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Abstract

We develop computational models and adaptive modeling strategies for obtaining an
approximate solution to a boundary value problem describing the finite deformation plas-
ticity of heterogeneous structures. A nearly optimal mathematical model consists of an
averaging scheme based on approximating eigenstrains and elastic concentration factors in
each micro phase by a constant in the portion of the macro-domain where modeling errors
are small, whereas elsewhere, a more detailed mathematical model based on a piecewise
constant approximation of eigenstrains and elastic concentration factors is utilized. The
methodology is developed within the framework of “statistically homogeneous” compos-

ite material and local periodicity assumptions.

1.0 Introduction

In this manuscript, we develop a theory and methodology for obtaining an approximate
solution to a boundary value problem describing the finite deformation plasticity of heter-
ogeneous structures. The theory is developed within the framework of “statistically homo-
geneous” composite material and local periodicity assumptions. For readers interested in
theoretical and computational issues dealing with various aspects of nonperiodic heteroge-
neous media we refer to [7][9][28][37].

The challenge of solving structural problems with accurate resolution of microstructural
fields undergoing inelastic deformation is enormous. This subject has been an active area
of research in the computational mechanics community for more than two decades.
Numerous studies have dealt with the utilization of the finite element method [12][13]
[18][21][22][24][30][34], the boundary element method [11], the Voronoi cell method
[10], the spectral method [1], the transformation field analysis [5], and the Fourier series
expansion technique [26] for solving PDEs arising from the homogenization of nonlinear
composites. The primary goals of these studies were twofold: (i) develop macroscopic
constitutive equations that would enable solution of an auxiliary problem with nonlinear
homogenized (smooth) coefficients, and (ii) establish bounds for overall nonlinear proper-
ties [2][29][32][33][34][35].




Attempts at solving large scale nonlinear structural systems with accurate resolution of
microstructural fields are very rare [10][12][26] and successes were reported for small
problems and/or special cases. This is because for linear problems a unit cell or a represen-
tative volume problem has to be solved only once, whereas for nonlinear history depen-
dent systems, it has to be solved at every increment and for each macroscopic (Gauss)
point. Furthermore, history data has to be updated at a number of integration points equal
to the product of the number of Gauss points in the macro and micro (unit cell) domains.

To illustrate the computational complexity involved we consider an elasto-plastic analysis
of the composite flap problem [8] with fibrous microstructure as shown in Figures 1 and 2.
The structural problem is discretized with 788 tetrahedral elements (993 degrees of free-
dom), whereas fibrous microstructure is discretized with 98 elements in the fiber domain
and 253 elements in the matrix domain, totaling 330 degrees of freedom. The CPU time
on SPARC 10/51 workstation for this problem was over 7 hours, as opposed to 10 seconds
if von Mises metal plasticity was used instead, which means that 99.9% of CPU time is
spent on stress updates.

With the exception of [6][12][19] most of the research activities focused on small defor-
mation inelastic response of microconstituents and their interfaces. This is partially justi-
fied due to high stiffness and relatively low ductility of fibrous composite materials.
However, when hardening is low and the stress measures are comparable to the inelastic
tangent modulus, or in the case of thin structures undergoing large rotations, large defor-
mation formulation is required.

One of the objectives of the present manuscript is to extend the recent formulation of the
mathematical homogenization theory with eigenstrains developed by the authors in [8] to
account for finite deformation and thermal effects. In addition, adaptive strategy is devised
to ensure reliability and efficiency of computations. In Section 2 we derive a closed form
expression relating arbitrary transformation fields to mechanical fields in the phases. In
Sections 3 and 4 we employ an additive decomposition of the rate of deformation into
elastic rate of deformation, governed by hypoelasticty and inelastic rate of deformation.
Section 3 focuses on tiepoint approximation scheme (for two phase materials), where
each point represents an average response within a phase. The local response within each
phase is then recovered by means of post-processing. In Section 4 we describairthe
scheme model, wheredenotes the number of elements in the microstructure. Section 5 is
devoted to modeling error estimation and adaptive strategy. We develop an adlaptive
point model, where th2-point scheme is used in regions where modeling errors are small,
whereas elsewhere timepoint scheme is employed. Numerical experiments conducted in
Section 6 investigate th2point, then-point, and the adaptive/n-point schemes in the
context of finite deformation plasticity.




2.0 Mathematical Homogenization with Eigenstrains for Small
Deformations

In this section we generalize the classical mathematical homogenization theory [3][4] for
heterogeneous media to account for eigenstrains. We regard all inelastic strains, phase
transformation and temperature effects as eigenstrains in an otherwise elastic body. We
will derive closed form expressions relating arbitrary eigenstrains to mechanical fields in a
multi-phase composite medium. In this section attention is restricted to small deforma-
tions.

The microstructure of a composite material is assumed to be locally periodic (Y-periodic)
with a period represented by a unit cell domain or a Representative Volume Element

(RVE), denoted by® , as shown in Figure 3. ket be a macroscopic coordinate vector in
macro domair) angl= x/¢ be a microscopic position vect@® in . For any Y-periodic
function f , we havd(x,y) = f(x,y+Ky) in which vectyr is the basic period of the
microstructure andk is a 3 by 3 diagonal matrix with integer components. Adopting the
classical nomenclature, any Y-periodic function can be represented as

fo(x) =(x, y(x)) (1)

where superscripf denotes a Y-periodic funcfion . The indirect macroscopic spatial
derivatives off¢ can be calculated by the chain rule as

15,00 =0 (6Y) = 1,069+ 21, (x,) @

f.Gy) =1, (y)+cf, (xy) = cf, (xy) (3)

where the comma followed by a subscript variakle y,or  denotes a partial derivative
with respect to the subscript variable (ﬁgi.z of/ 0x; dgidE of/ ay; ). A semi-colon

followed by a subscript variable  denotes a partial derivative with respect to the remain-
ing X components (2), but a full derivative with respecyito , and vice versa when a semi-

colon is followed by subscript variable  (3). Summation convention for repeated right
hand side subscripts is employed, except for subsorgotsly.

We assume that micro-constituents possess homogeneous properties and satisfy equilib-
rium, constitutive, kinematics and compatibility equations as well as jump conditions at
the interface between the micro-phases. The corresponding boundary value problem is
governed by the following equations:

oS, +b =0 in Q (4)

C
1j X i

of = Lij(eg—Hg) in Q (5)




€S = u(C. ) in Q (6)

wﬁ = u[ﬁ;xj] in Q (7)
us=1a0, on T, (8)
otn =t on T, (9

wherecf; ,ef andof are components of stress, strain and rotation tdngers; p and

are components of elastic stiffness and eigenstrain tensors, respebtively; is a body force
assumed to be independentyofus; denotes the components of the displacement vector;

the subscript pairs with regular and square parenthesizes denote the symmetric and anti-
symmetric gradients defined as

_1 _1
ug§ ) = é(uﬁXj + Uy ) uﬁ;xj] = é(uﬁXj —Uufy) (10)
Q denotes the macroscopic domain of interest with bounidafy, ; [and are boundary

portions where displacements  and tractigns  are prescribed, respectively, such that
rynfy=0andl =T, ,0T, ;n; denotes the normal vectorion . We assume that the

interface between the phases is perfectly bonded[d@j] =0 [ugihd= O at the
interface,l";,, , whera, is the normal vectortg, L L) is a jump operator.

