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Abstract

We review several properties of the discontinuous Galerkin method for solving
hyperbolic systems of conservation laws including basis construction, flux evalu-
ation, solution limiting, adaptivity, and a posteriori error estimation. Regarding
error estimation, we show that the leading term of the spatial discretization error
using the discontinuous Galerkin method with degree p piecewise polynomials is
proportional to a linear combination of orthogonal polynomials on each element
of degrees p and p + 1. These are Radau polynomials in one dimension. The dis-
cretization errors have a stronger superconvergence of order O(h%*1), where h is
a mesh-spacing parameter, at the outflow boundary of each element. These re-
sults are used to construct asymptotically correct a posteriori estimates of spatial
discretization errors in regions where solutions are smooth.

We present the results of applying the discontinuous Galerkin method to un-
steady, two-dimensional, compressible, inviscid flow problems. These include adap-
tive computations of Mach reflection and mixing-instability problems.

1 Introduction

The discontinuous Galerkin method (DGM) provides an appealing approach to address
problems having discontinuities, such as those that arise in hyperbolic conservation laws.
Originally developed for neutron transport problems [37] and first analyzed by Le Saint
and Raviart [41], the technique lay dormant for approximately fifteen years before be-
coming popular. It is now being used to solve ordinary differential equations [31] and
hyperbolic [10, 11, 12, 13, 18, 17, 20, 23], parabolic [21, 22], and elliptic [9, 8, 48] partial
differential equations. A more thorough sampling of the theoretical and applied aspects
of the method appears in the proceedings of Cockburn et al. [16].

The DGM may be regarded as cross between a finite volume and finite element method
and it has many of the good properties of both. Thus, for example:



e The solution space is a piecewise-continuous (polynomial) function relative to a
structured or unstructured mesh. As such, it can sharply capture solution discon-
tinuities relative to the computational mesh.

e The DGM simplifies adaptivity since interelement continuity is neither required
for h-refinement (mesh refinement and coarsening) nor p-refinement (method order
variation).

e The method conserves the appropriate physical quantities (e.g., mass, momentum,
and energy) on an elemental basis.

e The method can handle problems in complex geometries to high order.

e Some interesting and useful a posteriori error estimates are available [3, 14, 15, 42,
43, 44] for use with adaptivity.

e Regardless of order, the DGM has a simple communication pattern to elements
with a common face that simplifies parallel computation [23, 24].

With a discontinuous basis, the DGM produces more unknowns for a given order of
accuracy than traditional finite element or finite volume methods and this may lead to
some inefficiency. This could be overcome on a parallel computer because of the simpler
communication pattern. Reducing the spurious oscillations that arise when high-order
methods are applied to problems with discontinuities is a difficulty for all methods for
conservation laws. With the DGM, the strategy for controlling oscillations is to limit
the variations in the solution and/or flux [13, 17, 18, 45]. While limiting oscillations is
relatively well known for finite difference technologies on structured meshes [45], it is still
unresolved for DGMs, particularly on unstructured meshes.

Herein, we survey some theoretical and computational aspects of the DGM as it
applies to hyperbolic conservation laws of the form

dyu + divF(u) = r(u). (1a)

Variables with a superimposed arrow refer to physical vectors and those in bold type
refer to a continuous field (in (#')™). The flux matrix is

F(u) := [F(u), B(u), ..., F,(w)], (1b)
where Fi(u) is the i» component of the flux F, and
div := [div, div...,div]" (1c)

is the vector valued divergence operator.
The system of interest in this work is the two-dimensional Euler equations of com-
pressible, inviscid fluid dynamics where

u = [p, pug, puy, E]7, (2a)
F(u) = [p7, pv,¥ + Piy, pv, ¥ + Pi,, (E+ P)d), (2b)
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r=0. (2c)

Here, p is the density, ¥ = (v, v,) is the velomty, FE is the internal energy, and P is the
pressure of the fluid. The quantities 7, and zy are unit vectors in the Cartesian x and
y directions, respectively. An equation of state of the form P = P(p, F) is necessary to
close the system, and we assume the fluid behaves as a perfect gas where

