows the new SCS after rebuild. Note the element labels are in

a different order now to maintain the sorting

When there are a small number particles moving to new elements it may be benefi-

cial to perform changes to the structure directly instead of a full rebuild [145]. To support

incremental changes an in-place rebuild is implemented that utilizes padding in the struc-

ture. Instead of copying the data from an old structure to a new structure, rebuild can be

performed in-place by copying the particles moving to a new element into the padded cells

of the element. The in-place rebuild can only be performed when each element receiving

particles has at least as many padded cells as incoming particles. If this is not the case, then

the full reconstruction rebuild is used. The occurrence of in-place rebuild can be increased
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Figure 4.11: Example SCS before rebuild (left) with element numbering to the
left. New parent elements of particles moving are listed within
cells. The SCS after rebuild (right) with a new memory allocation
along with resorting of the rows.

by adding additional padding to each element when the particle structure is constructed at

the cost of more memory usage.

Figure 4.12 performs in-place rebuild on the same example from Figure 4.11. In this

case, the right SCS uses the same memory as the original SCS after performing rebuild.

Darker cells depict the new location of particles that have moved to a new element. Note

that in-place rebuild does not perform sorting of the rows based on length. Along with the

empty cells left throughout the structure, it is still ideal to perform a full rebuild after several

iterations to improve the data layout.

An additional capability of the rebuild step is to introduce new particles or remove

particles from the system. For the full rebuild algorithm, new particles are added when

creating the new particle structure and removed particles are ignored as if they were padded

cells resulting in their omission from the new data structure. The in-place rebuild has to

account for the new particles when checking if the in-place operation is possible. Particles

leaving the system can act as padded cells allowing particles to replace those entries in the

current rebuild.

4.2.5 Particle Migration

For particles that were pushed to an element outside the safe zone of the process, the

particles must be migrated to a new process such that they are well within the safe zone of the
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Figure 4.12: Example SCS before rebuild (left) with element numbering to the
left. New parent elements of particles moving are listed within
cells. The SCS after in-place rebuild (right) using the same
memory as the initial SCS. Darker cells show the particles that
moved to a new cell.

new process. Due to the overlapping of PICparts, there are multiple processes that a particle

can be migrated to. A straightforward strategy is to send migrating particles to the process

which has the new parent element within its part. This guarantees the particles are always

sent to a process that the element is within the safe zone. However, continuous execution of

this strategy over several iterations will likely result in an imbalance of the particles across

the processes. In this case, load balancing the particles is required to reassign particles to

have a better distribution across processes. The method used in PUMIPic for load balancing

is described in Section 4.3

The particle migration routine is listed as pseudocode in Algorithm 9. The Migrate

procedure on lines 1-19 takes in the particle structure in ptcls, the new process for each parti-

cle in new procs, the new parent element from adjacency search in new elms and an optional

argument for new particles to add in new ptcls. The first step is to count the number of par-

ticles that are being sent to each other process and store them in the send counts array on

lines 2-5. The counts are then used to perform a nonblocking all-to-all communication that

receives the number of particles each process will send to the current process on all processes

on line 6. While the nonblocking communication is being performed, the GPU is used to

gather the particle data that will be sent to each process in a call to the GatherParticle-

Data procedure on line 7. This procedure listed on lines 20-29 creates the send ptcls loop

that stores the particle information for every particle that is being migrated to a new pro-
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cess. The send ptcls array is sectioned such that the particles being sent to a given process,

p, are stored in a contiguous block of memory represented by send ptcls[p]. The parallel

loop on lines 22-27 is executed on the GPU to copy the memory from the particle structure

to the send ptcls array. Any particles that are being sent to a new process are marked for

removal on line 25 that shall be handled in the call to Rebuild at the end of Migrate.

After the particle information is gathered and the nonblocking communication has finished

on line 11, a new round of nonblocking communications is performed to communicate the

particle information to the correct processes on lines 8-15. These communication fill a new

array recv ptcls that stores the newly received particles from each sending process. One

all particles have been received on a process on line 16, the received particles in recv ptcls

is combined with the new particles in new ptcls on line 17. At the end, Rebuild as de-

scribed in Section 4.2.4 is performed that rebuilds the particle structure moving all particles

to their new element as noted in new elms, adds the new particles and received particles in

new ptcls, and removes any particles that were marked for removal on line 25.

By default, the particle migration routine does not know which processes it will be

communicating particles between. As such, the routine must perform the all-to-all commu-

nication on line 6 to receive the counts of particles being sent and received on all processes.

When scaling to larger process counts, all-to-all communications can be a bottleneck [136].

Alternatively, the number of processes communicating can be vastly reduced by using the

partition of the mesh and PICparts. Particles can only be migrated between two processes

that overlap PICparts. Since PICparts are a collection of parts, Pi ∪ Bi, each process only

needs to communicate with the PICparts in Bi. The all-to-all communication can be re-

placed with nonblocking sends and receives when this information is available to the particle

structure. The all-to-all approach is still important when the number of processes is low

or the buffers are include a large percentage of the parts such as when the mesh is fully

buffered. As such, both approaches are supported with the all-to-all method being default

unless the partition information is provided to the particle structure.

4.3 Particle Load Balancing

To maintain parallel efficiency during a PIC simulation it is important to ensure the

balance of particles is maintained as they move through the domain and migrate to different

processes. Fast dynamic load balancing methods must be applied throughout the simulation
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Algorithm 9 pseudocode for particle migration.

1: function Migrate(ptcls, new procs, new elms, new ptcls)
2: send counts = DeviceArray(num procs)
3: parallel for Particle p ∈ ptcls do
4: AtomicAdd(send counts[newprocs[p]], 1)
5: end parallel for
6: recv counts← Nonblocking AllToAll communication of send counts
7: send ptcls← GatherParticleData(ptcls, new procs)
8: for all Process p such that send counts[p] > 0 do
9: Nonblocking send particle data in send ptcls[p] to process p

