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SUMMARY

In this paper, we present a new point of view for efficiently managing general mesh representations.
After reviewing some mesh representation basics, we introduce the new Algorithm Oriented Mesh
Database (AOMD). Some hypothesis are taken in order to be able to manage any set of adjacencies.
Then, we present the design of the AOMD in terms of classes and algorithms. The Standard Template
Library (STL) is used for managing the AOMD. Finally, we present some results and discuss technical
choices that were made in the AOMD design and implementation. AOMD is available as open source

at http://www.scorec.rpi.edu/AOMD.
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1. INTRODUCTION

A mesh M is a geometrical discretization of a domain Q that consist in
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e A collection of mesh entities M? of controlled size and distribution;

e Topological relationships or adjacencies forming the graph of the mesh.

Maintaining a complete graph that would consists in all possible relations between all adjacent
mesh entities is, of course, not acceptable in both terms of storage and algorithmic complexity.
Some ad hoc data structures have been developed that only maintain specific sets of adjacencies
that are able to fulfill the needs of specific algorithms: mesh generation [1-3], mesh refinement,
[4-7] or solution process [8]. In modern adaptive simulation frameworks, mesh generation,
partial differential equation solving, even post processing are to be inter-operable components
[9]. In such a modern context, a mesh management component should be able to deal with
algorithms that have different needs in terms of adjacencies. One way to achieve this goal is
to use a so called “complete” set of adjacencies i.e. a mesh representation where every mesh
entity can retrieve efficiently every possible set of adjacencies without having to do a global
traversal of the graph of the mesh. Reference [10] proposed three complete representations
and analyzed them in terms of both memory and efficiency. In this paper, we propose a new
approach called an Algorithm Oriented Mesh Database (AOMD) [11,12]. Contrary to [10], the
AOMD uses a dynamic mesh representation: the AOMD is able to shape itself to the needs of

an algorithm by building an optimum representation and modifying it efficiently when needed.

In section §2, we discuss general issues of mesh representation: mesh entities, downward
and upward adjacencies, high order accesses, association with geometric entities and complete
representations. We then recall the one level, circular and reduced interior representations
presented in [10] and we show how these compare with some ad hoc ones in terms of storage
or/and efficiency.
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In §3, we define basic hypothesis for building AOMD. Mesh entities are described using one
set of ordered downward entities. Because AOMD can modify a representation by adding new
mesh entities, we must be able to add, delete and ensure uniqueness of mesh entities present
in the data structure. For that, we need to be able to compare mesh entities independently
of their representation. We chose then a comparison operator for AOMD and explain how to

apply it for efficiently supporting the needed operations.

In §4, we describe some software design aspects of AOMD. AOMD is written in C++. In
recent years, Standard C++ has added significant new features to the language. One of the
most important is the Standard Template Library (STL) [13]. The STL demonstrates that
C++ can be used very efficiently for generic programming techniques [14]. In a mesh database,
we need to build data structures for mesh entities and we need some kind of containers for
storing and accessing them. In [15,16], authors describe practical implementations of classical
containers like lists, binary trees or hash tables. The STL has all those data structures already
included. We can use STL containers, algorithms and iterators in an efficient way with the data
(i.e. mesh entities) in AOMD. AOMD uses Object Oriented Programming (OOP) for building
a hierarchy of classes for mesh entities, M¢, and uses the generic paradigm for building STL-like

efficient algorithms and iterators.

In §5, we present results of the use of AOMD. We show methods to support periodic
boundaries, curved meshes and adaptivity.
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2. BASICS OF MESH REPRESENTATION

2.1. Nomenclature

G the geometric model

M the mesh model

T/H tetrahedral /hexahedral mesh

Qv domain associated with the model V, V=G, M

% the ith entity of dimension d in a model V

{v} unordered group of topological entities of dimension d in a model V

[V ordered group of topological entities of dimension d in a model V

#{V4} set of mesh entities of dimension d that are adjacent or contained in a model V.

¢ may be a single entity, a group of entities or a complete model.
Vi{ve} the unordered group of topological entities of dimension
q that are adjacent to the entity V¢ of model V
Vi{va}, the jth member of the adjacency list V¢{V4}
dimV¢{V?} the number of elements in the adjacency list V¢{V¢}
C classification symbol used to indicate the association of one or more mesh

entities from the mesh model, M with an entity of the geometric model G.

2.2. Geometry-based analysis

The goal of an analysis is to solve a set of partial differential equations over a geometrical
domain G. The most common way to describe G is to use a boundary-based scheme where the
geometric domain is represented as a set of topological types together with adjacencies [17-20].
When the geometric domain G is a manifold, its representation is very simple: in a d-manifold
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V, a (d — 1)-dimensional entity V;?l_l bounds a maximum of two d-dimensional entities. In
other cases, the geometric model is not manifold because it’s impossible to find a mapping
from neighbor points to V?_l to R?. See, for example, the top image of Figure 1, where
the neighborhood of a point, p, on an edge that bounds 3 faces cannot be uniquely isolated

by a two-dimensional disk. In fact, it often happens that geometrical models used in the

X' is not a Manifold,
neighboring of p is not
like R2

X is a Manifold,

the neighboring of all points is
like R2.

X is not simply connected

Figure 1. A geometrical object X is a d-manifold when it can be mapped (or transformed) continuously

into an open set of R% [21]. This simply means that X is locally like R%. The dimension d of a manifold

is a well defined quantity. X is a 2-manifold: all its point have a neighborhood that is like ®2. X' is

not a 2-manifold: points like p have a neighborhood that is not like 2. Note that in terms of topology,
X is not simply connected.

real engineering world are not manifolds. There exists some non-manifold representation of
geometric models [17,20] for representing the classes of relations between the boundary entities.
Reference [17] does this by the introduction of use structures for the lowest four topological
entities of the solid model topological entity hierarchy of region—shell-loop—face—edge—vertex
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(see upper box of Figure 2).

Geometric model G

| Region H Shell Iel FaceUse Iel LoopUseIelEdgeUse |e|VertexUse |
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Mesh Model M C
__________
w ] [w | w ]
Y- --—---=- -7 A A

Figure 2. Geometric model G and Mesh model M. We use a version of the radial-edge data structure [17]
for G where the topological adjacencies are implemented and interfaced with kernels of solid modelers
(ACIS, CATIA, PARASOLID, ProE). Mesh model entities M? are classified on model entities.