152
P=(-1p|p- 1] (20)
with gas constant v = 1.4.

We develop the DGM for (1) using a local formulation of Cockburn et al. [17, 18]
(§2) and describe some choices for an orthogonal basis (§2.1), numerical flux functions
(§2.2), and solution limiting (§2.3). We follow with a description of a posteriori error
estimation procedures for spatial discretization errors in regions where the solution is
smooth (§3). Both one- and multi-dimensional error estimates are based on the existence
of a strong superconvergence phenomena at the downwind (outflow) ends of elements.
We describe some simple adaptive h- and p-refinement procedures (§4) and use them
to address compressible flow problems involving a double Mach reflection from a wedge
[19, 49] and a Rayleigh-Taylor flow instability involving the perturbation of a heavy fluid
overlying a lighter one (§4.4). These classical problems are used as difficult computational
tests for any proposed numerical method intended for compressible flow applications.

2 Discontinuous Galerkin Formulation

As customary with finite element formulations we divide the problem domain 2 into a
collection of elements

o=, 3)

and assume, for simplicity, that this may be done without error. Following the formula-
tion of Cockburn et al. [17, 18], we construct a Galerkin problem on one element €2; by
multiplying (1) by a test function v € (£3(£2;))™, integrating the result on ©;, and using
the divergence theorem to obtain

(v, 0)q, — (gradv, f‘(u))gj+ <v,F, >a0,= (V,T)q;, Vv e (L2()™. (4a)
The £? volume and surface inner products are
(v,u)g, = / viudr, <V, U >p0,= / vTudo. (4b)
Q; 0%

Several issues must be resolved before the formulation (4) can be used as a numerical
method.

e The solution u must be approximated by functions in a finite-dimensional subspace
of the solution space. This is greatly simplified without the need to maintain inter-
element continuity. Meshes and approximate solutions such as those shown in
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Figure 1 are possible. We select the approximation U of u to be a piecewise-
polynomial function of degree p relative to the mesh. The basis is chosen to be
orthogonal in £2(2;) (¢f. §2.1 and Remacle et al. [38]), which will produce a
diagonal mass matrix.

e With a discontinuous basis, the normal flux F,, = F(u) -7, where 7 is the normal
vector to 0€);, is not defined on 0€2;. The usual strategy is to define it in terms of
a numerical flux F,,(U;, Uy) that depends on the solution U; on ©; and Uy on the
neigboring element 2 sharing the portion of the bounday 0€;; common to both
elements (§2.2). The numerical flux is required to be consistent in the sense that
F,(u,u) = F(u) - it.

e As previously noted, DGM solutions with p > 0 will exhibit spurious oscillations
near discontinuities. Techniques to limit solution variation are not generally avail-
able. Herein, we use a moment limiting strategy of Biswas et al. that has worked
well on structured meshes (§2.3).

e With the trial and test spaces being polynomials of degree p on €);, inner products
appearing in (4) are done by Gaussian quadrature of order 2p.

e Time integration is performed by explicit total variation bounded Runge-Kutta
integration scheme [18, 5]. Because we are dealing with highly localized phenomena
in time and space, we use a local time stepping procedure similar to one used by
Flaherty et al. [23], which will be described in a forthcoming paper [39].

Figure 1: Sample mesh and solution for use with the discontinuous Galerkin method.

2.1 Orthogonal Basis

On each element ; € Q, we approximate u by a polynomial U € (PP)™ C (H(2;))™,
where PPi is a space of polynomials of degree p; on ;. (When not emphasizing the
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variation of degree p;, we will suppress the subscript j.) Since the approximation is only
continuous on elements, the global approximation on {2 may have jump discontinuities
at element boundaries. Without the need to maintain interelement continuity, the choice
of basis for PP is essentially unrestricted. Nevertheless, some basis choices will be more
convenient and computationally efficient than others. We construct an orthogonal basis
for PP relative to the £2(€2;) inner product. As a result, the mass matrix will be diag-
onal and time integration will neither necessitate “lumping” nor matrix inversion. The
orthogonal basis also simplifies adaptive p-refinement.

