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Abstract

An object-oriented framework, named Trellis, for general numerical simulations has been devel-
oped. Trellis is designed to overcome the limitations of current analysis tools and provided the
basisfor the development of the next generation of analysistools. The specific driver of the devel-
opment of this framework is the need for the next generation of analysis tools to effectively sup-
port adaptivity in al of its various forms. The types of adaptivity of interest include not only
adaptivity of the discretization, but also of geometric idealizations, mathematical model selection
and solution techniques. Trellisis unique in that it builds off a geometry-based problem descrip-
tion. The geometry-based environment consists of a geometric model, a general attribute system
to describe the rest of the problem definition, a topol ogy-based mesh description to house the dis-
cretization of the geometry and afield structure to store the solution.

The analysis framework itself decomposes the solution process in an object-oriented manner giv-
ing a strong separation between the mathematical description of the problem to be solved, the spe-
cifics of the numerical method used to solve the problem (e.g. the shape functions, mappings,
integration rules, etc.) and the solution procedures used to solve the resulting linear and nonlinear
systems.

Trellisis current being used to implement a number of finite element analysis codes in the areas of
linear static and dynamic heat transfer, general advection-diffusion problems, solid mechanics
including nonlinear material behavior, solution of Euler equations using discontinuous Galerkin
methods, and biphasic analysis of soft tissues. In addition an implementation of a partition of
unity analysis procedure for linear elasticity has been done using Trellis.



1. Introduction

The current generation of numerical analysis tools does not meet al the needs of advanced analy-
sis techniques. In particular, the major area that developments are needed are to effectively sup-
port adaptivity in al of its various forms. The types of adaptivity of interest include not only
adaptivity of the discretization, but also of geometric idealizations, mathematical model selection
and solution techniques.

To support these types of advanced analysesit is necessary to have a higher level starting point for
the analysis - a definition of the actual problem to be solved, not a specific idealization of it, that
can be used to guide the adaptive process. In addition it is necessary to have richer data structures
than have historically been used to support the adaptive process.

The computer modeling of a physical problem can be seen as a series of ideadlizations, each of
which introduces errors into the solution as compared to the solution of theinitial problem. Since
these idedlizations are introduced to make solving the problem tractable (due to constraints on
either problem size and/or solution time), it is necessary to understand their effect on the solution
obtained and to have procedures to reduce the errors to an acceptable level with respect to the rea-
son the analysis is being performed. Understanding of the effects of idealizations requires a more
complete definition of the problem than istypically used in numerical analysis procedures. In par-
ticular it is necessary to have a complete geometric description of the original domain and have
the rest of the problem defined in terms of that geometry. This thesis provides an overview of an
object oriented analysis framework which operates directly off a geometry-based problem specifi-
cation to support adaptive procedures.

We can identify three levels of description that arise in the numerical analysis of a physical prob-
lem (Figure 1). The highest level description is that of the physical problem which is posed in
terms of physical objectsinteracting with their environment. We often want to obtain reliable esti-
mates of the response of these objects through modeling. Modeling physical behavior requires a
mathematical problem description which introduces some level of idealization, which needs to be
controlled to an acceptable level. The mathematical problem description consists of a domain def-
inition (geometry), a description of the external influences acting on the object and the properties
of the object (attributes), and, in the classes of physical problems considered here, a set of appro-
priate partial differential equations which describe the behavior of interest. For any one physical
problem there are any number of mathematical problems that can be constructed. Quite often one
mathematical problem description is constructed as an idealization of another. If the mathematical
problem as stated cannot be solved analytically, numerical techniques can be used. Construction
of anumerical problem from a mathematical problem involves another set of idealizations. Again
from a single mathematical problem it is possible to construct any number of levels of numerical
problems, which are idealizations of one another.

The framework described in this thesis, named Trellis, starts at the level of a mathematical prob-
lem description, alowing multiple numerical problems to be formulated, solved, and the solution
related back to the original problem description. Trellis is designed to be extended. It is possible
to add new problem types that can be solved, as well as adding new solution techniques. Current
implementation efforts are focused on finite element procedures [45,97]. However, it is designed
to be general and to utilize other numerical solution methods.
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FIGURE 1. Idealizations of a physical problem to be solved.

Since Trellis must take a problem description consisting of a geometric model with attributes and
construct a solution to the problem specified, it isimportant to understand abstractions for the var-
ious types of data that the framework uses. Part 1 of thisthesis presets a geometry-based environ-
ment suited to meet these needs. The geometry-based environment consists of four parts: the
geometric model which houses the geometric and topological description of the domain of the
problem, attributes describing the rest of the information needed to define and solve the problem,
the mesh which describes the discretized representation of the geometry and maintain links back
to the geometric model, and fields which describe the distribution of a value, such as a solution,
over the mesh in terms of interpolations over each of the mesh entities.

Part 2 of this thesis describes the Trellis framework itself and how it uses the geometry-based
environment during the solution process. The starting point of this description is how the geome-
try-based problem description is transformed into a problem independent representation called the
discrete system. The discrete system is then used as the basis for the rest of the solution proce-
dures within Trellis to assemble and solve the appropriate equations for the problem at hand.



2. Analysis Framewor k Developments and Requirements

Although engineering analyses can build on a wide variety of modeling methodologies, the
majority of efforts on the development of analysis frameworks have focused on the solution of
partial differential equations (PDE’s) over spatial and temporal domains of various types using
discretization methods based primarily on finite element and finite difference methods. Thisis a
natural emphasis considering the fact that PDE models of physical systems dominate engineering
analysis, and that finite element and finite difference methods are capable of addressing a wide
range of PDE’s over general geometries. It should be noted that as computing power and analysis
technologies continue to advance, analysis methods considering problems at multiple physical
scales, with the finest scales model ed using discrete methods, will likely become a dominate engi-
neering analysis methodol ogy.

One of thefirst issues faced in the development of a software framework is the programming par-
adigm and language to use. Nearly all current efforts in the development of analysis frameworks
employ object oriented methodologies, and most employ the C++ programming language due to
its ability to support object oriented programming.

Asalfirst step in the direction of objected oriented analysis frameworks, a number of investigators
have created object oriented finite element analysis programs (see reference [32] for one exam-
ple). Although such efforts produce codes that are easier to maintain and extend, the direct map-
ping of the standard methods does not provide a framework that will support all the needs of
advanced analysis techniques. Three additional capabilities needed of an analysis framework to
effectively meet these needs are:

* The ahility to be extended to include new analysis types without the need to interact with all
the numerical methods.

 Direct links with higher level problem definitions.
» Assurance of analysisresultsreliability.

Within //[ELEPACK [42,43,92,90] new analysis types are described in symbolic form in terms of
the coefficients of a general PDE with initial and boundary conditions. Such an approach is ide-
ally suited for situations where the application is well qualified through this general form. The
numerical method used to solve the problem is then selected from the available discretization
methods within //ELEPACK or onethat is added. Zimmermann and Eyharamendy [98,34,35] take
the symbolic computing one step further by alowing the symbolic specification of the strong,
weak, Galerkin and matrix forms of afinite element method in a system which then automatically
generates the needed code for the implementation of that finite element within their system.

The most fundamental aspect of improving the overall system is to provide a linkage to a higher
level geometric definition of the problem domain. A key functionality to support thisis carefully
maintaining the relationship between the discrete model used by the analysis and the original
geometry. The most convenient representation of geometry isin the form of solid models, particu-
larly non-manifold boundary representations [41,94]. All these systems support a topological rep-
resentation of the geometric models which represents a convenient hierarchical abstractions that
can be effectively linked with the numerical analysis discretizations [7,8,10,47,67,73,74,80,81].



Since topological data structures define only the boundary entities of the geometric domain and
their adjacencies, an additional functionality is needed when the simulation processes needs infor-
mation about the geometric shape of those entities. Three approaches have been used to address
thisissue. The simplest is to have the geometric modeling system create a faceted approximation
of the domain which can then be directly employed by the domain meshing procedures [43]. A
more complex approach is to employ standardized geometric transfer formats such as IGES or
STEP [48]. Although IGES has been used in an object-oriented finite element modeling system
[65], the lack of model correctness assurance in an | GES representation often forces users to per-
form interactive model correction. Although STEP [48] does ensure basic model correctness, the
lack of information on the tolerances used by the geometric modeling system leads to problemsin
automatic mesh generation [84]. The third approach directly uses the functionality of the geomet-
ric modeling system [33,70,88,96] to provide the required shape information on an as needed
basis. This approach allows the framework procedures needing shape information to get it with
the same degree of reliability as the geometric modeling system. When consideration of the toler-
ances used by the geometric modeling system are taken into account, there are great improve-
ments in the reliability of geometry-based operations like automatic mesh generation [83,84].
When the interactions between the geometric modeling system can be limited to pointwise geo-
metric interrogations, this approach is easily implemented. The use of only pointwise geometric
interrogations have proven successful in both automatic mesh generation [83,84] and in high
order finite element analysis procedures which integrate to the exact geometry of the model [30].

Supporting the analysis attribute information of loads, material properties, boundary conditions,
initial conditions, etc. needed by an analysis is also critical to effective integration into a design
environment. Generalized methods to define the analysis attribute information and associating it
with the geometric model have been defined [ 78] and used to allow the geometry-based specifica-
tion of analysis attributes [8,10,43,65,67,77,81].

Efforts are a'so underway to link simulations frameworks [67,68,77] with high level design infor-
mation starting with project management information. Such links are particularly important when
supporting automated design operations driven by simulation results. A ssimple example of this
typeis genera shape optimization, particularly when the domain topology is allowed to change. A
more complex example could be determining fracture of ageing airframe components where the
basic simulation procedure is tracking fracture through rivet lines, while a higher level criteriais
being used to decide when the component will fail based on the entire crack pattern.

Obtaining analysisreliability requires specific consideration at multiple levels. At thelowest level,
it is focused on the simulation processes running to completion without a failure. Such failures
can occur due to various numerical problems such as the stability of a non-linear iterator, or itera-
tive equations solver. Another source of these types of failures are inconsistent geometric calcula-
tions which lead to failure of automatic mesh generation procedures.

At ahigher level, simulation reliability is concerned with addressing how accurately the numeri-
cal analysis procedures cal culate the simulation parameters requested. The accuracy of the predic-
tions relate to how well the mathematical model selected represents the physics of the system, and
how well the numerical method solves the given mathematical model. Since there is no a priori
means to determine this information, only a posteriori methods are available [1,2,58,61,62]. The
field of aposteriori error estimation is concerned with the measurement of the errorsin the current



simulation, while adaptive analysis technologies are concerned with the automatic improvement
of the analysis approximation until the level of accuracy requested is obtained. Although a poste-
riori error estimation and adaptive analysis techniques are still very much in the research phase,
useful progress has been made in this areas which is central to allowing simulation to be effec-
tively used by industry in engineering design.

The development of a posteriori error estimators and adaptive techniques to deal with errors due
to model selection has only recently been considered for a very limited number of situations
[36,46,58,59,85]. These areas will continue to grow and simulation frameworks should consider
methods to support these methodol ogies as they develop. For example, it is common in engineer-
ing analysis to make geometric simplifications, like ignoring small features and performing
dimensional reductions. Therefore, the geometry-based interfaces will need to support adaptive
geometric improvements of these smplifications on a localized basis. A second requirement is
supporting multiscale simulations where the different portions of the domain are represented to
different physical scales and, potentially analyzed using different technologies. An example of
using adaptive multiscale analysis is the multiscale analysis of composite material [36,59].

A posteriori error estimation and adaptive analysis procedures for controlling the errors intro-
duced by discretizing the mathematical problem using finite element techniques have been under
development for a number of years[1,2,21,27,28,60,61,62,63,64]. Methods to adapt a discretiza-
tion include: (i) repositioning the mesh to provide improved resolution in critical areas, so called
r-refinement, (ii) refining the mesh by entity subdivision, so called h-refinement, and (iii) chang-
ing order of the interpolation spaces functions defined over the mesh entities, so called p-refine-
ment. The inclusion of adaptive analysis techniques into a simulation framework is complicated
due to the evolving nature of the domain discretization. Although r-refinement has little influence
on the structure of an analysis framework, supporting the domain discretization evolution caused
by h- and p-refinement have a fundamental influence on the underlying structures.

One approach to h-refinement that leads to an efficient set of data structuresisto employ a hierar-
chy of nested regular subdivisions. An example of thisis anested structures domain subdivision,
similar to a quadtree, that has been used as the basis of a parallel adaptive analysis framework
[54,55]. In addition to supporting an efficient data structure, such approaches are well suited to
multilevel iterative equation solvers. A disadvantage of an adaptive structured grid approach is
difficultly in dealing with general geometries.

When analyzing problems over general three-dimensional domains where the domain discretiza-
tion must match the boundary, unstructured mesh techniques are needed. Some implementations
of h-refinement employ an initial unstructured mesh and define all mesh refinement as a struc-
tured subdivision of entitiesin the original mesh [12,28]. A more general approach which allows
both mesh refinement and coarsening (past the initial mesh), while avoiding the need to deal with
constraint equations to ensure inter-entity continuity, is to store the mesh in a general topological
structure [7] and to modify the mesh with general mesh modification operators [11,25]. By main-
taining the links between the mesh entities and geometric model entities upon which they lie, this
method can also improve the geometric domain approximation during refinement.

Two key analysis framework components influenced by the inclusion of p-refinement are the
mesh structures and the structures used to define the interpolation spaces defined over the mesh



entities. Analysis frameworks that support p-refinement provide a set of classes which define the
interpolation spaces which are independent of al other aspects of the numerical method (mesh,
weak form, etc.) [8,10,29]. The effective use of atopological mesh data structure [7] and interpo-
lation classes allows for a double hierarchy of the interpolation spaces in terms of the individual
interpolants and the mesh topology [80] and effectively supports the interaction with the domain
geometry necessary to ensure the accuracy of p-refinement methods [30] with respect to solving
the problem over the problem domain.

As framework technologies attack larger simulation problems, there is a need to employ parallel
computing to provide the needed computational power. The development of //ELLPACK [42,90]
demonstrated the ability to include parallel processing into a general analysis framework capable
of being integrated with a variety of basic discretizations software tools. This approach works
since the most important, and complicated, aspect of parallelizing the analysis process is provid-
ing the parallel linear algebra, which is easily separated into a parallel library [5] with an appro-
priate set of vector and matrix classes for the algebraic system and its preconditioners.

Parallelization of adaptive techniques is a more complicated process since both the mesh discreti-
zation and algebraic systems evolve as the calculation proceeds. Therefore, the parallel adaptive
analysis frameworks developed to date have maintained strong interactions between all compo-
nents of the system [8,10,37,54,55,89]. Some systems have aso parallelized al aspects of the
mesh generation and control [24,24,25], allowing the entire analysis process to proceed in para-
lel. The use of mesh partitioning and effective dynamic repartitioning as the solution process
adapts [37,38,39,79] are critical. The more closely integrated the domain discretization and linear
algebra techniques, the greater the computational efficiency of the process [54,55].

An increasingly common requirement of engineering design is to perform analyses where multi-
ple physical behaviors are coupled. Efforts to support multi-physics analyses within analysis
frameworks have considered a couple of devices to account for the fact that a multi-physics solu-
tion procedure will employ different discretization technologies and/or unmatched domain dis-
cretizations over the portions of the domain where different models are solved. One approach
focuses on the definition of a set of interface classes to house the solution information from both
sides and agents to define the interactions between them [44,49]. The concept of the fields used in
other frameworks [8,10,18,31] provides a convenient mechanism to maintain information on the
various discrete solution files on interfaces and overlapping regions. Agents can be developed to
coordinate the interactions of the fields during the solution process. It is important to recognize
that the technical definition of these interaction agents requires the application of the appropriate
numerical algorithms, defined by the methods being used for each interacting component, to
ensure the interpolation errors associated with these processes are controlled [71].

One approach to the development of an analysis framework is to support the easy integration of
existing analysis software into the system. Systems like //ELLPACK [42,43,90] and Diffpack
[18,31] have provide highly effective methods for performing such integrations. As demonstrated
by the number of PDE solversthat have been integrated with //ELEPACK [43], this approach can
be effectively used to integrate many of the best existing analysis procedures into the framework.
Within this approach there tends to be an emphasis on making the linear algebra capabilities both
genera and efficient [5,17]. A difficulty that can arise with this approach is determining which of
the available technologies to apply to a specific problems. One approach to deal with thisissueis



to employ a knowledge-based system for the selection of the numerical methods to be applied
[91]. A final concern with supporting the compl ete integration of a number of solution procedures
is the need to support all particulars of all their structures. This concern has a reasonably strong
impact when addressing adaptive analysis frameworks since they tend to require specific technical
decompositions of the components involved that are substantially different [8,10] from that of
classic fixed discretization analyses. In these cases, the use of the field classes can address the
integration of other complete analysis procedures.

Another aspect of analysis frameworks of importance are the user interfaces used to provide input
to the analysis process, to coordinate application of the analysis process and to visualize the
results. The combination of the user interface with the analysis framework is commonly referred
to as a Problem Solving Environment (PSE) (see [43] for one example). Issues that need to be
addressed in the development of these interfaces include supporting collaborative operation [4],
linking with design systems [43,47,67,68,77,81], and supporting results visualization [20,69].

2.1 Emphasisand Uniqueness of the Current Framewor k Development

The areas of emphasisin the design and development of Trellis are:

» A set of geometry-based structures which can support: (i) the direct linkage with CAD infor-
mation, (ii) al forms of adaptivity without introducing geometric approximation errors, and
(i) the high level integration of multiscale and multi-physics analysis methodol ogies.

» A careful decomposition of the geometry, physics, mathematical model, discretization and
numerical methods into interacting classes. The resulting decomposition maximizes code re-
use and extensibility in terms of allowing new versions and forms of each of the components
(geometry, physics, mathematical model, discretization and numerical methods) to be intro-
duced.

» Adaptive control of each step of the simulation process from the selection of the mathematical
model and physical scales, through the model and domain discretization, to the selection of
application of the numerical methods to solving the discrete system.

» Parallel solution of adaptively evolving problems to support the solution to very large scale
simulation problems.

Only thefirst two of these items have been emphasized in the development of Trellis and thus will
be the emphasis of thisthesis. The other two items were considered in the design and will be areas
of future development.

Areas that have not been emphasized in the development of Trellis are:

* A problem solving environment supporting problem definition, collaborative computing, rule-
based systems, etc. Since Trellis uses a geometry-based approach that integrates directly with
CAD systems, it is assumed that domain definition and analysis attribute specification will be
supported by those systems.

» Extensiveintegration with available analysis technol ogies on acomponent basis. Integration of
such procedures on a component basis would require support of al their internal structures.
The difference between most of these structures and ones that effectively support adaptive



analysisin aframework would require compromises in the internal structures of an adaptive
framework that are not acceptable. Note that the integration of complete analysis procedures
can be effectively supported by solution transfer using fields.

* Resultsvisualization and simulation steering procedures. These are important areas that will
require specific technical developments, particularly in dealing with the evolving discretiza-
tions. It is clear that the real time requirements of the visualization process will demand the
development of specialized visualization structures that take information from the mesh,
attributes, and fields structures.

In summary, Trellis represents a framework that is unique in its emphasis on maintaining a con-
nection with ahigh level problem description that alows the reliability of solutionsto be assessed
and adaptivity to be employed to improve the solution accuracy.



3. Object Oriented Design Concepts and Notation

Although thisthesis, for the most part, assumes that the reader is familiar with the basic concepts
of object oriented design, this chapter gives an overview of the basic concepts and the terminol-
ogy used. This chapter is not a complete description of object-oriented concepts and for the sake
of clarity will make some gross simplifications and leave out many of the more interesting and
subtle points of object-oriented development. For more background in this area References 16, 40
and 72 are good starting points.

3.1 Object-Oriented Design and Programming

Object-oriented design (OOD) is away of designing computer programs where the functionality
of the program is expressed as a collection of discrete objects that incorporate both data and
behavior. Object-oriented programing (OOP) is the act of implementing an object-oriented design
in a programming language. Since design without programming is not useful in the context of
actually developing software and programming without design is hazardous at best, the combina-
tion of these two will be referred to as object oriented programming (OOP).

What, then, is an object? In the real world, an object is something that you can identify as being
distinct from other objects (there is car in the driveway), an object has certain attributes (the car is
black) and has certain operations it can perform (I turn the key and the engine starts). The sameis
true of an object in an object oriented program.

Objects also have relations to other objects, called associations. Our car in the previous paragraph
ismade up of alarge number of other objects (wheels, engine, seats, etc.) each of which have their
own identity, attributes and operations. This type of association is called aggregation, the group-
ing of a number of objectsinto alarger object. Aggregation describes a “has-a” relationship (the
car “has-an” engine).

We can also have looser associ ations between objects. For example, every car hasadriver (at least
when it's moving), but the driver is not part of the car. Also, different people may drive the same
car and also drive other cars. This type of relation is just a general association and describes a
“uses-a’ relation (at the risk of personifying the car a bit too much, we'll say that the car “uses-a’
driver).

A set of objects with the same attributes and operations is described by a class. A class describes
what attributes and operations an object has but not what the values of the attributes are or how the
operations are carried out. Each class describes a possibly infinite set of objects and every object
is an instance of aclass. An object implicitly knows what class it is an instance of. To go back to
the car analogy, our car (the black onein the driveway that we own) isan instance of the class Car,
but there are also many other cars that are also instances of that class.

We can al so have rel ationshi ps between classes. The most important of these relationshipsin OOP
is inheritance. Inheritance describes a hierarchical relationship between classes where the higher
classin the hierarchy (called a base class) isamore general class than the lower class (the derived
class). The derived class inherits all of the attributes and operations of the base class. Inheritance
generaly describes a “is-a’ relationship between two classes. The class Car inherits from the
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more general class Vehicle (a Car “is-a” Vehicle) and adds it's own attributes and operations.
There can be more than one level of inheritance in a class hierarchy and more than one derived
class from each base class. For example, we can have a class Truck that is also derived from the
class Vehicle and a class SportsCar derived from the class Car.

Another fundamental concept in OOP is polymorphism. In the simplest termsthisisthe ability for
an object to be referred to by the type of one of it’s base classes, but it’ s behavior is dependent on
the type of it's actual class. For example, let’s say that we have a base class Shape which defines
the operation “draw”, from this we have derived two additional classes Triangle and Circle which
each implement “draw” in the correct way for their particular type. Polymorphism means that if |

have an object that | only know is some type of Shape (I don’t know whether it'saTriangle or Cir-

cle) and | tell it to “draw”, it will draw atriangleif it actually a Triangle object and acircleif itis
actually aCircle object. Polymorphismisavery powerful tool that allows abstract interfacesto be
defined in base classes so that objects can be manipulated using the base class interface, while the
actual behavior of the objectsis dictated by the actual type of the object.

The Shape example above could lead one to ask the question: “if Shape is aclass, can | have an
object who's actual type is Shape”’. The answer is no. Shape is what is called an abstract class
since it does not implement all of the behavior that is specified in it’s interface. Specifically, the
“draw” operation cannot be implemented in Shape since it depends on what kind of shape the
object is. In this case “draw” is called an abstract operation and any class with one or more
abstract operationsis called an abstract class.

3.2 Notation

This section overviews the notation used throughout this document to describe the object oriented
design of Trellis. The notation is roughly based on the Unified Modeling Language (UML) [15],
however there are some dight differences, mainly since UML was still in a state of being defined
as this document was written.

3.2.1 ClassDiagram

A class diagram shows classes, their structure and the static rel ationships between them. A classis
depicted by a box with the class name in bold at the top. The important operations of the class
appear below the class name. Instance variables may appear below the operations. Italic type for
the class name or an operation indicate that class or operation is abstract.

Type information (argument and return types for operations and instance variable types) is
optiona. When shown, C++ conventions are used.

There several different types of relationships between classes that can be indicated using the class
diagrams. Inheritance is indicated by aline ending in an arrow pointing from the derived class to
the base class. If multiple classes are derived from a single base class then the lines may be joined
(as between DerivedClassl, DerivedClass2 and AbstractBaseClassin Figure 2).

Aggregation, that is the where one object is a collection of other objects, is shown as a line con-
nected to the “collection” object by a diamond. A general association is indicated by aa smple
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iati Aggregation
ClassB » Association 5 | AbstractBaseClass ggreg 0.4 ClassA

4
owner

someFunction()

T

DerivedClass1 DerivedClass?2

FIGURE 2. Example class diagram

line from one class box to another, this indicates that the object of one class knows about an object
of the other class (for example may store a pointer to the other object). Thisis alooser and less
permanent relation than aggregation. In aggregation the lifetime of the aggregated class depends
on the lifetime of the aggregating class whereas if one object references another object, the life-
time of the two may be quite independent.

For any of these relations there can be additional information provided. The association may have
aname (“Aggregation” and “Association” in Figure 2). Each of the ends of the association may
have a role name that describes what the class at that end of the association does in that associa-
tion (“owner” in Figure 2). Also, each end of the association may have a multiplicity indicator
which indicates how many object are involved in that association. In Figure 2, AbstractBaseClass
is an aggregation of ClassA objects and may have between 0 and 4 of them (indicated by the 0..4
next to the ClassA end of the association). A multiplicity of a unknown number isindicated by a*
and if there is no multiplicity indicated it means 1 object isinvolved.

As a concrete example consider the following class diagram (from Section 7.10).

The explicit information in thisdiagramis:

* Thereare classes named: SGModel, Mesh, SimpleMesh, MRegion, MFace, MEdge and MV er-
tex

* Meshisan abstract class
o SimpleMesh isderived from Mesh

e A Mesh hasarelation “createdFrom” with asingle SGModel but an SGModel may have multi-
ple meshesthat it is related to.

» SGModel isan abstract class (this implies that there are other classes derived from SGModel
that are not shown here, they are not relevant to this particular diagram)

* A Meshisan aggregation of any number of MRegion, MFace, MEdge and MV ertex objects
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- MRegion
SGModel | Mesh b “| MFace
createdFrom
“| MEdge
SimpleMesh * | MVertex

FIGURE 3. Class diagram of a Mesh and related classes.

3.2.2 Interaction Diagram

An interaction diagram shows the order of various interactions between objects. Time flows from
the top of the diagram to the bottom. At the top of the diagram the individual objects are named.
The naming convention is the same as for an object diagram, the class name prefixed with an “&’
(or “an” if appropriate). The ordering of the objects from right to left is unimportant.