The mesh M is a discrete version of the domain. It consists of a set of mesh entities M¢
together with adjacencies. There are more mesh entities M¢ than entities of the geometric
model G¢. On the other hand, the mesh entities that are employed have limited topological
complexity. Mesh entities are topologically equivalent to the unit d-dimensional sphere §¢ =
{z € R%;||z|l, < 1}: they are made of one part, they are simply connected (a manifold is
said to be simply connected if every closed curve can be smoothly shrunk to a point) and
they have no holes. With such simplifications, mesh entities are of 4 distinct topological kinds:
vertices M{M?} are the 0-dimensional topological entities, edges M{M}} are the 1-dimensional
topological entities, faces M{M?} are 2-dimensional topological entities and regions M{M3}
are the 3-dimensional topological entities. Adjacencies in a mesh are described by 4 distinct
topological types while the geometrical model needs 6.
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Any mesh entity M? is a piece of the discretization of a geometric entity G;I-, d < q. We
call this association a classification of a mesh entity to a geometrical entity and we note it
as M¢ C G [10,22,23]. Simulation attributes like boundary conditions or material properties
are naturally related to model entities and not to mesh entities. In mesh generation and mesh
enrichment procedures, the classification information is critical for ensuring that the mesh
is constructed so that it improves the geometric approximation of the domain when it is is
refined. It is therefore necessary to maintain the classification of mesh entities through all our

algorithms.

2.3. Mesh adjacencies

A mesh M is composed of a collection of mesh entities together with their adjacencies. Any
mesh entity bounds and/or is bounded by other ones of higher and/or lower dimension. This
adjacency information represents the graph of a mesh. For any mesh entity M?, we distinguish

two kind of adjacencies:

e Upward adjacencies M¢ {M?} when q > d;

e Downward adjacencies M¢ [M?] when ¢ < d.

In 3-D, each mesh entity M¢ has potentially 3 sets of adjacencies: d downward adjacencies
and 3 — d upward adjacencies. All these adjacency sets do not need to be present in a given
mesh representation. Moreover, some entities may simply not be present in a representation:
“interior” edges or faces are not relevant in many situations.

In order to define the mesh representation, we introduce the following simple formalism. We
define 7 a 4 x 4 matrix that we will call the incidence matriz of the mesh. Diagonal element
Z;,; of T is equal to 1 if mesh entities of dimension j are present in the representation and is
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equal to 0 if not. Element Z; ; of 7 is equal to 1 if the adjacencies from entities of dimension ¢

to entities of dimension j are present. Note that setting an Z; ; = 1 is only meaningful when

Ii,,' =1 and I]'J' =1.

It is interesting at this point to gather some statistics about the average number of

adjacencies per entity that occurs in usual three dimensional tetrahedral and hexahedral

meshes. With these statistics, we will be able to compute the cost of a given representation

i.e. its size in the memory of a computer. Let us call N¢(M) the number of mesh entities of

dimension d in a mesh M. Vertices are the entity which is the less numerous in meshes. For

that reason, we will use the number of vertices N°(M) as the unit for evaluating the storage

size C(Z,M) of a given representation Z on a given mesh M. The average number of mesh

entities in tetrahedral and hexahedral meshes are presented in Table I.

Tetrahedral Mesh T

Hexahedral Mesh H

N3(T) =6N°(T)
N2(T) = 12N%(T)
N'(T)=7N°(T)

N3(H) = N°(H)
N?(H) = 3N°(H)
N'(H) =3N°(H)

Table I. Relation between number of entities in a mesh.

A second interesting set of statistics concerns the average number of mesh entities of

dimension d adjacent to a mesh entity of dimension g. We call this N¢(M?). These statistics

are represented in Table II.

Tetrahedral Mesh T Hexahedral Mesh H

d 3 2 1 0 d 3 2 1 0
N3 (MY 1 2 5 23 NIM® 1 2 4 38
NEMY) 4 1 5 35 NiM%) 6 1 4 12
N'(MY) 6 3 1 14 NiMY 12 4 1 6
N(MY) 4 3 2 1 N¢M®) 8 4 2 1

Table II. Average number of adjacencies per entity
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We read these tables as follow: most of the tetrahedron meshes will contain, when they are
sufficiently big, 6 times more tetrahedron than vertices. Every edge is connected, in average, to
5 tetrahedron. If we want to store all edge-to-tetrahedron adjacencies, we will need (6x5) N°(T)

pointers. Numbers in Table I and II were presented in Reference [10].

More generally, if we consider that each adjacency has a unit storage, the total storage cost

for a given representation can be computed as follow:

4 4

C(T,M) =) NUM)Z, N (M) (1)

d=0 q=0

A mesh representation is said to be complete if any adjacencies can be retrieved for any
mesh entity without a global traversal of the mesh. In the other case, the representations
are termed incomplete. In a complete representation, any adjacency requires a number of
operations that does not depend on the size of the mesh. In an incomplete representation,
getting some adjacencies will require a complete traversal of the mesh containers (referred to
as linear behavior). It is evident that we cannot afford this traversal each time we ask for an
adjacency. Complete representations are then the only acceptable mesh representations if we

are to work with a single Z for all the mesh related algorithms.

We will say that a mesh entity M¢ has a direct access to its adjacencies of dimension g,
MZ{M¢?}, if 7, , = 1. Indirect access to a set of adjacencies occurs when it is possible to use
other sets of adjacencies to reach our goal. For example, if our goal is to know the edges of
a given region M3[M!], if 73, = 1 and Z»1 = 1, we can get the set of edges of the region
by taking the union of the edges in M3[M'] of each of the 4 faces M3 that bounds region
M? and maintaining an appropriate ordering. There is a computational overhead in getting
indirect adjacencies. We say that we have a second order access when we have to use one
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set of intermediary adjacency for getting the information, and a third order access when two

intermediary steps are needed.