10: end for
11: Wait for AllToAll communication to complete
12: Initialize recv ptcls with enough space to receive incoming particles
13: for all Process p such that recv counts[p] > 0 do
14: recv ptcls← Nonblocking recieve particle data from process p
15: end for
16: Wait for communications to complete
17: new ptcls← recv ptcls
18: Rebuild(ptcls, new elms, new ptcls)
19: end function
20: function GatherParticleData(ptcls, new procs)
21: Initialize send ptcls with enough space to store each particle being sent
22: parallel for Particle p ∈ ptcls do
23: if new procs[p]! = self then
24: send ptcls[new procs[p]]← ptcls.data[p]
25: Mark particle p for removal
26: end if
27: end parallel for
28: return send ptcls
29: end function

to manage the distribution of particles across the PICparts that can scale to trillions of

particles. Directly operating on particles in simulations with over a trillion particles would

be infeasible for providing fast repartitioning of particles so it is vital to create an abstraction

of the problem with a significant decrease in the size. We leverage the properties of PICparts

and the power of the N-graph in EnGPar to create a graph that represents the potential

particle migrations. First, we define the overlap of safe zones in Section 4.3.1. These regions

of overlapping safe zones is used to construct the N-graph on each process. A modified

version of EnGPar’s diffusive load balancer is applied to this graph that creates a plan for

migrating the particles. The construction of the N-graph and the modifications to the load
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balancer is descibed in Section 4.3.2

4.3.1 Overlapping Safe Zones

Recall that PICparts are composed of a part, Pi, and a buffer, Bi =
⋃
Pj of nearby

parts. Furthermore, a subset of each PICpart is denoted as the safe zone Si that represents

the elements that can store particles on process. For balancing particles it is required that

particles are migrated to a process for which its parent element is in the safe zone for the

target process. For each element Md
i , let {P (Md

i )} be the set of PICparts such that Md
i ∈ Sj

for all Pj ∈ {P (Md
i )}. The set {P (Md

i )} represents the list of PICparts that a particle in

element Md
i can be migrated to and remain in a safe element on its new process. We can

further this notion by considering overlapping safe zones. We define an overlapping safe zone,

SP , for a set of PICparts P , as the set of mesh elements, Md
i , such that {P (Md

i )} = P . SP

gathers the list of mesh elements that the PICparts in P can share particles freely without

breaking the requirement dictated by the safe zones. Figure 4.13 shows a portion of four

parts on the left and three SP in the middle for the PICparts around the boundary of

parts A and B. Every element in the mesh belongs to exactly one SP which allows the

migrating of particles to be restricted to only the overlapping safe zones instead of each

element individually.
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Figure 4.13: Left: A section of a triangular mesh with four parts A, B, C, and
D. Middle: The three overlapping safe zones around the boundary
between parts A and B. Right: The subhypergraphs for each of
the three overlapping safe zones.
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4.3.2 Applying EnGPar to Balance Particles

Using the notion of the overlapping safe zones we construct a hypergraph using the

N-graph format in EnGPar introduced in Chapter 2. The hypergraph consists of a subhy-

pergraph for each SP where each subhypergraph has one graph vertex for each PICpart in

P that are all connected by a single hyperedge. The graph vertex for a certain PICpart

is owned by the process for that PICpart. The right side of figure 4.13 depicts the subhy-

pergraphs for the three SP around the boundary of cores A and B. The circles represent

the graph vertices for each PICpart in P that are connected by the box representing the

hyperedge for the subhypergraph The union of all subhypergraphs makes up the N-graph

used in EnGPar. The resulting graph will have
∑
|SP | graph vertices and one hyperedge

for each SP . The N-graph vertex and hyperedge counts for the 11.4 million element mesh

are provided in Table 4.1. Note the orders of magnitude difference between the number of

mesh elements in each PICpart compared to the number of graph vertices in the N-graph.

For example, the 48 PICpart case has an average of 2.3 million mesh elements per PICpart

where as the corresponding N-graph of overlapping safe zones has less than two thousand

vertices. This substantial decrease in problem size results in the balancing of particles being

much faster and less memory consuming.

Table 4.1: PICpart and N-graph entity counts for an 11.4 million element mesh
excluding three layers from PICpart boundaries as the safe zone.

Number of PICparts 6 12 24 48
Average Elements per PICpart 8.8M 5.3M 3.7M 2.3M

Total Graph Vertices 20 102 450 1931
Total Graph Hyperedges 3 19 69 266

To use this hypergraph for balancing particles, first, the particles are associated with

each graph vertex as weights. Every PICpart counts the number of particles in each SP

and applies the total as the weight for the owned graph vertex corresponding to the SP for

the PICpart. The sum of the weights on all owned graph vertices for a process will equal

the number of particles on the PICpart. The sum of the weights on a subhypergraph is the

total number of particles across all PICparts in one SP . Transferring weight between the

connected vertices of the subhypergraph would be equivalent to migrating particles from one

PICpart to another PICpart where the particles’ parent element will remain safe.

EnGPar is then tasked to balance the total weights on each process using diffusive load
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balancing. The method applied in this case is slightly different from the method described

in Section 2.3 as the intention is to migrate weight between connected vertices instead of

migrating vertices as EnGPar is designed to do. To properly perform this the selection stage

is modified such that when processing a cavity, weight is transferred across the hyperedges

instead of migrating the vertices to the neighboring process. The other steps of EnGPar’s

diffusive balancer remain the same for determining which parts send and receive weight

and how much weight to send each iteration. Algorithm 10 lists pseudocode for the new

weight selection routine. The WeightSelection procedure, defined on line 1 takes in the

N-graph, G, that is made up of the set of vertices V and hyperedges H0 and the targets

array that stores the amount of weight to send to each process this iteration. A temporary

array, sending is allocated on line 2 sized number of processes that keeps track of the

amount of weight planned to be sent to each process. The procedure then iterates over

each subhypergraph via the set of hyperedges on line 3. The owned vertex, Vself of the

subhypergraph is found on line 4. For each hyperedge, H0
i , the vertices, Vj, in {H0

i {V }}
are iterated over on line 5. The owner of Vj is retrieved on line 6 followed by determining

how much weight, if any, to send from Vself to Vj on line 7. This weight is calculated

as the minimum of
α ∗ w(Vself )

|{H0
i {V }}|

and targets[own] − sending[own]. The former is a small

portion of the weight of a vertex calculated as the weight of the vertex averaged over the

number of potential targets multiplied by the step factor α. The latter is the remaining

weight to be sent to the target process. The latter enforces the amount of weight not to

exceed the target weight for the iteration. If the weight calculated is greater than 0, the

migration plan is updated on line 9 with the migration of send weight from Vself to Vj. This

migration represents sending send weight particles in the mesh elements of Si from Pself

to Pj. Lines 10-11 update the sending array and the weight of the vertex Vself based on

the weight sent. Just as EnGPar’s original load balancer, this selection process is repeated

across iterations until the target imbalance of particles is reached or the process stagnates.

The result of EnGPar’s weight diffusion is a plan detailing the amount of weight to send

from each graph vertex to other graph vertices to reach the target imbalance of particles.