Theinteraction diagrams used here differ somewhat from that used in the UML notation. Thelife-
time of an object is the portion of the vertical line that is a thin rectangle. The creation of one
object by another isindicated by a dashed arrow originating from the creating object.

A function call from one object to another isindicated by a solid arrow from the calling object to
the called object. All of the interaction diagrams shown here are single threads of execution so
function returns are implied rather than shown explicitly. An example interaction diagram is
shown in Figure 4.

In this diagram there are three objects, the diagram shows the following actionsin this order:
anObject creates aThirdObject

anObject creates a SecondObject

anObject sends aSecondObject a message “ do something”

aSecondObject sends aT hirdObject the message “do More”

anObject sends aSecondObject the message “ doAgain”

aSecondObject sends aT hridObject the message “call”

arhirdObject sends aSecondObject the message “ callback”

anObject sends aSecondObject the message “ something else”

© N o 0Ok~ 0w D
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anObject aSecondObject aThirdObject
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create 3

create 2

do something

doMore

doAgain

call

_ callback

something else

- L T

FIGURE 4. An example interaction diagram.

Note that in this sequence of events the return of control from the callee to the caler is implied.
For example after step 7 control must return to anObject for it to perform the next step. This
implies that the function call labeled “callback” ended returning control to aThirdObject, which
then returned from the call “call” to given aSecondObject control which then returned from the
call “doAgain” to return control to anObject.

3.2.3 Source Code

In anumber of places fragments of source code for class declarations are used to describe classes.
An example of thisthat goes along with Figure 3 is given below.

class Mesh {
SGvbdel * nodel (); // get the nodel associated with this mesh

/!l Create a newregion and add it to the nesh. */
virtual MRegi on *createRegion(int nFace, Mrace **faces, int *dirs,
CGEntity *gent)=0;

Thisisapart of the definition of the class Mesh. Everything between the “{” and “}” are member
functions (the C++ name for class operations) of this class. Comments in the code are indicated
by the text after “//”. In this code there are two member functions defined, model() which returns
a pointer to an object of type SGModel and createRegion(...) (Note the ... in both the class defini-
tion and between the parenthesis after the function name means that something has been omitted
for brevity). The function createRegion(...) has the word “virtual” before it. “virtual” is a C++
keyword indicating that thisis an abstract operation. At the end of the function declaration thereis
a“=0". This means that the function is a “pure virtual” function, in other words it is an abstract
operation that must be provided by aderived class. If the “=0" was not there then the base classis
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providing an implementation for this function, but it can be replaced by a new implementation in
the derived class.
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Part 1.

The Geometry-Based Environment
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4. Overview of the Geometry-Based Environment

The structures used to support the problem definition, the discretizations of the model and their
interactions are central to the analysis framework. The geometric model and attributes are used to
house the problem definition. The general nature of the attribute structures alow them to also be
used for defining numerical analysis attributes. The analysis discretizations are housed in the
mesh which is linked to the geometric model. The final component is the field which houses the
distributions of numerical solution results over the domain of the problem.

ﬁ%%rgletnc @—  Attributes

Mesh |——P Field

FIGURE 5. Relationship between components of the geometry-based environment.

The general interactions between the four components are shown in Figure 5. These interactions
are described in more detail in the following chapters, with the remainder of this chapter introduc-
ing the basic concepts of the four structures.

4.1 Geometric Moddl

The geometric model representation used by Trellis is a boundary representation based on the
Radia Edge Data Structure [94]. In this representation the model is a hierarchy of topological
entities called regions, shells, faces, loops, edges and vertices. This representation is completely
general and is capable of representing non-manifold models that are common in engineering anal-
yses. The use of a boundary representation is convenient for attribute association and mesh gener-
ation processes since the boundaries of the model are explicitly represented.

The classes implementing the geometric model module support operations to find the various
model entities that make up a model and to find which model entities are adjacent to a given
entity. Other operations relating to performing geometric queries are also supported. The model
entities al so support queries about what attributes are associated with them.

4.2 Attributes

In addition to geometry, the definition of a problem requires other information that describes such
things as material properties, loads and boundary conditions [82]. This other information is
described in terms of tensor valued attributes that may vary in both space and time. In addition
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attributes are used to describe information that is non-tensorial in value and may represent some
concept (such as atime integration algorithm and its associated parameters).

An simple example of aproblem definition is shown in Figure 6. The problem being modeled here
is a dam subjected to loads due to gravity and due to the water behind the dam. There is a set of
attribute information nodes that are all under the attribute case for the problem definition. When
this case is associated with the model, attributes (indicated by triangles with A’ s inside of them)
are created and attached to the individual model entities on which they act.

Information Nodes

type:load
name:water load
value:(f(2),0,0) ~ Geometric

~ Model )
~ Attributes

Case

type:problem definition

name: ... type: load

name:gravity
value: (0,0,9.8)

type:stiffness
name: concrete |+
value: ...

f=f(2)

type: density
nameconcrete | —
value: ...

type: displacement
name:base
value: (0,0,0)

FIGURE 6. Example geometry-based problem definition.

4.3 Mesh

The representation used for amesh is similar to that used for a geometric model [7]. A hierarchy
of regions, faces, edges and vertices makes up the mesh. In addition, each mesh entity maintainsa
relation, called the classification of the mesh entity, to the model entity that it was created to par-
tially represent. This representation of the mesh is very useful for mesh adaptivity, the support of
which isimportant for the framework. Also, an understanding of how the mesh relates to the geo-
metric model alows an understanding of how the solution relates back to the original problem
description. The topological representation can also be used to great advantage in performing
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adaptive p-version analyses as polynomial orders can be directly assigned to the various entities
[80].

4.4 Field

A field describes the variation of some tensor over one or more entitiesin ageometric model. The
spatial variation of thefield is defined in terms of interpolations defined over adiscrete representa-
tion of the geometric model entities, which is currently the finite element mesh. A field isacollec-
tion of individual interpolations, al of which are interpolating the same quantity (Figure 7). Each
interpolation is associated with one or more entities in the discrete representation of the model.

Interpolation 2

Field 1 = {Interpolation 1,

Interpolation 1 Interpolation 2, ...}

FIGURE 7. Representation of afield defined over a mesh

One general form of atensor field isapolynomial interpolation with an order associated with each
mesh entity. Since in some cases it is desirable to have multiple tensor fields with matching inter-
polations, the polynomial order for a mesh entity is specified by another object called a Polynomi-
alField which can be shared by multiple Field objects.
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5. Geometric M odel

As implied by the phrase “Geometry-Based Environment”, the geometric model is central to
much of the work presented here. All of the components of the environment directly or indirectly
build off of, or reference, the geometric model. In order to support the rest of the system, the rep-
resentation used for the geometric model must be sufficiently general to represent any possible
model and the functions provided must alow the querying of any needed information about that
model.

5.1 Topological Representation

The main viewpoint of the model is as atopologica hierarchy where some of the topological enti-
ties have geometry associated with them. The topological representation used is based on the
Radial-Edge Data Structure of Weiler [94]. The topological hierarchy and the relations between
the entitiesis shown in Figure 8.

’ GRegion
1
GShell
1
i GFace O—ZGFaceUse
1
SGModel ks GLoopUse
1
i GEdge 0—*GEdgeUse
2
*| GVertex o * | GvertexUse

FIGURE 8. Model entity relationships.

The topological entities of Vertex, Edge, Loop, Face, Shell and Region are sufficient to give an
understanding of the topology in the case of 2-manifold models. However to fully understand the
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topology in the case of non-manifold models it is necessary to have additional information. This
additional information isin the form of entity uses which describe the connection of one entity to
another.

The simplest way to think of entity uses is to consider a face. Each face has two sides, each of
which may be attached to a region. Thus, the face is said to have two face uses, one associated
with each side. Each face use is bounded by one or more loop uses. As with aface, each loop has
two uses, one on each side of the face associated with the loop. Each of the loop usesis an ordered
list of edge uses. Each edge use is bounded by vertex uses.

Note that it is really the entity uses that define the topological connections between the various
entities as shown in Figure 8. The other topological entities: regions, faces, edges, and vertices
connect sets of uses together and provide the shape information that turns the model from a purely
topological object into ageometric object. Even though the basic topology is given in terms of the
use entities, it certainly is meaningful to discuss things like the “set of edges bounding a face”,
since thisisarelation that is derived from the use entities.

5.2 Differencesfrom the Radial Edge Data Structure

As mentioned, the topological representation used is based on the Radial Edge Data Struc-
ture[94]. The only differences are areduction in the number of vertex uses and a different group-
ing of edge uses.

Rather than having a single vertex use for each edge use connected to a vertex, the current data
structure has multiple edge uses connected to each vertex use. All of the edge uses that are,
locally, in the same part of space are connected to the same vertex use. Figure 9 illustrates this for
asimple 2-D case.

————— @) O—— = — - - — — 0 0-—— — — -
—————— oOO0-——— — - - —-0-—— — — -
Vertex Usesin Radial Edge Data Structure Vertex Usesin Current Data Structure

FIGURE 9. Comparison of vertex useswith Radial Edge Data Structure.

In addition there is a grouping of edge uses into pairsin the same part of space. Thisisillustrated
in Figure 10

The uses define a 2-manifold representation of the model that is associated with the original (pos-
sibly) non-manifold representation. For the purposes of analysis and mesh generation this repre-
sentation is quite sufficient. The extra uses in the Radial Edge Data Structure do not add any
information that is needed for these applications. In fact, the two representations are equivalent to
one another, in that one can aways be derived from the other.
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FIGURE 10. Grouping of edge usesinto pairs.
5.3 TheTopological Entities

The hierarchy of classes that are used to represent the model entitiesis shown in Figure 11.

SModelMember

GEntity SGModel
GRegion GFace GEdge GVertex
GShell GFaceUse GLoopUse || GEdgeUsePair GEdgeUse ||GVertexUse

FIGURE 11. Model entity class hierarchy.

At thetop of thishierarchy isthe class SModelMember. The definition of this classis given below.
SModelMember collects together all of the functionality that something that is a part of a model
must have. This functionality includes having a unique numeric id called atag that can be used to
refer to the entity. Also there are functionsto retrieve attributes applied to the model entities. Note
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that the class that represents amodel is also derived from SModelMember since it has all of these
properties.

cl ass SModel Menber : public Attachabl eData {
public:

}

/1l Get the type of this nodel nmenber.

virtual TopoType:: Val ue type(void) const = O;

/1 Get the unique, persistent tag associated with this nodel nenber.
virtual int tag() const;

int id() const;

/1 Return a string representing the nane of the nmenber.

virtual SString nane() const=0;

/] Return a bounding box in 3d for the nenber

vi rtual SBoundi ngBox3d bounds() const =0;

/1 Return true if this contains the given nmenber.

virtual int contains(Svbdel Menber *c) const;

/1l Get first attribute of the given type.

virtual Attribute *attribute(const SString & ype) const;

/] Get all attributes of the given type.

virtual SSList<Attribute *> attributes(const SString & ype) const;
/1 Get all attributes.

virtual SSList<Attribute *> attributes() const;

All of the topological entities in a model share certain behavior. This is represented in the class
structure by the classes all being derived from the class GEntity. The most important functionality
expressed in this class is the ability to retrieve the adjacent entities, to find information about the
parametric space of the entity (if it has one) and to find the geometric tolerance associated with
the entity.

class GeEntity : public SModel Menber {
public:

CEntity(SGvwdel *nodel);

virtual ~GEntity();

/] Returns the spatial dinension of the entity.

virtual int dim() const = O;

/1l Returns true if the given entity is in the closure of this entity.

virtual int inCl osure(GEntity *ent) const =0;

virtual SSList<GRegion*> regions() const; // return adjacent regions

virtual SSList<Grace*> faces() const; // return adjacent faces

virtual SSList<GEdge*> edges() const; // return adjacent edges

virtual SSList<GVertex*> vertices() const; // return adjacent vertices

/1l Return true if this entity is periodic in the given paranmetric direction.
virtual Logical::Value periodic(int dim const;

/] Return true if there are degeneracies in the paranetric space in the given
/1 paranmetric direction.

virtual Logical::Value degenerate(int din) const;

/] Return the relative orientation of the paranetric space of this entity to the
/1 topological orientation of this entity.

virtual int geonDirection() const;

/] Return the paranetric bounds of this entity in the given paranmetric direction
vi rtual Range<doubl e> parBounds(int i) const;

/1 return geonetric tolerance of this entity

virtual doubl e tol erance() const;

[l return true if this entity contains the point

virtual int containsPoint(const SPoint3 &pt) const;

/] return the relation of the point to this entity or its boundary

virtual int classifyPoint(const SPoint3 &pt, int chkb, GEntity **bent) const;
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SGWbdel *nodel () const; // return nodel entity is a part of

I

The GEntity class is then specialized for each of the type of entities that make up the model.
These are described briefly below.

5.3.1 Vertex

A vertex is a 0-d topological entity. The geometry associated with a vertex is a point in space.
Each vertex may have any number of edges adjacent to it.
class Gvertex : public Gentity {
public:
int nunUses() const; // number of uses of this vertex
SSLi st <GVert exUse*> uses() const; // get list of uses
GvertexUse * use(int n); // get nth use

i nt nunEdges() const; // nunber of edges attached to this vertex
virtual GVPoint point() const = 0; // location of vertex

532 Vertex Use

A vertex use connects some number of edge uses to a vertex. Each vertex use is associated with
exactly one vertex. A vertex will have one vertex use for each region of space, not necessarily a
model region, that is adjacent to that vertex as shown previously in Figure 9.
class GvertexUse : public GEntity {
public:
GVertex * vertex() const; // vertex this use is associated with
GShel | *shell () const; // shell this use is associated with
SSLi st Cl t er <CEdgeUsePai r*> first EdgeUse() const; // get iterator to edge uses
SSLi st <GEdge*> edges() const; // get list of adjacent edges

SSLi st <GEdgeUsePai r*> edgeUses() const; // get list of adjacent edges uses
SSLi st <GFaceUse*> faceUses() const; // get list of adjacent face uses

5.3.3 Edge

An edge is a 1-d topological entity bounded by a vertex at each end. In the case where the edge
formsaclosed loop the two vertices are the same vertex. The positive topological orientation of an
edge is defined as the direction from its starting vertex to its ending vertex.

An edge is parameterized by a 1-d parameter space [a,b]. Each vertex lies at one end of the param-
eter space. The orientation of the parameter space may be either increasing or decreasing along
the positive topological orientation of the edge. If it isincreasing then the start vertex corresponds
to parameter a and the end vertex corresponds to parameter b, if it is decreasing then the start ver-
tex corresponds to parameter b and the end vertex to parameter a.

The main geometric queries associated with an edge are to:

» evaluate a parameter to a point in space

« evaluate the derivatives of the parametric space at a parameter location
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 evaluate the parametric location on an adjacent face given a parametric location on the edge

« find the parameter location of the closest point on an edge given a point in space

class GEdge : public GeEntity {

public:
/1 true if this edge is a seamw.r.t. the given face
virtual int isSeam Grace *face) const;
virtual double period() const; // period of edge paraneter space if periodic
int nunmses() const; // number of edge uses
SSLi st <GEdgeUsePai r*> uses() const; // get list of edge use pairs
CEdgeUsePair * use(int n); // get nth edge use pair
GVertex* vertex( int n) const; // get vertex at given end (0,1) of this edge

vi rtual doubl e paran{const GPoint &pt); // get paraneter for point on edge
virtual GEPoi nt point(double p) const = 0; // get point from paramneter
virtual CEPoint closestPoint(const SPoint3 & queryPoint); // closest point
virtual int containsParan(double pt) const = 0; // true if edge contains pt
virtual SVector3 firstDer(double par) const = 0; // first derivative

/1 nth derivative

virtual void nthDerivative(double param int n, double *array) const=0;

/1 return paranmeter |ocation on face for given paraneter on this edge.

/1 dir is direction edge is used by face, needed when edge is a seam
virtual SPoint2 reparantnFace(G-ace *face, double epar,int dir) const = O;

b
5.34 EdgeUse

An edge use represents the oriented use of an edge. Each edge use is associated with exactly one
edge. The edge use connects aloop use to the edge. An edge use has a vertex use at its head.

cl ass GEdgeUse : public Centity {

public:
CGEdge *edge() const; // get edge this use is associated with
GShel | *shell () const; // get shell this use is associated with
GLoopUse *| oopUse() const; // get loop use associated with this edge use
GVvertexUse *vertexUse() const; // get vertex use at head of edge use
int dir() const; // direction (0,1) relative to edge
CEdgeUsePair *use() const; // get use pair this use is associated with
CGEdgeUse *otherSide(); // get other use in use pair

b
5.3.5 Edge Use Pair

Anedge use pair isapair of edge uses each of which is associated with the same edge. The usesin
the pair always use the edge in opposite directions (one positive and one negative).

cl ass GEdgeUsePair : public GEntity {

public:
CEdge *edge() const; // get associated edge
GShel | *shell () const; // get adjacent shell
GLoopUse *| oopUse(int dir) const; // get adjacent |oop use
GvertexUse *vertexUse(int dir) const; // get vertex use at given end
CEdgeUse *side(int which); // get edge use (which = 0,1)
CEdgeUse *ot her Si de( GEdgeUse *eus); // get other edge use
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5.3.6 Loop Use

A loop use is an ordered collection of edge uses that form a closed loop. A loop use is used to
define the inner or outer boundary of aface use.

cl ass GLoopUse : public GEntity {

public:
virtual int nunkEdges() const; // nunber of edge in |oop
SSLi st Cl t er <GEdgeUse*> first EdgeUse() const; // iterator to edge uses in |oop
virtual GrFaceUse* faceUse() const; // adjacent face use

I
5.3.7 Face

A face is 2-d topological entity. Each face has exactly two face uses, one on each side, that are
used to connect it topologically to the rest of the model.

A face has a 2-d parametric space associated with it. This parametric space forms a one-to-one
mapping between a domain on the u,v plane and the 3-d domain of the face.

The main geometric queries associated with aface are:

» evaluate a parameter to a point in space

 evauate the derivatives of the parametric space at a parameter location

« find the parameter location of the closest point on the face given a point in space
» evaluate the normal to the face at a given parametric location

A face may be periodic in one or both of its parametric directions. If afaceis periodic the ends of
its parametric range [a,b] map to the same point and this jump in parametric space is on the inte-
rior of the entity. A cylindrical face that is split by an edge on the parametric jump is not consid-
ered periodic, athough its underlying surface is periodic.

class Grace : public Gentity {

public:
const GraceUse * use(int dir) const; // get face use on given side
GRegion * region(int dir) const; // get region on given side (may be null)
/1 get location paranmetric degeneracies on face in given direction
virtual int paranDegeneracies(int dir, double *par) = O;
/] evaluate |location at given paranetric point
virtual GFPoint point(const SPoint2 &t) const = 0;
/1 return paraneter |ocation for given point on face
SPoi nt 2 paran{const GPoint & pt) const;
[l returns true if paraneter location is interior to face
virtual int containsParam const SPoint2 &pt) const = O;
/] period of face in given direction if face is periodic in that direction
virtual double period(int dir) const;
/] return closest point on face to given point
virtual GFPoint closestPoint(const SPoint3 & queryPoint);
/1 evaluate normal at given paranmeter |ocation
virtual SVector3 normal (const SPoint2 &param const = O;
/] evaluate first derivative of paranmetric space at given |location
virtual Pair<SVector3, SVector3> firstDer(const SPoint2 &param const = 0;
/'l evaluate nth derivative of parametric space at given |ocation
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virtual double * nthDerivative(const SPoint2 &param int n,
doubl e *array) const;

/1 return which use of face given use is

i nt whi chUse(GFaceUse const * use);

/1 return true if underlying surface is periodic

virtual Logical::Value surfPeriodic(int dim const = O;

b
5.3.8 FaceUse

A face use issimply one side of aface. It is defined by a set of loop uses. Each face useisused in
the definition of exactly one shell.
cl ass GraceUse : public GEntity {
public:
/1 get iterator to | oop uses on face use
SSLi st Cl ter<G.oopUse*> firstLoopUse() const;
Gshell * shell () const; // get shell adjacent to this use
SSLi st <GEdge *> edges() const; // get list of adjacent edges
GFace * face() const; // get owning face
int dir() const; // direction of use relative to face

5.3.9 Shell

A shell isaset of face uses that form a closed boundary. Each shell is associated with zero or one
regions. A shell will not have aregion associated with it if the face uses that make it up have no
region associated with them. This situation occurs for shells that define either the exterior of the
model or holes on the interior of the model.
class Gshell : public Gentity {
public:
CGRegi on* region() const; // region associated with shell (may be null)

/1 get iterator to face uses defining shell
SSLi st Clter<GraceUse*> first FaceUse() const;

H
5.3.10 Region

A region is a 3-d topological entity bounded by a set of shells. There is always one shell that
forms the “exterior” boundary of the region, additional shells may define holes in the interior of
the region.

class GRegion : public Gentity {

public:

/] get iterator to shells defining region
SSListClter<Gshel | *> firstShell () const;

I
5.4 Mod€ Interfaces

The model related classes are designed to be wrappers around functionality that is provided by an
underlying geometric modeling kernel. The reasons for using a geometric modeling kernel, rather
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than directly implementing geometric calculations in the model entity classes, are consistency and
simplicity. A modeling kernel constructs a model using a certain set of algorithms and tolerances,
if one attempts to use different algorithms or tolerances when interpreting the model information
it is quite possible to get dlightly different answers that lead to inconsistencies between the origi-
nal model representation and the current representation. Also the task of constructing a complete
geometric modeling system is a huge one, thus it makes sense to leverage the work that has been
done by othersin this area.

The reason for using the model abstraction presented in this chapter rather than directly querying
various modeling kernels for the geometric information is to provide a consistent representation
of the model regardless of the underlying kernel implementation. Even though al of the major
modeling kernels provide a boundary representation of the model, they al have differencesin how
they represent that topology. To expose all of these differences to the rest of the geometry-based
environment would greatly complicate the system. By providing a consistent interface, the rest of
the system is insulated from these differences which are all encapsulated in the model interface
classes.

The modeling kernel must provide two main types of functionality:

 Extraction of information about the entities in the model and their topological relations as
needed to build up the topological representation described in Section 5.1.

» Functionality to answer the geometric queries that are present in the GFace, GEdge and GVer-
tex classes.

At aminimum ainterface to amodeler will consist of five classes, one each derived from the base
classes SGModel, GRegion, GFace, GEdge, GVertex, as shown in Figure 12 using the Shapes
[96] interface as an example. The collection of thesefive classesisreferred to as the Shapes kernel
interface.

SGModel GRegion GFace GEdge GVertex

. Shapes kernel interface

ShapesModel XRegion XFace XEdge XVertex

FIGURE 12. Derivation of additional classesto implement an interface to Shapes.

Each of the derived entity classes (XRegion, XFace, XEdge and XVertex in Figure 12) must over-
ride aminimum set of virtual functions to provide the needed functionality. These are the member
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functions that are declared pure virtual in the class definitions given in Section 5.1. For the most
part these are geometric query operations.

The main responsibility of the derived model class (ShapesModel in Figure 12) is to extract the
topology of the model and create the derived entity classes for each entity in the model. In doing
so, the topological representation of the model is set up correctly by the base entity classes.
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6. Attributes

In order to fully define a problem in mathematical physics additional information is needed
beyond the domain of the problem (which is defined by the geometric model). Thisincludesinfor-
mation such as loads, boundary conditions, material properties and the like. In this system, this
information is defined by the application of attributes to the geometric model.

Although attributes are often associated with entities in the geometric model, they do not have to
be. Within Trellis attributes are also used to represent nonphysical infomation such as the struc-
ture of the solution procedure used to run an analysis.

6.1 Attributelnformation Classes

The most general definition of an attribute is that it is a piece of information, in particular for
everything that has been considered thusfar it isavalue (as opposed to a piece of information that
isarule, or logical relation, etc. However, nothing in the system as designed precludes more gen-
eral types of information being stored). One specfic kind of value that may be stored in an
attribute is a tensor value. These tensor attributes are used to define physical information that is
applied to the geometric model. In addition, an attribute may store other types of information such
as strings, integers, or references to model entities.

Attinfo

JAN

Attinfolnt AttinfoDouble AttinfoString AttinfoModel AttiInfoTensor

AN

AttinfoTensorOr0 AttinfoTensorOrl AttinfoTensorOr2 AttinfoTensorOr3 AttinfoTensorOr4

FIGURE 13. Attributeinformation classes.

The information for defining an attribute is stored in an object derived from Attinfo shown in
Figure 13. From AttInfo there are classes derived for each type of information that can be stored
asan attributes. It is possible to extend this to other types of information by adding additional der-
vied classes.

6.2 Attribute Grouping
In addition to the information stored for an attribute there is information about how attributes are

related to each other. This information is represented by storing the attribute information objects
in adirected acyclic graph (DAG) as shown in Figure 14.
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AttGroupl

AttGroup2

(Atirfos ) (C Attinfos )

(atinfor ) ( Atinfo2 ) (Attinfo3 )

FIGURE 14. An attribute graph.

The DAG is structured by providing a grouping mechanism, implemented by the class AttGroup
(Figure 15). Each AttGroup may have one or more child nodes, which are derived from the class
AttNode. As shown in the figure, Attinfo, the base class for the attribute information classes is
derived from AttNode.

AttNode | *
child

Attinfo AttModel AttGroup

parent

AttCase

FIGURE 15. The AttNode class hierarchy.

There is a specialized type of grouping named a case and implemented by the class AttCase. The
case has an important semantic meaning in the graph in that it means that all of the attributes con-
tained in this case (below the case in the graph) have some meaning as a whole. For example, a
caseis used to collect together al of the attributes used to define a certain physical problem.
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6.2.1 AttNode

The AttNode class represents a node in the attribute graph. It is an abstract class that contains all
of the base functionality for any attribute node. In particular each attribute node has a

» information type - a string that describes what type of information this node is representing.

Examples of thiswould be “ displacement”, “temperature” or “load”.

e name - an arbitrary string identifying this attribute. Names are not required and do not have to
be unique.

* image class - a string identifying the image of this attribute. Thisis explained in more detail
below.