Let us now describe storage and CPU costs of different usual mesh representations. We
first consider a mesh representation that contains the whole set of adjacencies i.e. when the

incidence matrix is

1111
1111
I = (2)
1111
1111

would require storage C(Z;, T) = 388N° or C(Zy,H) = 120N? . This representation is the only
one which allows access to all sets of adjacencies as direct adjacencies relations. If we consider
that the size of an adjacency is the size of a pointer i.e. 4 bytes, a whole tetrahedron mesh
of 100, 000 vertices would require 155.2 Megabytes (Mb) of storage while a whole hexahedron

mesh of the same number of vertices would require 48 Mb.

Specific algorithms can have a preferred representation that fit exactly its adjacency
information needs. If we consider classical fixed order, fixed mesh, Lagrangian finite elements,
they only require element-node connectivity which gives the incidence matrix Z; of Table III.
Storage requirements drop to C(Zz, T) = 31NV, i.e., for the same mesh with N° = 100, 000,
12.4 Mb. Of course, representation Z, cannot fill the needs of every single algorithm that mesh
users usually deal with but it is still a very popular mesh representation in the finite element
community. Hierarchical finite elements can take advantage of all downward entity sets to
be able to define degrees of freedom over a variable order C° mesh [24]. In this case, the
incidence matrix is Z3 in Table III. We have C(Z3, T) = 232N° or 92.8 Mb for N° = 100, 000.
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100 0 10 0 0 1 00 0
10000 |1 100 , |1 10 0
=1lgo0o0o0| BB=|1110| B=|0o11 0

1 001 111 1 00 1 1
C(Z»,T) = 31N° C(Zs, T) = 232N° C(Z5, T) = 100N°
C(Z2,H) = 10N° C(Zs,H) = 64N° C(Z5,H) = 32N°

1100 10 0 1 101 0
1100 |0 o000 _10 000
=19 000| B=|loooo| |10 1 0

01 0 1 1 00 1 0 0 1 1
C(Zs, T) = 103N° C(Zs, T) = 64N° C(Zs, T) = 164N°
C(Zs,H) = 24N° C(Zs,H) = 18N° C(Zs,H) = 35N°

Table III. Some classical mesh adjacencies requirements: Z, for Lagrangian finite elements, Z5 and 73
for Hierarchical finite elements, Z4 for Finite Volumes or Discontinuous Galerkin solvers, Zs for mesh
smoothing and Zg for edge swapping.

If we decide to deal with second and third order access to adjacencies, we can reduce Z3 to
a lighter representation Z} of Table III with C'(Z5,T) = 100N° or 40 Mb for N° = 100, 000.
Discontinuous Galerkin and/or finite volumes only use regions and faces for the calculation,
the incidence matrix for such method is Z; in Table III. We have that C(Z;, T) = 103N° or

40.12 Mb for N° = 100, 000.

Vertex repositioning can be implemented using different strategies. A simple Laplacian
smoothing will reposition a vertex at the centroid of the cavity formed by its surrounding
regions. In Table ITI, we have a suitable representation 75 associated to a Laplacian Smoothing
with a storage cost C(Zs,T) = 64N° or 25.6 Mb for N° = 100,000. A common mesh
modification algorithm is the edge swapping where edges have to be able to access regions
upward adjacencies. Incidence matrix is then Zg with C(Z5, T) = 164N° or 65.6 Mb for
N° =100, 000.

Algorithms have obviously very different needs in terms of mesh representation and storage.
There are two ways for a mesh data structure to deal with all those algorithms. One first
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choice would be to use a complete representation. The second way to deal with general mesh
representation is to have a mesh data structure that is able to fit to the needs of any algorithm

dynamically. AOMD takes the second approach.

2.4. Complete representations

Reference [10] presents two complete representations. In the one-level complete representation
To1, each entity M;-i is connected to entities of dimension d — 1 and d + 1. This leads to the
incidence matrix Z,; presented in Table IV. The second one, the circular representation Z;,

is also presented in Table IV.

110 0 10 0 1
1110 1100
La=|9g 1 1 1| Zire=|9p 1 1 0
00 1 1 00 1 1

C(Ioh T) = 163N0 C(Icirc, T) = 123N0
C(Zo1, H) = 56N° C(Zeire,H) = 33N°

Table IV. Some complete representations.

Ad hoc representations like ones listed in Figure III are usually designed in order to avoid
second and third order access to adjacencies that would be required to construct specific
adjacencies, that may be heavily used in an algorithm, from complete representations like
the one-level or circular. To understand the desirability of avoiding these second and third
order adjacencies, a third set of statistics is introduced at this point. If we consider that
the direct access to an adjacency has a unit computational cost, we can evaluate the over
cost of second and third order accesses by counting how much time we have to access an
intermediary adjacency in order to retrieve the information. For example, if we consider the
circular representation, it is possible to know the set of vertices of a tetrahedron M3. For that,
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we must first ask the 4 faces of the tetrahedron, for each face, ask its edges and for each edge,
ask its vertices. The total computational cost is then 4 x 3 x 2 = 24 which is 6 times more
than the direct access. Note that we have not counted the time for making the list of vertices
unique here. The design of our AOMD can make that operation efficient. These results are

listed in Table V for the two previous complete representations. Complete representations have

11 2 6 1 69 92 1
RE 111 368 26
OZa, =3 1 1 1| O9ZireT)=|3 1 "1 197
6 2 1 1 6 2 1 1

Table V. Computational overhead due to second and third order adjacencies. O(Z, M);; is the ratio
between the number of accesses needed for retrieving Mj, {MJ } using representation Z and the number
of accesses using a direct access i.e. N*(MY).

storage requirements that are larger than ad hoc representations of Table III. Table V show
that complete mesh representations may also lead to non neglectible computational overheads,

even for such a common adjacency query like getting vertices of a region.

2.5. Minimum information: a functionaly complete representation

An important question is what is the minimum amount of data we need to be able to build
up all entities with their full set of adjacencies and classification. All vertices are to be present
in all representations (Zg o = 1). A sufficient minimum of data is that any mesh entity equally
classified has to be present in the representation. It means that all entities M¢ for which we
have M¢ C G? are to be present and classified if we want the ability to properly construct a
representation with any 7Z; ; = 1, 4,5 = 0,1, 2,3 for general non-manifold geometric domain.
Note that all vertices are to be present in the representation but only ones that are classified
on model vertices need to be classified. With the minimum of information we have defined, all
the other ones may be classified using the following algorithm:

Int. J. Numer. Meth. Engng 20; :—

Prepared using nmeauth.cls



14

e Take all classified edges M} C G; and classify their unclassified vertices to G};

e Do the same for classified faces and regions and all vertices will be classified.

