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Rensselaer Polytechnic Institute
Troy, NY 12180

Abstract

We develop computational models and adaptive modeling strategies for obtaini
approximate solution to a boundary value problem describing the finite deformation
ticity of heterogeneous structures. A nearly optimal mathematical model consists 
averaging scheme based on approximating eigenstrains and elastic concentration fa
each micro phase by a constant in the portion of the macro-domain where modeling
are small, whereas elsewhere, a more detailed mathematical model based on a pi
constant approximation of eigenstrains and elastic concentration factors is utilized
methodology is developed within the framework of “statistically homogeneous” com
ite material and local periodicity assumptions. 

1.0  Introduction

In this manuscript, we develop a theory and methodology for obtaining an approx
solution to a boundary value problem describing the finite deformation plasticity of h
ogeneous structures. The theory is developed within the framework of “statistically h
geneous” composite material and local periodicity assumptions. For readers intere
theoretical and computational issues dealing with various aspects of nonperiodic het
neous media we refer to [7][9][28][37].

The challenge of solving structural problems with accurate resolution of microstruc
fields undergoing inelastic deformation is enormous. This subject has been an activ
of research in the computational mechanics community for more than two dec
Numerous studies have dealt with the utilization of the finite element method [12
[18][21][22][24][30][34], the boundary element method [11], the Voronoi cell meth
[10], the spectral method [1], the transformation field analysis [5], and the Fourier s
expansion technique [26] for solving PDEs arising from the homogenization of nonl
composites. The primary goals of these studies were twofold: (i) develop macros
constitutive equations that would enable solution of an auxiliary problem with nonli
homogenized (smooth) coefficients, and (ii) establish bounds for overall nonlinear pr
ties [2][29][32][33][34][35].
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Attempts at solving large scale nonlinear structural systems with accurate resolut
microstructural fields are very rare [10][12][26] and successes were reported for 
problems and/or special cases. This is because for linear problems a unit cell or a re
tative volume problem has to be solved only once, whereas for nonlinear history d
dent systems, it has to be solved at every increment and for each macroscopic (
point. Furthermore, history data has to be updated at a number of integration points
to the product of the number of Gauss points in the macro and micro (unit cell) dom

To illustrate the computational complexity involved we consider an elasto-plastic ana
of the composite flap problem [8] with fibrous microstructure as shown in Figures 1 a
The structural problem is discretized with 788 tetrahedral elements (993 degrees o
dom), whereas fibrous microstructure is discretized with 98 elements in the fiber do
and 253 elements in the matrix domain, totaling 330 degrees of freedom. The CPU
on SPARC 10/51 workstation for this problem was over 7 hours, as opposed to 10 se
if von Mises metal plasticity was used instead, which means that 99.9% of CPU ti
spent on stress updates.

With the exception of [6][12][19] most of the research activities focused on small d
mation inelastic response of microconstituents and their interfaces. This is partially
fied due to high stiffness and relatively low ductility of fibrous composite mater
However, when hardening is low and the stress measures are comparable to the i
tangent modulus, or in the case of thin structures undergoing large rotations, large
mation formulation is required.

One of the objectives of the present manuscript is to extend the recent formulation 
mathematical homogenization theory with eigenstrains developed by the authors in
account for finite deformation and thermal effects. In addition, adaptive strategy is de
to ensure reliability and efficiency of computations. In Section 2 we derive a closed
expression relating arbitrary transformation fields to mechanical fields in the phas
Sections 3 and 4 we employ an additive decomposition of the rate of deformatio
elastic rate of deformation, governed by hypoelasticty and inelastic rate of deform
Section 3 focuses on the 2-point approximation scheme (for two phase materials), wh
each point represents an average response within a phase. The local response wit
phase is then recovered by means of post-processing. In Section 4 we describe then-point
scheme model, where n denotes the number of elements in the microstructure. Section
devoted to modeling error estimation and adaptive strategy. We develop an adaptiv2/n-
point model, where the 2-point scheme is used in regions where modeling errors are s
whereas elsewhere the n-point scheme is employed. Numerical experiments conducte
Section 6 investigate the 2-point, the n-point, and the adaptive 2/n-point schemes in the
context of finite deformation plasticity.
2
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2.0  Mathematical Homogenization with Eigenstrains for Small
Deformations

In this section we generalize the classical mathematical homogenization theory [3][
heterogeneous media to account for eigenstrains. We regard all inelastic strains,
transformation and temperature effects as eigenstrains in an otherwise elastic bo
will derive closed form expressions relating arbitrary eigenstrains to mechanical field
multi-phase composite medium. In this section attention is restricted to small defo
tions.

The microstructure of a composite material is assumed to be locally periodic (Y-per
with a period represented by a unit cell domain or a Representative Volume Ele
(RVE), denoted by , as shown in Figure 3. Let  be a macroscopic coordinate vec

macro domain  and  be a microscopic position vector in . For any Y-peri

function , we have  in which vector  is the basic period of 

microstructure and  is a 3 by 3 diagonal matrix with integer components. Adoptin

classical nomenclature, any Y-periodic function  can be represented as

(1)

where superscript  denotes a Y-periodic function . The indirect macroscopic spati

derivatives of  can be calculated by the chain rule as

(2)

(3)

where the comma followed by a subscript variable  or  denotes a partial deriv

with respect to the subscript variable (i.e.  and ). A semi-co

followed by a subscript variable  denotes a partial derivative with respect to the re

ing x components (2), but a full derivative with respect to , and vice versa when a 

colon is followed by subscript variable  (3). Summation convention for repeated 

hand side subscripts is employed, except for subscripts x and y.

We assume that micro-constituents possess homogeneous properties and satisfy 
rium, constitutive, kinematics and compatibility equations as well as jump conditio
the interface between the micro-phases. The corresponding boundary value prob
governed by the following equations:

(4)

(5)

Θ x
Ω y x ς⁄≡ Θ

f f x y,( ) f x y kŷ+,( )= ŷ
k

f

fς x( ) f x y x( ),( )≡

ς f

fς

f,xi

ς x( ) f x; i
x y,( )≡ f,xi

x y,( ) 1
ς
--- f,yi

x y,( )+=

f y; i
x y,( ) f,yi

x y,( ) ς f,xi
x y,( )+ ςf x; i

x y,( )= =

xi yi

f,xi
∂f ∂xi⁄≡ f,yi

∂f ∂yi⁄≡

xi

yi

yi

σi j x; j

ς bi+ 0       in     Ω=

σi j
ς Lijkl εkl

ς µkl
ς–( )     in     Ω=
3
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(6)

(7)

(8)

(9)

where ,  and  are components of stress, strain and rotation tensors;  a

are components of elastic stiffness and eigenstrain tensors, respectively;  is a bod

assumed to be independent of ;  denotes the components of the displacement

the subscript pairs with regular and square parenthesizes denote the symmetric an
symmetric gradients defined as

(10)

 denotes the macroscopic domain of interest with boundary ;  and  are bou

portions where displacements  and tractions  are prescribed, respectively, suc

 and ;  denotes the normal vector on . We assume tha

interface between the phases is perfectly bonded, i.e.  and  a

interface, , where  is the normal vector to  and is a jump operator.

In the following, displacements  and eigenstrains  

approximated in terms of double scale asymptotic expansions on : 

(11)

(12)

Strain and rotation expansions on  can be obtained by substituting (11) into (6
(7) with consideration of the indirect differentiation rule (2)

(13)

(14)

where strain and rotation components for various orders of  are given as

εi j
ς u i x; j( )

ς       in     Ω=

ωij
ς u i x; j[ ]

ς     in     Ω=

ui
ς ui      on     Γu=

σi j
ς nj ti      on     Γt=

σi j
ς εij

ς ωi j
ς Lijkl µij

ς

bi

y ui
ς

u i x; j( )
ς 1

2
--- ui x; j

ς uj x; i

ς+( )≡ , u i x; j[ ]
ς 1

2
--- ui x; j

ς uj x; i

ς–( )≡

Ω Γ Γu Γt

ui ti
Γu Γt∩ ∅= Γ Γu Γt∪= ni Γ

σi j
ς n̂j[ ] 0= ui

ς[ ] 0=

Γint n̂i Γint •[ ]

ui
ς x( ) ui x y,( )= µi j

ς x( ) µij x y,( )=

Ω Θ×

ui x y,( ) ui
0 x y,( ) ςui

1 x y,( ) …+ +≈

µij x y,( ) µij
0 x y,( ) ςµij

1 x y,( ) …+ +≈

Ω Θ×

εi j x y,( ) 1
ς
---εi j

1– x y,( ) εi j
0 x y,( ) ςεij

1 x y,( ) …+ + +≈

ωi j x y,( ) 1
ς
---ω ij

1– x y,( ) ωi j
0 x y,( ) ςωi j

1 x y,( ) …+ + +≈

ς

4
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 of (2)

te-

due to
(15)

