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Error estimation and mesh optimisation
using error in constitutive relation
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Abstract - This paper presents a complete
methodology to control the quality of
electromagnetic field computation using the finite

element method. An error estimate is built up using
the error in constitutive relation. Proof is made
that this estimate bounds up the exact error in some
cases. Both problems of control of quallty and mesh
optimisation are then discussed.

INTRODUCTION

The use of finite elements is now generalised in
electromagnetic field computations. Now that efficient
methods to solve ficld problems are available, it has become
important to estimate the quality of a finite element solution
and to control accuracy and computational costs. This
problem is the one of error estimation.

Error estimation is based on the construction of an
estimate which is a measure of the discretisation error. The
construction of most of the error estimates is heuristic and
gives only qualitative results [1-3]. The purpose of this paper
is to present an estimate based on the error in constitutive
relation which has the remarkable property to provide in
certain cases an upper bound of the exact error (the word

"exact" will be discussed). H-refinement technique [4] is used
here to build up optimal meshes.

I. ERROR IN CONSTITUTIVE RELATION .

In the framework of electromagnetic problems, using a
magnetic vector potential, the constitutive law is written
B(A)-pH =0 where B is the magnetic flux density, A the
magnetic vector potential as an unknown, H the magnetic
field and p the tensor of magneue permeability (generally
nonlinear).

‘When using a standard primal formulation, Ampere’s law
is only weakly satisfied [6]. Let assume now that a magnetic
field H' which verifies exactly curlH'=J can be found a
posteriori (J is the current density), then the couple (B,H")
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would be the exact solution of the problem only if
B-uH'=0 everywhere in the domain Q. Otherwise, (B,H")
is an approximation of the solution and the quantity
e=B-puH' is a measure of the error in constitutive relation
[4-5,7-8].

The global absolute error is defined as follow:

= [(B-pH) Tp™!(B-pH' )42
Q )
=[B-pE |0
With the global absolute error e is associated a global

relative error € and with each element E is associated an
elementary error e as follows :
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When using the error in constitutive relation, the exact
error is in some cases an upper bound of the estimated error,
ie.
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where the couple (Bgx ,Hex ) is the exact solution of the
problem. Starting from the identity

B-uH =B-B,, +p(H
and using (4) in (1), it comes:
e =[B-B [0 +[He - H [0
+2[(B-Be)" (He - H)a0
0
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The orthogonality of the two affine subspaces containing B
and H' respectively makes the third term of (5) vanish. Indeed,
the integration by part of this third term gives:
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This is only true if the Ampere law is satisfied exactly and if
eddy currents are not taken into account (i.e. the current is
known everywhere). In this case, the error in constitutive
relation is an upper bound of the exact etror.

Note that this method can also be applied to eddy current
problems, then the estimate is no more an upper bound of the
exact error. However, energy bounds cannot be established for
eddy current formulations [6].

II. CONSTRUCTION OF THE DUAL FIELD

A'field H' can be built up only with local calculations if
one uses the results of the primal formulation.

A. Calculation of projections Pij
Let us consider the neighborhood of a node i (whose the

associated nodal shape function is ®;) composed of the
elements adjacent to this node [E;, j=1 to NJ (Fig. 1).

Fig. 1. The local problem defined by elements adjacent to node i.

Let us write the primal formulation for each element Ej:

jm Hdl- ijdl
riJ+l ) r1]

P,_|+1

1 . _ , @
=== fu curl A curl @;dE + IJmidE
E; E;
Note that boundary contributions are considered in each finite
element wherein the magnetic field H' is a new unknown
which is therefore not defined by p-lcurlA.
- The shape function associated with the node { vanishes on
the boundary I'y. (dashed edges). The calcu]atmn of the
projections P leads to the local problem:

Py -P1=Y(A)

-P 3 =Y;(A) ®

P -P n=Yn(A)

System (8), where the Y are the right hand side of (7), is
obviously underdetermined: the sum of the left hand sides of
(8) is equal to zero, as well as the sum of the right hand sides,
because the sum of these equations corresponds to the finite
element equation associated with node i and it has been solved

in the primal problem. The system becomes fully determined
by replacing one equation of (8) by:

1A -1 curl A
Zl’lk—iJ (u cur )k+12+(u cur] )Ek a o
k=1

ik

In (9), the difference between H' and plcurlA is
minimised with the least square criterion. 'The choice of (9)
is arbitrary but it is easy to see that it makes the system
regular.

B. Construction of H' knowing the projections P

Let us consider the example of the first order triangle
shown in Fig. 2.