Orthogonal bases on quadrilateral elements may be constructed as tensor products
of Legendre polynomials. Basis construction on triangles proceeds by mapping €2; in the
(x,y)-plane onto the usual canonical, unit, right-triangular element {(£,7)|0 < &,n <
1, E+n <1}

To begin, consider a basis for P? in terms of monomials in (§,7), i.e.,

B:{buz: 172a7Np}:{1:§7777§27€777772a777p}: (5)

with N, = (p+ 1)(p + 2)/2. We seek an alternate basis G = {¢;,¢i = 1,2,...,N,} of
PP which is orthonormal in £2(£2); thus, (96, k), = O, i,k = 1,2,..., Np. This may
be done by applying Gram-Schmidt orthonormalization [27] to the basis B. Thus, we
compute

g = bi = 3 (bi, 91) g
V(015 = S0 (b, 90)0)

with the understanding that summations are zero when their upper limit is less than
their lower one. Since by has the form b, = £*®)pf*) with exponents a(k) and B(k)
depending on k, inner products may be calculated as [38]

i=1,2,...,N,. (6)

1 1—¢ 1 n+1 Cl
Gubdo= [ [ €mp dedn= — >0 (7
0 Jo 1=0

+1 m+l+1

with m = a(i) + a(k) and n = B(i) + B(k). The result (7) avoids numerical integration
in the Gram-Schmidt process, so that shape functions can be computed to any order
without a loss of precision.

The £2(£2;) orthogonality of g;, i = 1,2, ..., N,, will only be preserved in the physical
(x,y) space if the mapping from the physical to the computational space is linear, i.e., the
Jacobian of the mapping is constant. Curved elements, which are essential for higher-
order analysis on curved domains [8], will require some modifications. For example
Gram-Schmidt orthogonalization can be performed relative to a Jacobian-weighted inner
product and induced norm. Shape functions would become element dependent and the
orthogonalization would have to be computed and stored for every curved element of
the mesh. This is not excessive because the total memory never exceeds that required
for a global mass matrix and the number of curved elements is typically O(v/Ny) for a
problem with N}, elements.



2.2 Numerical Flux

Upon choosing a numerical normal flux F,,(U;, Uy) on the face 0€2;; separating elements
j and k, the DGM (4a) becomes

noq;
(V: 6tU)Qj - (gradV, F(U))QJ + Z < V; Fn(Ujv Uk) >8§2j: (V, r)Qj’

W e (PP ®

where naq; is the number of faces of ;.

A common strategy [5, 17, 18] is to compute the numerical normal flux as the exact
or approximate flux of a Riemann problem breaking on 02;;,. Recall that a Riemann
problem is an initial value (Cauchy) problem with piecewise constant data. Several
choices are possible [18; 40, 35, 49]. Regardless of whether the problem is one-, two-,
or three-dimensional, only the normal component of the numerical flux need be defined
and this greatly simplifies the task. The most direct choice is the upwind flux where the
numerical flux is computed using F,(Uy) on 09,y if the flow is into ; and F,(U;) in
the opposite case. The Laz-Freidrichs flux

Fn(U;, Uy) = %[Fn(Uj) + Fu(Uk) = Anas (U — Uy (9)

is only slightly more complex. Here, A4, is the maximum absolute eigenvalue of the
Jacobian OF,(u)/0u using, e.g., u = (U; + Uy)/2. Roe [40] computed the numerical
flux as the exact flux of a linearized Riemann problem across the interface. This required
some care to ensure that entropy conditions were not violated [28]. Van Leer [35] split
the normal flux into components having Jacobians with only positive and negative eigen-
values. With this, he constructed numerical fluxes that were continuously differentiable
across a shock discontinuity. Woodward and Colella [49]constructed a numerical flux
that reduced excessive diffusion near contact discontinuities. Other flux choices appear
in Cockburn and Shu [18].