This plan equates to the number of particles that need to be migrated in each SP . The final

stage to finish balancing particles is to select particles on each PICpart for each SP to satisfy

the plan.
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Algorithm 10 Pseudocode for the modified weight selection in EnGPar

1: function WeightSelection(G = (V,H0), targets)
2: sending ← {0}
3: for all H0

i ∈ H0 do
4: Vself ← the vertex owned by this process in {H0

i {V }}
5: for all Vj ∈ {H0

i {V }}, Vj 6= Vself do
6: own← owner(Vj)
7: send weight← min{α ∗ w(Vself ), targets[own]− sending[own]}
8: if send weight > 0 then
9: plan← {Vself , Vj, send weight}

10: sending[own]+ = send weight
11: w(Vself )− = send weight
12: end if
13: end for
14: end for
15: end function

4.4 Summary

In this chapter we presented the PUMIPic library for implementing PIC codes with a

mesh-based approach where particles are always grouped in memory by the parent element

to facilitate easy distribution of the unstructured mesh data structure and particle struc-

ture. An expanded definition of a partition is detailed where using large buffering of mesh

entities allows for increased control of interprocess communications and the migration of par-

ticles. Three particle data structures were introduced in the PUMIPic library, namely the

Compressed Row Storage, the Sell-C-Sigma, and a mesh-based version of Cabana’s Array-

of-Structs-of-Arrays. Key algorithms of PIC simulations provided by the PUMIPic library

for operations involving the mesh data structure and particle data structure are detailed.

Finally, a method for performing dynamic load balancing of particles within the PICparts

was introduced.



CHAPTER 5

SUPPORTING MESH-BASED IMPLEMENTATIONS OF

FUSION PLASMA PARTICLE-IN-CELL SIMULATION

In the field of simulating plasma physics in magnetic confinement devices, the Particle-

In-Cell (PIC) method is a commonly used approach [110], [113], [147]–[151]. For our studies

in this chapter we will focus on using a model of the ITER tokamak device [152]. Figure 5.1

shows a mesh of the tokamak on the left and a cross section on the right labeling the high

level regions. The inner region is the core of the plasma while the region outside the core

to the wall is referred to as the edge. The boundary of the model is the material wall. The

curve inside the edge region is the separatrix that denotes the end of the closed magnetic field

lines. The point where the separatrix crosses itself is called an X-point. The point near the

center of the plama core is the magnetic axis. Due to the complexity of the geometric model

of ITER and the high fidelity of the fields, unstructured meshes are commonly employed for

discretizing the domain [110], [113], [150], [151].

Core

Edge
Wall

Separatrix

Magnetic

   Axis

X-Point

Figure 5.1: Left: A mesh of the plasma region of ITER tokamak up to the
material wall. Right: A cross section of the region depicting the
different regions and major points of the ITER model.

To understand and simulate the physics for these devices, various PIC codes have

been designed to study specific portions of the domain, different physics involved with the

plasma and the complexity of the systems. GENE [148], [149] and GEM [147] specialize

Portions of this chapter are to appear in: G. Diamond, C. W. Smith, C. Zhang, E. Yoon, and M. S.
Shephard, “PUMIPic: A mesh-based approach to unstructured mesh particle-in-cell on GPUs,” J. of Parallel
and Distrib. Comput., vol. 157, pp. 1–12, Nov. 2021. doi: 10.1016/j.jpdc.2021.06.004
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in the physics of the core of the plasma while XGC [110], [150] models the whole plasma

specializing in the edge region up to the tokamak wall. Other codes like hPIC [96] and

GITR [44], [153] specialize in interactions between the material wall and the plasma. To

utilize multiple codes’ specialities the Whole-Device-Modeling (WDM) project [152] seeks to

couple various plasma-physics codes together to better model the physics of the device.

In this chapter we will discuss the ongoing work towards supporting the development

of two plasma-physics codes using the mesh-based approach outlined in Chapter 4. The two

simulations of interest are the X-Point Included Gyrokinetic Code (XGC) and the Global

Impurity Transport Code (GITR). XGC [110], [150] is a 5D gyro-kinetic code specifically

designed for the modeling of tokamak edge plasma physics while also being able to model in

the core of the plasma. XGC employs a specialized discretization of the tokamak geometry

based on the magnetic field to track ion and electron particles through the domain. The

XGC simulation models the entire plasma from the magnetic axis out to the wall. GITR [44],

[153] is a Monte Carlo PIC code that simulates impurities in the plasma and the physical

iteractions caused by them. GITR uses background fields to perform operations on particles

and a surface mesh of the domain to track wall collisions. These wall collisions are of greater

importance in GITR as particles can reflect or cause sputtering when interacting with the

model surfaces.

This chapter presents ongoing implementations towards mesh-based PIC simulations

for XGC and GITR using the PUMIPic library named XGCm and GITRm respectively. Both

XGC and GITR have a copy of the entire mesh on each process. XGCm and GITRm address

the added complexity involved with supporting the partitioning of the mesh. While most of

these details are handled using Omega h and PUMIPic, specific algorithmic extensions and

implementations were needed. In XGCm, the most notable of the affected operations are the

Charge Deposition and Field Solve operations. The key portion of the Charge Deposition

step for XGC called gyroaveraging involves scattering particle contributions to mesh vertices

based on the magnetic field lines. This requires careful algorithmic design that is presented

in detail to ensure performance on GPUs. The Field Solve step is complicated due to the

extensive buffering involved in PICparts. Steps that have been taken to utilize the PETSc

library are described as well as future plans for improvement. While the XGCm simulation

is still in development and verification of physical results, a miniapp has been designed that

uses pseudo physics along with the general memory access patterns of the XGC simulation.
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Scaling results for this miniapp are presented up to most of the Summit supercomputer at

Oak Ridge National Laboratories.

For GITRm, a most extensive change from GITR is performed. Instead of meshing

the surface of the tokamak domain, we use a 3D graded unstructured mesh. The usage of a

3D unstructured mesh allows GITRm to accurately follow particles in the domain and use

mesh adjacencies to track wall collisions. For this chapter, we will focus on two aspects of

the GITRm simulation. First we will look at one of the most computationally expensive

operations that is a distance-to-boundary calculation where particles that are close to the

model surfaces have additional physics terms influencing the Particle Push step. The second

aspect that we focus on is the balance of particles in the domain. In GITR particles are

intialized on specific model surfaces and tracked as they move further into the domain. This

leads to the intial distribution of particles being highly skewed and will drastically change

as the simulation proceeds. PUMIPic’s load balancing method is applied using the EnGPar

library to improve the initial partition of particles and maintain good balance of particles

throughout the simulation. Results for the particle load balancer are presented using the

GITRm simulation.