In the following, displacementg-(x) = u(x,y) and eigenstraiﬁQx) = W (X, y) are
approximated in terms of double scale asymptotic expansiofsx0®

(X, y) = ud(X, y) + qut(x, y) + ... (11)
By O ) = MY (%, y) + GHE (X, y) + ... (12)

Strain and rotation expansions Onx © can be obtained by substituting (11) into (6) and
(7) with consideration of the indirect differentiation rule (2)

g;j(x,y) = %sql(x. y) + €)X y) + GEF(X, ) + ... (13)
1
;i (%, y) = qul(x. y) + 0 (X, y) + qwh(x,y) + ... (14)

where strain and rotation components for various orde¢s of are given as




gt = gy;(u°), ef = g (u9) +eg(usth), s=01, ... (15)

wit = oy;(uO), W = WU +wy(us*l), s=01 .. (16)

and
Exij(Us) = U?i,xj), Eyij(us) = U?i,yj) (17)
wxij(us) = uﬁ,xj]y wyij(us) = U[si,yj] (18)

Stresses and strains for different orderg of are related by the constitutive equation (5)
ot = L& 0 = Lj(EQ—Ha), s=01 ... (19)
The resulting asymptotic expansion of stress is given as
g;; (X, y) = —0‘1(X y) +00(x,y) +cal(x, y) +. (20)

Inserting the stress expansion (20) into equilibrium equation (4) and making the use of (2)
yields the following equilibrium equations for various orders:

0(¢3): oqu =0 (21)

O(¢™): oqlx 08 y = 0 (22)

O(cY): o,(J’X ,J N +b =0 (23)
O(¢%): of x oﬁ;}l =0, s=12.. (24)

Consider theO(¢™2) equilibrium equation (21) first. Pre-multiplying itufy and inte-
grating over a unit cell domai® vyields

J’ uooqly d® =0 (25)

and subsequently integrating by parts gives
0g-1 0 0 -
J’ upogn, dre—J’@u(i,yj)Lijklu(k‘yl) do =0 (26)

wherel" 5 denotes the boundary®f . The boundary integral term in (26) vanishes due to

Y-periodicity of boundary conditions dng . Furthermore, since the elastic stiiltri]gss
is positive definite, we have




y =0 O ul = ud(x) (27)
and

ol (%, y) = §1(x,y) = wrl(x,y) =0 28

ij ] y ij ’ y ] ’ y ( )

We proceed to th&©(¢1)  equilibrium equation (22) next. From equations (15) and (19)
follows

{Lijkl(exkl(uo) + eyk|(u1) —u|9|)}‘yj =0 on ©O (29)
To solve for (29) up to a constant we introduce the following separation of variables
ul(x, y) = Hig(W{&xq(uO) + df (x)} (30)

whereH,,, is a Y-periodic functiorf;, is a macroscopic portion of the solution resulting
from eigenstrains, i.e. i (x,y) = 0 thetf{(x) = 0 . It should be noted that bigth

anddlj are symmetric with respect to indikes hnd . Based o©(&6}) equilibrium
equation takes the following form:

{Lijk|((|k|mn+Gk|mn)5xmn(uo)+Gk|mnd#m(x)—u|9|)},yj =0 on O (31)

where

1
limn = é(émkénl * Sk Om1); Giimn(Y) = HeyymnlY) (32)

andd.,, is the Kronecker delta. Since equation (31) should be valid for arbitrary combina-
tion of macroscopic strain field,,(u®) and eigenstrain figlg , we first consider
ud =0, g, (u%) 0 and thene,,(u® =0 pJ 0 which yields the following two
governing equations o®

{Lijkl(lklmn+H(k,yl)mn)}‘yj =0 (33)
{LijkI(H(k,y|)mnd#m_UIQI)}‘yj =0 (34)

Equation (33) together with Y-periodic boundary conditions comprise a standard linear
boundary value problem o® . For complex microstructures the finite element method is

often employed for discretization éf; (y) , which yields a set of linear algebraic system
with six right hand side vectors [7]. In absence of eigenstrains, the asymptotic fields can




be written in terms of the macroscopic stréjJnE sxij(uo) and the macroscopic rotation
G = 00, (u%):
&j = &t Gj& t0O(Q), Wy = ; + Gijjkigy +O(c) (35)

where
éijkI(Y) = H[i,yj]kl(y) (36)

The termsGy, andéum are known as polarization functions. It can be shown that the
integrals of the polarization functions @  vanish due to periodicity conditions.

The elastic homogenized stiffnel_sgad follows fr@c®) equilibrium equation [7]:

Liji = éJ’GLijmnAmnmd@ = é{@AmmijnsAﬂkl do (37)
where
Adimn = Tkimn ™ Giimn (38)
Ay mn is Often referred to as an elastic strain concentration functiot@nd is the volume
of a unit cell.

After solving (33) forH, we proceed to (34) for findimfy, subjected to Y-periodic

mn ?
boundary conditions. Pre-multiplying (34) by,  and then integrating the resulting equa-
tion by parts with consideration of Y-periodic boundary conditions yields

I@GijstLijkl(GHmnd#m(x)—u|9|) d® =0 (39)
Rewriting (39) in terms of strain concentration functi,énm(I and manipulating it with
(37) yields
dff = é(r—ijkl _[ijkl)_lIGGmnlemnslugt do (40)
where




The superscriptl denotes the reciprocal tensor.(({tg) approximation to the asymp-
totic strain (13) and rotation fields (14) reduces to:

g = & + Gy (§q + dff) + O(¢) (42)

= @; + Giji (B + dgy) +O(c) (43)

e
|

Let @ ={ypM)(y)}] be aseto€l continuous functions, then the separation of variables

for the O(¢®) eigenstrains is assumed to have the following decomposition:

HEO6Y) =y wiD(y) HiD(x) (44)
n=1

The resulting asymptotic expansion of the strain and rotation fields (13), (14) can be
expressed as follows:

€ij(%, y) = &;(X) + Gjj (V)€ (X) + z Dﬁnk?()’) HEM (x) +0(c) (45)
n=1

(% y) = @00+ G &)+ T DINY) 1P +0(Q) (46)

n=1

where Di(]ﬂ?(y) andlf)ﬁ';l?(y) are the eigenstrain influence functions, which can be

expressed in terms of polarization functidg, (y) é"m (y) as follows
DY) = 2Gi (Linpa—Lmnpd [ Grenglre WM dO 47
|]k?(y) |@| |Jmn( mnpq mnpo) o rspq rsquJ (47)
DINY) = - Giimn(Lrmnoa=Lmnod ™M Greroloer WM dO
ﬁﬂ (y) = 0] ijimn(Lmnpq mnpo) o “rspa rskIW (48)

In particular, ifQ is a set of piecewise constant functions defined as

01 if y. 00
p(y,) = 0 o
0o otherwise

(49)

and®() s the subdomaip  within a unitcell))  the subdomain volume fraction given

by ¢ =|e(M)|/|6| and satisfyingzg _,CM =1, then (45) and (46) reduce to:




P = —— . =g ( + D) +
&jj |@(p)|I®(p)£|J do & + G| EkI nzl ﬁ HE +0O(c)
50
. ) i | (50)
(P) = — . = n n) +
“ |(9(p)|.re>(p>oo'J d° *+ Gif Z ﬁ HP +0(<)
where
DR = WG (Lmnpa—Lmnpd "Gl (5)
bﬁﬁ?) = Cm)éi(fr)r%n(l-mnpq_ [mnp&_lGﬁgqur(QQl (52)
and
) AM)y _ ~
(G”kp Gijkl) = MJ’@(H)(G”M’ Gijki) dO© (53)

We will refer to the piecewise constant model defined by (50) as-f@nt scheme
model. Equation (5@ has been originally derived by Dvorak [5] on the basis of transfor-

mation field analysis. Finally, we integrate t0¢c°) equilibrium equation (23)®ver

TheJ’ ,J v, dO© term vanishes due to periodicity and we obtain:
®

ad deD +b =0 on Q (54)

J

%lfe

Substituting the constitutive relation (19) and the asymptotic expansion of strain tensor
(42) into the above equation yields the macroscopic equilibrium equation

q@u’ I-|JkI(AkImn mn+GkImndun_UI9|)d@EX +bi =0 (55)

|

Finally, if we define the macroscopic stress as
0. = —J’ o? do (56)
®

then the equilibrium equations (54) and (55) can be further simplified as follows:
Ojj x + b =0, { Lijii (B — Fi)} x ¥t b, =0 (57)

where[y;; is the overall eigenstrain given by




- 1_

Mij = _@Lijhj’el-klmn(Gmnpcfqu - Ur?m) do (58)
ReplacingG ,npq BYAmnpg—mnpq  @nd manipulating (58) with (37) and (40), the overall
eigenstrain field can be expressed as

= _ 1

p'ij - @J’GBKIUHEI do, BijkI = Lijmn(y)Amnpq(y)[Egikl (59)

Equation (59) represents the well-known Levin’s formula [23] relating the local and over-
all eigenstrains, anBy;, is often referred to as the elastic stress concentration function.