2.3 Limiting

The goal of a limiting strategy is to reduce or eliminate the spurious oscillations that
develop near discontinuities with high-order (p > 0) methods without reducing accuracy
in regions where solutions are smooth. In their original work, Cockburn and Shu [18]
used a strategy to limit the variation of solution slopes. For simplicity, we will present
this for a one-dimensional scalar problem. The Legendre polynomials are orthogonal in
this case, and solutions on §; := {z|z;_;,z;} are approximated as

Uj(,t) = Y cjult) Pe(é(x)) (10a)

where 5
() = 22— T ¥ o) (10)

Tj— Tj-1
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Figure 2: DGM solution of Example 1 at £ = 1 with p = 2 and N, = 32 using slope
limiting [13]. The exact solution is shown in black and the computed solution in red.

and P(&) is the Legendre polynomial of degree & in € € [—1,1].
With a slope limiting procedure [18], one calculates modified deviations at the ends
zj_1 and z; of Q; as

Sl,j = minmod(Uj(xj,t) - Uj, AUJ’, VUj), (11&)

Sfl,j = minmod(Uj - Uj(.’L’jfl, t), AUJ‘, VUJ) (11b)

where Uj is the solution average on €2,

. min(a, b, c), if sgn(a) = sgn(b) = sgn(c
minmod(a, b, ¢) = { ( ()) oth%rv(vige gn(b) = sgn(c) ) (11c)
AUj =Ujq — Uj VUJ = Uj — Uj,1 (lld)

These modified deviations are used to calculate modified solution coefficients in (10a) as
S1=Uj(x;t) = Uj, So1y = U = Ujlzj, ). (11e)

Since these represent two equations for p unknowns, unique solutions do not exist when
p > 2. One possibility [18] is to set ¢y = 0, kK = 3,4,...,p. This, however, may reduce
the order of accuracy should the limiting procedure modify the solution in a region not
containing discontinuities.

Ezample 1. We solve the initial value problem for the kinematic wave equation

g + Uy = 0, t>0, u(z,0) =sinnz (12)

on a periodicity cell —1 < z < 1 using the DGM with p = 2 and N, = 32. Although
limiting is not necessary since solutions are smooth, we apply slope limiting (11) to
obtain the solution shown in Figure 2 at ¢ = 1. The solution has been “flattened” near
the smooth extrema and the convergence rate has been reduced [13].

Biswas et al. [13] tried to overcome the loss of accuracy in smooth solution regions
by applying the slope limiting procedure (11) in an adaptive manner to successively
lower-order coefficients in (10a). In particular, they limited ¢y ; as

(2]41 + 1)Clc+1,j = mmmod((?k + 1)Ck+1,j; Aij, Vckj). (13)
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Figure 3: DGM solutions of Example 2 at t = 0.7 with p = 2 and N}, = 32 using moment
limiting (left) and no limiting (right) [3]. Computed solutions are shown with x symbols
and exact solutions are shown as solid lines.

Limiting is applied to the highest-order coefficient ¢, ; in (10a) first. If this coefficient
is changed by (13) then limiting is applied to c,_;,. The process continues to limit
successively lower-order coefficients until either all coefficients are limited or a coefficient
is not changed by (13). Should this occur, Biswas et al. [13] assume that no further
limiting is necessary. When moment limiting (13) was applied to the kinematic wave
equation (12) of Example 1 it produced results with the optimal convergence rate [13];
however, there were counter examples with results having reduced orders of accuracy.

Ezample 2. We demonstrate the need for limiting with the shock problem for the
inviscid Burgers’ equation

9 i
U + (%)z =0, t>0, u(z,0) = 1%# (14)
The solution is periodic on —1 < x < 1 and the initial sinusoidal data steepens to form
a shock which propagates in the positive z direction. DGM solutions with p = 2 and
Nj, = 32 are shown at ¢ = 0.7 in Figure 3. The solution on the right without limiting
exhibits solution overshoots on elements near the shock. These, however, remain localized
and the solution is accurate elsewhere. The moment limiting procedure (13) can reduce

overshoots without reducing the order of accuracy in smooth solution regions.