The remainder of this chapter is structured as follows. Section 5.1 presents details on

the XGC operations and the current progress towards mesh-based implementations. Sec-

tion 5.2 details a miniapp developed to carry out core XGC PIC operations using the overall

methods for data transfer and mesh-based operations used in XGC, but with simplified

pseudo physics calculations. Using simplified pseudo physics allows us to focus on evaluat-

ing the performance of core PUMIPic operations. Results from this miniapp are presented

using up to 4096 nodes of the Summit supercomputer at Oak Ridge National Laboratories

is presented in Section 5.2.3. The mesh-based implementation of GITR is described in Sec-

tion 5.3. The GITRm simulation is used to analyze the performance of PUMIPic’s particle

load balancing method with results presented in Section 5.4.

5.1 Supporting XGCm Implementation

In an XGC simulation, the particles exist in a 3D tokamak with cylindrical coordinates

ρ, z, and φ. The tokamak domain is discretized into a set of cross sections perpendicular

to the toroidal direction referred to as poloidal planes . The particle coordinates ρ and z

define the particle’s position within the poloidal plane and φ represents the angle in the
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toroidal direction. A poloidal plane is represented by a two-dimensional unstructured mesh

of triangles. The same unstructured mesh is used for each poloidal plane. The interior

domain between adjacent poloidal planes can be considered as an extrusion of the triangles

around the tokamak through which the particles traverse. Figure 5.2 shows an example

model for a poloidal plane. Although the particles representing the ions and electrons are

moving at a very high velocity, they are generally field following meaning that they will

mostly stay near the same flux surface. XGC takes advantage of this by defining a nearly

field-following mesh using a set of curves of constant magnetic flux in the definition of the

domain and its mesh.

Figure 5.2: Geometric model of a poloidal plane. Curves on the model
represent flux curves of constant magnetic flux.

5.1.1 Partitioning the XGC Domain

In XGCm, the simulation domain is made up of some number of poloidal planes each

discretized by a 2D unstructured mesh. This introduces two dimensions of partitioning, the

mesh and the poloidal planes. For the mesh partition, in order to minimize the number

of particles migrated, it is ideal to partition the mesh along with the motion of particles.

Therefore, the core of each PICpart is defined by a number of adjacent flux faces. The buffer

of each PICpart will be some number of flux faces around the core. Figure 5.3 shows such

a partition with one flux face per core. The region from the sepatrix to the material wall

makes up an additional part. Since the mesh on each poloidal plane is the same, we use

the same PICparts to represent each poloidal plane. Note that in actual XGCm simulations
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there are substantially more flux curves represented and the typical mesh on a single poloidal

plane has on the order of a million triangles.

Figure 5.3: Partition of the poloidal plane with one part per flux face. The
portion of the edge region outside the separatrix makes up an
additional part.

With simulations using 96 poloidal planes [154] and upwards of 128 or more poloidal

planes [155], storing all necessary mesh fields for a given PICpart for all poloidal planes

would be impossible in the GPU memory. Thus, partitioning the planes is required. For

XGCm, with M poloidal planes, the toroidal direction is partitioned into M sections defined

by two adjacent poloidal planes. The poloidal planes are referred to as the forward plane

and backward plane based on the direction of increasing angle around the tokamak. For N

PICparts, the simulation will have M ∗N processes.

Because the number of poloidal planes is fixed by problem design and increasing the

number of mesh partitions eventually leads to degradation in performance, we introduce a

third dimension of partitioning that allows more particles to be simulated given the same

mesh partition and number of poloidal planes. We will refer to this third dimension as groups

of size G where each pair of toroidal section and PICpart will be repeated on G processes.

The notion of groups can be used in two different ways. For a given mesh partition and

number of poloidal planes, if the simulation requires more particles, but doesn’t have the

memory available, then groups can be used to increase the available amount of memory by

nearly a factor of G. If the simulation has enough particles that could be split across more

GPUs for better performance, then the number of particles on any given process could be
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cut by a factor of G.

5.1.2 Charge Deposition: Gyroaverage

After the particle push, the charge deposition phase occurs where particles add contri-

butions of charge onto the mesh fields. In a poloidal plane-based simulation, this involves

every particle depositing onto the mesh vertices of the two poloidal planes surrounding the

particle. As a 5D gyro-kinetic code, XGC is only following the mean path of the particles.

Since the fast gyro motion that is not tracked is not small with respect to the mesh size, us-

ing simple mean path location charge deposition on the mesh via simple interpolation is not

sufficient since this would only deposit charge to three mesh vertices. Two methods can be

used to approximate the gyro-motion, using gyroaveraging matrices [156] or defining a set of

gyro rings for each vertex [157], [158]. In XGCm, we use the gyro ring method. The general

idea is that each mesh vertex is surrounded by R gyro rings. G points along the rings are

projected to the poloidal planes along field lines to distribute contributions onto the mesh

vertices. Figure 5.4 depicts the steps of the approximation. First, a particle’s position is

projected to a virtual plane, V, that resides halfway between the two forward plane, P1, and

backward plane, P0. The mesh element on V containing the projected particle is found using

adjacency search. Each vertex of the element distributes contributions on two gyro rings, g0

and g1, based on particle properties. Each point along the gyro rings are projected to planes

P0 and P1. The mesh elements of these projected points are again found using adjacency

search and contributions are divided between the vertices of these elements weighted by the

barycentric coordinates of the point within the element.

Due to the number of projections and indirection of this approximation method, two

mappings are constructed at the beginning of the simulation from each mesh vertex to the

mesh vertices bounding the element containing the projected points on both the forward and

backward planes. The mappings consists of R ∗G ∗ 3 entries per mesh vertex. Additionally

the barycentric coordinate of the gyro point projected to the poloidal planes is stored to

be used for weighting the contributions. This reduces the gyro averaging operation to a

projection of the particle’s position to V followed by iterating over the corresponding map

entries based on particle properties.