Remark 1:As a special case we consider a composite medium consisting of two phases,
matrix and reinforcement, with respective volume fractiafi® elid such that
cM +c( = 1. Superscriptsn anfl represent matrix and reinforcement phases, respec-
tively. @M and @) denote the matrix and reinforcement domains such that

© = oM O o, We assume that eigenstrains and elastic strain concentration factors are
constant within each phase. This yields the simplest variant of (50) wh2rd he corre-
sponding approximation scheme is termed ag4peint model. The overall elastic prop-
erties are given by [5]

f
L = 5 COLRa (I + Gihi) (60)

r=m

and the overall stress reduces to:

Ojj = C(m)oi(Jm) + c(f)oi(Jf) (61)

3.0 2-Point Scheme for Finite Deformation Plasticity

For finite deformation analysis the left superscript denotes the configur%f‘qut is the

current configuration at time+ At wheres is the configuration atttime . For sim-
plicity, we will often omit the left superscript for the current configuration, i.e.,

O EHMD . To extend the small deformation formulation to account for finite deforma-
tion effects the following assumptions are made:

Al: Phase stress objectivity

We will assume that the principle of objectivity is satisfied for each phase. Then the
Cauchy stress rate for phase is given as:

10



of) =6+l where o = Ao oA ©)

where the superposed dot represents the material time derivative. The rate of deformation
and spin tensor components, denotedds  caffid , respectively, are defined as

ef°00=vty)  and 600 =V, (3
Wherevﬁgj) is the phase velocity gradient. The asymptotic expansion of the phase velocity
is given as
VR (x) =v0(x, ) =V (x, y) + (% y) (64

éi(Jr) is the objective rate of the Cauchy stress in pliase , which represents the material

response due to deformation, wherégd = 0144 Oyt represents the rate of rota-
tion.

Remark 2:The optimal choice of rotatiod i(Jr) depends on the microstructure. For fibrous

composites it is natural to assume tlilqgf) , represents the fiber rotation from the config-

uration aligned along the unit vecttcm to the current configuration aligned along the
vectorm; . Thus

¢ . -1 "y
m=0Pm  and  m = OPOP m=Alm ©

Following Lee [20] it can be shown thﬁfjr) is related to the spin and rate of deformation
tensors by:
A = @ + e mem —efdmm (66)

The choice of rotations in textile and particle composites is less obvious. We refer to [16]
for the discussion on various choices.

A2: Additive decomposition of hypoelastic and inelastic rate of deformation

The theoretical and practical reasons favoring additive decomposition over multiplicative
decomposition for fibrous composites were discussed in [27]. In the present work we

adopt the additive decomposition of rate of deformation into elg&fﬁc and inelastic rate

of deformationi1{") , which gives

11



£ = &0 +pd (67)

Furthermore, we will assume the hypoelastic constitutive equation relating the objective
Cauchy stress rate with rate of elastic deformation:

6 = L (&) - ) (68)

A3: Midpoint integration scheme for micro- and macro-coordinates

In a typical time step + At , the configuration of the macro- and micro-structure may be

expressed as a sum of the configuration at the previous step and the displacement incre-
ment:

t+AtXi _ tXi +Aui0 (69)
t+ At t ~
Ty o=y A, (70)
The macroscopic displacement incremAnf is found from the incremental solution of

the macro-problem, whereas displacement increment in the RVE is given by:
Ali(x,y) = {L&;(x) + 883 (X)}y; +Au(x,Y) (71)

The first term in (71) represents the contribution of macroscopic solution, whereas the sec-
ond termAul(x, y) accounts for oscillatory Y-periodic field. Figure 4 schematically illus-
trates the decomposition of the deformation field in the RVE.

Strain and rotation increments are integrated using the midpoint rule to obtain a second
order accuracy:

A _ 10 oA s 0Au?
8iJ_EQ)HAt/sz NEZ:

E! AG. = 10 9AuP 0Au’ E 72
g i 2@t+At/2Xj o'+ Av3 0

%

where the midpoint coordinates are defined as

t+At/2. _ 1.t t+At t+at/2 1t t+ At
T ES00+ ), =S+ ) (73)
Similarly, the periodic portion of the solution incremeéni! is obtained by integrating
(30) using the midpoint rule:
Aul = H_ (‘T2 (ag, (x) + AdE (X)) (74)

12



where the increment of inelastic strain is defined in Section 4.

A4: Additive decomposition of material and rotational respons

There are several formulations aimed at extending the small deformation formulation to
account for large deformation effects. One of the most popular approaches is known as the
co-rotational method where all the fields of interest are transformed into the ratated -

system [16]. In thed -system, the form of constitutive equations is analogous to small
deformation theory. A simpler approach, proposed by Hallquist [14] and improved by
Hughes and Winget [17] to preserve incremental objectivity, is based on the additive incre-
mental decomposition of material and rotational response. The latter procedure is adopted
in the present manuscript.

For two phase materials, the integration scheme [17] decomposes stresses and back
stresses as follows:

- taﬁr) +Ag() tc‘;ﬁr)

t
i O “ofp) O (75)

= G eaa, & = 0 lagp opp 7o

Whereai(Jr) is the back stress. The midpoint rule is utilized to compute the phase rotations
[17]

1 1
Di(Jr) =g + %ik—EAwﬁ{)g Awl(qf) (77)

Remark 3 For homogeneous materials the integration scheme [17] uncouples the material
and rotational responsds. the present formulation phase rotations in each phage, ,

depend on phase eigenstrains, which are unknown prior to stress integration, and thus
material and rotational responses are fully coupled and have to be updated simulta-
neously.

A5: Constant phase volume fractions

For the2-point scheme derived in Section 3 we will assume that phase volume fractions
remain constant throughout the analysis. This is apparently true in the case of elastic fibers
undergoing small strains and incompressible matrix material. In addition, we assume that
the elastic properties of the phases are independent of temperature. Based on the first-
order approximation methods, such as the Mori-Tanaka method [25] and Self Consistent
method [15], the strain concentration factors and eigenstrain influence functions can be
assumed to be constants throughout the entire analysis. These assumptions will allow us to

13



carry out the entire analysis without updating the configuration of the unit cells. Foer the
point scheme model, described in Section 4, these restrictions will be removed.

3.1 Implicit Integration of Constitutive Equation

For the elastically deforming reinforcement the only source of eigenstrain rate is due to

temperature effects, i.aif? = ¢¢;("  whegg(® s the thermal rate of deformation in
reinforcement domain. The eigenstrain rate in the matrix phase is comprised of both the

thermal, g¢;(™ , and the plastic,¢;(™ , rate of deformation effects, such that

™ = g&; (™ + ¢,(™. The phase thermal rate of deformation can be expressed as
ot = &(16 (78)

where6 denotes the temperature éﬁfél are components of the phase thermal expansion
tensor.

Combining the rate form of (50), (68), (69), (75), Assumptions 3 and 4 it can be shown
that the following relations for the phase stresses hold:

t+At t~ )
oi(Jr) = oﬁr)+Rﬁ{()|Aek|— z Qi(Jg(SI)Aul((ls), r=mf (79)

Ss=m

whereAp(?) is the overall phase eigenstrain increment and

R = Lida (pgia+ Gidu)
S

|
Q) = L§Hq(Srs! pgrr DIk

O
0 r,s=m,f (80)
O

Consider the yield function of the following form:
1 1
S (o™ —afm, Ym) = S(af™ —af™)Pyq (off —a) -2 YM}2 (61

whereY(™M s the yield stress of the matrix phase in a uniaxial test, which evolves accord-
ing to the hardening laws assumer#“) corresponds to the center of the yield surface in

the deviatoric stress space, or simply the back stress. Evolution of the back stress is
assumed to follow the kinematic hardening rule. For von Mises plasigity, is a projec-

tion operator which transforms an arbitrary second order tensor to the deviatoric space:

1
Piiki = liji _éaijakl (82)

14



For simplicity we assume that the plastic rate of deformation in the matrix phase follows
the associative flow rule:

L -
£ = SEAM = A, O™ = Pijq (ofV —af) (83)
1

We adopt a modified version of the hardening evolution law [16] in the context of isotro-
pic, homogeneous, elasto-plastic matrix phase. A scalar material dependent pgbameter
(0<B<1) is used as a measure of the proportion of isotropic and kinematic hardening

and A(M is a plastic parameter to be determined by the consistency condition (81).
Accordingly, the evolution of the yield stres$™ and the back stg%s can be
expressed as follows:

vm = 2Bhym)x m) (84)
3
8‘i(jm) = 2—(1_;Empij|<|(0|(<r|n)—0‘|(<r|n))7'\(m) (85)
wheref3 = 1 corresponds to a pure isotropic harderfing; O is the widely used Zie-

gler-Prager kinematic hardening rule [36] for metals; is a hardening parameter defined
as the ratio between effective stress rate and the effective plastic strain rate.

