Mécanique des Structures

Jean-François Remacle

Table des matières

1 Introduction

2 La méthode des Coupures.
 2.1 Introduction ... 5
 2.2 Structures statiquement déterminées et indéterminées 6
 2.3 Évaluation du degré d’hyperstaticité 10
 2.3.1 Ossatures planes .. 10
 2.3.2 Ossatures spatiales 13
 2.3.3 Remarques importantes 14
 2.3.4 Exemples .. 16
 2.4 Principe de la méthode des Coupures 16
 2.4.1 Système isostatique de référence 16
 2.4.2 Inconnues hyperstatiques 17
 2.4.3 Équations générales de la méthode des forces 17
 2.4.4 Calcul des coefficients δ_{ij}^0 et $\delta_{i \Sigma P}^0$ 20
 2.5 Détermination des coefficients δ_{ij}^0 et $\delta_{i \Sigma P}^0$ 21
 2.5.1 Hypothèses simplificatrices 21
 2.5.2 La convention de signe 21
 2.5.3 Inertie constante par tronçons 22
 2.5.4 Évaluation des intégrales du type $\int m^0_{si} m^0_{sj} ds$ par l’emploi de tableaux 23
 2.5.5 Inertie variable 23
 2.6 Exemple d’application 23
 2.7 Établissement direct de l’équation de compatibilité 25
 2.8 Liaison avec le principe du travail minimum 26

3 Éléments finis structuraux .. 29
 3.1 Introduction .. 29
 3.2 Principe des travaux virtuels 30
 3.3 Éléments finis structuraux 33
 3.4 Éléments unidimensionnels 34
 3.5 Élément de barre ... 36
 3.5.1 Hypothèses .. 36
TABLE DES MATIÈRES

3.5.2 Application du principe des travaux virtuels 36
3.5.3 Discrétisation et calcul de la matrice de raideur \([k']\) 37
3.5.4 Établissement des équations d’équilibre locales 39
3.5.5 Calcul de la matrice de raideur \([k]\) : treillis de barres 40
3.5.6 Exemples ... 42

3.6 Élément de Poutre de Bernoulli-Euler en flexion plane 45
3.6.1 Hypothèses .. 45
3.6.2 Application du principe des travaux virtuels 46
3.6.3 Discrétisation et calcul de la matrice de raideur \([k']\) ... 47
3.6.4 Établissement des équations d’équilibre locales 48
3.6.5 Calcul de la matrice de raideur \([k]\) : Ossatures planes formées de poutres .. 53
3.6.6 Exemples ... 54

3.7 Poutres de Timoshenko .. 58
3.7.1 Hypothèses .. 58
3.7.2 Application du principe des travaux virtuels 60
3.7.3 Établissement des équations d’équilibre locales 60
3.7.4 Calcul de la matrice de raideur \([k']\) 62
3.7.5 Discrétisation et phénomène de “shear locking” 62

3.8 Êlément de poutre en torsion pure 65
3.8.1 Hypothèses .. 66
3.8.2 Application du principe des travaux virtuels 70
3.8.3 Discrétisation et calcul de la matrice de raideur \([k']\) ... 71

3.9 Ossatures tridimensionnelles 71

3.10 Structures bidimensionnelles 72
3.10.1 Hypothèse de l’état plan de contraintes 75
3.10.2 Hypothèse de l’état plan de déformations 75
3.10.3 Application du principe des travaux virtuels 76
3.10.4 Discrétisation et calcul de la matrice de raideur 76

3.11 Plaques de Kirchhoff .. 76
3.11.1 Hypothèses cinématiques 76
3.11.2 Forces et moments agissant dans la plaque 78
3.11.3 Application du principe des travaux virtuels 80
3.11.4 Comparaison entre poutres de Bernoulli et plaques de Kirchhoff .. 86

3.12 Éléments finis de plaques de Kirchhoff en flexion 88
3.12.1 Principe des travaux virtuels 88
3.12.2 Éléments finis 88
3.12.3 Petit historique des éléments finis plaques (in English) 93
3.12.4 L’élément de plaque mince BCIZ 96

3.13 Plaques de Reissner-Mindlin 100
3.13.1 Hypothèses cinématiques 100
3.13.2 Application du principe des travaux virtuels 103
3.13.3 Comparaison entre poutres de Timoshenko et plaques de
Reissner-Mindlin .. 107
3.13.4 Éléments finis C^0 pour les plaques de Reissner et Mindlin. 108
3.13.5 Phénomène de “shear locking” pour les plaques épaisses . 109
3.14 Flambage des structures élastiques 110
 3.14.1 Hypothèse petites déformations - grands déplacements . 110
 3.14.2 Calcul du flambement d’ossatures par éléments finis ... 111
 3.14.3 Application du principe des travaux virtuels 112
 3.14.4 Discrétisation et calcul de la matrice de raideur 113
3.15 Plaques de Von Kàrmàn 114
Chapitre 1

Introduction
Chapitre 2

La méthode des Coupures.

2.1 Introduction

La méthode des Coupures appartient à la catégorie plus générale dite des forces. Dans cette méthode d’analyse des structures hyperstatiques, les inconnues principales sont constituées par des grandeurs statiques (efforts internes et/ou efforts de liaison). Cette méthode peut être à une large gamme de structures. L’exposé présenté ici est délibérément restreint à l’analyse d’ossatures planes et spatiales à noeuds rigides. La notion d’indétermination statique (degré d’hyperstaticité) sera précisée plus loin, tant qualitativement que quantitativement. Il importe toutefois de noter dès maintenant la différence fondamentale, déjà rencontrée, entre une structure statiquement déterminée (ou isostatique) et une structure statiquement indéterminée (ou hyperstatique).

L’étude d’un système isostatique est accessible au départ des seules équations d’équilibre de la statique tandis que la détermination des efforts internes et/ou des efforts de liaison dans un système hyperstatique réclame le recours supplémentaire aux équations de compatibilité. Ce sont précisément ceux-ci qui nous permettront d’évaluer les inconnues hyperstatiques. Rappelons, par comparaison, qu’une méthode de type déplacement (telle que la méthode des éléments finis) s’appuie sur la détermination du degré d’indétermination cinématique, que les inconnues principales sont constituées par des grandeurs cinématiques et que ceux-ci s’obtiennent par résolution d’un système d’équations d’équilibre. On peut donc établir l’analogie suivante :

<table>
<thead>
<tr>
<th>Méthode</th>
<th>Inconnues</th>
<th>Équations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Des Forces</td>
<td>Statiques</td>
<td>De compatibilité</td>
</tr>
<tr>
<td>Des Déplacements</td>
<td>Cinématiques</td>
<td>D’équilibre</td>
</tr>
</tbody>
</table>
2.2 Structures statiquement déterminées et indéterminées.

Si nous considérons un corps (structure) arbitraire soumis à l’action d’un système de forces dans l’espace x,y,z (Figure 2.1), son équilibre d’ensemble peut être défini par les équations d’équilibre statique :

\begin{align*}
\Sigma F_x &= 0 \quad \Sigma M_x = 0 \\
\Sigma F_y &= 0 \quad \Sigma M_y = 0 \\
\Sigma F_z &= 0 \quad \Sigma M_z = 0
\end{align*}

Les sommations se rapportent à toutes les composantes de forces et de moments par rapport aux 3 axes de référence x,y,z. Nous pouvons donc écrire 6 équations d’équilibre dans le cas général d’un corps tridimensionnel. Lorsque toutes les forces agissent dans le même plan, seules 3 équations d’équilibre sont exploitées. Dans le plan $0;x,y$ (2.2), ces 3 équations sont :

\begin{align*}
\Sigma F_x &= 0 \\
\Sigma F_y &= 0 \\
\Sigma F_z &= 0
\end{align*}

Fig. 2.1 – Corps tridimensionnel soumis à un ensemble de forces

Fig. 2.2 – Problème bidimensionnel

en équilibre dans le cas général d’un corps tridimensionnel. Lorsque toutes les forces agissent dans le même plan, seules 3 équations d’équilibre sont exploitées. Dans le plan $0;x,y$ (2.2), ces 3 équations sont : Lorsque la structure étudiée (supposée en équilibre) est composée de différentes membrures, les équations de la statique doivent, bien entendu, être satisfaites pour la structure considérée globalement. En outre, chaque barre, chaque noeud d’assemblage et toute portion de la structure doit, forcément, être en équilibre. Cela signifie que les équations de la statique doivent également être satisfaites pour chaque composant, chaque noeud et chaque portion de la structure étudiée. Or l’analyse d’une structure est énergéalement menée de façon à calculer les efforts de liaison (réactions) et les efforts internes. Donc, si
Chapitre 2. La méthode des coupures.

<table>
<thead>
<tr>
<th>Structure</th>
<th>l</th>
<th>N_e</th>
<th>I_e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 2.3 – Nombre d’efforts de liaison l, nombre d’équations d’équilibre N_e, degré d’hyperstaticité externe I_e

ceux-ci sont accessibles au départ des seules équations d’équilibre de la statique, la structure est dite statiquement déterminée, ou encore, isostatique. Si, par contre, les efforts de liaison et/ou les efforts internes ne sont pas accessibles au départ des équations d’équilibre de la statique, la structure est dite statiquement indéterminée ou encore, hyperstatique. On voit donc que cette hyperstaticité peut être imputable à différentes causes. On parlera d’hyperstaticité externe si le nombre d’efforts de liaison (réactions) excède le nombre d’équations d’équilibre. Quelques exemples d’hyperstaticité externe sont repris à la Figure 2.3. Il importe de remarquer que certaines structures sont caractérisées par la présence de dispositifs mécaniques garantissant l’annulation de l’un ou l’autre effort interne (Figure 2.4). La présence de ces dispositifs autorise généralement l’écriture d’une équation d’équilibre statique supplémentaire et donc, la détermination d’un effort de liaison additionnel. Par exemple, le cadre articulé ci-dessous (Figure 2.6) est caractérisé par 4 composantes de réaction mais le moment fléchissant M doit s’annuler au droit de la
CHAPITRE 2. LA MÉTHODE DES COUPURES.

<table>
<thead>
<tr>
<th>Dispositif</th>
<th>Schéma</th>
<th>Effort libéré</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotule</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>glissière tangente</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>coulisse normale</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>coulisse axiale</td>
<td></td>
<td>M_T</td>
</tr>
</tbody>
</table>

FIG. 2.4 – Dispositifs de libération d’efforts

rotule (Figure 2.5). Cette condition vient compléter les 3 équations d’équilibre global de la structure. Il en résulte que les 4 composantes de réaction sont statiquement déterminables. L’hyperstaticité peut également être interne. Le degré d’indétermination statique correspondra alors au nombre de coupures à introduire pour ramener le système à l’isostaticité. Chaque coupure correspondra à la suppression d’un effort interne inconnu (moment de flexion, effort tranchant, effort normal, moment de torsion). Physiquement, cette suppression se matérialise par l’introduction d’une rotule ($M = 0$), d’une glissière tangente ($T = 0$), d’une coulisse normale ($N = 0$) ou encore, d’une coulisse axiale ($M_T = 0$). Ces dispositifs peuvent être introduits simultanément au droit d’une même section. S’ils correspondent à l’annulation de tous les efforts internes dans cette section, on par-

FIG. 2.5 – Rotule sur un pont métallique.
Chapitre 2. La méthode des coupures.

La coupe totale de la structure provoquera alors une libération des trois efforts M, N, et T (droite).

La coupe représente donc la suppression de M, T, N, et M_T (éventuellement) dans la section où elle est pratiquée. Le nombre de suppressions nécessaires pour rendre la structure isostatique représente, bien entendu, le degré d’hyperstaticité.

Exemple : le cadre représenté (Figure 2.7) est statiquement indéterminé au $3^{\text{ième}}$ degré. En effet, il devient statiquement déterminé si on pratique une coupe dans l’une ou l’autre de ses membres (horizontales ou verticales). Le même cadre peut, bien entendu, être rendu isostatique en introduisant 3 rotules en 3 sections particulières (à condition que celles-ci ne soient pas alignées sur la même droite) (Figure 2.8). Enfin, certaines structures peuvent être à la fois intérieurement et extérieurement hyperstatiques. C’est le cas du cadre représenté à la Figure 2.9. Ce cadre est extérieurement indéterminé au 1^{er} degré. Toutefois, les efforts internes ne peuvent être déterminés par la statique même si toutes les réactions sont supposées connues. Par contre, en introduisant 2 coupes totales comme représenté à la Figure 2.10, on rend possible la détermination des efforts internes au départ des seules équations de la statique. Le cadre est donc intérieurement indéterminé au $6^{\text{ième}}$ degré et le degré d’hyperstaticité total vaut 7.
2.3 Évaluation du degré d’hyperstaticité.

On a vu au paragraphe précédent que généralement le degré d’indétermination statique pouvait être déterminé par simple inspection de la structure étudiée ou par évaluation du nombre de coupures à introduire pour ramener la coupure à l’isostaticité. Pour un certain nombre de structures, en particulier celles comprenant un grand nombre de composants, une telle approche peut se révéler particulièrement laborieuse et donc, souche d’erreurs. L’utilisation d’une procédure formelle se révèle dès lors préférable. Nous présentons ci-après, deux formules applicable, d’une part aux ossatures planes et, d’autre part, aux ossatures spatiales.

2.3.1 Ossatures planes.

Établissement d’une formule brute.

En chaque noeud (rigide) d’assemblage, nous pouvons écrire 3 équations d’équilibre :

- équilibre de translation horizontale,
- équilibre de translation verticale,
- équilibre de rotation.
CHAPITRE 2. LA MÉTHODE DES COUPURES.

Fig. 2.10 – Introduction de deux coupures totales pour lever l’hyperstaticité interne.

Si nous désignons par n le nombre total de noeuds, il en résulte que le nombre total d’équations d’équilibre est donné par :

$$N_e = 3n$$

Les inconnues sont constituées par les efforts internes et les efforts de liaison (réactions). Les efforts internes dans une barre quelconque d’ossature peuvent être statiquement déterminés si 3 des 6 efforts d’extrémités F_1, F_2, \ldots, F_6 sont connus (Figure 2.11). En désignant par b le nombre de barres et par l le nombre d’efforts de liaison, le nombre total d’inconnues est donné par :

$$N_i = 3b + l$$

Il en résulte qu’une ossature plane à noeuds rigides est statiquement déterminée si

$$N_e = N_i$$

soit, encore

$$3n = 3b + l$$
avec
\(n = \) nombre de noeuds
\(b = \) nombre de barres
\(l = \) nombre de liaisons externes (réactions) \(\geq 3 \) (\(\geq 3 \) pour garantir au minimum l’isostatique externe de la structure étudiée).

Si \(N_i > N_e \) (c.a.d. si \(3b + l > 3n \)), la structure est statiquement indéterminée et le degré d’indétermination statique \(I_s \) est donné par :

\[
I_s = N_i - N_e = (3b + l) - 3n
\]
(2.2)

Etablissement d’une formule affinée.

Si un noeud rigide est remplacé par une rotule, le nombre d’équations d’équilibre susceptibles d’être écrites est réduit d’une unité mais les moments fléchissants aux extrémités des barres aboutissant en ce noeud s’annulent aussi ... de sorte que le nombre d’inconnues se trouve réduit du nombre de barres aboutissant en ce noeud.

Il importe donc d’en tenir compte et d’affiner en conséquence la formule (2.2).

Evaluation du nombre d’équations

Le nombre effectif d’équations s’évaluera au moyen de la relation :

\[
N_e = 3n - m
\]

avec
\(n = \) nombre de noeuds (les noeuds étant tous les points d’assemblage et d’appui de la structure étudiée),

\(m = \) nombre d’équations inexploitables du fait de l’identification d’un noeud avec une rotule (imposant la condition \(M = 0 \)), d’une glissière tangente (imposant la condition \(T = 0 \)) ou d’une coulisse normale (imposant la condition \(N = 0 \)).

Evaluation du nombre d’inconnues

Le nombre effectif d’inconnues s’obtient par application de la relation :

\[
N_i = 3b + l - r
\]
(2.3)

avec
\(b = \) nombre de barres (les barres étant définies par 2 noeuds extrémité),

\(l = \) nombre d’efforts de liaison (\(\geq 3 \)) (voir remarque 1 ci-après),

\(r = \) nombre d’efforts à priori nuls aux extrémités des différentes barres compte tenu de la présence d’une rotule, d’une glissière tangente ou d’une coulisse normale d’extrémité.
Degré d’indétermination statique

Compte tenu de ce qui précède, le degré d’indétermination statique s’évaluera comme suit :

\[I_s = N_i - N_e \]

où

\[N_i = 3b + l - r \]
\[N_e = 3n - m \]

2.3.2 Ossatures spatiales.

Dans le cas d’une ossature spatiale (Figure 2.12), les relations précédentes prennent la forme suivante :

\[I_s = N_i - N_e \]

où

\[N_i = 6b + l - r \]
\[N_e = 6n - m \]

Dans ces relations, \(n \), \(b \) et \(l \) ont la même signification que précédemment. Seules les définitions de \(m \) et \(r \) méritent d’être complétées :

- \(m \) est le nombre d’équations inexploitable du fait de l’identification d’un nœud avec une rotule \((M = 0) \), une glissière tangeante \((T = 0) \), une coulisse normale \((N = 0) \) ou une coulisse axiale \((MT = 0) \) ;
- \(r \) est le nombre d’efforts internes à priori nuls aux extrémités des différentes barres compte tenu de la présence d’une rotule, d’une glissière tangeante, d’une coulisse normale ou encore, d’une coulisse axiale.

FIG. 2.12 – Élément de poutre d’une ossature spatiale.
2.3.3 Remarques importantes.

1 Il importe de remarquer que, jusqu'à présent, le degré d’hyperstaticité a été défini sans faire référence aux actions s’exerçant sur la structure étudiée. En ce sens, le degré d’indétermination statique est une propriété géométrique de la structure étudiée : elle résulte en effet exclusivement de sa topologie et des conditions d’appuis. Par ailleurs, toute structure est nécessairement en rapport avec un support (sol, fondations, flotteurs, ...). Ces points d’appui doivent garantir, au minimum l’isostaticité externe de la structure. Dans certains cas toutefois, on peut rencontrer des structures sans points d’appui apparents. Celles-ci doivent être nécessairement soumises à un système de charges en équilibre. Toute structure antérieurement isostatique est d’ailleurs susceptible de se trouver dans cette catégorie : en effet, les liaisons internes pouvant être déterminées au départ des seules équations d’équilibre, rien n’empêche le calculateur de les remplacer, a priori, par des forces équivalentes (Figure 2.13). Compte tenu du fait que la détermination de I_s ne fait pas

![Figure 2.13 - Structure avec appuis (gauche) et remplacement des appuis par des charges en équilibre avec les forces (droite).](image)

référence au cas de sollicitation envisagé, l’application correcte du degré d’indétermination statique par les formules vues plus haut requiert l’introduction de 3 liaisons extérieures fictives garantissant l’isostaticité externe quelque soit le cas de charge.

2 Signalons aussi que la détermination du degré d’indétermination statique s’est fait ici dans le cas général de forces distribuées de façon quelconque sur la structure. Si le système et les sollicitations extérieures sont symétriques ou antisymétriques par rapport à un ou plusieurs axes, le degré effectif d’hyperstaticité\(^1\) peut s’en trouver réduit.

Exemple: Un anneau ou un cadre rigide soumis à un système de charges en équilibre (Figure 2.14) est, en général, hyperstatique au degré 3 (voir

\(^1\) on pourrait définir le degré effectif d’hyperstaticité (pour un cas de charge déterminé) comme étant le nombre d’inconnues hyperstatiques dont la détermination exige l’écriture effective des équations de compatibilité.)
CHAPITRE 2. LA MÉTHODE DES COUPURES.

Fig. 2.14 – Anneau rigide soumis à un système de charges en équilibre.

Fig. 2.15 – Poutre sans efforts normaux.

remarque 1 ci-dessus). Cependant, l’anneau représenté ci-dessous n’est, en pratique, qu’une fois hyperstatique car, à cause de l’axe de symétrie YY, on a $N = P/2$ et à cause de l’axe de symétrie XX, on a $T = 0$! La seule inconnue hyperstatique est donc le moment $M(= X_1)$ au point 0.

3 Enfin, dans le cas de poutres continues soumises exclusivement à des actions transversales, les efforts normaux sont a priori nuls. Il en résulte que deux équations d’équilibre peuvent être écrites en chaque nœud. Par ailleurs, les efforts internes (M et T) dans un élément quelconque de la poutre peuvent être déterminés si 2 des 4 efforts d’extrémités sont connus (2.15) Les relations permettant de calculer le degré d’indétermination statique prennent alors la forme :

\[
\begin{align*}
I_s &= N_i - N_e \\
\text{avec} \quad N_e &= 2n - m \\
N_i &= 2b + l - r
\end{align*}
\]
2.3.4 Exemples.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td>N_c</td>
<td>b</td>
<td>l</td>
<td>r</td>
<td>N_i</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>18</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>30</td>
<td>9</td>
<td>12</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>7</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

2.4 Principe de la méthode des Coupures.

2.4.1 Système isostatique de référence.

En déterminant le degré d’hyperstaticité d’une structure, nous sommes à même de préciser le nombre de coupures \(^2\) à pratiquer pour la ramener à l’isostaticité. Il importera, pour la suite du calcul, de choisir une structure isostatique de référence \(S^0\) qui servira de base à l’étude. Remarquons toutefois qu’il existe autant de structures isostatiques de référence que l’on veut car on peut pratiquer les coupures simples arbitrairement. Il est vital toutefois de ne pas transformer le système structural en mécanisme ! On verra par la suite que le choix d’un système isostatique de référence plutôt qu’un autre peut avoir une répercussion sur la simplicité des calculs à effectuer. Nous tâcherons de préciser quelques règles générales permettant de choisir au mieux le système statiquement déterminé de référence.

\(^2\)Le terme coupure est pris au sens large : il s’agit chaque fois d’une suppression d’un effort interne ou d’un effort de liaison.
CHAPITRE 2. LA MÉTHODE DES COUPURES.

2.4.2 Inconnues hyperstatiques.

Chaque fois que nous pratiquons une coupure dans le système hyperstatique de départ, nous supprimons l’effort interne ou de liaison X_j correspondant. Ainsi, l’introduction d’une rotule conduit à la suppression du moment fléchissant tandis que la suppression d’un appui mobile conduit à l’annulation d’une réaction perpendiculaire au chemin de roulement. La méthode des forces a précisément comme but de déterminer ces n forces inconnues (si n désigne le degré d’hyperstatique). Les inconnues hyperstatiques X_j sont généralement représentées sous une forme extériorisée sur la structure isostatique de référence.

Exemple : Les coupures pratiquées pour obtenir le système isostatique de référence pouvant être tant internes qu’externes au système, il doit être bien entendu, dans tout ce chapitre, que les mots *force* et *déplacement* sont pris au sens généralisé. Le symbole X_j peut donc correspondre à une force ordinaire, une paire de forces égales et opposées, un moment ou une paire de moments égaux et opposés tandis que le *déplacement* associé correspond à la force ci-dessus c.a.d., selon le cas, un déplacement projeté, un déplacement relatif projeté, une rotation projetée sur l’axe du couple ou, enfin, une rotation relative projetée sur l’axe commun des deux couples.

2.4.3 Équations générales dela méthode des forces.

Considérons une structure hyperstatique de degré n (S^n) et la structure isostatique de référence (S^0) qui lui est associée. Soient $X_j (j = 1, \ldots, n)$ les n inconnues hyperstatiques. Imaginons que la structure isostatique de référence S^0 soit soumise à l’action des forces extérieures (ΣP) et des forces X_j momentanément inconnues ($j = 1, \ldots, n$). La réponse structurale de ce système s’obtient, en vertu du principe de superposition, en évaluant séparément les réponses élémentaires du système S^0 soumis successivement aux charges extérieures (ΣP) et aux efforts X_j puis en sommant celles-ci. (Fig 2.16). Si nous nous interrogeons sur le déplacement relatif des 2 lèvres d’une coupure arbitraire i, nous constatons qu’il se compose, en
vertu du principe de superposition, des déplacements produits par chaque force X_j du déplacement produit par les forces extérieures ΣP. Si on désigne par :

- δ_{ij}^0 le déplacement relatif (dans S^0) des lèvres de la coupure I (dans la direction i) d'une force unité agissant dans la coupure j (dans la direction j),
- $\delta_{ij}^{0\Sigma P}$, le déplacement relatif (dans S^0) des lèvres de la coupure I (dans la direction i) produit par les forces extérieures ΣP.
alors, le déplacement total S_i vaut :

$$\delta^n_{i\Sigma P} = \sum_{j=1}^{n} \delta^0_{ij} X_j + \delta^0_{i\Sigma P}$$

(2.4)

L’objectif consiste à déterminer les efforts X_j tels qu’ils existent réellement dans la structure hyperstatique de départ. Nous cherchons donc à proportionner ces efforts de façon à ce qu’ils garantissent bien une déformée cinématiquement admissible (c.à.d. continue et satisfaisant aux conditions frontières géométriques) ou encore, compatible.

Sans ces conditions, la superposition d’effets que traduit l’équation (2.4) fournira bien le déplacement relatif $\delta^n_{i\Sigma P}$ des lèvres de la coupure i sans l’effet des forces extérieures dans le système hyperstatique de départ. On a donc bien :

$$\delta^n_{i\Sigma P} = \sum_{j=1}^{n} \delta^0_{ij} X_j + \delta^0_{i\Sigma P}$$

(2.5)

pour $i = 1, \ldots, n$. Soit un système de n équations linéaires à n inconnues (les X_j). Ces équations sont les équations générales de la méthode des forces. Elles représentent les équations de compatibilité des déplacements relatives aux n coupures simples pratiquées. Remarquons que les termes $\delta^n_{i\Sigma P} (i = 1, \ldots, n)$ sont généralement nuls car, au droit des coupures pratiquées le système hyperstatique se caractérise habituellement par une continuité matérielle qui exclut tout déplacement relatif. Par contre, si la coupure i correspond à la suppression d’un effort de liaison externe (suppression d’une réaction verticale par exemple) alors, le terme correspondant $\delta^n_{i\Sigma P}$ représente le déplacement (vertical dans ce cas) du point d’appui dans le système hyperstatique étudié. Le calculateur peut, effectivement, être amené à investiguer l’effet de mouvements d’appui (tassement,) dans un système hyperstatique. On aura l’occasion d’en repasser au point 9. Les relations (2.5) peuvent également s’écrire sous forme matricielle avec :

$$[\delta^0](X) = (\delta^n_{\Sigma P}) - (\delta^0_{\Sigma P})$$

(2.6)

$$[\delta^0] \leftarrow \delta^0_{ij}$$

(2.7)

$$(\delta^n_{\Sigma P}) \leftarrow \delta^n_{i\Sigma P}$$

(2.8)

$$(\delta^0_{\Sigma P}) \leftarrow \delta^0_{i\Sigma P}$$

(2.9)

La résolution de ce système linéaire fournira les inconnues $X_j (j = 1, \ldots, n)$. Celles-ci étant déterminées, le problème hyperstatique est résolu : par superposition des cas élémentaires, on obtient sans peine les efforts internes en tout point de la structure de départ :

$$M^s_{\Sigma P} = M^0_{\Sigma P} + \sum_{j=1}^{n} m^0_{sj} X_j$$

(2.10)
CHAPITRE 2. LA MÉTHODE DES COUPURES.

\[T_{\Sigma P}^n = T_{\Sigma P}^0 + \sum_{j=1}^{n} t_{sj}^0 X_j \]
(2.11)

\[N_{\Sigma P}^n = N_{\Sigma P}^0 + \sum_{j=1}^{n} n_{sj}^0 X_j \]
(2.12)

Disposant ainsi des diagrammes de déformation, on est à même d’évaluer l’état de déplacement en tout point de la structure étudiée en utilisant, par exemple, le théorème de la force unité ou le second théorème de Castigliano [7] (puisque la structure est supposée élastique linéaire).

2.4.4 Calcul des coefficients \(\delta_{ij}^0 \) et \(\delta_{i\Sigma P}^0 \).

\(\delta_{ij}^0 \) désigne le déplacement relatif des livres de la coupure \(i \) (dans la direction \(i \)) d à une force unité agissant dans la coupure \(j \) (dans la direction \(j \)). Ce coefficient est donc un coefficient de flexibilité.

On peut le calculer aisément par le théorème de la force unité [7]. Dans le cas d’une structure plane formée de barres, \(\delta_{ij}^0 \) s’évalue par la relation

\[\delta_{ij}^0 = \int_0^s \frac{m_{si}^0 m_{sj}^0}{EI_s} ds + \int_0^s \frac{n_{si}^0 n_{sj}^0}{EA_s} ds + \int_0^s \frac{t_{si}^0 t_{sj}^0}{GA_s} ds \]
(2.13)

où \(m_{si}^0, n_{si}^0, t_{si}^0 \) sont les efforts internes courants dus à une force unité agissant dans la coupure \(i \), et \(m_{sj}^0, n_{sj}^0, t_{sj}^0 \) sont les efforts internes courants dû à une force unité agissant dans la coupure \(j \). On voit immédiatement que les coefficients \(\delta_{ij}^0 \) jouissent de la propriété suivante :

\[\delta_{ij}^0 = \delta_{ji}^0 \]
(2.14)

qui n’est qu’une forme particulière du théorème de réciprocité de Maxwell [7]. De même, \(\delta_{i\Sigma P}^0 \) représente le déplacement relatif des livres de la coupure \(i \) (dans la direction \(i \)) suite à l’application des forces extérieures. A nouveau, \(\delta_{i\Sigma P}^0 \) s’évalue par application du théorème de la force unité :

\[\delta_{i\Sigma P}^0 = \int_0^s \frac{m_{si}^0 M_{\Sigma P}^0}{EI_s} ds + \int_0^s \frac{n_{si}^0 N_{\Sigma P}^0}{EA_s} ds + \int_0^s \frac{t_{si}^0 T_{\Sigma P}^0}{GA_s} ds \]
(2.15)

où \(M_{\Sigma P}^0, N_{\Sigma P}^0, T_{\Sigma P}^0 \) désignent les efforts internes courants produits par les forces extérieures (\(\Sigma P \)) dans le système isostatique de référence. Dans le cas d’une structure en treillis, les expressions précédentes deviennent :

\[\delta_{ij}^0 = \sum \frac{n_{si}^0 n_{sj}^0 l}{EA_s} \]
(2.16)

\[\delta_{i\Sigma P}^0 = \sum \frac{n_{si}^0 N_{i\Sigma P}^0 l}{EA_s} \]
(2.17)

où la somme s’étend à toutes les barres composant le treillis.
2.5 Détermination des coefficients δ^{0}_{ij} et $\delta^{0}_{i\Sigma P}$.

2.5.1 Hypothèses simplificatrices.

En pratique, lorsqu’on analyse des poutres essentiellement fléchies, on néglige habituellement les déformations dues à l’effort tranchant et à l’effort normal sauf pour certaines constructions particulières (arcs très surbaissés par exemple). Toutefois, il importera de ne pas négliger les déformations dues à l’effort normal dans les barres de type treillis (tendeurs, suspentes, tirants ...) que l’on trouve fréquemment incorporés dans des assemblages de poutres (Figure 2.17, toitures haubanées par exemple). Hormis ces quelques cas particuliers, l’évaluation des coefficients δ^{0}_{ij} et $\delta^{0}_{i\Sigma P}$ reposera sur les formules :

\[
\delta^{0}_{ij} = \int_{0}^{s} \frac{m^{0}_{m} m^{0}_{xj}}{EI} ds \\
\delta^{0}_{i\Sigma P} = \int_{0}^{s} \frac{M^{0}_{m} M^{0}_{\Sigma P}}{EI} ds
\]

Dans le cas d’ossatures spatiales, l’évaluation concrète des coefficients δ^{0}_{ij} et $\delta^{0}_{i\Sigma P}$ requiert généralement la prise en compte des deux moments de flexion, du moment de torsion et, éventuellement, de l’effort normal :

\[
\delta^{0}_{ij} = \int_{0}^{s} \frac{m^{0}_{m} m^{0}_{xj}}{EI} ds + \int_{0}^{s} \frac{m^{0}_{y} m^{0}_{xj}}{EI} ds + \int_{0}^{s} \frac{m^{0}_{ts} m^{0}_{ts}}{GJ} ds + \int_{0}^{s} \frac{n^{0}_{m} n^{0}_{xj}}{EA} ds
\]

2.5.2 La convention de signe.

La formulation du problème linéaire repose essentiellement sur l’évaluation des coefficients δ^{0}_{ij} et $\delta^{0}_{i\Sigma P}$. Les intégrales correspondantes faisant intervenir chaque fois le produit de deux efforts internes sont dès lors indépendantes de la convention de signe adoptée car si on inverse cette convention, les deux termes du produit
FIG. 2.18 – Convention de signe. Traction \(N > 0 \), Compression \(N < 0 \), Rotation dans le sens horlogique \(T > 0 \), rotation anti-horlogique \(T < 0 \)

Il est donc inutile de donner un signe + ou - aux efforts internes tout au moins en ce qui concerne l’évaluation des \(\delta_{ij}^0 \) et \(\delta_{\Sigma P}^0 \) : il suffit de pouvoir discerner, rapidement et sans ambiguïté, les efforts internes de même sens et ceux de sens opposés. A cet effet, on adopte généralement la convention suivante pour le tracé des diagrammes des moments (\(M_{\Sigma P}^0, m_{si}^0, \ldots, m_{sn}^0 \)) : le diagramme des moments fléchissants est construit en reportant les moments du côté de la fibre tendue. Lors de l’évaluation des coefficients \(\delta_{ij}^0 \), il est alors évident que les moments reportés d’un même côté d’une barre sont de même sens alors que ceux reportés de part et d’autre sont de sens opposés. Enfin, dans le diagramme final des moments (obtenus par superposition), la position de la courbe des moments par rapport à la barre détermine immédiatement la fibre tendue et la fibre comprimée. Remarquons qu’il n’existe pas de convention de représentation pour les efforts normaux et les efforts transversaux. On prendra dès lors la précaution d’appliquer la convention de signe décrite sur la Figure 2.18.