Figure 3. Minimum representation: all vertices (a), all edges classified on model edges (b), all faces
classified on model faces (c) and all regions (d).

The algorithm for building up all entities is straightforward. For a 3 — D mesh,

e Take all regions M? C G?, create faces M?[M?] using regions and classify all new faces
to G3;

o Then, take all faces M} C G4, create faces edges M7[M'] using faces and classify new
edges to G¥;

o Finally, take all regions M7 C G%, create region edges MZ[M'] using regions and classify
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new edges to G3.

If the minimum information is not available, it is possible to recover classification information
using geometrical criteria. However, these geometric operations require comparisons that can
provide non-unique answers, especially if the underlying geometric model is non-manifold.
Therefore, there is always a risk of obtaining incorrect classifications when using such checks.

Our goal is to avoid this problem and only use topological information.

Figure 3 gives a graphical depiction of the minimum information. Figure 3a shows the model
edges, G!, and the mesh vertices M°. Figure 3b shows the mesh edges, M! classified on model
edges, Figure 3c shows the mesh faces, M! classified on model faces and Figure 3d shows the

mesh regions.

It is possible to construct a functionally complete representation by storing appropriate
adjacencies with the entities of the minimal set of information. The term functionally complete
is introduced since interior entities M¢ G;’-, 0 < d < q are not present, but can be uniquely
determined and operated on within the algorithms by keying them from higher order entities.
The reduced interior representation of Reference [10] is an example of a functionally complete
representation that maintains slightly more than the minimum set (the M} C G? are also

maintained in that representation).

3. MESH REPRESENTATION IN AOMD

The aim of the AOMD is to support the specific set of adjacencies, complete or not, needed
by each application. For that aim, we need to be able to start from the minimum mesh
representation (see §2.5 above) and generate specific adjacencies for the current application.
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This implies that we want to be able to create mesh entities “from scratch”, to add some

non-existant adjacencies lists to any mesh entity or to delete unneeded ones.

3.1. Mesh Entity Description

Any mesh entity has to be described by an ordered set of mesh entities of lower dimension,
M¢[M*] with k < d. Regions may be defined by either faces, edges or vertices, faces by edges
or vertices, and edges by vertices. The vertex is then the atomistic, self consistent entity. To
be able to differentiate vertices, we do not use coordinates because a mesh is considered here
as a purely topological object. We attribute an unique iD to each vertex for differentiating
them. We denote id(M?) the function that takes a vertex as a parameter and that returns its

iD.

3.2. Mesh Entities Comparison

Hypothesis 3.1 says that entities are to be represented using at least one set of entities of
lower dimensions. We use this hypothesis to build up an equal operator for mesh entities
that will remain valid in any mesh entity representation. This operator is critical to perform
queries in a data structure. For vertices, we have already dealt with this issue: two vertices
M? and MY are equal if id(M?) = id(M9). The second hypothesis is that two entities that
have the same vertices are equal. Because mesh entities are always defined using lower order
entities, it is always possible to obtain their representation in terms of vertices. For example,
if a region is defined using its faces, faces are defined using either vertices or edges. If the
faces are defined using edges, these edges are always defined using vertices so that we can
always access vertices from any representation. The current equal operator has an additional
restriction relative to the more flexible possibility of [10]. Figure 4 shows the case of a circle
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My

Figure 4. Pathological case of two mesh edges for the discretization of a periodic model edge (circle)

meshed using two curved edges M§ and Mi that should be topologically distinct but, in our
hypothesis, are equal because they are bounded by the same vertices. If we restrict ourselves
to meshes that enforce having at least three mesh edges for any closed curve and for any loop,
our hypothesis is valid. We can have the same similar issue at face level, two faces could share
same edges (imagine a sphere bounded by only two mesh faces). Note that this equal operator
has the very important advantage that two mesh entities can alway be compared, even if their
representations are different. For example we are able to compare two regions, one defined by

edges and one defined by faces.

3.8. Downward Adjacencies Ordering: Templates

The boundary of a mesh entity M¢ is defined as its adjacency set of dimension d — 1. When a
mesh entity M;-i has an access to its boundary like in Z,; or Z;., it is possible to retrieve the
rest of downward adjacencies without ambiguity. With AOMD, we use a weaker hypothesis:
a mesh entity M? may be described using any set of downward adjacencies M¢ [M?], ¢ < d.
This information does not always lead to a unique mesh entity unless the set M% [M4] enforces
a predefined ordering of MZ [M4]. As an illustration, we consider the wedges of figure 5. These
two mesh regions are different while having the same set of vertices.

Int. J. Numer. Meth. Engng 20; :—
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T w v
M \&
|
Mg M3 M9 M2
M1
ML ML
M3 MY
M2 i M2
M? M3 MO M

M3
Mf[MO] = [Mga M(l)a Mga Mga Mga Mg] M?[MO] = [Mg’ Mg’ M(l)’ Mg’ Mg’ Mg]

Figure 5. Two prisms with vertices that are ordered differently. The “edge-vertex” template described
below leads to the definition of different set of edges (and faces) with same set of vertices. Opposite
triangular faces of the prism are drawn in both cases.