Integration of (83), (84) and (85) is carried out using the backward Euler scheme:

t+ At

t+AFt)£i(Jm) - pt;ei(Jm) + Di(Jm)A)\(m) (86)
trBlym) = ty(m) 4 3%‘ t+ Blym) Ap(m) @)
t+At(x i(jm) _ t& I(jm) + g]__;mpijkl(wmolgn) —t+At(X|£1n))A)\(m) (88)

where AN = A m) _\m) ancf&ﬁm) is the rotated back stress defined in (76). The

phase rotation increment follows from (50), (78) and (83):

f
Ao = Awy + A&y + DIIP (0§ — o M) AN M + > DIRELAB  (89)
s=m
In the following we omit the left superscript for the current dtep\t . Using the back-
ward Euler scheme for the rate formcq(f‘) in (79) and (86) yields the following relation
for the Cauchy stress in the matrix domain:

15



o™ = | o™ — QUM AN (90

Wheretroi(jm) is a trial Cauchy stress in the matrix phase defined as

f
t~ _
«Of™ = of™ + RO — 5 QfRIELPAS (91)

Ss=m

The process is termed elastic if:

2
(;Of™ — af™)Piji (O™ —G&?"))—é{ Y(m}2 <0 (92)

ANM =0

Otherwise the process is plastic, which is the focus of our subsequent derivation.

Subtracting (88) from (90) we arrive at the following result:

t/\
of™ —af™ = (I + DA™MD )72 (0l —afP) (93)
where
_ 2
O = QM Pgyq+ é(l_B)hPijkl (94)

The value ofAA(™ is obtained by satisfying the consistency condition which assures that
the stress state in the plastic process lies on the yield surface at the end of the current load
step. To this end, equations (87) and (93) are substituted into the consistency condition

(81), cp(m)(oi(jm) —CXi(Jm), Y(M) = 0, which produces a nonlinear equation Ax(™ A

standard Newton’s method is applied to solve/faf™

-1
0 U
M, = - 228 5 pm (95)
AN D AN
wherek is the iteration count. It can be shown that the deri@d@ /AN (™ required
in (95) has the following form:
2
GO~ Dmci(ofp —afm) - BT %)
oaNm 9 — 6BhAA(M)
The expression fo€{[)  is derived in Appendix A. The converged valde 6P is then

used to compute the phase stresses. The overall stress is computed from (61).
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3.2 Consistent Linearization

While integration of the constitutive equations affects the accuracy of the solution, the for-
mation of a tangent stiffness matrix consistent with the integration procedure is essential
to maintain the quadratic rate of convergence if one is to adopt the Newton method for the
solution of nonlinear system of equations on the macro level [31].

The starting point is the incremental form of the constitutive equations (79):

f
of) = ‘6 + Rijg gy~ QD OMAN™ — 5 QfEDA ")

Taking material time derivative of (88), (89) and (97) yields:

L 2(1 [§2h
Sm) = O‘ {0 (m))\(m) + Pupq(dgg) _déra]))A)‘(m)} (%8)

AGxD = Gy + G Adg + DT DDA + Py (G40 —a(m)ANM}
f
z D{ELO
= (99)
o—ﬁr) - téﬁr) +R,(,|2|Aékl—Qﬁf<rln){D|ﬁ )?\(m)+Pk| q(dém) érg))m\(m)}
f
-3 QEDS
(100)
Subtracting (98) from (100) far= m yields:
t~
dﬁm)—dﬁm) — I(Jm)_ O(ﬁm)-'-R'lk Aek| z QI kl
0 jja{ (af — af)R(™ + (0&5“) — G) AN} (101)
where
ta ta A(Gtm —q(m)
o.(Jm)— on(Jm) = —(Oﬁ 'S )A(bg") (102)

AWM

Combining (99), (101), (102), (212), (213) with the consistent linearizatioAsypf and
Ay (given in Appendix B) yields:

O™ —af™ = (I + AAMWID) (S  + 6Sq0 +2SA™) (103)
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where

dest = (oulglnn%n_aul((mn)(M[mn]st-" Gmr1U\'M(uv)st) + RkImnM(mn)st (104)
050 = 3 (Ui, — Uiy DFES - Q) €69 (109)
2Sa = WR(a{-alp) (106)

andW{ , UEm - andU{M,  are defined in (217), (212) and (213), respectively. It

Klmn KImn

remains to eliminatd™  from (103), by utilizing the linearized form of the consistency
condition (81) and equation (87) which gives

0 (agm — agm) — 480 Ymy2A (107)
b ’ 9— 6BhAA(M
Substituting (103) into (107) results in
A = T (S8 y +6S40) (108)

where

(9— 6BhANM)TIM (15, + ANMWI)
rim = ¥ (109)
ABh{ Y(M}2 — (9 — 6BhANM) O (M) (| +A)\(m)W( (m )1 S

mnst

and thus (103) can be simplified as
g(m _g(m = v~5.jk|V|9, 5+ egje (110)
where
Wikl = Uijmn + A)\(m)wijmn)_l(vsmnkl"' ﬁnnrga‘)vqum) (111)

65 = (ijmn + AAMWL ) (680 + ASnnT §76S09) (112)

Finally, by substituting (108), (110), (212) and (228) into (100), we get a closed form
expression relating the phase Cauchy stressdﬁ[ﬁe with the macroscopic velocity gra-

dient vf(” X and the temperature réte

o) = DYV, +dine (113)

where
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Di(ﬁ<)| = Ri(Jrn)mM(mn)kl + oUi(jrp)q(M[pq]kI + Gr()rq)mnM(mn)m)

+ (5U5Hq Dpgmn— Q) (O ST (D S,y + A)\(m)PmHDQVSquI) (114)

and
f ~
di) = 3 (Ui Dok~ QNER
S=m

+ (oYU B Dpamn= Qi) (HSRT EPeShq + A PrmnpqeSq) (115)
The overall consistent instantaneous stiffriBgg is obtained from the rate form of (61)
and Assumption A5:
where

Dij = C(m)Di(]rI?P + C(f)Di(Jfk)I’ d; = C(m)di(Jm) + c(f)di(Jf) (117)

The overall consistent tangent operator is derived from the consistent linearization of the
weak form of the macroscopic equilibrium equation (57). Consider the internal force vec-
tor expressed in terms of the quantities defined in the deformed configuration

fint = J’Q Nip, x 0y dQ (118)
whereN;, is a set of shape functions in the macroscale.

Prior to linearization, the internal force vector is defined in the reference configutﬁation
as

. 1 t
fint = LQ N tmemlJ'oiJ' J,dQ (119)
whereJ, is the jacobian between the macro-configurations at timest +alid F;. ; is

the macroscopic deformation gradient defined as

t+ At t
Fi= X = "X, and Frt= X,

_t
im jr Xm ), Xm mJ_ )S a me o (120)

Linearization of (119) yields
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mj~ij

gfint :I L {F—lo J +F—10,jJX+F‘1O Jx}dtQ (121)
‘Q

Substituting (116) into (121) and exploiting the kinematical relat|d;g$ J.v

ka !

Froj = —Fa%vﬁxj and the finite elementdiscretizatitvﬁ])q = Nyg x0g  Vields:
_fInt = J’ Nia, x Dijki Nig, x dQ dg +J’ Nia,  dij 0Q 6 (122)

Diji = Dijig * Oi0jj — 80y (123)

where Dy;,; andd; are defined in (119  denotes the velocity degrees-of-freedom

associated with the finite element mesh. The first integral in (122) represents the consis-
tent tangent stiffness matrix for the macro-problem.