(16)

and

(17)

(18)

Stresses and strains for different orders of  are related by the constitutive equation

(19)

The resulting asymptotic expansion of stress is given as

(20)

Inserting the stress expansion (20) into equilibrium equation (4) and making the use
yields the following equilibrium equations for various orders:

(21)

(22)

(23)

(24)

Consider the  equilibrium equation (21) first. Pre-multiplying it by  and in

grating over a unit cell domain  yields

(25)

and subsequently integrating by parts gives

(26)

where  denotes the boundary of . The boundary integral term in (26) vanishes 

Y-periodicity of boundary conditions on . Furthermore, since the elastic stiffness 

is positive definite, we have

εij
1– εyij u0( ),             εi j

s εxij us( ) εyij us 1+( ),    s+ 0 1 …, ,= = =

ωi j
1– ωyij u0( ),           ωi j

s ωxij us( ) ωyij us 1+( ),    s+ 0 1 …, ,= = =

εxij us( ) u i ,xj( )
s ,          εyij us( ) u i ,yj( )

s==

ωxij us( ) u i ,xj[ ]
s ,          ωyij us( ) u i ,yj[ ]

s==

ς

σi j
1– Lijkl εkl

1– ,        σi j
s Lijkl εkl

s µkl
s–( ),     s= 0 1 …, ,= =

σi j x y,( ) 1
ς
---σij

1– x y,( ) σi j
0 x y,( ) ςσi j

1 x y,( ) …+ + +≈

O ς 2–( ):     σi j ,yj

1– 0=

O ς 1–( ):     σi j ,xj

1– σi j ,yj

0+ 0=

O ς0( ):     σij ,xj

0 σi j ,yj

1 bi+ + 0=

O ςs( ):     σij ,xj

s σ i j ,yj

s 1++ 0,      s 1 2 …, ,= =

O ς 2–( ) ui
0

Θ

ui
0σij ,yj

1– Θd
Θ∫ 0=

ui
0σij

1– nj ΓΘd
ΓΘ

∫ u i ,yj( )
0 Lijkl u k,yl( )

0 Θd
Θ∫– 0=

ΓΘ Θ

ΓΘ Lijkl
5
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and

(28)

We proceed to the  equilibrium equation (22) next. From equations (15) and
follows

(29)

To solve for (29) up to a constant we introduce the following separation of variables

(30)

where  is a Y-periodic function,  is a macroscopic portion of the solution resu

from eigenstrains, i.e. if  then . It should be noted that both 

and  are symmetric with respect to indices  and . Based on (30)  equilib

equation takes the following form:

(31)

where

(32)

and  is the Kronecker delta. Since equation (31) should be valid for arbitrary com

tion of macroscopic strain field  and eigenstrain field , we first cons

,  and then ,  which yields the following two

governing equations on :

(33)

(34)

Equation (33) together with Y-periodic boundary conditions comprise a standard l
boundary value problem on . For complex microstructures the finite element meth

often employed for discretization of , which yields a set of linear algebraic sy

with six right hand side vectors [7]. In absence of eigenstrains, the asymptotic field

u i ,yj( )
0 0= ⇒ ui

0 ui
0 x( )=

σi j
1– x y,( ) εi j

1– x y,( ) ωij
1– x y,( ) 0= = =

O ς 1–( )

Lijkl εxkl u0( ) εykl u1( ) µkl
0–+( ){ },yj

0     on     Θ=

ui
1 x y,( ) Hikl y( ) εxkl u0( ) dkl

µ x( )+{ }=

Hikl dkl
µ

µkl
0 x y,( ) 0= dkl

µ x( ) 0= Hikl

dkl
µ k l O ς 1–( )

Lijkl I klmn Gklmn+( )εxmn u0( ) Gklmndmn
µ x( )+ µkl

0–( ){ }
,yj

0     on     Θ=

Iklmn
1
2
--- δmkδnl δnkδml+( )= , Gklmn y( ) H k,yl( )mn y( )=

δmk

εxmn u0( ) µkl
0

µkl
0 0≡ εxmn u0( ) 0≠ εxmn u0( ) 0≡ µkl

0 0≠

Θ

Lijkl I klmn H k,yl( )mn+( ){ }
,yj

0=

Lijkl H k,yl( )mndmn
µ µkl

0–( ){ }
,yj

0=

Θ
Hikl y( )
6
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(35)

where

(36)

The terms  and  are known as polarization functions. It can be shown tha

integrals of the polarization functions on  vanish due to periodicity conditions.

The elastic homogenized stiffness  follows from  equilibrium equation [7]:

(37)

where

(38)

 is often referred to as an elastic strain concentration function and  is the vo

of a unit cell.

After solving (33) for , we proceed to (34) for finding  subjected to Y-perio

boundary conditions. Pre-multiplying (34) by  and then integrating the resulting e

tion by parts with consideration of Y-periodic boundary conditions yields

(39)

Rewriting (39) in terms of strain concentration function  and manipulating it w

(37) yields

(40)

where

(41)

εij εxij u0( )≡

ωi j ωxij u0( )≡

εij εij Gi jkl εkl O ς( ) ,        ωij+ + ω i j Ĝi jkl εkl O ς( )+ += =

Ĝijkl y( ) H i ,yj[ ]kl y( )=

Gijkl Ĝijkl

Θ

Lijkl O ς0( )

Lijkl
1
Θ
------- LijmnAmnkl Θd

Θ∫≡ 1
Θ
------- AmnijLmnstAstkl Θd

Θ∫=

Aklmn Iklmn Gklmn+=

Aklmn Θ

Himn dkl
µ

Hist

GijstLijkl Gklmndmn
µ x( ) µkl

0–( ) Θd
Θ∫ 0=

Aijkl

dij
µ 1

Θ
------- L̃ijkl Lijkl–( ) 1– GmnklLmnstµst

0 Θd
Θ∫=

L̃ijkl
1
Θ
------- Lijkl Θd

Θ∫=
7



symp-

bles

n be

 be

iven
The superscript  denotes the reciprocal tensor. The  approximation to the a
totic strain (13) and rotation fields (14) reduces to:

(42)

(43)

Let  be a set of  continuous functions, then the separation of varia

for the  eigenstrains is assumed to have the following decomposition:

(44)

The resulting asymptotic expansion of the strain and rotation fields (13), (14) ca
expressed as follows:

(45)

(46)

where  and  are the eigenstrain influence functions, which can

expressed in terms of polarization functions  and  as follows

(47)

(48)

In particular, if  is a set of piecewise constant functions defined as

(49)

and  is the subdomain  within a unit cell,  the subdomain volume fraction g

by  and satisfying , then (45) and (46) reduce to:

1– O ς0( )

εij εij Gijkl εkl dkl
µ+( ) O ς( )+ +=

ωi j ωi j Ĝijkl εkl dkl
µ+( ) O ς( )+ +=

ψ ψ η( ) y( ){ }1
n≡ C 1–

O ς0( )

µi j
0 x y,( ) ψ η( ) y( ) µij

η( ) x( )
η 1=

n

∑=

εi j x y,( ) εi j x( ) Gijkl y( )εkl x( ) Dijkl
η( ) y( ) µkl

η( ) x( ) O ς( )+
η 1=

n

∑++=

ωi j x y,( ) ωij x( ) Ĝijkl y( )εkl x( ) D̂ijkl
η( ) y( ) µkl

η( ) x( ) O ς( )+
η 1=

n

∑++=

Dijkl
η( ) y( ) D̂ijkl

η( ) y( )

Gijkl y( ) Ĝijkl y( )

Dijkl
η( ) y( ) 1

Θ
-------Gijmn L̃mnpq Lmnpq–( ) 1– GrspqLrsklψ η( ) Θd

Θ∫=

D̂ijkl
η( ) y( ) 1

Θ
-------Ĝijmn L̃mnpq Lmnpq–( ) 1– GrspqLrsklψ η( ) Θd

Θ∫=

ψ

ψ η( ) yρ( )
1  if yρ Θ η( )∈

0             otherwise



=

Θ η( ) η c η( )

c η( ) Θ η( ) Θ⁄≡ c η( )
η 1=
n∑ 1=
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(50)

where

(51)

(52)

and

(53)

We will refer to the piecewise constant model defined by (50) as the n-point scheme
model. Equation (50)a has been originally derived by Dvorak [5] on the basis of trans

mation field analysis. Finally, we integrate the  equilibrium equation (23) over

The  term vanishes due to periodicity and we obtain:

(54)

Substituting the constitutive relation (19) and the asymptotic expansion of strain t
(42) into the above equation yields the macroscopic equilibrium equation

(55)

Finally, if we define the macroscopic stress  as

(56)

then the equilibrium equations (54) and (55) can be further simplified as follows:

(57)

where  is the overall eigenstrain given by

εi j
ρ( ) 1

Θ ρ( )
------------- εi j Θd

Θ ρ( )∫ εi j Gijkl
ρ( ) εkl Dijkl

ρη( )µkl
η( )

η 1=

n

∑ O ς( ) + + += =

ωi j
ρ( ) 1

Θ ρ( )
------------- ωi j Θd

Θ ρ( )∫ ω i j Ĝijkl
ρ( ) εkl D̂ijkl

ρη( )µkl
η( )

η 1=

n

∑ O ς( ) + + += =

Dijkl
ρη( ) c η( )Gijmn

ρ( ) L̃mnpq Lmnpq–( ) 1– Grspq
η( ) Lrskl

η( )=

D̂ijkl
ρη( ) c η( )Ĝijmn

ρ( ) L̃mnpq Lmnpq–( ) 1– Grspq
η( ) Lrskl

η( )=

Gijkl
η( ) Ĝijkl

η( ),( ) 1
Θ η( )
-------------- Gijkl Ĝijkl,( ) Θd

Θ η( )∫=

O ς0( ) Θ

σij ,yj

1 Θd
Θ∫

1
Θ
------- σi j

0 Θd
Θ∫ 

 
,xj

bi+ 0= on Ω

1
Θ
------- Lijkl Aklmnεmn Gklmndmn

µ µkl
0–+( ) Θd

Θ∫ 
 

,xj

bi+ 0=

σi j

σi j
1
Θ
------- σij

0 Θd
Θ∫≡

σi j ,xj
bi+ 0= , Lijkl εkl µkl–( ){ },xj

bi+ 0=

µij
9
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(58)

Replacing  by  and manipulating (58) with (37) and (40), the ove

eigenstrain field can be expressed as

(59)

Equation (59) represents the well-known Levin’s formula [23] relating the local and o
all eigenstrains, and  is often referred to as the elastic stress concentration func

Remark 1: As a special case we consider a composite medium consisting of two ph

matrix and reinforcement, with respective volume fractions  and  such 

. Superscripts  and  represent matrix and reinforcement phases, re

tively.  and  denote the matrix and reinforcement domains such 

. We assume that eigenstrains and elastic strain concentration facto
constant within each phase. This yields the simplest variant of (50) where n=2. The corre-
sponding approximation scheme is termed as the 2-point model. The overall elastic prop
erties are given by [5]

 (60)

and the overall stress reduces to:

(61)

3.0  2-Point Scheme for Finite Deformation Plasticity

For finite deformation analysis the left superscript denotes the configuration:  

current configuration at time , whereas  is the configuration at time . For 
plicity, we will often omit the left superscript for the current configuration, i.

. To extend the small deformation formulation to account for finite deform
tion effects the following assumptions are made:

A1: Phase stress objectivity

We will assume that the principle of objectivity is satisfied for each phase. Then
Cauchy stress rate for phase  is given as:

µij
1
Θ
-------– Lijkl

1– Lklmn Gmnpqdpq
µ µmn

0–( ) Θd
Θ∫=

Gmnpq Amnpq Imnpq–

µij
1
Θ
------- Bklij µkl

0 Θ,          Bijkld
Θ∫ Lijmn y( )Amnpq y( )Lpqkl

1–= =

Bijkl

c m( ) c f( )

c m( ) c f( )+ 1= m f

Θ m( ) Θ f( )

Θ Θ m( ) Θ f( )∪=

Lijkl c r( )Lijmn
r( ) Imnkl Gmnkl

r( )+( )
r m=

f

∑=

σi j c m( )σi j
m( ) c f( )σij

f( )+=

t t∆+

t t∆+
t

t

t t∆+≡

r

10
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(62)

where the superposed dot represents the material time derivative. The rate of defor

and spin tensor components, denoted as  and , respectively, are defined as

(63)

where  is the phase velocity gradient. The asymptotic expansion of the phase ve

is given as

(64)

is the objective rate of the Cauchy stress in phase , which represents the m

response due to deformation, whereas  represents the rate of

tion.

Remark 2: The optimal choice of rotation  depends on the microstructure. For fib

composites it is natural to assume that , represents the fiber rotation from the c

uration aligned along the unit vector  to the current configuration aligned along

vector . Thus 

(65)

Following Lee [20] it can be shown that  is related to the spin and rate of deform
tensors by:

(66)

The choice of rotations in textile and particle composites is less obvious. We refer t
for the discussion on various choices. 

A2: Additive decomposition of hypoelastic and inelastic rate of deformation

The theoretical and practical reasons favoring additive decomposition over multiplic
decomposition for fibrous composites were discussed in [27]. In the present wor

adopt the additive decomposition of rate of deformation into elastic  and inelasti

of deformation , which gives 

σ· i j
r( ) σi j

r( )° σ̂
·

ij
r( )

+= where σ̂
·

i j
r( ) Λik

r( )σkj
r( ) σik

r( )Λkj
r( )–=

ε·ij
ς r( ) ω· i j

ς r( )

ε·ij
ς r( ) x( ) v i x; j( )

ς r( )≡ and ω· i j
ς r( ) x( ) v i x; j[ ]

ς r( )≡

vi x; j

ς r( )

vi
ς r( ) x( ) vi

r( ) x y,( ) vi
0 r( ) x y,( ) ςvi

1 r( ) x y,( ) …+ +≈≡

σi j
r( )° r

Λ i j
r( ) ℜ· ik

r( ) ℜkj
r( ){ } 1–=

ℜij
r( )

ℜij
r( )

m
t

i

mi

mi ℜi j
r( ) m

t
j= and m· i ℜ· ip

r( ) ℜpj
r( ){ } 1–

mj Λi j
r( )

mj≡=

Λi j
r( )

Λi j
r( ) ω· i j

r( ) ε·ik
r( )mkmj ε·jk

r( )mkmi–+=

ε·i j
r( )

e

µ· ij
r( )
11
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(67)

Furthermore, we will assume the hypoelastic constitutive equation relating the obj
Cauchy stress rate with rate of elastic deformation:

(68)

A3: Midpoint integration scheme for micro- and macro-coordinates

In a typical time step , the configuration of the macro- and micro-structure ma

expressed as a sum of the configuration at the previous step  and the displacemen
ment:

(69)

(70)

The macroscopic displacement increment  is found from the incremental soluti

the macro-problem, whereas displacement increment in the RVE is given by:

 (71)

The first term in (71) represents the contribution of macroscopic solution, whereas th

ond term  accounts for oscillatory Y-periodic field. Figure 4 schematically ill

trates the decomposition of the deformation field in the RVE. 

Strain and rotation increments are integrated using the midpoint rule to obtain a s
order accuracy:

(72)

where the midpoint coordinates are defined as

(73)

Similarly, the periodic portion of the solution increment  is obtained by integra

(30) using the midpoint rule:

 (74)
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where the increment of inelastic strain is defined in Section 4. 

A4: Additive decomposition of material and rotational response

There are several formulations aimed at extending the small deformation formulat
account for large deformation effects. One of the most popular approaches is known
co-rotational method where all the fields of interest are transformed into the rotate

system [16]. In the -system, the form of constitutive equations is analogous to 
deformation theory. A simpler approach, proposed by Hallquist [14] and improve
Hughes and Winget [17] to preserve incremental objectivity, is based on the additive 
mental decomposition of material and rotational response. The latter procedure is a
in the present manuscript. 

For two phase materials, the integration scheme [17] decomposes stresses an
stresses as follows:

(75)

(76)

where  is the back stress. The midpoint rule is utilized to compute the phase rot

[17]

(77)

Remark 3: For homogeneous materials the integration scheme [17] uncouples the m

and rotational responses. In the present formulation phase rotations in each phase, 

depend on phase eigenstrains, which are unknown prior to stress integration, and
material and rotational responses are fully coupled and have to be updated sim
neously.

A5: Constant phase volume fractions

For the 2-point scheme derived in Section 3 we will assume that phase volume frac
remain constant throughout the analysis. This is apparently true in the case of elastic
undergoing small strains and incompressible matrix material. In addition, we assum
the elastic properties of the phases are independent of temperature. Based on th
order approximation methods, such as the Mori-Tanaka method [25] and Self Cons
method [15], the strain concentration factors and eigenstrain influence functions c
assumed to be constants throughout the entire analysis. These assumptions will allo

ℜ
ℜ
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carry out the entire analysis without updating the configuration of the unit cells. For tn-
point scheme model, described in Section 4, these restrictions will be removed.