The gyroaverage operation in XGCm is performed in two steps after the particles have

been projected to the virtual plane V. The first step accumulates the contributions of every
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Figure 5.4: Depiction of charge deposition approximation for one particle.
Particle on virtual plane V distributes contributions to gyro rings,
g0 and g1, surrounding mesh vertices of element particle is within.
Points along the gyro rings project contributions to poloidal planes
P0 and P1 and deposit on mesh vertices.

particle to the rings around each mesh vertex. Each particle contributes to the three vertices

that bound its parent element weighted by the barycentric coordinates of its position within

the element. The gyro radius of the particle determines the two gyro rings for each vertex

that the gyro radius lies between. The second step is to distribute the accumulated values of

each gyro ring to the vertices on the forward and backward planes. The value accumulated

on the gyro ring is split evenly to each gyro point along the ring. The mappings described

above are used to find the three vertices on the poloidal planes for each gyro point. The value

distributed from the gyro point to each vertex is weighted by the barycentric coordinates

from the mapping. The second step is performed for both the forward and backward planes

using the two different maps. Since the poloidal planes are shared across processes, after

performing the gyroaverage operation, the fields on each plane must be synchronized across

all processes that share the same poloidal plane. The details for this field syncrhonization

are described in the next section.
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5.1.3 Field Synchronization Between Planes

Given the three dimensions of partitioning, toroidal, mesh, and group, in the XGCm

simulation, synchronizing fields across the domain is a more challenging problem. The field

synchronization routine in PUMIPic can handle the operation in the mesh direction, but has

no concept of the toroidal or group partitions. As such further operations are required to

ensure the fields are updated correctly.

Before describing the steps to perform the field synchronization, we must first prop-

erly define the requirements. Given M poloidal planes, the PICparts, P0, ..., PN−1, and G

processes per group, the contributions for each field on a poloidal plane attributed to mesh

entities of dimension d , F d
0 , ..., F

d
M−1, must be accumulated and synchronized such that the

processes that share the fields associated to a poloidal plane have equal values for each mesh

entity in its own PICpart. The key note here is in the toroidal direction, only the processes

that share a poloidal plane need to communicate contributions. Towards this we will add

an ownership definition to the groups and planes of each process. The forward plane will be

denoted as the major plane, while the backward plane will be called the minor plane. One

process in each group will be denoted as the group leader, namely the processes with group

rank of 0.

The full field synchronization for XGCm is performed in two stages, gather and scatter.

The gather stage accumulates the field contributions while the scatter communicates the

accumulated field values to the other processes. The gather stage first accumulates the field

contributions of each process in a group to its group leader. Then, the each group leader

sends its contributions on the minor poloidal plane to the neighboring process’s major plane

in the toroidal direction. Finally, the group leaders on each major plane use PUMIPic’s field

synchronization to sum the contributions across the PICparts. At the end of the gather stage

the field contributons are accumulated for each PICpart’s major plane for group leaders only.

The scatter stage sends these accumulated values back to the other processes. First, values

on the major planes are sent to the neighboring processes’ minor plane for each group leader.

Then, each group leader sends its field values to the other processes of the group. Now every

process has the accumulated field values for every mesh entitiy in its PICpart.
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5.1.4 Field Solve on PICparts

The field solve phase involves the solution of a Poisson equation [150] on each polidal

plane. In XGC, this operation is performed by using the PETSc library. In order to use the

PETSc solvers for XGCm, the complexity of the PICparts must be properly described to

PETSc as it does not support the buffering that exists in PICparts. The simpliest approach

to describing the mesh is to only use the core part for each PICpart and ignore the buffering.

This approach effectively reduces the mesh back to a traditional partitioning that PETSc

can properly understand.

One issue with this approach is as the number of mesh parts increase, the solver will

become more and more of a bottleneck as the number of unknowns for each process will

be too low to saturate the GPU. Ongoing research is looking at methods to reduce the

number of processes that participate in the field solve by using the PICpart buffers. We

define this by the set cover problem: Given PICparts, P0, ..., PN−1, for the mesh partition

P (M) = P0, ..., PN−1 choose a subset of the PICparts, P , such that
⋃

Pi∈P Pi = M . It is not

necessary to find the minimum or minimal subset, but rather a good number of processes that

performs best in the PETSc solver. Determining what defines a good number of processes

is left for future work.

5.2 Pseudo Physics Simulation for XGCm

While developing the XGCm simulation, a miniapp was designed to test the scalability

of PUMIPic using the existing implementation of specific XGC operations supplemented

with pseudo physics for the remaining operations. For this miniapp, the core operations

of PUMIPic including adjacency search, particle rebuild, particle migration, and field syn-

chronization are used along with the gyroaverage operation detailed in Section 5.1.2 and a

non-physical elliptical push described in Section 5.2.1. The simulation iteratively runs the

PIC operations for a given number of iterations. The order of operations for each iteration

is described in Algorithm 11. First, the elliptical push moves particles on line 1. Then,

the new parent elements for each particle is determined using adjacency search on line 2.

Line 3 migrates particles that have either left the safe zone or the toroidal region defined

by the current process and performs the rebuild of the particle structure based on the new

parent elements and migrated particles. The gyroaverage operation is executed on line 4

to deposit the charge from each particle to the corresponding mesh vertices. The final step
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synchonizes the field from gyroaveraging across all three partitioning dimensions as detailed

in Section 5.1.3.

Algorithm 11 The operations executed in one iteration of the PIC loop

EllipticalPush(mesh, ptcls)
new elements← AdjacencySearch(mesh, ptcls)
MigrateAndRebuild(ptcls, new elements)
field← Gyroaverage(mesh, ptcls)
FieldSync(mesh, field)

5.2.1 Elliptical Particle Push

The goal of defining a push routine for the pseudo simulation is to approximate the

general behavior of particles, without needing to define all of the physical routines required

to accurately push particles. The desired behavior is that particles move few elements per

iteration and generally move within flux faces. To achieve this, particles are pushed in an

elliptical pattern around the magnetic axis. The ellipse that each particle is pushed along

is designed such that particles are roughly moving within a flux face. The distance each

particle moves per iteration is controlled based on the distance from the center to ensure

every particle moves only a short distance. In the toroidal direction, particles are pushed at

a constant rate each iteration. This push routine accurately triggers the particle migration

and rebuild of the particle data structure, but requires little computation per iteration and

does not represent the computational cost of a real simulation’s push.

5.2.2 Solve and Field to Particle

The pseudo simulation forgoes both the mesh field solve and field to particle phases.

The field to particle phase follows similar calculations and data access patterns as the particle

to mesh phase and as such were not implemented for the pseudo simulation. The field solve

described in Section 5.1.4 is a newer development than the miniapp and as such was not

included in the design of the miniapp. Performance analysis and improvements to the field

solve is left for future work as part of the XGCm simulation in development.

5.2.3 Performance Study

Scaling experiments are performed on the Summit supercomputer using a two-million

triangle mesh executing 100 iterations of the particle loop. Scaling studies are performed
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using a constant number of particles per GPU as the number of nodes increases. Each node

is configured to use one core per GPU for a total of six MPI ranks and six GPUs per node.

For these studies, the SCS structure is used to store the particles. Two sets of scaling studies

are performed. First, the number of PICparts that the mesh is partitioned into is increased.