Remark 4 For the purpose of linearization it is convenient to approximate phase rotations

within a unit cell by a constant field such thia(}’) = Wjj . The resulting rotated stress and
back stress rates are given as

of = Awiko ) — o Ao, ay” = DGk — o (M AGK (124)
Consequently, (104)-(106) can be simplified as

VSikt = RimaMmnyi— 8in (05D —a ™) + 8, (o — o W)} M i (125)

f
==> QI 2Sj = O ijia (ofV —afm) (126)

and Wil = O in (103), (109), (111) and (11D} an) in (114) and (115)
reduce to

D% R()

ijrmn

M(mryki—(8in 0] + 8,0 ))M[mn]kl

n=mj jn=im
—QmI(EEAT W Syvki+ AN™P 6 Soqkd) (127)

and

f
= QMO (MeSyq+ ANMPpqeS)— S QYPEL (128)
S=m
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4.0 n-Point Scheme for Finite Deformation Plasticity

In this section we consider a unit cell model discretized witdements. Ther-point

scheme model assumes that eigenstrains are piecewise constant, i.e., they are constant
within each element, but may vary from element to element. Our starting point (Section
4.1) is a rate form of the governing equations representing the finite deformation plasticity

of periodic heterogeneous media. Implicit integration of constitutive equations followed

by consistent linearization are given in Sections 4.2 and 4.3.

4.1 Governing Equations

The governing equations consist of: equilibrium (4), kinematics in the rate form (63),
boundary conditions (8), (9), and the constitutive equation in the rate form

- &6+ AS 56 ¢ AG
Gi = Oj + A0y — Oiic/\; (129)

where
O = Lija (& —&ki9) (130)
Lij denotes the instantaneous stiffness properties. In the following, we adopt Jaumann
rate, i.e. /\kJ = o‘okJ :
Double scale asymptotic expansion of the velocity field (64) provides the starting point for

the asymptotic analysis. Substituting the asymptotic expansions (20), (64) into constitutive
equation (130) based on the Jaumann rate yields:

o —05+— z (0,8 + 0, 8y — 0l & =Tl O IR 4, =-1,0,... (131)
r-—l

wherelf, is the velocity gradient given as

|E|1 = V|(()’ X and |E| = VE,+)Q1 + VE’ W s=0,1,... (132)
Further assuming tha®(¢l)  Cauchy stress vanisldrqé,: Li]-k|v|2yj =0 , yields
v? = vO(x) provided thatL;;, is not singular. We proceed to g?) equilibrium

equation (22):
afy,(xy) =0 (133)

To solve for (133) up to a constant we introduce the following separation of variables:
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VX Y) = Hig{VR () +dRi(x)} (134)

Note that plastic effects are now hidden in the Y-periodic funddgp(y) , whdPeas
accounts for temperature effects only.

Premultiplying (133) by the Y-periodic functidt(y) , integrating over the deformed
unit cell domain® and then carrying out integration by parts yields

o(x, y)= J’ H,k|yo do=0 (135)

Linearization of (135) is carried out by taking the material time derivajive, 0 . For
this purpose we express the integrand of (135) in the reference configuration, say at time

t, Hig 0l do = Hi y F m 00 Jyde whereF;,, = = Vi denotes the deformation

ikl,y;
gradient in the unit ceII andy is the corresponding jacobian. By utilizing equations (2)

and (3) it can be shown th;ajtt = Xt

1 Jym 1 'm

Consequently, linearization of (135) yields:

— _ t _
J't My, (Fmjofdy + FRiofd, + Frlafd)de = 0 (136)

Substituting (130), (131), (132) and (134) into (136) and exploiting kinematical relations
J, = 19 andFj = —F 10 gives:

I@Hikl,yj{(Lijmn+Tijmn)|rcr)1n_|-ijmn§mne}d@ =0 (137)
where

O = (Bmdnt+ Hinst y (MIVE 5 () + Hppgy o (V) dk(x) (138)

Tiimn = Om 00 (6,moj%—6 ol 6moj?n -9, Noth (139)

Since (137) is satisfied for arbitrary macro-fiel@,s)‘(x) addx) we can obtain two

integral equations i®

I@Hikl,yj (Lijmn + Tijmn) (6m36nt+ Hmst yq)de =0 (140)
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IeHikI,yj{ (Lijmn + Tijmn)Hmst %dgt_ I-ijmnE»mne} do =0 (141)

Equation (140) is solved using the finite element methodHgr . Note that equation

(140) is solved for nine right hand side vectors corresponding to nine uniform velocity
gradient fields as opposed to six constant strain modes in the case of small deformations.

After solving (140) forH,, ,di? can be obtained from (141) as

_ 1, - _
df = @(Lijkl — Lijki) 1J'9Hrk|,ySLrsu\,Euv9d@ (142)
where
Lijki = éJ’G(Lijkl + Tiji)dO (143)
s 1
Lii|<| = @J’G(Lijmn + Tijmn)HmkI, ynde (144)

OnceH,, andl{ are computed, tBéc°) approximatiefof dapd , denoted as

andw; , are given as
& = Aijklvlg . * a”.e (145)
@ = Ajji VR 5 +a;0 (146)
where
_1
Ajjia (¥) = 5(5ik5j| + 0 0y) + Hi yy(Y) (147)
A 1
Aiji (y) = é(aikajl_ajkail) + H[i,yj]kl(y) (148)
aj = H(i,yj)kI(Lklpq_[klpq)_ljerrs, yql-rsuv“g»uvede (149)
é‘ij = H[i,yj]kI(Lk|pq_[k|pq)_1Ierrs, yql-rsuvauvede (150)

4.2 Implicit Integration of Constitutive Equations

We start from the constitutive relation for a typical elengnt ©in
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OL{RI (efP) - &(p)6) if p 000
=0

o . (151)
LR (elp -EPO - elp)  if pOOM™
For elements in the matrix phase (151) can be written as
G = LR AR VO, * (aff) — )0 - D(PAP)) (152)
Applying the backward Euler integration scheme to (152) gives
t~ _
oi(JP) = ﬁ ﬁ?{Akﬁ (AE,+ AB,,) + (aff) —E(R))AB — O P ANP)} (153)
and exploiting the equation for the back stress in element  (88) yields
cyi(Jp)_ai(Jp) = (Iijmn +A)\(p)D~ |(JFr)n)n)_1Dr(npr)1 (154)
and
3 = Lk Puvmn* S(L=B)NPym, (155)
0(e) 5,5’,% aﬁ,ﬁ’g Lol ARK(AE + Ay + () —E(R))A8) (156)

in which t&,ﬁ,ﬁ’% anda (p) are the rotated stress and back stress defined in (75) and (76) and
AwfP) is given as

AwP) = AR} (A&, + AGy) +alP)AB (157)

Note that the instantaneous concentration factdgs Aﬁﬁ?, afP), é@ﬁd computed
from (147) to (150) depend on the instantaneous material properties, which in turn depend

on vector of plastic parametefd @M A =[AAD), AA@), ..., AXW]T | Substitut-
ing (154) and (87) into the yield function (81) for each eleme@(i® yields a Bet of

nonlinear equationsp =[®1), ), ... oMW]T witm,  unknown plastic parameters.
The system of nonlinear equations is solved by the Newton method:

] O
AR, = AA&P)—Daq)—(mE o) (158)

NG

A typical term in the Jacobian matrix is given as
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EI) 45, Bh{ Y()}2
=gW@il. +ANPIO (P) V1-1y(pn) — LN 159
dAN(M) P jmn 2 it "Xk 9— 6BhAA(P) (159)
where
(pn) = BDr(npg (p) (p)
X'’ = SAN) O mnpq(opq —agy) (160)
a0®)  a('ale)—"ale) AR) oap)
~mn _ ( gr?n gr?) L [p (AS st) eD (161)
AN dAN() CDBA)\(W) aA)\(ﬂ) O

In (161) a(tég,gg—t&ggr),)/amm) depends on the derivatives &), aajfy) with

respect toAA(N) . Evaluation of these derivatives is not trivial and hence the following
approximation is employed:

p) (162)

resulting in the block diagonal approximation of the jacobian matrix

oP(P) - 4Eh[ Y(p)} 2
~ _ Py (p)
AANM) 6p”%]” Xif "o 6BhAA D (169)

where

Xigp) = (Iijmn +A)\(p)D~ i(JFr)n)n)_lm~ g?r)lpq(cyé%) a(p)) (164)

At each modified Newton iteration step the residual ve@tor is evaluated and the instan-
taneous concentration factors are recomputed from (140). The iterative process proceeds
until the residual nornj®||, vanishes up to a certain tolerance. The updated stress, yield

stress and back stress for element©ii) are calculated from (153), (87) and (88),

respectively. For elements @() | stresses can be obtained using (152)AWAtlE 0
Finally, the macroscopic stress follows from (56).