3.1  Implicit Integration of Constitutive Equation

For the elastically deforming reinforcement the only source of eigenstrain rate is d

temperature effects, i.e.,  where  is the thermal rate of deformatio
reinforcement domain. The eigenstrain rate in the matrix phase is comprised of bo

thermal, , and the plastic, , rate of deformation effects, such 

. The phase thermal rate of deformation can be expressed as

(78)

where  denotes the temperature and  are components of the phase thermal ex

tensor.

Combining the rate form of (50), (68), (69), (75), Assumptions 3 and 4 it can be s
that the following relations for the phase stresses hold:

(79)

where  is the overall phase eigenstrain increment and

(80)

Consider the yield function of the following form:

(81)

where  is the yield stress of the matrix phase in a uniaxial test, which evolves ac

ing to the hardening laws assumed;  corresponds to the center of the yield sur

the deviatoric stress space, or simply the back stress. Evolution of the back st
assumed to follow the kinematic hardening rule. For von Mises plasticity,  is a pr

tion operator which transforms an arbitrary second order tensor to the deviatoric spa

(82)
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For simplicity we assume that the plastic rate of deformation in the matrix phase foll
the associative flow rule:

(83)

We adopt a modified version of the hardening evolution law [16] in the context of is
pic, homogeneous, elasto-plastic matrix phase. A scalar material dependent param

 is used as a measure of the proportion of isotropic and kinematic hard

and  is a plastic parameter to be determined by the consistency condition

Accordingly, the evolution of the yield stress  and the back stress  ca

expressed as follows:

(84)

(85)

where  corresponds to a pure isotropic hardening;  is the widely used

gler-Prager kinematic hardening rule [36] for metals;  is a hardening parameter d
as the ratio between effective stress rate and the effective plastic strain rate.

Integration of (83), (84) and (85) is carried out using the backward Euler scheme:

(86)

(87)

(88)

where , and  is the rotated back stress defined in (76). 
phase rotation increment follows from (50), (78) and (83):

(89)

In the following we omit the left superscript for the current step . Using the b

ward Euler scheme for the rate form of  in (79) and (86) yields the following rela

for the Cauchy stress in the matrix domain:
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(90)

where  is a trial Cauchy stress in the matrix phase defined as

(91)

The process is termed elastic if: 

(92)

Otherwise the process is plastic, which is the focus of our subsequent derivation.

Subtracting (88) from (90) we arrive at the following result:

(93)

where

(94)

The value of  is obtained by satisfying the consistency condition which assure
the stress state in the plastic process lies on the yield surface at the end of the curre
step. To this end, equations (87) and (93) are substituted into the consistency co

(81), , which produces a nonlinear equation for .

standard Newton’s method is applied to solve for :

(95)

where  is the iteration count. It can be shown that the derivative  requ
in (95) has the following form:

(96)

The expression for  is derived in Appendix A. The converged value of  is 

used to compute the phase stresses. The overall stress is computed from (61).
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3.2  Consistent Linearization

While integration of the constitutive equations affects the accuracy of the solution, th
mation of a tangent stiffness matrix consistent with the integration procedure is ess
to maintain the quadratic rate of convergence if one is to adopt the Newton method 
solution of nonlinear system of equations on the macro level [31].

The starting point is the incremental form of the constitutive equations (79):

(97)

Taking material time derivative of (88), (89) and (97) yields:

(98)

(99)

(100)

Subtracting (98) from (100) for r = m yields:

(101)

where

(102)

Combining (99), (101), (102), (212), (213) with the consistent linearizations of  a
 (given in Appendix B) yields:

(103)
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(104)

(105)

(106)

and ,  and  are defined in (217), (212) and (213), respectively. It 

remains to eliminate  from (103), by utilizing the linearized form of the consisten
condition (81) and equation (87) which gives

(107)

Substituting (103) into (107) results in

(108)

where

(109)

and thus (103) can be simplified as

(110)

where

(111)

(112)

Finally, by substituting (108), (110), (212) and (228) into (100), we get a closed 

expression relating the phase Cauchy stress rate  with the macroscopic veloci

dient  and the temperature rate 
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n  

 is 
(114)

and

(115)

The overall consistent instantaneous stiffness  is obtained from the rate form of

and Assumption A5:

(116)

where

(117)

The overall consistent tangent operator is derived from the consistent linearization 
weak form of the macroscopic equilibrium equation (57). Consider the internal force
tor expressed in terms of the quantities defined in the deformed configuration

(118)

where  is a set of shape functions in the macroscale.

Prior to linearization, the internal force vector is defined in the reference configuratio
as

(119)

where  is the jacobian between the macro-configurations at times  and ; 

the macroscopic deformation gradient defined as
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Linearization of (119) yields
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(121)

Substituting (116) into (121) and exploiting the kinematical relations 

 and the finite element discretization  yields: 

(122)

(123)

where  and  are defined in (117);  denotes the velocity degrees-of-free

associated with the finite element mesh. The first integral in (122) represents the c
tent tangent stiffness matrix for the macro-problem.

Remark 4: For the purpose of linearization it is convenient to approximate phase rota

within a unit cell by a constant field such that . The resulting rotated stress
back stress rates are given as
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4.0  n-Point Scheme for Finite Deformation Plasticity

In this section we consider a unit cell model discretized with n elements. The n-point
scheme model assumes that eigenstrains are piecewise constant, i.e., they are 
within each element, but may vary from element to element. Our starting point (Se
4.1) is a rate form of the governing equations representing the finite deformation pla
of periodic heterogeneous media. Implicit integration of constitutive equations follo
by consistent linearization are given in Sections 4.2 and 4.3. 

4.1  Governing Equations

The governing equations consist of: equilibrium (4), kinematics in the rate form 
boundary conditions (8), (9), and the constitutive equation in the rate form

 (129)

where

(130)

 denotes the instantaneous stiffness properties. In the following, we adopt Jau

rate, i.e., . 

Double scale asymptotic expansion of the velocity field (64) provides the starting poi
the asymptotic analysis. Substituting the asymptotic expansions (20), (64) into const
equation (130) based on the Jaumann rate yields:

(131)

where  is the velocity gradient given as

(132)

Further assuming that  Cauchy stress vanishes, , yi

 provided that  is not singular. We proceed to the  equilibri

equation (22):
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To solve for (133) up to a constant we introduce the following separation of variables
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(134)

Note that plastic effects are now hidden in the Y-periodic function , whereas 

accounts for temperature effects only. 

Premultiplying (133) by the Y-periodic function , integrating over the deforme

unit cell domain  and then carrying out integration by parts yields

(135)

Linearization of (135) is carried out by taking the material time derivative, . 
this purpose we express the integrand of (135) in the reference configuration, say a

,  where  denotes the deformatio

gradient in the unit cell and  is the corresponding jacobian. By utilizing equation

and (3) it can be shown that .

Consequently, linearization of (135) yields:

(136)

Substituting (130), (131), (132) and (134) into (136) and exploiting kinematical relati

 and  gives:
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integral equations in :

(140)

vi
1 x y,( ) Hikl y( ) vk xl,

0 x( ) d·kl
θ x( )+{ }=

Hikl y( ) d·kl
θ

Hikl y( )

Θ

φ x y,( ) Hikl yj, σi j
0 Θd

Θ∫ 0==

φ· 0=

t Hikl yj, σi j
0 Θd H

ikl y
t

m,
Fmj

1– σi j
0 Jy d Θt= Fjm y

j y
t

m;
=

Jy

y
j y

t
m;

x
j x

t
m;

=

H
ikl yt m,

F·mj
1– σij

0Jy Fmj
1– σ· i j

0Jy Fmj
1– σi j

0Jy
·

+ +( )d Θt
Θt∫ 0=

Jy
·

Jylkk
0= F·mj

1– Fml
1– l l j

0–=

Hikl yj, Lijmn Tijmn+( ) lmn
0 Lijmnξmnθ

·–{ } Θd
Θ∫ 0=

lmn
0 δmsδnt Hmst yn, y( )+( )vs xt,

0 x( ) Hmst yn, y( )d·st
θ x( )+=

Tijmn δmnσi j
0 1

2
--- δimσjn

0 δjm– σin
0 δin– σjm

0 δjn– σim
0( )+=

vs xt,
0 x( ) d·st

θ x( )