3 Error Estimation

Estimates of discretization errors are essential to appraise solution accuracy and are, at
the very least, desirable to guide and control adaptive enrichment. A posterior: estimates
of the discretization errors use the computed solution to gage accuracy and they have been
used with adaptive processes since their inception [6]. Ideal a posteriori error estimates
should be (i) inexpensive relative to the cost of the solution; (i7) accurate in the sense
that they converge to the true error under h- and p-refinement; and (4ii) robust in the



sense that they provide error bounds over a wide range of mesh spacings, polynomial
degrees, and norms. The state of the art regarding error estimation technology is far
more advanced for (linear) elliptic and parabolic problems [4, 7, 47] than for transient
hyperbolic problems. Nevertheless, some work exists. Siili [42] discusses a posteriori
estimattion for both linear and nonlinear problems; Houston et al. [29, 44] describe
procedures for linear problems; Cockburn et al. [14, 15] consider nonlinear problems; and
Pierce and Giles [36] and Larson and Barth [34] construct a posteriori error estimates for
linear functional, which can be more important than pointwise error estimates.

Adjerid et al. [3] proved that DGM solutions of one-dimensional conservation laws
of the form (1) using piecewise-polynomials of degree p on 2; have a higher rate of
convergence (superconvergence) at the roots of the Radau polynomial of degree p + 1
than they do elsewhere. The Radau polynomial of degree £ is [1]

Ry (&) = Pr(§) £ Pe1(8)- (15)

The negative sign is chosen when the flow on €2, is in the positive coordinate direction
(right Radau polynomial) and the positive sign is chosen when the flow is in the negative
coordinate direction (left Radau polynomial). With the Legendre polynomials scaled
so that Py(1) = 1, k = 1,2,..., and having odd or even symmetry with k, Ry(§) will
always have a root at the “downwind” end of Q;. Flow refers to the eigenvalues of
OF,,(u)/0u; thus, components of the system corresponding to positive eigenvalues will
have superconvergence at the roots of right Radau polynomials while those corresponding
to negative eigenvalues will vanish near the roots of left Radau polynomials.
A posteriori estimates of discretization errors

e(z,t) == u(z,t) — Uz, t) (16)

may be obtained using this information by neglecting errors at the roots of R,1(£). In
fact, Adjerid et al. [3] prove that spatial errors of one-dimensional conservation laws of
the form (1) satisfy

ej(z,t) = i1 j(t) Rpi1(€) + O(AzPT?), ¢ e[-1,1], x €, (17a)
ej(z;,t) = O(Az**), if dj;(;) > 0. (17b)
ei(z; 1, 1) = O(AZ?*Y), i dJ;(;) <. (17¢)

(The result is stated for a scalar conservation law for simplicity. Results also apply to
vector systems [3].) Thus, DGM solutions generally converge as O(AzP*!) for Az =
max(x; — zj_1), j = 1,2,..., N,. Convergence at a slightly faster O(AzP*?) rate occurs
at the roots of R,.1(£(x)). However, “ultra fast” O(Axz?*!) convergence occurs at the
downwind end of each element when p > 0. This ultra fast convergence implies that
error propagation between elements may be neglected and that error estimates may be
obtained by local (element-wise) computations.

The discontinuous Galerkin formulation for a one-dimensional conservation law (1) is

Az; d ! '
Tja/ vTud§—|—vTFn(u)|1_1=/ veF(u)ds,  Vve(£X(-1,1))".  (18a)
-1 -1



Finite element solutions are obtained by replacing u by U; according to (10a) and inte-
grating to a given error checking time. The approximate error is obtained by setting

urU; +E; =U; + oy, (t) Rpya(§) (18b)

in (18a). After testing against polynomials V € (PP™'(—1,1))™, the resulting ordinary
differential system is integrated in time for e, 11 j(¢). If the ordinary differential equations
are integrated to higher order than that used for the DGM solution, we actually obtain
an estimate of the global space-time discretization error.

Example 3. We solve the nonlinear wave equation

Upy — Ugy = u(2u? — 1) (19a)
which can be written in the form (18a) as

(u1)s + (u1)e = ua, (ug); — (ug)e = u1(2u? — 1) (19b)

with u1 = u. We choose the initial and boundary conditions such that the exact solution
of (19a) is the solitary wave

1 1
u(z,t) = sech(x cosh 5t tsinh 5) (19¢)

We solved problems without limiting using polynomials of degrees p = 0 to 4. The
solution at t = 1 performed with p = 2 and N, = 64 is shown on the left of Figure
4. Computations illustrating errors and effectivity indices were performed on the more
restricted interval —m/3 < x < w/3. Effectivity indices

E (-t
H(t) — || 1(’ )”51 (20)
llex (-, )iz,
for the error in u; = w with p ranging from 1 to 4 and N}, ranging from 8 to 256 are shown
as a function of the degrees of freedom on the right of Figure 4. Effectivity indices are
within 0.5% of ideal for all combinations of mesh spacing and p > 0. Effectivity indices

appear to converge to unity under both h- and p-refinement, for p > 0.