4.3 Consistent Linearization

The instantaneous consistent stiffness properties are derived from consistent linearization
of incremental equations. For elements@f™ , taking the material time derivative of
(153) and (88), and making use of (228) yields:
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t~ X _ .
o) = o + LI { AdBki (A& + ABy) + ARG Mpqv )

i ijmn mnpq
+Lifl{ afla0 + (@Rl -2 D8 - DR —Pr {0l —afdar®}
and
_ (), 2(1-B)h \
afp) = o+ SEZEROPAR + Py (0ff) - afR) AN} 1o

Substituting (228) into (165), then subtracting (166) from the resulting equation yields

ta ta
ofP —afP) = off —af + L) (AL

ijm n);:)ql\/lquIVI((),x| +(aﬁﬁ’%—aﬁﬁ’%)e}

0 () {(afg) - agDA® + (o{p) - a gAY}

(167)
where in analogy to (162), we approximéédls = 0  aff] = 0
From equations (212), (213), (228) it follows that
t~ ~ -~
01" = Ui (A MoV, + 3R20) (168)
t~ ~ -~
Al = U (AdBA MoV + 36) (169)

Substituting (168) and (169) into (167) and collecting terms{ef— o {°) gives

O{P)—afP) = (I + AP ON)( Z v  + 6=10 + Z=h ™) (170)
where
st = LU = UkEh ARy + LR ABLY} Myys ar
o=k = (GUERhn— (UiRhn a6 + LERha(aleh —E D) (172)
2= = L (o —afm) (173)

The valueA®® can be computed from the linearization of consistency conditions (see also
Section 3.2) which yields

AP = YEP(Fistvs  + 0=k16) (174)

where
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(9—6BhAA ) TP (1;5, + AN (£))

Yip) = — (175)
4Bh{ Y(P)}2— (9~ 6BRAAP) D RY(1 et AAPID (0) )71, =
and then substituting (174) into (170) yields
o,(jp)—digp) = \;ijklvg 5 egije (176)

where Z;,, andz; have identical structurg 8, afid in (111) and (112) except
that the symbolS are replacedby , &t Y&

Substituting (174), (176) into (165) yields

ofjp) = Di(ﬁg? vP 5 digme for p Oom (177)
where
Di(ﬁi? = oUi(JFr)r%nAg?l’)lSMstkl-'- Li(fr’%nA%ﬁ’r)nqupqm
LR (O RV R\ = pgki + AAP) Pmnpqv=pgk) (178)
and
diP) = UiEInAEN+ LB (af) —E6D) - DRIV oZpq ~ AP PrnpgoZ,gt 479
Similarly, the stress rate for elementsaff) is given by
6,(1-'1) = Di(J'ﬂ(?vg 5 digme for nOdo® (180)
where
DY = oUi(Jrgr?nAm"?SMstkl-'- L{Rn AN M p (181)
A = UiMnA + L (2 ) as2)
The overall instantaneous stiffnd:<)§k| is obtained from the rate form of (61), equations
(178), (179), (181) and (182):
Gij = Dij Ve x +d;;6 (183)

where
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n
Dij = Z (;(rl)DI d; = Z C(n)di(Jrl) (184)
=1
c(M) denotes the ratio between the volume of element  and the volume of the unit cell at

timet+ At .

Finally, linearization of internal force vector yields:

df.m _.[ Nia, x Dijki Ng, 5, 42 qB+I Nia, 0 dQ (185)

Diji = Djjus + 840 — 8Ty (186)

where the first integral in (185) represents the consistent macroscopic tangent stiffness
matrix for then-point scheme model.

Remark 5SApproximating the piecewise constant phase rotations by a constant function in
the entire unit cell such tha‘lﬁr) =Wjj , yields a simplified form of (171) and (172):

= LAl Muysi—{ Sin(0 ) —a () + 8, (0fR) = a{)} Mimpse  (187)

v—klst Kimnmnuv

o=k = Lidhn(afl -8 (188)

For elements i®(M (178) and (179) reduce to:

D'(ﬁ? = L{R) A(p)ququI_{ 6kn(or(r$l) _ar(r?l)) + 6ln(0|£%1) - GIE%))} IVl[mn]st

] ijmn¥mn
_Li(JFr)n)n(D r(r?r%Yr()%)v—qulJ’ ANP) Pmnpav=pak) (189)

and
diP) = LR { (alm) — &R — O Y {Re=pq = ANP Prnng =t (190)

whereas for elements i@  (181) and (182) are given by

Dl(]r]k? = Li(Jrr]r?nAr(T?rgpq pakl — (6|n0r(r%)+6jnol(r?1))M[mn]kl (191)
and
4 = LiMn(ai-E) as2)
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5.0 Adaptive Model Construction

In Sections 3 and 4 we presented two schemes for modeling inelastic behavior of compos-
ite structures: th&-point scheme and the-point scheme. In th@-point scheme we
employed a piecewise constant approximation of the eigenstrain field, whereafin the
point scheme the eigenstrain field and the elastic concentration factors in each phase are
approximated by a constant. For the Nozzle Flap problem considered in [8] (see also Fig-
ure 1) the2-point scheme is over three orders of magnitude faster thawrpihiet scheme.

For linear problems th2-point scheme with post-processing [5][8][9][13] is identical to
then-point scheme, whereas for nonlinear problems there is no such guarantee.

If we assume that the-point and the2-point schemes are optimal in terms of accuracy
and speed, respectively, then it is natural to attempt to merge the two in a single model. In
such a hybrid model, th&point scheme should be only used in regions where the model-
ing errors are small, whereas elsewherentpeint scheme should be employed. We will
refer to such a hybrid modeling strategy as the adaptivpdht scheme.

The modeling erroe” ™ associated with tpoint scheme can be defined as follows

¥ Pt = Vv (193)

whered = Q x©® and

ilF é g Z[fzd@dQ (194)

VvV is an appropriate solution measure; the superseximfers to the exact solution within
the framework of the mathematical homogenization theory, i.e., assuming solution period-
icity. For estimation of errors resulting due to lack of periodicity we refer to [9][28].

The key questions are: (i) how to estimuaté , (i) what is a suitable measwre for , (iii)
how to make the process of error estimation efficient, and (iv) how to utilize the model
error estimation for adaptive construction of #te-point model.

It is appropriate to recall that as the number elements in the unit cell is increased the solu-

tion obtained from th@-point scheme, denoted ad™ , approaches the exact solution,
i.e., lim VPt v Even though the rate of convergence may not be monotonic, it is
n - oo

reasonable to assume that for sufficiently lange the modeling error associated @4th the
point scheme can be approximated as

eZ-pt: E2-pt - an-pt_vz-ptHD (195)
We now turn to the second issue: the choice of . In this context it is essential to interpret
the 2-point scheme approach as consisting of two steps: analysis on the macroscale and

29



post-processing on the microscale. In the first step, a nonlinear macro-analysis is carried
out using the finite element method which utilizes 2khmint scheme. Consequently, the
macroscopic deformation history is stored in a database at macro-Gauss points. In the
post-processing step, the deformation field in a unit cell corresponding to critical macro-
points is extracted from the database, and then subjected onto the unit cell as an external
loading. Finally, ther-point scheme is employed to solve for selected unit cell problems.