Θ

Hikl yj, Lijmn Tijmn+( ) δmsδnt Hmst yn,+( ) Θd
Θ∫ 0=
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(141)

Equation (140) is solved using the finite element method for . Note that equ

(140) is solved for nine right hand side vectors corresponding to nine uniform vel
gradient fields as opposed to six constant strain modes in the case of small deforma

After solving (140) for ,  can be obtained from (141) as

(142)

where

(143)

(144)

Once  and  are computed, the  approximation of  and , denoted a

and , are given as

(145)

(146)

where

(147)

(148)

(149)

(150)

4.2  Implicit Integration of Constitutive Equations

We start from the constitutive relation for a typical element  in :

Hikl yj, Lijmn Tijmn+( )Hmst yn, d·st
θ Lijmnξmnθ

·–{ } Θd
Θ∫ 0=

Hikl

Hikl d·i j
θ

d·ij
θ 1

Θ
------- L̃ijkl Lijkl–( ) 1– Hrkl ys, Lrsuvξuvθ

· Θd
Θ∫=

L̃ijkl
1
Θ
------- Lijkl Tijkl+( ) Θd

Θ∫=

Lijkl
1
Θ
------- Lijmn Tijmn+( )Hmkl yn, Θd

Θ∫=

Hikl d·i j
θ O ς0( ) ε· i j

ς ω· ij
ς ε· i j

ω· ij

ε·ij Aijkl vk xl,
0 aij θ

·+=

ω· ij Âijkl vk xl,
0 âij θ

·+=

Aijkl y( ) 1
2
--- δikδj l δjkδi l+( ) H i yj,( )kl y( )+=

Âijkl y( ) 1
2
--- δikδj l δjk– δi l( ) H i yj,[ ]kl y( )+=

aij H i yj,( )kl L̃klpq Lklpq–( ) 1– Hprs yq, Lrsuvξuvθ
· Θd

Θ∫=

âij H i yj,[ ]kl L̃klpq Lklpq–( ) 1– Hprs yq, Lrsuvξuvθ
· Θd

Θ∫=

ρ Θ
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(151)

For elements in the matrix phase (151) can be written as

(152)

Applying the backward Euler integration scheme to (152) gives 

(153)

and exploiting the equation for the back stress in element  (88) yields

(154)

and

(155)

(156)

in which  and  are the rotated stress and back stress defined in (75) and (7

 is given as

(157)

Note that the instantaneous concentration factors , ,  and  comp

from (147) to (150) depend on the instantaneous material properties, which in turn d

on vector of plastic parameters  in , . Substitu

ing (154) and (87) into the yield function (81) for each element in  yields a set o

nonlinear equations  with  unknown plastic paramete

The system of nonlinear equations is solved by the Newton method:

(158)

A typical term in the Jacobian matrix is given as

σi j
ρ( )° Lijkl

ρ( ) ε·kl
ρ( ) ξkl

ρ( )θ·–( )             if  ρ Θ f( )∈

Lijkl
ρ( ) ε·kl

ρ( ) ξkl
ρ( )θ·– ε·kl

ρ( )
p–( ) if  ρ Θ m( )∈




=

σi j
ρ( )° Lijkl

ρ( ) Aklmn
ρ( ) vm xn,

0 akl
ρ( ) ξkl

ρ( )–( )θ· ℵkl
ρ( )λ· ρ( )–+{ }=

σij
ρ( ) σ̂ij

ρ( )t
Lijkl

ρ( ) Aklmn
ρ( ) ∆εmn ∆ωmn+( ) akl

ρ( ) ξkl
ρ( )–( )∆θ ℵkl

ρ( )∆λ ρ( )–+{ }+=

ρ

σi j
ρ( ) αij

ρ( )– I ijmn ∆λ ρ( )℘
˜ ijmn

ρ( )+( ) 1– ℑ
˜ mn

ρ( )=

℘
˜ i jmn

ρ( ) Lijuv
ρ( ) Puvmn

2
3
--- 1 β–( )hPijmn+=

ℑ
˜ mn

ρ( ) σ̂mn
ρ( )t α̂mn

ρ( )t
– Lmnpq

ρ( ) Apqst
ρ( ) ∆εst ∆ωst+( ) apq

ρ( ) ξpq
ρ( )–( )∆θ+{ }–=

σ̂mn
ρ( )t α̂mn

ρ( )t

∆ω ij
ρ( )

∆ωi j
ρ( ) Âijkl

ρ( ) ∆εkl ∆ωkl+( ) âij
ρ( )∆θ+=

Aijkl
ρ( ) Âijkl

ρ( ) aij
ρ( ) âij

ρ( )

∆λ
˜

Θ m( ) ∆λ
˜

∆λ 1( ) ∆λ 2( ), … ∆λ ny( ), ,[ ]T≡

Θ m( ) ny

Φ
˜

Φ 1( ) Φ 2( ) … Φ ny( ), , ,[ ]T≡ ny

∆λk 1+
ρ( ) ∆λk

ρ( ) Φ ρ( )∂
∂∆λ η( )
-----------------

 
 
  1–

Φ η( )–
∆λk

ρ( )

=
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(159)

where

(160)

(161)

In (161)  depends on the derivatives of  and  w

respect to . Evaluation of these derivatives is not trivial and hence the follo
approximation is employed:

(162)

resulting in the block diagonal approximation of the jacobian matrix

(163)

where

(164)

At each modified Newton iteration step the residual vector  is evaluated and the in

taneous concentration factors are recomputed from (140). The iterative process pr

until the residual norm  vanishes up to a certain tolerance. The updated stress

stress and back stress for elements in  are calculated from (153), (87) and

respectively. For elements in , stresses can be obtained using (153) with 
Finally, the macroscopic stress follows from (56).

4.3  Consistent Linearization

The instantaneous consistent stiffness properties are derived from consistent linear
of incremental equations. For elements in , taking the material time derivativ
(153) and (88), and making use of (228) yields:

∂Φ ρ( )

∂∆λ η( )
----------------- ℵi j

ρ( ) I ijmn ∆λ ρ( )℘
˜ i jmn

ρ( )+{ } 1– χmn
ρη( ) 4δρηβh Y ρ( ){ }2

9 6βh∆λ ρ( )–
--------------------------------------–=

χmn
ρη( )

∂ℑ
˜ mn

ρ( )

∂∆λ η( )
----------------- δρη℘

˜ mnpq
– σpq

ρ( ) αpq
ρ( )–( )=

∂ℑ
˜ mn

ρ( )

∂∆λ η( )
-----------------

∂ σ̂mn
ρ( )t α̂mn

ρ( )t
–( )

∂∆λ η( )
------------------------------------- Lmnpq

ρ( ) ∂Apqst
ρ( )

∂∆λ η( )
----------------- ∆εst ∆ωst+( )

∂apq
ρ( )

∂∆λ η( )
-----------------∆θ+ 

 –=

∂ σ̂mn
ρ( )t α̂mn

ρ( )t
–( ) ∂∆λ η( )⁄ Apqst

ρ( ) apq
ρ( )

∆λ η( )

Apqst
ρ( ) Apqst

ρ( )t≈ , apq
ρ( ) apq

ρ( )t≈

∂Φ ρ( )

∂∆λ η( )
----------------- δρη ℵij

ρ( )χ̂i j
ρ( ) 4βh Y ρ( ){ }2

9 6βh∆λ ρ( )–
---------------------------------+ 

 –≈

χ̂ij
ρ( ) I ijmn ∆λ ρ( )℘

˜ ijmn
ρ( )+( ) 1– ℘

˜ mnpq
ρ( ) σpq

ρ( ) αpq
ρ( )–( )=

Φ
˜

Φ
˜ 2

Θ m( )

Θ f( ) ∆λ ρ( ) 0≡

Θ m( )
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(165)

and

(166)

Substituting (228) into (165), then subtracting (166) from the resulting equation yield

(167)

where in analogy to (162), we approximate  and .