En ce qui concerne le moment de torsion, on peut adopter la convention suivante :

FIGURE 5.2
On représente donc l’action sur les noeuds.

2.5.3 Inertie constante par tronçons.

Habituellement, les moments d’inertie sont constants par tronçons. Si on désigne par \(l_k \) et \(I_k \) les longueurs et inerties des différents tronçons composant le système structural, on peut écrire

\[
\delta_{ij}^0 = \sum_k \frac{1}{EI_k} \int_0^{l_k} m_{si}^0 m_{sj}^0 ds \tag{2.21}
\]

\[
\delta_{\Sigma P}^0 = \sum_k \frac{1}{EI_k} \int_0^{l_k} m_{si}^0 M_{\Sigma P}^0 ds \tag{2.22}
\]

où la somme porte sur les divers tronçons du système. Les intégrales peuvent être évaluées à l’aide des expressions analytiques des moments.
2.5.4 Evaluation des intégrales du type $\int m_{si}^{0} m_{sj}^{0} ds$ par l’emploi de tableaux.

Dans les applications numériques habituelles, les moments $m_{si}^{0}, m_{sj}^{0}, M_{s}^{0}$, ΣP varient selon une loi du 1er, 2ème ou, plus rarement, du 3ème degré. Il en résulte que l’on peut alléger considérablement les calculs si l’on dispose de tableaux donnant les valeurs calculées de ces intégrales pour les formes courantes du diagramme des moments. Le lecteur trouvera dans le tableau 2.19 un tel tableau qui se révèlera satisfaisant pour la suite.

2.5.5 Inertie variable.

Lorsque l’inertie varie, l’évaluation des coefficients δ_{ij}^{0} par voie analytique peut se révéler particulièrement laborieuse. Dans ces conditions, les méthodes d’intégration numériques se révèlent beaucoup plus attractives. La méthode des trapèzes et, mieux encore, la méthode de Simpson sont généralement utilisées dans ce cas [?].

2.6 Exemple d’application.

On désire calculer les efforts internes et les réactions d’appui dans la structure suivante :

![Diagram of the structure]

\[S_{\Sigma P}^{0} = \]

a) Détermination du degré d’hyperstaticité :
\[n = 6 \quad \Rightarrow \quad N_{c} = 3n - m = 17 \]
\[m = 1 \quad \Rightarrow \quad I_{s} = 5 \]
\[b = 5 \]
\[l = 8 \quad \Rightarrow \quad N_{i} = 3b + l - r = 22 \]
\[r = 1 \]

b) Choix d’un système isostatique de référence. Supprimons l’appui fixe C (2 efforts de liaison) et l’encastrement E (3 efforts de liaison). On a donc
Fig. 2.19 – Tableau des intégrales de Mohr $\frac{1}{2} \int_0^L M_i M_j ds$
2.7 Etablissement directe des équations de compatibilité.

L’objet de ce paragraphe est de montrer que l’on peut établir directement n’importe quelle équation de compatibilité à l’aide du théorème de la force unité. Illustrons-le en considérant la poutre continue représentée à la REFERENCE FIG 7.1. Nous souhaitons établir directement l’équation de compatibilité relative à la ième coupure. Celle-ci est supposée s’identifier à la suppression d’un appui intermédiaire.

FIGURE 7.1

L’équation de compatibilité dont il est question doit simplement exprimer l’existence d’un déplacement imposé \(n_i \) au droit de cet appui dans le système hyperstatique de départ soumis aux charges extérieures. Ce déplacement imposé \(\delta^n_{i\Sigma P} \) est généralement nul. Il peut toutefois être différent de 0 si nous souhaitons investiguer l’effet d’un tassement d’appui par exemple. Or, précisément, le théorème de la force unité nous permet de calculer ce déplacement en intégrant, sur le volume de la structure étudiée, les déformations généralisées réelles (courbures, allongement, glissement) multipliées par les contraintes généralisées (moment fléchissant, effort normal, effort tranchant) équilibrant statiquement une force unité correspondant au déplacement cherché. Mais il convient de souligner que les contraintes généralisées dont il est question ci-dessus ne doivent satisfaire que les équations d’équilibre. Il en résulte que le champ des contraintes généralisées produits par la force unité peut-être déterminé dans la structure isostatique de référence la plus simple. Quant à l’état de déformation dont il est question ci-dessus, c’est bien entendu l’état de déformation réel du système hyperstatique. On a donc

\[
\delta^n_{i\Sigma P} = \int \left(\frac{M^n_{i\Sigma P}}{EI_s} \right) m^0_{ai} ds + \int \left(\frac{N^n_{i\Sigma P}}{EA_s} \right) n^0_{ai} ds + \int \left(\frac{T^n_{i\Sigma P}}{GA_s} \right) t^0_{si} ds \quad (2.23)
\]

où \(m^0_{ai} \), \(n^0_{ai} \), \(t^0_{si} \) sont les efforts internes (dans un système isostatique de référence) dus à un effort unité appliqué dans la coupure i, et \(\left(\frac{M^n_{i\Sigma P}}{EI_s} \right) \), \(\left(\frac{N^n_{i\Sigma P}}{EA_s} \right) \), \(\left(\frac{T^n_{i\Sigma P}}{GA_s} \right) \) sont les déformations généralisées (dans le système hyperstatique) dues aux charges extérieures. Par ailleurs, l’état de déformation réel est identique à celui provoqué dans le système \(S^0 \) par l’ensemble des forces extérieures (\(\Sigma P \)) et des inconnues.
hyperstatiques \((X_1, ..., X_n)\). D’après le principe de superposition, on a donc
\[
M_{s \Sigma P}^n = M_{s \Sigma P}^0 + \sum_{j=1}^n m_{s j} X_j \quad (2.24)
\]
\[
T_{s \Sigma P}^n = T_{s \Sigma P}^0 + \sum_{j=1}^n t_{s j} X_j \quad (2.25)
\]
\[
N_{s \Sigma P}^n = N_{s \Sigma P}^0 + \sum_{j=1}^n n_{s j} X_j \quad (2.26)
\]
En remplaçant, dans l’équation (2.23), \(M_{s \Sigma P}^n\), \(N_{s \Sigma P}^n\) et \(T_{s \Sigma P}^n\) par les expressions ci-dessus, on obtient, après regroupement des termes,
\[
\delta_{i \Sigma P}^n = \int \frac{m_{s i} (M_{s \Sigma P}^0 + \sum_j m_{s j} X_j)}{E I_s} ds + \int \frac{n_{s i} (N_{s \Sigma P}^0 + \sum_j n_{s j} X_j)}{E A_s} ds + \int \frac{t_{s i} (T_{s \Sigma P}^0 + \sum_j t_{s j} X_j)}{G A^1_s} ds \quad (2.27)
\]
soit, compte tenu des notations définies antérieurement,
\[
\delta_{i \Sigma P}^n = \delta_{i \Sigma P}^0 + \sum_{j=1}^n \delta_{s j}^0 X_j \quad (2.28)
\]
qui n’est autre que l’équation (2.5).

2.8 Liaison avec le principe du travail minimum.

L’énoncé du principe du travail minimum est le suivant : “Les valeurs des efforts redondants qui se produisent réellement dans une structure élastique linéaire rendent minimum son énergie interne.” Soit, en désignant par \(U\) l’énergie interne emmagasinée dans la structure étudiée et par \(X_j\) les efforts redondants \((j = 1, ..., n)\) :
\[
\frac{\partial U}{\partial X_j} = 0 \quad j = 1, \ldots, n \quad (2.29)
\]
Montrons que les équations (2.29) ci-dessus ne sont, en fait, rien d’autre que les équations de compatibilité établies ci-avant. L’énergie interne peut se mettre sous la forme
\[
U = \int \frac{(M_{s \Sigma P}^n)^2}{2 E I_s} ds + \int \frac{(N_{s \Sigma P}^n)^2}{2 E A_s} ds + \int \frac{(T_{s \Sigma P}^n)^2}{2 G A^1_s} ds \quad (2.30)
\]
où \(M_{s \Sigma P}^n\), \(N_{s \Sigma P}^n\) et \(T_{s \Sigma P}^n\) sont les efforts internes qui se développent réellement dans la structure hyperstatique de départ. À nouveau, ces efforts résultent du principe de superposition
\[
M_{s \Sigma P}^n = M_{s \Sigma P}^0 + \sum_j m_{s j} X_j \quad (2.31)
\]
CHAPITRE 2. LA MÉTHODE DES COUPURES.

\[T^{n}_{s_{i}P} = T^{0}_{s_{i}P} + \sum_{j} t^{0}_{s_{j}j} X_{j} \]
(2.32)

\[N^{n}_{s_{i}P} = N^{0}_{s_{i}P} + \sum_{j} n^{0}_{s_{j}j} X_{j} \]
(2.33)

La condition \(\frac{\partial U}{\partial X_{j}} = 0 \) se réécrit sous la forme

\[\frac{\partial U}{\partial X_{j}} = \int \frac{M^{n}_{s_{i}P} \frac{\partial M^{n}_{s_{i}P}}{\partial X_{j}}}{EI_{s}} ds + \int \frac{N^{n}_{s_{i}P} \frac{\partial N^{n}_{s_{i}P}}{\partial X_{j}}}{EA_{s}} ds + \int \frac{T^{n}_{s_{i}P} \frac{\partial T^{n}_{s_{i}P}}{\partial X_{j}}}{GA_{s}^{1}} ds \]
(2.34)

Si on se reporte aux relations (2.31), (2.32) et (2.33), on voit que

\[\frac{\partial M^{n}_{s_{i}P}}{\partial X_{j}} = m^{0}_{s_{j}} \]
(2.35)

\[\frac{\partial T^{n}_{s_{i}P}}{\partial X_{j}} = t^{0}_{s_{j}} \]
(2.36)

\[\frac{\partial N^{n}_{s_{i}P}}{\partial X_{j}} = n^{0}_{s_{j}} \]
(2.37)

Et donc, la condition \(\frac{\partial U}{\partial X_{j}} = 0 \) devient

\[\int \frac{M^{n}_{s_{i}P} m^{0}_{s_{i}}}{EI_{s}} ds + \int \frac{N^{n}_{s_{i}P} n^{0}_{s_{i}}}{EA_{s}} ds + \int \frac{T^{n}_{s_{i}P} t^{0}_{s_{i}}}{GA_{s}^{1}} ds = 0 \]
(2.38)

En opérant à nouveau la substitution indiquée en (2.31), (2.32) et (2.33), on obtient

\[\delta^{0}_{i\Sigma P} = \sum \delta^{0}_{i j} X_{j} + \delta^{0}_{i \Sigma P} = 0 \]
(2.39)

qui n’est autre que la ième équation de compatibilité (en supposant l’absence de déplacement dans la ième coupure).

Exemple : Traitons le cadre ci-dessous en appliquant le principe de travail minimum.

FIGURE 8.1

a) Degré d’hyperstaticité : on voit (ou on calcule ...) sans peine que cette structure est hyperstatique de degré 3. On choisit pour inconnues hyperstatiques les efforts d’encastrement en A soit \(X_{1}, X_{2} \) et \(X_{3} \). On ne considère que les déformations dues à la flexion.

FIGURE 8.2

b) Application du principe de travail minimum. En supposant disposer des efforts \(X_{1}, X_{2} \) et \(X_{3} \), les efforts internes (et en particulier le moment fléchissant) sont calculables pour chaque membrure (barre) en exploitant les équations d’équilibre.
FIGURE 8.3
L’énergie de déformation prend alors la forme

\[U = \sum_{\text{barres}} \int \frac{M_s^2}{2EI_s} ds \]

où l’intégrale porte, chaque fois, sur une barre. Soit encore compte tenu des relations précédentes,

\[U = U(X_1, X_2, X_3, P, C) \]

Les conditions de compatibilité résultent de l’application du principe du travail minimum :

\[\frac{\partial U}{\partial X_1} = 0, \quad \frac{\partial U}{\partial X_2} = 0, \quad \frac{\partial U}{\partial X_3} = 0. \]

or

\[\frac{\partial U}{\partial X_i} = \sum_{\text{barres}} \int \frac{M_s \frac{\partial M}{\partial X_i}}{EI_s} ds \]

où les quantités \(M_s \) et \(\frac{\partial M}{\partial X_i} \) sont reprises ci-après :

TABLEAU 49

En injectant ces expressions dans 2.29 et en réalisant le travail d’intégration, on obtient un système de 3 équations à 3 inconnues :

**

La résolution de ce système fournira la valeur des inconnues hyperstatiques \(X_1, X_2 et X_3 \)

**
Chapitre 3

Éléments finis structuraux

3.1 Introduction

Dans le Chapitre 2, on a vu comment calculer la répartition des efforts internes dans une structure composée d’un assemblage de poutres. Les forces étaient les inconnues principales du problème et il était possible de calculer \textit{a posteriori} les déplacements de la structure.

Il est aussi possible d’utiliser directement les déplacements (des noeuds) de la structure comme inconnues. L’avantage de la méthode des déplacements est qu’elle est plus systématique et donc plus adaptée à un traitement informatique.

La méthode des déplacements est historiquement plus récente que la méthode des forces. En fait, il a fallu attendre 1920 pour voir apparaître l’idée d’étudier des assemblages de poutres en prenant comme inconnue les déplacements comme inconnues principales. Il est certain que, dans sa phase initiale, le développement de la méthode a été freiné par la taille des systèmes d’équations linéaires pouvant être résolus manuellement. Une technique de relaxation développée par Cross (1932) permit toutefois d’appliquer la méthode à des cas relativement complexes et s’imposa pendant plus de 25 ans comme la méthode principale d’analyse structurale. L’avenue des ordinateurs dans les années 1960 permit le traitement de problèmes jusqu’alors inabordables.

La formulation matricielle de la méthode des déplacements est en fait l’ancêtre de la méthode des éléments finis. Il est difficile de dire quand et où les éléments finis ont été découverts, bien qu’il soit clair que des papiers importants aient été publiés dans les années 1940 (Courant). C’est dans le milieu des années 1950 que les premières publications de base sur la mécanique structurale sont apparues. En particulier, il faut mentionner la série célèbre d’articles par Argyris et Kelsey dans la période 1954-55 (qui a été republiée plus tard sous la forme d’un livre) ainsi que le fameux ”Stiffness and Deflection Analysis of Complex Structures,” par Turner, Clough, Martin et Topp.

Les éléments finis sont utilisés aujourd’hui dans la plupart des domaines de l’ingénierie, depuis les calculs du rayonnement électromagnétique des antennes jus-
qu’aux interactions fluides structures entre la mer et un voilier. C’est dans le cadre
de la mécanique des structures que la méthode des éléments finis a été découverte
et, encore aujourd’hui, c’est dans ce domaine qu’elle est la plus utilisée et où la
quantité de travaux de recherche est la plus importante (Figure 3.1).

Dans cet exposé, nous allons étudier les éléments structuraux les plus impor-
tants dans le cadre de la méthode des éléments finis. On utilisera une démarche
commune pour chacun des éléments structuraux qui seront présentés :

1) Établissement d’hypothèses cinématiques (c’est-à-dire d’hypothèses sur le
champ de déplacement u') et d’hypothèses sur l’état de contrainte de la
structure.

2) Écriture du principe des travaux virtuels en tenant compte des hypothèses
du point 1).

3) Choix d’une discrétisation de laquelle on déduira les équations d’équilibre
de la structure sous forme matricielle $[k'](u') = (f')$.

4) Déductions des équations locales d’équilibre à partir du principe des travaux
virtuels.

5) Écriture des équations d’équilibre sous forme matricielle dans le système
d’axes global $[k](u) = (f)$.

Les éléments structuraux que nous allons développer sont les barres, les poutres de
Bernoulli et de Timoshenko, les poutres en torsion. A ce point, nous serons à même
de calculer des ossatures tridimensionnelles composées de poutres. Nous étudierons
ensuite les éléments structuraux à deux dimensions : les membranes, les plaques et
finalement une introduction aux éléments de coques. Tous ces développements se
feront dans le cadre de l’elasticité linéaire c’est-à-dire en utilisant la loi de com-
portement la plus simple. Nous étudierons finalement les phénomènes d’instabilité
structurales : flambeau et déversement des poutres et voilement des plaques. Ces
développements nécessiteront l’introduction d’effets du second ordre.

3.2 Principe des travaux virtuels

La forme forte (ou locale) du problème de l’elasticité linéaire s’écrit comme
suit. Il s’agit de trouver les champs de déplacement $u_i(x)$, de déformations $\epsilon_{ij}(x)$
et de contraintes $\sigma_{ij}(x)$ solution des équations suivantes :

$$\begin{align*}
\partial_j \sigma_{ij} + f_i &= 0 \text{ sur } \Omega \quad (ff.1) \\
\epsilon_{ij} &= 1/2 (\partial_i u_j + \partial_j u_i) = u_{(i,j)} \quad (ff.2) \\
\sigma_{ij} &= c_{ijkl} \epsilon_{kl} \quad (ff.3) \\
u_i &= U_i \text{ sur } \Gamma_U \quad (ff.4) \\
\sigma_{ij} n_j &= F_i \text{ sur } \Gamma_F \quad (ff.5)
\end{align*}$$

Les équation (ff.1) sont les équations d’équilibre entre contraintes (efforts intérieurs)
et forces extérieures f_i, les équations (ff.2) expriment la compatibilité avec hyp-
othèse de petites déformations et (ff.3) est une loi de comportement de type
FIG. 3.1 – Maillage de la structure d’un trimaran avec, en superposition, le champ de contraintes de Von-Mises.

FIG. 3.2 – Domaine Ω et sa frontière divisée en deux parties disjointes Γ_U et Γ_F.
élastique linéaire. Dans le cas isotrope, la loi se simplifie comme

\[\sigma_{ij} = \lambda \epsilon_{mn} \delta_{ij} + 2\mu \epsilon_{ij} \]

avec les coefficients de Lamé

\[\lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)} , \]
\[\mu = \frac{E}{2(1 + \nu)} , \]

\(E \) et \(\nu \) sont le module de Young et le coefficient de Poisson du matériau. On a finalement les conditions aux limites (ff.4) de types déplacements imposés \(U_i \) et tractions de surfaces imposées \(F_i \) (ff.5).

L’idée d’une méthode en déplacements est de supposer que le comportement et la compatibilité sont assurées \textit{a priori}. Pour cela, on choisit un champ de déplacement dans un espace fonctionnel suffisamment continu (appelons le \(U \), sa nature exacte est de peu d’intérêt ici) qui vérifie \textit{a priori} les conditions aux limites dites essentielles (ff.4). On choisit donc \(u \in U \subseteq U \) avec

\[U = \{ u \mid u \in U, \; u_i = U_i \; \text{sur} \; \Gamma_U \} . \]

Un champ \(u \in U \subseteq U \) est dit \textit{cinématiquement admissible}. On introduit un deuxième espace \(U_0 \)

\[U_0 = \{ u \mid u \in U, \; u_i = 0 \; \text{sur} \; \Gamma_U \} . \]

des fonctions à valeurs vectorielles dont la trace est nulle sur \(\Gamma_U \).

Choisissons donc les inconnues de déplacement \(u \in U \) et munissons nous d’un ensemble de fonctions test \(v \in U_0 \). En choisissant un champ \(u \), cinématiquement admissible, seules les équations (ff.1) et (ff.5) sont à vérifier \textit{a posteriori} i.e. par un calcul. Pour ce faire, on construit une forme variationnelle de l’équation d’équilibre (ff.1) en multipliant (ff.1) par chacune des fonctions test \(v \) et en intégrant le tout sur le domaine \(\Omega \):

\[\int_{\Omega} (\partial_j \sigma_{ij} + f_i) \; v_i \; dv = 0 \; \forall v_i \in U_0 . \] (3.1)

Après avoir intégré (3.1) par parties, on obtient

\[\int_{\Omega} (-\sigma_{ij} \partial_j v_i + f_i \; v_i) \; dv + \int_{\Gamma} \sigma_{ij} n_j \; v_i \; ds = 0 \; \forall v_i \in U_0 . \] (3.2)

Décomposons maintenant l’intégrale de surface dans (3.2) en deux parties :

\[\int_{\Gamma} \sigma_{ij} n_j \; v_i \; ds = \int_{\Gamma_U} \sigma_{ij} n_j \; v_i \; ds + \int_{\Gamma_F} \sigma_{ij} n_j \; v_i \; ds \] (3.3)
En tenant compte du comportement (ff.3) ainsi que du résultat classique

\[\sigma_{ij} \partial_j v_i = \sigma_{ij} v_{(i,j)}, \]

on obtient la formulation variationnelle en déplacements :

\[
\int_{\Omega} \left(-u_{(i,j)} c_{ijkl} v_{(k,l)} + f_i v_i \right) dv + \int_{\Gamma_F} F_i v_i ds = 0 \quad \forall v_i \in U_0. \tag{3.4}
\]

L’écriture des équations sous la forme (3.4) est remarquable à plus d’un point de vue. L’équation (3.4) remplace les 5 équations (ff.1-5) de la formulation forte : elle contient les conditions aux limites et les équations différentielles en une seule expression. Les conditions limites cinématiques (ff.4) sont prises en compte \textit{a priori} par le choix d’un champ de déplacements cinématiquement admissible. Les conditions limites (ff.4) sont dites \textit{essentielles}. Les conditions aux limites (ff.5) sont prises en compte dans le calcul, elles sont vérifiées \textit{a posteriori}. Elles sont appelées conditions limites \textit{naturelles}.

Notons qu’il existe des formulations basées sur la définition d’un champ de contraintes statiquement admissible c’est-à-dire vérifiant (ff.1) \textit{a priori}. Dans le cas d’une telle approche avec un champ de contraintes statiquement admissibles, les conditions aux limites (ff.4) sont naturelles et les conditions aux limites (ff.5) sont essentielles. Les formulations en contraintes sont beaucoup plus complexes à implémenter que les formulations en déplacements car il est difficile de construire \textit{a priori} un champ de déplacements vérifiant l’équilibre (ff.1).

3.3 Éléments finis structuraux

La forme (3.4) elle sert de base à la plupart des méthodes numériques classiques. La méthode des éléments finis n’échappe pas à cette règle.

La méthode des éléments finis est caractérisée par l’introduction d’une double discrétisation. La structure est décomposée en éléments géométriques, en général de forme simple : lignes, triangles, quadrangles, tétraèdres, hexaèdres, prismes ou pyramides. Le maillage est l’union des éléments géométriques :

\[T = \bigcup_e \Omega^e \tag{3.5} \]

En fonction du modèle structural que l’on désire utiliser, le maillage sera composé d’éléments unidimensionnels (barres, poutres, cables), bidimensionnels (membranes, plaques, coques) ou tridimensionnels (éléments volumiques). La Figure 3.3 montre quelques exemples de maillages. Notons qu’il est possible de définir des structures composées d’une mixture d’éléments 1D et 2D, par exemple un ensemble de plaques raidies par des poutres.

La deuxième étape consiste approximer les composantes \(u_i \) du déplacement \(u \) sur chaque élément \(\Omega^e \) du maillage en utilisant un nombre fini de fonctions de
Maillage 1D d’un pylône. Maillage coque d’une rame de métro.

Maillage 3D d’une voiture. Maillage structural d’un hélicoptère.

FIG. 3.3 – Maillages

base :

$$u_i = \sum_{A=1}^{n} N_A u_{iA}$$

(3.6)

où $N_A(x)$ est une fonction de base ou fonction de forme et où u_{iA} est un coefficient inconnu ou degré de liberté. Les degrés de liberté sont souvent liés aux valeurs de u_i aux noeuds du maillage mais ceci est loin de constituer une règle générale. Notons que, dans (3.6), on a supposé que chaque composante u_i du vecteur déplacement \mathbf{u} était approximé en utilisant la même base ce qui est, la aussi, loin d’être général.

3.4 Éléments unidimensionnels

Dans cette section, on considère des structures formées d’éléments constitifs unidimensionnels connectés ensemble en une série de points appelés noeuds de la structure.

Il est naturel de définir un système d’axes local lié à l’élément unidimensionnel (Figure 3.4). Les variables munies d’un prime comme u'_x sont évaluées dans le
Dans tous les éléments de structure unidimensionnels, on utilise l’hypothèse d’état uniaxial de contraintes, i.e. $\sigma'_{22} = \sigma'_{33} = 0$. Cette hypothèse sera toujours en contradiction avec les hypothèses cinématiques. En effet, à moins que le coefficient de Poisson ν du matériau ne soit nul, aucun des σ'_{ii} n’est nul. La justification d’une telle théorie est son grand intérêt dans les problèmes pratiques de l’ingénieur. Aucune théorie de barres, poutres ou plaques n’est à la fois cohérente avec le modèle tridimensionnel et simple en pratique.

Les différents éléments structuraux unidimensionnels peuvent être regroupés en différentes catégories en fonction de la façon dont on construit le champ de déplacement c’est-à-dire en fonction des hypothèses cinématiques.
3.5 Élément de barre

![Diagram of a bar element](image)

FIG. 3.5 – élément barre avec effort rasant $\gamma(x')$ et efforts normal concentré N.

3.5.1 Hypothèses

L’élément de barre (Figure 3.5) est le plus simple de l’analyse structurale. Il ne supporte que des déplacements u_x' dans la direction x'. Les hypothèses cinématiques pour l’élément de barre sont donc

$$
\begin{align*}
u_x' &= f(x') \\
u_y' &= 0 \\
u_z' &= 0
\end{align*}
$$

où f est une fonction suffisament continue (on va préciser ce qu’on entend par suffisament continu). On suppose ensuite que les contraintes axiales sont dominantes : $\sigma_{xx}' \gg \sigma_{yy}', \sigma_{zz}'$. On a donc, vu les hypothèses cinématiques et l’hypothèse d’état uniaxial de contraintes

$$
\varepsilon' = \begin{bmatrix}
\frac{\partial f}{\partial x'} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\quad\text{et}\quad
\sigma' = \begin{bmatrix}
E \frac{\partial f}{\partial x'} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}.
$$

3.5.2 Application du principe des travaux virtuels

On applique ensuite le principe des travaux virtuels à l’élément de barre en choisissant des déplacements virtuels compatibles. Vu les hypothèses cinématiques, un d’éplacement virtuel cinématiquement admissible s’écrit

$$
\begin{align*}
u_x' &= g(x') \\
u_y' &= 0 \\
u_z' &= 0
\end{align*}
$$

avec g une fonction suffisament continue. Le principe de stravaux virtuels s’écrit :

$$
\int_0^L \int_S d\gamma' d\varepsilon' E \frac{\partial f}{\partial x'} \frac{\partial g}{\partial x'} \, dx' = \int_0^L \gamma g \, dx' + N g(a) \quad \forall g
$$

(3.7)
On peut préciser le terme *suffisamment continue* qui s’applique à \(f \) et \(g \). Pour que la forme (3.7) ait un sens i.e. elle donne lieu à des valeurs finies, il est nécessaire que \(f \) et \(g \) appartiennent à un espace de fonctions tel que le carré des dérivées est intégrable sur \(\Omega \). Les *espaces de Sobolev* sont des espaces de fonctions (ou espaces fonctionnels) définis comme suit :

\[
H^k = H^k(\Omega) = \{ u | u \in L_2, \partial_x^k u \in L_2, \ldots, \partial_x^{k} u \in L_2 \} \quad (3.8)
\]

où

\[
L_2 = L_2(\Omega) = \{ u | \int_0^L u^2 dx' < \infty \} \quad (3.9)
\]

On doit donc choisir \(f \in H^1 \) et \(g \in H^1 \). Notons qu’il existe un rapport direct entre le \(k \) du \(H^k \), la dimension du problème (1D,2D ou 3D) et l’ordre de continuité au sens classique des fonctions dans \(H^k \) (c’est le fameux Sobolev Embedding Theorem). Nous ne nous attarderons pas à ces considérations mais nous donnerons simplement le résultat suivant : pour qu’une fonction \(f \) d’une variable \(x' \) soit dans \(H^1 \), il est nécessaire que la fonction soit continue.

3.5.3 Discrétisation et calcul de la matrice de raideur \([k']\)

Les plus simples des fonctions continues dont la dérivée n’est pas identiquement nulle (i.e. il existe des déformations) sont les fonctions linéaires. Si on suppose que les déplacements de la barre varient linéairement entre les extrémités \(x' = 0 \) et \(x' = L \), on a besoin de deux degrés de liberté pour caractériser son déplacement. En vue d’assurer la possible continuité entre les déplacements d’un treillis de barres, on définit les degrés de liberté comme les déplacements de la barre en \(x' = 0 \) et \(x' = L \). (Figure 3.6). On a besoin de deux fonctions de base pour interpoler le déplacement entre \(x' = 0 \) et \(x' = L \)

\[
f(x') = f(0)N_1(x') + f(L)N_2(x')
\]

\[
= (f)^t \cdot (N) \quad (3.10)
\]
avec le vecteur des fonctions de bases
\[
(N) = \begin{pmatrix} N_1(x') \\ N_2(x') \end{pmatrix}
\]

(3.11)

Les fonctions de bases sont faciles à déterminer en utilisant (3.10). On trouve

\[
N_1(x') = \frac{x}{L}
\]
\[
N_2(x') = 1 - \frac{x}{L}
\]

On trouvera une représentation graphique des fonctions de base de la barre sur la Figure 3.7. Dans le cadre d’une méthode variationnelle, on a besoin aussi d’une base pour caractériser l’espace des fonctions test. En principe, n’importe quel choix de fonctions test est valable. En pratique, on emploie le plus souvent la méthode dite de Galerkin qui consiste à utiliser les mêmes fonctions test que les fonctions de base. Cette méthode à l’avantage de conduire à des systèmes d’équations symétriques (pour les problèmes elliptiques coercifs). Le principe variationnel en déplacements s’écrit donc, pour l’élément de barre

\[
f(0) \int_0^L EA \frac{\partial N_1}{\partial x'} \frac{\partial N_1}{\partial x'} \, dx' + f(L) \int_0^L EA \frac{\partial N_2}{\partial x'} \frac{\partial N_1}{\partial x'} \, dx' = \int_0^L \gamma N_1 \, dx' + NN_1(a)
\]
\[
f(0) \int_0^L EA \frac{\partial N_1}{\partial x'} \frac{\partial N_2}{\partial x'} \, dx' + f(L) \int_0^L EA \frac{\partial N_2}{\partial x'} \frac{\partial N_2}{\partial x'} \, dx' = \int_0^L \gamma N_2 \, dx' + NN_2(a)
\]

ou sous forme matricielle

\[
[k'](u') = (f')
\]

(3.12)
avec la matrice de raideur

\[
[k'] = \left[\begin{array}{cc}
\int_0^L EA \frac{\partial N_1}{\partial x'} \frac{\partial N_j}{\partial x'} dx' & \int_0^L EA \frac{\partial N_1}{\partial x'} \frac{\partial N_j}{\partial x'} dx' \\
\int_0^L EA \frac{\partial N_2}{\partial x'} \frac{\partial N_j}{\partial x'} dx' & \int_0^L EA \frac{\partial N_2}{\partial x'} \frac{\partial N_j}{\partial x'} dx'
\end{array} \right],
\tag{3.13}
\]

le vecteur des forces

\[
(f') = \begin{pmatrix}
\int_0^L \gamma N_1 dx' + NN_1(a) \\
\int_0^L \gamma N_2 dx' + NN_2(a)
\end{pmatrix} = \begin{pmatrix}
f'_x(0) \\
f'_x(L)
\end{pmatrix},
\tag{3.14}
\]

et les degrés de liberté

\[
(f) = \begin{pmatrix}
f(0) \\
f(L)
\end{pmatrix} = \begin{pmatrix}
u_x'(0) \\
u_x'(L)
\end{pmatrix}.
\tag{3.15}
\]

Si on suppose que \(E\) et \(A\) sont constants, on trouve

\[
[k'] = \frac{EA}{L} \begin{pmatrix}
1 & -1 \\
-1 & 1
\end{pmatrix}.
\tag{3.16}
\]

L’interprétation de la matrice \([k']\) est très importante. \(k'_{IJ}\) est la force qu’il faut appliquer au noeud \(I\) pour obtenir un déplacement unitaire au noeud \(J\). La matrice \([k']\) est appelée \textit{matrice de raideur de l’élément}. L’équation (3.12) est l’expression matricielle de l’équation d’équilibre. L’équation \(k'_{II}u'_I + k'_{IJ}u'_J = f'_I\) exprime l’équilibre des forces au noeud \(I\) i.e. la somme des forces internes dues aux deux déplacements est égale à la force appliquée au noeud. Notons qu’on a réparti l’effort rasant \(\gamma\) aux noeuds. C’est évidemment une approximation et c’est la seule cause d’erreurs introduite dans le modèle.