3.1 Multi-Dimensional Error Estimation

We may ask whether or not error estimates based on Radau polynomials apply to multi-
dimensional problems. Adjerid [2] has shown that (17) applies to two-dimensional prob-
lems with tensor-product bases. Herein, we present the nucleus of a theory and some
preliminary results for two-dimensional steady, linear problems of the form

a-Vu+cu=r(z,y), (z,y) € Q, (21)

subject to appropriate boundary conditions. Let @ and ¢ be constants and r(z,y) €
£2%(Q). With this linear flux and an upwind numerical flux, the discontinuous Galerkin
formulation (1) of (21) is used with the divergence theorem to obtain

/ Va- ﬁ'(Uj —U7)do + / V(a- VU; + ch)dT = / Vrdr, vV e PP, (22)
o9; Q;

Q;
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Figure 4: Solution of Example 3 at ¢t = 1 on the interval —37 < x < 37 (left). Global
effectivity indices for the solution of (19a) at ¢ = 1 as a function of degrees of freedom
with p ranging from 1 to 4 (right).

where 0€); and 89; represent the inflow and outflow portions, respectively, of 0€2;.
Subtracting the exact solution u from (22) and using the divergence theorem, we obtain
the Galerkin orthogonality condition for the local discretization error

/Ei-ﬁeVda—/e(d’-VV—cV)deo, W e P, (23)
oaf Q;
Mapping €2, onto the canonical element €y (§2.1) yields the scaled equation
/ BeVhdo — /eh(d’ -VV —~Vh)dr =0, vV e PP, (24)
g Qo

where @, 3, and 7y are constants depending on @, b, and ¢ and the metrics of the coordinate
transformation and A is a mesh-spacing parameter.
Assuming that u is smooth, we expand e in the series

e(&m) =Y Qu(&nh* (25)

and prove that Qr = 0, 0 < k < p. Substituiting (25) into (24) and collecting terms of
like powers of h, we further show that the leading (@Qp+1) term of (25) satisfies

/Qp+1V do =0, VV € Ppy (26)
Qo

and
/ QpVdo =0, WV eP, (27)
ang
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0.5 0.25 0.125
e 0 e 0 e 0
4.85e-02 | 1.0116 | 2.49e-04 | 1.0304 | 1.49e-02 | 1.0418
8.27e-04 | 1.0022 | 2.16e-04 | 1.0537 | 7.85e-05 | 1.0266
3.11e-05 | 0.9609 | 4.16e-06 | 0.9267 | 9.24e-07 | 0.9054
1.71e-06 | 1.0161 | 1.04e-07 | 1.0546 | 1.47e-08 | 1.0054
1.07e-07 | 1.0597 | 3.32e-09 | 1.0097 | 2.8e-10 | 0.9203

SRlwiNn~Ros | S

Table 1: Computed error and effectivity indices for Example 4.

Using the orthogonal basis (6), we verify that ()41 has the form

p+1 p+2
Q=) dg+y &g (28)
i=1 i=1

(We have added a superscript to g; in (6) to indicate the polynomial degree. Subscripts
indicate the basis elements of a given degree.) With this, we also prove

/deUZO, k=p+1,p+2....,2p+ 1. (29)
ang
This result is analogous to the strong superconvergence at the downwind point in the one-
dimensional case. It further implies that error propagation is negligible on the average
and it allows us to perform a global error analysis.

As with one-dimensional problems, we construct error estimates by replacing U; in
(22) by U;+ Qp+1,;(%, y) and testing against V' € PPH\PP. This provides p+ 2 equations
to determine coefficients c¥, k = p,p + 1. The additional (p + 1) equations are obtained
by satisfying the exit flow problem (27).