This scaling has both weak scaling in terms of particles and strong scaling in terms of mesh

entities per process. Then for a constant mesh partition, the number of poloidal planes is

increased representing pure weak scaling in terms of particles. For both studies the processes

per group is set to one as this feature is not the primary focus of these scaling studies, but

potentially useful when simulating a large number of particles for a low number of poloidal

planes and mesh parts.

5.2.3.1 Mesh Partition Scaling

The mesh partition scaling study is performed using one poloidal plane with six to

192 PICparts using BFT buffering. This study requires one Summit node for the lower case

ranging up to 32 nodes for the 192 PICpart case. The pseudo simulation is executed with up

to 48 million particles per GPU (mppg). Figure 5.5 presents the results from the simulation.

The left plot shows the total time which is normalized by the single node experiment. Some

increase in performance is gained by the partitioning of the mesh which is greater seen for

lower particle counts. For four mppg there is up to a 55% decrease in time at 192 PICparts

and a 7% decrease at 48 mppg. For larger particle counts, the particle operations dominate

the computation and as a result, the scaling of the mesh has less of an effect on the total

runtime. The scaling of the mesh also exhibits the expected diminishing performance gains.

Around 90% of the reduction in runtime is achieved by 48 PICparts across the particle

counts. For the given mesh entity count, partitioning the mesh further does not significantly

decrease the PICpart size resulting in a majority of the part being comprised of the buffer.

This results in no additional performance gains to the mesh-based operations.

The right plot of Figure 5.5 shows the timing of the operations involved in each time

step for the 48-mppg case. The six operations included in the figure are the particle push

represented by the push line, the reconstruction of the particle structure labeled rebuild,

the adjacency search labeled search, the particle to mesh or charge deposition phase labeled

deposition, particle migration labeled migration, and the field synchronization step labeled

sync. The predominately mesh-based operations are search and sync. As the number of
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PICparts increases, the cost for these operations decreases until flattening out. The rebuild

operation is the dominant operation which is expected as it is the most data movement

intensive operation. The remaining operations see no significant changes from scaling the

mesh and the number of nodes used including particle migration.
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Figure 5.5: Simulation plots scaling PICparts from 6 to 192 with 2 to 48 mppg
for 100 iterations of the particle loop. Normalized time (left) and
breakdown on the time of the major operations (right).

5.2.3.2 Plane Scaling

The pure weak scaling study is performed by using the 192-PICpart partition with

BFT buffering for the two-million element mesh and scaling the number of poloidal planes

from one to 128. At 128 poloidal planes, the simulation uses 4096 of the 4608 nodes available

on Summit. Results are presented with up to 48 mppg. Results are shown in Figure 5.6.

Weak scaling efficiency is presented in the left plot. Scaling up to 256 nodes shows increased

time by up to 30% at 4 mppg and 5% at 48 mppg. Scaling from 256 nodes up to 4096 nodes

shows only fluctuations in total time with no major increase. The timing of the same major

operations shown in the mesh scaling figures for 48 mppg is shown in the right plot. The

increase in time scaling up to 256 nodes is caused by the migration and rebuild operations.

All other operations show no major increase in time cost.

5.3 Supporting GITRm Implementation

GITR is a PIC code that tracks the motion of impurities in a plasma and the interac-

tions those impurities have with the fields and the wall. The impurities are materials that
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Figure 5.6: Simulation plots scaling planes from 1 to 128 with 2 to 48 mppg for
100 iterations of the particle loop. Normalized time (left) and
breakdown on the time of the major operations (right).

are eroded off the plasma-facing components that then move through the domain. GITR’s

simulation is composed of the particles that represent the impurities, background grids that

store the slowly varying quantities such as the magnetic field, temperature, etc., and a sur-

face mesh of the geometry for wall iteractions with the particles. The steps involved in the

particle loop are a particle push, mesh-particle interaction checks, and Monte Carlo opera-

tions for atomic physics processes. The mesh-particle interactions include the need to check

for particle paths intersecting the mesh faces and the computation of fields near the surface

boundary.

For GITRm, a major change from the GITR simulation is a full 3D unstructured mesh

for representing the tokamak using Omega h and PUMIPic. The usage of the unstructured

mesh results in many operations requiring new implementations to explicitly use the mesh

instead of background grids and specialized geometry algorithms. One algorithm change

is no longer needing to have an explicit method for computing particle path intersections

with the tokamak wall as the adjacency search routine in PUMIPic determines this. In the

following sections, we overview some implementation details of the GITRm code and then

present results using PUMIPic in a physically accurate simulation with specific focus on the

particle load balancing routine.
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5.3.1 Particle Initialization

In GITRm, particles are initialized on a model face and then disperse throughout

the domain. Figure 5.7 shows the set of faces on the bottom of the tokamak that initialize

particles on the left and the paths of particles moving upwards on the right. This initialization

of particles is a challenge in the case of a distributed mesh as only the parts that have the

mesh faces classified on the set of mesh faces begin with particles. This problem is a greater

issue in GITRm because particles are created in PICparts where the mesh elements are part

of the core part. This restricts the number of particles that can be created at the beginning

to the amount of memory available on the PICparts with the mesh faces in the core part.

Figure 5.7: Left: The mesh entities where particles are initialized in the
GITRm simulation. Right: The path for some particles in GITRm.

There are a few methods to alleviate this issue to allow for larger number of particles.

The first step is to utilize PUMIPic’s load balancing procedure described in Section 4.3 to

the initial partition of particles prior to the allocation of particle memory. In this case, an

array of particles per element per PICpart is taken as input to the load balancer that then

redistributes the counts in the array to lighter PICparts. This allows GITRm to initialize

more particles then the PICparts on the model boundary can store that will be migrated to

other PICparts before the particle data is allocated to memory.

There are two other planned methods that have not been implemented to further

increase the amount of particles that GITRm can simulate. The first is only applicable

when the background fields do not change as a function of time during the simulation. In

this case, particles can be initialized at any time throughtout the simulation. So, it is possible

to start with a subset of the total number of particles, and then add the remaining particles

once the initial set has moved further into the domain. The other approach, which can
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be applied in all cases including time dependent background fields, is to utilize the group

mechanism from the XGCm simulation described in Section 5.1.1. For GITRm, the idea of

groups will allow multiple processes to store the PICparts with owned faces classified on the

model boundary. Each of the processes in the group can allocate particles that effectively

increases the number of particles that can be initialized by the number of processes in the

groups. These two approaches are left for future work as the usage of PUMIPic’s load

balancer is sufficient for the current scale of simulations.