From equations (212), (213), (228) it follows that

(168)

(169)

Substituting (168) and (169) into (167) and collecting terms of  gives

(170)

where

(171)

(172)

(173)

The value  can be computed from the linearization of consistency conditions (see
Section 3.2) which yields

(174)

where

σ· i j
ρ( ) σ̂

·
i j
ρ( )t

Lijmn
ρ( ) A·mnkl

ρ( ) ∆εkl ∆ωkl+( ) Amnpq
ρ( ) Mpqklvk xl,

0+{ }+=

Lijmn
ρ( ) a·mn

ρ( )∆θ amn
ρ( ) ξmn

ρ( )–( )θ· ℵmn
ρ( )λ· ρ( ) Pmnpq– σ· pq

ρ( ) α· pq
ρ( )–( )∆λ ρ( )–+{ }+

α· i j
ρ( ) α̂

·
ij
ρ( )t 2 1 β–( )h

3
----------------------- ℵi j

ρ( )λ· ρ( ) Pijpq σ· pq
ρ( ) α· pq

ρ( )–( )∆λ ρ( )+{ }+=

σ· i j
ρ( ) α· i j

ρ( )– σ̂
·

i j
ρ( )t

α̂
·

i j
ρ( )

Lijmn
ρ( )+

t
Amnpq

ρ( ) Mpqklvk xl,
0 amn

ρ( ) ξmn
ρ( )–( )θ·+{ }–=

℘
˜ ijmn

ρ( )– σmn
ρ( ) αmn

ρ( )–( )λ· ρ( ) σ· mn
ρ( ) α· mn

ρ( )–( )∆λ ρ( )+{ }

A·mnkl
ρ( ) 0= a·mn

ρ( ) 0=

σ̂
·

ij
ρ( )t

Uijmn
ρ( )

σ Âmnst
ρ( ) Mstklvk xl,

0 âmn
ρ( )θ·+( )=

α̂
·

ij
ρ( )t

Uijmn
ρ( )

α Âmnst
ρ( ) Mstklvk xl,

0 âmn
ρ( )θ·+( )=

σ· i j
ρ( ) α· ij

ρ( )–

σ· i j
ρ( ) α· ij

ρ( )– I ijkl ∆λ ρ( )℘
˜ i jkl

ρ( )+( ) 1– Ξv klstvs xt,
0 Ξθ klθ

· Ξλ klλ
· m( )+ +( )=

Ξv klst Uklmn
ρ( )

σ Uklmn
ρ( )

α–( )Âmnuv
ρ( ) Lklmn

ρ( ) Amnuv
ρ( )+{ }Muvst=

Ξθ kl Uklmn
ρ( )

σ Uklmn
ρ( )

α–( )âmn
ρ( ) Lklmn

ρ( ) amn
ρ( ) ξmn

ρ( )–( )+=

Ξλ kl ℘
˜ klmn

ρ( ) σmn
m( ) αmn

m( )–( )–=

λ· ρ( )

λ· ρ( ) ϒkl
ρ( ) Ξv klstvs xt,

0 Ξθ klθ
·+( )=
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(175)

and then substituting (174) into (170) yields

(176)

where  and  have identical structure to  and  in (111) and (112) exc

that the symbols  are replaced by , and  by .

Substituting (174), (176) into (165) yields

(177)

where

(178)

and

(179)

Similarly, the stress rate for elements in  is given by

(180)

where

(181)

(182)

The overall instantaneous stiffness  is obtained from the rate form of (61), equa

(178), (179), (181) and (182):

(183)

where

ϒkl
ρ( )

9 6βh∆λ ρ( )–( )ℵi j
ρ( ) I ijkl ∆λ ρ( )℘

˜ i jkl
ρ( )+( ) 1–

4βh Y ρ( ){ }2 9 6βh∆λ ρ( )–( )ℵmn
ρ( ) Imnst ∆λ ρ( )℘

˜ mnst
ρ( )+( ) 1– Ξλ st–

----------------------------------------------------------------------------------------------------------------------------------------------------------=

σ· i j
ρ( ) α· ij

ρ( )– Ξ
˜v ijklvk xl,

0 Ξ
˜θ i j θ

·+=

Ξ
˜v ijkl Ξ

˜θ ij S
˜v ijkl S

˜θ i j

S Ξ Γ m( ) ϒ ρ( )

σ· i j
ρ( ) Dijkl

ρ( ) vk xl,
0 dij

ρ( )θ·+= for ρ Θ m( )∈

Dijkl
ρ( ) Uijmn

ρ( )
σ Âmnst

ρ( ) Mstkl Lijmn
ρ( ) Amnpq

ρ( ) Mpqkl+=

Lijmn
ρ( )– ℵmn

ρ( )ϒpq
ρ( ) Ξv pqkl ∆λ ρ( )Pmnpq Ξ

˜v pqkl+( )

dij
ρ( ) Uijmn

ρ( )
σ âmn

ρ( ) Lijmn
ρ( ) amn

ρ( ) ξmn
ρ( )–( ) ℵmn

ρ( )ϒpq
ρ( ) Ξθ pq– ∆λ ρ( )Pmnpq Ξ

˜θ pq–{ }+=

Θ f( )

σ· i j
η( ) Dijkl

η( )vk xl,
0 dij

η( )θ·+= for η Θ f( )∈

Dijkl
η( ) Uijmn

η( )
σ Âmnst

η( ) Mstkl Lijmn
η( ) Amnpq

η( ) Mpqkl+=

dij
η( ) Uijmn

η( )
σ âmn

η( ) Lijmn
η( ) amn

η( ) ξmn
η( )–( )+=

Dijkl

σ· i j Dijkl vk xl,
0 dij θ

·+=
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(184)

 denotes the ratio between the volume of element  and the volume of the unit c
time .

Finally, linearization of internal force vector yields:

(185)

(186)

where the first integral in (185) represents the consistent macroscopic tangent stiffne
matrix for the n-point scheme model.

Remark 5: Approximating the piecewise constant phase rotations by a constant functi
the entire unit cell such that , yields a simplified form of (171) and (172):

(187)

(188)

For elements in  (178) and (179) reduce to:

(189)

and

(190)

whereas for elements in  (181) and (182) are given by

(191)

and

(192)

Dijkl c η( )Dijkl
η( )

η 1=

n

∑        dij c η( )dij
η( )

η 1=

n

∑=,=

c η( ) η
t t∆+

td
d fA

int NiA xj, Dijkl NkB xl, Ω q·Bd
Ω∫ NiA xj, dij θ

· Ωd
Ω∫+=

Dijkl Dijkl δklσi j δkjσil–+=

ω· ij
r( ) ω· ij≈

Ξv klst Lklmn
ρ( ) Amnuv

ρ( ) Muvst δkn σml
ρ( ) αml

ρ( )–( ) δ ln σkm
ρ( ) αkm

ρ( )–( )+{ }M mn[ ]st–=

Ξθ kl Lklmn
ρ( ) amn

ρ( ) ξmn
ρ( )–( )=

Θ m( )

Dijkl
ρ( ) Lijmn

ρ( ) Amnpq
ρ( ) Mpqkl δkn σml

ρ( ) αml
ρ( )–( ) δln σkm

ρ( ) αkm
ρ( )–( )+{ }M mn[ ]st–=

Lijmn
ρ( )– ℵmn

ρ( )ϒpq
ρ( ) Ξv pqkl ∆λ ρ( )Pmnpq Ξ

˜v pqkl+( )

dij
ρ( ) Lijmn

ρ( ) amn
ρ( ) ξmn

ρ( )–( ) ℵmn
ρ( )ϒpq

ρ( ) Ξθ pq– ∆λ ρ( )Pmnpq Ξ
˜θ pq–{ }=

Θ f( )

Dijkl
η( ) Lijmn

η( ) Amnpq
η( ) Mpqkl δinσmj

η( ) δjnσim
η( )+( )M mn[ ]kl–=

dij
η( ) Lijmn

η( ) amn
η( ) ξmn

η( )–( )=
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5.0  Adaptive Model Construction

In Sections 3 and 4 we presented two schemes for modeling inelastic behavior of co
ite structures: the 2-point scheme and the n-point scheme. In the n-point scheme we
employed a piecewise constant approximation of the eigenstrain field, whereas in 2-
point scheme the eigenstrain field and the elastic concentration factors in each ph
approximated by a constant. For the Nozzle Flap problem considered in [8] (see als
ure 1) the 2-point scheme is over three orders of magnitude faster than the n-point scheme.
For linear problems the 2-point scheme with post-processing [5][8][9][13] is identical 
the n-point scheme, whereas for nonlinear problems there is no such guarantee.

If we assume that the n-point and the 2-point schemes are optimal in terms of accura
and speed, respectively, then it is natural to attempt to merge the two in a single mo
such a hybrid model, the 2-point scheme should be only used in regions where the mo
ing errors are small, whereas elsewhere the n-point scheme should be employed. We w
refer to such a hybrid modeling strategy as the adaptive 2/n-point scheme.

The modeling error  associated with the 2-point scheme can be defined as follows

(193)

where  and

(194)

 is an appropriate solution measure; the superscript ex refers to the exact solution within
the framework of the mathematical homogenization theory, i.e., assuming solution p
icity. For estimation of errors resulting due to lack of periodicity we refer to [9][28].

