
> restart; with(linalg):diff(arctan(theta),theta);
Warning, the protected names norm and trace have been
redefined and unprotected

1

 + 1 θ2

First define all of your constant and spanwise varying dimensions
and calculate things like S, AR, and qinf. DON'T FORGET TO
CHANGE THIS
> c_of_y:=zz-zzy*y/(b/2);

 := c_of_y − zz
2 zzy y

b
Convert the y (spanwise) variation to theta variation by substituting
the map
> c:=subs(y=-b/2*cos(theta),c_of_y);

 = c − zz zzy ()cos θ
I unassign it now so that I don't use this example value (when you
put a real one in you will want to remove this unassign statement).
> unassign('c');
Decide how many terms to use and create your series expansion of
the various alpha terms (I call this the theta_eq since it is valid for
all theta).
> nterms:=2;

 := nterms 2
> theta_eq:=2*b/(Pi*c)*sum('A[2*n-1]*sin((2*n
-1)*theta)','n'=1..nterms)+alpha_lzero+1/si
n(theta)*sum('(2*n-1)*A[2*n-1]*sin((2*n-1)*

theta)','n'=1..nterms)=alpha;

theta_eq 2

b
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∑

 = n 1

nterms

A − 2 n 1 ()sin () − 2 n 1 θ

π c
alpha_lzero + :=

∑
 = n 1

nterms

() − 2 n 1 A − 2 n 1 ()sin () − 2 n 1 θ

()sin θ
 + α =

Please note that c,alpha_lzero, and alpha could be functions of theta
but, since I have not given them above, they don't appear to be here
or even in the next step when we plug in angles.
 Since we took 2 terms we need to evaluate the equation at two
locations to get 2 equations.
> eq1:=evalf(subs(theta=given_angle1,theta_eq
));
eq2:=evalf(subs(theta=given_angle2,theta_eq
));

eq1 :=

0.6366197722

b
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟∑
 = n 1

nterms

A − 2 n 1 ()sin () − 2 n 1 given_angle1

c
alpha_lzero +

∑
 = n 1

nterms

() − 2 n 1 A − 2 n 1 ()sin () − 2 n 1 given_angle1

()sin given_angle1
 + α =

eq2 :=

0.6366197722

b
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟∑

 = n 1

nterms

A − 2 n 1 ()sin () − 2 n 1 given_angle2

c
alpha_lzero +

∑
 = n 1

nterms

() − 2 n 1 A − 2 n 1 ()sin () − 2 n 1 given_angle2

()sin given_angle2
 + α =

solve the equations and then calculate the required aerodynamic
quantities
> soln:=solve({eq1,eq2},{A[1],A[3]}):
assign(soln):

Error, (in assign) invalid arguments

 The assign statement will allow you to use the A[n] values to calculate the requested
aerodynamic quantities but I leave you to learn that. The above process can easily be
repeated for as many terms as you like by cutting and pasting from nterms to here below
and modifying as I will do in class.
> unassign('A[1]','A[3]');