After the particles are initialized, the distribution of particles is expected to change

greatly as the particles move into the rest of the domain. To maintain a good balance

of particles, PUMIPic’s load balancing routine is used throughout the simulation. Results

in Section 5.4 compare executing GITRm with and without the load balancing routine for

increasing number of PICparts and particle counts.

5.3.2 Distance to Boundary

In GITR, particles that are close to the walls have additional physical terms that affect

the forces applied to the particle [44]. This operation requires computing the closest point

on the surface mesh. Computing this for every mesh face would be extremely inefficient so

approaches to limit the search space must be employed. GITR precomputes a background

grid where each grid cell stores the set of mesh faces to check. This precomputation step is

expensive when a large 3D geometry is used as each cell in the structured background grid

needs to determine the set of mesh faces that are closest to any point within the grid cell.

The key behind using the background grid is that it only needs to be computed once for a

given mesh.

For GITRm, since the full 3D domain is discretized with an unstructured mesh, a sim-

ilar approach can be used to perform the distance to boundary calculation without building

an additional background grid. Similar to the GITR approach, a pre-computing step is per-

formed once per mesh, but in the GITRm case the set of closest faces on the model boundary

is computed for each mesh element. When determining the faces to check for the distance

to boundary calculation, each particle queries the set of faces from its parent element.
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5.4 GITRm: Studying Large Particle Imbalance

In this section, we present performance analysis of using PUMIPic’s particle load bal-

ancing method in GITRm. Experiments are performed on an 11.4 million element mesh

partitioned from six to 48 PICparts. Each partition is executed with an average of two

million particles per part up to 32 million particles per PICpart. The largest case of 48

PICparts with 450 million particles. Each setup performs 10,000 iterations of the GITRm

particle loop. We compare running with load balancing targeting a 1.05 imbalance of par-

ticles performed every 100 iterations to a equivalent run without load balancing. The

experiments are run on the AiMOS supercomputer with six NVIDIA Tesla V100 GPUs per

node using one MPI process per GPU.

Figure 5.8 shows an array of plots of the particle imbalance as a function of iteration

for each partition with 50 million particles and then a case with 150-400 million particles

based on the number of GPUs used. At the beginning of the simulation the large imbalances

are significantly reduced. For example at 48 GPUs with 400 miliion particles, the initial

imbalance of 3.04 is reduced down to 1.34. For the smaller partitions, the particle imbalance

is reduced to the tolerance of 1.05 during the initial repartitioning of particles. For the 24

and 48 GPU cases, once particles have moved far enough into the domain, the imbalance

of particles is also reduced to the 1.05 tolerance. This occurs within the first few calls to

the load balancing method. In contrast, when the load balancing method is disabled, the

particle imbalance initally gets worse then gets slightly better when the forced migrations

begin to occur. In all cases without load balancing the imbalance never goes below the

imbalance at the beginning. For these cases, the application of load balancing achieved up to

a 20% reduction in simulation time compared to the runs without load balancing. Studying

how to gain further improvements to the simulation time as a result of the reduction in

particle imbalance is ongoing research. We expect the improvements to simulation time

are currently limited by the particle structure not properly reconfiguring as the particle

distribution changes so drastically across iterations.

5.5 Summary

In this chapter we detailed the on-going implementations of plasma-physics particle-

in-cell simulations using the PUMIPic library for the XGC and GITR codes. For XGC,

a brief overview of important operations were discussed and the research towards solving
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Figure 5.8: Particle imbalance across ten thousand iterations running GITRm
with and without load balancing for 50 million particles up to 400
million particles on 6 to 48 GPUs. Lower is better.

the partitioning challenges involved with XGC’s discretization of the domain were detailed.

Scaling results using a pseudo-physics miniapp showed good scaling in terms of PICparts and

poloidal planes up to 4096 nodes on the Summit supercomputer. For GITR, the challenge of

the non-uniform particle distribution was introduced that features large particle imbalances

in the distributed mesh case. Results for applying PUMIPic’s load balancing were presented

for up to 96 GPUs with over 3 billion particles.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This thesis presented research towards improving science and engineering simulations

running on massively parallel heterogenous supercomputers in the scope of interprocess par-

allelism and intraprocess parallelism. A partition improvement method previously applied

on element partitioned meshes was generalized to a multihypergraph structure. This pro-

vided the ability to address a broader range of applications with additional improvements to

the runtime of the load balancing algorithm. New techniques for managing the edge cut for

graphs with high degree vertices was introduced. The new generalized partition improvement

library was applied to a range of unstructured mesh setups scaling up to half a million parts

of a one billion element mesh. The developed multihypergraph methods was also applied to

maintain particle load balance in PIC calculations.

A new mesh-based approach to particle-in-cell simulations was presented that uses the

unstructured mesh as the primary data structure and stores particles based on the unstruc-

tured mesh elements. This approach supports the distribution of both the unstructured

mesh and particles allowing particle-in-cell codes to scale to larger graded unstructured

meshes. The library designed based on this new approach included specialized data struc-

tures for the unstructured mesh and particles to provide performance portablility across the

current and future generations of heterogenous supercomputers. Scaling for this library is

presented up to 4096 nodes of the Summit supercomputer simulating over one trillion parti-

cles. Included in the library is a fast dynamic particle load balancing method that exploits

the distributed unstructured mesh data structure and the previously mentioned partition

improvement method. This method is shown to improve the partition of particles on a non-

uniform distribution and maintain good balance throughout the simulation. Finally, ongoing

research towards the implementations of two plasma physics particle-in-cell codes using the

mesh-based library was presented. In the case of the newly developed GITRm code, its

development has advanced to the point that DOE researchers are starting to apply it to

address physics simulations the original GITR code was not able to effectively address.

90
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6.2 Future Work

6.2.1 Partition Improvement on GPUs

To provide faster methods for partition improvement it is important that EnGPar’s

algorithms be ported to work on GPU systems. Some developments have been made to

port the more complex algorithms to the GPU [159]. The asynchronous nature of the GPU

acceleration introduces a major challenge for EnGPar as selection decisions must be made

without full knowledge of other concurrent decisions. This introduces a trade-off between

acceleration of the method and quality of the partition achieved by EnGPar. Properly

balancing user control of this trade-off and automatic decisions are key interests in developing

optimal methods for different applications.

6.2.2 Optimized Use of Particle Structures

Determining the best particle data structure to apply is dependent on the amount

of particles, the distribution across elements, and the extra memory available to use for

improved performance. There are two directions for optimizing the particle structure for a

given application. First is determining the optimal set of parameters to achieve the best

performance for a structure given the particle distribution. Second is automatically making

the decision of which particle structure to use and what parameters to set as the particle

simulation evolves including switching to a different data layout when necessary.