3.5.4 Établissement des équations d’équilibre locales

![Diagram](image)

FIG. 3.8 – Barre chargée et fixée en \(x' = L\).

Reprendre le principe variationnel et essayons d’en déduire l’équation différentielle correspondante. Prenons l’exemple de la barre sur la Figure 3.8. En intégrant par parties (3.7), on trouve

\[
-\int_0^L AE \frac{\partial^2 f}{\partial x'^2} dx' + AE \frac{\partial f}{\partial x'} dx' \bigg|_0^L = \int_0^L \gamma g dx' + Pg(0) \forall g.
\tag{3.17}
\]
En regroupant les termes et en tenant compte que
\[g(L) = 0 \text{ car } g \in U_0, \]
on on obtient
\[\int_0^L AE \left(\frac{\partial^2 f}{\partial x'^2} + \gamma \right) g dx' + \left(AE \frac{\partial f}{\partial x'} - P \right) g(0) = 0 \quad \forall g. \quad (3.18) \]

L’équation (3.18) est vraie pour tout \(g \in U_0 \). Elle est donc vraie pour une fonction \(\geq 0 \) telle que \(g(0) = 0 \) (\(g = x'/L(1 - x'/L) \) par exemple). Dans ce cas on doit automatiquement avoir que :
\[\frac{\partial}{\partial x'} EA \frac{\partial f}{\partial x'} + \gamma = 0 \quad (3.19) \]

C’est l’équation différentielle d’équilibre de la barre que nous cherchions. L’équation (3.18) est vraie pour \(g \) tel que \(g(0) = 1 \). dans ce cas, on en déduit que :
\[AE \frac{\partial f}{\partial x'}|_{x'=0} = P. \quad (3.20) \]

C’est la condition limite naturelle. Si on pose, comme on le fait habituellement en résistance des matériaux
\[N = AE \frac{\partial f}{\partial x'}, \]
on trouve les relations classiques
\[\frac{\partial N}{\partial x'} + \gamma = 0 \quad (3.21) \]
et
\[N|_{x'=0} = P. \quad (3.22) \]
Si l’effort rasant est nul, alors la solution exacte de l’élément de barre est un déplacement linéaire. Les éléments finis donneront donc la solution exacte dans ce cas.

3.5.5 Calcul de la matrice de raideur \([k]\) : treillis de barres

Les treillis de barres sont des assemblages de barres reliées par des rotules où les efforts sont appliqués aux noeuds et pas sur les barres elle-mêmes. Une ossature spatiale formée de barres connectée par des noeuds rigides peut fonctionner en treillis (c’est-à-dire que l’on peut négliger la flexion) sous certaines conditions :

– Les forces sont appliquées aux noeuds de la structure,
– La structure telle que l’on remplace les noeuds par des rotules ne comporte pas de mécanismes. La structure de la Figure 3.9 n’est, par exemple, pas un treillis.

Le treillis de la Figure 3.9 est composé de 5 barres et 4 noeuds. Nous allons maintenant expliquer comment calculer la matrice de rigidité d’un treillis de barres au complet. Nous détaillerons ensuite comment ajouter des contraintes de type déplacement imposé et éliminer les modes rigides en vue d’être capable de calculer les déplacement de la structure.
Nous avons calculé dans la section 3.5 la matrice de rigidité d’une barre dans ses axes propres. Une barre a deux degrés de liberté qui correspondent au déplacement de ses extrémités avec une variation linéaire du déplacement entre ces extrémités. Dans un treillis de barres, chaque barre a un système d’axes propre \textit{a priori} différent pour chaque barre. La première étape de l’assemblage consiste à calculer la matrice de raideur d’une barre dans un système d’axes commun 0, x, y, z. Dans le cas d’un treillis de barres dans le plan 0, x, y, chaque barre possède quatre degrés de liberté : un déplacement suivant chaque direction pour chaque extrémité de la barre (Figure 3.10). On écrit l’équation d’équilibre de la barre en tenant...
compte des déplacements orthogonaux \(u'_y \)

\[
\frac{E A}{L} \begin{bmatrix}
 1 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 \\
 -1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 u'_x(0) \\
 u'_y(0) \\
 u'_x(L) \\
 u'_y(L)
\end{bmatrix} = \begin{bmatrix}
 f'_x(0) \\
 f'_y(0) \\
 f'_x(L) \\
 f'_y(L)
\end{bmatrix}.
\] (3.23)

Nous savons en outre que, vu la configuration géométrique décrite sur la Figure 3.10, que

\[
(u') = \begin{bmatrix}
 u'_x(0) \\
 u'_y(0) \\
 u'_x(L) \\
 u'_y(L)
\end{bmatrix} = \begin{bmatrix}
 \cos(\alpha) & \sin(\alpha) & 0 & 0 \\
 -\sin(\alpha) & \cos(\alpha) & 0 & 0 \\
 0 & 0 & \cos(\alpha) & \sin(\alpha) \\
 0 & 0 & -\sin(\alpha) & \cos(\alpha)
\end{bmatrix} \begin{bmatrix}
 u_x(0) \\
 u_y(0) \\
 u_x(L) \\
 u_y(L)
\end{bmatrix} = [T](u)
\]

Il existe une relation identique pour les forces

\[
(f') = [T](f).
\]

Notons que la matrice \([T]\) est orthogonale et que son inverse est par conséquent égal à sa transposée. L’équilibre donne donc dans des axes globaux

\[
[k'](u') = (f') \Rightarrow [T]^{-1}[k'][T](u) = (f).
\] (3.24)

On déduit de (3.24) la matrice de raideur de la barre dans les axes globaux

\[
[k] = [T]^{-1}[k'][T] = \frac{E A}{L} \begin{bmatrix}
 \cos^2(\alpha) & \sin(\alpha) \cos(\alpha) & -\cos^2(\alpha) & -\sin(\alpha) \cos(\alpha) \\
 \sin(\alpha) \cos(\alpha) & \sin^2(\alpha) & -\sin(\alpha) \cos(\alpha) & -\sin^2(\alpha) \\
 -\cos^2(\alpha) & -\sin(\alpha) \cos(\alpha) & \cos^2(\alpha) & \sin(\alpha) \cos(\alpha) \\
 -\sin(\alpha) \cos(\alpha) & -\sin^2(\alpha) & \sin(\alpha) \cos(\alpha) & \sin^2(\alpha)
\end{bmatrix}
\]

3.5.6 Exemples

En vue d’illustrer la manière de calculer la matrice de raideur globale du treillis, on considère le problème décrit sur la Figure 3.11. Ce treillis est composé de 3 noeuds et 2 barres. Il existe donc 6 degrés de liberté dans le système i.e. 2 pour chaque noeud. Si \(u_{x\alpha} \) désigne le déplacement du noeud \(\alpha \) dans la direction \(\alpha \), l’équilibre des deux barres s’écrit :

\[
\frac{E A}{L} \begin{bmatrix}
 1 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 \\
 -1 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
 u_{x1} \\
 u_{y1} \\
 u_{x2} \\
 u_{y2}
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 -F
\end{bmatrix} \text{ barre } 1 \rightarrow 2
La matrice de raideur globale n’est pas invertible car le système non contraint possède un certain nombre de modes rigides i.e. des combinaisons de déplacements qui ne déforment pas la structure : translation suivant x ou y ainsi qu’un mode de rotation. Cela se traduit par le fait que la matrice de raideur globale possède 3 valeurs propres nulles et 3 vecteurs propres relatifs qui correspondent à une translation suivant x, une translation suivant y et une rotation. L’imposition de contraintes sur le champ de déplacement permet d’éliminer les modes rigides. Il s’agit d’empêcher les modes de translation en fixant au moins un déplacement suivant chaque direction et empêcher les rotations. Il existe 3 méthodes principales pour imposer des conditions aux limites dans le cadre de la méthode des éléments finis.

La première méthode est la plus brutale et consiste à ajouter une raideur propre $\Lambda \gg 1$ élevée au noeur et dans la direction que l’on veut fixer. Dans le cas de l’exemple de la Figure 3.12, l’équation d’équilibre devient :

$\left[\begin{array}{cccccc} 1/2 & 1/2 & -1/2 & -1/2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right] \left[\begin{array}{c} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ -F \end{array}\right]$
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

Fig. 3.12 – Conditions aux limites pour le treillis de la Figure 3.11

\[
\begin{bmatrix}
\frac{EA}{2\sqrt{2}L} & \Lambda + 2\sqrt{2} & 0 & -2\sqrt{2} & 0 & 0 & 0 \\
0 & \Lambda & 0 & 0 & 0 & 0 & 0 \\
-2\sqrt{2} & 0 & 1 + 2\sqrt{2} & 1 & -1 & -1 & 0 \\
0 & 0 & -1 & 1 & -1 & 1 & 0 \\
0 & 0 & -1 & -1 & \Lambda + 1 & 1 & 1 \\
0 & 0 & -1 & -1 & -1 & \Lambda + 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
u_{x1} \\
u_{y1} \\
u_{x2} \\
u_{y2} \\
u_{x3} \\
u_{y3} \\
\end{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
-F \\
0 \\
-\Lambda \frac{EA}{2\sqrt{2}L} U_{y3} \\
\end{bmatrix}
\]

Ce système est invertible et donne la solution. Néanmoins, le conditionnement du système à résoudre se dégrade énormément. Cela entraîne des difficultés numériques pour l’inverser. De plus, il est difficile de choisir \textit{a priori} une valeur de \(\Lambda \) qui convienne si les raideurs des éléments de barres sont très différentes. Cette solution est donc la plus simple mais certainement pas la plus efficace.

La deuxième façon d’imposer les conditions aux limites est d’éliminer directement du système les inconnues \(u_{i} \) dont la valeur est fixée. Dans le cas de l’exemple de la Figure 3.12, on a

\[
\begin{bmatrix}
\frac{EA}{2\sqrt{2}L} & 2\sqrt{2} & 0 & -2\sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2\sqrt{2} & 0 & 1 + 2\sqrt{2} & 1 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 0 \\
0 & 0 & -1 & 1 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & 1 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
u_{x2} \\
u_{y2} \\
\end{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
-F \\
0 \\
-\Lambda \frac{EA}{2\sqrt{2}L} U_{y3} \\
\end{bmatrix}
\]

Les lignes correspondant aux inconnues fixées sont inutiles. Il reste donc 2 équations

\[
\begin{bmatrix}
\frac{EA}{2\sqrt{2}L} & 1 + 2\sqrt{2} & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
u_{x2} \\
u_{y2} \\
\end{bmatrix}
=
\begin{bmatrix}
-\frac{EA}{2\sqrt{2}L} U_{y3} \\
-F \\
\end{bmatrix}
\]

La solution du problème pour les deux sollicitations prises séparément est esquissee sur la Figure 3.13.

\footnote{Le conditionnement d’un système d’équations linéaires est égal au rapport des plus grande et plus petite valeurs propres.}
3.6 Élément de Poutre de Bernoulli-Euler en flexion plane

Dans le modèle de Bernoulli-Euler, on adopte les hypothèses cinématiques suivantes pour la flexion pure :

\[u'_x = -y' \frac{\partial f}{\partial x'} \]
\[u'_y = f(x') \]
\[u'_z = 0 \]

(3.25)
avec \(f \) une fonction suffisamment continue qui représente la déflexion de la fibre neutre (la notion de continuité minimum pour la flexion des poutres est différente de celle des barres, nous allons le préciser plus loin). Les hypothèses (3.25) correspondent au cas où les sections droites de la poutre restent orthogonales à la fibre neutre après déformation (Figure 3.14). Sous ces hypothèses, les sections droites de la poutre ne subissent aucun glissement. En effet,

\[
2\varepsilon_{xy}' = \frac{\partial u_x'}{\partial y} + \frac{\partial u_y'}{\partial x'} = \frac{\partial f}{\partial x'} - \frac{\partial f}{\partial x} = 0
\]

Ceci ne veut en aucun cas dire qu’il n’existe pas d’efforts tranchants dans la section : s’il existe des forces extérieures \(\tau(x') \) ou \(T \) (Figure 3.14) dans le plan de la poutre, elles doivent évidemment entraîner l’existence d’efforts tranchants. Ici, tout se passe comme si la poutre soumise à des efforts tranchants était infiniment rigide au cisaillement et ne subissait pas de glissement. C’est encore une fois une incohérence inhérente aux hypothèses de départ mais qui ne porte pas à conséquences par la suite. Dans un paragraphe suivant §3.7, nous introduirons un autre modèle de poutre avec d’autres hypothèses cinématiques qui permettront la prise en compte de l’effort tranchant (modèle de Timoshenko). On a donc, vu les hypothèses cinématiques et l’hypothèse d’état uniaxial de contraintes

\[
\varepsilon' = \begin{bmatrix}
-y' \frac{\partial^2 f}{\partial x'^2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad \text{et} \quad \sigma' = \begin{bmatrix}
-E y' \frac{\partial^2 f}{\partial x'^2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

3.6.2 Application du principe des travaux virtuels

Nous désirons maintenant écrire le principe des travaux pour la poutre de Bernoulli. Pour cela, on a besoin de définir un ensemble de déplacements virtuels \(v \) compatibles avec les hypothèses cinématiques. La façon la plus simple est de choisir une fonction continue \(g \) et des déplacements virtuels \(v \) avec \(v_y' = g(x') \), et \(v_x' = -y' \frac{\partial g}{\partial x} \) et de construire un champ de déformations admissible \(-y' \frac{\partial^2 g}{\partial x'^2} \). Le principe des travaux virtuels s’écrit donc

\[
\int_0^L \int_S \frac{y'^2 \sigma^2}{2} dx' = \int_0^L \tau \, g \, dx' + Tg(a) - M \frac{\partial g}{\partial x}(b) \quad \forall g.
\]

La forme (3.26) fait intervenir le carré des dérivées secondes de champs de déplacements \(f \) et \(g \). Les champ de déplacements \(f \) et \(g \) devront donc appartenir à \(H^2(\Omega) \) c’est-à-dire qu’il devront avoir leurs dérivées \(\frac{\partial f}{\partial x'} \) continues aux jonctions des poutres.\(^3\)

\(^3\)pour les barres de la section §3.5, seul le déplacement devait être continu mais pas nécessairement sa dérivée.
FIG. 3.15 – Quatre degrés de liberté pour discrétiser le déplacement vertical de la poutre de Bernoulli.

3.6.3 Discrétisation et calcul de la matrice de raideur \([k']\)

En vue d’obtenir une discrétisation dans \(C^1\) c’est-à-dire où le champ de déplacements a sa dérivée continue aux jonctions des poutres, il est naturel de choisir degrés de libertés un déplacement \(u_{yi}^0\); \(i = 1; 2\) aux 2 extrémités de la poutre ainsi que la dérivée du déplacement \(\frac{\partial u_{yi}^0}{\partial x_0} = \theta_{yi}^0\); \(i = 1; 2\) aux 2 extrémités (Figure 3.15). Ce faisant, on garanti a priori la continuité du déplacement et de sa dérivée. Les fonctions de base \(N_i\) de la poutre seront donc au minimum des cubiques. On écrit

\[
 f(x') = N_1(x') f(0) + N_2(x') \frac{\partial f}{\partial x'}(0) + N_3(x') f(L) + N_4(x') \frac{\partial f}{\partial x'}(L). \quad (3.27)
\]

On peut donc aisément calculer les fonctions de base en tenant compte de (3.27). Par exemple, on a pour \(N_2\) que \(N_2(0) = N_2(L) = \frac{\partial N_2}{\partial x'}(L) = 0\) et \(\frac{\partial N_2}{\partial x'}(0) = 1\) ce qui donne 4 conditions pour calculer les 4 paramètres d’un cubique. On a donc, si on pose \(t = \left(\frac{x'}{L} \right)\),

\[
 N_1(x') = (2t + 1)(t - 1)^2 \\
 N_2(x') = Lt(t - 1)^2 \\
 N_3(x') = t^2(-2t + 3) \\
 N_4(x') = -L(1 - t)t^2. \quad (3.28)
\]

Les polynômes \(N_i\) de (3.28) sont des polynômes de Hermite. Il est possible maintenant d’écrire l’équilibre de la poutre sous la forme matricielle (3.12). La matrice de raideur \([k']\) de l’élément de poutre de Bernoulli est une matrice \(4 \times 4\) dont l’élément

\[
 k_{ij} = \int_0^L EI' z \frac{\partial^2 N_i}{\partial x'^2} \frac{\partial^2 N_j}{\partial x'^2} dx'.
\]
peut se calculer aisément si l’inertie \(I'_z \) de la poutre et le module de Young \(E \) sont constants :

\[
[k'] = \frac{E I'_z}{L^3} \begin{bmatrix}
12 & 6L & -12 & 6L \\
6L & 4L^2 & -6L & 2L^2 \\
-12 & -6L & 12 & -6L \\
6L & 2L^2 & -6L & 4L^2
\end{bmatrix}
\] \((3.29) \)

Le vecteur des forces de la poutre s’écrit

\[
(f') = \begin{pmatrix}
\int_0^L \tau N_1 \, dx' + TN_1(a) - M \frac{\partial N_1}{\partial x'}(b) \\
\int_0^L \tau N_2 \, dx' + TN_2(a) - M \frac{\partial N_2}{\partial x'}(b) \\
\int_0^L \tau N_3 \, dx' + TN_3(a) - M \frac{\partial N_3}{\partial x'}(b) \\
\int_0^L \tau N_4 \, dx' + TN_4(a) - M \frac{\partial N_4}{\partial x'}(b)
\end{pmatrix}
\] \((3.30) \)

tandis que le vecteur de degrés de liberté de la poutre s’écrit

\[
(u') = \begin{pmatrix}
u'_{y1} \\
\theta'_{x1} \\
u'_{y2} \\
\theta'_{x2}
\end{pmatrix}
\] \((3.31) \)

3.6.4 Établissement des équations d’équilibre locales

Reprenons le principe variationnel de la poutre et essayons d’en déduire l’équation différentielle correspondante. Prenons l’exemple de la poutre sur la Figure 3.17. En
intégrant deux fois par parties (3.26), on trouve
\[\int_0^L \frac{\partial^2}{\partial x'^2} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) g \, dx' - \frac{\partial}{\partial x'} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) g \bigg|_0^L + I'_z E \frac{\partial^2 f}{\partial x'^2} \frac{\partial g}{\partial x'} \bigg|_0^L \]
\[= \int_0^L \tau g \, dx' + Tg(0) - M \frac{\partial g}{\partial x'}(0) \quad \forall g. \quad (3.32) \]

En regroupant les termes et en choisissant \(g \) tel que que \(g(L) = \frac{\partial g}{\partial x'}(L) = 0 \), on obtient
\[\int_0^L \left(\frac{\partial^2}{\partial x'^2} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) + \tau \right) g \, dx' + \left(\frac{\partial}{\partial x'} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) (0) - T \right) g(0) \, dx' \]
\[+ \left(I'_z E \frac{\partial^2 f}{\partial x'^2} - M \right) \frac{\partial g}{\partial x'}(0) = 0 \quad \forall g. \quad (3.33) \]

L’équation (3.33) est vraie pour tout \(g \in U_0 \). Elle est donc vraie pour une fonction \(g \geq 0 \) telle que \(g(0) = \frac{\partial g}{\partial x'}(0) = 0 \) (\(g = N_1 N_3 \) par exemple). Dans ce cas on doit automatiquement avoir que :
\[\frac{\partial^2}{\partial x'^2} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) = \tau. \quad (3.34) \]

C’est l’équation différentielle d’équilibre de la poutre que nous cherchions. L’équation (3.33) est vraie pour \(g \) tel que \(g(0) = 1 \) et \(\frac{\partial g}{\partial x'}(0) = 0 \). On en déduit que :
\[\frac{\partial}{\partial x'} \left(I'_z E \frac{\partial^2 f}{\partial x'^2} \right) (0) = T. \quad (3.35) \]

C’est une condition limite naturelle. L’autre condition limite naturelle est obtenue en choisissant \(g \) tel que \(\frac{\partial g}{\partial x'}(0) = 1 \). On a la deuxième condition naturelle
\[I'_z E \frac{\partial^2 f}{\partial x'^2}(0) = M. \quad (3.36) \]

\[^4 \text{On a, dans ce cas, } U_0 = \{ g \mid g \in H^2, \quad g(L) = \frac{\partial g}{\partial x'}(L) = 0 \} \]
Si on pose, comme on le fait habituellement en résistance des matériaux
\[I'_z E \frac{\partial^2 f}{\partial x'^2} = M(x'), \]
on trouvé les relations classiques
\[\frac{\partial^2 M}{\partial x'^2} + \tau = 0, \quad (3.37) \]
et
\[\frac{\partial M}{\partial x'} = T. \quad (3.38) \]
Si l’effort tranchant \(\tau \) est nul, alors la solution exacte de l’élément de poutre est un déplacement cubique. Les éléments finis donneront donc la solution exacte dans ce cas. Le moment de flexion \(M(x') \) peut être aisément calculé en utilisant (3.36). On a
\[\frac{M(x')}{I'_z E} = \frac{\partial^2 f(x')}{\partial x'^2} = \frac{1}{L^2} \left(\frac{\partial^3 N_1(t)}{\partial t^3} u_{y1}' + \frac{\partial^3 N_2(t)}{\partial t^3} \theta_{z1}' + \frac{\partial^3 N_3(t)}{\partial t^3} u_{y2}' + \frac{\partial^3 N_4(t)}{\partial t^3} \theta_{z2}' \right) \]
\[= \frac{1}{L^2} \left((12t - 6) u_{y1}' + L(6t - 4) \theta_{z1}' + (-12t + 6) u_{y2}' + L(6t - 2) \theta_{z2}' \right). \]
Le moment de flexion est linéaire sur chaque poutre. L’effort tranchant peut lui aussi être calculé :
\[\frac{T(x')}{I'_z E} = \frac{\partial^3 f(x')}{\partial x'^3} = \frac{1}{L^3} \left(\frac{\partial^4 N_1(t)}{\partial t^4} u_{y1}' + \frac{\partial^4 N_2(t)}{\partial t^4} \theta_{z1}' + \frac{\partial^4 N_3(t)}{\partial t^4} u_{y2}' + \frac{\partial^4 N_4(t)}{\partial t^4} \theta_{z2}' \right) \]
\[= \frac{1}{L^3} \left(12 u_{y1}' + 6 L \theta_{z1}' - 12 u_{y2}' + 6 L \theta_{z2}' \right). \]

Exemple

On considère la poutre console de la Figure 3.17. On suppose que \(M = T = 0 \), que \(\tau = 1 \), que \(I'_z = 1 \), que \(E = 1 \) et que \(L = 1 \). La résolution de l’équation différentielle avec les conditions aux limites donne la déformée exacte de la poutre :
\[f_{ex}(x') = \frac{1}{24} (x'^4 - 4x' + 3) \quad (3.39) \]
Voyons que donne la solution par éléments finis. On a
\[\begin{bmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{bmatrix} \begin{bmatrix} u_{y1}' \\ \theta_{z1}' \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \int_0^1 N_1 dx' \\ \int_0^1 N_2 dx' \\ \int_0^1 N_3 dx' \\ \int_0^1 N_4 dx' \end{bmatrix} \quad (3.40) \]
On utilise la méthode de réduction vue plus haut pour obtenir le système

\[
\begin{bmatrix}
 12 & 6 \\
 6 & 4
\end{bmatrix}
\begin{bmatrix}
 u'_{y_1} \\
 \theta'_{z_1}
\end{bmatrix}
= \begin{bmatrix}
 1/2 \\
 1/12
\end{bmatrix}
\]

(3.41)
dont la solution est

\[
\begin{bmatrix}
 u'_{y_1} \\
 \theta'_{z_1}
\end{bmatrix}
= \begin{bmatrix}
 3/24 \\
 -4/24
\end{bmatrix}.
\]

(3.42)

La déflexion de la poutre calculée par la méthode des éléments finis donne donc :

\[
f_{ef}(x') = \frac{3}{24} N_1 - \frac{4}{24} N_2 = ((x' - 1)^2(2x' + 3)).
\]

La figure 3.18 permet de comparer les solutions exacte et par éléments finis. Calculons

![Graphique comparatif de la déflexion exacte et par éléments finis](image)

Fig. 3.18 – Comparaison entre solution exacte \(f_{ex} \) et solution par éléments finis \(f_{ef} \) de la flexion d’une poutre console.

maintenant les contraintes généralisées (moments de flexion) dans la barre. Elles valent

\[
M_{ex} = EI_z \frac{\partial^2 f_{ex}}{\partial x'^2} = 1/2 x'^2
\]

et

\[
M_{ef} = EI_z \frac{\partial^2 f_{ef}}{\partial x'^2} = x/2 - 1/12
\]

La Figure 3.19 montre une comparaison entre \(M_{ex} \) et \(M_{ef} \). On voit qu’il existe deux points où les solution exactes et approchées coïncident. Ces points sont d’une
Une autre remarque intéressante concernant ce problème concerne le moment

\[M_{ex} - M_{ef} \simeq M'_{ef} - M_{ef} \]

Les estimateurs d’erreur développés initialement par Zienkiewicz et Zhu [?] utilisent la superconvergence des solutions éléments finis aux points de Gauss-Legendre pour estimer l’erreur de discrétisation \textit{a posteriori}.

\(\text{Les polynômes de Legendre peuvent se calculer par la formule de récurrence } (n - 1)P_{n+1}(t) = (2n + 1)(t - 1/2)P_n(t) - nP_{n-1}(t) \text{ avec } P_0(t) = 1 \text{ et } P_1(t) = t - 1/2. \text{ Ils sont orthogonaux au sens de la mesure } \int_0^1 P_i(t)P_j(t)dt = K(i, j)\delta_{ij}. \)
\(M \) en \(x' = 0 \). Ce moment \(M_{ex} \) est nul en ce point car la poutre est libre en ce point. La solution numérique \(M_{ef} \) n’est pas nulle. Ceci n’est en aucun cas une erreur dans le concept des éléments finis. Cette erreur montre que, si la solution par éléments finis est en équilibre \textit{en moyenne} c’est-à-dire le résidu pondéré de l’équilibre est nul pour chacune des fonctions test, l’équilibre local, lui, n’est pas nécessairement vérifié. S’il l’était, la solution par éléments finis coïnciderait avec la solution exacte du problème, et ce n’est évidemment pas toujours le cas. Le défaut d’équilibre en \(x' = 0 \) est une image de l’erreur de discrétisation commise lorsqu’on résout un problème par la méthode des éléments finis. Il existe une catégorie d’estimateurs d’erreur \textit{a posteriori} qui calculent les défauts d’équilibre des solutions éléments finis pour estimer l’erreur de discrétisation. Les travaux de Babuska, Oden et Ainsworth [Ainsworth & Oden(2000)] sont les plus importants dans ce domaine à ce jour.

3.6.5 Calcul de la matrice de raideur \([k] : \text{Ossatures planes formées de poutres}\)

Nous avons calculé dans la section §3.5 la matrice de rigidité d’une barre soumise à la traction dans ses axes propres. Une telle poutre possède deux degrés de liberté \(u'_{x_1} \) et \(u'_{x_2} \) qui correspondent aux déplacements suivant l’axe \(x' \) de ses extrémités 1 et 2. Nous avons calculé dans la section §3.6 la matrice de rigidité d’une poutre soumise à la flexion pure dans ses axes propres. Une telle poutre possède quatre degrés de liberté qui correspondent aux déplacements \(u'_{y_1} \) et \(u'_{y_2} \) et aux rotations \(\theta'_{z_1} \) et \(\theta'_{z_2} \) de ses extrémités autour de l’axe \(z' \). Dans une ossature plane formée de poutres chargées en flexion et en traction, chaque poutre a un système d’axes propres. La première étape de l’assemblage consiste à calculer la matrice de raideur d’une poutre dans un système d’axes commun \(0, x, y \). Dans ce cas, chaque poutre possède six degrés de liberté : un déplacement suivant chaque direction pour chaque extrémité et une rotation suivant \(z \). En posant \(R_a = E A / L \) et \(R_f = E I' / L^3 \), on écrit l’équation d’équilibre de la poutre comme d’habitude

\[
[k'](u') = (f')
\]

avec

\[
[k'] = \begin{bmatrix}
R_a & 0 & 0 & -R_a & 0 & 0 \\
0 & 12R_f & 6R_fL & 0 & -12R_f & 6R_fL \\
0 & 6R_fL & 4R_fL^2 & 0 & -6R_fL & 2R_fL^2 \\
-R_a & 0 & 0 & R_a & 0 & 0 \\
0 & -12R_f & -6R_fL & 0 & 12R_f & -6R_fL \\
0 & 6R_fL & 2R_fL^2 & 0 & -6R_fL & 4R_fL^2
\end{bmatrix}
\]
La relation entre degrés de libertés dans les axes locaux et degrés de libertés dans les axes locaux s'écrit :
\[
(u') = [T](u) \quad \text{et} \quad (f') = [T](f)
\]
avec la matrice orthogonale de rotation :
\[
[T] = \begin{bmatrix}
\cos(\alpha) & \sin(\alpha) & 0 & 0 & 0 & 0 \\
-\sin(\alpha) & \cos(\alpha) & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos(\alpha) & \sin(\alpha) & 0 \\
0 & 0 & 0 & -\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\] (3.43)

L'équilibre de la poutre d'ossature plane dans le système d'axes globaux x, y s'écrit donc
\[
[T]^{-1}[k'][T](u) = (f).
\]

Le calcul analytique de la matrice de raideur [k] n’est pas présenté ici. En général, on effectuera ce calcul de façon numérique.

3.6.6 Exemples

Exemple 1.

On considère le problème de la Figure 3.20. Notons dès maintenant que la solution en termes de déplacements est continue mais la dérivée troisième du déplacement
(l’effort tranchant) est discontinue en $x' = 0.5$. La solution analytique de ce problème est la suivante :

$$f_{ex}(x') = \begin{cases}
1/8x' + 5/48 & \text{si } x' < 0.5 \\
1/6(x' - 0.5)^3 - 1/8(x' - 0.5) + 1/24 & \text{si } x' < 0.5
\end{cases}$$

Nous allons ensuite résoudre ce problème en utilisant un seul élément de poutre. Dans ce cas, la solution éléments finis sera une cubique dont la dérivée troisième est constante. On voit donc qu’il est impossible de résoudre ce problème exactement en employant un seul élément. La matrice de raideur de cette poutre a son expression donnée dans (3.46). Le vecteur des forces est

$$\mathbf{f}' = \begin{pmatrix} N_1(0.5) \\
N_2(0.5) \\
N_3(0.5) \\
N_4(0.5) \end{pmatrix}$$

et le problème s’écrit donc

$$\begin{bmatrix} 12 & 6 \\
6 & 4 \end{bmatrix} \begin{pmatrix} u_{y1}' \\
\theta_{z1}' \end{pmatrix} = \begin{pmatrix} 1/2 \\
1/8 \end{pmatrix} \tag{3.44}$$

dont la solution est

$$\begin{pmatrix} u_{y1}' \\
\theta_{z1}' \end{pmatrix} = \begin{pmatrix} 5/48 \\
-6/48 \end{pmatrix} \tag{3.45}.$$

La déflexion de la poutre calculée par la méthode des éléments finis donne donc :

$$f_{ef}(x') = \frac{1}{48} ((x' - 1)^2(4x' + 5)).$$

La figure 3.21 permet de comparer les solutions exacte et par éléments finis.

Exemple 2.