Templates A convention is then definied for ensuring uniqueness of the representation. We
define a set of tables that describes local relationships between downward entities of a same
mesh entity. Two tables are needed for each distinct mesh entity type. The first table describes
all the edges of a mesh entity in terms of its vertices. This table is called the “edge-vertex
template”. The second table describes faces of an entity in terms of edges, it is the “face-edge
template”. Another useful template is the “face-vertex template” which is, by definition, the
composition of the two previous ones. The “edge-vertex template” of the prism can be written

in the matrix form as :

11 2 4 4 5 1 2 3
TC’U:

2 3 35 6 6 45 6
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Elements T7} and T3 gives vertices indices of the sth edge of the wedge. These indices are local,
they represent a position in the vertex adjacency list of the current wedge. For example, the
second edge of wedge M? of Figure 5 is defined by the first and third vertices: M{[M°]; = M3
and M3[M%]; = M9 so that M3[M'], = Mg. In wedge M3, there is no edge connecting M3
and MJ. Note that the 9th edge of M? is connecting its 3rd and 6th vertices i.e. M3 and M.
This edge M} exists but is connecting M? and M3 which means that wedge M? uses edge M}
negatively. This use of orientation information is critical in algorithms such as higher order
hierarchical finite elements [24]. The use of templates allow the computation of orientations
on demand. This is an advantage when we compare to [10] where authors are storing uses in

their data structures. The “face-edge template” can be written in the matrix form as :

(123 x|
45 6 x
Ti*=|7 4 8 1 (4)
8 6 9 3
729 5

In a prism, two of the faces are triangles. That’s why some elements of 77¢ are noted with x

when they are not relevant. The “face-vertex template” T/? of the prism is computed as the
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composition of T¢ and T7e:

-123><-
4 5 6 X
=114 5 2 (5)
2 56 3
136 4

For example, the second face of wedge M? of Figure 5 is defined by the 4th, 5th and 6th
vertices i.e. M{[M%]y = M2, Mi[M°]5 = MY and M4[M%)g = M? so that M4[M?], = M3 which
ordered set of vertices is [M$, M, M2]. M? uses this face negatively because we need an odd

permutation of the set [M3, MY, M?] to get MZ. We can also use templates to compute face

orientations.

Inverse templates We define now the useful notion of inverse templates. Inverse templates
are inverse mapping of templates. The first inverse template table describes all the vertices of
a mesh entity in terms of its edges pair. This table is called the “vertex-edge template”. For

the wedge, it is written:
T

11 2 4 4 5
T = ©)

2 3 3 5 6 6

It means, for example, that the first vertex of the prism is the one common to its first and
second edges. Because of the hypothesis of §3.2, two edges can have only one vertex in common
so that speaking about the only common vertex of two edges is meaningful. That’s also why
inverse templates are not unique: the first vertex of the prism is also the one common to edges
1 and 7. Similarly, we can define a “edge-face template” that describes pairs of faces sharing
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an edge:
T

T = (7)

Finally, we define the “vertex-face” template T/ which is the composition of the T¢ and
T°f. We know by (6) that vertex 1 is common to edges 1 and 2. By (7), we know that edge 1
is common to faces 1 and 3 and edge 2 is common to faces 1 and 5. This implies that vertex
1 is common to faces 1, 2 and 5. We can continue that reasoning for all vertices to obtain:

T
111 2 2 2

TV =192 3 4 3 3 4

5 4 5 5 4 5

4. DESIGN OF AOMD
One important aspect of building a mesh database is its software design. The language used
here is C++. The C++ language is evolving and one of its recent major new feature is the
Standard Template Library (STL) [13]. The STL demonstrates that C++ can be used very
efficiently for generic programming techniques. Generic programming is “programming with
concepts”, where a concept is defined as a family of abstractions that are all related by a
common set of requirements. The design of generic software components consists of concept
development — identifying sets of requirements that are general enough to be met by a large
family of abstractions but still restrictive enough that programs can be written that work
efficiently with all members of the family. STL provides a set of easily composable software
components of six major kinds: generic algorithms, containers, iterators, function objects or
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functors, adaptors, and allocators. In each of these component categories, STL provides a
relatively small set of fundamental components; it is through uniformity of interfaces and
orthogonality of component structure that STL provides functionality far beyond the actual
number of components included.

AOMD provides its own data types for mesh entities and uses STL containers for storing
mesh entities and adjacencies. STL iterators are used for accessing information. In what follows,

only the principal features of the different classes of AOMD are presented.

4.1. Mesh entities

The mesh entity base class is described in Figure 6 and its inheritance diagram is presented in

Figure 7. In 3-D, each mesh entity M¢ has potentially 3 sets of adjacencies. Our mesh entities

class mEntity {
public:
typedef std::vector<mEntity*> mAdjacencyContainer;
typedef mAdjacencyContainer::const_iterator iterator;
mEntity ( const mAdjacencyContainer & , gEntity *);
virtual “mEntity();
inline iterator begin(int dim);
inline iterator end (int dim);
inline iterator find (mEntityx);
inline void push_back (mEntity*);
inline void erase (mEntityx*) ;
// Purely virtual members
virtual int dimension () = 0;
virtual mEntity* getTemplate(int ith ,
int i_dim, int j_dim ) = 0;
virtual int size (int dim) = O;
private :
int iD;
gEntity *classification;
mAdjacencyContainer *adjacency[4];

};

Figure 6. Mesh entity class description.
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AOMD:mEntity

AOMD:mEdge | |AOMD::mFace| |AOMD::mRegi0n |
[ACOMD:mHex| [AOCMD:mPrism| [AOMD:mTet]| [AOMD:mMirrorvertex |

Figure 7. Inheritance diagram for the class mEntity.

have four pointers to containers of mesh entities for storing adjacencies. We have decided to
use the std::vector for storing adjacencies, even if query operations in vectors are linear.

There are several good reasons to use vectors in this case:

e The number of elements in an adjacency list is usually small. We have found that it was
more efficient to use a std: :vector than a std: :set for containers of less than (O(100)
elements;

e The std::vector is a data structure which has small memory needs;

e The std::vector provides random access to its elements. This is needed for building

AOMD templates.

Constructor mEntity: :mEntity takes as input a list of downward entities and the geometrical
entity gEntity upon which the mesh entity is classified. Mesh entity iD is, for the moment,
uniquely relevant for vertices. We will extend it in §4.2 to higher order entities. Iterators
begin(int dim) and end(int dim) are provided to iterate on adjacencies of dimension dim.
Pure virtual members of class mEntity (Figure 6) are added to the class mEntity. Function
dimension() returns the dimension of the mesh entity concerned (1 for edges for example).
Member size(int dim) returns the number of entities of dimension dim for the mesh entity.
Calling function size (1) in case of a hexahedron will simply return 12 which is the number

Int. J. Numer. Meth. Engng 20; :—

Prepared using nmeauth.cls



24

of edges in an hexahedron. Finally, member function getTemplate (int ith,int i_dim,int
j-dim) returns the ith mesh entity of dimension i_dim using adjacencies of dimension j_dim.
For example, mPrism: :getTemplate(4,2,0) will return a quadrilateral face with vertices 2, 5,
6 and 3 of the prism according to the “face-vertex” template of Equation (5). Note that, if the
prism does not have vertices in its adjacency list, it has either faces or edges (or both). Then,
AOMD will use invert templates for retrieving needed vertices so that the template operation

will always be successful.