6.2.3 Evolving Mesh in PICparts

One limitation of the current definition of the PUMIPic mesh partition is that it

operates on a static mesh. As the simulations evolve, it is desirable to use mesh adaptation

and repartitioning of the mesh entities to track regions that require increased granulation.

Supporting both mesh adaptation and mesh repartitioning will require improvements to the

storage of the mesh to allow for these changes across PICparts as efficiently as possible.
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[89] A. Loseille and R. Löhner, “On 3D anisotropic local remeshing for surface, volume

and boundary layers,” in Proc. 18th Int. Meshing Roundtable, Oct. 2009, pp. 611–630.

[90] V. A. Dobrev, T. V. Kolev, and R. N. Rieben, “High-order curvilinear finite element

methods for lagrangian hydrodynamics,” SIAM J. on Sci. Comput., vol. 34, no. 5,

pp. B606–B641, Jul. 2012. doi: 10.1137/120864672.

[91] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev,

Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman,

J. Dahm, D. Medina, and S. Zampini, “MFEM: A modular finite element methods

library,” Comput. and Math. Appl., vol. 81, pp. 42–74, Jan. 2021. doi: 10.1016/j.

camwa.2020.06.009.

[92] G. Legrain, N. Chevaugeon, and K. Dréau, “High order X-FEM and levelsets for
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Novikau, E. Sonnendrücker, T. Vernay, and L. Villard, “ORB5: A global electromag-

netic gyrokinetic code using the PIC approach in toroidal geometry,” Comput. Phys.

Commun., vol. 251, no. 107072, pp. 1–22, Jun. 2020. doi: 10.1016/j.cpc.2019.

107072.

[152] J. Dominski, J. Cheng, G. Merlo, V. Carey, R. Hager, L. Ricketson, J. Choi, S.

Ethier, K. Germaschewski, S. Ku, A. Mollen, N. Podhorszki, D. Pugmire, E. Suchyta,

P. Trivedi, R. Wang, C. S. Chang, J. Hittinger, F. Jenko, S. Klasky, S. E. Parker, and

A. Bhattacharjee, “Spatial coupling of gyrokinetic simulations, a generalized scheme

based on first-principles,” Physics of Plasmas, vol. 28, no. 2, pp. 1–15, Feb. 2021. doi:

10.1063/5.0027160.

[153] T. Younkin, D. Green, R. Doerner, D. Nishijima, J. Drobny, J. Canik, and B. Wirth,

“GITR simulation of helium exposed tungsten erosion and redistribution in PISCES-

A,” in 59th Annu. Meeting APS Division Plasma Phys., Oct. 2017, UO4.002.

https://doi.org/10.1016/j.jcp.2006.05.028
https://doi.org/10.1063/1.874014
https://doi.org/10.1016/j.jcp.2011.05.034
https://doi.org/10.1016/j.cpc.2019.107072
https://doi.org/10.1016/j.cpc.2019.107072
https://doi.org/10.1063/5.0027160


109

[154] K. Kim, J.-M. Kwon, C. S. Chang, J. Seo, S. Ku, and W. Choe, “Full-f XGC1 gyroki-

netic study of improved ion energy confinement from impurity stabilization of ITG

turbulence,” Phys. Plasmas, vol. 24, no. 6, pp. 1–13, May 2017. doi: 10.1063/1.

4984991.

[155] G. Merlo, J. Dominski, A. Bhattacharjee, C. S. Chang, F. Jenko, S. Ku, E. Lanti,

and S. Parker, “Cross-verification of the global gyrokinetic codes GENE and XGC,”

Phys. Plasmas, vol. 25, no. 6, pp. 1–23, Jun. 2018. doi: 10.1063/1.5036563.

[156] J. Dominski, S.-H. Ku, and C. Chang, “Gyroaveraging operations using adaptive

matrix operators,” Phys. Plasmas, vol. 25, no. 5, pp. 1–13, Apr. 2018. doi: 10.1063/

1.5026767.

[157] W. Lee, “Gyrokinetic particle simulation model,” J. Comput. Phys., vol. 72, no. 1,

pp. 243–269, Sep. 1987. doi: 10.1016/0021-9991(87)90080-5.

[158] Z. Lin and W. W. Lee, “Method for solving the gyrokinetic poisson equation in

general geometry,” Phys. Rev. E, vol. 52, no. 5, pp. 5646–5652, Nov. 1995. doi:

10.1103/PhysRevE.52.5646.

[159] G. Diamond, L. Davis, and C. W. Smith, “Accelerated Load Balancing of Unstruc-

tured Meshes,” presented at the 27th Int. Meshing Roundtable, Albuquerque, NM,

USA, Oct. 2-3, 2018.

https://doi.org/10.1063/1.4984991
https://doi.org/10.1063/1.4984991
https://doi.org/10.1063/1.5036563
https://doi.org/10.1063/1.5026767
https://doi.org/10.1063/1.5026767
https://doi.org/10.1016/0021-9991(87)90080-5
https://doi.org/10.1103/PhysRevE.52.5646


APPENDIX A. ENGPAR LOAD BALANCING INPUTS

Access to different inputs to EnGPar’s diffusive load balancer are provided through the

DiffusiveInput class. The most important inputs are the priorities and tolerances that can

be easily setup using the addPriorities function. This function takes in the entity type to

be balanced, either the graph vertices or a hyperedge type, and the target imbalance for

those entities. The function is called for each criteria that the application desires to balance.

Listing A.1 shows an example of setting up the priorities such that the hyperedge type 0 has

first priority followed by the graph vertices. The hyperedges are set to be balanced to a goal

of 1.05 and the goal for vertices is set to 1.1.

Listing A.1: Example setting up priorities in EnGPar

1 Ngraph∗ graph = // Create the N−graph

2 D i f f u s i v e I n p u t ∗ input ( graph ) ;

3 input−>addPr io r i ty (0 , 1 . 0 5 ) ; //0 r e f e r s to hyperedge type 0

4 input−>addPr io r i ty (−1 , 1 . 1 ) ; //−1 e q u a t e s to graph v e r t i c e s

5 engpar : : ba lance ( input ) ;

The DiffusiveInput class also contains other parameters such as the step factor, α, used

to control the amount of weight sent each iteration, the edge mitigation value β discussed

in Section 2.3.4, and lower level controls for the balancer ranging from iteration counts to

the edge type used to determine different types of connectivity. For most applications, the

default values for the lower level parameters are sufficient, but access is available in the event

an application needs finer control.
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