Fig. 2. First order triangle.
~ The local magnetic field Hy can be written as
CHp= ) (bigSia+hjesia) (10)
a=(A,B,C) ‘

where 1 and j are the extremity nodes of the edge'a, by, is a
scalar value for the connector associated with the node i of the
edge o and the vector interpolating functions are consirtcted
as follows : ‘

SiA =@ gradcoj
Sja = 0; grad @; an
Sy = (Dk gradmi

Itis easy to see that each s, , is equal to zero on each edge

that does not contain the node p and is orthogonal to .cach

edge other than Q. For the edge A, the connectors h; 4 and g
’A can be found by solving:

-1
h. ISIAG) dl - JSJACD dl P .
( "A]— ( ",A) (12)

hj,A ISIACOJ(H ISJAdel Pj,A
and the same procedure is applied to the other edges'B and C.

1. MESH OPTIMISATION

The opumal mesh M* (with N* elements and a global
relative error €7) is built up by calculating a reduction size



coefficient ry for each element E of size hy, of the initial mesh
M (rg = h*g/hy where h*; is the optimal size of element E).
The optimisation can be relative to either the minimization of
N* while keeping £*<g, or the minimisation of ¢* while
keeping N"<N.

The efficiency 0 of the estimate is defined as the ratio of
the computed error € to the exact error €,,. This coefficient is
always higher than 1 when using the error in constitutive
relation and when no eddy currents are present.

III. NUMERICAL EXAMPLES

Two examples are considered. Geometries are discretised
with first order triangular elements.

Example 1

Let us consider the problem of two concentric rings
R<ryr;> and R'<ryry> (r)<rp<ry) made of a magnetic
material of permeability g and for which an analytical
solution is known (Fig. 3). Neuman boundary conditions are
imposed on r=r; and r=r3. Current sources are distributed
in the ring R* with the density J = j_, sin (2a) e,

Fig. 3. Field lines, magnetic flux density and optimised mesh for €9 = 3%.

Tables 1 and 2 present the results for two optimised
meshes starting from a uniform initial mesh. In the first case,
the objective was a 3% error (Fig. 3).

For the second case, the constraint is no more relative to
the error € but to the number of elements of the optimised
mesh which was wished to be about 1890.

N tex (%) | €(%) )
Tmitial mesh 356 197 7.9 144
optimised mesh 1890 218 2.99 137

Table 1. Results of the optimisation procedure for eg = 3%.

N Eex (%) (%) 8
initial mesh 486 4.92 7.09 1.44
optimised mesh 2108 2.00 3.01 1.49

Table 2. Results of the optimisation procedure for Ng = 1890.
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Example 2

The problem of a T-shaped magnetic conductor is
considered. Fig. 4 shows eddy currents iso-lines produced by
an exterior sinusoidal excitation (only the solid conductor is
shown). The meshes associated with Fig. 4 are also shown in
Fig. 4

Fig. 4. From left to right : current lines for optimal mesh
and for initial mesh, optimal and initial meshes.

The computed error varies from 25% for the initial mesh
to 7% for the optimal mesh. Note that the. value of the error
does not constitute an upper bound of the exact error in this
case, because of the presence of eddy currents.

* CONCLUSIONS

An error estimate in constitutive relation has been applied
successfully to electromagnetic field computation. The
developed technique is actually valid for a wide range of
problems. Its generalization to the computation of the error in
transient and 3-D problems is the subject of further
researches.

REFERENCES

[11 N.A. Golias, T.D. Tsiboukis, “A-Posteriori adaptive mesh refinement in
the finite element eddy current computation”, The International Journal
Jor Computation and Mathematics in Electrical and Electronic
Engineering, COMPEL, Vol. 11, No 1, pp. 249-252, 1991.

[2] O.C. Zienkiewicz, J.Z. Zhu, “A simple error estimate and adaptive
procedure for practical engineering analysis”, Infernational Journal for
Numerical Methods in Engineering, Vol. 24, pp. 337-357, 1987.

[3] O.C. Zienkiewicz, J.Z. Zhu, “The superconvergent patch recovery and
a posteriori error estimates: part I - The recovery technique”,
Intemational Journal for Numerical Methods in Engineering, Vol. 33,

. 1331-1364, 1992.

[41 g?Coorevits, Maillage adaptatif anisotrope: application aux problemes

de dynamique, PhD thesis, Ecole Normale Supérieure de Cachan,
France, 1993.

[5] P. Ladveze, J.-P. Pelle, P. Rougeot,. “Error estimation and mesh
optimisation for classical finite elements”, Engineering Computations,
Vol. 8, Pineridge Press, pp. 69-80, 1990.

[6] Chengjun LI, Modélisation tridimensionnelle des  systémes
électromagnétiques & l'aide de formulations duales/complémentaires.
Application au maillage auto-adaptatif, PhD Thesis, Université de Paris-
Sud, France, 1993. '

[7] P. Rougeot, Sur le contrdle de la qualité des maillages éléments finis,
PhD thesis, University Paris 6, France, 1989.

[8] J.-P. Pelle, “Contr8le des Paramétres des Calculs Eléments Finis:
Application au 3D et au Non-Linéaire”, Journée d'étude CSMA, Paris,
1994,