Discretisons maintenant la poutre en deux parties (Figure 3.22). Le système possède dès lors 6 degrés de liberté. Les équations d’équilibre s’écrivent :

$$\begin{bmatrix} 12 & 6 & -12 & 6 & 0 & 0 \\
6 & 4 & -6 & 2 & 0 & 0 \\
-12 & -6 & 24 & 0 & -12 & 6 \\
6 & 2 & 0 & 8 & -6 & 2 \\
0 & 0 & -12 & -6 & 12 & -6 \\
0 & 0 & 6 & 2 & -6 & 4 \end{bmatrix} \begin{pmatrix} u_{x1}' \\
\theta_{z1}' \\
u_{x2}' \\
\theta_{z2}' \\
0 \\
0 \end{pmatrix} = \begin{pmatrix} 0 \\
0 \\
0 \\
2 \\
0 \\
0 \end{pmatrix} \tag{3.46}$$

La solution exacte est donnée en (3.39). Calculez la solution par éléments finis en utilisant 2 éléments (2 be continued...).
Exemple 3.

On considère le treillis de la Figure 3.23. Nous allons comparer la solution “barres” et la solution “poutres” pour un treillis. Chacune des barres est de section carrée de côté 5 cm. Le matériau est un acier doux avec un module de Young de 210×10^9 Pa. La structure est chargée par une seule force appliquée au noeud 10 de la structure et de valeur 10 000 N. Le but de cet exemple est de montrer qu’il est en général possible de négliger, dans un treillis, les déformations dues à la flexion quand les forces sont appliquées aux noëuds, même si les joints inter-barres (noëuds) ne sont pas libres en rotation (articulations) dans le cas de la modélisation poutre (dans l’exemple, les noëuds 1 et 2 de la structures sont encastrés pour le modèle poutres tandis qu’ils sont des rotules pour le modèle barres). Nous avons utilisé le programme C fourni en annexe pour calculer les déplacements de la structure et le logiciel libre gmsh pour les maillages et les visualisations. La Figure 3.24 montre une comparaison entre les déformations pour les modèles de barres et poutres. Les différences sont de l’ordre du pourcent.
FIG. 3.22 – Poutre console avec une force concentrée en son centre discrétisée en deux parties.

FIG. 3.23 – Treillis chargé par une force verticale au noeud 10.

FIG. 3.24 – Déplacements (amplifiés) pour une structure composée de barres ou de poutres.
3.7 Poutres de Timoshenko

3.7.1 Hypothèses

Dans le paragraphe 3.6, nous avons opté pour des hypothèses cinématiques qui excluaient le cisaillement. Si \(h/L \) désigne le rapport entre la grandeur transversale caractéristique \(h \) de la poutre et sa longueur \(L \), on peut montrer que

\[
\frac{\sigma'_{xy}}{\sigma'_{xx}} = \mathcal{O} \left(\frac{h}{L} \right) \quad \text{et} \quad \frac{\sigma'_{yy}}{\sigma'_{xx}} = \mathcal{O} \left(\frac{h}{L} \right)^2.
\]

On voit donc que, pour des poutres petites ou trapues, il est nécessaire de tenir compte du cisaillement. Par contre, on négligera toujours les contraintes axiales \(\sigma'_{yy} \) et \(\sigma'_{zz} \).

Outre la tendance à développer des éléments structuraux qui prennent en compte le cisaillement, on essaye de plus en plus d’utiliser des schémas numériques qui utilisent des interpolations \(C^0 \) (continues mais pas nécessairement dérivables au sens classique) i.e. des champs de déplacement dans \(H^1 \). S’il est en effet assez simple de construire des interpolations continues, la mise au point de schémas d’interpolation de type \(C^1 \) est beaucoup plus ardue et nécessite un grand nombre de degrés de liberté pour chaque élément structural (et donc un plus grand effort de calcul), particulièrement en 2 et 3 dimensions. Si les approches \(C^0 \) amènent une plus grande souplesse dans les schémas d’interpolation, elles introduisent néanmoins une difficulté supplémentaire appelée “shear locking” dans la littérature anglo-saxonne [Hughes(1987), Bathe(1982), Brezzi & Fortin(1991)]. En résumé, certains schémas d’interpolation conduisent à une dégradation de la solution quand le rapport \(h/L \) tend vers 0 c’est-à-dire, dans le cas de la poutre de Timoshenko, quand on tend vers le modèle de Bernoulli. Cela se traduit par le fait que les seuls déplacements admissibles pour cette limite sont des déplacements nuls : la structure est donc “bloquée”. L’explication rigoureuse de ce phénomène devrait nous amener à discuter des aspects mathématiques complexes liés aux formulations mixtes. Cette discussion sort du cadre de cet exposé. Néanmoins, nous allons montrer ce phénomène par un exemple et lui proposer une solution heuristique.

Considérons une poutre soumise au cisaillement seul. On suppose que les sections telles que \(ab \) dans la Figure 3.25 qui sont initialement orthogonales à la fibre neutre se déplacent uniquement dans la direction verticale. Les éléments tangents à la fibre neutre subissent une rotation \(\beta \) comme on le voit sur la Figure 3.25. Notons que chaque point de la fibre neutre subit un angle de cisaillement \(\epsilon'_{xy} = \beta \).

Dans ce modèle, on considère que la déflexion de la fibre neutre \(\frac{\partial f}{\partial x^i} \) peut être écrite comme la somme des déformations dues à la flexion et au cisaillement

\[
\frac{\partial f}{\partial x^i} = \theta(x') + \beta
\]

où \(\theta(x') \) est la rotation des éléments dans la direction de la fibre neutre due à la flexion uniquement. On ajoute donc un degré de liberté supplémentaire au modèle.
de Bernoulli. Nous faisons ensuite une hypothèse qui se révèlera rapidement incorrecte mais que nous ajusterons par la suite. Nous supposons que le cisaillement est constant sur la hauteur de la poutre ($\beta = \beta(x')$). Cette hypothèse viole l’équilibre car le cisaillement doit être nul sur les parties supérieures et inférieures de la poutre (en $y' = \pm h/2$) dans le cas de poutres chargées orthogonalement à la fibre neutre.

On écrit ensuite les hypothèses cinématique de la poutre de Timoshenko en superposant les actions dues à la flexion et au cisaillement. Clairement, les déplacements suivant x' sont dus à la flexion seulement tandis que les déplacements suivant y' sont dus au cisaillement et à la flexion :

$$
\begin{align*}
 u'_x &= -y' \theta(x') = -y' \left[\frac{\partial f}{\partial x'} - \beta(x') \right] \\
 u'_y &= f(x') \\
 u'_z &= 0.
\end{align*}
$$

(3.47)

On a donc, vu les hypothèses cinématiques et l’hypothèse d’état uniaxial de contraintes que nous maintenons

$$
\epsilon' = \begin{bmatrix}
 -\frac{y'}{2} \frac{\partial \theta}{\partial x'} & 1/2 \beta(x') & 0 \\
 1/2 \beta(x') & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
$$

et

$$
\sigma' = \begin{bmatrix}
 -Ey' \frac{\partial \theta}{\partial x'} & G\beta(x') & 0 \\
 G\beta(x') & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}.
$$

En fait, les contraintes tangentielles devraient s’écrire

$$
\sigma'_{x'y'} = G\beta(x', y')
$$

(3.48)

où l’on tiendrait compte de la variation u cisaillement dans l’épaisseur. Néanmoins, il est beaucoup plus simple de considérer des contraintes tangentielles constantes dans l’épaisseur et d’introduire un facteur correctif K tel que

$$
\sigma'_{x'y'} = KG\beta(x').
$$
Il existe un grand nombre de définitions pour K. On peut par exemple choisir K pour que l’expression approximée (3.48) donne la même contrainte tangentielle maximale que celle calculée en utilisant une méthode plus fine. Dans le cas de calculs en dynamique, on peut choisir K tel que les fréquences propres de la poutre soient égales à celles calculées en utilisant des calculs d’elasticité linéaire précis. Typiquement, on choisira $K = 5/6$ pour une poutre de section rectangulaire.

3.7.2 Application du principe des travaux virtuels

Nous désirons maintenant écrire le principe des travaux pour la poutre de Timoshenko. On considère encore une fois la poutre de la Figure 3.8. Pour cela, on a besoin de définir un ensemble de déplacements virtuels v compatibles avec les hypothèses cinématiques (3.47). La façon la plus simple est de choisir deux fonction continues g et y et de choisir $v_0^y = g$ et $v_0^x = (y - y_0)$ avec $v_0^y(L) = v_0^y(0)$ et $v_0^x = 0$. Le principe des travaux virtuels s’écrit donc

$$
\int_0^L \left(\int_S \frac{y^2}{2} dy' dx' E \frac{\partial \theta}{\partial x'} \frac{\partial \phi}{\partial x} \right) dx' + \int_0^L \left(\int_S \frac{dy' dx'}{2} \left(\frac{\partial f}{\partial x'} - \theta \right) \frac{\partial f}{\partial x'} - \frac{1}{2} \left(\frac{\partial g}{\partial x'} - \phi \right) \right) dx' = \int_0^L \tau g dx' + T g(0) - M \phi(0) \quad \forall g, \phi.
$$

Dans l’équation (3.49), on voit que ce sont les dérivées premières des champs inconnus f et θ dont les carrés doivent être intégrables. Contrairement à la formulation (3.26) où on demandait à f d’être dans H^2, les champs inconnus f et θ de la formulation variationnelle (3.49) doivent uniquement être continus i.e. dans H^1.

3.7.3 Établissement des équations d’équilibre locales

En vue de déduire les équations locales de l’équilibre, on intègre (3.49) par parties pour obtenir

$$
\int_0^L \left(- \frac{\partial}{\partial x'} \left(I'_z E \frac{\partial \theta}{\partial x'} \right) - GA K \frac{\partial f}{\partial x'} - \theta \right) \phi dx' + \frac{\partial}{\partial x'} \left(\frac{\partial f}{\partial x'} - \theta \right) \phi dx' = \int_0^L \left(\alpha \left(\frac{\partial f}{\partial x'} - \theta \right) - \tau \right) \phi dx' + \left(\alpha \left(\theta - \frac{\partial f}{\partial x'} \right) - T \right) \phi(0) = 0 \quad \forall g, \phi
$$

(3.50)
où $\alpha = GKA$ est la rigidité en cisaillement. Les équations d’équilibre de la poutre de Timoshenko se déduisent directement de (3.50) en choisissant des fonctions test adaptées

$$
\frac{\partial}{\partial x'} \left(I'_z E \frac{\partial \theta}{\partial x'} \right) + \alpha \left(\frac{\partial f}{\partial x'} - \theta \right) = 0 \quad (3.51)
$$

$$
\frac{\partial}{\partial x'} \left(\alpha \left(\frac{\partial f}{\partial x'} - \theta \right) \right) = -\tau \quad (3.52)
$$

$$
\left(I'_z E \frac{\partial \theta}{\partial x'} \right) \bigg|_0 = M \quad (3.53)
$$

$$
\alpha \left(\frac{\partial f}{\partial x'} - \theta \right) \bigg|_0 = T. \quad (3.54)
$$

Il est assez simple de retrouver les équations d’équilibre de la poutre de Bernoulli en manipulant les équations (3.51)-(3.54) tout en faisant tendre la rigidité en cisaillement α vers l’infini. Pratiquement, on calcule une poutre de Timoshenko en résolvant l’équation suivant (on a supposé que I'_z et E étaient constants)

$$
EI'_z \frac{\partial^3 \theta}{\partial x'^3} = \tau \quad (3.55)
$$

les conditions aux limites de type moment M imposé en $x' = a$ sont de la forme

$$
EI'_z \frac{\partial \theta}{\partial x'} \bigg|_a = M
$$

tandis que celles de type effort tranchant imposé T s’écrivent

$$
EI'_z \frac{\partial^2 \theta}{\partial x'^2} \bigg|_a = T.
$$

Pour calculer le déplacement, on utilise (3.52) i.e.

$$
\frac{\partial f}{\partial x'} = \theta - \frac{EI'_z}{\alpha} \frac{\partial^2 \theta}{\partial x'^2}. \quad (3.56)
$$

Cette dernière équation (3.56) permet de quantifier le rapport qui existe entre l’angle θ de la flexion et l’angle de cisaillement β. On a

$$
\frac{\beta}{\theta} = \mathcal{O} \left(\frac{EI'_z}{\alpha L^2} \right) = \Lambda = \mathcal{O} \left(\frac{h}{L} \right)^2.
$$

Le coefficient Λ représente le rapport entre les raideurs en flexion et en cisaillement d’une poutre. Il est proportionnel au rapport $(h/L)^2$ ce qui signifie que la raideur en cisaillement est d’autant plus forte (et donc négligeable) que Λ est faible.

L’intégration de (3.56) permet de trouver f.

6Dans le modèle de Bernoulli, $\beta = 0$ ce qui implique que $\theta = \frac{\partial f}{\partial x'}$.

3.7.4 Calcul de la matrice de raideur \([k']\)

Développons maintenant une formulation éléments finis pour la poutre de Timoshenko. On interpole les deux champs inconnus de la façon la plus générale en considérant les expansions

\[
\theta = \sum_{i=1}^{n} \theta_i N_i \text{ et } u'_y = \sum_{i=1}^{m} u'_{y_i} M_i
\]

où \((\theta_i, u'_{y_i})\) sont des coefficients inconnus et où \((N_i, M_i)\) sont les fonctions d’interpolation correspondantes. L’équation d’équilibre de la poutre par la méthode de Galerkin se déduit en introduisant les interpolations dans (3.49). On a l’expression matricielle

\[
\begin{bmatrix}
[k']^{11} & [k']^{12} \\
[k']^{21} & [k']^{22}
\end{bmatrix}
\begin{bmatrix}
(u') \\
(\theta)
\end{bmatrix} =
\begin{bmatrix}
(F'^1) \\
(F'^2)
\end{bmatrix}
\] (3.57)

avec

\[
k'_{ij}^{11} = \int_0^L \alpha \frac{\partial M_i}{\partial x'} \frac{\partial M_j}{\partial x'} dx'
\]

\[
k'_{ij}^{12} = k'_{ji}^{21} = - \int_0^L \alpha N_i \frac{\partial M_j}{\partial x'} dx'
\]

\[
k'_{ij}^{22} = \int_0^L \left(EI \frac{\partial N_i}{\partial x'} + \alpha N_i N_j \right) dx'
\]

\[
F'^{1} = \int_0^L M_i \tau + TM_i(0)
\]

\[
F'^{2} = MM_i(0)
\]

3.7.5 Discrétisation et phénomène de “shear locking”

Comme on l’a montré quand on a discuté l’équilibre des barres, il est possible d’utiliser des champs d’interpolation linéaires par morceaux pour interpoler des fonctions simplement continues. On peut donc utiliser ces interpolations pour interpoler nos deux inconnues

\[
\theta(x') = \theta_1 \underbrace{(1 - x'/L)}_{N_1} + \theta_2 \underbrace{(x'/L)}_{N_2}
\]

et

\[
u'_y(x') = u'_{y1} \underbrace{(1 - x'/L)}_{M_1} + u'_{y2} \underbrace{(x'/L)}_{M_2}
\]

et déduire de façon analytique la matrice de raideur et le vecteur des forces pour la poutre de Timoshenko. On a

\[
\alpha \begin{bmatrix}
6 & -6 & 3L & 3L \\
-6 & 6 & -3L & -3L \\
3L & -3L & 2L^2 \lambda & L^2 \xi \\
3L & -3L & L^2 \xi & 2L^2 \lambda
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
u'_{y1} \\
u'_{y2} \\
\theta_1 \\
\theta_2
\end{bmatrix}
\end{bmatrix} =
\begin{bmatrix}
F'^{1} \\
F'^{2}
\end{bmatrix}
\] (3.58)
avec les constantes
\[\Lambda = \frac{EI'}{\alpha L^2}, \quad \mu = 12\Lambda, \quad \xi = 1 - 6\Lambda, \quad \lambda = 1 + 3\Lambda. \]

Examinons maintenant comment se comporte le système quand le rapport \(h/L \) entre la dimension transversale \(h \) de la poutre et sa longueur \(L \) tend vers 0. On a
\[\Lambda = \mathcal{O} \left(\frac{Eh^4}{Gh^2KL^2} \right) = \mathcal{O} \left(\frac{h}{L} \right)^2. \]

Le rapport entre la rigidité en cisaillement \(\alpha \) et la rigidité en flexion \(EI_z' \) doit en outre tendre vers l’infini quand \(h \) tend vers 0. Dans ce cas limite, la première ou la deuxième équation de (3.58) s’écrit
\[\frac{\theta_2 + \theta_1}{2} - \frac{u'y_2 - u'y_1}{L} = 0 \]

ce qui est une expression au second ordre en \(x' = L/2 \) de la contrainte
\[\theta - \frac{\partial f}{\partial x'} = 0 \]

c’est-à-dire l’annulation du cisaillement et le retour au modèle de Bernoulli. Toujours à la limite, les deux dernières équations de (3.58) entraînent
\[\frac{\theta_2 - \theta_1}{L} = 0 \]

qui est une écriture au second ordre de
\[\frac{\partial \theta}{\partial x'} = 0. \]

La solution de ce problème ne fait donc intervenir aucune flexion (la courbure est la dérivée première de l’angle de flexion, constant dans ce cas). Le système est donc bel et bien bloqué.

Reprenons l’exemple de la poutre chargée uniformément et encastrée en \(x' = L \) (Figure 3.17). On choisit \(M = T = 0 \) et \(\tau = 1 \). La solution du modèle de Bernoulli est donnée en (3.39). La solution pour une poutre de Timoshenko peut être trouvée en résolvant l’équation en \(\theta \) (3.55). Dans notre cas, la solution est une cubique de la forme
\[\theta = \frac{x'^3 - L^3}{6EI_z'} \]
car \(M = T \) en \(x' = 0 \) et \(\theta = 0 \) en \(x' = L \). On utilise (3.56) pour calculer :
\[\frac{\partial f}{\partial x'} = \frac{x'^3 - L^3}{6EI_z'} - \frac{x'}{\alpha} \]
On intègre et on utilise \(f|_L = 0 \) pour trouver

\[
f = \frac{1}{24EI''_x} \left(x'^4 - 4x'L^3 + 3L^4 \right) - \frac{1}{2\alpha}(x'^2 - L^2)
\]

Cette solution est la somme de la solution du modèle de Bernoulli auquel on ajoute une correction due au cisaillement qui disparaît quand \(\alpha \to \infty \). La solution par éléments finis linéaires de la Poutre de Timoshenko est trouvée en résolvant le système suivant

\[
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix} + \alpha
\begin{pmatrix}
1/3 & 1/2 \\
1/2 & 1
\end{pmatrix}
\begin{pmatrix}
\theta_1 \\
u_{y1}'
\end{pmatrix} = \begin{pmatrix}
0 \\
1/2
\end{pmatrix}.
\tag{3.59}
\]

On trouve

\[
\theta_1 = \frac{-3}{12 + \alpha} \text{ et } u_{y1}' = \frac{-1}{2\alpha} + \frac{-1.5}{12 + \alpha}
\]

Si \(\alpha \to \infty \), \(\theta_1 \) et \(u_{y1}' \) tendent vers zéro ce qui montre que le système se bloque. C’est ce qu’on appelle le shear locking ou blocage en cisaillement. Essayons maintenant de mieux comprendre de phénomène. À la limite où la rigidité en cisaillement devient très grande, les inconnues \(u_y' \) et \(\theta \) ne sont plus indépendantes. On sait, par la théorie des poutres de Bernoulli, que, s’il n’existe pas de cisaillement, on a

\[
\theta = -\frac{\partial f}{\partial x'}.
\]

Si \(f \) est linéaire, alors \(\theta \) sera constant. Si \(\theta \) est constant, la courbure \(\frac{\partial \theta}{\partial x'} \) est nulle et la flexion est nulle. Pour éviter ce phénomène de blocage, il serait certainement profitable que \(\theta \) soit interpolé de la même façon que \(\frac{\partial f}{\partial x'} \). Si on choisit une interpolation linéaire pour \(\theta \) (c’est le minimum pour assurer sa continuité), il serait raisonnable de choisir un \(f \) quadratique :

\[
f = u_y'(x') = u_{y1}' \left(1 - x'/L \right) + u_{y2}' \left(x'/L \right) + u_{y3}' \left(x'/L \right) \left(1 - x'/L \right).
\]

Une combinaison telle que \(\theta \) linéaire - \(f \) quadratique est dite consisterente. En utilisant l’interpolation consistante linéaire-quadratique, on trouve l’expression matricielle de l’équilibre

\[
\frac{\alpha}{6L}
\begin{bmatrix}
6 & -6 & 0 & 3L & 3L \\
-6 & 6 & 0 & -3L & -3L \\
0 & 0 & 2 & L & L \\
3L & -3L & L & 2L^2\lambda & L^2\xi \\
3L & -3L & L & L^2\xi & 2L^2\lambda
\end{bmatrix}
\begin{bmatrix}
u_{y1}' \\
u_{y2}' \\
u_{y3}' \\
\theta_1 \\
\theta_2
\end{bmatrix} = \begin{bmatrix}
F_{11}' \\
F_{12}' \\
F_{13}' \\
F_{21}' \\
F_{22}'
\end{bmatrix}
\tag{3.60}
\]

Dans le cas limite \(\alpha \to \infty \), la première ou la deuxième équation de (3.60) s’écrit

\[
\frac{\theta_2 + \theta_1}{2} - \frac{u_{y2}' - u_{y1}'}{L} = 0
\]
ce qui est une expression au second ordre de la contrainte

\[\theta - \frac{\partial f}{\partial x'} = 0 \]

c’est-à-dire l’annulation du cisaillement et le retour qu’modelle de Bernoulli.

Reprenons l’exemple de la poutre chargée uniformément et encastrée en \(x' = L \) (Figure 3.17). On choisit encore \(M = T = 0, \tau = 1, I_z' = 1, E = 1 \) et \(L = 1 \). La solution par éléments finis consistants linéaires-quadratiques de la Poutre de Timoshenko est trouvée en résolvant le système suivant

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix} + \frac{\alpha}{6} \begin{bmatrix}
6 & 0 & 3 \\
0 & 2 & 1 \\
3 & 1 & 2
\end{bmatrix} \begin{bmatrix}
u_{y1}' \\
u_{y3}' \\
\theta_1
\end{bmatrix} = \begin{bmatrix}
1/2 \\
1/6 \\
0
\end{bmatrix}.
\]

Dans l’équation (3.61), on se doute que la seule façon d’obtenir une solution non trivialement nulle pour \(\alpha \to \infty \) est que la matrice \([A]\) soit singulière. Dans ce cas (en gros), il sera peut-être possible d’obtenir quelque chose comme \(\infty \times 0 \) donne une valeur finie. Écrivons le système (3.61) sous la forme suivante

\[
\begin{bmatrix}
1 & 0 & 1/2 \\
0 & 1/3 & 1/6 \\
1/2 & 1/6 & 1/3 + 1/\alpha
\end{bmatrix} \begin{bmatrix}
u_{y1}' \\
u_{y3}' \\
\theta_1
\end{bmatrix} = \begin{bmatrix}
1/2\alpha \\
1/6\alpha \\
0
\end{bmatrix}.
\]

Le déterminant du système (3.61) est égal à \(1/3\alpha \) mais le membre de droite tend aussi vers zero de la même manière. On trouve finalement

\[\theta_1 = \frac{-3}{9}, \quad u_{y1}' = \frac{1}{8} + \frac{1}{3\alpha} \] et \(u_{y3}' = -\frac{1}{12} + \frac{1}{2\alpha} \).

La poutre ne bloque plus quand on tend vers la limite du cisaillement nul, l’élément est stable. La Figures 3.26 montre une comparaison entre la solution exacte de la poutre encastrée et chargée uniformément et solution par éléments finis linéaires-quadratiques pour le modèle de Timoshenko. II est clair que la déflexion de la poutre est plus importante quand la raideur en cisaillement diminue. En fait, le système a plus de possibilités de se déformés grâce au degré de liberté supplémentaire introduit dans le modèle de Timoshenko.

3.8 Élément de poutre en torsion pure

Dans le but d’établir les équations d’équilibre des poutres tridimensionelles, il est nécessaire d’étudier la torsion des poutres. En effet, une poutre chargée en flexion transmettra un moment de torsion à toute autre poutre connectée à celle-ci dans un autre plan que le plan de flexion.
3.8.1 Hypothèses

On considère une poutre chargée en son extrémité $x' = L$ par un moment de torsion M_T et fixée en $x' = 0$ (Figure 3.27). Les sections R subissent une rotation autour du centre de torsion. La section latérale de la poutre est notée S. Si θ_x' est l’angle de rotation d’une section à la position x' (Figure 3.27), on définit l’angle de torsion par unité de longueur $\alpha = \frac{\partial \theta_x'}{\partial x'}$. On a donc, pour une section positionnée en
Dans le cas particulier d’une poutre circulaire, on suppose que les sections droites R restent droites après définitions dues à la torsion. On a donc, pour des petites déformations :

\begin{align}
 u'_x &= 0, \quad (3.63) \\
 u'_y &= -r\theta'_x \sin \beta = -z'\theta'_x = -z'x'\alpha, \\
 u'_z &= r\theta'_x \cos \beta = y'\theta'_x = y'x'\alpha. \quad (3.64) \\
\end{align}

On sait par la résistance des matériaux que les sections droites R de poutres à sections non circulaires ont tendance à se gauchir sous l’effet de couples de torsion. Les hypothèses cinématiques classiques d’une poutre quelconque en torsion font donc intervenir, outre la rotation, un gauchissement des sections $\kappa(y', z')$ indépendant de x' [Shames & Dym(1991)]. Elles s’écrivent

\begin{align}
 u'_x &= \alpha \kappa(y', z'), \\
 u'_y &= -\alpha x'z', \\
 u'_z &= \alpha x'y'. \quad (3.66) \\
\end{align}

On a donc dans le cas général

\[
 \varepsilon' = \frac{1}{2} \begin{bmatrix}
 0 & -\alpha z' + \frac{\partial \kappa}{\partial y'} & \alpha y' + \frac{\partial \kappa}{\partial z'} \\
 -\alpha z' + \frac{\partial \kappa}{\partial y'} & 0 & 0 \\
 \alpha y' + \frac{\partial \kappa}{\partial z'} & 0 & 0
 \end{bmatrix}
\]

et

\[
 \sigma' = G \begin{bmatrix}
 0 & -\alpha z' + \frac{\partial \kappa}{\partial y'} & \alpha y' + \frac{\partial \kappa}{\partial z'} \\
 -\alpha z' + \frac{\partial \kappa}{\partial y'} & 0 & 0 \\
 \alpha y' + \frac{\partial \kappa}{\partial z'} & 0 & 0
 \end{bmatrix}
\]

où $G = \mu$ est le module de cisaillement du matériau. L’établissement des équations d’équilibre de la poutre en utilisant le théorème des travaux virtuels est possible en utilisant les hypothèses cinématiques (3.63). Néanmoins, cette formulation fait intervenir des conditions aux limites complexes (problème de Neumann) et il est préférable d’utiliser dans ce cas le théorème des travaux virtuels complémentaires qui mène à une formulation plus simple. L’utilisation du théorème des travaux virtuels complémentaires implique la définition d’un champ de contraintes statiquement admissible $\textit{a priori}$. On définit l’espace des contraintes statiquement admissibles

\[\Sigma = \{ \sigma \mid \partial_j \sigma_{ij} + f_i = 0 \text{ sur } \Omega, \sigma_{ij} n_j = F_i \text{ sur } \Gamma_F \} .\]

\footnote{Le paramètre α est la déformation généralisée pour le problème de la torsion tandis que le moment de torsion M_T est la force généralisée.}
On définit ensuite l’espace des contraintes test

\[\Sigma_0 = \{ \sigma \mid \partial_j \sigma_{ij} + f_i = 0 \text{ sur } \Omega, \sigma_{ij} n_j = 0 \text{ sur } \Gamma_F \} \]

et le principe des travaux virtuels complémentaires, qui est une traduction des équations de compatibilité (l’équilibre est cette fois vérifié \textit{a priori}) : trouver \(\sigma \in \Sigma \) qui vérifie

\[\int_\Omega c_{ijkl} \sigma_{kl} \eta_{ij} dv = \int_{\Gamma_U} U_i \eta_{ij} n_j ds \quad \forall \eta \in \Sigma_0 \quad (3.67) \]

Pour que le principe des travaux virtuels complémentaires nous fournisse de l’information intéressante, on doit non plus imposer un moment de torsion en \(x' = L \) mais une déformation compatible sur la surface \(R \). On utilise les hypothèses cinématiques (3.63) pour décrire une rotation de la section \(R \) i.e. :

\[u_y'|R = -\alpha Lz \]
\[u_z'|R = \alpha Ly \quad (3.68) \]

On n’impose aucune force extérieure sur la surface latérale \(S \) de normale \(n \), ce qui donne

\[\sigma_{xy}' n_y + \sigma_{xz}' n_z = 0 \quad \text{sur} \ S. \quad (3.69) \]

On a donc, au niveau des notations de la Figure 3.2, que \(\Gamma_F = S \) et \(\Gamma_U = R \) pour notre problème.

En vue de vérifier l’équilibre (et donc pouvoir utiliser le principe des travaux virtuels complémentaires), on utilise une fonction \(\phi(y', z') \) (dite de Plandtl) suffisamment continue. On définit les contraintes à partir de \(\phi \) comme :

\[\sigma_{xy}' = G\alpha \frac{\partial \phi}{\partial z'}, \sigma_{xz}' = -G\alpha \frac{\partial \phi}{\partial y'} \quad (3.70) \]

Ce champ vérifie l’équilibre en volume. Pour qu’il vérifie les conditions essentielles 3.69, on doit avoir, en tenant compte du potentiel des contraintes

\[G\alpha \left(\frac{\partial \phi}{\partial z'} n_y' - \frac{\partial \phi}{\partial y'} n_z' \right) = 0. \]

Cette relation signifie que \(\phi \) ne varie pas dans les directions tangentiels à la surface extérieure. On a donc que \(\phi \) est constant sur \(S \). Vu que \(\phi \) est un potentiel scalaire défini à une constante près\(^8\). On peut dès lors choisir \(\phi = 0 \) sur \(C \) en vue de satisfaire \textit{a priori} l’équilibre sur celle-ci.

Les déformations résultantes s’écrivent

\[\epsilon_{xy}' = \frac{\alpha}{2} \frac{\partial \phi}{\partial z'}, \epsilon_{xz}' = -\frac{\alpha}{2} \frac{\partial \phi}{\partial y'}. \quad (3.71) \]

\(^8\)La valeur physique n’est pas le potentiel mais la contrainte qui dérive du potentiel.
Le principe des travaux virtuels complémentaires est une traduction des équations de compatibilité (ff.2). On choisit un champ de contraintes virtuelles statiquement admissibles η :

$$\eta'_{xy} = G\frac{\partial \xi}{\partial z'}, \quad \eta'_{xz} = -G\frac{\partial \xi}{\partial y'} \quad (3.72)$$

avec $\xi(y', z')$ une fonction à valeurs scalaires suffisamment continue. Le principe des travaux virtuels complémentaires s'écrit

$$2\int_R \int_0^L dx' \left(\frac{\alpha}{2} \frac{\partial \phi}{\partial z'} G\frac{\partial \xi}{\partial z'} \right) + \alpha \frac{\partial \phi}{\partial y'} G\frac{\partial \xi}{\partial y'} ds =$$

$$\int_R \left(-\alpha Lz' \frac{\partial \xi}{\partial y'} + \alpha L'y' \frac{\partial \xi}{\partial y'} \right) ds \forall \xi. \quad (3.73)$$

ou encore, si on suppose G constant sur la section R

$$G\alpha^2 L \int_R \nabla \phi \cdot \nabla \xi ds = G\alpha^2 L \int_R \left(y' \frac{\partial \xi}{\partial y'} + z' \frac{\partial \xi}{\partial z'} \right) ds \forall \xi. \quad (3.74)$$

Après avoir laissé tomber les termes en $G\alpha^2 L$, on intègre par parties les deux termes pour obtenir

$$- \int_R \Delta \phi \xi ds + \int_C \left(\nabla \phi \cdot \mathbf{n} \right) \xi dc =$$

$$= 0 \text{ car } \xi|_C = 0$$

$$\int_R (\xi(1 + 1) ds - \int_C (y'n'_y + z'n'_z) \xi dc \forall \xi \quad (3.75)$$

avec la normale \mathbf{n} à C de composantes n'_y et n'_z. Le champ de contraintes virtuelles dérivant du potentiel ξ doit aussi vérifier l’équilibre et on aura $\xi = 0$ sur C.