As shown in Figure 15 the class Attinfo is an abstract class. All the different types of attribute
nodes that store values of various types of information are derived from this as shown in
Figure 13.

6.2.2 Mode Associations

A further piece of information needed for attributes is how the attribute information relates to
entities in the geometric model. Thisis stored in the case nodes in the graph in the form of Mod-
el Association objects. Each of these objects associate a certain portion of the graph with a partic-
ular model entity.

6.3 Attributes

The attribute graph and model associations exist independently of the geometric model. When the
information about the case is needed to be related to the geometric model the caseis processed to
give thisinformation; this process is named association. At this point an additional set of objects
named Attributes are created and attached to each model entity that has attribute information

applied.

The Attributes have a class hierarchy that parallels that the the attribute information classes as
shown in Figure 16. Each of the Attribute objects are related to one AttNode in the attribute graph.
One reason for the distinction between the information nodes and attributes is that the interpreta-
tion of the information node can depend on the path in the graph traversed to get to that node.
Thus one information node may give rise to multiple attributes with different values. Also asingle
AttNode may give rise to multiple attributes if it is associated with more than one model entity.

6.4 Using Attribute Infor mation

The most important property of attributes is that they specify information. Thus there are a num-
ber of ways to query thisinformation.
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Attribute AttNode

ﬁ&

AttributeModel AttributeGroup Attributelnt || AttributeTensor AttributeDouble AttributeString

ZF

AttributeTensorOr0 AttributeTensorOrl AttributeTensorOr2 || AttributeTensorOr3 || AttributeTensorOr4

FIGURE 16. Attribute class hierar chy

6.4.1 Evaluating Attributes

The most common way to use attributes is to simply evaluate them. Since attributes may be a
function of space and/or time it may be necessary to provide this information to get the value of
the attribute.

Each Attribute and AttNode class provides a means to evaluate the information that it stores. For
example the class AttributeTensorOr0 which represent a zeroth order tensor has the member func-
tions shown below to allow its evaluation.

class AttributeTensorO0 : public AttributeTensor {
public:

operator double(); // convert to a double

doubl e eval (double t); // evaluate for tine

doubl e eval (const Spatial Point &p); // evaluate for coordinate info
doubl e eval (double t, const Spatial Point &p); // evaluate for both

I

There are different member functions to evaluate if the attribute is a function of space, time, or
space and time. It is possible to query each attribute to determine what it is a function of. In addi-
tion, an entire case may be preevaluated at a given time to simplify the evaluation of the attributes.

All of the rest of the Attribute and AttNode classes provide similar functions that convert the
information they are storing into a form appropriate for other calculations.

6.4.2 Attribute Images

The attribute system has the ability to create an object based off of the information contained in
the attribute node. This object is called the image of the attribute. The type of object to createis
determined by the image class string; this is associated with a function to call that creates the
appropriate object by passing in the AttNode object. The purpose of thisfunctionality isto make it
simple to automatically create objects from the information in the attribute graph, effectively turn-
ing it into a database that can store the information needed to create objects at run time.
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|

type: time integrator
image class: backward euler

%\

type: start time | |type: end time type: deltat type:linear solver
value.... value.... vaue: ... image class: direct solver

FIGURE 17. Part of an attribute graph specifying atimeintegrator.

Figure 17 shows an example of the portion of the attribute graph that specifies atime integrator to
be used in solving a particular analysis. In this case a backward Euler integrator is specified as
indicated by the image class field of the group node of type “time integrator”. This means that, at
run time, an object of the class mapped to the image name “backward euler” (which is the class
BackwardEuler) will be created. When the object is created it is passed the node that specified its
creation so that it can extract addition information that it needs. In this case the additional infor-
mation is the starting time, ending time, the time step to use, and the linear solver to use to solve
the systems of equationsthat it constructs. Note that the linear solver node also has an image class
specified which means that an object will be created representing this node (which will be used by
the time integrator object). In this example, to change the type of linear solver used, it issmply a
matter of changing the image class of the “linear solver” information node. For example itsimage
class could be changed to “conjugate gradient” and then the time integrator would use this solver
to solveits equations. Thistechnique is used throughout the framework to allow the usersto spec-
ify the run time behavior of the program.
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7. Mesh

The mesh representation used by Trellisis similar to that used by the model in that it is atopolog-
ical hierarchy of entities. The topology of a mesh is simpler than that of a model so the hierarchy
is simplified somewhat from that used in the geometric model. Each of the entities in the mesh
maintains arelation to the geometric model entity that it is on, thisrelation is known as classifica-
tion and is used throughout Trellis to understand how the mesh related to the model.

There are a number of different possible representations that could be used for the mesh. This
Chapter discusses these options in some detail and the tradeoffs involved with each one. Finally
an overview of the implementation selected for Trellisis given.

7.1 Nomenclature

This chapter uses the nomenclature given below to describe the topological entities and their rela-
tions to each other and the geometric model.

Models

Wy, Domain associated withthemodel V, V = G, M where G signifies the geometric
model and M signifies the mesh model.

W, The closure of the domain associated withthemodel V, V = G, M.

Topological Entities

d

Vi the it entity of dimension d in model V. Shorthand for V/{ Vd}i .
‘H(V?) the entities on the boundary of Vf'
ViOI closure of topological entity defined as ViOI E ‘H(Vid) .
C classification symbol used to indicate the association of one or more entities from
the mesh, M, with an entity in the geometric model, G.
Groups
{Vd} unordered group of topological entities of dimension d in model V.
LVdJ ordered group of topological entities of dimension d in model V.
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[VT] cyclically ordered group of topological entities of dimension d in model V.

~

avh a group where the ordering is unspecified (ordering is one of: unordered, ordered
or cyclicaly ordered).

I ith topological entity ingroup j , wherej isany one of the groups above.
Adjacency Operations
] av The set of entities of dimension d in model V that are adjacent to, or contained in

j -] may beasingle entity, V? or v , agroup of entities, av i (possibly a

group resulting from another adjacency operation), or amodel V.

| avi f An adjacency relation with directional use information associated with each entity.
The = indicates the directional use of each entity. A + indicates use in the same
direction as the entity definition, a - indicates use in the opposite direction.

Examples:

V{ Vd} All of the entities of order d in model V

V:ji{ Vdj} The unordered group of topological entities of dimension d J- that are adjacent to

the entity ViOIi in model V.
vﬁ‘{vdj}i The it member of the unordered group of topological entities of dimension d j

that are adjacent to the entity Vs‘ in model V.

The adjacency notation is evaluated from left to right, for example:
3,,,0 3, . . D th : 3
Vi{V }{V7}jisfound by firstfinding j = V;{V"} andthenthe j"" memberof j {V7}.

7.2 Topological Entities

The use of topology provides an unambiguous, shape-independent, abstraction of the mesh. It a'so
simplifies the task of maintaining the relation between the model and the mesh. In addition many
operations can be performed more naturally using the mesh’ s topological adjacencies.
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Each topological entity of dimension d, Mf' , isbounded by a set of topological entities of dimen-
sond-1, M3{MI-1} | A region is a3-d entity with a set of faces bounding it. A faceisa 2-d
entity with a set of edges that bounding it. An edgeis a 1-d entity with two vertices bounding it.

The representation of general geometric domains requires loop and shell topological entities, and,
in the case of non-manifold models, use entities for the vertices, edges, loops, and faces [94,93].
However, restrictions on the topology of a mesh allow a reduced representation in terms of only
the basic 0 to d dimensional topological entities. In three dimensions (d=3) these entities are:

Ty = {M{M%, M{M'}, M{M?}, M{M3}} (1)

where M{ M9} , d = 0, 1, 2, 3 arerespectively the set of vertices, edges, faces and regions defin-
ing the primary topological elements of the mesh domain. Restrictions on the topology of a mesh
which allow this reduction are:

1. Regions and faces have no interior holes.

2. Each entity of order d; in amesh, MY may use a particular entity of lower order,

M¢%, d; <d; , at most once.

3. For any entity M% thereis aunique set of entities of order d. —1, M% &M %-1A that are on the
boundary of M if at least one member of M &M% -1l is classified on G where d; * d;.
The first restriction means that regions may be directly represented by the faces that bound them,

and faces may be represented by the edges that bound them. The second restriction allows the ori-
entation of an entity to be defined in terms of its boundary entities (without the introduction of

entity uses). For example, the orientation of an edge, M{ bounded by vertices M? and M is

uniquely defined as going from MJO to MQ only if j* k.

The third restriction means that an interior entity (defined as M [Z G/ where, d; 3 d; and at

least one of (M%) £ GY) is uniquely specified by its bounding entities. This allows an imple-

mentation using a reduced representation for interior entities. This condition only applies to inte-
rior entities, entities on the boundary of the model may have a non-unique set of boundary entities
asillustrated with amodel and a coarse mesh of a plate with ahole in Figure 18. Here, the mesh is
sufficiently coarse that the mesh and model topology are identical on the hole boundary. The two

mesh edges, M7 and M3, on the hole boundary have the same set of vertices, M9 and MJ.

7.3 Classification

Classification defines the relationship of the mesh with the geometric domain.
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(a) Geometric Model (b) Mesh
FIGURE 18. Example of mesh entities on the model boundary having non-unique boundary entities.

Definition: Mesh Classification Against the Geometric Domain - The unique association of a
mesh entity of dimension d;, M to a geometric model entity of dimension d;,G where

d; £ d;, istermed classification and is denoted M 4 - G?J wherethe classification symbol, [C
indicates that the left hand entity, or set, is classified on the right hand entity.

Multiple M{* can be classified on a Gf!i. Mesh entities are always classified with respect to the
lowest order geometric model entity possible.

Classification of the mesh against the geometric domain is central to (i) ensuring that the auto-
matic mesh generator has created avalid mesh [76], (ii) transferring analysis attribute information
to the mesh [82], (iii) supporting h-type mesh enrichments, and (iv) integrating to the exact geom-
etry as needed by higher order elements. An example of how classification information is used
during the mesh refinement processisillustrated in Figure 19. Figure 19a shows the mesh before
the dashed edge is split. The model edge isindicated by the bold line. Figure 19b shows the mesh
after splitting the edge. The classification information is used to recognize that the new vertex cre-
ated is on the model edge (since the vertex was created by splitting an edge classified on the
model edge). The new vertex is then “snapped” to the boundary so that it is located on the model
edge to improve the geometric approximation of the refined mesh.

7.4 Geometric Information
The geometric information required for the mesh is limited to pointwise information in terms of
the parametric coordinates of the model entity that a mesh entity is classified on. Any other shape

information can be obtained from the geometric model using the classification information and
appropriate queries to the modeler.

7.5 Adjacencies

Adjacencies describe how topological entities connect to each other. There are natural orderings
for some adjacencies which prove useful, thus the notation distinguishes between unordered,
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(a) before refinement (b) edge split (c) new vertex snapped to
boundary
FIGURE 19. Edge split.

ordered and cyclic lists. Some adjacencies maintain a directional component that indicates how
that entity is used. The right subscript, + , on the entity, V¢, , indicates a directional use of the
topological entity as defined by its ordered definition in terms of lower order entities. A + indi-
cates use in the same direction, while a - indicates use in the opposite direction (e.g. aface, M2,

could be defined by the set of edges bounding it as MZ[M;, M1, M1] meaning that the edge
M 11 isused in the positive direction, from its first to second vertex, edge M used in the negative
direction and edge M{* used in the negative direction).

7.5.1 First-order adjacency relations

The most important set of relations are those which describe, for a given entity M | al of the

entities, M%, (i1 j) which are either on the closure of the entity (j <i), or which it is on the
closure of (j>i) . These are referred to as first order adjacencies. For example, the adjacency
MZ[MPO] is the circular ordered list of all of the mesh vertices which are on the closure of the

mesh face M?. The complete list of first order adjacenciesis:
Vertex adjacencies: MY{ M1} , MO{ M2} , MO{ M3}

Edge adjacencies: M1 MO |, MY M2}, M1{ M3}

Face adjacencies: M2[M9], M2[M1], M2| M3

Region adjacencies: M3{ M%} , M3{ M1} ,M3{ M2}
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Ordered, lower order adjacencies are used to define the orientation of higher order entities. The
positive orientation of a mesh edge, M1, is defined by the adjacency relation, M i1|_ MO |, the pos-

itive direction of the edge is from the first vertex, M| M© ], to the second vertex, M1 MO, .

7.5.2 Second-order adjacency relations

Second-order adjacencies describe, for a given entity M,‘fi , al of the entities, M9, which share
any bounding entity of a given order, d,, with the entity. An example of this is the adjacency,

M3{ MO} { M3}, which isthe set of all regions which share avertex with M3 (useful for element
renumbering). The complete set of unordered second-order adjacencies is expressed as follows:

ME{M%}H{M} d;* dy, d;? d, @

Asthe notation suggests, the second order adjacencies can be derived from thefirst order adjacen-
cies. Higher order adjacency relations can also be expressed in asimilar manner.

7.6 Other Requirements

It must be possible to uniquely associate arbitrary data with each entity to ensure efficiency. For
example, traversing the mesh using the mesh adjacenciesis made much more efficient by marking
entities that have been visited. Other processes can also store data directly on the mesh entities.

Boundary edges and faces must be orientable. Certain mesh generation operations can be made
more efficient by ensuring that boundary edges and faces are oriented in the same direction as the
model entity that they are classified on.

7.7 Implementation Options

The implementation of a mesh database must consider the trade-offs between the storage space
required and the time to access various adjacency information. Efficiency dictates that any query
be answered by operations whose execution time is not a function of the number of entitiesin the
mesh. Clearly if more adjacency relations are stored, less work is required to obtain the adjacen-
cies, but the storage space will be greater. The question, then, is which set of adjacencies should
be stored for the most effective implementation.

To avoid global searching to retrieve any adjacency, the graph of the stored adjacencies needs at
least one cycle that includes all four of the nodes. If such a cycle does not exist then it is not pos-
sible to reach one of the nodes from one of the others and a global search will be necessary for at
least one relationship. Given a set of adjacencies meeting this criteria, how much work must be
done to retrieve any adjacency? Stored adjacencies are smply retrieved which isan O(1) opera-
tion. Other adjacencies require alocal traversal of the graph, these fall into two categories. First,
the adjacency desired may be the union of a group of stored adjacencies. For example, if
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M3{M?} and M?aM1i are stored, then finding M3{ M1} requires only collecting the Mi1

information for each Mi2 in M3{M?} (finding M3{ M?2}{M?1} ). The second case is where the
union of stored adjacenciesis a superset of the entities satisfying the relation, requiring that each
entity be examined to determine whether it is to be included. For example, if we have M3{ M2},
MZ2[Mi], MIMO and MOM3} and want to find M?[M3] for some face,

MZ[M1][MO]{ M3} contains regions that do not bound the given face, thus it is necessary to
check each region to see if it bounds the face. Thisisreferred to aslocal searching. Both of these
operations are O(n,) , where n, isthe number of entities that must be examined to find the rela-
tion. n, is proportional to the size of the adjacency relation, n_, n, = cn, . For thefirst case, the

typical range for ¢ for the relations described in this paper is, 2 < c<6. For the second case the
rangeis 4 < ¢ < 25and a check on each entity isrequired to seeif some condition istrue.

7.7.1 Storage Requirements

The data structure described here can represent a mesh that is any mixture of various shaped enti-
ties (tets, hexes, wedges, pyramids, triangles, quads, lines, etc.). For the purpose of comparing
storage requirements, only all tetrahedral and all hexahedral meshes are considered. A mesh that
is a mixture of tetrahedrons, hexahedrons and other common elements would have storage
requirements between these two. The number of pointers needed to store each type of connectivity

is shown in Table 1. This table shows the number of members in the relation M&amM9iA (i t |)
for the entire mesh in terms of the number of entitiesin the mesh. N§, © | M{M OIi} | , Isthe number
of entities of dimension d in model m. For example, in a tetrahedral mesh, there are a total of
4N, pointers from regions to faces since each region points to four faces. This means that there
arealso 4N, pointers from faces to regions since each face pointed to by aregion points back to
that region (although each face only points to two regions).

TABLE 1. Adjacency storage requirements.

Tetrahedral Mesh Hexahedral Mesh

M3 M? M1 MO M3 M2 M1 M9
M3 ANS | 6N | 4ANJ, M3 6N | 12N3 | 8N
MZ | 4NJ 3N§ | 3N MZ | 6N3, ANG | 4N,
ML | 6N3 | 3N§ 2N, ML | 12N§ | 4N, 2N,
MO | 4NZ | 3N | 2N, MO | 8N3 | 4NF | 2N}
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The relationship between the numbers of the various entitiesin the mesh isshown in Table 2. The
tetrahedral mesh is assumed to be infinite with all equilateral tetrahedra (note that thisis actually
impossible since equilateral tetrahedra do not close pack). These values were checked against real
meshes, to check the equilateral assumption gave reasonable results, giving the following ranges:

2.02<NZ aN3 <219, 1.2<N{ aN$ <145, 0.18<N{, aNp <0.27, showing reasonably
good agreement. For a hexahedral mesh an infinite regular mesh was assumed.

TABLE 2. Relations between number of entitiesin mesh.

Tetrahedral 6 4
Mesh N » 2Ni, Ny » N o N> 52Ny

Hexahedrdl N2 »3N3 , NL » 3N3, , N9, » N3
Mesh M M M M

Using therelationsin Table 2, the adjacency storage requirements (Table 1) are rewritten in terms
of the number of regionsin the mesh (Table 3). Table 4 shows the average number of adjacencies
of each entity type to each other type on a per entity basis.

TABLE 3. Connectivity storage requirementsin terms of regions.

Tetrahedral Mesh Hexahedral Mesh

M3 M? Ml MO M3 M? M1 MO
M3 ANS, | NP | 4NJ M3 6N, 12N 8N3,
MZ | 4N 6N | 6NZ, MZ | 6NZ, 12N% | 12N3,
ML | 6N | 6NZ, 2N3, ML | 12N3 | 12N§, 6N,
MO | 4NZ | 6NZ | 2N§ MO | 8N, 12N, 6N,

TABLE 4. Average number of adjacencies per entity ’M{OW{ MCOl}’ ,

Tetrahedral Mesh Hexahedral Mesh

M3 | M2 | M1 | MO M3 | M2 | M1 | MO
Mi3 4 6 4 Mi3 6 12 8
Mi2 2 3 3 Miz 2 4 4
Mil 5 5 2 Mil 4 4 2
Mio 23 35 14 Mio 8 12 6

There are many subsets of thefirst order adjacencies from which the remaining adjacencies can be
derived. The next three sections give implementations that match well with the various require-
ments for retrieving information used in automated adaptive analysis processes.
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7.7.2 One Level Adjacency Representation

One possible adjacency set is to maintain adjacencies between entities one dimension apart. A
data structure similar to this is discussed in Reference 19 for the specific case of tetrahedral
meshes. Figure 20 graphically depicts this set of relationships.

3 2 1 0
M —>M| —-M —>l M

FIGURE 20. Graph of stored adjacenciesfor one-level adjacency representation.

The actual adjacencies stored are:
Downward Adjacencies M MO |, M2[M1], M3{ M2} ®3)
Upward Adjacencies MO{ M1} , M1{ M2} , M2 M3 ] (4)

The missing relations can be reconstructed as:

M3 M1} = M3 M2}{M1} K M3{MO% = M3 M2 {M1}{ MO}

MO{ M3} = MY MIH{M2}{ M3}, MY M2} = MY MI}{ M2}
MM} = MH{MZ}H{M3}

MEME) = (MEME ) LM )b, = 17 7" = o iy

The last expression deserves an explanation. Each edge in the adjacency M2[M] ] isexamined in
order. One vertex from each edge is added to the set based on the direction the face is using the
edge. If edge MZ[M] ], isused in the + direction, the first vertex is taken, if it is used in the -
direction, the second vertex is taken. Thisresults in the ordered set of vertices around the face.

The time to retrieve the unstored relations is less than implied by the operators above. For exam-
ple, obtaining M3{ M% = M3{M2}{ M1}{ MO} for atetrahedron requires looking at only two

of the faces of theregion. Thefirst face yields three of the vertices of the region and any other face
gives the fourth. Similar processes can be determined for some of the other relations. Table 5
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shows an estimate of the operation count to obtain each of the adjacency relations for the one-
level representation.

. L . I .
TABLE 5. Operation count for retrieving adjacency M{OW{ MCO } for one-level representation.

Tetrahedral Mesh Hexahedral Mesh

M3 | M2 | M1 | MO M3 | M2 | M1 | MO
M3 1 9 6 M3 1|20 16
M2 1 1 3 M2 1 1 4
mMi| 10 | 1 1 mi| 8 [ 1 1
Mo | 1401 70 | 1 MO | 48 | 24| 1

7.7.3 Circular Adjacency Representation

Another reasonable set of adjacenciesisto store downward pointers from each entity to the entity
one dimension lower and to store pointers from the vertices up to the highest order entitiesthat are
using them (in a 3-D manifold mesh this would be the mesh regions) as shown in Figure 21. Less

A//—\
M3 — = M2 M1 MO

FIGURE 21. Graph of adjacenciesfor circular adjacency representation.

information is stored in this scheme, however more work must be done to obtain the upward adja-
cencies that are not being stored. The actual adjacencies stored are:

Downward Adjacencies: MI[MO0], M2aM 1A, M3{ M2} (5)
Upward Adjacencies. M 2{ M3} (6)

This set of relations has the minimum connectivity storage in which al entities are explicitly rep-
resented. This can be seen by weighting the corresponding edges in the graph of first order adja-
cencies with the connectivity storage requirementsin Table 3. This set of relations (or the similar

one using the inverse of each relation: M{ M1}, M1{ M2}, M2 M3 ] and M3{ MO} ) is the

minimum weighted cyclic path that includes all four nodes in the graph. The three downward and
one upward adjacencies are used instead of three upward and one downward since there is direc-
tional use information in the downward relations.

Finding the missing relations is more involved than with the one level adjacency relations. Proce-
dures for constructing the relations M{ M1}, M}{ M2}, and MZ[ M3 are shown below. The
remaining adjacency relations are found as shown previously for the one-level representation.
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MO{M1}: MET MO{M1} ifMOT (M) where M1 = MO MS}H{ M2} { M1}

MI{M2}: M2T ML{M?} if MET (M) where M; = ML{ MO} {M3}{M?},
M2 M3]: R = M M1}{MO}{ M3} (R istheset of al regions bounding the closure of M?)

Each region in R must be checked to determine if it is adjacent to M?. The direction that the

regionisusing M? determines which side of M? the region is on:

M2 M3 ],

MZLM3]; = R, suchthat R{M2}, = M2 and b, = +

Table 6 shows an estimate of the operation count needed to retrieve each adjacency. Most of the
upward adjacencies require alocal search consisting of traversing the entire cyclein the adjacency
graph then doing topological queries on each entity that isfound. Thus, the time required to deter-
mine these relationsiis larger than for the one-level adjacency set.

. . . I . .
TABLE 6. Operation count for retrieving adjacency M[oW{ M ° } for circular representation.

Tetrahedral Mesh Hexahedral Mesh
M3 M2 M1 MO M3 M2 M1 MO
M3 1 9 6 M3 1 20 16
M2 299 1 3 M2 148 1 4
E 538 570 1 VE 304 296 1
MO 1 264 304 M0 1 192 228

7.7.4 Reduced Representations

- . d; : : i di oy, 0ioas
The restriction: For any entity M;" there is a unique set of entities of order d, =1, M,"aM ''fi

that are on the boundary of Midi if at least one member of MiOIi aM " ~'fi is classified on Gidj where

d P> d,, requiresinterior entities to be uniquely defined by their boundary entities. This allowsthe
elimination of interior faces and edges without losing any information about the mesh.

The functionality presented earlier must not be affected by the elimination of entities. Although
the implementation does not explicitly represent these entities, the interface must act as though it
does. All the operations given earlier must be possible even for entities which are not explicitly
represented. The general ideaisthat if an entity that is not represented and the program using the
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database needs that entity (e.g. the entity is returned as a part of an adjacency relation) a tempo-
rary proxy is returned for the entity. The lifetime of this proxy is only as long as the program is
referencing that entity. There are two important issues in eliminating entities: reconstruction of
the eliminated entities as needed and associating data with the eliminated entities.

Reconstructing eliminated entities

The most complex aspect of reconstructing eliminated entities is the fact that edges and faces are
oriented entities which must always have a consistent orientation. That is, if an edge, M, which

is not explicitly stored is defined as M| M0, M? | at one point it must never be redefined as

M }L M2, M JOJ on alater query. The same consistency of ordering of edges around aface applies.

One way in which this can be accomplished is:

1. Assign each vertex in the mesh a unique number (integer).

2. Define edgeM{t as going from M to MQ where j <k. That is, edges which are not explicitly
represented are defined such that the positive direction of the edge is from the lower numbered
vertex to the higher numbered one.

3. A face M? isdefined in terms of an ordered set of vertices M?[M©] where the face orientation

is defined by the loop in the direction from the lowest numbered vertex to the next lowest num-
bered vertex adjacent to it.

FIGURE 22. Edge and face orientations based on vertex numbering.

Although a unique orientation for edges and facesis obtained, the ability to arbitrarily orient them
islost. Since the orientation of an interior edge or face is determined by the numbering of the ver-

tices (which is hidden from the programmer) an edge defined from vertex M? to vertex M?,
M{ M, M9 |, may actually end up being oriented as M| M0, M? | if j <k. This cannot be

changed by simply renumbering the vertices as demonstrated in Figure 23. However, since there
is no requirement to orient internal edges and faces thisis aworkable approach.
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C
FIGURE 23. Impossible edge orientation, requires a<b, b<c, c<a.
It is necessary to know which vertices are used to define the edges and faces. This information
comes from the region definition. In order to infer the existence of faces and edges the relation
M3 MO (an ordered set corresponding to M3{ M©} ) must be defined for each type of region

(e.g. hexahedron, tetrahedron, wedge, etc.). This requirement was not present in the previous rep-
resentations where the topological configuration of the region did not need to be explicitly stored.

Note that, for linear elements, M i3|_ MO | isthe“classic” finite element connectivity structure.

Associating data with eliminated entities

It is not possible to store data on eliminated entities. The best way to resolve this is to store the
data associated with the edges and faces on the vertices used to define them. To do this not only
the data must be stored but aso information that indicates which face or edge the data belongs to
(for an edge it would be necessary to store the other vertex, for aface al the other vertices which
define the face). This extrainformation used to indicate the owner of the datais only needed when
there is data actually stored on the entity.