4.2. Mesh entity container

Sets of mesh entities M{M?} are not static: mesh adaptation/optimization operators add and
remove entities from the database. In the case of a mesh, the number of entities is not limited
to a small number like for adjacencies. Therefore, we need to use an efficient data structure

for storing mesh entities.

In AOMD, we have chosen hash tables to store large sets of mesh entities. The elements
of a hash table are not guaranteed to be in any meaningful order; in particular, they are not
sorted (sets of mesh entities M{M?} are unordered by definition). The worst case complexity
of most operations on hash table is linear in the size of the container, but the average case
complexity is constant time; this means that for applications where values are simply stored
and retrieved, and where ordering is unimportant, hash tables are usually much faster than
sorted associative containers like binary trees [25]. The class mEntityContainer is described

in Figure 8.

Remark. The STL hash_set is an SGI extension; it is not part of the C++ standard.
Nevertheless, we use the STLport (www.stlport.org) that provides a portable STL with all
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class mEntityContainer
{
public :
typedef std::hash_set<mEntity*, mHashFct, mEqualKey>
container_;
typedef container_::const_iterator iterator;
iterator begin(int dim);
iterator end(int dim);
iterator find(mEntity*);
void add(mEntity*);
void del(mEntity*);
private :
container entities[4];

s
Figure 8. Mesh entities container class description

SGI extensions. We have found that the STLport implementation of the STL is usually more
efficient than, e.g., the one provided by gcc.

A hash function mHashFct maps its argument (a mesh entity) to a result of type size t. A
Hash Function must be deterministic and stateless. That is, the return value must depend only
on the argument, and equal arguments must yield equal results. A mesh entity hash function
must represent the mesh entity in the sense that we have defined in §3: if two mesh entities
have the same set of vertices, then the result of the mHashFct should return the same value.
For that reason, the mesh entity hash function cannot be, for example, the address in memory
of the mEntity or an integer given by a static counter inside the mesh entity class.

A mesh vertex has an iD. The hash function for a vertex is, of course, returning this iD. We
extend now iD’s for all higher order mesh entities in order to be used a hash function. This

mesh entity iD must fullfill the following properties:

e Two mesh entities that share same vertices (i.e. that are equal) have the same iD:
M¢ = M¢ — id(M{) = id(M?). However, two different mesh entities of dimension d > 0

Int. J. Numer. Meth. Engng 20; :—

Prepared using nmeauth.cls



26

may share the same iD, they may be differentiated in this case using a more complex
equal operator defined in §3.2 that will check if all the vertices are equal;

o Mesh entity iD is a symmetric function of vertices iD’s i.e. it is unchanged by
permutations in the set of vertices;

e Calculation of mesh entity iD must not lead to integer overflow: in the case of big meshes,
do not use square functions of the vertex iD’s for example ;

e Mesh entities iD’s should be dense i.e., for a given MY, few entities M? verify id(M¢) =

id(M9).

Queries in a hash table are made in two steps. First, the hash function is used to get a list of
mesh entities that share the same iD. This operation is constant i.e. it does not depend on the
size of the hash table. Then, we iterate on the list and we use the binary predicate mEqualKey
which takes 2 mesh entites M and M¢ as arguments and that returns true if M¢ and M? have
the same set of vertices. This operation is linear in the number of mesh entities that have the
same iD and evaluation of the predicate mEqualKey is, in our case, rather expensive. Mesh
entity iD’s will then be considered as an efficient hash function if few different entities have
identical iD’s. In section §4.4, we will present different choices for the mesh entitiy iD’s and

compare them.

4.8. Algorithms for Mesh Representation Modifications

A function object, or functor (the two terms are synonymous) is simply any object that can
be called as if it is a function. An ordinary function is a function object, and so is a function
pointer; more generally, so is an object of a class that defines operator ().

We may want to add upward adjacencies of dimension adj to all entities of dimension dim
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of mEntityContainer m. For that, we use the standard std::for_each algorithms provided

by STL and the unary functor of Figure 9.

struct createUpwardFunctor {

int dim;

createUpwardFunctor (int d) : dim (d) {}

inline void operator () (mEntity *ent) const

{
mEntity::iterator it ent->begin(dim) ;
mEntity::iterator itend = ent->end(dim);
for ( ; it != itend ; ++it) (*it)->push_back(ent)

s

Figure 9. Upward adjacencies creation functor. Mesh entity ent accesses all its adjacencies *it of
dimension dim and adds itself to all of them.

An algorithm that creates edge-to-region adjacencies for the whole set of entities in a

mEntityContainer is described in Figure 10. Note that this algorithm can be applied to a

mEntityContainer mesh;

std::for_each (mesh.begin(3),mesh.end(3),
createUpwardFunctor(1));

Figure 10. Upward adjacencies creation algorithm. The algorithm acts on range of entities provided
by the mesh entities container.

reduced range of mesh entities which could be useful to restore connectivities when some local
mesh modifications are made or when the users wants to build some adjacencies on parts of
the whole mesh.

We may also need to build downward adjacencies of dimension dim to a range of mesh
entities. For that, we use functor depicted in Figure 11.

An algorithm that creates region-to-face adjacencies for the whole set of entities in a
mEntityContainer is described in Figure 12.