La rigidité torsionnelle d’une section donnée peut donc se résoudre comme l’équation aux dérivées partielles en 2 dimensions y' et z' (équation de Poisson)

$$\Delta \phi = -2 \text{ sur } R$$

$$\phi = 0 \text{ sur } C. \quad (3.76)$$

La solution ϕ de ce problème permet d’écrire une relation entre le moment de torsion M_T dans une section et l’angle α de torsion. On calcule le moment de torsion comme (voir Figure 3.28)

$$M_T = \int_R (-y'\alpha'_{xz} + z\alpha'_{xy}) ds = -G\alpha \int_R \left(y' \frac{\partial \phi}{\partial y'} + z \frac{\partial \phi}{\partial z} \right) ds$$
FIG. 3.28 – Contraintes dans la section R et calcul de la densité de moment \(m_T \). Le moment de torsion dans la section \(M_T = \int_T m_T \).

En intégrant par parties et en tenant compte que \(\phi = 0 \) sur la surface latérale, on trouve
\[
M_T = 2G\alpha \int_R \phi ds.
\]

On définit l’inertie torsionelle
\[
J = \int_R \phi ds. \tag{3.77}
\]

Cette valeur \(J \) dépend uniquement des caractéristiques géométriques de la section. La rigidité torsionelle \(M_T/\alpha = JG \) est une grandeur dépendant du matériau et de la forme de la section. Quand la valeur de \(J \) est connue, on peut écrire (3.77) sous la forme matricielle classique.

3.8.2 Application du principe des travaux virtuels

On écrit le principe des travaux virtuels pour la poutre de la Figure 3.29. Pour cela, on utilise une angle de torsion virtuel \(\epsilon \) et on égale les travaux des forces intérieures et extérieures dues au déplacement virtuel \(\epsilon \):

\[
\int_0^L GJ \frac{\partial \theta_x'}{\partial x'} \frac{\partial \epsilon}{\partial x'} dx' = M_{T1} \epsilon_1(0) + M_{T2} \epsilon_2(L) \forall \epsilon. \tag{3.78}
\]
3.8.3 Discrétisation et calcul de la matrice de raideur \([k']\)

Les hypothèses cinématiques de départ (3.63) postulaient que l’angle de torsion variait linéairement. On utilise donc deux degrés de liberté pour interpoler l’angle de torsion

\[
\theta'_x = \theta'_{x1} \left(1 - x'/L\right) + \theta'_{x2} \left(x'/L\right).
\]

On a donc

\[
\alpha = \frac{\partial \theta'_x}{\partial x'} = \frac{\theta'_{x2} - \theta'_{x1}}{L}.
\]

Le moment de torsion vaut

\[
M_T(x') = 2GJ \frac{\theta'_{x2} - \theta'_{x1}}{L}.
\]

On a donc l’expression matricielle classique, si on considère uniquement deux moments pour forces extérieures et si on utilise les interpolations linéaires pour \(\theta'_x\) et \(\iota\) :

\[
\frac{GJ}{L} \begin{bmatrix}1 & -1 \\ -1 & 1\end{bmatrix} \begin{bmatrix}\theta'_{x1} \\ \theta'_{x2}\end{bmatrix} = \begin{bmatrix}M_{T1} \\ M_{T2}\end{bmatrix}
\]

(3.79)

3.9 Ossatures tridimensionnelles

Il est temps maintenant de décrire le cas général d’une structure tridimensionnelle formée de poutres. Le cas général se traite comme la superposition de tous les cas particuliers : la composition d’efforts normaux (barre), de la flexion composée suivant les axes \(y'\) et \(z'\) (modèle de Bernoulli ou de Timoshenko) et de la torsion. L’élément d’ossature tridimensionnelle possède 12 degrés de liberté pour une flexion sans cisaillement (Figure 3.30) et 14 degrés de liberté pour le modèle de Timoshenko. On écrit l’équation d’équilibre de la poutre comme d’habitude

\([k'](u') = (f')\). L’expression complète est donnée à la figure 3.31. Pour construire la matrice de raideur dans les axes globaux, on doit calculer une matrice de rotation qui permet de calculer les coordonnées dans les axes \(x, y, z\) d’un vecteur défini dans les axes \(x', y', z'\).

Soit \(u\) un vecteur dont les composantes dans les axes locaux sont \((u') = (u'_{x'}, u'_{y'}, u'_{z'})\) et dont les composantes dans les axes globaux sont \((u) = (u_x, u_y, u_z)\). La relation entre ces composantes peut s’écrire

\[
\begin{pmatrix}u'_{x'} \\ u'_{y'} \\ u'_{z'}\end{pmatrix} = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix} \begin{pmatrix}u_x \\ u_y \\ u_z\end{pmatrix}
\]

(3.80)

ou encore

\((u') = [t](u)\).

Dans l’équation (3.80), la matrice \([t]\) est une matrice de rotation dont la colonne 1 est égale aux cosinus directeurs de \(x'\) par rapport à \(x, y, z\), la colonne 2 est égale aux
cosinus directeurs de y' par rapport à x, y, z et la colonne 1 est égale aux cosinus directeurs de z' par rapport à x, y, z. En d’autre mots, les coordonnées (l_1, l_2, l_3) sont les composantes du vecteur x' dans les axes x', y', z'.

L’expression matricielle de l’équilibre dans les axes globaux s’écrit encore une fois

$$[T]^{-1} [k'] [T] (u) = (f)$$

avec

$$[T] = \begin{bmatrix}
[t] & [0] & [0] & [0] \\
[0] & [t] & [0] & [0] \\
[0] & [0] & [t] & [0] \\
[0] & [0] & [0] & [t]
\end{bmatrix}$$

et

$$[T]^{-1} = [T]^T.$$

3.10 Structures bidimensionnelles

En mécanique des structures, on essayera toujours de trouver des approximations géométriques, cinématiques et sur l’état de contraintes pour simplifier le problème tridimensionnel. Dans les sections précédentes, on a considéré des éléments structuraux unidimensionnels. On a vu qu’un élément d’une ossature tri-dimensionnelle formée de poutres pouvait être représenté en utilisant un minimum de degrés de liberté (12 pour la poutre de Bernoulli).

Nous allons maintenant considérer des éléments structuraux bidimensionnels où seule une dimension de la structure est négligeable devant les autres. L’étude
Fig. 3.31 – Expression matricielle de l’équilibre pour une poutre de Bernoulli d’ossature tridimensionnelle.
de ces éléments de structure 2D va faire apparaître un certain nombre de cas particuliers de charges, comme pour les éléments 1D. On considérera tout d’abord les membranes chargées uniquement dans leur plan. On considérera ensuite les plaques de Kirchhoff en flexion pure, chargée orthogonalement. On étendra les plaques de Kirchhoff avec la prise en compte des efforts tranchants (plaques de Reissner-Mindlin). On rassemblera finalement l’ensemble des déformations possibles pour obtenir la théorie des coques. Le parallèle entre éléments 1D et éléments 2D est décrit sur la Table 3.1.

Tab. 3.1 – Comparaison entre éléments structuraux 1D et 2D.

Pour une structure à une dimension (axe x'), on a vu que, dans tous les cas, les contraintes σ_{yy}', σ_{zz}' et σ_{yz}' pouvaient être négligées. Pour des poutres très élancées, on pouvait même négliger les contraintes σ_{xy}' et σ_{xz}'. Cet état de contraintes où seul $\sigma_{xx}' \neq 0$ était appelé état uniaxial des contraintes.

En deux dimensions, on peut faire un parallèle direct avec les poutres. Pour toutes les structures bidimensionnelles que nous étudierons, les contraintes σ_{zz} sont négligeables. Pour ce qui est des autres composantes du tenseur σ, leur annulation éventuelle va dépendre de la géométrie et de l’état de charge du système considéré. On distingue les états plans de contrainte et de déformation. Avant de les caractériser, nous allons introduire quelques notations simplifiées.

La loi de Hooke liant les contraintes et les déformations pour un matériau élastique linéaire peut s’écrire sous forme indicelle (ff.3). On peut aussi utiliser la symétrie des tenseurs des contraintes et des déformations et représenter les contraintes et les déformations sous forme d’un vecteur colonne à 6 composantes.

La loi de Hooke s’écrit dès lors

$$
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{xz} \\
\sigma_{yz}
\end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{pmatrix}
1 - \nu & \nu & 0 & 0 & 0 & 0 \\
\nu & 1 - \nu & 0 & 0 & 0 & 0 \\
0 & 0 & 1 - \nu & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1-\nu}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1-\nu}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1-\nu}{2}
\end{pmatrix}
\begin{pmatrix}
\epsilon_{xx} \\
\epsilon_{yy} \\
\epsilon_{zz} \\
\epsilon_{xy} \\
\epsilon_{xz} \\
\epsilon_{yz}
\end{pmatrix}
$$

ou sous forme compacte

$$\sigma = D \epsilon$$

avec D la matrice de Rigidité. On peut aussi écrire la relation inverse directement tirée de l’expérience fondamentale de l’éprouvette en traction

$$
\begin{pmatrix}
\epsilon_{xx} \\
\epsilon_{yy} \\
\epsilon_{zz} \\
\epsilon_{xy} \\
\epsilon_{xz} \\
\epsilon_{yz}
\end{pmatrix} = \frac{1}{E} \begin{pmatrix}
1 - \nu & -\nu & 0 & 0 & 0 & 0 \\
-\nu & 1 - \nu & 0 & 0 & 0 & 0 \\
-\nu & -\nu & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 + \nu & 0 & 0 \\
0 & 0 & 0 & 0 & 1 + \nu & 0 \\
0 & 0 & 0 & 0 & 0 & 1 + \nu
\end{pmatrix}
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\sigma_{zz} \\
\sigma_{xy} \\
\sigma_{xz} \\
\sigma_{yz}
\end{pmatrix}
$$

(3.82)
ou sous forme compacte
\[\epsilon = D^{-1} \sigma \]
avec \(D^{-1} \) la matrice de compliance (ou de flexibilité), inverse de la rigidité.

3.10.1 Hypothèse de l’état plan de contraintes

Une structure est en état plan de contraintes quand elle est plane et mince et que les charges appliquées le sont dans le plan de la structure. L’épaisseur de la structure est toujours très petite par rapport aux autres dimensions et est symétriquement répartie de part et d’autre du plan \(x, y \) appelé surface neutre. Au niveau des contraintes, on a les hypothèses suivantes

\[\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & 0 \\ \sigma_{yx} & \sigma_{yy} & 0 \\ 0 & 0 & 0 \end{bmatrix}. \]

Les contraintes de cisaillement transverses et la contrainte normale sont supposées nulles, même si un rapide examen de la loi de comportement montre le contraire.

Il existe 3 composantes du tenseur des déformations indépendantes puisque uniquement 3 composantes du tenseur des contraintes sont non nulles. On choisit de calculer \(\epsilon_{zz} \) \textit{a posteriori}. On a donc, étant donné la loi de comportement (3.82)

\[\begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ 2\epsilon_{xy} \\ \epsilon \end{pmatrix} = \frac{1}{E} \begin{pmatrix} 1 & -\nu & 0 \\ -\nu & 1 & 0 \\ 0 & 0 & 1+\nu \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yx} \\ \sigma_{yy} \end{pmatrix} \]

La déformation \(\epsilon_{zz} \) n’est pas nulle par effet de Poisson. Elle pourra être calculée \textit{a posteriori} en utilisant l’hypothèse \(\sigma_{zz} = 0 \) i.e.

\[\epsilon_{zz} = \frac{\nu}{1-\nu^2}(\epsilon_{xx} + \epsilon_{yy}). \]

On inverse ensuite la relation (3.106) pour obtenir la matrice de Hooke pour l’état plan de contraintes

\[\sigma = D\epsilon \]

avec

\[D = \frac{E}{1-\nu^2} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1+\nu}{2} \end{bmatrix}. \] (3.84)

3.10.2 Hypothèse de l’état plan de déformations

Ce modèle s’applique à un corps de section quelconque, constante, infiniment long, conventionnellement d’axe \(z \), encastré à ses deux extrémités. Le corps est soumis à un chargement orthogonal à \(z \) uniforme sur toute sa longueur. Dans ces conditions, aucune dilatation suivant l’axe \(z \) n’est possible : chaque tranche ne se déforme que dans son plan. Par contre il existe des contraintes \(\sigma_{zz} \) qui contrebalancent l’effet de Poisson c’est-à-dire la tendance à la dilatation suivant l’axe \(z \). La contrainte qui retient chaque tranche dans le plan vaut

\[\sigma_{zz} = \nu(\sigma_{xx} + \sigma_{yy}). \]
Elle pourra être calculée a posteriori. La loi de Hooke pour l’état plan de déformations s’écrit, étant donné (3.81),

\[\sigma = D \epsilon \]

avec

\[D = \frac{E}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix} 1 - \nu & \nu & 0 \\ \nu & 1 - \nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \]

Au niveau du calcul, les deux approches des états plans de contraintes et de déformations se diffèrent uniquement par le choix de la loi de comportement \(D \). Bien sûr, ces deux approches sont basées sur des hypothèses fondamentalement différentes et ne s’appliquent donc pas aux mêmes structures.

3.10.3 Application du principe des travaux virtuels

On choisit un champ de déplacements virtuels cinématiquement admissibles \(v \in U_0 \) c’est-à-dire que \(v_x \) et \(v_y \) appartiennent à \(H^1(\Omega) \) et \(v = 0 \) sur \(\Gamma_u \). Le principe des travaux virtuels consiste à trouver \(u \in U \) qui vérifie

\[\int_\Omega \frac{\epsilon^T(u) D \epsilon(v)}{\epsilon^T(v)} \, dv = \int_\Omega f \, v \, dv + \int_{\Gamma_F} F \, v \, ds \quad \forall v \in U_0. \quad (3.85) \]

3.10.4 Discrétisation et calcul de la matrice de raideur

À faire ...

3.11 Plaques de Kirchhoff

Les plaques sont des structures en état plan de contraintes. Ce sont donc des structures minces et planes. Les plaques sont l’équivalent 2D des poutres : elles admettent des déplacements verticaux suivant l’axe \(z \). Le modèle de plaques Kirchhoff est l’équivalent du modèle de Bernoulli pour les poutres. On ne considère pas ici l’effet membrane c’est-à-dire les forces appliquées dans le plan (Figure 3.32). Comme pour les poutres, cet effet pourra par la suite être superposé à la flexion.

3.11.1 Hypothèses cinématiques

Les hypothèses cinématiques de la plaque de Kirchhoff sont absolument similaires aux hypothèses cinématiques de la section §3.6.1 relatives aux poutres de Bernoulli. Le lignes connectant les surfaces supérieure et inférieure de de la plaque et normales au plan \(xy \) restent normales à la surface neutre après déformation. On a

\[u_x = -z \frac{\partial w}{\partial x} \]
\[u_y = -z \frac{\partial w}{\partial y} \]
\[u_z = w(x, y) \quad (3.86) \]
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

Fig. 3.32 – Géométrie de la plaque et forces extérieures.

Fig. 3.33 – Vue de la déflexion de la surface neutre de la plaque de Kirchhoff (lire $t = h$ sur ce graphique).

avec w une fonction suffisamment continue qui représente la déflexion de la surface neutre. La Figure 3.33 donne une représentation graphique des hypothèses cinématiques (3.86). Le vecteur des déformations planes s’écrit :

$$
\varepsilon = \begin{pmatrix}
-z \frac{\partial^2 w}{\partial x^2} \\
-z \frac{\partial^2 w}{\partial y^2} \\
-2z \frac{\partial^2 w}{\partial x \partial y}
\end{pmatrix} = -z \begin{pmatrix}
\kappa_x \\
\kappa_y \\
2\kappa_{xy}
\end{pmatrix} = -z \kappa
$$

où le tenseur κ est le tenseur des courbures qui sont les déformations généralisées pour le cas des plaques. On remarque qu’il existe a priori un couplage entre les déformations dans les directions x et y introduit par la composante κ_{xy} non nulle. Les contraintes de cisaillement transverses σ_{xz} et σ_{yz} sont donc nulles dans ce cas. Comme nous l’avons discuté plus haut, ce modèle s’applique uniquement aux plaques très minces. Il existe des modèles de plaques épaisses qui tiennent compte du cisaillement, nous en décrirons un plus loin avec le modèle de Reissner-Mindlin. Les contraintes s’écrivent

$$
\sigma = D \varepsilon
$$

avec la matrice de comportement D (3.84) relative à l’état plan de contraintes.
3.11.2 Forces et moments agissant dans la plaque

La figure 3.34, on montre la distribution des contraintes dans l’épaisseur de la plaque. Dans la théorie des poutres, nous avons employé des résultantes des forces dans la section : on a défini le moment de flexion M, l’effort tranchant T et l’effort normal N. Dans la théorie des plaques, on définit des distributions de forces par unité de longueur (i.e. des contraintes intégrées sur l’épaisseur de la plaque).

![Diagram of forces and moments in a plate](image)

Fig. 3.34 – Distribution des contraintes dans la plaque et efforts résultants.

\[
M_{xx} = \int_{-h/2}^{h/2} \sigma_{xx} z \, dz = \int_{-h/2}^{h/2} \frac{E}{1 - \nu^2} (\epsilon_{xx} + \nu \epsilon_{yy}) z \, dz \\
= -\frac{E}{(1 - \nu^2)} \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \int_{-h/2}^{h/2} z^2 \, dz \\
= -\frac{E h^3}{12(1 - \nu^2)} \frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2},
\]

(3.87)
\[M_{yy} = \int_{-h/2}^{h/2} \sigma_{yy} z \, dz = -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) \]
et
\[M_{xy} = \int_{-h/2}^{h/2} \sigma_{xy} z \, dz = -D (1 - \nu) \frac{\partial^2 w}{\partial x \partial y}. \]

Le facteur \(D \) est appelé rigidité flexionnelle de la plaque. On a donc la relation de comportement pour les plaques qui s’écrit de la façon suivante

\[
\mathbf{M} = \begin{pmatrix} M_{xx} \\ M_{yy} \\ M_{xy} \end{pmatrix} = -D \begin{pmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1 + \nu)/2 \end{pmatrix} \begin{pmatrix} \kappa_x \\ \kappa_y \\ 2 \kappa_{xy} \end{pmatrix} = -D \kappa
\]

Introduisons maintenant les efforts tranchants

\[T_x = \int_{-h/2}^{h/2} \sigma_{xz} z \, dz \]
et
\[T_y = \int_{-h/2}^{h/2} \sigma_{yz} z \, dz. \]

L’équation d’équilibre dans la direction \(x \) donne (pas de forces suivant \(x \))

\[
\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = 0
\]

de qui, en terme de moments de flexion et d’efforts tranchants donne (les opérations \(\partial/\partial x \) et \(\partial/\partial y \) peuvent être interchangées avec l’opérateur d’intégration) :

\[
\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} + \int_{-h/2}^{h/2} \frac{\partial \sigma_{xz}}{\partial z} \, dz = 0
\]

On intègre par parties le dernier terme

\[
\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} - \int_{-h/2}^{h/2} \sigma_{xz} z \, dz + \frac{h}{2} \sigma_{xz} \bigg|_{-h}^h = 0
\]

Par définition, aucun cisaillement n’est appliqué aux faces supérieures et inférieures de la plaque. On a donc :

\[T_x = \frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} \]
et similairement en utilisant l’équilibre suivant \(y \)

\[T_y = \frac{\partial M_{xy}}{\partial x} + \frac{\partial M_{yy}}{\partial y} \]

L’équation d’équilibre dans la direction \(z \) intégrée sur l’épaisseur donne

\[
\int_{-h/2}^{h/2} \left(\frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{yz}}{\partial y} + \frac{\partial \sigma_{zz}}{\partial z} \right) \, dz = 0
\]
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

<table>
<thead>
<tr>
<th>Forme matricielle</th>
<th>Forme indicielle</th>
<th>Nom des équations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa = Pw)</td>
<td>(\kappa_{\alpha\beta} = \partial_{\alpha\beta} w)</td>
<td>Compatibilité</td>
</tr>
<tr>
<td>(M = -D\kappa)</td>
<td>(M_{\alpha\beta} = -d_{\alpha\beta\gamma\delta} \kappa_{\gamma\delta})</td>
<td>Comportement</td>
</tr>
<tr>
<td>(P^T M = \tau)</td>
<td>(\partial_{\alpha\beta} M_{\alpha\beta} = \tau)</td>
<td>Équilibre</td>
</tr>
</tbody>
</table>

Tab. 3.2 – Résumé des équations de la théorie des plaques de Kirchhoff. On a \(P^T = (\partial_{xx}, \partial_{yy}, 2\partial_{xy})\) et les indices Grecs comme \(\alpha\), quand ils sont sommés, prennent les valeurs \(x\) et \(y\). Les composantes du tenseur de Hooke \(d_{\alpha\beta\gamma\delta}\) pour les plaques en flexion valent [Hughes(1987)] \(d_{\alpha\beta\gamma\delta} = h^3/12[\lambda\delta_{\alpha\beta}\delta_{\gamma\delta} + G(\delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})]\) avec \(\lambda = \nu E/(1 - \nu^2)\).

En tenant compte de la définition des résultantes \(T_x\) et \(T_y\), on déduit que

\[
\frac{\partial T_x}{\partial x} + \frac{\partial T_y}{\partial y} + \sigma_{zz}\frac{h}{2} = 0
\]

En \(z = -h/2\), on a supposé qu’il existe une distribution surfacique (pression) \(\tau\) que \(\sigma_{zz}\) doit équilibrer. On a donc

\[
\sigma_{zz}\frac{h}{2} = 0 - (-\tau) = \tau
\]

On trouve donc l’équilibre vertical en termes de résultantes

\[
\frac{\partial T_x}{\partial x} + \frac{\partial T_y}{\partial y} + \tau = 0
\]

ou en termes de moments

\[
\frac{\partial^2 M_{xx}}{\partial x^2} + 2\frac{\partial^2 M_{xy}}{\partial x\partial y} + \frac{\partial^2 M_{yy}}{\partial y^2} + \tau = 0
\] \(3.88\)

En résumé, on trouve dans la Table 3.2 les équations de la théorie des plaque en notations matricielle et indicielle.

En utilisant la déflexion \(w\) comme inconnue, on trouve\(^9\)

\[
\nabla^4 w = \frac{\tau}{D}.
\] \(3.89\)

C’est l’équation biharmonique qui décrit la flexion de la plaque. Notons que les équations \((3.88)\) en termes de moments sont valables pour tout matériau tandis que l’équation en termes de la flexion \(w\) est seulement valable pour un matériau élastique linéaire. L’équation \((3.89)\) est l’équation classique de la théorie des plaques, appelée souvent équation de Lagrange. Elle doit être agrémentée de conditions aux limites appropriées à l’étude des plaques. Pour obtenir l’expression de ces conditions aux limites, on va, dans la section suivante, utiliser l’approche variationnelle.

3.11.3 Application du principe des travaux virtuels

Nous désirons maintenant écrire le principe des travaux pour la plaque de Kirchhoff. Pour cela, on a besoin de définir un ensemble de déplacements virtuels \(v\) compatibles avec

\(^9\nabla^4 = \frac{\partial^4}{\partial x^4} + 2\frac{\partial^4}{\partial x^2\partial y^2} + \frac{\partial^4}{\partial y^4} \)
les hypothèses cinématiques (3.86). La façon la plus simple est de choisir une fonction continues \(g \) et de choisir \(v_z = g, v_x = -z \partial g / \partial x, v_y = -z \partial g / \partial y \) et \(v = 0 \) sur la partie \(\Gamma_U \) de la frontière \(\Gamma \) où les déplacements de la plaque sont imposés. Le principe des travaux virtuels s’écrit donc,

\[
\int_{-h/2}^{h/2} \int_R z (D_{11} \frac{\partial^2 w}{\partial x^2} + D_{12} \frac{\partial^2 w}{\partial y^2}) \frac{\partial^2 g}{\partial x^2} + z (D_{21} \frac{\partial^2 w}{\partial x^2} + D_{22} \frac{\partial^2 w}{\partial y^2}) \frac{\partial^2 g}{\partial y^2} \frac{\partial^2 g}{\partial x^2} \nu_{\varepsilon_{xx}(v)} - \sigma_{xx}(u) + z \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 g}{\partial y^2} \nu_{\varepsilon_{yx}(v)} - \sigma_{yx}(u) + z \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 g}{\partial x^2} \nu_{\varepsilon_{xy}(v)} - \sigma_{xy}(u) + z \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 g}{\partial y^2} \nu_{\varepsilon_{yy}(v)} - \sigma_{yy}(u) - 2z \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \int_R \tau g dv \forall g
\]

Dans (3.90), on remarque que des termes tels que

\[
\int_{-h/2}^{h/2} z^2 dz = h^3 / 12.
\]

On utilise la rigidité flexionelle

\[
D = \frac{Eh^3}{12(1 - \nu^2)}
\]

de définie plus haut et le principe des travaux virtuels se simplifie, en tenant compte de \(D \) et du comportement en état plan de contraintes :

\[
D \int_R \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} - \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) \frac{\partial^2 g}{\partial x^2} \nu_{\varepsilon_{xx}(v)} - \sigma_{xx}(u) + z \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 g}{\partial y^2} \nu_{\varepsilon_{yx}(v)} - \sigma_{yx}(u) + z \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 g}{\partial x^2} \nu_{\varepsilon_{xy}(v)} - \sigma_{xy}(u) + z \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 g}{\partial y^2} \nu_{\varepsilon_{yy}(v)} - \sigma_{yy}(u) - 2z \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \int_R \tau g dv \forall g
\]

En manipulant les termes de (3.92) en vue de faciliter une intégration par parties, on trouve

\[
D \int_R \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right) \Delta_w \Delta_g + (1 - \nu) \left(\frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \Delta_w \Delta_g - \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \Delta_w \Delta_g - \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \Delta_w \Delta_g + \frac{\partial^2 w}{\partial y \partial x} \frac{\partial^2 g}{\partial y \partial x} \Delta_w \Delta_g - \frac{\partial^2 w}{\partial y \partial x} \frac{\partial^2 g}{\partial y \partial x} \Delta_w \Delta_g - \frac{\partial^2 w}{\partial y \partial x} \frac{\partial^2 g}{\partial y \partial x} \Delta_w \Delta_g \right) dv
\]

\[
= \int_R \tau g dv \forall g
\]
On a donc, pour le premier terme:\(^10\)

\[
\int_R \Delta w \Delta g dv = \int_R \Delta \Delta w \, g dv + \\
\oint_\Gamma \Delta w \frac{\partial g}{\partial x} \, dx + \oint_\Gamma \Delta w \frac{\partial g}{\partial y} \, dy - \oint_\Gamma g \frac{\partial \Delta w}{\partial x} \, dx - \oint_\Gamma g \frac{\partial \Delta w}{\partial y} \, dy.
\]

Pour les termes en dérivées croisées, on procède comme suit :

\[
\int_R \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \, ds = - \int_R \frac{\partial^3 w}{\partial^2 x \partial y} \frac{\partial g}{\partial y} \, ds + \oint_\Gamma \frac{\partial^3 w}{\partial x^2 \partial y} \frac{\partial g}{\partial y} \, dx - \oint_\Gamma \frac{\partial^3 w}{\partial x^2 \partial y} g \, dy
\]

\[
\int_R \frac{\partial^2 w}{\partial x^2} \frac{\partial^2 g}{\partial y^2} \, ds = - \int_R \frac{\partial^3 w}{\partial x^3} \frac{\partial g}{\partial y} \, ds + \oint_\Gamma \frac{\partial^3 w}{\partial x^3} \frac{\partial g}{\partial y} \, dx - \oint_\Gamma \frac{\partial^3 w}{\partial x^3} g \, dy
\]

Finalement\(^11\), on obtient le principe variationnel pour les plaques de Kirchhoff :

\[
\int_R \left(D \nabla^4 w - \tau \right) g dv + D \oint_\Gamma \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \frac{\partial g}{\partial x} \, dy
\]

\[
- D \oint_\Gamma \left(\frac{\partial^3 w}{\partial x^3} + \nu \frac{\partial^3 w}{\partial^2 x \partial y} \right) \frac{\partial g}{\partial y} \, dx + D \oint_\Gamma \left(1 - \nu \right) \left(\frac{\partial^3 w}{\partial y^3} + \nu \frac{\partial^3 w}{\partial^2 x \partial y} \right) g \, dx
\]

\[
- D \oint_\Gamma \left(1 - \nu \right) \frac{\partial^2 w}{\partial x \partial y} \frac{\partial g}{\partial x} \, dx - D \oint_\Gamma \left(1 - \nu \right) \frac{\partial^3 w}{\partial x^2 \partial y} g \, dx
\]

\[
- D \oint_\Gamma \left(1 - \nu \right) \frac{\partial^3 w}{\partial x \partial y^2} g \, dy = 0 \quad \forall g
\]

Nous pouvons écrire le principe des travaux virtuels en introduisant les moments résultants :

\[
\int_R \left(D \nabla^4 w - \tau \right) g dv - \oint_\Gamma M_{xx} \frac{\partial g}{\partial x} \, dy + \oint_\Gamma M_{yy} \frac{\partial g}{\partial y} \, dx - \oint_\Gamma M_{xy} \frac{\partial g}{\partial y} \, dy
\]

\[
+ \oint_\Gamma \left(\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} \right) g \, dx
\]

\[
+ \oint_\Gamma \left(\frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} \right) g \, dy = 0 \quad \forall g
\]

\(^{10}\)On rappelle les formules utiles suivantes :

\[
n = (\partial s/\partial x, \partial s/\partial y)
\]

\[
\int_R (a\Delta b - b\Delta a) ds = \oint_\Gamma (a(\nabla b \cdot n) - b(\nabla a \cdot n)) \, ds
\]

\[
= \oint_\Gamma \left(a \frac{\partial b}{\partial x} \, dx + a \frac{\partial b}{\partial y} \, dy - b \frac{\partial a}{\partial x} \, dx - b \frac{\partial a}{\partial y} \, dy \right)
\]

\(^{11}\)Je sais, c’est un peu calculoïde ;(-)
En tenant compte de ces derniers résultats, le principe des travaux virtuels s'écrit

\[
\int_R \left(D \left(\nabla^4 w - \tau \right) g dv - \int_\Gamma M_{xx} \frac{\partial g}{\partial x} \, dy + \int_\Gamma M_{yy} \frac{\partial g}{\partial y} \, dx - \int_\Gamma M_{xy} \frac{\partial g}{\partial y} \, dy \right) + \int_\Gamma M_{xy} \frac{\partial g}{\partial x} \, dx - \int_\Gamma T_y \, g \, dx + \int_\Gamma T_x \, g \, dy = 0 \quad \forall g
\]

On désire maintenant exprimer l'équilibre en termes de moments et d'efforts tranchants résultants dans une section arbitraire de la frontière. La normale \(n = (n_x, n_y) \) et la tangente

\[
s = n \times e_z = (-n_y, n_x)
\]

sont montrées sur la Figure 3.35. Des résultat classique de l'analyse tensorielle donnent

\[
\Omega \Gamma
\]

FIG. 3.35 – Conditions aux limites au point \(B \) d'une frontière lisse d'une plaque de Kirchhoff : \(n \) = normale extérieure, \(s \) = direction tangentielle. (a) frontière traversée dans le sens anti-horlogique, laissant la plaque sur la gauche ; (b) inconnues cinématiques \(\theta_s \) et \(\theta_n \) ; (c) moments et forces résultantes \(T_n \), \(M_{nn} \) et \(M_{ns} \) sur la frontière.

\[
\sigma_{nn} = n^T \sigma n = n_x^2 \sigma_{xx} + 2n_x n_y \sigma_{xy} + n_y^2 \sigma_{yy}
\]

et

\[
\sigma_{ns} = n^T \sigma s = n_x n_y (\sigma_{yy} - \sigma_{xx}) + (n_x^2 - n_y^2) \sigma_{xy}
\]

ce qui donne en terme de moments

\[
M_n = n_x^2 M_x + 2n_x n_y M_{xy} + n_y^2 M_y
\]

et

\[
M_{ns} = n_x n_y (M_y - M_x) + (n_x^2 - n_y^2) M_{xy}.
\]

Le moment \(M_n \) est un moment de torsion imposé tandis que le moment \(M_{ns} \) est le moment de flexion imposé. Ce sont ces grandeurs qui sont connues sur la frontière \(\Gamma_F \) et il convient
maintenant de les faire apparaître dans le principe des travaux virtuels. Nous avons la
formule classique pour le changement de coordonnées d’un vecteur
\[
\frac{\partial}{\partial x} = n_x \frac{\partial}{\partial n} - n_y \frac{\partial}{\partial s}
\]
\[
\frac{\partial}{\partial y} = n_y \frac{\partial}{\partial n} + n_x \frac{\partial}{\partial s}
\]
Le différentielles \(dx\) et \(dy\) sont liées à \(ds\) par
\[
dx = (\partial n_x \partial s) ds\]
\[
dy = (\partial n_y \partial s) ds\]
En introduisant ces résultats dans le principe des travaux virtuels, on trouve
\[
\int_R \left(D \cdot \nabla^4 w - \tau \right) g dv - \int_{\Gamma} M_{xx} \left(\frac{\partial g}{\partial n} n_x - \frac{\partial g}{\partial s} n_y \right) n_x ds
\]
\[
+ \int_{\Gamma} M_{yy} \left(\frac{\partial g}{\partial n} n_y + \frac{\partial g}{\partial s} n_x \right) (-n_y) ds - \int_{\Gamma} M_{xy} \left(\frac{\partial g}{\partial n} n_y + \frac{\partial g}{\partial s} n_x \right) n_x ds
\]
\[
+ \int_{\Gamma} M_{xy} \left(\frac{\partial g}{\partial n} n_x - \frac{\partial g}{\partial s} n_y \right) (-n_y) ds - \int_{\Gamma} T_y g dx + \int_{\Gamma} T_x g dy = 0 \forall g.
\]
En regroupant les termes, on trouve
\[
\int_R \left(D \cdot \nabla^4 w - \tau \right) g dv - \int_{\Gamma} \left(-M_{xx} n_x^2 - M_{yy} n_y^2 - 2M_{xy} n_x n_y \right) \frac{\partial g}{\partial n} ds +
\]
\[
\int_{\Gamma} \left(M_{xx} n_x n_y - M_{yy} n_x n_y - M_{xy} n_x^2 + M_{xy} n_y^2 \right) \frac{\partial g}{\partial s} ds +
\]
\[
+ \int_{\Gamma} \left(T_x n_x + T_y n_y \right) g ds = 0 \forall g.
\]
Examinons la troisième intégrale de (3.93). Si la frontière \(\Gamma\) de la plaque est régulière entre
\(A\) et \(B\) (pas de coins) on a :
\[
\int_A^B \frac{\partial g}{\partial s} ds = - \int_A^B g \frac{\partial M_{ns}}{\partial s} ds + M_{ns} g_A^B
\]
(3.93)

Fig. 3.36 – Force de coin (gauche) et soulèvement de coin (droite).
Le dernier terme de (3.93) demande un peu d’attention. Dans le cas d’une plaque dont la frontière est lisse, le terme

\[M_{ns}g|_A^B \]

s’annule car on peut supposer que \(M_{ns} \) est continu sur \(\Gamma \) (qui fait le tour complet de la plaque) et que, par conséquent, \(A = B \). Si, par contre, la plaque possède un coin en \(C \) (Figure 3.36), le moment de torsion \(M_{ns} \) peut subir un saut de \(M_{ns}^{-} \) à \(M_{ns}^{+} \). Le déplacement transversal \(w \) doit être continu (il est même \(C^1 \)). Si on considère que \(A \) et \(B \) sont de chaque côté du coin \(C \) et que l’on fait tendre \(A \to C \) par la gauche et \(C \to B \) par la droite, on a

\[M_{ns}g|_A^B = R_c g = (M_{ns}^+ - M_{ns}^-) g \]

Le saut de moment de torsion est appelé force de coin et noté \(R_c \). S’il désire que ce coin ne se soulève pas, il peut ajouter en ce coin une force concentrée \(R_c \) qui contrebalance exactement le saut de moments et empêche le phénomène.