Implementation

Elimination of faces and edges only in the interior of the mesh gives a data structure called the
reduced interior representation. On the boundary M Id C GiOIi must be represented. The adjacency
graph of this representation is shown in Figure 24.

FIGURE 24. Adjacency graph for reduced interior representation

The adjacency graph is more complicated since the mesh representation is now heterogeneous.
The dashed lines in the graph indicate adjacencies that are implicitly stored due to the ordering of
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vertices defining a region. The ordering of vertices which defines the faces must not be used for
faces on the boundary. Local searching must be done to find these faces (which are represented). It
can be seen from the adjacency graph that any downward adjacency can be directly retrieved.
Upward adjacencies are obtained in a similar manner to the circular hierarchic representation.
Table 7 shows an estimate of the operation count to retrieve adjacencies for the reduced represen-
tation. The counts shown only consider retrieving adjacencies for interior entities, more searching
must be done on the boundary to find boundary entities. It isassumed that it takes one operation to
construct a proxy for an entity that is not explicitly represented. The operation counts are less than
those for the circular representation since all of the downward adjacencies are stored (either
explicitly or implicitly). The retrieval operations that require local searching take more time than
the same operation using the one-level adjacency representation.

. o . I .
TABLE 7. Operation count for retrieving adjacency I\/IirOW{ MC0 } for reduced representation.

Tetrahedral Mesh Hexahedral Mesh

M3 M?2 M1 MO M3 M?2 M1 MO
M3 4 6 1 M3 8 12 1
Mi?_ 293 3 1 Mi2 176 4 1
M1 230 373 1 M1 112 212 1
MO 1 219 198 MO 1 116 86

I ssueswith thereduced representation

There are some issues with the reduced representation that make them less desirable than the rep-
resentations with a complete set of entities [9]. The most important problem is that modifying the
mesh may change the definition of mesh entities that were not directly modified. For example,
Figure 25 shows an edge collapse procedure where this redefinition occurs. The dashed edge is
collapsed with vertex 6 replacing vertex 2. The two figures show the edge orientations (as arrows
on the edges) and the face orientations (a + face has its normal pointing out of the page, a - face
has it pointing into the page) as given by the vertex numbering scheme. After the edge collapse,
three things have happened that would not happen if the edges and faces were directly repre-
sented: i) two edges (2-4 and 2-3) have actually changed their identities causing any references to
them to become invalid, ii) those same two edges have changed their orientations (thus the direc-
tion that the faces are using them have changed), and iii) aface (previously 1-2-4, now 1-4-6) has
changed its orientation. The same operation using a representation with all entities present would
have resulted in only adjacency information being changed. The entities themselves would have
remained unchanged including their orientations.

This non-local effect makes this representation less efficient for doing many of the standard mesh
modifications since information about the topology of the mesh that is saved by the procedure
may become invalid when an operation on the mesh is performed. This means that the procedure
must reacquire this information after each mesh modification. With the full representation of all
entities, the propagation of these changesis very limited and predictable.
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a) before collapse b) after collapse
FIGURE 25. Edge collapse

7.8 Comparison to Classic FE Data Structure

This section compares the size of a data structure based on the classic e ement-node connectivity
to the hierarchic representations showing that the hierarchic data structure does not necessarily
take significantly more storage space than a classic data structure, especialy when other data
structures needed to perform an analysis are considered. The comparison is not really fair since
the classic data structure does not meet the needs of various adaptive procedures. Meshes consist-
ing of tetrahedral and hexahedral elements of up to cubic order are considered. For the purposes
of the comparison, only serendipity elements with nodes on edges are considered, although all the
data structures can easily store any type of element. For this comparison sizes are given in words,
where an integer or apointer is one word and areal valueis 2 words.

7.8.1 Classic Mesh Data Structure

The classic approach to a mesh data structure describes the mesh in terms of elements and nodes.
Additional data structures needed for operations such as node or element reordering are also com-
monly constructed when this data structure is used. An element is defined by an ordered list of
nodes (Figure 26). Each node has an id and a position in space.

El enent { Node {
int type; int id;
ptr attributes; real x,vy, z;
ptr nodes[n] }

}
n =4 (linear tet.) 10 (quad. tet.), 16 (cubic tet.), 8
(linear hex), 20 (quad. hex.), 32 (cubic hex.)

FIGURE 26. Classic mesh data structure.
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The size of the Element data structure is n+ 2 where n is the number of nodes in the element.

The size of the Node data structure is 7. Table 8 shows the number of nodes (N) as a function of
the number of edges and verticesin amesh.

TABLE 8. Number of nodes and e ementsin mesh.

Element Type | Number of Nodes | Number of Elements
Linear NO N3
Quadratic N1+ NO N3
Cubic 2, N1+ NO N3,

Given the size and number of nodes and elements, the storage needed for the mesh can be calcu-
lated as shown in Table 9.

TABLE 9. Total storage by entity - classic.
Element | Node | Total

Tetrahedral
Linear | 6N3 | IN3 | 7N3

Quadratic | 12N3 | 8N3 | 20N,

Cubic | 18N3 | 15N | 33NJ,

Hexahedral
Linear | 10N3 | 7N3, | 17N3

Quadratic | 22N3 | 28N3, | 50N,

Cubic | 34N3 | 49N3 | 83N3,

Equation Renumbering

Some of the most successful renumbering algorithms are Sloan, Gibbs-King, Gibbs-Poole-Stock-
meyer (GPS) and reverse Cuthill-McKee (see reference 87 and references therein). All of these
algorithms build a graph of the node-to-node connectivity of the mesh. An efficient implementa-

tion uses an adjacency list accessed by a pointer vector [86] requiring storage of 2E + N words,
where E isthe number of edgesand N isthe number of nodes in the graph. Other storage is also

needed which varies greatly by algorithm. The number of nodes, N, in the adjacency graph isthe
same as the number of finite element nodes in the mesh. The number of edges in the graph
depends on the type of mesh and on the particular mesh itself.

E can be calculated for various types of meshes. For each node, the number of connected graph
edges, E,,, is the number of nodes on al the elements that share that node (counting each node
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only once). For linear hexahedral elements (nodes only at the vertices) the connectivity of each
node is all the nodes on the eight hexahedral elements that meet at each vertex (26). E,, for vari-

ous types and orders of meshesis shown in Table 10.

TABLE 10. Node connectivity.

Tetrahedral Hexahedral
Element Order | Vertex Nodes | Edge Nodes | Vertex Nodes | Edge Nodes
Linear 14 N/A 26 N/A
Quadratic 61 22 80 50
Cubic 107 38 130 81

The value of E isthe connectivity of each node times the number of nodes of that type (Table 11).

TABLE 11. Total connectivity storage.

Element Type Tetrahedral Hexahedral
Linear 2.5N§, 26N§,
Quadratic 37N3, 230N3,
Cubic 64N3 371IN3,

Note the dramatic increase in connectivity information that must be stored for higher order ele-
ments. These numbers indicate that in these situations it may be wise to avoid these renumbering
schemes which are derived solely from the structure of the assembled system of equations and use
an approach based on the connectivity of the mesh as described in Section 7.8.5.

7.8.2 Hierarchic Data Structure - One-Levd

A data structure for the one-level representation is shown in Figure 27. The number of upward
pointers from edges to faces and from vertices to edges is the average number of entities in that
adjacency relation.
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Region { Face { Edge {

ptr classification; ptr classification; ptr classification;
int #faces; int #edges; ptr vertices|[2];
ptr faces[4! or 6"]; ptr edges[3! or 4M; int #faces;

} ptr regions[2]; ptr faces[5! or 4“]

} int node_id[0',1% or 2°;
Point node_location[0',19 or 29;
}

Vertex { Point { Meaning of superscipts:
ptr classification; real x,y,z; t: tetrahedral mesh
#edges; } h: hexahedral mesh
edges[14! or 6"] l: linear mesh
int node_id; g: quadratic mesh
Point location; C: cubic mesh

FIGURE 27. Hierarchic data structure - one-level.

The size of each entity can be calculated as shown in Table 12. Total storage for the mesh is
shown broken down by mesh entity in Table 13.

TABLE 12. Entity sizesfor one-level representation.

Tetrahedral Hexahedral
Regio | Fac | Edg | Ver- Regio | Fac | Edg | Ver-
n e e tex n e e tex
Linear 6 7 9 23 8 8 8 15
Qua- 6 7 16 23 8 8 15 15
dratic
Cubic 6 7 23 23 8 8 22 15

TABLE 13. Total storage by entity - one-level representation.

Region | Face Edge Vertex | Total

Tetrahedral
Linear | N3 | 14N3 | 11IN3 | 4N3 | 35N3,

Quadratic | 6N3 | 14N3, | 19N3, | 4N3 | 43N3,

Cubic | 6N, | 14N3 | 28N3 | 4N3 | 52N3,

Hexahedral
Linear | gN3, | 24N3 | 24N3, | 15N3 | 7IN3,
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TABLE 13. Total storage by entity - one-level representation.

Region | Face Edge Vertex | Total
Quadratic | gN3 | 24N3, | 45N3 | 15N3 | 92N3,

Cubic | 8N3 | 24N, | 66N3 | 15N | 113N3

7.8.3 Hierarchic Data Structure - Circular

The hierarchic data structure for the circular representation is shown in Figure 28. A real imple-
mentation would have to be dightly more complicated to handle mesh generation and adaption
procedures where a partially constructed mesh may exist.

Region { Face { Edge {
ptr classification; ptr classification; ptr classification;
int #faces; int #edges; ptr vertices|[2];
ptr faces[4! or 6M; ptr edges[3! or 4M; int #faces;

} } int node_id[0',19 or 29;

Point node_location[0',19 or 29;
}

Vertex { Point { Meaning of superscipts:
ptr classification; real x,y,z; t: tetrahedral mesh
#regions; } h: hexahedral mesh
regions[23! or 8" I: linear mesh
int node_id; g: quadratic mesh
Point location; C: cubic mesh

FIGURE 28. Hierarchic data structure- circular.

The sizes of each entity are shown in Table 14. In comparison to the one-level representation the
region is the same size, the face and edge structures are smaller (since they do not have upward
connectivity stored) and the vertex is larger (since the number of regions adjacent to a vertex is
larger than the number of edges adjacent to avertex). The overall storage broken down by entity is
shown in Table 15. The total storage is 15-25% less than the one-level representation.

TABLE 14. Hierarchic representation entity sizes- circular.

Tetrahedral Hexahedral
Region | Face | Edge | Vertex Region | Face | Edge | Vertex
Linear 6 5 4 32 8 6 4 17
Quadratic 6 5 11 32 8 6 11 17
Cubic 6 5 18 32 8 6 18 17
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TABLE 15. Total storage by entity - circular.

Region | Face Edge Vertex | Total

Tetrahedral
l%/l 10N,§/I 5Nl§/| 5N,§/I 26N,§/I

Linear | gN

Quadratic | eN3, | 10N | 13N3 | 5N3 | 34N3,

Cubic | 6N3 | 10N3 | 22N3 | 5N | 43N3

Hexahedral
Linear | gN3 | 18N3 | 12N3 | 17N3 | 55N3,

Quadratic | gN3 | 18NJ, | 33N3, | 17N3, | 76N,

Cubic | N3 | 18NJ | 48N3 | 17N3, | 91N3,

7.8.4 Hierarchic Data Structure - Reduced Interior Representation

The data structure for the reduced interior representation (Figure 29) is more complicated than the
other two hierarchic representations. There are two different representations of the vertex, one for
the boundary and one for the interior. The vertices stored in the region must be stored in a known
order for each element topological configuration (e.g. tetrahedron, hexahedron). The data struc-
ture shown assumes that there is a full representation on the boundary (edges classified on model
faces are represented). The implementation shown here is a little simpler than would be needed

for mesh generation since it would be necessary to be able to represent a partially constructed
mesh.
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Region {
ptr classification;

Boundary Face {
ptr classification;

Boundary Edge {
ptr classification;

int type; int #edges; ptr vertices|[2];
ptr vertices[4! or 8"); ptr edges[3! or 4M; int #faces;
} ptr regions[2]; ptr faces[2]
} int node_id[0',1% or 2°;
Point node_loc[0',19 or 2€];
}
Boundary Vertex { Vertex {
ptr classification; ptr classification;
# b_edges; #regions;
ptr b_edges[6! or 4"] regions[23! or 8"
int node_id; int node_id;
Point location; Point location;
int #regions; Edge_info edges[7' or 3"]
ptr regions[12 or 4"]; }
int #interior edges;
Edge_info edges[4! or 1M;
}
Edge_info{ Point { Meaning of superscipts:
ptr other_vertex; real x,y,z; t: tetrahedral mesh
int node_id[19 or 29] } h: hexahedral mesh
Point[19 or 2°; I: linear mesh
} g: quadratic mesh

C: cubic mesh

FIGURE 29. Hierarchic data structure - reduced interior.




The sizes of each entity are given in Table 16. Compared to the other two hierarchic representa-
tions most of the data has been moved to the vertex. Part of the reason for thisis that information
that was stored on the edges (nodes in this case) it is now stored on one of the vertices of the edge,

TABLE 16. Entity sizes- reduced interior.

Region | Boundary | Boundary | Boundary | Vertex
Face Edge Vertex
Tetrahedral
Linear 6 7 6 29 32
Quadratic 6 7 13 61 88
Cubic 6 7 20 89 137
Hexahedral
Linear 10 8 6 19 17
Quadratic 10 8 13 27 41
Cubic 10 8 20 34 62

To calculate the total storage for this representation (Table 17) the percentage of boundary entities
must be known. For the comparison used hereit is assumed that the mesh has 30% of its vertices,
10% of its edges and 5% of its faces on the boundary [9].

TABLE 17. Total storage by entity - reduced interior.

Boundary | Boundary | Boundary
Region | Face Edge Vertex Vertex | Total
Tetrahedral
Linear | eN3 | 05NJ | IN3 | 15N§ | 4Nj | 13N§
Quadratic | 6N3 | 05N3 | 15N3 3N | 1IN3 | 22N,
Cubic | 6N | 05N3 | 25NF | 5N | 17N3 | 31N
Hexahedral
Linear | 10N3 N3, 2N3, 6N3 | 12N3 | 31N3,
Quadratic | 10N3 | N3 AN3, 8NJ | 29N¥ | 52N§,
Cubic | 10N}, N3, 6N 3, 1I0NE, | 44N$ | 7ING,

7.8.5 Node Renumbering with the Hierarchic Mesh Representations

Extra data structures for node (or element) renumbering are not needed with the hierarchic mesh
representation since the needed adjacency information is aready available. One simple procedure
for nodal renumbering uses the adjacency information to traverse the mesh, numbering the nodes
asit does so. A small amount of storage is needed for the queue and to find a good starting set of
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vertices, but extra storage for the node-to-node connectivity is not needed. Experience has shown
that thistype of renumbering resultsin global stiffness matrices with bandwidths competitive with
those generated by other renumbering algorithms. In fact, the algorithm is much the same as
reverse Cuthill-McKee [87], it is even possible to add degree of node priority to this algorithm
making it even more like reverse Cuthill-McKee.
initialize queue with vertices
current _node_nunmber = nunber of nodes
whi | e queue not enpty{
renove first vertex from queue
nunber node at vertex w th current_node_nunber
current _node_nunber = current_node_nunber -1
for each unnunbered node on any higher order entities adjacent to vertex {

nunber node with current_node_nunber
current _node_nunber = current_node_nunber -1

add nei ghboring vertices of vertex that are not in queue to queue

}

This type of renumbering could also be used with a classic data structure. It would require build-
ing the node-element connectivity for the vertex nodes only.

7.8.6 Size Comparison

The information from the previous sections is summarized in Table 18 and Table 19. The cost of
the hierarchic data structures decreases rapidly as higher order elements are used. If renumbering
is taken into account the hierarchic data structures are smaller for quadratic and higher order ele-
ments.

TABLE 18. Size comparison - tetr ahedral meshes (numbersin parenthesis are classic data structurewith
renumbering information).

Element % of % of Reduced | % of
Order Classic One-Level | Classic Circular | Classic Interior Classic
Linear 7N I:\)’/I 35N ,C\SA 500% | 26N l%/l 371% 13N E/I 186%
(95N E/I ) (368%) (274%) (137%)
ng— 20N3, 43N3, 215% | 34N 3 170% | 22N 3 110%
dratic (57N3) (75%) (60%) (39%)
Cubic 33N I%/I 52N I%/I 158% | 43N I%/I 130% 31N I:\)’/I 94%
(97N l%/l ) (54%) (44%) (32%)
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TABLE 19. Size comparison - hexahedral meshes (humbersin parenthesisare classic data structurewith
renumbering information).

Element % of % of Reduced | % of
Order Classic One-Level | Classic Circular Classic Interior Classic
Linear 17N I%/I 71N E/I 418% 55N I%/I 324% 31N E/I 182%
(43N 3 ) (165%) (128%) (72%)
M
Qua- 50N3, 92N3, 184% | 76N 3 152% | 59N 3 104%
dratic
(280N 3 ) (33%) (27%) (19%)
M
Cubic 83N l%/l 113N l%/l 136% 91N l:\%/l 110% 71N I:\)’/l 86%
(25%) (20%) (16%)
(454N 3 )
M

Another interesting result can be found by normalizing the mesh sizes by the number of nodesin
the mesh (Table 20). Since the number of nodes in the mesh is related to the amount of informa-
tion stored on the mesh during the solution process, this can be viewed as the information cost of
the mesh. Doing this normalization alows meshes of different element orders and element types
to be compared. Increasing the element order decreases the information cost since the fixed cost
of storing the mesh topology is amortized over more nodes. One interesting observation is the
high information cost of alinear tetrahedral mesh compared to a linear hexahedral mesh and that
the large difference virtually disappears when the order of each mesh israised to quadratic.

TABLE 20. Information cost (words/node) (numbersin parenthesis are classic data structure with
renumbering infor mation).

Element Reduced
Order Classic | One-Leve | Circular | Interior
Tetrahedral Mesh
Linear 40 (56) 201 153 76
Quadratic | 15 (41) 31 25 16
Cubic 13 (37) 20 17 12
Hexahedral Mesh
Linear 17 (43) 71 55 31
Quadratic | 13 (70) 23 19 13
Cubic 12 (65) 16 13 10

Another item that must be considered is that, during a solution process, other information must be
stored in addition to the mesh. At a minimum, a certain number of degrees of freedom per node
are stored. At most, all the local stiffness matrices may be stored. Somewhere in the middle, in
terms of storage, would be storing the assembled stiffness matrix in some form. This storage is
relevant since, if it islarge compared to the mesh storage required, asmall amount of extra storage
for the mesh is not very significant.
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A summary of this storage is given in Table 21 for three different cases. First, the storage for the
degrees of freedom that hold the solution itself isfixed at 2 words per degree of freedom (one dou-
ble precison number). Second, storage for the individual element matrices is given. Third, the
storage needed for an assembled global stiffness matrix using compressed row storage [26] is
given assuming a symmetric system. The compressed row storageislikely to be the most compact
storage possible for the global matrix. In particular, a skyline storage requires storage per node
equal to the average bandwidth of the matrix which will increase as the mesh isrefined for agiven
problem, the compressed row storage per node is independent of the problem size. The last two
itemsin Table 21 depend on the square of the number of degrees of freedom per node, since the
size of the stiffness matrix of an element scales in this manner. Note that while the information
cost for the mesh decreases as the element order is increased the information cost for the solution
generally increases.

TABLE 21. Information cost for solution data structures (words/node) N isthe number of degrees of
freedom per node.

Element Element
Order Solution | Matrices | Global Stiffness
Tetrahedral Mesh
Linear 2n 37612 21n2
Quadratic 2n 292n2 41n2
Cubic 2n | 398n2 64n2
Hexahedral Mesh
Linear 2n | 256n2 39n2
Quadratic 2n 400n2 86n2
Cubic 2n | 585n2 132n2

A comparison to the mesh storage necessitates picking specific problem types and solution proce-
dures. For illustrative purposes a 3-d elasticity problem (3 degrees of freedom per node) using
quadratic tetrahedral elements and a solver that uses an assembled global stiffness matrix (com-
pressed row storage), is considered. The total storage for the solution process will be 375 words/
node (6 words/node for the solution and 369 words/node for the global stiffness matrix). The clas-
sic data structure adds another 15 words/node for atotal of 390 words/node. The largest hierarchic
data structure adds 31 words/node for atotal of 406 words/node. This 4% increase in storage (1%
for hexahedral elements) for using the richer data structure for the mesh is not significant.

7.9 Comparison to Special Purpose Hierar chic Data Structures

There have been some published hierarchic data structures used in adaptive anaysis that, although
not entirely general purpose, are well suited to the functions required by the specific procedures.
This section investigates the storage penalty incurred by using the general purpose data structure
described here versus one specificaly designed for the problem. All of the data structures pre-
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sented were specifically designed to handle only tetrahedral meshes which saves some storage
space since the number of downward adjacenciesiis fixed.

7.9.1 Edge-Based Data Structure

Biswas and Strawn [14] present a data structure tailored to an edge-based analysis and refinement
scheme. This data structure is a cross between the one-level adjacency structure and the reduced
interior representation. Their data structure omitsinterior faces but includes faces classified on the
boundary (Figure 30). Interior and boundary edges are included. Their data structure does not
have classification information.

K/_\
/—_\‘

3 2 1 0
M - - M boundary @™ 'PM 4_. M

FIGURE 30. Data structur e of Biswas and Strawn [14].

A calculation of the size of their data structure, including only the mesh information (not the solu-
tion storage which isalso given in their paper) gives astorage of 22.5N 3, . Thisis between thecir-
cular and reduced-interior representations.

7.9.2 Data Structurewith Fast Retrieval of Downward Adjacencies

Kallinderis and Vijayan present a data structure containing all four topological mesh entities and
primarily downward adjacency information (Figure 31) in Reference 50. Retrieving some adja-
cencies with this data structure would require global searching, however their adaptive anaysis
does not need these adjacencies.

N

3 2 1 0
_>
M _>Nl 1" —=M M
FIGURE 31. Data structure of Kallinderis and Vijayan [50].

This structure is optimized for speed since it explicitly stores the adjacencies required by their
adaptive procedure, rather than deriving them from other adjacencies. Their data structure also

does not have classification information. The size of their data structure is 27N which is
roughly the same as the circular representation of the hierarchic data structure.
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7.9.3 Data Structurewith Only Downward Adjacencies

Connell and Holmes give a data structure in Reference 22 that provides only downward adjacen-
cies (Figure 32). They do however include classification information and correctly reposition ver-
tices classified on model boundaries during mesh refinement. Again, such a data structure would
require global searching for some adjacencies which are apparently not needed by their analysis.

MP e M? " - M°

FIGURE 32. Data structure of Connell and Holmes[22].

The storage for this representation requires 17.5N g, . Thisis half of the one-level adjacency struc-
ture and between the storage for the circular and reduced-interior representations.

7.10 Mesh Implementation for Trellis

The implementation of amesh for Trellis uses the one-level representation discussed earlier.

7.10.1 Mesh Class

The Mesh class and itsrelation to other classesis shown in Figure 33. Each mesh isacollection of
regions (MRegion), faces (MFace), edges (MEdge) and vertices (MVertex).

- MRegion
SGModel 1 Mesh b “| MFace
createdFrom
- MEdge
SimpleMesh *| MVvertex

FIGURE 33. Mesh and related classes.

A mesh is aways created from, and maintains arelation to, a single geometric model (SGModel).
The Mesh class provides an abstract interface that is implemented by the SimpleMesh class. This
isto allow the posibility of other mesh representations in the future; at this point there are no other
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representations implemented. The interface that Mesh provides to the outside world is twofold, it
isafactory for mesh entities and it is a container for mesh entities.

The factory aspects of mesh come from the fact that it is the mesh object that actually creates the
mesh entities that are in the mesh, through the member functions given below:

class Mesh {

/]l Create a new region and add it to the nmesh. */
virtual MRegi on *createRegion(int nFace, Mrace **faces, int *dirs,
CGEntity *gent)=0;
/] Create a new face and add it to the nesh. */
virtual Mrace *createFace(int nEdge, MEdge **edges, int *dirs, GEntity *gent)=0;
/1l Create a new edge and add it to the nesh. */
vi rtual MEdge *creat eEdge(Mertex * v1, M/ertex *v2, CEntity *gent) =0;
/1l Create a new vertex and add it to the mesh. */
virtual M/ertex *createVertex(GPoint *p, GEntity *gent)=0;

In Mesh these are al pure virutal functions that are overridden in the derived mesh classes. Thus
each type of dervied mesh class may create different types of mesh entites. At this point there is
only one class derived from Mesh which is SimpleMesh, however this offers extensibility for
future mesh implementations. An example of another implementation would be one that imple-
ments one of the other mesh representations discussed earlier in this chapter.

A Mesh also acts as a container for mesh entities. There are a number of member functions to
allow accessing either all of the entitiesin the mesh or the entities classified on certain model enti-
ties. The concept of an iterator is used heavily in the design of the access to the entities in the
mesh. An iterator is a seperate object that once obtained allows the calling code to continually
query the next item from it. This seperation of the functionality of a container and the access to
the contents of a container is a well know and important design element when it is important to
allow multiple independent traversals of the information in the container.

class Mesh {

/1l Get an iterator initialized to the first entity of the given type in the nesh
virtual MeshRegionlter firstRegion() const = 0;

virtual MeshFacelter firstFace() const = 0;

virtual MeshEdgelter firstEdge() const = 0;

virtual MeshVertexlter firstVertex() const = 0;

/1 get an iterator initialized to the first unclassified mesh entity

EDLi st |t er <MRegi on> uncl assifiedRegionlter() const;

EDLi st|ter<Mrace> uncl assi fi edFacelter() const;

EDLi st |t er<MEdge> uncl assi fi edEdgel ter() const;

EDLi stlter<Wertex> uncl assifiedVertexlter() const;

/] get an iterator initialized to the first entity classified on nodel entity
EDLi stlter<MRregi on> cl assifiedRegionlter(GEntity * ent) const;

EDLi stlter<Mrace> cl assifiedFacelter(GEntity * ent) const;

EDLi stlter<MEdge> cl assifiedEdgelter(GEntity * ent) const;

EDLi stlter<WMertex> classifiedVertexlter(GEntity * ent) const;

Mvertex * classifiedVertex(Gvertex *v) const;
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7.10.2 Notes on the implementation of the Mesh class

There are two important things to note about the implementation of the Mesh class and its auxil-
lary classes (in particular the iterators). The first is that the iterators that are defined for the Mesh
are safein the presence of modification of the mesh. The second is how the meshis stored to allow
efficient retrieval of inverse classification.