The key questions are: (i) how to estimate , (ii) what is a suitable measure for 
how to make the process of error estimation efficient, and (iv) how to utilize the m
error estimation for adaptive construction of the 2/n-point model.

It is appropriate to recall that as the number elements in the unit cell is increased th

tion obtained from the n-point scheme, denoted as , approaches the exact solu

i.e., . Even though the rate of convergence may not be monotonic,

reasonable to assume that for sufficiently large  the modeling error associated with2-
point scheme can be approximated as

(195)

We now turn to the second issue: the choice of . In this context it is essential to int
the 2-point scheme approach as consisting of two steps: analysis on the macrosca

e2-pt

e2-pt
v

ex
v2-pt

–=

Ω Θ×=

f 2 1
Θ
---- f2 Θd Ωd

Ω
∫

Θ
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v

v
ex

v

v
n-pt

v
n-pt

n ∞→
lim v

ex→

n

e2-pt
E2-pt≈ v
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v2-pt

–=
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post-processing on the microscale. In the first step, a nonlinear macro-analysis is c
out using the finite element method which utilizes the 2-point scheme. Consequently, th
macroscopic deformation history is stored in a database at macro-Gauss points.
post-processing step, the deformation field in a unit cell corresponding to critical m
points is extracted from the database, and then subjected onto the unit cell as an e
loading. Finally, the n-point scheme is employed to solve for selected unit cell problem

Based on the above interpretation of the 2-point scheme, it follows that if the macroscop
deformation field obtained with the 2-point scheme is identical to one obtained with then-

point scheme, then the model error estimator, , should indicate zero error. In

words,  should be a measure of the macroscopic deformation field, whereas 

Possible deformation measures are: the macroscopic deformation gradient tensor, 
component form is defined in (120)), and/or incremental deformation measures 
sented by a pair . The former accounts for accumulation of errors

(196)

whereas the latter controls the incremental errors

(197)

In Section 6 we will show that in a confined deformation pattern, where small pl

zones are encompassed by elastically deforming solid, the modeling errors, 
very small, whereas in large plastic zones dominated by matrix deformation, the mo

errors, , might be significant. For simplicity, we adopt the incremental estim
(197).

We now turn to the computational efficiency issue. Estimation of modeling error bas
equations (196) and (197) necessitates solution of the n-point scheme model. As indicate
earlier the computational cost of the n-point scheme model is enormous, and hence, o

an estimate of , denoted , will be evaluated. The philosophy behind our m
ing error estimator is somewhat similar to that employed for estimation of discretiz
errors, namely, if the mathematical model (or discretization) is locally altered, the
absence of the pollution errors the solution outside the local region is not signific
affected, and thus the bulk of the error can be computed on the local level. This p
avoids the need for solving an auxiliary global problem and replaces it by solvi
sequence of problems on small local domains.

When the aforementioned procedure is applied for estimation of discretization error
computational cost of solving the local problem is relatively low, reducing the cost o
cretization error estimation to one of a manageable size. Unfortunately, this is not th

for estimation of modeling error . Even though the aforementioned process inv
multiple solutions of small local problems (for example, on the macro-element dom

E2-pt
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2-pt Fn-pt F2-pt

– Ω=

E∆
2-pt ε∆ n-pt ε∆ 2-pt

– Ω
2

ω∆ n-pt ω∆ 2-pt
– Ω

2
+=

E2-pt

E2-pt

E2-pt
E
˜

2-pt

E
˜

2-pt
30



rge

 criti-
eering
acro-

ement
ments,

ain

at

e

have

ure 5.

 at

t time

le-

 
ated
the cost of applying the n-point scheme on each macro-element is formidable in a la
scale computational environment. Therefore, the costly n-point scheme should be utilized
only for those macro-elements which have been identified as “having potential to be
cal” by some simple cost-effective engineering-based criteria. One possible engin
criterion is the magnitude of the deformation, measured by a norm of one of the m
scopic strain measures. When the incremental deformation norm in a macro-el
domain exceeds a fraction  of the average deformation among the  macro-ele

i.e., 

(198)

then the corresponding macro element is tagged for a-posteriori model error estimation. 

We now focus on the adaptive 2/n-point model construction. Consider the 2/n-point model
at time t, consisting of the 2-point scheme model in the portion of the macro-dom

 and the n-point scheme model in the remainder  such th

. The goal is to adaptively construct the 2/n-point model at time

, consisting of subdomains  and . Let  b

a subdomain in  consisting of  macro-element subdomains  which 

been tagged as critical by the aforementioned engineering criterion, as shown in Fig

Let  and  be the macro- strain and rotation increments on 

. The first step in the adaptive process is to post-process the unit cell solution a

 for all macro-elements on  by utilizing the n-point scheme model outlined in

Section 4. 

Let  be the residual for all the elements on  defined as

(199)

where  is the corresponding internal force vector. In the second step, for all e

ments in  the incremental nonlinear problem defined as

(200)

is solved twice: first, by using the 2-point scheme model, and second, by utilizing then-
point scheme model with initial conditions obtained via post-processing. The estim

error on  is computed by utilizing equation (197)
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where the strain and rotation increments are evaluated by solving equation (200).

The total modeling error is then estimated as

(202)

To steer the process of adaptivity we define the modeling error indicator  on 

as

(203)

where

(204)

 represents the average incremental deformation in a single element loca

. We replace the 2-point scheme model by the n-point scheme model for all the

elements on  for which . A typical value for  is between 1% to 1

depends on the accuracy requirement.

6.0  Numerical Experiments and Discussion

Our numerical experimentation agenda consists of three examples. The first is used
idate our finite deformation plasticity formulation. The second and the third examples
the proposed adaptive 2/n-point scheme in a deformation pattern with large plastic zon
dominated by matrix deformation as well as in a typical confined deformation pattern
where a small plastic zone is encompassed by an elastically deforming solid.

6.1  Uniform Macro-Strain Loading

The objective of the first example is to carry out a qualitative assessment of the
deformation formulation. The primary “suspect” is equation (71) which decomposes
placement field in the microstructure into two parts: the macroscopic part which c
from the integration of the nonperiodic macroscopic strain and rotation increments
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first term in (71)) and the periodic microscopic part (the second term in (71)). Note
solution update in the unit cell domain directly from the asymptotic expansion of the
placement field (11) is not feasible, because in the limit as , only the macros

part has contribution. On the other hand, if  is considered only, then the nonpe
finite deformation patterns are not accounted for. 

As a test problem we select a macro problem subjected to the state of uniform stra
(or linear displacement field). A unit cell consists of a stiff elastic cylindrical fiber emb
ded in a compliant plastically deforming matrix. The phase properties are given belo

Fiber:  Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.21
Matrix: Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 MP

isotropic hardening modulus = 0.689 GPa,  = 1.

We consider a uniform transverse tension, transverse shear and longitudinal shear 
conditions. The overall principal Green strain does not exceed 25% in all three case
ures 6 to 8 show the contribution of macroscopic and microscopic fields to the total d
mation field in the unit cell. It can be seen that each of the two contributing parts 
significantly distort the circular fiber cross section, but their sum recovers the ori
fiber shape, as expected in a matrix dominated loading condition.

6.2  The 3D Beam Problem

To validate the computational models and adaptive strategies proposed we compris
case, where a significant portion of the structure is subjected to the matrix domi
deformation in a load or stress control mode (as opposed to displacement control). 
a worse possible scenario in terms of accuracy for the 2-point scheme. The problem
figuration is shown in Figure 9. The macro problem is discretized with 5635 tetrah
finite elements. The geometry and the mesh for the microstructure are the same a
previous example. The fiber direction coincides with the beam’s longitudinal directio
the region of length  from the fixed end the beam is subjected to the shear deform

(which is the matrix dominated mode) whereas in the remainder of the problem do
 length, the beam is in pure bending, which is a fiber dominated mode of loading

phase properties are summarized below:

Fiber: Young’s modulus = 37.92 GPa, Poisson’s ratio = 0.21
Matrix:  Young’s modulus = 6.89 GPa, Poisson’s ratio = 0.33, yield stress = 24 M

 isotropic hardening modulus = 0.689 GPa,  = 1.

The loading is applied in 15 load steps. The maximal vertical displacement at the fre
is over one third of the length of the beam and the stresses exceed the elastic lim
macro-elements.