La forme finale et utilisable du principe des travaux virtuels pour les plaques de Kirchhoff s’écrit donc, pour une plaque sans coins

\[\int_R (D\nabla^4 w - \tau) \, g \, dv = \int_\Gamma M_n \frac{\partial g}{\partial n} \, ds + \oint_\Gamma \left(\frac{\partial M_{ns}}{\partial s} + T_n \right) \, g \, ds + \sum_{c=1}^{N_c} R_c g = 0 \quad \forall g \in V \]

où on a considéré une plaque avec \(N_c \) coins. On retrouve ici l’équation des plaques (3.89). Il existe 2 ensembles de conditions aux limites. On doit imposer deux conditions sur chaque partie de \(\Gamma \):

- Soit \(M_n \) ou \(\frac{\partial w}{\partial n} \) est fixé (si \(M_n \) est fixé, alors \(\frac{\partial w}{\partial n} = 0 \) sur cette portion de la frontière et on ne peut donc fixer la pente \(\frac{\partial u}{\partial n} \)),

- Soit \((\frac{\partial M_{ns}}{\partial s} + T_n) \) ou \(w \) est fixé.

Il existe donc 2 conditions naturelles possibles malgré le fait qu’on a 3 variables de type forces \(M_n, M_{ns} \) et \(T_n \). La première condition ne nécessite pas de commentaires : imposer \(M_n = 0 \) par exemple signifie que cette portion de la frontière est libre en rotation. La deuxième condition est demandée un peu plus d’attention. La condition équivalente pour les poutres consistait en la possibilité d’imposer l’effort tranchant \(T \) en une extrémité de la poutre. Nous allons montrer que l’expression

\[\bar{T} = \left(\frac{\partial M_{ns}}{\partial s} + T_n \right) \]

est un effort tranchant effectif. Imaginons que le bord de la plaque soit représenté par une suite de panneaux de taille \(ds \) (Figure 3.37). On peut, par le principe de Sait-Venant, remplacer le moment de torsion \(M_{ns} \) par des couples de forces équivalents. On a donc que l’effort tranchant total entre deux panneaux est égal à

\[\bar{T} ds = \left(\frac{\partial M_{ns}}{\partial s} ds + T_n ds \right). \]

\[^{12} \text{L’idée ici est que l’utilisateur d’un code d’éléments fini a le droit d’imposer un mmoment de torsion discontinue en un coin.} \]
Remplacement du moment de torsion
par un couple équivalent:

Figure 3.37 – Remplacement du moment de torsion par des couples de forces équivalents.

3.11.4 Comparaison entre poutres de Bernoulli et plaques de Kirchhoff
Valeurs

<table>
<thead>
<tr>
<th>Plaques</th>
<th>Unités</th>
<th>Poutres</th>
<th>Unités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge répartie $\tau(x, y)$</td>
<td>kN/m^2</td>
<td>Charge répartie $\tau(x)$</td>
<td>kN/m</td>
</tr>
</tbody>
</table>

Déformée

| $w(x, y)$ | m | $f(x)$ | m |

Équation fondamentale

\[
\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{\tau(x, y)}{D}
\]

\[
\frac{\partial^4 w}{\partial x^4} = \frac{\tau(x)}{D}
\]

Rigidité flexionnelle

\[
D = \frac{EI}{1 - \nu^2} \quad I = \frac{bh^3}{12}
\]

\[
D = EI \quad I = \frac{bh^3}{12}
\]

Moments de flexion

\[
M_{xx} = -D \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \quad kN
\]

\[
M_{yy} = -D \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) \quad kN
\]

\[
M_{xy} = -D(1 - \nu) \frac{\partial^2 w}{\partial x \partial y} \quad kN
\]

\[
M_{xy} = 0 \quad kNm
\]

Efforts tranchants

\[
T_x = -D \frac{\partial}{\partial y} \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \right) \quad kN/m
\]

\[
T_y = -D \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial y^2} + \nu \frac{\partial^2 w}{\partial x^2} \right) \quad kN/m
\]

\[
T = -D \frac{\partial^3 w}{\partial x \partial y} \quad kN
\]

Relations $T - M$

\[
T_x = \frac{\partial M_{xx}}{\partial y} + \frac{\partial M_{xy}}{\partial y} \quad T = \frac{\partial M_{xx}}{\partial x}
\]

\[
T_y = \frac{\partial M_{yy}}{\partial x} + \frac{\partial M_{xy}}{\partial x}
\]

Relations $T - \tau$

\[
\frac{\partial T_x}{\partial x} + \frac{\partial T_y}{\partial y} + \tau = 0
\]

\[
\frac{\partial T_x}{\partial x} + \tau = 0
\]

Relations $M - \tau$

\[
\frac{\partial^2 M_{xx}}{\partial x^2} + 2 \frac{\partial^2 M_{xx}}{\partial x \partial y} + \frac{\partial^2 M_{yy}}{\partial y^2} + \tau = 0
\]

\[
\frac{\partial^2 M_{xx}}{\partial x^2} + \tau = 0
\]
3.12 Éléments finis de plaques de Kirchhoff en flexion

Cette section présente une liste non exhaustive des éléments finis de plaques de Kirchhoff en flexion (PKF).

3.12.1 Principe des travaux virtuels

On considère un domaine $\Omega \subset \mathbb{R}^2$ avec une frontière suffisamment lisse Γ. Cette frontière est divisée en quatre parties disjointes :
- Γ_U: partie de la frontière où la plaque est encastrée i.e. où $w = w_0$ et $\partial_n w = \theta_0$,
- Γ_F: partie de la frontière où la plaque est libre i.e. où $M_n = M^0_n$ et $T_n = T^0_n$,
- Γ_u: partie de la frontière où la plaque est posée i.e. où $w = w_0$ et $M_n = M^0_n$,
- Γ_f: partie de la frontière formant une symétrie i.e. où $\partial_n w = 0$ et $T_n = T^0_n$.

On définit les espaces de fonctions cinématiquement admissibles
$$\mathcal{U} = \{ w \mid w \in H^2(\Omega), \quad w = w_0 \text{ sur } \Gamma_U \cup \Gamma_u, \quad \partial_n w = \theta_0 \text{ sur } \Gamma_U \cup \Gamma_f \}$$
et l’espace des fonctions test
$$\mathcal{U}_0 = \{ w \mid w \in H^2(\Omega), \quad w = 0 \text{ sur } \Gamma_U \cup \Gamma_u, \quad \partial_n w = 0 \text{ sur } \Gamma_U \cup \Gamma_f \}.$$

Il s’agit de trouver w dans $\mathcal{U}(\Omega)$ tel que
$$D \int_\Omega \left(\frac{\partial^2 w}{\partial x^2} + \nu \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 g}{\partial x^2} + (\nu \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \frac{\partial^2 g}{\partial y^2} + 2(1-\nu) \frac{\partial^2 w}{\partial x \partial y} \frac{\partial^2 g}{\partial x \partial y} \right) dv = \\
\int_\Omega \tau g \, dv + \int_{\Gamma_F \cup \Gamma_u} M^0_n \frac{\partial g}{\partial n} \, ds + \int_{\Gamma_F \cup \Gamma_f} T^0_n g \, ds \quad \forall g \in \mathcal{U}_0 \quad (3.95)$$

Dans la plupart des cas pratiques, on a $T^0_n = M^0_n = 0$ ce qui simplifie la formulation. Notons que le champ de déplacement w doit être tel que le carré des dérivées seconedes doit être intégrable sur Ω. Nous devons donc choisir $w \in H^2(\Omega)$ pour que le principe (3.95) ait un sens. Cette condition se traduit, en termes classiques, par l’obligation pour le champ d’être C^1 i.e. avoir des dérivées continues. En une dimension, nous avons rencontré le même problème dans l’étude des poutres de Bernoulli. Le choix de fonctions d’interpolation de Hermite avait permis d’assurer la continuité des dérivées du déplacement. Ici, le problème est nettement plus sévère. Nous allons le montrer dans la prochaine section.

3.12.2 Éléments finis

Le domaine Ω représentant la plaque est subdivisé en éléments finis de la manière habituelle, comme illustré sur le schéma 3.38. Les géométries élémentaires les plus largement répandues sont des triangles et des quadrilatères avec les côtés droits. Les éléments courbes de PKF sont rares. Ils plus courants pour les modèles structuraux C^0 cisaillés (Reissner-Mindlin). On se concentrera ici sur les éléments triangulaires de PKF seulement. Ces triangles auront invariablement les côtés droits. Leur géométrie est décrite par la position des trois nœuds comme décrit sur le schéma 3.39. Le sens positif de la frontière est montré sur le schéma 3.39. Ce sens définit trois directions latérales : s_1, s_2 et s_3 qui sont alignées avec les côtés opposés aux nœuds 1, 2 et 3, respectivement. Les directions normales externes n_1, n_2 et n_3 sont orientées à 90 de s_1, s_2 et s_3. L’aire du triangle, notée
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

FIG. 3.38 – Une PKF et son maillage triangulaire.

FIG. 3.39 – Orientation des éléments et définition des vecteurs principaux.

A est donnée par

\[2A = \det \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{bmatrix} \]

Quant on traite les PKF en discrétisant le déplacement \(w \) uniquement, l’ordre minimum du polynôme pour réaliser, au moins en partie, les conditions de compatibilité, est cubique. Une cubique complète possède 10 termes et par conséquent l’élément cubique possède 10 degrés de liberté (ddl’s). Le schéma 3.40 montre plusieurs configurations possibles avec 10-ddls où l’interpolation cubique complète peut être écrite comme en utilisant des fonctions de forme exprimées en termes de données géométriques (\(x_i \)’s) et/ou de coordonnées triangulaires. Quelques uns de ces schémas d’interpolation sont étudiées plus loin. Puisqu’un polynôme complet est invariable en ce qui concerne un changement de base (toutes ces configurations ne correspondent en fait qu’à des choix spécifique de la base d’une cubique complète), toutes les configurations représentées sur le schéma 3.40 sont équivalentes et fournissent la même interpolation sur un triangle. Comme c’est toujours le cas en éléments finis, ces interpolations diffèrent globalement c’est-à-dire que, sur un maillage au complet, l’espace d’éléments finis est différent et ce sont les liaisons entre éléments adjacents qui font la différence.

Seule la configuration (f) est utilisable dans le cadre d’une triangulation arbitraires (non structurée). Les autres configurations sont utiles pour des calculs intermédiaires, ou
Fig. 3.40 – Différentes configurations pour l’élément fini triangulaire de PKF.

pour différentes études théoriques.

La configuration (a) décrit la cubique comme une expansion de valeurs aux 10 noeuds w_i. Ce type d’interpolation, nous le savons, génère un espace d’éléments finis globalement C^0 ce qui est inacceptable. C’est néanmoins un point de départ utile.

De de (a) on peut passer aux configurations de (b) à (d), le choix étant principalement une question got ou d’objectifs. Les configurations (b) et (d) emploient les six dérivées partielles aux noeuds dans les directions, soit normales, soit tangentes. On note $w_{xij} = (\partial w / \partial n_i)_j$ pour la dérivée de w dans la direction de la normale n_i de la face i et cela au noeud j.

Il est évident que la configuration (f) est la seule permettant une connection aisée d’éléments, comme on le voit sur la figure 3.41. La plupart des programmes commerciaux d’éléments finis utilisent en fait les rotations θ_{xi} et θ_{yi} comme inconnues. A partie de ces rotations, on peut évidemment retrouver l’interpolation cubique sur chaque élément.

Fig. 3.41 – La configuration (a) conduit à un assemblage complexe, même cathotique si on considère qu’un nombre quelconque de triangles peuvent avoir un noeud en commun. La configuration (b) est la plus simple et la plus utilisable.

Comme nous allons le montrer, la configuration (f), malgré le fait qu’elle représente bel et bien un polynôme cubique complet, ne permet pas de représenter un champ C^1. Pour
cela, énonçons les deux conditions suivantes:\footnote{On suppose bien sur ici que l’interpolation est C^1 partout dans l’élément et que seules les arêtes et les noeuds du maillage sont sources de problèmes.}:

- **Continuité de type C^0** : l’élément est C^0 si le champ w sur chacune des arêtes est complètement spécifié par des degrés de liberté sur l’arête.
- **Continuité de type C^1** : l’élément est C^1 s’il est C^0 et que le champ $(\partial w/\partial n)$ sur chacune des arêtes est complètement spécifié par des degrés de liberté sur l’arête.

Notons que la dérivée tangente $(\partial w/\partial s)$ est automatiquement continue si le champ w l’est lui aussi et c’est donc bien la dérivée normale qui peut poser problème.

Pour ce qui est de la configuration (f), le champ est bien cubique sur chaque arête et il existe 4 degrés de liberté sur chaque arête pour décrire w (deux rotations et deux déplacements) ce qui assure que l’élément est C^0.

Le champ de dérivées normales est quadratique sur chaque arête mais il n’existe que deux degrés de liberté sur chaque arête pour le décrire. La dérivée normale sur l’arête i, qui est bel et bien quadratique, comprend le bien, dépend de degrés de liberté autres que ceux relatif à l’arête et le cham n’est donc pas C^1. Notons que nous pourrions ajouter un degré de liberté sur chacune des arêtes. Pour cela, nous devrions ajouter un certain nombre de termes du quatrième ordre ce qui conduirait à un w d’ordre 4 (au moins partiellement) et à un $(\partial w/\partial n)$ cubique. Le problème est loin d’être simple et a généré certainement un des plus grands efforts dans la communauté des éléments finis depuis les années 1960 jusqu’à nos jours.\footnote{Tant et bien que je me demande toujours s’il ne serait pas plus intéressant de modéliser les structures minces directement en trois dimensions, ce qui élimine un très grand nombre de problèmes. Néanmoins, la plupart des odes éléments finis implémentent des éléments de plaque et de coque et il est nécessaire de bien comprendre ce type de problèmes.}

Contraintes cinématiques

Posons maintenant les conditions qui conduiraient à des résultats acceptables c’est à dire une interpolation cubique C^1 complète :

(I) L’élément est capable de représenter tous les cas de courbures constantes i.e. il est capable de représenter des états de déformations et de contraintes constantes (les déformations généralisées de la plaques sont les dérivées secondes du déplacement vertical w). En termes mathématiques, l’élément doit pouvoir représenter exactement toute fonction quadratique complète i.e. la base de polynôme choisie doit contenir tous les termes $(1, x, y, xy, x^2, y^2)$. Cette condition est appelée condition de complétude.

(II) On utilise comme inconnues les déplacements verticaux aux noeuds ainsi que les dérivées cartésiennes de ces déplacements aux noeuds. C’est le choix habituel des éléments finis de type plaques.

(III) L’interpolation doit être telle que les dérivées normales $(\partial w/\partial n)$ soient interpolées linéairement sur chaque bord du triangle. Couplée à la condition 2, cette condition assure la continuité C^1 entre éléments. C’est la

(IV) L’interpolation doit avoir des dérivées secondes non nulles aux noeuds

Theorème 3.12.1 Il n’existe pas d’élément cubique triangulaire qui satisfasse (I), (II), (III) et (IV) simultanément.

Démonstration En un coin C du triangle (Figure 3.42), on suppose que les dérivées secondes de w sont continues. On a donc le développement en série de Taylor en un point
Fig. 3.42 – Un coin d’un élément triangulaire.

\(P(x, y) \) limité aux termes quadratiques qui s’écrit

\[
w = a_0 + a_1 x + a_2 y + a_3 x^2 + a_4 x y + a_5 y^2 + \mathcal{O}(r^3). \tag{3.96}
\]

On considère deux systèmes de coordonnées liés aux deux arêtes \(s_A \) et \(s_B \) (Figure 3.42). Les coordonnées \(x, y \) et \(\bar{x}, \bar{y} \) sont liées par les relations

\[
\bar{x} = x \cos \phi + y \sin \phi, \quad \bar{y} = -x \sin \phi + y \cos \phi
\]

\[
x = \bar{x} \cos \phi - \bar{y} \sin \phi, \quad y = \bar{x} \sin \phi + \bar{y} \cos \phi.
\]

Le long des arêtes \(s_A \) et \(s_B \), la déflexion s’écrit

\[
w|_{y=0} = a_0 + a_1 x + a_3 x^2 + \mathcal{O}(r^3),
\]

\[
w|_{\bar{y}=0} = a_0 + (a_1 \cos \phi + a_2 \sin \phi) \bar{x} + (a_3 \cos^2 \phi + a_4 \cos \phi \sin \phi + a_5 \sin^2 \phi) \bar{x}^2 + \mathcal{O}(r^3)
\]

Les dérivées tangentes du champ le long des arêtes \(s_A \) et \(s_B \) s’écrivent

\[
\frac{\partial w}{\partial x}|_{y=0} = a_1 + 2a_3 x + \mathcal{O}(r^2),
\]

\[
\frac{\partial w}{\partial \bar{x}}|_{\bar{y}=0} = a_1 \cos \phi + a_2 \sin \phi + 2(a_3 \cos^2 \phi + a_4 \sin \phi \cos \phi + a_5 \sin^2 \phi) \bar{x} + \mathcal{O}(r^2).
\tag{3.99}
\]

Les dérivées normales du champ \(w \) peuvent être évaluées tout aussi simplement

\[
\frac{\partial w}{\partial y}|_{y=0} = a_2 + a_4 x + \mathcal{O}(r^2),
\tag{3.100}
\]

\[
\frac{\partial w}{\partial \bar{y}}|_{\bar{y}=0} = -a_1 \sin \phi + a_2 \cos \phi + (a_4 \cos^2 \phi - \sin^2 \phi) - 2(a_3 - a_5) \sin \phi \cos \phi \bar{x} + \mathcal{O}(r^2)
\tag{3.101}
\]

Choisissons maintenant trois états possibles pour les degrés de liberté au noeud \(C \) i.e. en \(x = \bar{x} = 0 \):

- État 1 : \(w = 1 \quad \frac{\partial w}{\partial y}|_{y=0} = 0 \quad \frac{\partial w}{\partial \bar{y}}|_{\bar{y}=0} = 0 \)
- État 2 : \(w = 0 \quad \frac{\partial w}{\partial y}|_{y=0} = 1 \quad \frac{\partial w}{\partial \bar{y}}|_{\bar{y}=0} = 0 \)
- État 3 : \(w = 0 \quad \frac{\partial w}{\partial y}|_{y=0} = 0 \quad \frac{\partial w}{\partial \bar{y}}|_{\bar{y}=0} = 1 \).
avec tous les autres degrés de liberté aux autres noeuds qui sont nuls. N’importe quel état de déformations au point C peut s’écrire comme une combinaison linéaire de ces trois états vu l’hypothèse (II) (pas d’influence des autres ddl’s en ce point).

L’état de déformation 1 impose, par (3.96), \(a_0 = 1 \). On a aussi \(a_2 = 0 \) vu (3.100). On a donc \(a_1 = 0 \) compte tenu de (3.101). Les dérivées normales étant nulles en tous les noeuds et linéaires sur les arêtes, elles sont donc nulles partout sur les arêtes. On a donc \(a_4 = 0 \) par (3.100) et \(a_3 = a_5 \) par (3.101). La fonction de base relative au déplacement au noeud C dans le système cartésien centré en C (Figure 3.42) est de la forme

\[
N_C = 1 + a_3(x^2 + y^2) + O(r^3).
\]

L’état de déformation 2 impose, \(a_0 \) par (3.96), \(a_2 = 1 \) par (3.100) et \(a_1 = \cos \phi / \sin \phi \) compte tenu de (3.101). Les dérivées étant linéaires sur les arêtes, elles sont donc nulles sur l’arête \(s_A \) ce qui implique \(a_4 = 0 \) et \(a_3 = a_5 \). La fonction de base relative à la pente \((\partial w / \partial y)\) en C dans le système cartésien centré en C (Figure 3.42) est de la forme

\[
N_{Cy} = \frac{\cos \phi}{\sin \phi} x + y + a_3(x^2 + y^2) + O(r^2).
\]

L’état de déformation 3 impose, par (3.96), que \(a_0 = 0 \). On a aussi \(a_2 = 0 \) vu (3.100) et \(a_1 = -1 / \sin \phi \) vu (3.101). Les dérivées étant linéaires sur les arêtes, elles sont donc nulles sur l’arête \(s_A \) ce qui implique \(a_4 = 0 \). La fonction de base relative à la pente \((\partial w / \partial y)\) en C dans le système cartésien centré en C (Figure 3.42) est de la forme

\[
N_{Cy} = -\frac{1}{\sin \phi} x + a_3x^2 + a_4y^2 + O(r^2).
\]

Dans tous les cas, on a \(a_4 = 0 \) ce qui signifie que l’état de déformation en torsion pure n’est pas présent dans la représentation ce qui violé à coup sûr le principe de complétude.

Theoreme 3.12.2 Aucun élément de type \(C^1 \) satisfaisant les conditions (II) et (IV) ne peut représenter tous les modes de courbatures constantes.

Démonstration Si l’élément est dans un état de courbature constante, alors la déflexion \(w \) doit être un polynôme quadratique complet en \(x, y \). Donc, la variation de pente doit être linéaire. Cet élément ne peut représenter un état de torsion constante vu le théorème précédent.

Si on insiste absolument sur la continuité \(C^1 \), il existe deux solutions

- Utiliser des macro-éléments qui produisent des interpolations dont les dérivées seconedes sont discontinues aux noeuds de l’élément (n’oublions pas que les dérivées seconedes n’ont pas à être continues pour que l’interpolation soit \(C^1 \)),
- Garder un seul polynôme sur l’élément mais admettre des degrés de liberté correspondant à des dérivées plus élevés aux noeuds. Pour cette solution, on peut montrer que le nombre minimum de degrés de liberté pour obtenir une continuité \(C^1 \) est 21. Cela correspond à un polynôme complet du cinqième ordre (i.e. c’est très cher).

Ces deux options ont été utilisées avec succès.

3.12.3 Petit historique des éléments finis plaques (in English)

By the late 1950s the success of the Finite Element Method with membrane problems (for example, for wing covers and fuselage panels) led to high hopes in its application to
plate bending and shell problems. The first results were published by 1960. But until 1965 only rectangular models gave satisfactory results. The construction of successful triangular elements to model plates and shells of arbitrary geometry proved more difficult than expected. Early failures, however, led to a more complete understanding of the theoretical basis of FEM and motivated several advances taken for granted today. The major source of difficulties in plates is due to stricter continuity requirements. The objective of attaining normal slope interelement compatibility posed serious problems, documented in the form of Limitation Theorems in previous section. By 1963 researchers were looking around escape ways to bypass those problems. It was recognized that completeness, in the form of exact representation of rigid body and constant curvature modes, was fundamental for convergence to the analytical solution, a criterion first enunciated by Melosh. The effect of compatibility violations was more difficult to understand until the patch test came along.

Rectangular Elements

The first successful rectangular plate bending element was developed by Adini and Clough. This element has 12 degrees of freedom. It used a complete third order polynomial expansion in x and y, aligned with the rectangle sides, plus two additional $x^3 y$ and $x y^3$ terms. The element satisfies completeness as well as transverse deflection continuity but normal slope continuity is only maintained at the four corner points. The same element results from another expansion proposed by Melosh (1963), which erroneously states that the element satisfies C^1 continuity. In 1961 Melosh had proposed a rectangular plate element constructed with beam-like edge functions damped linearly toward the opposite side, plus a uniform twisting mode. Again C^0 continuity was achieved but not C^1 except at corners. Both of the foregoing elements displayed good convergence characteristics when used for rectangular plates. However the search for a compatible displacement field was underway to try to achieve monotonically convergence. A fully compatible 12-DOF rectangular element was apparently first developed by Papenfuss in an obscure reference. The element appears to have been rederived several times. The simplest derivation can be carried out with products of Hermite cubic polynomials. Unfortunately the uniform twist state is not included in the expansion and consequently the element fails the completeness requirement, converging monotonically to a zero twist-curvature solution. In a brief but important paper, Irons and Draper stressed the importance of completeness for uniform strain modes (constant curvature modes in the case of plate bending). They proved that it is impossible to construct any polygonal-shape plate element with only 3 DOFs per corner and continuous corner curvatures that can simultaneously maintain normal slope conformity and inclusion of the uniform twist mode. This negative result, presented in the previous section as Limitation Theorem II, effectively closed the door to the construction of the analog of isoparametric elements in plate bending. The construction of fully compatible polynomials expansions of various orders for rectangular shapes was solved by Bogner et al in 1965 through Hermitian interpolation functions. In their paper they rederived Papenfuss element, but in an Addendum they recognized the lack of the twist mode and an additional degree of freedom: the twist curvature, was added at each corner. The 16-DOF element is complete and compatible, and produced excellent results. More refined rectangular elements with 36 DOFs have been also developed using fifth order Hermite polynomials.

Triangular Elements

Flat triangular plate elements have a wider range of application than rectangular elements since they naturally conform to the analysis of plates and shells of arbitrary geo-
metry for small and large deflections. But as noted above, the development of adequate kinematic expansions was not an easy problem. The success of incompatible rectangular elements is due to the fact that the assumed polynomial expansions for \(w \) can be considered as natural deformation modes, after a trivial reduction to nondimensional form. They are intrinsically related to the geometry of the element because the local system is chosen along two preferred directions. Lack of \(C^1 \) continuity between corners disappears in the limit of a mesh refinement. Early attempts to construct triangular elements tried to mimic that scheme, using a RCC system arbitrarily oriented with respect to the element. This lead to an unpleasant lack of invariance whenever an incomplete polynomial was selected, since kinematic constraints were artificially imposed. Furthermore the role of completeness was not understood. Thus the first suggested expansion for a triangular element with 9 DOFs

\[
w = a_1 + a_2 x + a_3 y + a_4 x^2 + a_5 y^2 + a_6 x^3 + a_7 x^2 y + a_8 xy^2 + a_9 y^3
\]

in which the \(xy \) term is missing, violates compatibility, completeness and invariance requirements. The element converges, but to the wrong solution with zero twist curvature. Tocher in his thesis cited above tried two variants of the cubic expansion:

- Combining the two cubic terms: \(x^2 y + xy^2 \).
- Using a complete 10-term cubic polynomial

The first choice satisfies completeness but violates compatibility and invariance. The second assumption satisfies completeness and invariance but violates compatibility and poses the problem: what to do with the extra DOF? Tocher decided to eliminate it by a generalized inversion process, which unfortunately leads to discarding a fundamental degree of freedom. This led to an extremely flexible (and non convergent) element. The elimination technique of Bazeley et. al. discussed in the next section was more successful and produced an element which is still in use today. The first fully compatible 9-DOF cubic triangle was finally constructed by the macroelement technique. The triangle was divided into three subtriangles, over each of which a cubic expansion with linear variation along the exterior side was assumed. The original derivations, carried out in \(x, y \) coordinates were considerably simplified later by using triangular coordinates. The 1965 paper by Bazeley et al. [Bazeley et al. (1966)Bazeley, Cheung, Irons & Zienkiewicz] was an important milestone. In it three plate bending triangles were developed. Two compatible elements were developed using rational functions; experiments showed them to be quite stiff and have no interest today. An incompatible element called the BCIZ triangle since was obtained by eliminating the 10th DOF from a complete cubic in such a way that completeness was maintained. This element is incompatible. Numerical experiments showed that it converged for some mesh patterns but not for others. This puzzling behavior lead to the invention of the patch test. The patch test was further developed by Irons and coworkers in the 1970s. A mathematical version is presented in the Strang-Fix monograph [Strang & Fix(1973)].

Quadrilateral Elements

Arbitrary quadrilaterals can be constructed by assembling several triangles, and eliminating internal DOFs, if any by static condensation. This represents an efficient procedure to take into account that the four corners need not be on a plane. A direct construction of an arbitrary quadrilateral with 16 DOFs was presented by de Veubeke. The quadrilateral is formed by a macroassembly of four triangles by the two diagonals, which are selected as a skew Cartesian coordinate system to develop the finite element fields.
3.12.4 L’élément de plaque mince BCIZ

L’élément BCIZ a été présenté dans un article d’une conférence en 1966. Son nom est un acronyme dont chaque lettre représente un des auteurs de l’article : Bazeley, Cheung, Irons et Zienkiewicz [Bazeley et al. (1966)]. C’est un des éléments de plaque les plus simple et c’est pour cela que nous le présentons.

Coordonnées triangulaires

Les points d’un triangle peuvent être représentés à l’aide d’un système de coordonnées particulier appelé système de coordonnées triangulaires (ou barycentriques) :

\[\xi_1 \quad \xi_2 \quad \xi_3. \]

Si l’arête \(i \) du triangle est celle opposée au noeud \(i \), l’équation

\[\xi_i = \text{constante} \]

représente une ligne parallèle à l’arête \(i \). L’arête 1 reliant les noeuds 2 et 3 est représentée par l’équation \(\xi_1 = 0 \). Le noeud 1, intersection des arêtes 2 et 3 est représenté par le point de coordonnées \(\xi_1 = 1 \), \(\xi_2 = 0 \) et \(\xi_3 = 0 \). La Figure 3.43 montre une représentation graphique des coordonnées triangulaires. Les coordonnées triangulaires ne sont pas indépendantes :

\[\xi_1 + \xi_2 + \xi_3 = 1. \]

Interpolation linéaire

Considérons la fonction \(w(x, y) \) variant linéairement sur le triangle. En terme de coordonnées cartésiennes, l’interpolation s’écrit

\[w(x, y) = a_0 + a_1 x + a_2 y, \quad (3.102) \]

où \(a_0 \), \(a_1 \) et \(a_2 \) sont des coefficients inconnus à déterminer à partir de 3 conditions. La signification des coefficients \(a_i \) a une grande importance dans la construction d’une interpolation par éléments finis. En général, on veut que \(a_i \) représente la valeur de \(w \) au noeud \(i \)\(^{15}\). Une interpolation telle que présentée en (3.102) n’est pas une interpolation nodale.