Safe Mesh Iterators

As mentioned, the use of iterators is useful since it alow the easy implementation of nested loops
on the data that is being iterated on. However in most implementations of iterators over contain-
ers, the iterators are not safe in the presence of modification of the container by another iterator.
By “not safe” this means that if there are two iterators and one modifies the container, the other
may be put into an invalid state (or if the container is modified by some other operation not
involving an iterators, such as deletion of an item from the container).

Although this situation is common and perfectly acceptable in many cases, in the situations that
the iterators on the mesh are used thisis not an acceptable implementation. In addition to the uses
described in this thesis, this same implementation is used for mesh generation and mesh adaptiv-
ity, and in these applications the mesh is a very dynamic object that is continually changing. An
example of a situation where an unsafe iterator is a problem is the following.

Consider an algorithm that loops through all of the regions in a mesh and for each region that has
a shape worse than some criteria, locally modifies the mesh to improve the shape of that region.
This local modification is done by deleting a certain number of regions around the bad one and
creating new ones with better shapes. This will affect not just the region that the iterator just
returned but also an arbitrary number of other regions in the mesh. Using an iterator that is not
safe in the presence of modification of the container in this case will result in the iterator becom-
ing invalid in some cases.

The solution used for the mesh iterators is that the container that they are iterating over knows of
each active iterator on the container. Thus when the container is modified each active iterator is
checked to ensure that it is updated to remain valid. Although there is some overhead inherent in
such an implementation (which is why containers and iterators typically are not implemented in
this manner) in the situations where the mesh iterators are used this overhead has been found to be
negligable compared to other operations being performed.

In addition, another design criteria of the iterators and containers used for the mesh is that they
have the following property: If during iteration over the container, more items are added to the
container, it is guarenteed that the iterator will see these new items before it indicates that it has
iterated over everything in the container. Thisis important in the implementation of the previous
given optimization algorithm since it says that one can write this algorithm as a single pass over
the mesh. If during the optimization of a single mesh region any of the new regions created don’t
satisfy the shape criteria, they will be seen before the iteration terminates. Thus by the time asin-
gle iteration over the mesh terminates all of the regions in the mesh will satisfy the shape crite-
rion.
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I nver se classification

As shown above, the current implementation of the Mesh class allows the user to iterate over the
mesh entities that are classified on a particular model entity. This is accomplished by storing the
mesh entities in a distributed manner over the model. In particular each model entity has alist of
the mesh entities that are classified on it and a list of any unclassified entities are stored attached
to the model itself. The mesh itself does not store alist of the entities, but rather just knows which
model they are classified on and goes to the model to retrieve them.

While this makes the implementation of retrieving the inverse classification quite simple (just iter-
ate over the list of mesh entities for the model entity of interest), and provides the inverse classif-
cation with no additional storage cost, it does make the iterators over the entire mesh rather
compilcated since they must iterate over each individual list stored on each model entity. However
since thisis al encapsulated within the iterator, the user does not have to see any of this.

This particular item actually nicely points out the power of a good abstraction as a means to mini-
mize the impact of changes of the underlying implementation on the client code. A previous
implementation of the mesh did not store the mesh entities in this distributed manner (and did not
provide a means to easily retrieve the inverse classification). However iterators were still used to
loop through all of the entities in the mesh. The modification to the current implementation
involved throwing out al of the code that implemented the storage of the entities in the mesh and
totally rewriting it, a considerable change. At the same time the implementation of the mesh itera-
tor was changed to match this. Since all of the access to the mesh was through the iterators which
kept their same interface, not asingle line of client code had to be changed.

7.10.3 Mesh Entities

SolutionEntity

*

MEntity GEntity

classifiedOn

MRegion MFace MEdge MVertex

FIGURE 34. Mesh entity derivation

The class hierarchy for the mesh entitiesis shown in Figure 34. The base class MEntity is derived
from a class SolutionEntity which is used in conjunction with the Field class to store solution
information as described in Section 8. Derived from MEntity are the current implementation of
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each of the mesh entities, MRegion is a mesh region, MFace is a mesh face, MEdge is a mesh
edge and MVertex isamesh vertex.

The important parts of the MEntity class are shown below. The basic functions shown here are the
ones valid for all mesh entities: inquiring the type of the entity, getting and setting classification
and id (an arbitrary number associated with each entity), getting the entities topol ogically attached

to this entity.

class Mentity : public SolutionEntity

{

public:
virtual MEntity::Type type() const = 0; // Get the type of the nesh entity.
virtual int dim) const = 0; // Get the dinmension of the mesh entity
[** Get the nodel entity this nmesh entity is classified on. */
GEntity *whatln() const; // Get nodel entities classified on
int whatlnType() const; // Get type of nodel entity classified on
void setWhatIn(GEntity *what); // Set classification
void setID(int ident); // Set id
int id() const; // Get id
virtual int numPoints() const=0; // Get nunber of points on this nesh entity
virtual GPoint & point(int i=0) const=0; // Get point i
virtual void addPoint(GPoint *pt)=0; // add a point to entity
/1l Get the topological sub entities of this nesh entity.
virtual SPList<MEntity*> subs() const = O;
/1 Get the topological sup entities of this nesh entity.
virtual SPList<MEntity*> sups() const = O;
/1 CGet all the entities on the closure of this nesh entity.
virtual SPList<MEntity*> closure() const;

}

Each derived mesh entity class adds in additional functionality that is specific to its topological
type. A mesh region has functions relating to getting its defining faces and lower order entities.

class MRegion : public MeEntity {

public:
MRegi on(i nt nunfFaces, Mrace **faces, int *dirs, GEntity *classifiedOn);
i nt nunfaces() const; // Nunmber of faces bounding this region
int faceDir(int i) const; // Direction of the ith face
virtual SPLi st<Mrace *> faces() const; // Get all faces bounding region
virtual Mrace * face(int i) const; // Get ith face
SPLi st <MEdge *> edges(int dir=1) const; // Get edges on closure
SPLi st<MVertex *> vertices(int dir=1) const; // Get vertices on closure
int inCosure(Mentity *ent) const; // return true if ent is in closure
voi d repl aceFace(Mrace *ol dFace, Mrace *newFace); // replace face on region with

/I new face
b

A mesh face has functions to get its defining edges and higher and lower order entities. In addition
functions to change the orientation of aface, permute its edges and merge it with another face are
provided.

class MrFace : public Mentity {
public:

Mrace(int nunEdges, Medge **edges, int *dirs, CGEntity *classifiedOn);

i nt nunRegi ons() const; // Number of regions using face
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i nt nunkdges() const; // Nunber of edges bounding face

int edgeDir(int i) const; // Direction of ith edge

int edgeDir(MeEdge *) const; // Direction of given edge

SPLi st <MRegi on *> regions() const; // Regions using this face

/| Edges bounding this face in the given direction, starting at given vertex

virtual SPLi st<MEdge *> edges(int dir=1, M/ertex *v = 0) const;

virtual MEdge * edge(int i) const; // ith edge of face

SPLi st<MVertex *> vertices(int dir=1) const; // vertices bounding face in given
/] direction

virtual MRegion * region(int dir) const; // region on given side of face

MRegi on * ot her Regi on( MRegi on *r) const; // other region using face

MEdge * edgeBet weenFaces(Mrace *ot her Face) const; // edge between this face and
/1 given face

int inCosure(Mentity *ent) const; // if ent is in closure of face

virtual void flip(); // Reverse orientation of face, updating regions

voi d pernuteEdges(int num; // permute edges of face numtinmes ccw

voi d merge(Mrace *f); // Merge with given face. This face is kept

I

A mesh edge has the standard topological queries and functions to change its orientation and
merge it with another edge.

class MEdge : public Mentity {
public:
MEdge(M/ertex *v1, M/ertex *v2, GEntity *classifiedOn);

i nt nunfFaces() const; // nunber of faces using edge
virtual SPLi st<MRegion *> regions() const; // regions using edge
virtual SPList<Mrace *> faces() const; // faces using edge
virtual M/ertex * vertex(int i) const; // ith vertex on edge
Mrace *face(int i) const; // ith face using edge
MVertex * otherVertex(const M/ertex *v) const; // vertex opposite v
MFace * ot her Face(Mrace *f, MRegion *r); // other face on r using this edge
int inCosure(Mentity *ent) const; // returnif ent is in closure
void flip(); // flip edge, updating faces using edge
voi d nmerge( MEdge *e); // Merge with given edge. This edge is kept

}

A mesh vertex has the standard topological queries and afunction to merge it with another vertex.

class MVertex : public Mentity {
public:
Mvert ex(GPoint *p,GEntity *cl assifiedOn);
virtual SPLi st<MRegion *> regions() const; // get regions using vertex
virtual SPList<Mrace *> faces() const; // Faces using vertex
virtual const SPList<MeEdge *> & edges() const; // Edges using vertex
virtual int nEdges() const; // Nunber of edges using vertex
MEdge * edge(Mvertex *) const; // edge with given vertex at other end
MEdge * edge(int n) const; // return nth edge
voi d merge(Mertex *v); // Merge with given vertex, this vertex is kept
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8. Fields

One problem with many “classic” finite element codes (as well as other types of numerical analy-
sis codes) isthat the solution of aproblemisgiven in terms of the values at a certain set of discrete
points (e.g. nodal locations or integration points). However there is actually more information
than just the values at these points, there is also information about the interpolations that were
used in the analysis, but thisinformation islost after the analysisis run. Without knowing the spe-
cifics of the analysis code it is impossible to know what interpolations were used to obtain a par-
ticular solution. This makes it much more difficult to use the solution in a subsequent step in the
analysis (e.g. error estimation, or as an attribute for another analysis). The analysis framework
eliminates this problem by introducing a construct known as a field.

8.1 Field

A field describes the variation of some value over one or more entities in a geometric model. The
gpatial variation of thefield is defined in terms of interpolations defined over a discrete representa-
tion (amesh, in the case of finite elements) of the geometric model entities.

A field is simply a collection of individual interpolations, all of which are interpolating the same
quantity (Figure 36). Each interpolation is associated with a single mesh entity and possibly the
entities on its closure.

Interpolation 2 etc.

Field 1 = {Interpolation 1,

Interpolation 1 Interpolation 2, ...}

FIGURE 35. Graphical representation of a field and itsinterpolations

In its most general form afield has a polynomial order associated with each mesh entity. It uses
this polynomial order to build interpolations of the correct order. Since in some cases it is desir-
able to have multiple fields with matching interpolations the polynomial order for amesh entity is
specified by another object called a PolynomialField which can be shared by multiple Field
objects, this classis described later.

The names used for the classes that make up a field are named as they are for historical reasons
and are misleading in a couple of ways. First, there is no reason that the functions that are used to
define an Interpolation object actually have to be strictly interpolating functions. Second, the
functions in an Interpolation do not have to be polynomials, they can be functions of any form.
The only real restriction is that they can be written in the form as given in Section 8.2.
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FIGURE 36. Structure of aField

All of the interpolationsin afield must belong to asingle family. A family of interpolationsis any
group of interpolations that are compatible (that is the degrees of freedom on a given mesh entity
interpol ate the same shape function). If you are using Fields in the context of an analysisthere are
functions in the base class Analysis that will automatically create a field of the proper type based
on attributes specified on the geometric model, see Section 12. on page 94 for more details. When
created, afield isinitialized to zero (actually all of the degrees of freedom associated with thefield
areinitialized to zero).

8.1.1 Using Fields

Most code will interact with a field through the interpolation objects rather than the field itself.
However the base class GenericField and the class Field do provide some operations that are of
use.

The most useful functionsin GenericField have to do with retrieving the interpolation order of the
field for a given SolutionEntity (recall from Section 7.10.3 on page 63 that SolutionEntity is a
base class for all mesh entities so any mesh entity can be passed into this function).

class GenericField {

public:
/1 return the order of what's being interpolated by this field.
virtual int order() const = 0;
/1 get mininuminterpolation order of this field on the given entity
int mnlnterpOrder(SolutionEntity *ent) const;
/] get maximuminterpolation order of this field on the given entity.
int interpOrder(SolutionEntity *ent) const;
/1 set the interpolation order of this field on the given entity.
voi d setlnterpOrder(SolutionEntity *ent, int order);
Pol ynom al Field * pol yField() const;
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/1 get the name of this field

SString name();

/] get the mesh this field is interpolating over
Mesh *mesh() const;

}

Note that a field can have both a minimum and maximum interpolation order. This is done to
allow the definition of fields that enrich (add additional polynomial order to) other fields. Thisis
useful in the implementation of residual based error estimation procedures and perhaps other
areas. The actual interpolation order is determined by the Polynomia Field object associated with
the field. In the current implementation this order is stored on each mesh entity, however if the
fields are of uniform order over al of the mesh entities this is not necessary and could be imple-
mented by a constant PolynomialField object.

The Field class is templated on the type of degree of freedom that it isinterpolating (e.g. Dof Sca-
lar or DofVector) and returns interpolations based on that type. The most important functions of
the Field class are to create interpolations and to retrieve interpolations that have already been cre-
ated. The difference between creating an interpolation and retrieving an interpolation is that when
the interpolation is created the degrees of freedom on the mesh entities that it is interpolating over
are initialized, while when the interpolation is retrieved the degrees of freedom are assumed to
aready beinitialized.

tenmpl ate <cl ass Dof Type>

class Field : public GenericField {

public:

I nt er pol ati onEdge<Dof Type> * const createl nterpol ati on(MEdge *edge);

I nt er pol ati onFace<Dof Type> * const createlnterpol ati on(Mrace *face);
I nt er pol ati onRegi on<Dof Type> * const createlnterpol ati on( MRegi on *regi on);

I nt er pol at i onEdge<Dof Type> get | nt er pol ati on( MEdge *edge);
I nt er pol ati onFace<Dof Type> get | nterpol ati on(Mrace *face);
I nt er pol at i onRegi on<Dof Type> get | nt er pol ati on( MRegi on *regi on);
voi d set Val ue(const FieldValue & val,int derivative);
}
8.2 Interpolations

An interpolation defines the variation of atensor over a certain domain. In the case of interpola-
tions on meshes, the domain is the closure of the mesh entity. The basic functionality of an inter-
polation is to provide evaluations of the interpolated field or its spatial derivatives within the
domain of the interpolation. Each interpolation has associated with it a local coordinate system
and evaluations of the interpolation are done with respect to that local coordinate system.

It is assumed that, in general, an interpolation can be written as:

A(x) = agNo(x) +aiNy(X) + ¥4 +a,Np(X) ®

where a; (and thus A) can be any order tensor and X is the location in the coordinate system of

the interpolation. The a; terms are amplitudes of the shape functions. In general the coordinate
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system of the interpolation may be alocal parametric system that has some mapping to the global
coordinate system.

An interpolation may be either continuous (Cn, n3 0) or discontinuous (C_l) at the boundaries
of itsdomain. The continuity of an interpolation is determined by whether the degrees of freedom
of the interpolation are shared with other interpolations or they influence only one interpolation.
The order of continuity in the continuous case is determined by the shape functions of the interpo-
lation.

The class hierarchy for interpolations is shown in Figure 37. The base class Genericlnterpolation

Genericlnterpolation

ZF

Interpolation<DofType>

Interpolation1d<DofType> Interpolation2d<DofType> Interpolation3d<DofType>
InterpolationEdge<DofType> InterpolationFace<DofType> InterpolationRegion<DofType>

FIGURE 37. Interpolation class hierarchy

provides the ability to deal with an interpolation in the most generic manner since it is not tem-
plated on the type of the quantity being interpolated. However given thisthe functionality israther
limited:

class Genericlnterpol ation {
public:
MEntity *nmeshEnt() const; // get mesh entity for interpolation
SSLi st <Dof Ref > dofs() const; /// get list of degrees of freedominterpol ated
int order() const; // get (max) pol ynom al order of interpolation.
int mapOrder() const; // get polynom al order of napping
int din() const; // get dinmension of interpolation
void constrain(); // constrain the interpolation to zero

}

The templated Interpolation class adds some more functionality, in particular the ability to set the
value of an interpolation (see Section 8.2.4).

tenpl at e<cl ass Dof Type>
class Interpolation : public Genericlnterpolation {
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public:
voi d setVal ue(const FieldValue & val, int derivative); // set value
SSLi st <Dof Type*> dof Groups() const; // get typed degrees of freedom
Fi el d<Dof Type> *field(); // get field this interpolation is part of
voi d constrai nConponent (int conp); // constrain the given conponent

I

The really useful functionality of an interpolation is added in the InterpolationNd (where
N=1,2,3) classes. Here both the type of the interpolation and its dimension are known. Since the
evaluation of an interpolation is done pointwise, it is necessary to know the dimension of the
interpolation before any evaluation operations can be written since they must take in a point of the
appropriate dimension. Since each of the InterpolationNd classes are similar only Interpolation3d
will be shown here.

tenpl at e<cl ass Dof Type>
class Interpolation3d : public Interpol ati on<Dof Type>{
public:
/1 evaluate at given point
SVect or <doubl e> eval (const SPoint3 &pt, int tinmeDer = 0) const
/'l Evaulate first derivative of the interpolation at the given point. */
Shatrix eval 1Deriv(const SPoint3 &pt, int timeDer = 0) const
/1 Evaluate the interpolation with the dofs as unknowns. */
Divat ri x<Dof Type> N(const SPoi nt3 &pt) const
/1 Evaluate the first derivative of the interpolation with the dofs as unknowns.
DMVat ri x<Dof Type> dNdx(const SPoint3 &pt) const
/] Evaluate the second derivative of the interpolation with dofs as unknowns.
Dwvat r i x<Dof Type> d2Ndx2(const SPoint3 &pt) const
/1 Transformthe given point fromthe |ocal to the gl obal coordinate system
SPoi nt 3 | ocal Tod obal (const SPoint3 &pt) const
/1 Evaluate the jacobian inverse of the napping associated with this
interpolation. Returns the deterninate of the jacobian. */
doubl e jacobi anl nverse(const SPoint3 &pt, SMatrix *jac) const
/1 Return the deterninate of the jacobian of the mappi ng associ ated
with this interpolation. */
doubl e det Jacobi an(const SPoint3 & pt) const

I

The functions eval(...) and eval1Deriv(...) evaluate the interpolation at the given point using the
known values of the degrees of freedom. The functions N(...), dNdx(...) and d2Ndx2(...) evaluate
the interpolation at the given point with unknown values of the degrees of freedom. These func-
tion are discussed in more detail below. The remaining functions in the interpolation have to do
with mapping between the local and global coordinate system and determining the jacobian of
that mapping.

Thefinal level of interpolation classes (InterpolationEdge, I nterpolationFace and I nterpolationRe-
gion) associates the interpolations with certain specific types of entities (mesh entities in this
case). These are the classes that are actually instantiated. The only functionality they add is to be
able to return the entity they are associated with. This design allows for other interpolations to be
written that interpolate over entities of the same dimension but of a different type. An example of
thisiswork done to implement Partition of Unity analysis[51,52] where the terminal octantsin an
octree are interpolated over. In this case a new class InterpolationOctant derived from
Interpolation3d was implemented for these interpolations.
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The class hierarchy presented hereisjust the external interface that Interpolations present to client
code, the actually implementation hierarchy is somewhat different and is explained in Section 8.3.

8.2.1 Degreesof Freedom

A degree of freedom represents the amplitude of a shape function. They are not associated with
any particular point in space (although with certain type of shape functions the amplitude that the
degree of freedom is describing may have a spatial location).

DofGroup

4&

DofArray<int> DofArray<1> DofArray<3>

DofScalar DofVector

FIGURE 38. Class hierarchy for degrees of freedom

Degrees of freedom are contained in objects of the classes DofScalar and DofV ector (and eventu-
ally higher order tensors) which group together degrees of freedom that are associated with a cer-
tain order tensor. Instances of these container classes are associated with mesh entities during the
construction of an interpolation. An actual degree of freedom (e.g. a single component of a
DofVector) can be obtained by various operations and is represented by the class DofRef. A Dof-
Ref is simply areference into the appropriate component of a Dof.

8.2.2 Evaluation of Interpolations

There are two ways that one may need to evaluate an interpolation (or one of its derivatives), with
the a; terms either known or unknown. If the a, terms are known, evaluating the interpolation

resultsin anumerical quantity. If the a; terms are unknown evaluating the interpolation resultsin

a set of coefficients that act on the unknown amplitudes, thisis returned as a matrix of type DMa-
trix.

DM atrix

A DMatrix isamatrix that has a particular type of DofGroup (e.g. DofScalar, DofV ector) associ-
ated with the columns of the matrix. Essentially is it the representation of an interpolation evalu-
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ated at a point in space (e.g Ni(xj)ai) or a gpatial derivative of an interpolation evaluated at a

point in space Ni’X(xj)ai.

3 a; Y g,

N TN, N, 1N,
™o X TXo Mg

fiNg fINg N, 1IN,
T g TXg Ty

FIGURE 39. DMatrix structure

The number of columns of a DMatrix is equal to the number of shape functions in the interpola-
tion (nin Equation 7). The number of rows depends on the order of the derivative that is evaluated
(one row for the zeroth derivative, three rows for the first derivative (in 3D), etc.).

DofMatrix

The class DofMatrix is similar to the class DMatrix except that instead of associating DofGroups
(which can be vectors as well as scalars) individual degrees of freedom are associated with the
matrix columns. This type of representation is needed when manipulations are done to the inter-
polation that do not allow it to be expressed as a DMatrix.

Both a DMatrix and a DofMatrix are regular matrices in the sense that they can have various
matrix operations performed on them. When matrix operations are performed the associated col-
umn tags (which become row tags when the matrix is transposed) are carried along through the
operation. Certain operations such as matrix addition are affected by the presence of the tagsin
that only columns with like tags can be added together.

ElementM atrix

The ElementMatrix classis similar to the DofMatrix class except that both the rows and columns
of an ElementMatrix have degrees of freedom associated with them. An ElementMatrix object is

formed when the product DTD is calculated where D isaDofMatrix.

8.2.3 Operationson Interpolations

A number of mathematical operations are defined for Interpolations. These are defined as free
functions (not member functions of the interpolation) in order to avoid bloating the interface of
the interpolation class. Examples of these functions for the operations of gradient and divergence
are shown below. The convention used is that the capitalized functions (e.g. Gradient) evaluate the
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interpolation with unknown coefficients and the lowercase functions (e.g. gradient) evaluate the
interpolation with known coefficients.

Dof Matri x Gradi ent (const | nterpol ati on2d<Dof Scal ar> & i nterp, const SPoint2 &pt);

Dof Matri x Gradi ent (const |Interpol ati on3d<Dof Scal ar> & interp, const SPoint3 &pt);
SVect or <doubl e> gradi ent (const | nterpol ati on2d<Dof Scal ar> & i nterp, const SPoint2 &pt, int
ti meDer =0);

SVect or <doubl e> gradi ent (const | nterpol ati on3d<Dof Scal ar> & i nterp, const SPoint3 &pt, int
ti meDer =0);

Dof Matri x Di vergence(const | nterpol ati on2d<Dof Scal ar> & interp, const SPoint2 &pt);

Dof Matri x Di vergence(const | nterpol ati on2d<Dof Vector> & interp, const SPoint2 &pt);

Dof Matri x Di vergence(const | nterpol ati on3d<Dof Vector> & interp, const SPoint3 &pt);
doubl e di vergence(const Interpol ati on2d<Dof Vector> & interp, const SPoint2 &pt, int

ti meDer =0);

doubl e di vergence(const Interpol ati on3d<Dof Vector> & interp, const SPoint3 &pt, int

ti meDer =0);

Note that these functions are overloaded on the type of the interpolation, so different implementa-
tion can be provided for different dimensions and different order tensors as is needed. Being able
to overload these functions on the type of the interpolation is alarge part of the reason that inter-
polations are templated on the type of the tensor they are interpolating.

8.2.4 Assigning Valuesto Interpolations

The Interpolation member function:

voi d set Val ue(const Fiel dval ue &val ue, int derivative)

allows the value of an interpolation to be set in a very genera manner. The first argument to this
function is a FieldValue class, which looks like this:
cl ass Fiel dVal ue {
public:
virtual SVector operator()(const SPoint3 &pt) const = 0; // overridden in derived cl ass
to provide a value at the given xyz coordinate
Range<i nt > conps() const; // what conponents this value applies to

}

This provides an abstract interface that allows just about anything to be passed into an interpola-
tion to set its value. Classes derived from FieldVaue override the () operator to return avalue at a
given global coordinate. An example of aderived classis AttributeFieldVaue, which ssimply eval-
uates an attribute at the requested location.

The comps() member functions allows the derived class to specify arange of components of the
degrees of freedom that the value applies to. This alows arange of components of the degrees of
freedom to be set without affecting the other values. Thisis useful for setting a single component
of avector or when the degrees of freedom being interpolated are multiple physical quantities (for
example in CFD it is common to have the degrees of freedom be a single 5 component vector
{p,v,T} - pressure, velocity and temperature).
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FieldValue

A

AttributeFieldValue<DofType> AttributeVectorCompFieldValue

FIGURE 40. FieldValue class hierar chy

8.3 Details of Interpolation | mplementation

The current implementations of interpolations within Trellis are implemented as a combination of
a shape function and a mapping. The value of an interpolation at a certain point is defined by
shape functions which have support over the mesh entity and have a magnitude given by a degree
of freedom associated with the mesh entity or some entity on its closure. Since a shape function is
usually written with respect to alocal coordinate system defined over the mesh entity, the map-
ping is also needed when constructing the interpolation to provide the transformation from the
local coordinate system to the coordinate system that the PDE is being solved in. If the shape
function is written in the PDE coordinate system then this mapping is just an identity.

However, the design of the classes for interpolations allows for other implementations. In
Figure 37 the Interpolation hierarchy is shown. These classes are ssmply wrappers around imple-
mentation classes that are part of the Interp hierarchy shown in Figure41. The Interpolation
classes simply forward all of their calls onto their underlying Interp object (thisis actually imple-
mented using inline functions so there is no performance hit for this). An additional reason for
having the two sets of classes is to allow for better memory management utilizing reference
counting or other methods.