Ezample 4. We solve the nonlinear problem

%7 (a:,y) € (07 1) X (07 1)7 (30)
with boundary conditions chosen such that the exact solution is

u=+/r+y+1 (31)

Computations were performed by integrating a transient problem to steady state. We
present error estimates and effectivity indices in Table 1 for computations performed
with p=0,1,...,4 and h = 0.125,0.25,0.5. Here A is the longest edge of any triangular
element in the mesh. We see that effectivity indices are within 10% of ideal for all
combinations of A and p.

2ugp + Uy =

4 Adaptivity

We seek enrichment methods where h- and/or p-refinement may be performed on any
element at any time. Our procedure uses only local operations to alter element sizes or
polynomial degrees and, hopefully, increase, the accuracy and efficiency.
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4.1 p-Refinement

To increase the degree of an approximation, we initially set the higher-order coefficients
in (e.g., (32)) to zero to obtain an identity projection of the existing one. Although a
reduction of polynomial degree would seem to be more complex because it may occur
either in low-error regions or near discontinuities when limiting is applied. In the former
case, the high-order coefficients are small and do not contribute to solution accuracy.
However, these coefficients need not be small when limiting is applied. Nevertheless,
with an approximation of a function f on €2; in the form

Np
f= Z figi (32)
=1

using an orthogonal basis (6), the £? projection of P?(Q;) onto P4(£2;), ¢ < p, is obtained
by setting the higher-order coefficients f;, N, +1, N, +2,..., N, to zero in (32).

4.2 h-Refinement

Modifying element sizes is also straightforward since the DGM does not require interele-
ment continuity. Our current practice [38] is to bisect an element €, into four congruent
sub-elements. This quartet may subsequently be coarsened to recover the original ele-
ment €2;. For both refinement and coarsening operations, we determine the new solutions
by a L2 projection. Refinement uses an identity projection. Coarsening will incur a loss
of precision.

4.3 Enrichment Strategy

Both A- and p-refinement involve local projections with, mostly, identity operators. Thus,
adaptivity with the DGM is fast and accurate. This is important, since dynamic hyper-
bolic problems will require frequent adaptation over tens of thousands of time steps.

Let the level of refinement l; be the number of h- or p-refinement steps that were
necessary to reach the current size or polynomial degree for element j. Also let €; be
an error indicator for element j, which may be one of the discretization error estimates
described in §3. If [™%* is the maximum allowed refinement level and €™ is the maximum
allowed value of ¢;, j = 1,2,..., Nj, then we determine the appropriate refinement level
for element j by finding an integer 7 such that €™ /d"! < ¢; < €™**/d* and setting
l; = max(I™*® — 4,1). The constant d is user prescribed. If, e.g., d = 10, then all
elements where €; > €™ /10 will be refined to the maximum level of refinement [™*".
All elements where €™ /100 < ¢; < €™**/10 will be refined to level I™** — 1, etc.

4.4 Flow Applications

We demonstrate our adaptive strategy using two classical compressible flow problems
involving the Euler equations (2).

Ezample 5. We consider the reflection of a Mach 10 planar shock by a wedge having
a half-angle of 30° [19, 49]. The computational domain (shown with dashed lines in
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Figure 5) is a 4 x 1 unit rectangle oriented along the surface of the wedge. The reflecting
wall lies on the bottom of the computational domain, beginning at = 1/6, y = 0.
Boundary conditions at the top (y = 1) are set to those corresponding to the exact
motion of a Mach 10 shock. Physical parameters for the gas ahead of the shock are
P, =1 and p; = 1.4. The Rankine-Hugoniot relations

vy = Mg\/YP1/p1 =10, Py/P=(2yM? — (v —1))/(y +1),
pa/pr = (v +1)MZ/((y =DM +2),  pivs = pa(vs — v2) (33)

are used to specify post shock conditions.

Ms:vs ,// \\
= e \ X
// \
Py, opy, vy P, opi, v e ,\/

Figure 5: Geometry for the double Mach reflection of Example 5. Conditions ahead of
and behind the shock are identified with subscripts 1 and 2, respectively.