\(^{15}\)Bien que cette condition soit loin d’être générale et qu’il existe des schémas d’éléments finis utilisant d’autres type d’interpolation que celle aux noeuds.
tandis qu’une interpolation telle que
\[w(\xi_1, \xi_2, \xi_3) = w_1 \xi_1 + w_2 \xi_2 + w_3 \xi_3 \]
(3.103)
est une interpolation qui utilise les valeurs nodales comme inconnues.

Transformation de coordonnées

Certaines quantités comme le déplacement peuvent être exprimées de manière naturelle dans les coordonnées triangulaires. Il arrive aussi que l’on désire exprimer des quantités relatives au système cartésien : une dérivée suivant \(x\) par exemple. Les coordonnées cartesiennes et triangulaires peuvent être reliées entre elles par un changement de coordonnées dont les coefficients dépendent de la géométrie du triangle :
\[
\begin{pmatrix}
1 \\
x \\
y
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 \\
x_1 & x_2 & x_3 \\
y_1 & y_2 & y_3
\end{pmatrix}
\begin{pmatrix}
\xi_1 \\
\xi_2 \\
\xi_3
\end{pmatrix}
\]
(3.104)
La première équation de (3.104) exprime que la somme des trois coordonnées triangulaires vaut 1, la deuxième et la troisième montrent que les coordonnées cartesiennes du triangle sont interpolées linéairement en utilisant les valeurs nodales i.e. les coordonnées des nœuds. On a par exemple qu’un point du triangle de coordonnées triangulaires \((\xi_1, \xi_2, \xi_3)\) a pour coordonnées cartésiennes
\[x = \xi_1 x_1 + \xi_2 x_2 + \xi_3 x_3. \]
On peut inverser (3.104) et obtenir
\[
\begin{pmatrix}
\xi_1 \\
\xi_2 \\
\xi_3
\end{pmatrix}
= \frac{1}{2A}
\begin{pmatrix}
x_2 y_3 - x_3 y_2 & y_2 - y_3 & x_3 - x_2 \\
x_3 y_1 - x_1 y_3 & y_3 - y_1 & x_1 - x_3 \\
x_1 y_2 - x_2 y_1 & y_1 - y_2 & x_2 - x_1
\end{pmatrix}
\begin{pmatrix}
1 \\
x \\
y
\end{pmatrix}
\]
(3.105)

Dérivées partielles

Des équations (3.104) et (3.105), on obtient immédiatement les relations
\[
\frac{\partial x}{\partial \xi_i} = x_i, \quad \frac{\partial y}{\partial \xi_i} = y_i,
\]
\[
2A \frac{\partial \xi_i}{\partial x} = y_{jk}, \quad 2A \frac{\partial \xi_i}{\partial y} = x_{jk}
\]où \(j\) et \(k\) dénotent une permutation cyclique de \(i\). Par exemple, si \(i = 2\), alors \(j = 3\) et \(k = 1\). Les dérivées de \(w(\xi_1, \xi_2, \xi_3)\) par rapport à \(x\) ou \(y\) se déduisent de la règle du chaînage des dérivées :
\[
\frac{\partial w}{\partial x} = \frac{1}{2A} \left(\frac{\partial w}{\partial \xi_1} y_{23} + \frac{\partial w}{\partial \xi_2} y_{31} + \frac{\partial w}{\partial \xi_3} y_{12} \right)
\]
\[
\frac{\partial w}{\partial y} = \frac{1}{2A} \left(\frac{\partial w}{\partial \xi_1} x_{23} + \frac{\partial w}{\partial \xi_2} x_{31} + \frac{\partial w}{\partial \xi_3} x_{12} \right).
\]
Interpolation cubique

Nous avons vu, dans le cadre des poutres de Bernoulli, que le minimum pour obtenir une interpolation de type C^1 est d’utiliser des polynômes du troisième ordre. Pour un triangle, nous voudrions faire de même et utiliser comme inconnues, les valeurs nodales de w ainsi que les dérivées cartésiennes de w aux noeuds. En tout, cela représente 9 inconnues pour le triangle. D’autre part, la théorie des éléments finis nous dit que l’élément cubique sera assurer de donner des résultats précis si on utilise un polynôme cubique complet i.e. contenant $(p+1)(p+2)$ termes [Hughes(1987)]. Pour une cubique ($p = 3$) sur un triangle, on a besoin de 10 termes.

Pour dériver une interpolation cubique satisfaisante sur le triangle, nous commençons par rappeler l’interpolation cubique nodale sur un triangle (Figure 3.44). Comme toutes les interpolations nodales, elle peut s’écrire aisément en termes de coordonnées triangulaires :

$$w = \sum_{i=1}^{10} N_i^c w_i$$

avec les fonctions nodales cubiques N_i^c

$$N_1^c = \frac{1}{2} \xi_1 (3 \xi_1 - 1)(3 \xi_1 - 2)$$
$$N_2^c = \frac{1}{2} \xi_2 (3 \xi_2 - 1)(3 \xi_2 - 2)$$
$$N_3^c = \frac{1}{2} \xi_3 (3 \xi_3 - 1)(3 \xi_3 - 2)$$
$$N_4^c = -\frac{1}{2} \xi_1 \xi_2 (3 \xi_1 - 2)$$
$$N_5^c = -\frac{1}{2} \xi_1 \xi_2 (3 \xi_2 - 1)$$
$$N_6^c = -\frac{1}{2} \xi_1 \xi_2 (3 \xi_2 - 2)$$
$$N_7^c = -\frac{9}{2} \xi_1 \xi_2 (3 \xi_1 - 2)$$
$$N_8^c = -\frac{9}{2} \xi_1 \xi_2 (3 \xi_1 - 1)$$
$$N_9^c = -\frac{9}{2} \xi_1 \xi_2 (3 \xi_2 - 2)$$
$$N_{10}^c = 27 \xi_1 \xi_2 \xi_3.$$

Cet interpolant est C^0 et n’est donc pas utilisable pour interpoler la déflexion w d’une plaque de Kirchhoff.

Un deuxième choix possible consiste à utiliser 4 noeuds et 6 dérivées (Figure 3.44). Nous avons vu que cet élément était très difficile à utiliser car la connexion entre éléments est complexe.
Une troisième possibilité consiste à utiliser 4 nouds et 6 dérivées cartésiennes aux
noeuds. Les degrés de libertés sont numérotés comme suit

\((w) = (w_1, (∂w/∂x)_1, (∂w/∂y)_1, w_2, (∂w/∂x)_2, (∂w/∂y)_2, w_3, (∂w/∂x)_3, (∂w/∂y)_3, w_0)^T \)
où le noeur 0 est le noeur au centre de gravité du triangle et \(w_0 \) le degré de liberté associé.
La méthode pour dériver ce type de fonctions de base est la suivante. Nous voulons que

\[
N_{1}^{c3}(ξ_2, ξ_3) = a_1 + a_2 ξ_1 + a_3 ξ_2 + a_4 ξ_1 ξ_2 + a_5 ξ_2 + a_6 ξ_2 + a_7 ξ_1 ξ_2 + a_8 ξ_1 ξ_2 + a_9 ξ_1 + a_{10} ξ_2
\]
soit égale à 1 au noeud 1 (i.e. en (1, 0)) et 0 aux trois autres noeuds (i.e. en (0, 0), (0, 1) et
\((1/3, 1/3))
Nous voulons également que les dérivées suivant \(x \) et \(y \) de \(N_{1}^{c3} \)

\[
2A \frac{∂N_{1}^{c3}}{∂x} = \left(\frac{∂N_{1}^{c3}}{∂ξ_1} y_{23} + \frac{∂N_{1}^{c3}}{∂ξ_2} y_{31} + \frac{∂N_{1}^{c3}}{∂ξ_3} y_{12} \right)
\]

\[
= \left((a_2 + a_4 ξ_2 + 2a_5 ξ_1 + 2a_7 ξ_1 ξ_2 + a_8 ξ_2 + 3a_9 ξ_1^2) (y_{23} - y_{12}) + (a_3 + a_4 ξ_1 + 2a_6 ξ_2 + a_7 ξ_2 + 2a_8 ξ_1 ξ_2 + 3a_{10} ξ_2^2) (y_{31} - y_{12}) \right)
\]

\[
2A \frac{∂N_{1}^{c3}}{∂y} = \left(\frac{∂N_{1}^{c3}}{∂ξ_1} x_{23} + \frac{∂N_{1}^{c3}}{∂ξ_2} x_{31} + \frac{∂N_{1}^{c3}}{∂ξ_3} x_{12} \right)
\]

\[
= \left((a_2 + a_4 ξ_2 + 2a_5 ξ_1 + 2a_7 ξ_1 ξ_2 + a_8 ξ_2 + 3a_9 ξ_1^2) (x_{23} - x_{12}) + (a_3 + a_4 ξ_1 + 2a_6 ξ_2 + a_7 ξ_2 + 2a_8 ξ_1 ξ_2 + 3a_{10} ξ_2^2) (x_{31} - x_{12}) \right)
\]

soient nulles aux trois coins du triangle. On a donc 10 équations (4 valeurs et 6 dérivées) et
10 inconnues \(a_i \) ce qui nous permet de déterminer les coefficients d'une fonction de base.
On fait de même pour chaque fonction de base pour obtenir les 10 fonctions cherchées \(N_{i}^{c3} \)
qui s'écrivent

\[
N_{1}^{c3} = ξ_1^3(ξ_1 + 3ξ_2 + 3ξ_3) - 7(ξ_1 ξ_2 ξ_3)
\]

\[
N_{2}^{c3} = ξ_2^3(2ξ_1 - ξ_2 - ξ_3) + (x_{13} - x_{21})ξ_1 ξ_2 ξ_3
\]

\[
N_{3}^{c3} = ξ_3(2ξ_1 ξ_2 - y_{12} ξ_3) + (y_{13} - y_{21})ξ_1 ξ_2 ξ_3
\]

\[
N_{4}^{c3} = ξ_1(3ξ_1 + ξ_2 + y_{13}) - 7(ξ_1 ξ_2 ξ_3)
\]

\[
N_{5}^{c3} = ξ_2^3(2ξ_3 - ξ_2 ξ_2) + (x_{23} - x_{32})ξ_1 ξ_2 ξ_3
\]

\[
N_{6}^{c3} = ξ_3^3(2ξ_2 ξ_2 - y_{23} ξ_3) + (y_{23} - y_{32})ξ_1 ξ_2 ξ_3
\]

\[
N_{7}^{c3} = ξ_1(ξ_1 + 3ξ_2 + 3ξ_3) - 7(ξ_1 ξ_2 ξ_3)
\]

\[
N_{8}^{c3} = ξ_2^3(2ξ_1 ξ_1 - y_{32} ξ_3) + (x_{32} - x_{13})ξ_1 ξ_2 ξ_3
\]

\[
N_{9}^{c3} = ξ_3^3(2ξ_1 ξ_1 - y_{32} ξ_3) + (y_{32} - y_{13})ξ_1 ξ_2 ξ_3
\]

\[
N_{10}^{c3} = 27ξ_1 ξ_2 ξ_3.
\]

Cette interpolation n’est conforme qu’aux coins du triangle. En effet, calculons les dérivées
de \(N_{0}^{c3} \):

\[
2A \frac{∂N_{10}^{c3}}{∂x} = ξ_2 ξ_3 y_{23} + ξ_1 ξ_3 y_{31} + ξ_1 ξ_2 y_{12}.
\]

Cette fonction est bien nulle aux 3 noeurs du triangle mais est quadratique sur les arêtes (et
pas linéaire) ce qui implique la non conformité de l’interpolation (voir plus haut). Comme
nous l’avons vu plus haut, éliminer cette fonction conduit bien à une interpolation parfaitement C^1 mais empêche l’interpolation de capturer l’état de torsion pure ce qui implique la non-convergence de l’élément en général.

Pour l’élément BCIZ, on procède de la façon suivante : on élimine le degré de liberté w_0 interne de l’interpolation précédente : on peut le faire car c’est un degré de liberté interne qui ne connecte pas les éléments entre eux. On écrit une contrainte cinématique pour éliminer w_0

$$w_0 = \sum_{i=1}^{9} w_i a_i.$$

On a donc l’interpolation BCIZ qui s’écrit

$$w = \sum_{i=1}^{9} w_i (N_{i1}^c + a_i N_{10}^c).$$

Pour trouver les a_i, nous imposons la condition que tous les états de courbure constante doivent être représentés par l’interpolation. C’est une condition de complétude. Bizarrement, il est clair que cette condition va automatiquement briser la condition de compatibilité. L’idée est que les coefficients a_i vont dépendre de la taille des éléments et que, à la limite de raffinement du maillage, on va retrouver la compatibilité. En fait, la convergence de ce type d’interpolation dépend du maillage choisi. Cet élément est néanmoins largement utilisé en pratique.

3.13 Plaques de Reissner-Mindlin

Lorsque l’épaisseur de la plaque ne permet plus de vérifier les hypothèses de Kirchhoff quant à leur mouvement de flexion (ie elle n’est plus très petite devant la dimensions des ondes de flexion), une théorie plus complète basée sur celle des poutres de Timoshenko est nécessaire. Rayleigh [Rayleigh(1945)] en 1877 puis Timoshenko [?] en 1921 montrent que la prise en compte des effets d’inertie de rotation et de cisaillement affecte les fréquences propres de flexion des poutres. Ces deux effets tendent à diminuer les fréquences de résonance calculées en raison de la croissance de l’inertie et de la flexibilité du système. Une extension de la théorie des plaques quant au cisaillement est proposée par Reissner [Reissner(1945)] en 1945 dans le cas statique. Une première théorie pour le cas dynamique, incluant les effets du cisaillement et de l’inertie de rotation est proposée par Ufhyand [Ufhyand(1948)] en 1948. C’est cependant l’article de Mindlin [Mindlin(1951)], publié 3 ans plus tard qui fera date.

3.13.1 Hypothèses cinématiques

Les hypothèses cinématique de la théorie des plaques de Reissner et Mindlin sont proches de celles utilisées dans le cadre des poutres de Timoshenko. On utilise comme inconnues cinématiques le déplacement vertical w ainsi que les angles de rotation θ_x et θ_y.

\begin{align*}
 u_x &= -z\theta_y(x, y) \\
 u_y &= -z\theta_x(x, y) \\
 u_z &= w(x, y)
\end{align*}
Les composantes θ_x et θ_y sont les composantes d’un vecteur $\mathbf{\theta}$. Avec ces hypothèses cinématiques, une fibre initialement orthogonale au plan moyen reste droite (pas de gau- chissement) mais nous abandonnons l’hypothèse que cette fibre reste orthogonale à la fibre neutre après déformation.

On a donc, vu les hypothèses cinématiques

$$\epsilon = - \begin{pmatrix} \frac{\partial \theta_x}{\partial z} & \frac{\partial \theta_y}{\partial z} & 0 \\ \frac{\partial \theta_y}{\partial z} & \frac{\partial \theta_x}{\partial z} & 0 \\ z \left(\frac{\partial \theta_x}{\partial y} + \frac{\partial \theta_y}{\partial x} \right) - \theta_x + \frac{\partial \phi}{\partial y} \\ z \left(\frac{\partial \theta_x}{\partial y} + \frac{\partial \theta_y}{\partial x} \right) - \theta_y + \frac{\partial \phi}{\partial y} \end{pmatrix}.$$

(3.106)

L’hypothèse $\sigma_{zz} = 0$ étant maintenue, nous pouvons calculer l’état de contraintes en inversant la relation

$$\begin{pmatrix} \epsilon_{xx} \\ \epsilon_{yy} \\ 2\epsilon_{xy} \\ 2\epsilon_{xz} \end{pmatrix} = \frac{1}{E} \begin{pmatrix} 1 & -\nu & 0 & 0 \\ -\nu & 1 & 0 & 0 \\ 0 & 0 & 1 + \nu & 0 \\ 0 & 0 & 0 & 1 + \nu \end{pmatrix} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \\ \sigma_{xz} \end{pmatrix}$$

(3.107)

On a donc

$$\mathbf{\sigma} = \mathbf{D} \mathbf{\epsilon}$$

i.e.

$$\mathbf{\sigma} = - \frac{E}{1 - \nu^2} \begin{pmatrix} z \left(\frac{\partial \theta_x}{\partial y} + \nu \frac{\partial \theta_y}{\partial x} \right) \\ z \left(\frac{\partial \theta_y}{\partial y} + \nu \frac{\partial \theta_x}{\partial x} \right) \\ 0 \\ z \frac{1-\nu}{2} \left(\frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial x} \right) - \frac{1}{2} \theta_x + \frac{\partial \phi}{\partial y} \\ K \frac{1-\nu}{2} \left(\frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial x} \right) - \frac{1}{2} \theta_y + \frac{\partial \phi}{\partial y} \end{pmatrix}.$$

(3.108)

où le facteur $K < 1$ est introduit pour corriger l’hypothèse fausse d’une contrainte en cisaillement indépendante de z (cfr. poutres de Timoshenko pour plus de détails sur l’introduction du facteur K).

En utilisant la rigidité de la plaque en flexion $D = Eh^3/12(1 - \nu^2)$ et le module de cisaillement $G = E/(2(1 + \nu))$, on peut ensuite calculer les moments et efforts tranchants résultants :

$$M_{xx} = \int_{-h/2}^{h/2} \sigma_{xx} z \, dz = -D \left(\frac{\partial \theta_x}{\partial x} + \nu \frac{\partial \theta_y}{\partial y} \right) = -D(\kappa_{xx} + \nu \kappa_{yy}),$$

(3.108)
M_{yy} = \int_{-h/2}^{h/2} \sigma_{yy} z \, dz = -D \left(\frac{\partial \theta_y}{\partial y} + \nu \frac{\partial \theta_x}{\partial x} \right) = -D(\kappa_{yy} + \nu \kappa_{xx}), \quad (3.109)

M_{xy} = \int_{-h/2}^{h/2} \sigma_{xy} z \, dz = -D \frac{1 - \nu}{2} \left(\frac{\partial \theta_y}{\partial y} + \frac{\partial \theta_x}{\partial x} \right) = -D \frac{1 - \nu}{2} (2\kappa_{xy}), \quad (3.110)

T_x = \int_{-h/2}^{h/2} \sigma_{xz} \, dz = \sigma_{xz} h = GKh \left(\frac{\partial w}{\partial x} - \theta_x \right) = \alpha \gamma_x, \quad (3.111)

et

T_y = \int_{-h/2}^{h/2} \sigma_{yz} \, dz = \sigma_{yz} h = \alpha \left(\frac{\partial w}{\partial y} - \theta_y \right) = \alpha \gamma_y. \quad (3.112)

On a défini, comme on l’avait fait similaires pour les poutres de Timoshenko, la rigidité \(\alpha \) d’une plaque au cisaillement.

Les déplacements et déformations généralisés peuvent être écrites sous forme de vecteurs avec

\[\theta = (\theta_x, \theta_y)^T, \]

\[\gamma = (\gamma_x, \gamma_y)^T \]

et

\[\kappa = (\kappa_{xx}, \kappa_{yy}, 2\kappa_{xy})^T. \]

On écrit deux lois de comportement pour les plaques de Reissner et Mildlin, une pour la flexion qui relie les moments \(M \) et les courbures \(\theta \):

\[
M = \begin{pmatrix}
M_{xx} \\
M_{yy} \\
M_{xy}
\end{pmatrix} = - \begin{pmatrix}
D & \nu D & 0 \\
\nu D & D & 0 \\
0 & 0 & 1 - \nu
\end{pmatrix}
\begin{pmatrix}
\kappa_{xx} \\
\kappa_{yy} \\
2\kappa_{xy}
\end{pmatrix} = -D \kappa
\]

et une autre qui relie les efforts tranchants \(T \) et le vecteur des angles de cisaillement \(\gamma \)

\[T = \alpha \gamma. \]

Les équations d’équilibre peuvent être déduites, comme pour les plaques de Kirchhoff (cfr. §3.11.2), des équations d’équilibre locales suivant \(x, y \) et \(z \). On a

\[
\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} = 0
\]

qui entraîne

\[T_x = \frac{\partial M_{xx}}{\partial x} + \frac{\partial M_{xy}}{\partial y} \]

et

\[
\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + \frac{\partial \sigma_{yz}}{\partial z} = 0
\]

qui entraîne

\[T_y = \frac{\partial M_{xy}}{\partial x} + \frac{\partial M_{yy}}{\partial y}. \]

Ces deux équations d’équilibre ne diffèrent pas de celles de la théorie des plaques de Kirchhoff. Si on définit un opérateur gradient vectoriel de la forme

\[\mathcal{B} = \begin{pmatrix}
\partial_x & 0 & \partial_y \\
0 & \partial_y & \partial_z
\end{pmatrix}, \]
Forme matricielle	Forme indicielle	Nom des équations
\(\kappa = \mathbf{B}^T \theta \) | \(\kappa_{\alpha\beta} = \theta_{(\alpha,\beta)} \) | Courbures - Rotations
\(\gamma = (-\theta + \nabla w) \) | \(\gamma_\alpha = -\theta_\alpha + \partial_\alpha w \) | Angle de cisaillement
\(\mathbf{M} = -\mathbf{D} \kappa \) | \(M_{\alpha\beta} = -d_{\alpha\beta\gamma\delta} \kappa_{\gamma\delta} \) | Comportement en flexion
\(\mathbf{T} = \alpha \gamma \) | \(T_\beta = \alpha \gamma_\beta \) | Comportement au cisaillement
\(\mathbf{BM} = \mathbf{T} \) | \(\partial_\beta M_{\alpha\beta} = T_\alpha \) | Équilibre dans le plan
\(\nabla \cdot \mathbf{T} = \tau \) | \(\partial_\alpha T_\alpha = \tau \) | Équilibre transverse

Tab. 3.3 – Résumé des équations de la théorie des plaques de Reissner-Mindlin. Les indices Grecs comme \(\alpha \), quand ils sont sommés, prennent les valeurs \(x \) et \(y \). Les composantes \(d_{\alpha\beta\gamma\delta} \) valent [Hughes(1987)] \(d_{\alpha\beta\gamma\delta} = h^3/12[\lambda \delta_{\alpha\beta}\delta_{\gamma\delta} + G(\delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})] \) avec \(\lambda = \nu E/(1 - \nu^2) \). Dans la loi de comportement reliant le vecteur des angles de cisaillement \(\gamma \) et les efforts tranchants \(\mathbf{T} \), \(\alpha \) est la raideur au cisaillement de la plaque (pas un indice).

On peut écrire les équations d’équilibre dans le plan de la plaque (i.e. les équations relatives à la flexion) sous forme condensée

\[\mathbf{BM} = \mathbf{T}. \]

La dernière équation traduit l’équilibre transversal (ou vertical).

\[\frac{\partial T_x}{\partial x} + \frac{\partial T_y}{\partial y} + \tau = 0 \]

qui peut s’écrire sous forme condensée

\[\nabla \cdot \mathbf{T} = \tau \]

avec l’opérateur gradient scalaire classique \(\nabla = (\partial_x, \partial_y) \). En résumé, on trouve dans la Table 3.3 les équations de la théorie des plaque épaisse en notations matricielle et indicielle.

3.13.2 Application du principe des travaux virtuels

Nous désirons maintenant écrire le principe des travaux pour la plaque de Reissner-Mindlin. Pour cela, on a besoin de définir un ensemble de déplacements virtuels \(\mathbf{v} \) compatibles avec les hypothèses cinématiques (3.106). La façon la plus simple est de choisir une fonction continues \(\bar{w} \) (déplacement vertical virtuel) et un vecteur \(\bar{\theta} = (\bar{\theta}_x, \bar{\theta}_y)^T \). Pour simplifier les notations, et sans perte de généralité, nous considérons une plaque rectangulaire encastre\(e \) en \(x = 0 \), chargée verticalement par une force répartie \(\tau(x, y) \) et par des moments fléchissants répartis \(M_F(y) \), des moments de torsion répartis \(M_T(y) \) ainsi que
des efforts tranchants $T(y)$ répartis le tout en $x = L$. Les deux côtés parallèles $y = 0$ et $y = M$ sont libres (Figure 3.45). La frontière de la plaque telle que $x = L$ et $0 < y < M$ est notée Γ_F et les frontières latérales telle que $y = 0$, M et $0 < x < L$ est notée Γ_f. En $x = 0$, toutes les fonctions test sont nulles (frontière Γ_U). Le principe des travaux virtuels s’écrit donc,

$$
\frac{E}{1 - \nu^2} \int_{-h/2}^{h/2} z^2 \int_{R} \left[\left(\frac{\partial \theta_x}{\partial x} + \nu \frac{\partial \theta_y}{\partial y} \right) \frac{\partial \bar{\theta}_x}{\partial x} + \left(\frac{\partial \theta_y}{\partial y} + \nu \frac{\partial \theta_x}{\partial x} \right) \frac{\partial \bar{\theta}_y}{\partial y}
+ \frac{1 - \nu}{2} \left(\frac{\partial \theta_y}{\partial x} + \frac{\partial \theta_x}{\partial y} \right) \left(\frac{\partial \bar{\theta}_y}{\partial x} + \frac{\partial \bar{\theta}_x}{\partial y} \right) + K \frac{1 - \nu}{2} \left(-\theta_x + \frac{\partial w}{\partial x} \right) \left(-\bar{\theta}_x + \frac{\partial \bar{w}}{\partial x} \right)
+ K \frac{1 - \nu}{2} \left(-\theta_y + \frac{\partial w}{\partial y} \right) \left(-\bar{\theta}_y + \frac{\partial \bar{w}}{\partial y} \right) \right] ds
= \int_{\Gamma_F} \tau \bar{w} \, ds + \int_{\Gamma_F} M_F \bar{\theta}_y \, dy + \int_{\Gamma_F} M_T \bar{\theta}_x \, dy + \int_{\Gamma_F} T \bar{w} \, dy \forall \bar{w}, \bar{\theta} \quad (3.113)
$$

La façon la plus simple de procéder est de considérer séparément les termes multipliés par $\bar{\theta}_x$ (ou sa dérivée), par $\bar{\theta}_y$ et par g. On a donc, pour les termes en $\bar{\theta}_x$,

$$
\int_{R} \left[D \left(\frac{\partial \theta_x}{\partial x} + \nu \frac{\partial \theta_y}{\partial y} \right) \frac{\partial \bar{\theta}_x}{\partial x} + D \frac{1 - \nu}{2} \left(\frac{\partial \theta_y}{\partial x} + \frac{\partial \theta_x}{\partial y} \right) \frac{\partial \bar{\theta}_x}{\partial y} - \alpha \left(-\theta_x + \frac{\partial w}{\partial x} \right) \bar{\theta}_x \right] ds
= \int_{\Gamma_F} M_F \bar{\theta}_x \, dy \forall \bar{\theta}_x \quad (3.114)
$$

\text{On a remplacé } D(1 - \nu)/2 \text{ par } G h^3/12 \text{ dans le terme de cisaillement.}
On intègre (3.114) par parties pour obtenir

\[
\int_R \left[-D \left(\frac{\partial^2 \theta_x}{\partial x^2} + \frac{1 - \nu}{2} \frac{\partial^2 \theta_y}{\partial x^2} + \frac{1 + \nu}{2} \frac{\partial^2 \theta_z}{\partial x \partial y} \right) - \alpha \left(-\theta_x + \frac{\partial w}{\partial x} \right) \right] \bar{\theta}_x \, ds
\]

\[
= \int_{\Gamma_F} \left(M_T - D \frac{1 - \nu}{2} \left(\frac{\partial \theta_x}{\partial y} + \frac{\partial \theta_y}{\partial x} \right) \right) \bar{\theta}_x \, dy
\]

\[
- \int_{\Gamma_F} \left(-D \left(\frac{\partial \theta_z}{\partial x} + \frac{\partial \theta_x}{\partial y} \right) \right) \bar{\theta}_x \, dy \forall \bar{\theta}_x
\]

L’équation en \(\bar{\theta}_x \) est donc équivalente à

\[
\frac{-D}{2} \left[(1 - \nu) \nabla^2 \theta_x + (1 + \nu) \frac{\partial}{\partial x} (\nabla \cdot \nabla \theta) \right] + \alpha \left(-\theta_x + \frac{\partial w}{\partial x} \right) = 0 \quad \text{sur } R
\]

\[
M_{xy} = -M_T \quad \text{sur } \Gamma_F
\]

\[
M_x = 0 \quad \text{sur } \Gamma_f
\]

\[
\theta_x = 0 \quad \text{sur } \Gamma_U
\]

L’équation en \(\bar{\theta}_y \), après des développements semblables, donne

\[
\frac{-D}{2} \left[(1 - \nu) \nabla^2 \theta_y + (1 + \nu) \frac{\partial}{\partial x} (\nabla \cdot \nabla \theta) \right] + \alpha \left(-\theta_y + \frac{\partial w}{\partial y} \right) = 0 \quad \text{sur } R
\]

\[
M_y = -M_F \quad \text{sur } \Gamma_F
\]

\[
M_{xy} = 0 \quad \text{sur } \Gamma_f
\]

\[
\theta_y = 0 \quad \text{sur } \Gamma_U
\]

Pour les termes en \(\bar{w} \), on a

\[
\int_R \left[\alpha \left(-\theta_x + \frac{\partial w}{\partial x} \right) \frac{\partial \bar{w}}{\partial x} + \alpha \left(-\theta_y + \frac{\partial w}{\partial y} \right) \frac{\partial \bar{w}}{\partial y} \right] \, ds
\]

\[
= \int_R \tau \bar{w} \, ds + \int_{\Gamma_F} T \bar{w} \, dy \forall \bar{w} \quad (3.116)
\]
En intégrant par parties, on trouve :

$$
\int_R \left[\alpha \left(\frac{\partial \theta_x}{\partial x} + \frac{\partial \theta_y}{\partial y} \right) - \nabla^2 w - \tau \right] \tilde{w} \, ds
= \int_{\Gamma_F} \left(T - \alpha \left(-\theta_y + \frac{\partial w}{\partial y} \right) \right) \tilde{w} \, dy
+ \int_{\Gamma_f} \left(-\frac{\theta_x + \frac{\partial w}{\partial x}}{T_y} \right) \tilde{w} \, dy \quad \forall \tilde{w}
$$

(3.117)

L’équation en \tilde{w} est donc équivalente à

$$
\alpha \left(\nabla \cdot \theta - \nabla^2 w \right) = \tau \quad \text{sur } R
$$

$$
T_x = T \quad \text{sur } \Gamma_F
$$

$$
T_y = 0 \quad \text{sur } \Gamma_f
$$

$$
w = 0 \quad \text{sur } \Gamma_U
$$

Les équations locales de la théorie des plaques de Reissner et Mindlin sont donc écrites, sous forme condensée, comme suit

$$
-\frac{D}{2} \left[(1 - \nu) \nabla^2 \theta + (1 + \nu) \nabla (\nabla \cdot \theta) \right] + \alpha (-\theta + \nabla w) = 0
$$

$$
\alpha \left(\nabla \cdot \theta - \nabla^2 w \right) = \tau
$$

Les conditions aux limites sont au nombre de trois par frontière. On peut imposer, sur chaque point de la frontière de normale \mathbf{n} et de tangente \mathbf{s}

<table>
<thead>
<tr>
<th>Condition</th>
<th>Imposé par T</th>
<th>Imposé par M_n</th>
<th>Imposé par M_{ns}</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>imposé</td>
<td>imposé</td>
<td>imposé</td>
</tr>
<tr>
<td>θ_n</td>
<td>imposé</td>
<td>imposé</td>
<td>imposé</td>
</tr>
<tr>
<td>θ_s</td>
<td>imposé</td>
<td>imposé</td>
<td>imposé</td>
</tr>
</tbody>
</table>

Il est intéressant d’écrire le principe des travaux virtuels en terme d’efforts et de déplacements généralisés. On choisit pour cela des rotations virtuelles $\tilde{\theta} = (\tilde{\theta}_x, \tilde{\theta}_y)^T$,
et un déplacement vertical virtuel \bar{w} qui donnent lieu à des courbures virtuelles $\bar{\kappa} = (\bar{\kappa}_{xx}, \bar{\kappa}_{yy}, 2\bar{\kappa}_{xy})^T$ et des angles de cisaillement virtuels $\bar{\gamma} = (\bar{\gamma}_x, \bar{\gamma}_y)^T$. Les conditions limites essentielles sont imposées a priori i.e. on choisit $(w; \theta_x, \theta_y) = (0, 0, 0)$ sur Γ_U et on impose, par le théorème des travaux virtuels, les conditions naturelles $T = T^0 = (0, T(y))$, $M_n = (M_n, M_{nx})^T = (M_{yy}, M_{xy})^T = (M_F, M_T)^T = M^0$ sur Γ_F et $T = (0, 0)$, $M_n = (M_{xx}, M_{xy})^T = (0, 0)^T$ sur Γ_f. On choisit, en outre, $(\bar{w}, \bar{\theta}_x, \bar{\theta}_y) = (0, 0, 0)$ sur Γ_U. Le principe des travaux virtuels s’écrit, en notation indicielle

$$\int_R \left[\bar{\theta}_{(\alpha, \beta)} d_{\alpha \beta \gamma} \bar{\delta}_{(\gamma, \delta)} + \bar{\gamma}_{\beta \alpha \gamma \beta} \right] ds =$$

$$= \int_{\Gamma_F} \bar{\omega} \tau ds + \int_{\Gamma_F} \left(\bar{\theta}_\alpha M_\alpha^0 + \bar{w} T_y^0 \right) dc \forall \bar{\gamma}_\alpha, \bar{\theta}_\alpha$$

ou en notation matricielle

$$\int_R \left[\bar{\kappa}^T D \kappa + \bar{\gamma} \alpha \gamma \right] ds = \int_R \bar{\omega} \tau ds + \int_{\Gamma_F} \left(\bar{\theta} M_\alpha^0 + \bar{w} T_y^0 \right) dc \forall \bar{\gamma}, \bar{\theta}$$

On peut séparer les termes en \bar{w} et $\bar{\theta}$ pour trouver la forme finale utilisable par la méthode des éléments finis

$$\int_R \left[(B^T \bar{\theta})^T D (B^T \theta) - \bar{\theta}_\alpha (-\theta + \nabla w) \right] ds = \int_{\Gamma_F} \bar{\theta} M_\alpha^0 dc \forall \bar{\theta}$$

$$\int_R \left[\nabla \bar{\omega} (-\theta + \nabla w) \right] ds = \int_R \bar{\omega} \tau ds + \int_{\Gamma_F} w T_y^0 dc \forall \bar{\omega}$$

3.13.3 Comparaison entre poutres de Timoshenko et plaques de Reissner-Mindlin

<table>
<thead>
<tr>
<th>Valeurs</th>
<th>Plaques</th>
<th>Poutres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déformée</td>
<td>$w(x, y)$ et θ</td>
<td>$f(x)$ et θ</td>
</tr>
<tr>
<td>Équations</td>
<td>$-\frac{D}{2} \left[(1 - \nu) \nabla^2 \theta + (1 + \nu) \nabla \cdot (\nabla \cdot \theta) \right] + \alpha \left(-\theta + \nabla w \right) = 0$</td>
<td>$-D \frac{\partial^2 \theta}{\partial x^2} + \alpha \left(-\theta + \frac{\partial f}{\partial x} \right) = 0$</td>
</tr>
<tr>
<td>Rigidité flexionnelle</td>
<td>$D = \frac{E I}{1 - \nu^2}$</td>
<td>$D = EI$</td>
</tr>
<tr>
<td>Rigidité en cisaillement</td>
<td>$\alpha = GKh$</td>
<td>$\alpha = GKA$</td>
</tr>
<tr>
<td>À la limite $\frac{D}{\alpha} \rightarrow 0$</td>
<td>$\theta = \nabla w$</td>
<td>$\theta = \frac{\partial f}{\partial x}$</td>
</tr>
</tbody>
</table>
3.13.4 Éléments finis C^0 pour les plaques de Reissner et Mindlin.