The Interp classes have avery similar structure to the Interpolation classes however they have an
additional level of derivation that allows the actual functionality to be implemented in different

way’s.

As shown in Figure 42 the General I nterpRegion etc. classes are actually implemented as a combi-
nation of a ShapeFunction object and a Mapping object of the appropriate dimension.

Since there are times when thisimplementation may not be appropriate it is also possible to derive
other implementations from InterpRegion, InterpFace and InterpEdge. One place this has been
used in conjunction with Trellisisin the implementation of the Partition of Unity analysis[51,52].
This type of analysis uses different types of shape functions (they are written in a global rather
than alocal coordinate system), thus the breaking of the interpolation into a shape function and a
mapping had some unfortunate efficiency issues. The solution was to derive a new class from
InterpRegion for these interpolations.
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FIGURE 41. Interp (Interpolation implementation) class hierarchy

GenerallnterpRegion<DofType>

ShapeFunction3d<DofType>

GenerallnterpFace<DofType>

Mapping3d3d

ShapeFunction2d<DofType>

GeneralinterpEdge<DofType>

Mapping2d3d

ShapeFunctionld<DofType>

8.4 Shape Functions

A shape function describes how a variable is interpolated over a given domain. When a shape
function is used to interpolate a tensor, al of the components of the tensor are interpolated using

the same function.

In general a shape function can be written as:

Mapping1d3d

FIGURE 42. Generallnterp implementation

A(X) = agNy(x) +a;N(x) + ¥ +a,N(X)
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where g; (and thus A) can be any order tensor and X isthe location in the parametric space of the

shape function. The a; terms are amplitudes of the shape function. The top of the shape function

class hierarchy is shown in Figure 43. The base classes ShapeFunction and GenericShapeFunc-
tion mainly provide functions to get the degrees of freedom of the shape function.

ShapeFunction

4&

GenericShapeFunction<DofType>

.

ShapeFunction1ld<DofType> ShapeFunction2d<DofType> ShapeFunction3d<DofType>

FIGURE 43. ShapeFunction class hierarchy

The most important functionality of a ShapeFunction is to be able to evaluate the function, or its
derivatives, at acertain location in the parametric space of the shape function. Thisfunctionality is
added in at the next level down in the hierarchy in the ShapeFunctionNd (N=1,2,3) classes. The
evaluations are at this level in the class hierarchy since the location to evaluate at must be passed
into these function and the type of thislocation depends on the dimension of the space being inter-
polated.

The class definition for ShapeFunction3d is given below. As described for the Interpolation
classesthere are functionsfor evaluating the shape functions and their derivatives with the degrees
of freedom as both known ( e.g. eval(...) ) and unknown (e.g. zeroDeriv(...) ). In addition thereisa
function to get the Vandermonde matrix for the interpolation which is used to calculate the values
of the degrees of freedom when setting the interpolation to a certain value. Also the setDofVal(...)
function sets the values of the degrees of freedom to the passed in values. Note that all of these
functions are pure virtual and thus implementations of these must be provided by derived classes
that implement certain shape functions.

t enpl at e<cl ass Dof Type>
cl ass ShapeFunction3d : public GenericShapeFuncti on<Dof Type> {
public:
/1 Evaul ate at the location pt.
virtual SVector<doubl e> eval (const SPoint3 &pt, MRegion *,
const Fi el d<Dof Type> &field, int timeDer=0) const=0;
/] Evaulate first derivative at pt.
virtual SMatrix eval 1Deriv(const SPoint3 &pt, MRegion *,
const Fi el d<Dof Type> &field, int timeDer=0) const=0;
/1 Eval uate second derivative at pt.
virtual Swatrix eval 2Deriv(const SPoint3 &pt, MRegion *,
const Fi el d<Dof Type> &field, int timeDer=0) const=0;
/] Evaluate with dofs as unknowns at |ocation pt.
vi rtual Dwatrix<Dof Type> zeroDeriv(const SPoint3 &pt, MRegion *,
const Fi el d<Dof Type> & field) const =0;
/1 Evaluate first derivative with dofs as unknowns at |ocation pt.
virtual DwMatrix<Dof Type> firstDeriv(const SPoint3 &pt, MRegion *region,
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const Fi el d<Dof Type> & field) const =0;
/1 Evaluate second derivative with dofs as unknowns at |ocation pt.
virtual Dwatrix<Dof Type> secondDeriv(const SPoint3 &t, MRegion *region,
const Fi el d<Dof Type> & field) const =0;
/'l Get vandernonde matrix for interpolation.

virtual void getVander monde( MRegi on *me, const Fi el d<Dof Type> &fiel d,
Shvatrix **A IntpPnt3d **pt) = O;
virtual void setDof Val s(MRegi on *ne, const Fi el d<Dof Type> &field, const SVector
<SVect or <doubl e> > &a, int derivative, Range<int> conps) =0;

}

Another responsibility of the shape function class is to add degrees of freedom on to the mesh
entity in the appropriate places when the shape function is created as part of an interpolation. This
is done in the constructor of the derived classes.

To implement a family of shape functions, new classes must be derived from each of the Shape-
FunctionNd (N=1,2,3) classes. These new classes must implement each of the virtual functionsin
the base classes. As many different families of shape functions as desired can be implemented by
deriving new classes. Two of the current families are the Lagrange shape function up to quadratic

ShapeFunction1ld<DofType>

ShapeFunction2d<DofType>

ShapeFunction3d<DofType>

AN
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ConstantSF1d<DofType>

ConstantSF2d<DofType>

LinearContldSF<DofType>

LinearContTriSF<DofType>
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ConstantSF3d<DofType>

QuadraticContldSF<DofType>

QuadContTriSF<DofType>

LinearContTetSF<DofType>

QuadContTetSF<DofType>

FIGURE 44. L agrange shape functions

as shown in Figure 44 and the hierarchic shape functions as shown in Figure 45. The hierarchic

ShapeFunctionld<DofType>

ShapeFunction2d<DofType>

ShapeFunction3d<DofType>

HierarchicContldSF<DofType>

HierarchicContTriSF<DofType>

HierarchicContTetSF<DofType>

FIGURE 45. Hierar chic shape functions.
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shape functions [80] are Legendre polynomial based shape functions that allow different polyno-
mial orders to be assigned to each mesh entity, they are currently implemented for polynomial
orders up to 8. Some more information on them is given in the following section.

The implementation of these two families of shape functions show some of the flexibility in the
system. For the Lagrange shape functions different classes were implemented for each polyno-
mial order of shape function. For the hierarchic shape functions a single class was implemented
that gets the polynomial order from the mesh entities and constructs the appropriate shape func-
tions from that information. Either implementation is perfectly acceptable and the choice of
implementation depends on the intended use of the shape functions. The Lagrange shape func-
tions are intended to be used in situations where the polynomial order is constant and fixed over
the entire mesh, while the hierarchic shape functions are intended to be used with p-adaptivity.

Being able to support very flexible specification of shape functionsfor usein p-adaptivity was one
of the design criteriafor the field implementation. The hierarchic shape functions are an example
of how this can be used. The details of the implementation of the actual shape functions can be
found in Reference 80. The basic ideaisillustrated in Figure 46.

Polynomial order of
faces shown in bold.

FIGURE 46. Assigning of different polynomial ordersto each mesh entity.

Each mesh entity of dimension one or greater may be assigned a different polynomial order. This
assignment of polynomial order is associated with one or more fields through the use of a Polyno-
mialField object (see Figure 36). The shape functions then query the polynomial order of each of
the mesh entities and construct an appropriate shape function at run time. This alows the polyno-
mial orders to be varied in any manner desired. The construction of the shape functions is such
that continuity is automatically enforced since adjacent shape functions will see the same polyno-
mial order on the mesh entities that form their common boundary.

8.5 Mapping
A mapping describes atransformation between alocal parametric coordinate system and the coor-

dinate system the PDE is being solved in. The mapping is responsible for providing functionality
to map from the local system to the global system.
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FIGURE 47. Mapping class hierarchy

The class hierarchy for the current families of mappings is shown in Figure 47. The base class
mapping has little functionality other than to provide the polynomial order (or equivalent informa-
tion if the mapping is not polynomial). The main functionality is expressed in the Mappingl1d3d,
Mapping2d3d, Mapping3d3d classes. The first number in the name of the mapping classes is the
dimension of the local space and the second is the dimension of the global space. For example,
Mappingld3d maps from a 1 dimensional local space to a 3 dimensional space global space.
Other combinations than those shown here are certainly possible.

An example of the functionality provided by the mapping classes can be seen from the
Mapping3d3d class shown below. The main functions relate to returning the inverse jacobian of
the mappings and to transform a point from the local to the global space.

cl ass Mappi ng3d3d : public Mapping {
public:
/1 Evaluate the mapping at the given point. */
virtual SPoint3 eval (const SPoint3 &pt, MRegion *region) const = O;
/] Evaluate the inverse of the jacobian of the mapping at the given
/1 point. Returns the determ nate of the jacobian. */
virtual doubl e jaclnverse(const SPoint3 &pt, MRegion *region,
SMatrix *jac) const = 0;
/1 Evaluate the inverse of the jacobian for the 2nd derivative. */
virtual doubl e jaclnverse2ndDeriv(const SPoint3 &pt, MRegion *region,
Shvatrix *jac) const = O;
/1l Return the deterninate of the jacobian. */
virtual doubl e detJac(const SPoint3 &pt, MRegion *region) const = O;

I

There currently are two families of mappings implemented. The first is simply a linear mapping
based on the locations of the mesh vertices on the mesh entity being mapped. The second is an
exact mapping that performs queries back to the geometric modeler for derivatives and then con-
struct blending functions on the interior. Using the exact mappings allows all geometric approxi-
mation error to be eliminated from the solution (although they are more expensive to evaluate than
mappings based on the mesh’s geometric information). More information on the exact mapping
can be found in Reference 30.
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Part 2.

The Analysis Framewor k
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9. Overview of the Analysis Process

Since there are many interactions between the various components of Trellis during the analysis
process, this section provides an overview of what the major components are and how they inter-
act. Details of each of the components and how they perform their tasks are given in the subse-
quent sections.

Since one of the requirements of Trellisisto be able to support different types of numerical anal-
yses based on some domain discretization, the abstraction of the solution process needs to be
independent of the type of numerical technique used. In addition, the core routines provided by
Trellis that perform the majority of the “standard work” within the analysis process (procedures
such as matrix assembly, linear and nonlinear equation solving) al needed to be designed in a
more abstract way such that they could be used by varying types of anaysis techniques. The
design that resulted from these requirements provides a clean abstraction of the analysis process
and the computations that are performed during that process.

Trellis presents the analysis process as a series of transformations of the problem from the original
mathematical problem description to sets of algebraic equations approximately representing the
problem. This transformation currently starts at the mathematical problem description level,

Analysis Assembler

Algebraic
System

Continuous
System

FIGURE 48. Solution of a mathematical problem description as a series of transformations.

which is described by the geometric model and the attributes which apply to that model, thisis
called the Continuous System (although there is no class by that name in the implementation).
The attributes for a particular problem are specified by a particular case node in the attribute
graph. All of the attributes under this case node are used for the given problem. An instance of a
Continuous System is then transformed to an instance of the class DiscreteSystem (Section 10.)
which represents the discretized version of the model and attributes and the weak form of the par-
tial differential equation (PDE). This transformation is done by an object that is an instance of a
classthat is part of ahierarchy of Analysis classes (Section 12.). The particular analysis class that
is used depends on the selected weak form of the PDE to be solved. The next transformation is
from the DiscreteSystem to an AlgebraicSystem (Section 13.), which corresponds to the process
of calculating the individual contributions to the global system of equations and assembling them
into the proper form for the given solution procedure. This transformation is handled by an
Assembler object (Section 14.).

For each problem definition it is possible to define any number of analyses. An analysisis defined
by combining a problem definition with a solution strategy case that contains the rest of the infor-
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mation needed to perform the analysis, as shown in Figure 49. The information contained in each
of these cases is responsible for controlling a particular aspect of performing the analysis. The
system is data driven using the information contained in the attribute graph.

type: analysis
Cypei problem def initiOD Cype: solution strategy)
Geometric
Model

Discretizted
Geometry

Other attributes Other attributes

completing problem that describe
definition solution process

FIGURE 49. Structure of an analysis definition.
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10. Discrete System

In virtually every numerical analysis technique, the problem eventually requires solving a system
of theform Ax = b, where A isamatrix and x and b are vectors. Both A and b are constructed
from anumber of smaller contributions, usually related to the spatial discretization of the domain
(e.g. aset of finite element stiffness matrices or the repeated application of afinite difference sten-
cil). The contributions of all of these independent calculations are assembled into the global sys-
tem (note that this viewpoint still holds even if we don’t literally assemble a global system, just
the order of some of the details change). This concept is the basis for the more important abstrac-
tionsin Trellis, that of the SystemContributor (each of the small contributions to the overall sys-
tem) and the DiscreteSystem (the overall system represented as a collection of
SystemContributors). These two abstractions and the classes that implement them are central to
Trellis since they represent the problem being solved in an abstract way that alows the various
solution procedures to be written in a manner independent of the problem being solved.

The DiscreteSystem class, as shown in Figure 50, represents the problem in terms of contributions
from a set of objects that live on the discrete representation of the model. These objects are called
SystemContributors. There are three types of SystemContributors. StiffnessContributors, Force-
Contributors and Contraints, these are discussed in Section 11.

J StiffnessContributor

DiscreteSystem <>—— ForceContributor

O—u
T Constraint
Di scr et eSyst enZer 0Or der Di scr et eSyst enFi rst O der eeo o
process(Assenbl er) process(Assenbl er)

FIGURE 50. The DiscreteSystem and derived classes

There is a hierarchy of DiscreteSystem classes that represent different time orders of PDES. Dis-
creteSystemZeroOrder represents an equation of the form F(u,t) = 0, DiscreteSystemFir-
stOrder represents an equation of the form F(u, u’, t) = 0 and so on.

The basic functionality provided by the DiscreteSystem classisto:

» Allow the Analysis class to define the system to be solved by adding SystemContributor object
of each type.
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» Allow the equation F(...), and its derivatives, to be evaluated for any given values of its argu-
ments.

10.1 Defining the Discrete System

An Analysis object creates an object of the appropriate derived class of DiscreteSystem for the
type of equations that it is solving. The constructor for the DiscreteSystem takes in a Renumberer
object (that implements a renumbering algorithm for assigning global degree of freedom number
such asthat given in Section 7.8.5) and the attribute case that is being analyzed.

The system to be solved is defined by adding StiffnessContributor, ForceContributor and Con-
traint objects to the DiscreteSystem object. Thisis done using the member functions:
voi d add(StiffnessContributor *); // add a StiffnessContri butor

voi d add(ForceContributor *); // add a ForceContri butor
voi d add(Constraint *); // add a Contraint

Each of these adds the appropriate type of system contributor to the discrete system. The discrete
system internally keeps track of separate lists of these since they are used to evaluate different
parts of the equation being solved.

Once al of the system contributors are added to the discrete system the function finalize() is
called to enable the discrete system to perform any actions that it must before the system can be
solved. In the current implementation, the actions that are preformed at this time are to apply all
of the constraints to the system and to assign global equations numbers to the degrees of freedom.

10.2 Using the Discrete System in the Solution Process.

During the solution process the equation that the DiscreteSystem represents must be evaluated for
given values of itsindependent variables. DiscreteSystem provides a function to set the time vari-
able and the current time increment (for a time dependent problem) for the system. This function:

* Informsthe analysis case to pre-evaluate al of the attributes at the given time
» Informs each of the SystemContributorsin the system of the current time and time increment

« Appliesthe constraints to the system, this updates any time dependent constraints to have the
correct values for the current time.

The values of the independent variables other than time, u, u, % , are set by calling the appropri-
ate function in the derived classes. For example DiscreteSystemFirstOrder provides two func-
tions:

voi d set U0(const SVect or <doubl e> &u0);
voi d setUl(const SVector<doubl e> &ul);

which allow u and u to be set.

Once the values of the independent variables have been set, the next step is to be able to evaluate
the function. Thisis done with the DiscreteSystem member functions:
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voi d appl yToSC( Assenbl er *);
voi d appl yToFC( Assenbl er *);

These functions take in an Assembler object and apply it to each of the stiffness or force contribu-
tors (depending on which function is called) in the DiscreteSystem. What Assemblers are and how
they work is described in Section 14.

11. System Contributors

There are three types of SystemContributors:
» StiffnessContributors contribute coupling terms between degrees of freedom of the system.
 ForceContributors contribute terms to the right hand side vector.

» Constraints set specific values to given degrees of freedom (e.g. setting the value of acertain
degree of freedom to zero).

The SystemContributors are created by an Analysis object (Section 12.) and correspond to an
interpretation of attributes consistent with the particular analysis that the Analysis object imple-
ments. For example, in a heat transfer analysis, material property attributes will give rise to Stiff-
nessContributors, applied heat fluxes will give rise to ForceContributors and prescribed
temperatures will give rise to Constraints. Typically, a SystemContributor is associated with a
mesh entity classified on the model entity where the attribute is applied.

As asimple example, consider the matrix ODE:
MU+Cu+Ku = f (9)

In this equation we have contributorsto M, C and K which describe coupling between degrees

of freedom. These will be represented as stiffness contributors. Second, we have contributorsto f
which describe the “forcing” terms of the system. These will be represented as force contributors.
Finally, we may have terms which place direct constraints on some of the entriesin u, these will
be represented as constraints.

11.1 Constraints

Constraints are the simplest type of SystemContributor. They are anything that applies a certain
value to a particular degree of freedom or set of degrees of freedom. The primary use of con-
straints in the context of afinite element analysisis to use them to implement essential boundary
conditions.

A set of classes have been developed within Trellis to implement common types of essential
boundary conditions. All of these classes are specializations of the EssentialBC class (Figure 51.)
The most general essential boundary condition class is the AttributeEssentialBC class. This class
applies an essential boundary condition that has the value of a given attribute to the interpolation
that the constraint is associated with. The attribute may be a function of space and/or time. To use
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Constraint

T

EssentialBC<InterpType>

T

AttributeEssentialBC<InterpType>

FIGURE 51. Derivation of AttributeEssentialBC

this class the attribute must be of an appropriate type for the field that the constraint is being
applied to (avector attribute for avector field, a scalar attribute for a scalar field).

For the case where just a single component of a vector field is to be constrained the class
AttributeV ectorCompBC2d may be used. Thistakesin an attribute that specifies the direction and
magnitude of the constraint to be applied. Again the attribute may be spatially and temporally
varying.

EssentialBC<Interpolation2d<DofVector> >

T

AttributeVectorCompBC2d

FIGURE 52. Essential BC for a component of a vector.

In these cases where avarying attribute is applied to an interpolation, the actual assignment of val-
ues to the degrees of freedom of the Interpolation is done using the setVaue member function of
Interpolation (Section 8.2.4).

There are two classes to implement zero boundary conditions (Figure 53), these are more efficient
than applying a zero boundary condition using the AttributeEssentialBC attribute since they
directly constrain the degrees of freedom of the interpolation to zero and are known not to be spa-
tially or temporally varying. These two classes are

» ZeroBC - applies zero essential boundary condition to each component of the field on the mesh
entity that it is applied to.

» ZeroVectorCompBC - applies zero essential boundary condition to a single component of a
vector field on the mesh entity that it is applied to.
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EssentialBC<Interpolation<DofVector>> EssentialBC<Interpolation<DofType>>

T -

ZeroVectorCompBC ZeroBC<DofType>

FIGURE 53. Two classesfor zero essential boundary conditions.

11.2 Force Contributors

In finite element analysis aforce contributor is generally aterm that is of the form:

o+ fdw (10)
W

where y is the field being solved for, f isan arbitrary function describing the variation of an

attribute such as a natural boundary condition and W is the domain. The domain could be of any
dimension. These terms are different from stiffness contributors since they do not contribute cou-
pling between degrees of freedom, but do contribute to the residual of the equations being solved.

The ForceContributor classis as follows:

cl ass ForceContributor : public SystenContributor {

publi c:
/1 Evaluate and add contribution to the given assenbl er.
/1 Al derived classes nust override this. */
virtual void eval (VectorAssenbler *a) = 0;

I

its sole member function is to evaluate itself and pass its contribution to the given assembler
object.

Trellis provides some ready made classes for the implementation of force contributors (Figure 54)
for when the f term is specified as an attribute. Each of the classes AttributeForceNd (N=1,2,3)
provides the implementation of Equation 10 for the case where f is afirst order tensor and y is

either a scalar or vector field. The class AttributePressureload provides an implementation of a
pressure type load on aface where f = pxp, p being ascalar value and pn being the normal to

the face.

The AttributeForce2d class is a good example of how to implement a force contributor. its class
definition is given below:

tenpl at e<cl ass Dof Type>

class AttributeForce2d : public Force2d {

public:
/1l construct to apply the given attribute to the given interpolation

87



ForceContributor

AN

Forceld

Force2d

2\

Force3d

AttributeForceld<DofType>

AttributeForce2d<DofType>

AttributeForce3d<DofType>

AttributePressureLoad<DofType>

FIGURE 54. ForceContributor classes.

Attri but eForce2d(const Interpol ati on2d<Dof Type> & nterp,

AttributeTensorOl *att);
/11 evaluate and add contribution to the given assenbler
virtual void eval (VectorAssenbler *a);

pr ot ect ed:

/1 evaluate at the given point. The point is in the parametric space
/1 of the mesh entity being integrated over

virtual ForceVector fi(const SPoint2 & pt,int);

I nt er pol ati on2d<Dof Type> d_interp
AttributeTensorOrl *d_att;

I

Asit must, AttributeForce2d overrides the eval(...) member function of its base class. The imple-
mentation of this function is simply to integrate over the mesh face and sum up the contributions
at each integration point which are given by calling the fi(...) member function. The classes used

// the attribute

in the integration are discussed in Section 11.4.

tenpl at e<cl ass Dof Type>

/1 the interpolation

voi d Attribut eFor ce2d<Dof Type>: : eval (Vect or Assenbl er *a)

/1 make integrator

Seetionll. 4.1

I nt egr abl e2dChj ect <At tri but eFor ce2d<Dof Type>, For ceVect or, Dof Type>
integrand(this, &Attri but eFor ce2d<Dof Type>: :fi, &l_interp);

{
GaussQuadr at ur eTri <For ceVect or> i ntegrator
/1 wap nenber function in integrator adaptor,
int order = 2*d_interp.order();
a->accept (i ntegrator.integrate(integrand, order));
/'l pass to assenbler
}
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The fi(...) member function implements the evaluation of the integrand at an integration point as

below, this simply calculates NTI , Where N isthe vector of shape functions for the interpolation
being used.

tenpl at e<cl ass Dof Type>
ForceVector AttributeForce2d<Dof Type>::fi(const SPoint2 &pt, int i)

{

/] evaluate the attribute

d_att->eval (Spati al Point(d_interp.local Tod obal (pt)));
SVector<double> f = *d_att; // get attribute at a vector
ForceVector fv(d_interp.N(pt),f); // calcul aIt\Igj

return fv; // return the value to the integrator

}

11.3 Stiffness Contributors

In afinite element analysis, a stiffness contributor typically represents some term in an equation
of the form:

O F(u)DF qu)dWq: . (11)
We

Where Wy isthe domain of the stiffness contributor (may be space only, or space and time), F

and F¢ are some functions operating on the field, u. The actual implementation of this equation
for aparticular type of problemis done in aderived class of stiffness contributor that is specific to
the problem being solved. The major distinction between a ForceContributor and a StiffnessCon-
tributor is that the StiffnessContributor describes coupling between degrees of freedom and can be
evaluated to give a matrix that gives this coupling. A StiffnessContributor does calcul ate residual
terms, which end up on the right hand side of the system being solved, so in this sense a Stiffness-
Contributor aso can contribute forcing terms to the equations being solved.

Theinterface that the base class StiffnessContributor providesis driven by the requirements of the
rest of the solution procedures within Trellis. This interface consists of the following functional -

ity:
* Returnalist of the degrees of freedom that are coupled by the stiffness contributor. Thisisused
to determine the structure of the global system of equations.

» Evaluate certain quantities related to Equation 11. In particular:

- The contribution of the stiffness contributor to the residual for the current values of the inde-
pendent variables.

- The contribution of the stiffness contributor to the global energy for the current values of the
independent variables

- The coupling matrix between the stiffness contributors degrees of freedom.
» A function to allow the stiffness contributor to update any local state information.

89



In addition the constructor for a StiffnessContributor is responsible for having the fields that the
stiffness contributor uses initialize the interpolation over the domain of the stiffness contributor

The C++ class definition that implements this interface is given below.

class StiffnessContributor : public SystenContributor {
public:
virtual SSLi st <Dof Ref> dofs() const = 0; // return all of the degrees of freedom
coupl ed by this contributor
virtual void r(VectorAssenbler *a, int order); // calculate the contribution to the
resi dual
virtual void e(Scal ar Assenbler *a); // calculate the energy contrinbut ed
virtual void dun(MatrixAssenbler *a, int n); // calculate the mack iISC odu
virtual void updateState()=0;// update the state information associated with this
contri butor

I

n

The details of what is calculated in these functions is implemented in the derived classes and is
totally dependent on the type of analysis that is being performed. However, al of the code that
deals with the DiscreteSystem and the contributions to it only uses this interface and thus is insu-
lated from those details.

An element formulation isimplemented as a stiffness contributor. These are often associated with
top level entities (those entities with no higher order entities adjacent to them) in the mesh. How-
ever it is possible for a StiffnessContributor to be associated with any entity in a mesh.

11.3.1 Calculation of stiffness contributions

This calculation is done in one of several member functions (one for each order time derivative
that it can contribute). For example the du0(...) member function for this element is written as:

voi d Heat Transf er El enent 3d: : duO( Assenbl er *a)
{

GaussQuadr at ureTet <El ement Matri x> integrator; //create the integrator
I nt egr abl e3dbj ect <Heat Tr ansf er SC3d, El enent Mat ri x, Dof Scal ar >
i ntegrand(this, &uOi,Interp); // formthe integrand
int order = 2*(Interp->order()-1)+(Interp->mapOder()-1); // order of integration
a->accept (integrator.integrate(integrand,order)); // integrate, pass to assenbler

}

Thisfunction is passed in an Assembler object. The function must cal culate the stiffness contribu-
tion and pass it as an argument to the Assemblers accept() member function. (The Assembler then
does whatever is needed with this contribution to form the global system of equations as described
in Section 14. on page 99).