In this algorithm, we traverse all entities of dimension 3, we create, using templates, a set
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struct createDownwardFunctor {
int i_dim, j_dim;
mEntityContainer *cont;
createDownwardFunctor (int i, int j, mEntityContainer *C)
i_dim (i), j_dim(j), cont(c) {}
inline void operator () (mEntity *ent) {
for ( int i=0; i<ent->size(i_dim); i++){
mEntity *temp = ent->getTemplate (i,i_dim,j_dim);
mEntityContainer::iterator found = cont->find(temp);
if (it !'= cont->end(i_dim){
delete temp;
ent->add (*found) ;
}
else {
ent->add (temp) ;
cont->add (temp) ;
33}

Figure 11. Downward adjacencies creation functor. Mesh entity ent builds all templates temp of

dimension dim and checks if the entity is present in the container cont. If the entity *found exists,

then we add *found into adjacency of *ent and we delete temp. If not, we add temp into adjacency of
ent and in cont.

mEntityContainer mesh;

std::for_each (mesh.begin(3) ,mesh.end(3),
createDownwardFunctor (2,0, &mesh)) ;

Figure 12. Downward adjacencies creation algorithm. The algorithm acts on range of entities provided
by the mesh entities container.

of downward adjacencies of dimension 2 using vertices and we look into container cont for
an equal entity *temp. Both algorithms require only one traversal of the container and, if the
find operator has a constant complexity, both algorithms are linear in data sizes. Note that
these are the only two algorithms we need for mesh representation modifications and the total
number of lines of codes is less than 15.
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4.4. Choice of the Mesh Entity iD

In the algorithm of Figure 12, functor createDownwardFunctor does many queries. One

measure of the efficiency of the query operations in a hash table is ¢ = %}‘: where N, is

the number of elements in the hash table and where IV}, is the number of different values for
the hash function: v is proportional to the average number of operations needed for a query

operation. Ideally, ¥ = O(1) so that query operations show constant behavior.

The efficiency of queries in AOMD depends on the choice of the mesh entity iD. There
are a number of possible choices for calculating mesh entity iD id(M¢). We present three
different choices id;(M¢), j = 1,...,3. We call ¢(id;, M?) the efficiency factor for a hash
table containing entities of dimension d and using id; for computing mesh entity iD’s. In what

follows, n = dim M%(M?).

e Choice 1:

k3

=1
e Choice 2:

id2(M{) = max id(M{[M°];);
j=1,...,n
e Choice 3:
n . d 0 .

Jj=1

n

In id3, R is a random number generator that takes the vertex iD as its seed (R (%) is a function
of iie. i =7 — R() =R(j))-

Table VI show computations of ¥ on several tetrahedral and hexahedral meshes. All meshes
were initially loaded with their minimum representations. Then, the algorithm of figure 12 was
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M T, T2 Ts Ty H, H» Hs
dim{M°} 15440 86813 184713 548141 15625 42875 | 166375
dim{M'} 95324 | 556103 | 1203286 | 3630889 45000 | 124943 | 490050
dim{M?} 155773 | 922968 | 2009605 | 6104220 43200 | 121380 | 481140
dim{M3} 75888 | 453677 991031 | 3021471 13824 39304 | 157464

P(idi, M) || 3.62452 | 3.69172 | 3.72524 | 3.79182 || 2.58621 | 2.69173 | 2.79613

P(idz,M~) || 8.19282 | 8.38176 | 8.48276 | 8.51623 | 2.88148 | 2.91483 | 2.94560
9 (idz, M) || 1.00002 | 1.00006 | 1.00009 | 1.00013 || 1.00000 | 1.00002 | 1.00004
(id1,M?) || 5.67555 | 5.78667 | 5.89832 | 5.81028 || 2.38279 | 2.59326 | 2.71983
P(id2, M?) || 16.2891 | 16.3899 | 16.3933 | 16.3400 | 2.81598 | 2.85795 | 2.90314
9 (ids, M?) || 1.00002 | 1.00006 | 1.00011 | 1.00015 || 1.00000 | 1.00000 | 1.00003

Table VI. Computations of 1 for tetrahedral meshes T;, ¢ = 1,...,4 and hexahedral meshes
Hj, j=1,..,3

used to build edges and faces from regions and vertices.

Comparing v (idz, M¢), ¥ (id2, M?) and +(id;, M?) shows that computing iD’s using ids is by
far the best choice for all meshes. Only one operation is needed for finding an entity in the
database. It has taken 77.5 seconds to create all 2,009,605 faces of mesh T3 using ids while
only 22.3 seconds were needed using ids. These factors are in good relation with (id;, M?) of
table VI. Another reason why we should use id3 is that we will never find special cases where
(id2, M%) >> 1 for which hash tables will be no longer efficient. Such an example is depicted

in Figure 13.

2n 2n —1 2n — 2 2n—3 n+2 n+1

Figure 13. Vertex ordering where all vertical edges have the sum of vertices iD’s equal to 2n + 1.

5. APPLICATIONS

This section provides three examples of the application of AOMD to three advanced mesh

representation situations.
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5.1. Higher Order Finite Elements

Trellis [26] is a computational framework developed at the Scientific Computation Research
Center at Rensselaer. We present the example of an elliptic problem computed with the higher-
order finite element capabilities of Trellis in which the polynomial order of shape functions
are associated to mesh entities of different dimensions [24]. Table VII indicates the number of

shape functions for a given order p for different mesh entity types. First order finite elements

M vertex modes | edge modes | face modes | region modes
triangle 1 p—1 W 0
quadrilateral 1 p—1 (p—1)>2 0
—D(p=2) (p=1)(p—2)(p—3)
tetrahedron 1 p—1 (e R » AT :
hexahedron 1 p—1 »—1) r—1)

Table VII. Number of shape functions (or modes) associated to each vertex, edge, face and region of
a mesh entity M¢ as a function of the polynomial order p of the finite element approximation.

only require vertex modes so that we can use the minimum representation. Second order
finite elements require edge modes in all cases so that we then need to build the edges. For
hexahedral meshes, second order finite elements require faces. For a polynomial order p > 3
we need the whole set of mesh entities. We have solved a simple Poisson equation Au =1
on Qum, u = 0 on 9Ny using mesh T; of Table VI (Figure 14) and finite elements of orders
p=1,...,5. In a tetrahedral mesh T with an order p basis, it is easy to see, using Tables VII,
I and II, that the number of equations in the system is p> N°(T) and that the bandwith of the
matrix grows linearly with p. If we use the Compressed Sparse Row (CSR) format for storing
the finite element matrix, then the amount of storage needed is related to the number of
non zero elements in the matrix. In case of hierarchical finite elements on tetrahedral meshes,
we have just showed that this number grows like p* N°(T). In Table VIII, we compare the
storage cost of the finite element matrix and the one of the mesh. We have used both AOMD
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Figure 14. Mesh T;.

