
Dirichlet boundary conditions for nonlinear

systems

Brian Granzow

May 21, 2017

1 Introduction

Let f : RN → RN be a system of N nonlinear algebraic equations obtained from
the finite element discretization of a system of partial differential equations. Let
x ∈ RN be the solution vector to the system

f(x) = 0. (1)

Suppose we wish to solve equation (1) with Newton’s method, where we iterate
over the steps of solving a linear system and updating the solution vector as
shown below [

∂f

∂x

]∣∣∣∣
x(n)

δx(n) = −f(x(n))

x(n+1) = δx(n) + x(n),

(2)

until some convergence criterion is satisfied (e.g. ‖f(x(n+1))‖2 < tol, where
tol is a user-prescribed tolerance). Additionally, suppose we wish to impose
the constraint xi = gi for some select i ∈ {1, 2, . . . , N}, corresponding to the
prescription of Dirichlet boundary conditions for the discretized PDE (1). We
now ask the question, how do we best impose these constraints during the
process of Newton’s method?

2 Albany’s current implementation

2.1 Implementation details

Albany currently answers this question by enforcing the incremental solution
update vector δx(n) to exactly satisfy the (known) residual at Dirichlet boundary
condition degrees of freedom. That is, at each iteration n, we know we would
like the updated solution

x
(n+1)
i = δx

(n)
i + x

(n)
i , (3)

1



to exactly satisfy the constraint

gi = δx
(n)
i + x

(n)
i , (4)

at Dirichlet boundary condition indices i. This is achieved by requiring the
increment vector δx satisfy:

δx
(n)
i = gi − x(n)i . (5)

Let J = ∂f
∂x denote the Jacobian matrix such that J ∈ Rn×n. Referring to

the linear system in equation (2), we can impose this type of constraint on the
update vector by zeroing out the appropriate row i of the Jacobian matrix and
placing a one on its diagonal

J (n)
ij = δij , (6)

(where δij is the Kronecker delta) and by enforcing that the residual vector
satisfy

−f (n)i = gi − x(n)i , (7)

or
f
(n)
i = x

(n)
i − gi, (8)

where f (n) = f(x(n)). Here we emphasize that i is fixed for rows corresponding
to Dirichlet boundary conditions.

As a simple illustrative example, suppose we wished to fix u1 = g1 for a
discretized PDE that results in a 3 × 3 linear system. Then for each Newton
iteration, we would solve a system of the form: 1 0 0

J21 J22 J23
J31 J32 J33


δx

(n)
1

δx
(n)
2

δx
(n)
3

 = −

x(n)1 − g1
R2

R3

 (9)

2.2 Some downsides

• The increment vector δx is, in general, not a member of the finite dimen-
sional weighting function space Vh that vanishes on the domain bound-
aries.

• Placing a one on the diagonal introduces scaling inconsistencies if the
Jacobian matrix entries are not O(1).

• The above can be alleviated by leaving the diagonal entry of DBC rows
as is:

J (n)
ij = J (n)

ij δij (10)

and scaling the residual vector as:

f
(n)
i =

gi − x(n)i

Jii
(11)

(no summation on i).

2



• Doing the above introduces a coupling of the computation of the residual
and the Jacobian, and Albany (in general) treats these two computations
as two very separate things.

3 A proposed implementation

3.1 Implementation details

Consider the imposition of Dirichlet boundary conditions to the solution vector
x

xi = gi, (12)

where we will denote this modified solution as xg . In the context of Newton’s
method, the initial guess x(0) is modified to the vector x(0)g that exactly satisfies
the Dirichlet boundary conditions. We then ensure that the Dirichlet boundary
condition rows never stray from their prescribed values by requiring that the
corresponding rows in the Newton update vector are exactly zero

δx
(n)
i = 0. (13)

This is readily achieved by zeroing out non-diagonal entries of the appropriate
row in the Jacobian matrix

J (n)
ij = J (n)

ij δij , (14)

(where δij is the Kronecker delta, no summation on repeated indices) and spec-
ifying that the residual vector at this row is exactly zero

f
(n)
i = 0, (15)

where f (n) = f(x(n)g ). In this instance, Newton’s method will iterate over the
steps [

∂f

∂x

]∣∣∣∣
x(n)g

δx(n) = −f(x(n)g )

x(n+1)g = δx(n) + x(n)g ,

(16)

As an illustrative example, suppose we wish to fix u1 = g1 for a discretized
PDE that results in a 3× 3 linear system. Then for each Newton iteration, we
would solve a system of the form:J11 0 0

J21 J22 J23
J31 J32 J33


δx

(n)
1

δx
(n)
2

δx
(n)
3

 = −

 0
R2

R3

 (17)

3



3.2 Some benefits

• The increment vector δx is a member of the finite dimensional weighting
function space Vh that vanishes on domain boundaries.

• All entries in the Jacobian matrix are now of the order of magnitude
dictated by the underlying PDE without introducing a scaling and without
a introducing a coupling of the residual and Jacobian evaluations.

• Since δx
(n)
i = 0 for a row i corresponding to a Dirichlet boundary condi-

tion, this row is fully uncoupled from all other rows and the column i can
be trivially zeroed:J11 0 0

0 J22 J23
0 J32 J33


δx

(n)
1

δx
(n)
2

δx
(n)
3

 = −

 0
R2

R3

 (18)

3.3 Things to think about

• The proposed approach requires the pre-imposition of Dirichlet bound-
ary conditions to the solution vector x in Albany. This solution vector is
immutable (const) at all points in Albany. How should it best be modi-
fied? Likely the answer is to modify the overlapped solution vector. Since
the ‘GatherSolution’ evaluator operates on this overlapped vector, this
approach makes a lot of sense.

• Again the proposed approach requires the pre-imposition of Dirichlet bound-
ary conditions to the solution vector x in Albany. I plan to implement a
Phalanx ‘preEvaluate’ routine that performs this imposition. The down-
side to this is that it will be called for every single residual and Jacobian
evaluation. Ideally, this pre-imposition of the solution vector would occur
only at the beginning of each non-linear solve. Can this be achieved with
a Nox ‘PrePostOperator’ or something similar?

• Since DBC rows are fully uncoupled in (18), the reduced linear system[
J22 J23
J32 J33

] [
δx

(n)
2

δx
(n)
3

]
= −

[
R2

R3

]
(19)

could in principle be formed. I think the construction of the Tpetra maps
and graphs for this reduced system would have to occur in the discretiza-
tion class, as these objects are passed along to Nox/Thyra etc.. for eval-
uations. This would likely be a non-trivial effort.

4