The problem is solved using the 2-point scheme with micro-history recovery, the adapti
2/n-point scheme, and the n-point scheme for a comparison purpose. Figure 10 shows
evolution of the normalized estimated local error in the vicinity of the fixed end

ς 0→
u1

β

l1

l2

β
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obtained with the 2-point scheme (equation (203)). It can be seen that the maximal
malized local error in the region dominated by matrix deformation is 40%. In a re
dominated by the fiber deformation the error does not exceed 3%. The distribution 
local principal stress error in the critical unit cell (denoted by point A in Figure 10
obtained with the 2-point scheme and micro-history postprocessing is shown in Figure
It can be seen that the normalized error in the unit cell is of the same magnitude as t
malized local error in the macrostructure. Figure 12 illustrates the evolution of the no
ized local error in the macrostructure obtained using the adaptive 2/n-point scheme model.
The maximal normalized local error is less than 1% and the normalized error in th
cell follows the same trend as shown in Figure 13.

We conclude that the adaptive 2/n-point scheme model outperforms the 2-point scheme
model in terms of accuracy (0.8% maximal error as compared to 40%), and the n-point
scheme model in terms of CPU time as it is 14 times faster than the n-point scheme.

6.3  The Nozzle Flap Problem

For the final numerical example, we consider a typical aerospace component where
small region experiences inelastic deformation. The finite element mesh describin
macrostructure of the Nozzle Flap is shown in Figure 1. We consider two types of m
structures: (i) the fibrous unit cell (as in the previous example) and the plain weave 
microstructure shown in Figure 14. The fibrous unit cell contains 98 elements in the
domain and 253 elements in the matrix domain. The fiber volume fraction is 0.27
plain weave microstructure has 370 elements in the fiber bundle and 1196 in the 
domain. The bundle volume fraction is 0.25. The phase properties are:

Fiber, fiber bundle:  Young’s modulus = 379.2 GPa, Poisson’s ratio = 0.21
Matrix:  Young’s modulus = 68.9 GPa, Poisson’s ratio = 0.33, 

 yield stress = 24 MPa, isotropic hardening = 14 GPa,  = 1.

The Nozzle Flap is subjected to an aerodynamic force (simulated by a uniform pre
on the back of the flap. We assume that the pin-eyes are rigid and a rotation is not a
so that all the degrees of freedom on the pin-eye surfaces are fixed. The loading ta
solution well into the inelastic region in the vicinity of the pins: 15% of elements exp
ence inelastic deformation in the case of fibrous microstructure, and 29% in the c
plain weave.

The problem is analyzed using the adaptive 2/n-point scheme model. Figure 15 shows th
the 2-point scheme model yields the maximum normalized local error in the macro
ture below 1% (for the plain weave microstructure). Hence, if the tolerance for switc
from the 2-point scheme to the n-point scheme is higher than 1%, adaptive strategy sel
the 2-point scheme model in the entire macro problem domain. The normalized local
in the unit cell located at Point C of Figure 15 is 2.5% for fibrous microstructure and 
for the plain weave, as shown in Figures 16 and 17.

For the problem with the fibrous unit cell, the CPU time on a SPARC 10/51 is 30 sec
for the macroscopic analysis and 120 seconds for postprocessing a single point. F

β
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plain weave microstructure, the macroscopic analysis consumes 30 seconds, where
processing takes 510 seconds per point. On the other hand, the n-point scheme consumes 
hours of CPU time for fibrous composite and over 55 hours of CPU time for plain we
Memory requirement ratios are approximately 1:250 for the fibrous unit cell and 1:
for the plain weave in favor of the 2/n-point scheme (or 2-point scheme).
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7.0  Appendixes

A.0  Derivation of  in (96)

Consider equation (93):

(205)

Taking the derivative of (205) with respect to  yields:

(206)

where the last term can be written as

∂ σij
m( ) αi j

m( )–( ) ∂∆λ m( )⁄

σij
m( ) αij

m( )– I ijkl ∆λ m( )℘i jkl+( ) 1– σkl
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tr α̂kl
m( )t
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∆λ m( )

∂
∂∆λ m( )
----------------- σi j

m( ) αij
m( )–( ) I ijkl ∆λ m( )℘i jkl+( ) 1–=

℘klmn σmn
m( ) αmn

m( )–( )– ∂
∂∆λ m( )
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m( )
tr α̂kl

m( )t
–( )+ 
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(207)

and

(208)

The rotation  of phase  is defined in (77) as

(209)

The derivative of  is calculated using the chain rule:

(210)

in which

(211)

Consequently, equation (208) can be expressed as

(212)

Similarly, we have

(213)

Taking derivative of (89) with respect to  yields:

(214)
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Substituting equations (212), (213) and (214) into (207), and then inserting the resu
(206), gives

(215)

where

(216)

(217)

B.0  Consistent Linearization of  and 

We derive the equations for  and  consistent with the midpoint integration of

of deformation and rotation. The left superscript  is omitted.

Taking the material time derivative of (72) yields:

(218)

The material time derivative of the first term in the parenthesis of (218) can be writte

(219)

where

(220)

Consequently, (219) can be expressed as

(221)

where

(222)

∂
∂∆λ m( )
----------------- σij

m( ) αi j
m( )–( ) Cijkl

m( ) σkl
m( ) αkl

m( )–( )=

Cijkl
m( ) I ijmn ∆λ m( )Wijmn

m( )+( ) 1– Wmnkl
m( )–=

Wmnkl
m( ) ℘mnkl Umnst

m( )
σ Umnst

m( )
α–( )D̂stpq

mm( )Ppqkl–=

∆ε i j ∆ω ij

∆ε·i j ∆ω· ij

t ∆t+

td
d ∆εij

1
2
--- d

dt
-----

∂∆ui
0

∂ x
t ∆t 2⁄+

j

----------------------
∂∆uj

0

∂ x
t ∆t 2⁄+

i

----------------------+
 
 
 

=

td
d ∂∆ui

0

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂vi

0

∂ x
t

k

---------
∂ x

t
k

∂ x
t ∆t 2⁄+

j

----------------------
∂∆ui

0

∂ x
t

k

-------------
td

d ∂ x
t

k

∂ x
t ∆t 2⁄+

j

----------------------
 
 
 

+=

td
d ∂ x

t
k

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂ x

t
k

∂ x
t ∆ t 2⁄+

m

------------------------
td

d ∂ x
t ∆t 2⁄+

m

∂ x
t

n

------------------------
 
 
  ∂ x

t
n

∂ x
t ∆t 2⁄+

j

----------------------–=

td
d ∂∆ui

0

∂ x
t ∆t 2⁄+

j

----------------------
 
 
  ∂vi

0

∂ x
t ∆t 2⁄+

j

----------------------
∂∆ui

0

∂ x
t ∆t 2⁄+

m

------------------------
td

d ∂ x
t ∆ t 2⁄+

m

∂ x
t

n

------------------------
 
 
  ∂ x

t
n

∂ x
t ∆ t 2⁄+

j

----------------------–=

td
d ∂ x

t ∆t 2⁄+
m

∂ x
t

n

------------------------
 
 
  ∂

∂ x
t

n

---------
td

d x
t ∆t 2⁄+

m 
  ∂

∂ x
t

n

---------
td

d xm x
t

m+

2
-------------------

 
 
 

 
 
  1

2
---

∂vm
0

∂ x
t

n

---------= = =
39



 the 
Substituting (222) into (221) gives

(223)

Equation (223) can be further simplified as

(224)

where the following equality has been utilized.

(225)

Defining  as

(226)

We have
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Substituting (227) into (218) and preforming the same procedure for , we obtain

final expressions for  and  as
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Figure 1: Finite element mesh for the nozzle flap problem

Figure 2: Finite element mesh for the fibrous unit cell
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Figure 3: Macroscopic and microscopic structures

Figure 4: Decomposition of deformation in the microstructure

Figure 5: Adaptive model construction
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Figure 6: Deformation of unit cell under transverse tension

Figure 7: Deformation of unit cell under transverse shear
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ûε∆ ∆ω+( )y td∫

u1

+ =
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Figure 8: Deformation of unit cell under longitudinal shear

Figure 9: Finite element mesh for the 3D beam problem
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Figure 10: Distribution of the normalized local error with the 2-point model

Figure 11: Effective stress and normalized error at point A with the 2-point model
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Figure 12: Distribution of the normalized local error with the 2/n-point model

Figure 13: Effective stress and normalized error at point B with the 2/n-point model
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Figure 14: Geometric model and FE mesh of the plain weave unit cell

(a) Geometric model (b) Finite element mesh
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Figure 15: Nozzle flap problem / plain weave RVE: distribution of the normalized 
local error in the macrostructure as obtained with the 2-point model 
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Figure 16: Effective stress and normalized error for fibrous unit cell as obtained with 
the 2-point model

Figure 17: Effective stress and normalized error for plain weave unit cell as obtained
with the 2-point model
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