Quadrilateral elements are used with tensor products of Legendre polynomials for the
spatial discretization [13]. With quadrilaterals, we are able to use moment limiting (§2.3,
[13]) to reduce spurious oscillations near shocks and other discontinuities.

Computations were performed with p = 1 using [™*® = 1 and 4 and local time
stepping [39]. The results at ¢ = 0.2 are shown in Figure 6. The shock structure is poorly
resolved with only one level of refinement. Discontinuities are diffused over several mesh
cells. Results with four refinement levels are much better. Shocks are sharp and the jet
formed by the double Mach reflection, usually difficult to capture, is well resolved.

Ezample 6. Transient computation of unstable flows provide an application where
adaptivity in time is crucial. The instability of an interface separating miscible fluids
of different densities subject to gravity is known as a Rayleigh- Taylor Instability (RTT).
Bubbles (spikes) of lighter (heavier) fluid penetrate into the heavier (lighter) fluid, leaving
behind a region where the two fluids are mixed. This mixing region quickly becomes
irregular and may provide an understanding of turbulence since the flow there has chaotic
features [50].

14



BRSNS
S

EEas

o x

Figure 6: Adaptive grids and density contours for Example 5 at time ¢ = 0.2 with
[m*® =1 (top two frames) and {™** = 4 (bottom two frames).

We address a Rayleigh-Taylor instability in a cavity with a fluid of density p, = 2
above one of density p; = 1 (Figure 7). Neglecting viscosity, fluid motion is governed by
the Euler equations (2) with a body force corresponding to (a unit) gravity

r=1[0,0,—p,0]". (34)

The initial pressure corresponds to (unstable) hydrostatic equilibrium and an initial veloc-
ity perturbation initiates the instability. In particular, we perturb the vertical velocity
component with 10 Fourier modes having wavelengths iw/10, i = 1,2,...,10, where
w(= 0.25) is the width of the cavity.

Without explicit interface tracking [25], adaptive h-refinement will be necessary to
accurately represent the complex evolving structure of the bubbles and spikes. We used
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Figure 7: Geometry for the Rayleigh-Taylor instability of Example 6.

the h-refinement procedure described in §4.2 with /™% = 4. The computation was
performed on a four-processor parallel computer with dynamic load balancing used after
each refinement step [46].

Figures 8 show the distribution of fluid density and distributed meshes at different
times. The refinement is confined to the interface as the complex mixing zone evolves.
One basic characteristic of Rayleigh-Taylor instabilities is the constant that describes the
acceleration of the mixing zone edge. If

A — P2 — P (35&)
P2+ p1

is the Atwood number representing buoyancy due to gravity, the edges of the mixing
zone have the asymptotic scaling
h = aAgt®. (35b)

Our computation reveals that @ = 0.06 which agrees with other theoretical and experi-
mental investigations [26].
5 Discussion

We have exposed several properties of the DGM as it applies to hyperbolic conservation
laws. We hope that we have demonstrated that the method offers several advantages
for flow problems with complex structures. There are still many unresolved issues and
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Figure 8: Grids and density contours at ¢t = 0.5 (i), t = 1.0 (ii), ¢ = 1.5 (iii), and
t = 2.0 (iv) for Example 6 with /™% = 4. coloring identifies processor assignments on a
four-processor parallel computer.

potential improvements to the method. As noted, solution limiting is needed to prevent
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spurious oscillations when p > 0. This might rely on feature detection such as those that
have been used here and elsewhere [13, 18] or it might be based on variation of solution
residuals such as procedures used in stabilized finite element methods [30]. Proper use
of adaptive hp-refinement where low-order (p = 0) methods were used at discontinuities
and higher-order methods were used in smooth-solution regions could obviate the need
for limiting. This would necessitate a discontinuity detection scheme and such strategies
may be possible [32, 33].

The error estimation procedures developed here are computationally simple but only
apply in smooth solution regions. While they furnish an error indication near disconti-
nuities, more quantitative information is needed.

Of course, there is intense interest in applying the DGM to viscous problems involving,
e.g., the Navier-Stokes equations. While procedures exist [9, 8, 48], it is not yet clear as
to whether or not they offer computational advantages relative to more traditional finite
element or finite difference techniques.
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