The implementation of the duO() function shown here implements a numerical integration of the
member function duOi() over the domain of the stiffness contributor. Thefirst line creates the inte-
grator object that will do the actual integration. The integrator object knows how to integrate
objects that are of the class Integrable3d, so the second line creates an object derived from
Integrable3d that encapsulates an object like an element so that it can be integrated. Thefina line
does the integration and passes the results to the assembler. Please see Section 11.4 for more
details of the numerical integration procedures.
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Since in the above example numerical integration was being done, the duOi() member function is
called at each integration point to evaluate the contribution to the integration at that point. Given
below is the code for the duOi() function. Note that for this example everything else has been put
into this function (such as retrieving attributes which really should be done once, not inside the
integration loop).

El ement Mat ri x Heat Tr ansf er SC3d: : duOi (const SPoi nt3 &pt)
{

/1 get the material properties and evaluate the conductivity tensor
GEntity nodel Face = Interp->meshEnt ()->whatln();

AttributeTensorOr2* condAtt;

condAtt = (AttributeTensorOr2*)nodel Face. attribute("thermal conductivity");
SMatrix C(*condAtt);

/] calculate the B matrix for the given interpolation
Dof Matrix B = Gradient(*Interp, pt);

/1l return BTCB
return product (B, C2, B);
}

The first few lines are concerned with getting the values of the appropriate attributes, in this case
the thermal conductivity tensor. The final two lines is where the actual calculation happens. For
the particular formulation used here, the element stiffness matrix can be written as:

B'kB,where B = NT (12)

these two lines simply implement that equation. Due to the abstraction of the interpolation that is
used, finding the gradient of the temperature field is as smple as calling the Gradient() function
and passing it the interpolation and the point to evaluate the gradient. The object that is returned
represents the gradient evaluated at that point for the unknown temperature field. Then the product

BTCB is formed and the result returned.

Note that the code for the evaluation of the stiffness matrix is independent of the interpolation
used so the exact same code can be used for all elements of thistype.

11.4 Integration

One task that is commonly performed for finite element analysis is the integration of a function
over the domain of an element. There are classes provided within Trellis to perform this task. In
general these could be used to integrate an arbitrary function over an arbitrary domain. The actual
implementations that are provided implement Gaussian quadrature over typical domains that are
encountered in this type of analysis (tetrahedrons, triangles, lines, hexahedrons, quadrilaterals).

An example of such an integration classis given below. The class is templated on the return type
of what it isintegrating (for example, in the case of integration for a StiffnessContributor this type
would be an ElementMatrix).

tenpl at e<cl ass Type>

cl ass GaussQuadrat ureTet {
public:
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Type integrate(lntegrabl e3d<Type> &obj, int order);
H

The class only member function is integrate(...), this takes in an object of type
Integrable3d<Type>, described below, and the polynomia order to which the integration should
be done. The actual implementation, below, is simply aloop over each integration point, accumu-
lating the product of the value and the weight at each integration point.

tenpl at e<cl ass Type>
Type GaussQuadr at ureTet <Type>::integrate(lntegrabl e3d<Type> &obj, int order)

{
const double sixth = 1.0/6.0;

IntPt3d *pts = getGQlet Pts(order); // get the points and weights for integration
int num= get NGQTet Pts(order); // get the number of points

int i=0;

/1 Evaluate at first point

Type ke = obj.eval (pts[0].pt,i)*obj.detJacobi an(pts[0].pt)*(sixth*pts[0].weight

for(i =1; i < num i++){

/] evaluate at subsequent points

ke += obj.eval (pts[i].pt,i)*obj.detJacobian(pts[i].pt)*(sixth*pts[i].weight);
}

return ke; // return the integrated val ue

The class Integrable3d is avirtual base class defined as follows:

tenpl at e<cl ass Type>
class I ntegrabl e3d {
public:
virtual Type eval (const SPoint3 & int) = 0;
virtual doubl e detJacobi an(const SPoint3 &pt) const = O;

I

The eval(...) member function evaluates the function at a point and the detJacobian(...) member
function that returns the determinant of the jacobian of the mapping between the space the inte-
gration is being done in and the real space.

To actually integrate anything a concrete class must be derived from this base class that provides
implementations of these functions.

11.4.1 Integration for Objects

Within Trellisthereis aneed to integrate functions relating to stiffness and force contributors. For
thisand similar applications Trellis provides a class called Integrable3dObject that is an interface
class that allows a member function of an arbitrary object (such as a StiffnessContributor) to be
integrated. The definition of this classis given below.

tenpl ate<class T, class Type, class | Type>

cl ass I ntegrabl e3dhject : public Integrabl e3d<Type> {

public:

I nt egr abl e3doj ect (T *obj ect, Type (T::*f)(const SPoint3 & int),
I nt er pol ati on3d<| Type> *interp);
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virtual Type eval (const SPoint3 & int);
doubl e det Jacobi an(const SPoi nt3 &pt) const;
private:
T *hj ect ;
Type (T::*F)(const SPoint3 & int);
I nterpol ati on3d<| Type> *Interp
b

tenpl ate<class T, class Type, class | Type>
I nt egr abl e3dj ect <T, Type, | Type>: : | nt egr abl e3dCbj ect (T *obj ect, Type (T::*f)(cons
t SPoint3 & int), Interpolation3d<|Type> *interp )
oj ect (obj ect), F(f), Interp(interp)
{}

tenpl ate<class T, class Type, class | Type>
Type | ntegrabl e3dhj ect <T, Type, | Type>: : eval (const SPoint3 &pt,int i)
{ return (ject->*F)(pt, i); }

tenmpl ate<cl ass T, class Type, class | Type>
doubl e I nt egrabl e3dOhj ect <T, Type, | Type>: : det Jacobi an(const SPoi nt 3 &pt) const
{ return Interp->detJacobian(pt); }

Although the code for this class seems complicated, thisis mainly since it uses such C++ features
as templates and pointers to member functions, it actually is quite ssmple apart from the syntax.
All the class doesis provide an implementation of the interface of Integrable3d for the case where
the function to be called is a member function of an object and the jacobian is obtained from a
given interpolation.

To usethisclassit must be created giving it a pointer to the object whose member functionisto be
integrated, a pointer to the member function to be integrated and the interpolation from which to
get the mapping.

For example if we have an object HeatTransferSC3d that represents a heat transfer element, that
has the following (simplified) interface:
cl ass Heat Tr ansf er SC3d {

public:
El enent Matri x duOi (const SPoint3 &pt);

I

And we want to integrate the du0i() function (which evaluates the stiffness matrix at apoint in the
parametric space of the element) to get the entire stiffness matrix, we would do the following:

GaussQuadratureTet <El ement Matri x> integrator; //create the integrator
I nt egr abl e3dMoj ect <Heat Tr ansf er SC3d, El enent Mat ri x, Dof Scal ar >
i ntegrand(this, &uOi,Interp); // formthe integrand
int order = 2*(Interp->order()-1)+(Interp->mapOrder()-1); // order of integration
integrator.integrate(integrand,order); // integrate
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12. Analysis Classes

Analysis classes implement behavior that is specific to a particular type of analysis. In the context
of finite element and similar methodol ogies, the most derived analysis classes correspond to a par-
ticular linearization of a selected weak form for aparticular PDE. So for a particular class of prob-
lems, say solid mechanics, there may be more than one analysis class. The hierarchy of analysis
classes also dictate the overall procedure used to set up the problem to be solved within Trellis.

It is aso possible to write analysis classes that are even more specific, perhaps specifying all of
the details of how the analysis is performed (equation solver type, shape functions, mappings,
etc.) however ageneral implementation will get this information using attributes.

12.1 The AnalysisBase Class

The Analysis classes are organized into a hierarchy as shown in Figure 55. The topmost base
class, Analysis, is mostly abstract and does little more than hold common information, such asthe
attribute case corresponding to the analysis being run, and define a couple abstract member func-
tions, such as run() which executes the analysis.

Analysis implements the overal strategy for what operations each analysis must perform. In
Analysisitself thisoveral strategy israther simple:

Anal ysi s::run()

{

setup(); // overridden in derived class to set up DiscreteSystem
solve();// overridden in derived class to start the solution process

}

Each derived class must then implement appropriate code to perform the given operations.

12.2 FEAnalysis

The FEAnalysis class implements some behavior that is common to al finite element analyses,
such as storing amesh and looping through the entities on the mesh to create stiffness contributors
(although the creation of the correct type of stiffness contributor is done by the derived class).

For example, FEAnalaysis.:setup() loops over the necessary mesh entities and, for each one, calls
avirtual function (typically overridden in the next level down of derived class, e.g. HeatTransfer-
Analysis) to create the specific types of SystemContributor needed for that analysis.

In the current work most effort has been put into developing classes to perform finite element
analysis. Others have extended this work to other types of analysis, in particular Partition of Unity
analysis[51,52].

12.3 Analysisclassesfor Finite Element Analysis

Classes derived from FEAnalysis do nothing more than create other objects that are of the appro-
priate type for the formulation being used. The actual solution of the problem is done in the other
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St ati cHeat Transfer | [Transi ent Heat Tr ansf er

FIGURE 55. Analysis classes

classes within Trellis and is decoupled from the analysis class. Thus, a single analysis class can
use al of the available solution techniques for a particular problem. Specifically the following
must be created:

* One or more fields of the appropriate type.

* An object of type Renumberer to provide appropriate global dof numbering (the particul ar
object may varying depending on the number of fields).

» The correct type of DiscreteSystem object for the problem being solved. Thiswill depend on
the time order of the equations being solved.

» Stiffness contributors, force contributors and constraints appropriate for the formulation based
on the attributes applied to the model.

Figure 56 shows the sequence of events, from the viewpoint of the Analysis class of setting up and
solving the analysis.
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FIGURE 56. Running an analysis, from the viewpoint of the analysis
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13. Algebraic System

The class AlgebraicSystem is a base class that is a representation of the non-linear matrix equa-
tion A(x)x = b(x). Notethat it is not literally the matrix equation, but rather just a representa-
tion of the system as such. A derived class, SimpleAlgebraicSystem, is used where the actual
matrix structure of the equation is Ax = b rather than something more complicated (such as a
partitioned matrix of some kind). SimpleAlgebraicSystem stores the system being solvedinaLin-
ear System object which is discussed in Section 15.3. AlgebraicSystem objects are used primarily
by Temporal Solvers (Section 15.1) to solve the non-linear equations that arise from the problem
being solved.

13.1 Creation and Use of an AlgebraicSystem

An AlgebraicSystem is created by the Temporal Solver object that is being used in the particular
analysis. When the AlgebraicSystem is created it is given areference to a LinearSystemAssembl er
object and a SystemSolver. The LinearSystemAssembler is used to create and update the system,
the SystemSolver is used to produce solutions of the AlgebraicSystem.

AlgebraicSystem

solve SystemSolver
linearSolve
update

updateRHS

LinearSystem

SimpleAlgebraicSystem

LinearSystemAssembler

FIGURE 57. The AlgebraicSystem and related classes.

Since the AlgebraicSystem encapsulates the non-linear solution process. The code that needs to
get the solution to an AlgebraicSystem invokes the solve(...) member function of AlgebraicSystem
to get the solution rather than invoking a particular non-linear solver on the system. Although in
some ways either of these two approaches are equivalent, the encapsulation of the nonlinear
solver within the AlgebraicSystem makes it more of an active object (one that does something)
rather than a passive one (that only holds information), this also means that the code solving the
nonlinear system does not have to separately keep track of both the solver and the system.

To solve an AlgebraicSystem the client code looks like the following;

as->update(x); // set the initial value of x
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as->sol ve(&); // solve for a new val ue of x

The update(...) call, updates both the right and left had sides of the system using the current value
for time and the given value for the independent variables. The solve(...) call invokes the current
SystemSolver on the system and returns the solution in x.

13.2 Interfacefor System Solvers

The interface to the AlgebraicSystem provides methods to manipulate the system at the global
level. These methods are used by various higher level solution procedures, such as time integra-
tors and non-linear solvers. The methods are:

« update() - update both the left and right hand side of the system of equations using the current
value for time and the independent variables.

» updateRHS() - update only the right hand side of the system of equations as above.
e linearSolve() - produce a solution to the system in its current state.

* getRHS() - get the current value of b(x)

* SetRHS - set the value of b.

A further description of how these functions are used to write non-linear solvers is given in
Section 15.2.
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14. Assemblers

Assembler classes form the interface between an AlgebraicSystem and a DiscreteSystem. Each
solution algorithm (e.g. a backward Euler time integrator or a SIRK) must create an Assembler
that knows how to create the specific algebraic equations that the solution algorithm needs. This
Assembler is used by the AlgebraicSystem to construct or update its internal representation of the
equations to be solved.

An Assembler maps the contributions of each StiffnessContributor and ForceContributor in aDis-
creteSystem into the correct entries in the matrix A and vector b in an AlgebraicSystem which a
representation of the form A(u)u = b(u).

The easiest way to understand this is to consider a ssmple example of using Backward Euler to
solve afirst order PDE. In this case the equation we are solving is:

Mu+Ku = f (13)
when we apply the Backward Euler algorithm to the above we end up with:

(M +KDt)u,, ¢ = f+Mu, (14

If we map thisequation into Ax = b wefind that:

A=M+KDt

b=f+Mu, =

and, of course, basically the same thing happens at the elemental level.

In the solution process what needs to be done is to form Equation 14 from the elemental matrix
contributions. 1t would be computationally inefficient to first form a global M and K and f and
then perform the algebra needed to form the final equation. A more efficient way to do this would
be to separately transform the element matrices according to Equation 15 and directly assemble
them into the desired global system. Thisiswhat an assembler does, although it actually, for effi-

ciency, does operations like KDt during the assembly process rather than doing the operation on
the local matrix and then assembling the result.

Each type of operation that needs to form a global matrix or vector must use an assembler (either
defining a new one or using an existing one). The base classes MatrixAssembler and VectorAs-
sembler provide the operations needs to do the actually assembly into a global matrix and vector,
respectively.

The current assembler hierarchy is shown in Figure 58. All of the assemblers are derived from the
base class Assembler. This base class provides the interface that the DiscreteSystem uses to give
the ForceContributors and StiffnessContributors to the assembler when the DiscreteSystem is
asked to apply an assembler to either its ForceContributors or StiffnessContributors. In particul ar
the code in DiscreteSystem is simply as shown below, given the assembler it smply calls the
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assemblers processSC(...) (for a StiffnessContributor) or processFC(...) (for a ForceContributor)
member function.

voi d DiscreteSystem : appl yToSC(Assenbl er *a)

{
for(int i = 0; i < NunEl enents; i++)
a- >processSC(El enents[i]);
}
voi d DiscreteSystem : appl yToFC(Assenbl er *a)
{
for(int f = 0; f < NunfForces; f++)
a- >processFC( Forces[f]);
}

Assembler

processSC( sc: StiffnessContributor * )
processFC( fc: ForceContributor * )

DiscreteSystem

MatrixAssembler VectorAssembler

ScalarAssembler

T 5p 7

LinearSystemAssembler ResidualAssembler InternalEnergyAssembler
setup( m: SparseMatrix *, f: SVector<double> *)
updateRHS( x: SVector<double> & ) 4
update( x: SVector<double> & ) I |
ZeroOrderSystemResidualAssembler FirstOrderSystemResidualAssembler
LoadStepperAssember BackwardEulerAssembler ZeroOrderSystemAssembler

FIGURE 58. Assembler class hierarchy

Each of the derived classes of Assembler must override these functionsto perform the appropriate
calculations. For a concrete example of this see Section 15.1.1 on page 103 where the implemen-
tation of a assembler for a backward Euler time integration algorithm is given.

The other class that plays an important role outside of the actual implementation of an assembler
is LinearSystemAssembler. The interface for this class is used by AlgebraicSystem (Section 13.)
to update its matrix representation when needed.

The classes MatrixAssembler, VectorAssembler and ScalarAssembler are implementations of the
actual assembly routines for a matrix, vector and scalar respectively. A MatrixAssembler holds a
reference to a SparseMatrix object and given an ElementMatrix (see Section 8.2.2) assembles this
into the SparseMatrix object. Since a LinearSystemAssembler must be able to updated both a
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matrix and a vector it is derived from both MatrixAssembler and VectorAssembler to get these
capabilities.

The rest of the classes shown in Figure 58 are concrete implementations of various assemblers.
The ZeroOrderSystemAssembler is ageneric assembler for ZeroOrderDiscreteSystems, the L oad-
StepperAssembler and BackwardEulerAssembler are related to the LoadStepper and Backward-
Euler time marching algorithms shown in Figure 59.
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15. Equation Solving

Trellis has anumber of classes to implement the procedures needed for solving the equations that
arise during the analysis process. The classes currently implemented within Trellis focus on the
solution of time dependent problems where the problem has been semi-discretized in time. It
would be possible to implement procedures for solving space-time formulations, however that is
left as afuture extension to Trellis.

For the semi-discretized problem Trellis uses a hierarchy of three solvers: Tempora Solvers to
implement time marching algorithms, System Solvers to implement solution of a nonlinear sys-
tem at each time step, and Linear System Solversto solve linear equations.

15.1 Temporal Solvers

At the highest level in the equation solving hierarchy are the Temporal Solver classes which are
all derived from the base class Temporal Solver as shown in Figure 59. These classes control the
time marching algorithm used by the solution process.

SystemSolver

TemporalSolver

.,.I AlgebraicSystem

StaticSolver Timelntegrator LoadIntegrator

/N /N

SIRK BackwardEuler LoadStepper

FIGURE 59. Temporal Solvers

The general procedure is for the TemporalSolver to construct an AlgebraicSystem at each
timestep and invoke its SystemSolver to solve the non-linear system. The construction and updat-
ing of the AlgebraicSystem is performed by an assembler that is specific to the particular time
integrator. How assemblers are used to update an algebraic system was described in Section 14.
on page 99.

The simplest Tempora Solver classisthe StaticSolver which is used to solve problems that are not
time dependent.
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The next category of temporal solvers are the load integrators. These are used to solve static prob-
lems where the loads must be incrementally applied, such as large deformation problems where
the solution will not converge if the load is applied all at once. These classes use an artifical time
to incrementally apply the load, so that at the intial time there is zero load applied and at the final
time all of the load is applied. Currently the only implemented class of this type is LoadStepper
which tries to adaptively select the largest step size.

Thefinal category of temporal solvers are the time integrators. These are used to solve first order
(in time) systems.

15.1.1 Temporal Solver Implementation - Backward Euler

One of the ssimpler time integrations algorithms that can be implemented is backward Euler, how-
ever this demonstrates all of the important features of implementing a time integrator within Trel-
lis. In this case afirst order in time system of the form:

F(t,y,y) =0
Y(to) = Yo (16)
y(to) = yO

where F, y and y are N-dimensional vectors being solved for.To solve this equation using Back-
ward Euler we replace the derivative in Equation 16 by the first order backward difference and
solve the resulting equation at the current time t,, , ;. This gives us an equation of the form:

Yn+17Y
F(tn+1) yn+1! %) =0 (17)

where Dt =t ,,—t,.
Substituting this approximation for y into the original system Cy + Ky = f being solved gives
the following form for the non-linear system (if C or K are functions of y) to be solved at each
timestep:

Yn+17Y
F(¥Vnv1) = C(5—) + Ky g = f (18)

Since this equation will be solved by something similar to a Newton iteration, the terms that the

T1F C

assember must calculate are = — + K for the left hand matrix and the residua of F for

yn +1
the right hand vector.

The class defintion for BackwardEuler is given below:

cl ass BackwardEul er : public Tinmelntegrator {
public:
Backwar dEul er ( Syst enSol ver *sol ver, double t0, double t1, double dt);
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[linitialize by giving the D screteSystem
virtual void init(DiscreteSystenFirstOder *system;
virtual void solve(); // run the time integrator

private:

I

Backwar dEul er Assenbl er *t heAssenbl er;
doubl e TO, T1, DT;

After the BackwardEuler object is created from the attributes specified in the solution strategy
case, it first must be initialized. Thisis done by the Analysis object. To initialize the object it must
be passed the DiscreteSystem that it will be solving, which must be a DiscreteSystemFirstOrder.
The BackwardEuler object then creates an appropriate assembler (a BackwardEulerAssembler)
and a SimpleAlgebraicSystem.

voi d BackwardEul er::init(DiscreteSystenFirstOder *systemn

{

}

/1 create assenbl er

t heAssenbl er = new Backwar dEul er Assenbl er (t heSystem ;

/'l create al gebraic system

set AS(new Si npl eAl gebr ai cSyst en{t heAssenbl er, t heSol ver));

BackwardEuler::solve() is given in commented code below. As can be seen thisis avery simple
routine that steps through time, solving the algebraic system at each time step.

voi d Backwar dEul er: : sol ve()

{

}

SVector x(theSystem >nunDofs(),0.0); // vector for solution
((DiscreteSystenFirstOrder*)theSystenm->get U0(&x); // get initial conditions

theAssenbl er->initialize(DT); // initialize the assenbler

for(double t=TO; t < T1; t += DT){ // |oop over tine
theSystem >set Tinmelnfo(t,DT); // set the tine for the discrete system
as()->update(x); // update the al gebraic system based on current val ue of x
as()->solve(&x); // solve al gebbraic systemand get new X
t heAssenbl er->tinestep(DT,x); // pass tine inc and new sol ution val ues
theSystem >endTi mestep(); // tell systemwe are done with this tinestep

Most of the actual calculations that must be done to implement the backward Euler algorithm are
donein the BackwardEulerAssembler class. Since the BackwardEulerAssembler will be responsi-
ble for updating a linear system it is dervied from LinearSystemAssembler (see Section 14. for a
generic discussion of Assemblers). The class declaration is given below:

cl ass Backwar dEul er Assenbl er : public Linear SystemAssenbl er {
public:

Backwar dEul er Assenbl er (Di scret eSystenFirst Order *sys); // constructor
/1 may need to process both stiffness and force contributors

virtual void processSC(StiffnessContributor *sc);

virtual void processFC(ForceContributor *fc);

void initialize(double dt);
voi d tinmestep(double dt, const SVector &dx); // called when finished with one
/1 timestep and noving on to the next

virtual void updateRHS(const SVector &x); // update the RHS of the system
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virtual void update(const SVector &x); // update the whol e system

private:
doubl e DT;
int RHSonly; // flag
SVect or x| ast;

I

The processSC(...) member function takes each StiffnessContributor and invokes the appropriate
member functions of the StiffnessContributor to calcul ate the needed terms. The values calcul ated
by the StiffnessContributor are actually assembled into the matrix and vector by code in the base
classes MatrixAssembler and VectorAssembler.

voi d Backwar dEul er Assenbl er:: processSC(StiffnessContributor *sc)

{
if('RHSonly){ // only do this if updating the whole system

Matri xAssenbl er::setMult(1.0); // set the constant to multiply the matrix by
sc->du0(this); // call SCto calculate its zero order term

Mat ri xAssenbl er::setMult(1.0/DT); // set the constant to nmultiply the matrix by
sc->dul(this); // call SCto calculate its first order term

}
Vect or Assenbl er::setMult(-1.0); // set constant to nultiply vector by

sc->r(this,1); // call SCto calculate its residual

}

The processFC(...) member function takes each ForceContributor and invokes the appropriate
member functions of the ForceContributor to calculate the needed terms. Again the actually
assembly is handled by the base class VectorAssembler.

voi d Backwar dEul er Assenbl er: : processFC(ForceContributor *fc)

{
Vect or Assenbl er::setMult(1.0); // set the multiplication constant

fc->eval (this); // evaluate the force contri butor

}

The initialize(...) member function initializes the assember by getting the initial conditions from
the DiscreteSystem and saving them.

voi d Backwar dEul er Assenbl er::initialize(double dt)

{

DT = dt;

((DiscreteSystenFirstOrder*)theSysten)->get U0(&xlast); // get initial conditio
ns
}

At each timestep, the timestep(...) member function is called to update the independent variables
in the DiscreteSystem.

voi d Backwar dEul er Assenbl er:: ti mestep(doubl e dt, const SVector &x)
{
DT = dt;
((DiscreteSystenfFirstOrder*)theSysten)->setU0(x); // set x
((Di screteSystenFirst Order*)theSysten)->set UL(1/DT*(x-xlast)); // set tinme der.
x|l ast=x; // save current x
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When the assembler is called to update the right hand side (residual) of the equation, it sets the
current values of the solution and its time derivative and then calls the discrete system to have
itself applied to each of the force and stiffness contributors in the system.

voi d Backwar dEul er Assenbl er: : updat eRHS( const SVect or &x)
{
((Di screteSystenFirstOder*)theSysten)->set UO(X);
((Di screteSystenFirstOder*)theSysten)->set UL(1/ DT*(x-xl ast));
RHSonly = 1; // only update the RHS, see processSC(...)
t heSyst em >appl yToSC(this); // ask to be applied to all SC
t heSyst em >appl yToFC(this); // ask to be applied to all FC

}

To update the entire system, the same procedure is followed, but the flag is set for the processSC
function to also update the left hand side. In this case the left hand side matrix calculated is the

fF = E + K term derived above.

ﬂyn+1 Dt

voi d Backwar dEul er Assenbl er: : updat e(const SVector &x)
{
((Di screteSystenFirstOrder*)theSysten)->set UO(X);
((Di screteSystenFirstOder*)theSysten)->set UL(1/ DT*(x-xl ast));
RHSonl y=0; // update everything, see processSC(...)
t heSyst em >appl yToSC(t hi s) ;
t heSyst em >appl yToFC(t hi s) ;

15.2 System Solvers

System solvers are used to solve linear and non-linear systems of equations. They are generally
invoked by an AlgebraicSystem object in order to to solveitself. A SystemSolver object has aref-
erenceto the AlgebraicSystem that it is solving aswell as a LinearSystemSolver object that it uses
for performing solutions of linear algebraic systems of equations.