Based on the above interpretation of 2qgoint scheme, it follows that if the macroscopic
deformation field obtained with tfpoint scheme is identical to one obtained withrthe

point scheme, then the model error estimaﬁ?r’,pt , should indicate zero error. In other
words, v should be a measure of the macroscopic deformation field, wherea$)

Possible deformation measures are: the macroscopic deformation gradientRensor,  (the
component form is defined in (120)), and/or incremental deformation measures repre-
sented by a paifA§, A . The former accounts for accumulation of errors

29t = [pro_p2e), ase

whereas the latter controls the incremental errors

£27 = oo + |aa - 56" wo

In Section 6 we will show that in a confined deformation pattern, where small plastic

zones are encompassed by elastically deforming solid, the modeling Erzrif)rts, , are
very small, whereas in large plastic zones dominated by matrix deformation, the modeling

errors, g2 P! , might be significant. For simplicity, we adopt the incremental estimator
(197).

We now turn to the computational efficiency issue. Estimation of modeling error based on
equations (196) and (197) necessitates solution of-ff@nt scheme model. As indicated
earlier the computational cost of thgoint scheme model is enormous, and hence, only

an estimate oe” ™ , denotdg‘az'pt , Will be evaluated. The philosophy behind our model-
ing error estimator is somewhat similar to that employed for estimation of discretization
errors, namely, if the mathematical model (or discretization) is locally altered, then in
absence of the pollution errors the solution outside the local region is not significantly
affected, and thus the bulk of the error can be computed on the local level. This process
avoids the need for solving an auxiliary global problem and replaces it by solving a
sequence of problems on small local domains.

When the aforementioned procedure is applied for estimation of discretization errors, the
computational cost of solving the local problem is relatively low, reducing the cost of dis-
cretization error estimation to one of a manageable size. Unfortunately, this is not the case

for estimation of modeling errdl'tz'pt . Even though the aforementioned process involves
multiple solutions of small local problems (for example, on the macro-element domains),
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the cost of applying the-point scheme on each macro-element is formidable in a large
scale computational environment. Therefore, the costlgint scheme should be utilized

only for those macro-elements which have been identified as “having potential to be criti-
cal” by some simple cost-effective engineering-based criteria. One possible engineering
criterion is the magnitude of the deformation, measured by a norm of one of the macro-
scopic strain measures. When the incremental deformation norm in a macro-element

domain exceeds a fractigh  of the average deformation amonly the macro-elements,
ie.,

|ag2 Pt + Ac‘oz'pthQe > 7|ne? Pt + Ac‘oz'pthQ/ N (198)

then the corresponding macro element is tagged-fmsteriorimodel error estimation.

We now focus on the adapti2én-point model construction. Consider t-point model
at timet, consisting of the-point scheme model in the portion of the macro-domain

'9*P'0'0 and the n-point scheme model in the remaindé@"™ ™ such that

'0*PO Q" = g . The goal is to adaptively construct tB&-point model at time

e =

a subdomain inQ*®™"  consisting oN  macro-element subdorrg:éﬂlﬁs'pt which have
been tagged as critical by the aforementioned engineering criterion, as shown in Figure 5.

t+ At

o . 2-pt t + At n-pt
t + At, consisting of subdomains P P

Q and Q [].02"  be

crN
e

Ty=2-pt Ty —2-pt . . . T 2-pt
JAE T and A®, " be the macro- strain and rotation increments Qp at

Let
T <t. The first step in the adaptive process is to post-process the unit cell solution at time

t for all macro-elements oQﬁQi'pt by utilizing tinepoint scheme model outlined in
Section 4.

2-pt . t ~2-pt .
Let . re "" be the residual for all the elements 00, P defined as
2-pt _ t+At2-pt t.2-pt
cofe = crfe - crfe (199)

te2-pt N
where _f2™" s the corresponding internal force vector. In the second step, for all ele-

.t 2-pt . . .
ments in_, Q2" the incremental nonlinear problem defined as

2-pt
rrP =0

cre (200)

is solved twice: first, by using tH&point scheme model, and second, by utilizingrthe
point scheme model with initial conditions obtained via post-processing. The estimated

error on CEQi'pt is computed by utilizing equation (197)
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2
tgi-pt

cr

(201)

2 _n-pt —2-pt
olud + H crAwe - crAwe

ot — N-pt _2-pt
Egept - /\/HcrAee _crASe
where the strain and rotation increments are evaluated by solving equation (200).

The total modeling error is then estimated as

crN
EZP'= > (Eﬁépt)2 (202)
el Q2™
To steer the process of adaptivity we define the modeling error indigator C:Qiff)t
as

EZ:Pt
e = 203
N = 2 (203)
where
|ag2Pt+ AP 3, i + (EZPY)2
pgv = <L (204)
CI’N

piY represents the average incremental deformation in a single element located in

CEQZ_pt. We replace th@-point scheme model by thepoint scheme model for all the

elements oncﬁﬂi'pt for which ,.>tol . Atypical value fl  is between 1% to 10%
depends on the accuracy requirement.

6.0 Numerical Experiments and Discussion

Our numerical experimentation agenda consists of three examples. The first is used to val-
idate our finite deformation plasticity formulation. The second and the third examples test
the proposed adaptivér2point scheme in a deformation pattern with large plastic zones
dominated by matrix deformation as well as in a typical confined deformation pattern,
where a small plastic zone is encompassed by an elastically deforming solid.

6.1 Uniform Macro-Strain Loading

The objective of the first example is to carry out a qualitative assessment of the large
deformation formulation. The primary “suspect” is equation (71) which decomposes dis-
placement field in the microstructure into two parts: the macroscopic part which comes
from the integration of the nonperiodic macroscopic strain and rotation increments (the
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first term in (71)) and the periodic microscopic part (the second term in (71)). Note that
solution update in the unit cell domain directly from the asymptotic expansion of the dis-

placement field (11) is not feasible, because in the limg asO , only the macroscopic

part has contribution. On the other handyif is considered only, then the nonperiodic
finite deformation patterns are not accounted for.

As a test problem we select a macro problem subjected to the state of uniform strain field
(or linear displacement field). A unit cell consists of a stiff elastic cylindrical fiber embed-
ded in a compliant plastically deforming matrix. The phase properties are given below:

Fiber: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.21
Matrix: Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MPa,
isotropic hardening modulus = 0.689 GBa, =1.

We consider a uniform transverse tension, transverse shear and longitudinal shear loading
conditions. The overall principal Green strain does not exceed 25% in all three cases. Fig-
ures 6 to 8 show the contribution of macroscopic and microscopic fields to the total defor-
mation field in the unit cell. It can be seen that each of the two contributing parts alone
significantly distort the circular fiber cross section, but their sum recovers the original
fiber shape, as expected in a matrix dominated loading condition.

6.2 The 3D Beam Problem

To validate the computational models and adaptive strategies proposed we comprise a test
case, where a significant portion of the structure is subjected to the matrix dominated
deformation in a load or stress control mode (as opposed to displacement control). This is
a worse possible scenario in terms of accuracy for the 2-point scheme. The problem con-
figuration is shown in Figure 9. The macro problem is discretized with 5635 tetrahedral
finite elements. The geometry and the mesh for the microstructure are the same as in the
previous example. The fiber direction coincides with the beam’s longitudinal direction. In

the region of length;, from the fixed end the beam is subjected to the shear deformation

(which is the matrix dominated mode) whereas in the remainder of the problem domain,
|, length, the beam is in pure bending, which is a fiber dominated mode of loading. The

phase properties are summarized below:

Fiber:  Young’s modulus = 37.92 GPa, Poisson’s ratio = 0.21
Matrix: Young's modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MPa,
isotropic hardening modulus = 0.689 GBa, =1.

The loading is applied in 15 load steps. The maximal vertical displacement at the free end
is over one third of the length of the beam and the stresses exceed the elastic limit in all
macro-elements.

The problem is solved using tBgpoint scheme with micro-history recovery, the adaptive
2/npoint scheme, and threpoint scheme for a comparison purpose. Figure 10 shows the
evolution of the normalized estimated local error in the vicinity of the fixed end as
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obtained with the-point scheme (equation (203)). It can be seen that the maximal nor-
malized local error in the region dominated by matrix deformation is 40%. In a region
dominated by the fiber deformation the error does not exceed 3%. The distribution of the
local principal stress error in the critical unit cell (denoted by point A in Figure 10) as
obtained with th&-point scheme and micro-history postprocessing is shown in Figure 11.