P 1 2 3 1 5
Nb. Unknowns 11343 94303 324766 778620 1531753
Bandwidth 11.28 24.54 43.30 68.83 88.01
Nb. Non Zero 128007 | 2313905 | 14065562 | 53599856 | 134812122
Matrix Storage (Mb) 2.07 20 121 462 1162
AOMD Mesh Storage (Mb) || 8.2 20.1 35 35 35
Zot Mesh Storage (Mb) 44 44 44 44 44

Table VIII. Number of unknowns and number of non zeros in the finite element matrix associated to
a Poisson problem on mesh Tj.

dynamical representation and the one-level structure Z,;. For p = 1, we see that the mesh
requires more memory that what we need for building the finite element matrix. For p = 2,
AOMD mesh and finite element matrix have nearly the same memory needs: around 20 Mb.
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The Z,; representation has constant needs of 44 Mb. For p > 3, the mesh size is smaller than
the matrix. It is clear that the flexibility of AOMD allows one to select the level of storage
required for the specific p, thus saving substantial memory costs, while still maintaining all

the power of an advanced mesh database.

5.2. Curved Meshes

The usual way to deal with curved mesh entities is to define new sets of topological entities
that have more nodes [27]: 6-nodes triangles, 10-nodes tetrahedron, etc. We have not chosen
this approach in AOMD. A curved triangle has 3 corners and 3 edges and middle-edge nodes
are viewed as an attribute of the edge that qualifies its shape. Doing this allows other qualifiers
such as different polynomial approximations or a pointer to the true geometry [28]. Another
reason not to use middle nodes is related to the implementation. One of the major advances
of the STL is the introduction of an orthogonal decomposition of components. Topology and

geometry of mesh entities are orthogonal concepts. We have

e Topological mesh entity types: triangles, tetrahedrons, etc.
o Geometries for mesh entities: straight-sided, Lagrange interpolation, Bézier interpolation,

exact mapping to the geometry, etc.

In our approach, all triangles M? have 3 vertices (or corners) and it is possible to chose
different geometries for M? and its boundary edges MZ[M!]. For dealing with the various mesh
geometries, we have defined the notion of Mapping that contains relevant geometry information
for mesh entities. Mappings provides the shape information for mesh entities. A mapping can
be evaluated i.e. giving a point £ in the reference system, the mapping is able to evaluate world
coordinates z(&) of point £. Mappings are also able to do the invert operation (which may lead
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Figure 15. Curved Mesh (top) and view of the set of curved tetrahedron (bottom).

to the resolution of a system of non linear equations). Mapping also provides the Jacobian

3%2‘5) of the change of coordinates.

Mesh entities are curved when they have one edge or face on curved model boundaries.
Interior mesh entities are usually straight-sided. However, they may be curved in cases when it
is required to maintain the shape of an element it bounds due to the curving of other bounding
entities. Curved mappings are usually expensive to compute. Moreover, integration of functions
on curved elements require more effort than for straight-sided ones. In AOMD, we are able to
define different mappings for different mesh entities through a Builder pattern. The system
checks if shape attributes are associated to the mesh entity and returns either a curved or a
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straight-sided mapping. We show an example of curved mesh in Figure 15.

5.8. Periodicity

Just as there is substantial flexibility in the way shape information can be associated with
the mesh entities in AOMD, analysis information is also treated in a flexible manner. A set of
parameters of particular interest to the analysis process are the equation numbers of the finite
element system (to be referred to as DOF for degrees of freedom). The DOF have an association
with the mesh entities. As discussed in reference [10], topological mesh data structures classified
against non-manifold geometric models can support the mesh representation needs of such
models without the explicit introduction of the use entities at the mesh level. There are a
number of specific analysis modeling situations where some information is best associated
with what corresponds to use entities in the model. An obvious example of this is two bodies
in contact. At the level of the geometric model a contact surface is associated with a single
face. However, at the analysis model level, it is necessary to account for the possibility of
relative slip of the regions on the two sides of the contact face by having independent DOF
associated with the two uses of the face (one each for the two regions) for each mesh entity

for which there are DOF. The structures of AOMD easily supports this need.

An additional, less obvious, such capability easily supported in AOMD is the effective
accounting for periodicity in “matched meshes” by assigning the same DOF to the matched
mesh vertices, edges and faces which have DOF on the periodic boundaries. From a topological
model point of view, this is the compliment of the contact situation in the following way: The
geometry of the matched mesh vertices, edges and faces are associated with the two face uses
with the coordinates of the one set equal to that of the other plus one period. The degrees of
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Figure 16. Simulation of a fluid instability. Density colormap of the fluid is replicated twice in order
to illustrate the periodicity in the flow.

Figure 17. Non-conforming mesh refinement at the vicinity of a fluid spike.

freedom are associated with the single topological face so that there is only one set of DOF,

even though the mesh entities using the two face uses have different coordinate locations.

In [29], we have developed an adaptive discontinuous Galerkin method (DGM) for solving
non-linear conservation laws. We have used AOMD as the mesh tool for our DGM. A Rayleigh-
Taylor instability involves a heavy fluid overlying a light fluid [30,31]. We consider two inviscid
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fluids initially in hydrostatic (unstable) equilibrium in a cavity. The upper half of the cavity
is filled with a fluid of density two while the lower part is filled with a fluid of unit density.
The initial pressure corresponds to hydrostatic equilibrium. An initial perturbation of the
velocity initiates the instability. The flow is governed by the Euler equations of gas dynamics.
We present a result for a 2-D Rayleigh Taylor instability with one vertical periodic boundary
(Figure 16). We have used the non-conforming adaptivity capabilities of AOMD to refine the

mesh, as depicted in Figure 17.

6. CONCLUSIONS

A model of mesh representation that is able to manage any adjacency sets has been
presented. Specific hypothesis were made on mesh entities (equality operator, identificator)
and on the mesh itself (minimum representation) for insuring coherence of the whole mesh
database. The resuling database is light and efficient in terms of compilation and memory
use. In addition to some specific improvements, current efforts are focused on a parallel
version of AOMD. We will completely take into advantage the structure of AOMD in
parallel [11]. AOMD is available for the community at http://www.scorec.rpi.edu/AOMD.
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