AlgebraicSystem SystemSolver LinearSystemSolver

/\

BFGS Broyden LinearSolver LineSearch Newton

FIGURE 60. SystemSolver classes.

The simplest classisthe LinearSolver class which isused for solving systems that are actually lin-
ear. All this class must do isto invoke the LinearSystemSolver on the AlgebraicSystem. The other
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classes implement various non-linear solution techniques such as Newton, Line Search, BFGS
and Broyden. The non-linear solver classes also give feedback to the object that invoked it (usu-
ally some type of Temporal Solver object) on how “easily” it was able to solve the system. This
can be used in adaptive time stepping to increase or decrease the time step as needed.

15.2.1 System Solver Example - Newton Iteration

For an example of the implementation of a SystemSolver we will consider the implementation of
the solve(...) member function for a Newton solver.

i nt Newton::sol ve(SVect or <doubl e> *xout)

{
/1 xout is input with the initial guess for x
SVect or <doubl e> dx( AS- >nunDof s(), 0. 0);
i nt count =0;
doubl e res, firstRes;
do{
if(count) // only do this after the first iteration
AS- >updat e(*xout); // update the al gebraic Eystenleth current solution
/1 the al gebraic systen1i%?Dxn: —F(x,)
AS- >l i near Sol ve(&dx); // do a linear solve on the al gebraic system
*xout += dx; // increment the solution
SVect or <doubl e> rhs = AS->getRHS(); // get the RHS
res = sqrt(dot(rhs,rhs)); // calculate the residua
i f (count==0)
firstRes = res;
count ++;
} while (res > absoluteTol && res > Tol *firstRes && count < maxlter &&
res < maxTol I ncrease*firstRes); // check for termnation
/] iteration ternminated, figure out why and informthe caller of
/1 whether solution converged
if (count >= naxlter)
return -1; // exceeded max nunber of allowable iterations
if (res >= maxTol I ncrease * firstRes)
return -1; // diverging solution
/1 1f only a small nunber of iterations did the job the time step
/1 can probably be larger -> informthe caller
if (count < 5)
return 1;
return O;
}

The essence of the Newton algorithm is implemented in the first few lines in the do() loop. The
rest of the codeis simply checking convergence and returning information about if and how easily
the system was solved.

15.3 Linear System Solvers

The linear system solver classes solve alinear system of theform Ax = b. Theclass hierarchy is
shown in Figure 61. Two of the classes, DirectSolver and CGSolver, are implemented within the
core framework module. In addition there are alarge number of solvers, only afew of which are
shown in the figure, that come from an interface to the PETSc library [5].

107



LinearSystem

LinearSystemSolver

a: SVector *
X: SVector *
A: SparseMatrix *

makeMatrix()
solve( system: LinearSystem &)

IterativeSolver DirectSolver
CGSolver PetsclterativeSolver

/\

PetscBiCGSTABSolver| ,,. |PetscCGSSolver||PetscChebychevSolver

FIGURE 61. Linear SystemSolver classes.

The LinearSystemSolver base class has two member functions that must be overridden in the base
classes. The first is the makeMatrix(...) function. This member function creates an intitialized
matrix that is specific to the type of solver that isbeing used. The reason that the linear solver cre-
ates the matrix rather than something else within Trellisis that most external solver libraries (such
as PETSc) are written to use their specific matrix implementation and this cannot be easily
changed. Thus rather than trying to adapt the external solver packages to aforeign matrix format,
al of the interal routinesin Trellis interface to the matrix through an abstract interface provided
by the SparseMatrix class as shown in Figure 62. For each external matrix format a new classis
derived from this that implements the needed operations in terms of the operators provided for
that format. With this design the linear solvers know exactly what the format of the matrix is and
thus can avoid having to call any virtual functions during the actual equation solving.

The other member function that must be overridden for each solver is the solve(...) function. This
is called with a LinearSystem (Figure 61) as an argument. A LinearSystem is simply an encapsu-
lation of the two vectors and a matrix that make up the equation Ax=b. A and b are defined and the
solve(...) member function solves for x. The SparseMatrix in the LinearSystem object must be one
that was created by the same type of LinearSystemSolver.

15.4 Iterative Linear System Solvers

The current hierarchy for linear system solvers is shown in Figure 63. There are two main
branches of the hierarchy, one for direct solvers and one for iterative solvers.

108



SparseMatrix

operator()
addElement
add
operator *
transMult
operator =
operator +=
operator -=
operator *=

/\

SkylineSymmetricMatrix PetscSparseMatrix

decomposelLD

backsub f E

PetscAlJMatrix

FIGURE 62. SparseMatrix and derived classes.

Iterative solvers differ from direct solvers in that they solve a PreconditionedLinearSystem
(Figure 64) which consists of a PreconditionedMatrix and two vectors. The preconditioned sys-

tem being solved is AX = b where: A = M7PAM31, b = M1lb, X = M,x

Either the |eft or right preconditioner can be the identity, which isindicated when constructing the
iterative solver by passing a null for that preconditioner.

15.4.1 ThelterativeSolver Class

The most important function in the IterativeSolver classis the solve(...) function. Thisfunction is
passed in a LinearSystem and constructs an appropriate PreconditionedLinearSystem, which is
then passed to the virtual member function do_solve(...). The dervied classes override doSolve...)
and solve the preconditioned system based on whatever algorithm they implement. If there was a

right preconditioner (M, ), the solution for the preconditioned system is then transformed back to

the uncondidionted solution using the relation x = Mglx. The implementation of this is given
below.

void IterativeSol ver:: sol ve(Li near Syst em &syst em
{
if(Left) // if there is a left preconditioner, initialize it
Left->init(systemA);
if(Right) // if there is a right preconditioner, initialize it
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LinearSystemSolver

solve(LinearSystem &)

makeMatrix(...) : SparseMatrix

?

DirectSolver IterativeSolver

solve(LinearSystem &) solve(LinearSystem &) )
makeMatrix(...): SparseMatrix makeMatrix(...): SparseMatrix

IterativeSol ver(double tol, int nmax_iter,
Preconditioner *left, Preconditioner *rig

doSolve(PreconditionedLinearSystem &)

doubl e Tol erance
doubl e Maxlterations

CGSolver

CGSol ver (doubl e tol, int max_iter,
Preconditioner *left, Preconditioner *rig

doSolve(PreconditionedLinearSystem &)

ht

FIGURE 63. Solver hierarchy

Right->init(systemA);
/'l create the PreconditionedLi near Syst em

Precondi ti onedLi near System pl s(system Left, Ri ght);
/1 invoke the algorithminplenented by the derived class

do_sol ve(pl s);

/1 if there is a right preconditioned, invoke its inverse on the

/'l solution, store the solution in the original

i f(Ri ght)
*(system x)
el se
*(system x)

Ri ght->i nvMul t (pl s. x);

pls. x;
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Precondi ti onedMat ri x

PreconditionedMatrix(SparseMatrix & a, Preconditioner *|, Preconditioner *r)
operator * (SVector<double>): SV ector<double>
transMult( SVector<double> ): SV ector<double>

SparseMatrix *A
Preconditioner *L, *R;

Precondi ti onedLi near System

Pr econdi ti onedLi near Syst en{
Li near System & s, Preconditioner *left)|
Precondi dti oner *right)

Precondi ti onedMatri x A
SVect or <doubl e> x
SVect or <doubl e> b

FIGURE 64. Classesfor preconditioned systems.

15.4.2 Example Iterative Solver - Congugate Gradient

As an example of an iterative solver, congugate gradient has been implemented in Trellis. The
class declaration is as follows:

class CGSol ver : public IterativeSolver {
public:
CGSol ver (doubl e tol, int max_iter, Preconditioner *left,
Preconditioner *right);

virtual void doSol ve(PreconditionedLi near System &systemn;
s

The class simply consists of a constructor and the doSolve(...) member function. The constructor
simply passes all of its arguments onto the constructor of IterativeSolver.

The member function doSolve(...) is a straight-forward implemention of the congugate gradient
algorithm. Note that since the preconditioned system is being solved, the algorithm does not have
to deal with preconditioners at all.

15.5 Writing Preconditioners

A preconditioner behaves essentially as a matrix, although it does not need to be implemented as
actually storing a matrix. The preconditioner, M, must support the following operations (b is a
vector):
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a=Mb a=MTb

(19)
a= M1b a=MTb
The declaration of the Preconditioner classis given below. All of the functions are pure virtual and
must be implemented by the derived classes.

class Preconditioner {
public:
/11 initialize the preconditioner
virtual void init(Sparsewatrix *a) = O;
/1] cal cul at eMb
vi rtual SVector<doubl e> operator *(const SVector<doubl e> &) const = O;
/11 calculateM'b
vi rtual SVEctorﬁgoubIe> transMul t (const SVect or <doubl e> &) const = 0;
/1l calculateM b
vi rtual SVectorﬁdoubIe> i nvMul t (const SVect or <doubl e> &) const = O;
/1] calculateM b
virtual SVector<doubl e> translnvMilt(const SVector<doubl e> &) const = 0;

In the function init(...) the preconditioner must do whatever is necessary to initialize itself. Cur-
rently only the matrix being solved is passed in, it is likely that some preconditioners will need
more information.

15.5.1 Example Preconditioner - JacobiPreconditioner

As an example, a Jacobi preconditioner has been implemented. The class declaration is given
below. As stated previously, although a preconditioner behaves as amatrix, it’s not necessary that
it isimplemented by storing a matrix. In this case the preconditioner actually stores a vector.

cl ass Jacobi Preconditi oner : public Preconditioner {

public:
virtual void init(SparseMatrix *a);

vi rtual SVector<doubl e> operator *(const SVector<doubl e> &) const;
vi rtual SVector<doubl e> transMil t (const SVect or <doubl e> &v) const;
virtual SVector<doubl e> invMul t (const SVect or <doubl e> &v) const;
virtual SVector<doubl e> translnvMil t (const SVector <doubl e> &) const;

pr ot ect ed:
SVect or <doubl e> M
b

The init(...) function simply constructs the preconditioner from the given matrix. In this case a
vector is made which stores the inverse of the diagonals of a. The inverses are stored since the

product M—1v is needed most often.

voi d Jacobi Preconditioner::init(SparseMatrix *a)

{
int s = a->size();
M set Si ze(s);
for(int i =0; i <s; i++)
Mi) = 1.0/ (*a)(i,i);
}
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Since al of the other operators are similar, only invMult(...) is shown here. This simply forms the
dot product of the stored diagonal inverses and the given vector.

SVect or <doubl e> Jacobi Precondi tioner::invMilt(const SVector<doubl e> &) const

{
}

return dot(Mv);
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16. Application of Trellis

Trellis has been used to develop anumber of analysis codes. The development of these codes has,
in many ways, driven the design and implementation of Trellisto be the general framework that it
istoday. In addition, the geometry-based environment that Trellisisbuild onisalso used for mesh
generation and mesh adaption procedures [11], however this application will not be discussed
here.

To this point there are four finite element analysis codes that have been developed using Trellis.
These implement various formulations to solve problemsin: linear static and dynamic heat trans-
fer, general advection-diffusion problems, solid mechanics including nonlinear material behavior,
solution of Euler equations using discontinuous Galerkin methods, and biphasic analysis of soft
tissues. In addition an implementation of a partition of unity analysis procedure for linear elastic-
ity has been done using Trellis. The remainder of this chapter is discusses these implementations.

16.1 Heat Transfer

The first application of Trellis was a simple implementation of static heat transfer analysis. This
was subsequently extended to include transient heat transfer building on SIRK time stepping pro-
cedures.

16.2 Advection-Diffusion

To investigate the suitability of using a hierarchical basis for flow type problems, a 2-d linear,
advection-diffusion equation has been implemented using Trellis. In this problem the solution

f = f(x) totheequation
f = f b on Gg (21)
where W is the spatial domain of the problem and Gg is the portion of the boundary with pre-

scribed essential boundary conditions. The a; terms are the Cartesian components of a diver-

gence-free advective velocity field, k >0 is the diffusion coefficient and f(Xx;) is a prescribed
source term.

The weak form used for the solution of this problem is based on the Streamline Upwind Petrov
Galerkin (SUPG) method due to this methods stability and higher order accuracy. Details of the
formulation can be found in Reference 95.

As atest case for this implementation a problem as shown in Figure 65 was used. This problem
has an exact solution that can be used to check the rate of convergence of the solution.
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FIGURE 65. Test problem for advection-diffusion equation.

The rate of convergence in the L2 norm were found to be very close to the theoretical prediction

of O(hP * l) as shown in Table 22. The lower rate for p=6 may be due to the fact that the actual
error was close to machine precision and thus the calculation of that quantity is of questionable
accuracy.

TABLE 22. Rates of conver gence for advection-diffusion problem.

convergencerate

2.0

3.0

4.0

50

58

o o~ W (N | [T

6.6

Another example of this implementation in Trellis is shown in Figure 66. This is solution of an
advection dominated problem in arotating flow field. The solution shown is for various polyno-
mial orders up to p=6 on a fixed mesh of 32 triangular elements.

16.3 Solid M echanics

Another of thefirst test problems to be implemented with Trellis was linear, static elasticity using
a standard displacement based formulation. Figure 67 shows a test case run to validate the capa-
bilities of this code for analyzing composite materials. The reference solution for this problem is
given in Reference 66.

Severa different analyses of this and similar geometry were performed in all cases the results
werein very good agreement with those given in the reference solution. An example of one of the
resultsis shown in Figure 68.
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FIGURE 67. Composite analysistest case.

The original elasticity code was subsequently extended to include both nonlinear behavior and
stabilized mixed formulations. In particular a stabilized mixed finite element formulation using a
linear displacement and linear pressure interpolation has been extensively tested [53]. Thisformu-
lation was develop since similar stabilized formulations show promise for alowing general p-
adaptivity to be applied.

The formulation was implemented for both Eulerian and Lagrange material descriptions. In addi-
tion a set of non-linear material models were implemented into Trellis to be able to run meaning-
ful test cases.

116



60000.

40000-
20000

-20000

FIGURE 68. S, distribution. “case 3" z=2h (left), z=h (right), e = 1

As an example of the performance of this mixed formulation the test problem shown in Figure 69
was run. Thisis acommon test problem used to test element formulations under combined bend-
ing and shear. A tapered panel is clamped on one side while it is loaded with a shear load on the
other side. Although thisis a 2-d problem it was analyzed as a 3-d problem by giving the geome-
try asmall thickness.

The analyses were run using a Neo Hooke material with material properties that make it nearly

incompressible (A Poisson’sratio of n = 0.49995), which is the type of problem that this mixed
formulation is designed for.

The results in Figure 69 are shown for three element formulations @) a stable quadratic displace-
ment, linear pressure element, b) an unstable linear displacement, linear pressure element and c)
the new formulation of a stablilized linear displacement, linear pressure element. As can be seen
in the figures, the stable element and the stabilized element give similar results overall while the
unstable formulation has oscillatory stresses that render its solution unusable.
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FIGURE 69. Test problemswith stabilized mixed element.

16.4 Euler Equation Solution Using Discontinuous Galerkin Methods

A variable-order discontinuous finite element procedure for the solution of the three dimensional
Euler equations was developed using Trellis. An advantage of using discontinuous finite elements
isthe simplicity of using variable polynomial order in the elements. Since the solution field isdis-
continuous there are no continuity restrictions that need to be considered. In the discontinuous
Galerkin methods the elemental solutions are coupled through a flux calculation on the bound-
aries of each element that contributes to the residual for the element level solution. The hierarchic
mesh representation used in Trellisiswell suited for this type of problem since the calculation of
the numerical flux for an element requires knowing the elements on either side of a mesh face.
Thisinformation is directly stored in the hierarchic mesh representation.

An example of a problem solved using this formulation is shown in Figure 70. This problem is
one of flow in amuzzle brake. The solution is shown using polynomial orders of 0, 1 and 2.

16.5 Biphasic Soft Tissue Analysis

A application for the biphasic analysis of soft tissues was implemented using Trellis. The formu-
lation is the solution of equations that represent soft hydrated tissues such as those found in
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FIGURE 70. Example of flow in a muzzle brake using discontinuous Galerkin method.

human joints. The soft tissue is represented as a two-phase mixture of an incompressible inviscid
fluid and a hyperelastic, transversely isotropic solid. The current implementation uses a velocity-
pressure mixed formulation. The equations being solved are given below:

continuity: N x(f Svs+ f fyf) = 0 (22)

saturation: fS+ff = 1 (23)

solid momentum: N xs S+ pS = 0, fluid momentum: N xs f + pf = 0 (24)
momentum exchange: pS = —pf = pNfs+z(vf —vs) (25)

solid stress: SS = —f Spl + Ce, fluidstress: s T = —f fpl (26)

where the superscript ‘s and ‘f’ denote solid and fluid phases, respectively, f 2 is the volume

fraction of the phase a, v@ is the velocity of each phase, p is the pressure, N is the gradient

operator, z isthe diffusive drag and C' is the constitutive matrix. Details of the formulation can
be found in Reference 3.

This formulation was an interesting test for Trellis since it was the first mixed formulation that
was implemented. In this case velocity and pressure are represented as separate fields so that their
polynomial order can be varied independently.

Many validation examples have been performed. The results for one of these, confined compres-
sion, is shown in Figure 71. Confined compression creep where a sample of soft, hydrated tissue
is compressed under the action of a uniform load applied through a rigid, permeable platen (also
shown). The bottom face of the model isfixed, and the side faces are symmetry boundaries. There
isan analytical solution available for this problem.
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FIGURE 71. Confined compression creep results after 50 seconds of creep.

16.6 Partition of Unity Analysis

The Partition of Unity Method (PUM) [6] is a one of a family of similar methods (going under
names such as Element Free Galerkin Methods [13] and Moving Least Square Reproducing Ker-
nel Methods [56]) that generalize the finite element methods by removing certain restrictions on
the local function spaces that are used to solve the problem.

In the PUM rather than the shape functions having local support over a particular entity in a mesh,
overlapping patches that may not have any particular relation to the underlying discretization of
the domain (if any) are used. This makes some aspects of the PUM substantially different than the
finite element method, however the actual calculations that must be done on the level of each
patch are very similar to that for the finite element method.

R S

|
FIGURE 72. Triangulations of boundary octantsfor PUM.

Reference 52 discusses many of the details of the implementation of PUM that was done using
Trellis. In summary, an octree was used to discretize the interior of the domain with a tetrahedral
mesh filling in between the octants and the boundary of the domain as shown in Figure 72. The
patches for the PUM are then associated with each of the octants and overlap with their adjacent
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octants. The underlying octree and mesh are used during the numerical integration process. An
example of the discretization used by the PUM analysisis shown in Figure 73.
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FIGURE 73. Example PUM discretization.

Implementing PUM using Trellis was an interesting case since it is sufficiently similar to finite
elements that it was hoped that the majority of the existing Trellis structures could be used, but
also is sufficiently different that it would demonstrate the flexibility (or lack thereof) of the sys-
tem.

The major issue in implementation turned out to be dealing with having shape functions that were
not associated with mesh entities. Thisrequired aredesign of implementation (but not the external
interface) of the interpolation classes to their current design as discussed in Section 8.3. The real
cause of the modification was that the shape functions were actually written in aglobal coordinate
system, rather than alocal one, but the integration was still done using a standard quadrature tech-
nique, thus the connection between the shape functions and the mappings was different than with
the previous finite element implementations.
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17. Closing Remarksand Recommendations

This thesis has presented a object-oriented framework, named Trellis, for performing numerical
analysis. Trellisis designed to overcome the limitations of current analysis tools and provided the
basisfor the development of the next generation of analysistools. The specific driver of the devel-
opment of this framework is the need for the next generation of analysis tools to effectively sup-
port adaptivity in all of its various forms which is an areathat current analysis tools have little, if
any, support for. The types of adaptivity of interest include not only adaptivity of the discretiza-
tion, but also of geometric idealizations, mathematical model selection and solution techniques.

17.1 Geometry-based Environment

In order to have a consistent and reliable representation of the problem to be solved, Trellis builds
off of a set of foundation tools for geometry-based analysis that have been designed, developed
and implemented. These tools are object-oriented abstractions and representations of a geometric
model, a mesh, attributes and fields.

The geometric model representation used is a non-manifold boundary representation that is spe-
cialized for the needs of numerical analysis. The implementation isunique in that it is designed to
work directly with commercial modeling kernels to avoid translation errors that occur when geo-
metric information is transferred from one modeling system to another. The model representation
forms the foundation for the entire geometry-based environment.

The attribute structure is designed to support the general specification of analysis attributes on a
geometric model. These attributes may be very general functions of space, time and other vari-
ables. The attribute system also gives the attributes an organizational structure to alow problem
definitions to be shared and reused.

The mesh representation builds off the concepts used in geometric modeling to represent a mesh
as atopological hierarchy of entities. This representation is complete in the sense that any local
information about the mesh topology can be obtained with local traversals of the topology. Using
such a topological representation allows very general tools to be developed to construct and
manipulate the mesh. The mesh also maintains a bidirectional associativity with the geometric
model that it was constructed from. This information, known as classification, is needed to sup-
port the adaptive process and to relate information on the mesh back to the geometric model. The
topological mesh representation is also highly useful in the analysis process for things such as
solution storage (using the field representation discussed below), providing a means to update the
solution during mesh modification, querying attributes from the geometric model and many other
procedures.

The field representation allows solution information to be stored on the mesh and, through the
mesh classification, be related back to the geometric model. The field is more than just a way to
store solution values, it also stores the interpolations used in the solution process. These interpola-
tion provide functionality to calculate the shape function and shape function derivative matrices
needed for numerical analysis and give away to implement formulations in a manner independent
of the type of interpolation used. The combination of the field structures with the hierarchic mesh
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representation gives some unigue capabilities, such as variable p shape functions where the poly-
nomial level may vary on each mesh entity.

17.2 The Analysis Framework

Trellis builds off of these geometry-based tools to provide an extensible framework into which
geometry-based analysis codes can be implemented. To this point the main emphasis has been on
the development of finite element analysis codes. The codes developed are in the areas of static
and dynamic linear heat transfer, displacement and mixed formulations for non-linear solid
mechanics, biphasic analysis of soft tissues, solution of the advection-diffusion equation and
Euler flow using discontinuous Galerkin methods. Trellisis also capable of supporting other solu-
tion methodologies. Recently a Partition of Unity analysis for linear elasticity has been imple-
mented using Trellis demonstrating its flexibility in supporting other analysis types.

Trellis starts with a geometry-based problem description given in terms of attributes on a geomet-
ric model. Along with a mesh of the model, thisis transformed into a set of objects that represent
the problem to be solved. These objects represent the overall system to be solved as a set of contri-
butions to the overall numerical system that must be solved. The definition of the objects is such
that they can be manipulated by the solution algorithms within Trellis in a manner independent of
the formulation, thus alowing general solution procedures to be written that can be used by any
analysis code implemented using Trellis.

The abstractions within Trellis provide a strong separation between the mathematical description
of the problem to be solved, the specifics of the numerical method used to solve the problem (e.g.
the shape functions, mappings, integration rules, etc.) and the solution procedures used to solve
the resulting linear and nonlinear systems. This separation of reponsibilities allows a simple
implementation of a formulation to take advantage of all the other capabilities within Trellis. For
example, when implementing a formulation for a particular problem, all of the code is written in
terms of operations on general interpolations rather than assuming specific shape functions. Thus
the same code is used regardless of the specific interpolations that are used to solve the problem.

Trellisis also designed to interface to external package for many of its capabilities to be able to
leverage the work done by others in these areas. One example of thisis an interface that has been
written to the PET Sc package to incorporate high performance linear solvers within Trellis. Once
such an interface is written, all analysis codes that use Trellis can use this new capability without
modification.

A major aspect of the design of Trellis was to ensure that it effectively supports error estimation
and adaptivity. General error estimation procedures have been developed within Trellis building
off of the general representation of the solution in terms of the field structures. Full support for p-
adaptivity within Trellis currently exists utilizing hierarchic shape functions where the polynomial
order may be specified on each mesh entity. h-adaptive analysis have also been done where the
mesh has been adapted external to Trellis.
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17.3 FutureWork

At this point Trellis can be used to solve a large number of problems and new formulations, that
take advantage of all its capabilities, can be incorporated with relative ease. However, Trellis will
never be “finished” asit is designed to be extended and evolve to incorporate new capabilities as
the need arises. Some of the near term extensions and enhancements to Trellis that have been
identified are:

Implementation of other formulations - One specific near term goal isto implement the Navier-
Stokes equations for the solution of flow problems.

Addressing performance issues - Theinitial implementation of Trellis focused mainly on gen-
erality without putting in place some of the lower level optimizations that would greatly
improve its performance. In the past few months much progress has been made on putting
these optimizationsinto place to improve the performance of Trellis. Benchmarks against other
codes would be useful in quantifying performance

More complete integration with mesh modification routines for h-adaptivity - In particular,
issues relating to solution remapping in the presence of mesh modification need to be
addressed

Parallelization of Trellisusing RPM for partition information

In the longer term, there are additional goals for the extension of Trellis:

More support for multiphysics problems - Currently certain types of multiphysics problems
could be solved using Trellis. In particular, the field concept used for the storage of the solution
and the abstractions used within the solution procedures support the coupled solution for multi-
plefields. However, when the solution process for the different physics would be more efficient
being lesstightly coupled, the current implementation is not sufficiently general. Generdiza-
tion of the current procedures to allow multiple systems to be formulated and solved would
allow for the effective solution of these types of problems.

Support for multiscale solution techniques - The types of problems that could be addressed in
the future range from relatively simple coupling between the same types of solution procedures
at different scales (e.g. coupling the solution of a homogenized composite material representa-
tion to alocal problem where the microstructure is represented) to coupling between entirely
different types of analyses (e.g. coupling a continuum model to an atomistic model). Support
for multiscale will need some of the same procedures as are needed for multiphysics, but an
additional complication of having multiple models that represent the different scalesisintro-
duced.

More complete integration with design methodologies - The direct coupling between the anal-
ysis code and geometric model that formsthe basisfor Trellis makesit anatural for more direct
coupling with design and optimization procedures to more directly integrate analysis into the
design process.

It isbelieved that concepts that have been developed and demonstrated to this point will allow the
above goals to be achieved. The current projects using Trelliswill be able to benefit from the new
capabilities with minimal impact to their existing code and new projects will be started that will
be able to easily use these and other new capabilities.
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