It can be seen that the normalized error in the unit cell is of the same magnitude as the nor-
malized local error in the macrostructure. Figure 12 illustrates the evolution of the normal-
ized local error in the macrostructure obtained using the ad&thmoint scheme model.

The maximal normalized local error is less than 1% and the normalized error in the unit
cell follows the same trend as shown in Figure 13.

We conclude that the adapti2én-point scheme model outperforms tBgoint scheme
model in terms of accuracy (0.8% maximal error as compared to 40%), ang ot
scheme model in terms of CPU time as it is 14 times faster thanpibiat scheme.

6.3 The Nozzle Flap Problem

For the final numerical example, we consider a typical aerospace component where only a
small region experiences inelastic deformation. The finite element mesh describing the
macrostructure of the Nozzle Flap is shown in Figure 1. We consider two types of micro-
structures: (i) the fibrous unit cell (as in the previous example) and the plain weave fabric
microstructure shown in Figure 14. The fibrous unit cell contains 98 elements in the fiber
domain and 253 elements in the matrix domain. The fiber volume fraction is 0.27. The
plain weave microstructure has 370 elements in the fiber bundle and 1196 in the matrix
domain. The bundle volume fraction is 0.25. The phase properties are:

Fiber, fiber bundle: Young’'s modulus = 379.2 GPa, Poisson’s ratio = 0.21
Matrix: Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33,
yield stress = 24 MPa, isotropic hardening = 14 G&Pa, =1.

The Nozzle Flap is subjected to an aerodynamic force (simulated by a uniform pressure)
on the back of the flap. We assume that the pin-eyes are rigid and a rotation is not allowed
so that all the degrees of freedom on the pin-eye surfaces are fixed. The loading takes the
solution well into the inelastic region in the vicinity of the pins: 15% of elements experi-
ence inelastic deformation in the case of fibrous microstructure, and 29% in the case of
plain weave.

The problem is analyzed using the adap&itirepoint scheme model. Figure 15 shows that
the 2-point scheme model yields the maximum normalized local error in the macrostruc-
ture below 1% (for the plain weave microstructure). Hence, if the tolerance for switching
from the2-point scheme to the-point scheme is higher than 1%, adaptive strategy selects
the2-point scheme model in the entire macro problem domain. The normalized local error
in the unit cell located at Point C of Figure 15 is 2.5% for fibrous microstructure and 6.5%
for the plain weave, as shown in Figures 16 and 17.

For the problem with the fibrous unit cell, the CPU time on a SPARC 10/51 is 30 seconds
for the macroscopic analysis and 120 seconds for postprocessing a single point. For the
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plain weave microstructure, the macroscopic analysis consumes 30 seconds, whereas post-
processing takes 510 seconds per point. On the other hanehdime scheme consumes 7

hours of CPU time for fibrous composite and over 55 hours of CPU time for plain weave.
Memory requirement ratios are approximately 1:250 for the fibrous unit cell and 1:1200
for the plain weave in favor of ti&n-point scheme (o2-point scheme).
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7.0 Appendixes

A.0 Derivation of o(a{™ —af™)/0Ar (™ in (96)
Consider equation (93):
t/\
c’i(Jm) _ai(Jm) = (hjia +ANMD ijkl)_l(trolgn) —agm) (205)
Taking the derivative of (205) with respect&a(™  vyields:

d
AN (M)

(ofM—af™) = (I +AAMO )

E_ 0 (O™ —a (M) +

t [l
(ol - a{iM)g
am\(m) (206)

where the last term can be written as
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0(, ofm—'afm) _ a('agm-"agm) _ a('ayr-agm) oAwgm

207
ON™) AN IR  OBAM #on
and
o) 0) (1
0 ol((| _ EaDs(k)Dt(lr) + Dgi()alj_tl()gto'gp
r r r
0Aw()  OAW(Y 0A w0
t a0 ()
= (6m56nth(|r) +6mt6nIDgrk)) ogrt) aA(:)Q?)
i (208)
The rotationd (") of phase is defined in (77) as
() = LT Ao
Uinn = 6mn+ %mr_éAwmrD Ay, (209)
The derivative of1{") is calculated using the chain rule:
o _ ot aAwgq) 210)
AAN(M) aAwgq) AAN(M)
in which
00 _ (r)-1 )
m - (26mp_Awmp) (6qn+ an) (211)
Pq

Consequently, equation (208) can be expressed as

t~
_ 9ol t t _
oUhlha= 5o 5 = GO Ol + 80 o) (28, - Bfi)H3qn+ D)) @12)
Pq

Similarly, we have

t~
(m)

aTKPI aaw(m

t t
= (S0 {™ oD+ 8,0 o (M) (28, — Aw{M) ™ (8gn + O (M)

(213)
Taking derivative of (89) with respect fIoA\(™  yields:
oAw(M - 0
i = DBIPmad o - afP) + AN B (o -y @
m
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Substituting equations (212), (213) and (214) into (207), and then inserting the result into
(206), gives

> A)\(m)( (M —afm) = C{I(of —afm) (215)

where
ClR = ~(lijmn + AAMWD )-TW, | (216)
Wi = O k= (Ui~ UM ) DERRP pakl (217)

B.0 Consistent Linearization ofag; andAw;

We derive the equations fméij amdbij consistent with the midpoint integration of rate
of deformation and rotation. The left supersctiptAt is omitted.

Taking the material time derivative of (72) yields:

dn- 1 d 0 oAu? 0Au? O
aAeij T U A * t+At/J2 u (218)
»; .0 U

The material time derivative of the first term in the parenthesis of (218) can be written as

08y O oy 9%, aAuodE % O

Al = L O (219)
dtrat +At/2 t At+At/2 dtrat +At/2
;) xU  0x.0 X ;) xU
where
t t t+At/2 t
dd ox O ox, gL X 00X
il S S —0 O (220)
dt@t + At/ZXjD at +At/2xm dtD atxn Dat +At/2xj
Consequently, (219) can be expressed as
dg dAu? E_ ovP 0Au? ¢ ?HAt/meE 9'x, 221
iRt +A/2. |~ At+AU/2. At+AU/2. dt t t+At/2
dtty xH 0 x 0 x dt0 o' O X
where
t+At/2
dLo Xod 9 dt+avz, O _ 6 d XmDD 1‘3V0

dtg ox, U adx 0 2axn

n
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Substituting (222) into (221) gives

0
vy,

qUaaw O O 1 94w

U
E t+At/2

d

= = By—=
dt@t+At/2XjD 0 2at+At/2Xm

Equation (223) can be further simplified as

d oAu O 9' V2
a@t+At/2XJD gitAv2  St+Av2
: o :

where the following equality has been utilized.

oA 0 [1+At/2

1n,00 =
_— X —ZAu’= =
at+At/2Xm at+At/2XmD 21 5

e}

_1
m 2
Defining My;,, as

t
0'X; 0X,
t+A/2, At+AL/2
d X 0 -

Mij =

We have

dd oAu? O M 0
a@t+At/2XjE = Mijki Vi x

atxi

t+At/2
X

m

Substituting (227) into (218) and preforming the same procedur&iigr

final expressions foAg; anfl®; as
Agij = My VR - AWij = Mijjpq VR &

Note that in the case of backward Euler integrabi, = 0;9;

(223)

(224)

(225)

(226)

(227)

, we obtain the

(228)
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Figure 2: Finite element mesh for the fibrous unit cell
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Figure 4: Decomposition of deformation in the microstructure
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Figure 6: Deformation of unit cell under transverse tension
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Figure 7: Deformation of unit cell under transverse shear
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Figure 8: Deformation of unit cell under longitudinal shear
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Step 15

Figure 12: Distribution of the normalized local error with the 2/n-point model
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Figure 13: Effective stress and normalized error at point B with the/n-point model
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(a) Geometric model (b) Finite element mesh

Figure 14: Geometric model and FE mesh of the plain weave unit cell

47



Step 1

Step 3

Step 5

Step 7

Figure 15: Nozzle flap problem / plain weave RVE: distribution of the normalized
local error in the macrostructure as obtained with the 2-point model
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with the 2-point model
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