On discrétise la déflexion verticale

$$w = \sum_{i=1}^{n^w} N_i^w w_i$$

et le vecteur des angles de rotation

$$\theta_\alpha = \sum_{i=1}^{n^\theta} N_i^\theta \theta_{\alpha i}$$

en utilisant possiblement des bases de fonctions de forme différentes. On se souvient, en effet de la difficulté rencontrée dans l’autre problème à deux champs que nous avons envisagé plus haut i.e. les poutres de Timoshenko. L’opérateur \mathbf{B} appliqué aux champs discrets donne

$$\mathbf{B}^T(\theta_x, \theta_y) = \begin{bmatrix} \partial_x & 0 \\ 0 & \partial_y \end{bmatrix} \left(\sum N_i^\theta \theta_{xi} \right)$$

$$= \sum \begin{bmatrix} \partial_x N_i^\theta & 0 \\ 0 & \partial_y N_i^\theta \end{bmatrix} \begin{bmatrix} \theta_{xi} \\ \theta_{yi} \end{bmatrix}$$

$$= \sum \mathbf{B}(N_i^\theta, N_i^\theta) \begin{bmatrix} \theta_{xi} \\ \theta_{yi} \end{bmatrix}$$

$$= \sum \mathbf{B}_i \theta_i$$

(3.121)

qui a la forme d’une matrice 3×2. La version discrète du vecteur des angles de cisaillement s’écrit

$$-\theta + \nabla w = \left(\sum N_i^\theta \theta_{xi} \right) + \left(\sum \frac{\partial N_i^w}{\partial y} \right) w_i$$

$$= \sum \begin{bmatrix} N_i^\theta & 0 \\ 0 & N_i^\theta \end{bmatrix} \begin{bmatrix} \theta_{xi} \\ \theta_{yi} \end{bmatrix} + \sum \left(\frac{\partial N_i^w}{\partial y} \right) w_i$$

$$= \sum \mathbf{M}_i \theta_i + \sum \nabla N_i^w w_i$$

(3.122)

L’élément ij de la matrice de raideur en flexion est donné par

$$[k_f]_{ij} = \int_R \mathbf{B}^T \mathbf{D} \mathbf{B}_j ds.$$

Cet élément $[k_f]_{ij}$ est représenté par une matrice 2×2, ce qui est normal car on a deux degrés de liberté et deux fonction test impliquées. La matrice de raideur en cisaillement est une matrice carrée de taille égale au nombre de fonctions de bases choisies n^θ pour discrétiser θ. Chaque élément de cette matrice étant lui même une matrice carrée de taille 2, la matrice de raideur est de taille $2n^\theta \times 2n^\theta$.

L’élément ij de la matrice de raideur en cisaillement composée de deux parties. La première partie donne

$$[k_{c1}]_{ij} = \int_R \mathbf{M}_i \mathbf{M}_j ds.$$
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

Cet élément $[k^1_{ij}]$ est représenté par une matrice 2×2 qui s’assemble à la même place que $[k_f]_{ij}$ dans la matrice globale (Figure ??).

Le deuxième éléments de la matrice de raideur en cisaillement s’écrit

$$[k^2_{ij}] = \int_R \alpha \nabla N_i^w \mathbf{M}_j ds.$$

Chaque élément de $[k^2_{ij}]$ est un petit vecteur colonne de taille 2 car on a une fonction test et deux fonctions de base. La taille totale de $[k^2_{ij}]$ est $2n^\theta \times n^w$ où n^w est la taille de l’espace des fonctions de forme en w.

Le dernier terme s’écrit

$$[k_w]_{ij} = \int_R \alpha \nabla N_i^w \nabla N_j^w ds.$$

Chaque élément de $[k_w]_{ij}$ est un petit scalaire car on a une fonction test et une fonction de base pour w et w. La matrice $[k_w]$ est de taille $2n^\theta$.

L’équilibre de la plaque de Reissner et Mindlin par la méthode des éléments finis peut s’écrire comme suit

$$\begin{bmatrix} [k_f] + [k^1_c] \\ [k^2_c]^T \\ [k_w] \end{bmatrix} \begin{bmatrix} \theta \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ F \end{bmatrix}$$

(3.123)

Comme pour les poutres de Timoshenko, on a une formulation à deux champs. Ce type de formulation est appelée formulation hybride dans la littérature [Brezzi & Fortin(1991)]. Le choix d’une discrétisation acceptable des champs θ et w fait encore aujourd’hui l’objet d’une littérature abondante.

3.13.5 Phénomène de “shear locking” pour les plaques épaisses

A la limite du cisaillement nul i.e. $h \rightarrow 0$, la rigidité en cisaillement devient infinie et l’équation en w se réduit à l'imposition de la contrainte cinématique

$$\nabla w = \theta$$

(3.124)

qui correspond au cisaillement nul. Nous nous doutons bien qu’utiliser les mêmes polynômes pour discrétiser w et θ n’est pas un choix judicieux. En fait, ce choix conduit, comme pour les poutres de Timoshenko, au problème du “shear locking” ou blocage au cisaillement. La contrainte cinématique (3.124) prend trop d’importance dans la discrétisation et ne laisse pas assez de liberté à w pour permettre la flexion. Le blocage des degrés de liberté de cisaillement, blocage normal quand le cisaillement est nul, ne laisse plus à la plaque assez de liberté pour se déformer en flexion. Le système est donc bloqué.

Il existe des théories mathématiques, assez complexes, qui expliquent les tenants et les aboutissants du phénomène. Dans le cadre de ce texte, nous allons simplement introduire une règle simple qui permet de choisir un couple acceptable de discrétisations pour nos variables w et θ. L’idée proposée par Hughes [Hughes(1987)] repose sur une intuition tout à fait intéressante qui s’avère très utile en pratique. Dans le monde continu, le passage à la limite ne pose aucun problème : les équations des plaques de Reissner et Mindlin admettent comme limite quand $h \rightarrow 0$ le modèle des plaques de Kirchhoff. Ce n’est qu’au moment de la discrétisation que quelque chose est perdu. Remarquons tout d’abord que les équations d’équilibre des plaques de Reissner et Mindlin que nous rappelons ici
CHAPITRE 3. ÉLÉMENTS FINIS STRUCTURAUX

\[\frac{D}{2} \left[(1 - \nu) \nabla^2 \theta + (1 + \nu) \nabla (\nabla \cdot \theta) \right] + \alpha (-\theta + \nabla w) = 0 \]

\[\alpha (\nabla \cdot \theta - \nabla^2 w) = \tau. \]

Ces équations sont au nombre de \(n_e = 3 \). La condition cinématique
\[\nabla w = \theta \]
est en fait \(n_c = 2 \) équations. On définit le ratio
\[r = \frac{n_e}{n_c}. \]
L'idée est d'imposer que ce ratio entre équations d'équilibre et contraintes devrait rester le même dans le domaine discret si on veut éviter les problèmes. Si ce ratio est \(\gg 3/2 \), alors la plaque approximera très mal la limite au cisaillement nul. Si ce ratio est \(\ll 3/2 \), alors, le système se bloquera.

Prenez comme exemple l'élément quadrangulaire à quatre noeuds. Si on choisit de discrétiser les champs \(\theta \) et \(w \) à l'aide d'interpolations bilinéaires dans un maillage suffisamment grand et de \(N^2 \) noeuds, on a de l'ordre de \(N^2 \) éléments quadrangulaires. On a de l'ordre de 3 degrés de liberté par élément. L'imposition de la contrainte cinématique \(\theta = \nabla w \) sur un élément conduit à l'imposition de 8 contraintes par élément. En effet, on a
\[w = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 xy \]
et
\[\theta_\alpha = \gamma_{\alpha 0} + \gamma_{\alpha 1} x + \gamma_{\alpha 2} y + \gamma_{\alpha 3} xy. \]
En chaque noeud, on doit imposer 2 conditions
\[\theta_x = \partial_x w \]
\[\theta_y = \partial_y w \]
ce qui fait 8 conditions par élément. Le facteur \(r = 3/8 \) dans ce cas qui indique un blocage sévère de l'élément. Notons que le même élément où l'on utilise un seul point d'intégration pour calculer la raideur en cisaillement (au lieu de 4, on sous-intègre pour diminuer la raideur) et 4 points pour la raideur en flexion est un élément qui s'est montré efficace à la limite des plaques minces.

3.14 Flambage des structures élastiques

On étudie dans cette section le flambage des structures élastiques usuelles telles que les poutres, les plaques et les solides tridimensionnels.

3.14.1 Hypothèse petites déformations - grands déplacements

En description Lagrangienne, l'état de déformation d'un solide est caractérisé par le champ de déplacements \(u \). La déformation est calculée par la formule :
\[\epsilon_{ij} = \frac{1}{2} (\partial_i u_j + \partial_j u_i) + \frac{1}{2} \partial_i u_k \partial_j u_k. \quad (3.125) \]
ou sous forme compacte

\[\epsilon_{ij} = u_{(i,j)} + q(u, u) \]

(3.126)

avec \(u_{(i,j)} \) la partie linéaire correspondant aux petites déformation et \(q(u, u) \) la partie quadratique correspondant aux grandes déformations. En général, la relation contraintes-déformations se complique par rapport au cas linéaires quand on se place dans l’hypothèse des grandes déformations. Quand la déformation reste petite, on peut toujours adopter une expression quadratique de l’énergie élastique (i.e. on reste dans le domaine de l’élasticité)

\[W = \frac{1}{2} \epsilon_{ij} \epsilon_{ij} \]

et écrire la contrainte comme

\[\sigma = \frac{\partial W}{\partial \epsilon} = \epsilon : C. \]

Cette hypothèse dite hypothèse petites déformations - grands déplacements est intéressante car les lois de comportement du matériau sont les mêmes qu’en petits déplacements.

3.14.2 Calcul du flambement d’ossatures par éléments finis

Soit une poutre droite de Bernoulli de section consante \(A \), de longueur \(L \) et de moment d’inertie \(I \). La poutre est placée suivant l’axe des \(x \) et fléchit dans le plan \(xy \). On utilise les hypothèses cinématiques

\[
\begin{align*}
 u_x &= u_x(x) - y \frac{\partial u_y}{\partial x} \\
 u_y &= u_y(x) \\
 u_z &= 0
\end{align*}
\]

(3.127)

correspondant à un mode de déformation composé de traction et de flexion. On calcule les déformations sous l’hypothèse hypothèse petites déformations - grands déplacements

\[
\epsilon_{xx} = \underbrace{-y \frac{\partial^2 u_y}{\partial x^2}}_{u(x,x)} + \underbrace{\frac{\partial u_x}{\partial x}}_{u(x,x)} + \frac{1}{2} \left(\underbrace{\frac{\partial u_y}{\partial x}}_{u(x,x)} \right)^2 - \left(\underbrace{\frac{\partial u_y}{\partial x}}_{u(x,x)} \right) \frac{\partial^2 u_y}{\partial x^2} + \frac{1}{2} \left(y \frac{\partial^2 u_y}{\partial x^2} \right)^2 + \frac{1}{2} \left(\frac{\partial u_y}{\partial x} \right)^2
\]

(3.128)

On utilise ensuite l’hypothèse des petites déformations pour simplifier l’expression (3.128). On considère que les déplacements \(u \) sont grands mais que les déformations \(\epsilon \) sont petites. Par exemple, on a que

\[y \frac{\partial^2 u_y}{\partial x^2} = \mathcal{O}(\epsilon), \]

\[\frac{\partial u_y}{\partial x} = \mathcal{O}(\epsilon) \]

et, par exemple

\[\left(\frac{\partial u_y}{\partial x} \right)^2 = \mathcal{O}(\epsilon^2) \ll \epsilon \]
est négligeable devant \(\epsilon \). Le terme intéressant est

\[
\left(\frac{\partial u_y}{\partial x} \right)^2,
\]

Ce terme n’est, en fait, pas négligeable. En effet, on a que

\[
\frac{\partial^2 u_y}{\partial x^2} = O(\epsilon) = O\left(\frac{u_y}{L^2} \right),
\]

et, par conséquent,

\[
\frac{\partial u_y}{\partial x} = O\left(\frac{u_y}{L} \right) = O(L) = O(u).
\]

On a donc

\[
\left(\frac{\partial u_y}{\partial x} \right)^2 = O(u^2)
\]

qui n’est pas négligeable vu l’hypothèse des grands déplacements. En fait, en chaque point de la poutre, les déformées sont petites mais la poutre est suffisamment longue pour que la somme de ces déformées, i.e. le déplacement, soit grand. La déformation suivant \(x \) vaut donc

\[
\epsilon_{xx} = -y \frac{\partial^2 u_y}{\partial x^2} + \frac{\partial u_a}{\partial x} + \frac{1}{2} \left(\frac{\partial u_y}{\partial x} \right)^2
\]

(3.129)

L’effort normal dans la section vaut

\[
N = \int_A \sigma_{xx} ds = \int_A E \epsilon_{xx} ds = EA \left(\frac{\partial u_a}{\partial x} + \frac{1}{2} \left(\frac{\partial u_y}{\partial x} \right)^2 \right)
\]

Le moment de flexion n’est pas différent de celui prédit par la théorie de Bernoulli

\[
M = \int_A \sigma_{xx} y ds = EI \frac{\partial^2 u_y}{\partial x^2}.
\]

3.14.3 Application du principe des travaux virtuels

On désire maintenant trouver les équations d’équilibre du flambement à l’aide du principe des travaux virtuels. On considère une poutre chargée à l’aide de deux efforts normaux opposés d’amplitude \(P \). L’effort normal dans la barre vaudra donc

\[
N = EA \left(\frac{\partial u_a}{\partial x} + \frac{1}{2} \left(\frac{\partial u_y}{\partial x} \right)^2 \right)^2 = -P
\]

Soit un champ de déplacements virtuels caractérisés par un déplacement axial \(u_a(x) \) et un déplacement vertical \(u_y(x) \). A partir de son état d’équilibre caractérisé par les déplacements \(u_a \) et \(u_y \), nous déplaçons la structure pour qu’elle atteigne l’état de déplacements \(u_a + \delta u_a \) et \(u_y + \delta u_y \).

Les déformations virtuelles qui caractérisent ce déplacement virtuel sont

\[
\epsilon_{xx}(u_a, u_y) = -y \frac{\partial^2 u_y}{\partial x^2} + \frac{\partial u_a}{\partial x} + \frac{\partial u_a}{\partial x} \frac{\partial u_y}{\partial x}
\]

(3.130)
Le principe des travaux virtuels s’écrit

\[\int_0^L EI \frac{\partial^2 u_y}{\partial x^2} \frac{\partial^2 v_y}{\partial x^2} dx + \int_0^L (-P) \left(\frac{\partial v_a}{\partial x} + \frac{\partial u_y}{\partial x} \frac{\partial v_y}{\partial x} \right) dx = -P(v_a(L) - v_a(0)) \forall v_a, v_y \] (3.131)

L’équation suivant \(v_a \) est une identité

\[\int_0^L (-P) \frac{\partial v_a}{\partial x} dx = -P(v_a(L) - v_a(0)) \forall v_a \]

tandis que l’équation en \(v_y \) nous donne l’équilibre en flexion

\[\int_0^L EI \frac{\partial^2 u_y}{\partial x^2} \frac{\partial^2 v_y}{\partial x^2} dx = P \int_0^L \frac{\partial u_y}{\partial x} \frac{\partial v_y}{\partial x} dx \forall v_y \] (3.132)

A partir des travaux virtuels, on peut retrouver les équations locales des poutres en flambeau, appelées aussi équations d’Euler.

3.14.4 Discrétisation et calcul de la matrice de raideur

L’idée de ce paragraphe est de fournir une méthode générale pour le calcul des structures formées de poutres et susceptibles de flamber. Pour cela, on utilise la méthode des éléments finis pour discrétiser le problème. On utilise la discrétisation introduite en (3.27) dans le cadre des éléments finis de poutre de Bernoulli. Si on utilise l’approximation éléments finis

\[u_y = \sum_{i=1}^n N_i u_i, \]

on écrit le principe des travaux virtuels sous forme discrète

\[\sum_{i=1}^n u_i \int_0^L -P \frac{dN_i}{dx} dN_j \frac{dN_j}{dx} dx + \sum_{i=1}^n u_i \int_0^L EI \frac{d^2 N_i}{dx^2} \frac{d^2 N_j}{dx^2} dx = 0 \quad j = 1, \ldots, n \]

ou sous forme matricielle

\[\{ [k] + P[k_P] \}(u) = 0 \] (3.133)

. La matrice de raideur \([k]\) avec

\[[k]_{ij} = EI \int_0^L \frac{d^2 N_i}{dx^2} \frac{d^2 N_j}{dx^2} dx \]

et la matrice \([k_P]\), avec,

\[[k_P]_{ij} = \int_0^L \frac{dN_i}{dx} \frac{dN_j}{dx} dx \]

peuvent être calculées analytiquement comme

\[[k] = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix}. \] (3.134)
et
\[
[k_P] = \frac{1}{30L} \begin{bmatrix}
36 & 3L & -36 & 3L \\
3L & 4L^2 & -3L & -L^2 \\
36 & -3L & 36 & -3L \\
3L & -L^2 & -3L & 4L^2
\end{bmatrix}.
\tag{3.135}
\]

Le système (3.133) possède la solution triviale \(f = 0 \) si le déterminant
\[
||[k] + P[k_P]|| \neq 0.
\]

Il existe donc des valeurs de \(P \) critiques pour lesquelles le système possède une solution. La plus petite valeur de \(P \), i.e. la plus petite valeur \(P = \lambda_1 \) qui annule le déterminant de \([k] + P[k_P]\), Cette valeur correspond à la charge critique de flambeau. D’autre part, le vecteur propre \((u_1)\) relatif à \(\lambda_1 \) donnera le mode propre de flambeau.

Prenons l’exemple de la poutre appuyée en ses extrémités. La charge critique de flambeau peut être trouvée en calculant \(P \) qui vérifie
\[
\left| \begin{array}{cc}
\frac{EI}{L^2} & 4L^2 \quad -6L \\
-6L & 12
\end{array} \right| - \frac{P}{30L} \left| \begin{array}{cc}
4L^2 & -3L \\
-3L & 36
\end{array} \right| = 0.
\]

On pose \(P = \alpha \frac{30EI}{L^2} \) ce qui permet de trouver
\[
\left| \begin{array}{cc}
4L^2(1-\alpha) & -3L(2-\alpha) \\
-3L(2-\alpha) & 12(1-3\alpha)
\end{array} \right| = 0.
\]

On a donc l’équation en \(\alpha \)
\[
135\alpha^2 - 156\alpha + 12 = 0
\]
dont la plus petite racine est
\[
\alpha_1 = 0.00828
\]
ce qui donne
\[
P = 2.486 \frac{EI}{L^2}
\]
que l’on peut comparer à la charge critique exacte
\[
P_{ex} = \frac{\pi^2 EI}{4 L^2} = 2.467 \frac{EI}{L^2}.
\]

On voit donc que la charge critique est évaluée avec une grande précision étant donné la simplicité du modèle avec un seul élément. Notons que la deuxième racine donne un second mode de flambeau
\[
P_2 = 30.1 \frac{EI}{L^2}
\]
bièl éloigné du second mode exact
\[
P_{ex2} = \frac{4\pi^2 EI}{4 L^2} = 9.8 \frac{EI}{L^2}.
\]

Un modèle comprenant 2 poutre serait capable de capturer le deuxième mode de flambeau.

3.15 Plaques de Von Kàrmàn
Bibliographie

Table des figures

2.1 Corps tridimensionnel soumis à un ensemble de forces 6
2.2 Problème bidimensionnel 6
2.3 Nombre d’efforts de liaison l, nombre d’équations d’équilibre N_e, degré d’hyperstaticité externe I_e 7
2.4 Dispositifs de libération d’efforts 8
2.5 Rotule sur un pont métallique 8
2.6 Cadre articulé 9
2.7 Cadre hyperstatique (gauche) et introduction d’une coupure i.e. la libération des trois efforts M, N et T (droite) 9
2.8 Structure rendue isostatique par l’introduction de trois rotules 10
2.9 Cadre hyperstatique 10
2.10 Introduction de deux coupures totales pour lever l’hyperstaticité interne 11
2.11 Élément de poutre plane 11
2.12 Élément de poutre d’une ossature spatiale 13
2.13 Structure avec appuis (gauche) et remplacement des appuis par des charges en équilibre avec les forces (droite) 14
2.14 Anneau rigide soumis à un système de charges en équilibre 15
2.15 Poutre sans efforts normaux 15
2.16 Découpage de la structure 18
2.17 Ponts bowstring 21
2.18 Convention de signe. Traction $N > 0$, Compression $N < 0$, Rotation dans le sens horlogique $T > 0$, rotation anti-horlogique $T < 0$ 22
2.19 Tableau des intégrales de Mohr $\int_{x_0}^{x} M_i M_j ds$ 24
3.1 Maillage de la structure d’un trimaran avec, en superposition, le champ de contraintes de Von-Mises 31
3.2 Domaine Ω et sa frontière divisée en deux parties disjointes Γ_D et Γ_F 31
3.3 Maillages 34
3.4 Système d’axes lié à la poutre 35
3.5 Élément barre avec effort rasant $\gamma(x')$ et efforts normal concentré N. 36
3.6 Deux degrés de liberté pour discrétiser le déplacement horizontal de la Barre 37
3.7 Fonctions de base pour l’élément de barre 38
3.8 Barre chargée et fixée en $x' = L$ 39
3.9 Structure à noëuds rigide qui n’est pas un treillis (gauche) et treillis (droite) composé de 5 barres et 4 noëuds 41
3.10 Barre dans le système d’axes global 41
3.11 Treillis de 2 barres 43
3.12 Conditions aux limites pour le treillis de la Figure 3.11 44
3.13 Déformations. .. 45
3.14 Déflexion de la fibre neutre pour une poutre de Bernoulli. Les sections
subissent une rotation simple et les angles sont préservés (pas de glissement). 45
3.15 Quatre degrés de liberté pour discrétiser le déplacement vertical de la poutre
de Bernoulli. .. 47
3.16 Fonctions de base pour l’élément de poutre de Bernoulli. 48
3.17 Poutre chargée et fixée en $x' = L$. 49
3.18 Comparaison entre solution exacte f_{ex} et solution par éléments finis f_{ef}
de la flexion d’une poutre console. 51
3.19 Comparaison entre solution exacte M_{ex} et solution par éléments finis M_{ef}
de la flexion d’une poutre console chargée uniformément. Notons que le
moment M_{ef} est non nul en $x' = 0$. 52
3.20 Poutre console avec une force concentrée en son centre. 54
3.21 Comparaison entre solution exacte f_{ex} et solution par éléments finis f_{ef}
de la flexion d’une poutre console chargée en son centre 56
3.22 Poutre console avec une force concentrée en son centre discrétisée en deux
parties. .. 57
3.23 Treillis chargé par une force verticale au noeud 10. 57
3.24 Déplacements (amplifiés) pour une structure composée de barres ou de
poutres. .. 57
3.25 Cisaillement d’une poutre de Timoshenko. .. 59
3.26 Comparaisons des échecs pour différentes valeurs de α 66
3.27 Poutre prismatique soumise à la torsion. La section R subit une rotation
d’angle θ'_x. .. 66
3.28 Contraintes dans la section R et calcul de la densité de moment m_T. Le
moment de torsion dans la section $M_T = \int_T m_T$. 70
3.29 Poutre avec ses degrés de liberté et ses moments aux extrémités 70
3.30 Élément de poutre d’une ossature spatiale. ... 72
3.31 Expression matricielle de l’équilibre pour une poutre de Bernoulli d’ossa-
ture tridimensionnelle. ... 73
3.32 Géométrie de la plaque et forces extérieures. 77
3.33 Vue de la déflexion de la surface neutre de la plaque de Kirchhoff (lire
t $t = h$ sur ce graphique). .. 77
3.34 Distribution des contraintes dans la plaque et efforts résultats. 78
3.35 Conditions aux limites au point B d’une frontière lisse d’une plaque de-
Kirchhoff : $n = normale extérieure$, $s = direction tangentielle$. (a) frontière
traversée dans le sens anti-horlogique, laissant la plaque sur la gauche ;
(b) inconnues cinématiques θ_s et θ_n ; (c) moments et forces résultantes T_n,
M_{nn} et M_{ns} sur la frontière. ... 83
3.36 Force de coin (gauche) et soulèvement de coin (droite). 84
3.37 Remplacement du moment de torsion par des couples de forces équivalents. 86
3.38 Une PKF et son maillage triangulaire. .. 89
3.39 Orientation des éléments et définition des vecteurs principaux. 89
3.40 Différentes configurations pour l’élément fini triangulaire de PKF 90
3.41 La configuration (a) conduit à un assemblage complexe, même cahotique
si on considère qu’un nombre quelconque de triangles peuvent avoir un
noeud en commun. La configuration (b) est la plus simple et la plus utilisable. 90
3.42 Un coin d’un élément triangulaire. .. 92

TABLE DES FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12</td>
<td>Conditions aux limites pour le treillis de la Figure 3.11</td>
</tr>
<tr>
<td>3.13</td>
<td>Déformations</td>
</tr>
</tbody>
</table>
| 3.14 | Déflexion de la fibre neutre pour une poutre de Bernoulli. Les sections
 | subissent une rotation simple et les angles sont préservés (pas de glissement). |
| 3.15 | Quatre degrés de liberté pour discrétiser le déplacement vertical de la poutre
 | de Bernoulli. |
| 3.16 | Fonctions de base pour l’élément de poutre de Bernoulli |
| 3.17 | Poutre chargée et fixée en $x' = L$. |
| 3.18 | Comparaison entre solution exacte f_{ex} et solution par éléments finis f_{ef}
 | de la flexion d’une poutre console. |
| 3.19 | Comparaison entre solution exacte M_{ex} et solution par éléments finis M_{ef}
 | de la flexion d’une poutre console chargée uniformément. Notons que le
 | moment M_{ef} est non nul en $x' = 0$. |
| 3.20 | Poutre console avec une force concentrée en son centre. |
| 3.21 | Comparaison entre solution exacte f_{ex} et solution par éléments finis f_{ef}
 | de la flexion d’une poutre console chargée en son centre |
| 3.22 | Poutre console avec une force concentrée en son centre discrétisée en deux
 | parties. |
| 3.23 | Treillis chargé par une force verticale au noeud 10. |
| 3.24 | Déplacements (amplifiés) pour une structure composée de barres ou de
 | poutres. |
| 3.25 | Cisaillement d’une poutre de Timoshenko. |
| 3.26 | Comparaisons des échecs pour différentes valeurs de α |
| 3.27 | Poutre prismatique soumise à la torsion. La section R subit une rotation
d’angle θ'_x. |
| 3.28 | Contraintes dans la section R et calcul de la densité de moment m_T. Le
 | moment de torsion dans la section $M_T = \int_T m_T$. |
| 3.29 | Poutre avec ses degrés de liberté et ses moments aux extrémités |
| 3.30 | Élément de poutre d’une ossature spatiale. |
| 3.31 | Expression matricielle de l’équilibre pour une poutre de Bernoulli d’ossa-
ture tridimensionnelle. |
| 3.32 | Géométrie de la plaque et forces extérieures. |
| 3.33 | Vue de la déflexion de la surface neutre de la plaque de Kirchhoff (lire
t $t = h$ sur ce graphique). |
| 3.34 | Distribution des contraintes dans la plaque et efforts résultats. |
| 3.35 | Conditions aux limites au point B d’une frontière lisse d’une plaque de-
 | Kirchhoff : $n = normale extérieure$, $s = direction tangentielle$. (a) frontière
 | traversée dans le sens anti-horlogique, laissant la plaque sur la gauche ;
 | (b) inconnues cinématiques θ_s et θ_n ; (c) moments et forces résultantes T_n,
 | M_{nn} et M_{ns} sur la frontière. |
| 3.36 | Force de coin (gauche) et soulèvement de coin (droite). |
| 3.37 | Remplacement du moment de torsion par des couples de forces équivalents. |
| 3.38 | Une PKF et son maillage triangulaire. |
| 3.39 | Orientation des éléments et définition des vecteurs principaux. |
| 3.40 | Différentes configurations pour l’élément fini triangulaire de PKF |
| 3.41 | La configuration (a) conduit à un assemblage complexe, même cahotique
 | si on considère qu’un nombre quelconque de triangles peuvent avoir un
 | noeud en commun. La configuration (b) est la plus simple et la plus utilisable. |
| 3.42 | Un coin d’un élément triangulaire. |
3.43 Coordonnées triangulaires. ... 96
3.44 Configuration nodales pour deux interpolants de w cubiques. (a) Interpolation nodales utilisant les valeurs de w aux dix noeuds i.e. les 3 coins, les 6 points situés aux tiers et au deux tiers de chaque arête et le centre de gravité. (b) Interpolation utilisant les valeurs de w aux coins, les 6 pentes tangentes aux coins ($\partial w/\partial s_i$) ainsi que la valeur au centre de gravité. ... 98
3.45 Géométrie de la plaque et conditions aux limites. 104