Parallel Algorithm Oriented Mesh Database *

Jean-Francois Remacle Ottmar Klaas
Joseph E. Flaherty Mark S. Shephard

Scientific Computation Research Center,
Rensselaer Polytechnic Institute,

Troy, New York, USA.
Corresponding author: remacle@scorec.rpi.edu

Abstract

In this paper, we present a new point of view for efficiently manag-
ing general parallel mesh representations. Taking as a starting point
the Algorithm Oriented Mesh Database (AOMD) of [12] we extend
the concepts to a parallel mesh representation. The important aspects
of parallel adaptivity and dynamic load balancing are discussed. We
finally show how AOMD can be effectively interfaced with mesh adap-
tive partial differential equation solvers. Results of the calculation of
an elasticity problem and of a transient fluid dynamics problem in-
volving thousands of mesh refinements, and load balancings are finally
presented.

Introduction

In a recent paper [12], we presented a new approach to manage the topolog-
ical relationships needed from a mesh data structure to meet the needs of
multiple applications. We called this new approach the Algorithm Oriented
Mesh Database (AOMD) because we have the ability to shape AOMD to

*This work was supported by the ASCI Flash Center at the University of Chicago,
under contract B341495, by the U.S. Army Research Office through grant DAAG55-98-1-
0200, and by the National Science Foundation through grant DMS-0074174.

the needs of the algorithms. In [12], we discussed both construction and
implementation of AOMD.

In this paper, we will discuss some more specific features of AOMD. First,
we will explain how AOMD is extended to manage distributed meshes. Based
on the distributed data management paradigm described in [14], we will show
how AOMD is able to manage interprocess communications independently of
the mesh representation. Then, we will show how AOMD can minimize load
balancing cost in parallel adaptive mesh refinement by using the minimum
mesh representation presented in [12]. For the load balancing algorithms,
AOMD uses the capabilities of the Zoltan library developed at Sandia [3].
Finally, we will show how AOMD is able to perform parallel adaptive com-
putations including dynamic load balancing, non-conforming refinement and
coarsenings. As examples, we will present an elasticity problem solved with
an object oriented framework that has been coupled with AOMD, and a large
scale three dimensional computational fluid dynamics example where AOMD
is used as mesh library.

1 Algorithm Oriented Mesh Database

A mesh is a discretization of a geometrical domain consisting of mesh en-
tities of controlled size and distribution with simple topology (hexahedron,
tetrahedron...). The topology of a mesh is described with adjacencies be-
tween mesh entities [1]. Meshes are used for scientific computation. Physical
parameters, i.e. material properties and boundary conditions, are to be pre-
scribed on the geometrical model which is the most natural representation of
the domain [13] and are then related to the mesh during the analysis process.

Data structures have been published for specific algorithms: mesh gener-
ation |9, 6], mesh refinement [4]| or solution process [8]. The aim of AOMD
is to be a mesh management library (or database) that is able to provide a
variety of services for mesh users with an optimal mesh representation: the
user is able to shape AOMD to its own algorithms. In [12], we presented
this adaptive approach that was able to deal with any representation. For
that, we made a certain number of hypotheses. These hypotheses are readily
extendable to distributed meshes.

e In order to ensure a valid discretization of the solid model, we maintain
a direct link between every mesh entity ¢ of dimension d, refered to as
M, and the geometrical entity G (with ¢ > d) it is discretizing. We

2

call this association a classification [1] of a mesh entity to a geometrical
entity and we note it M C Gj.

e A unique iD is associated with each vertex M?. In this paper, we extend
this definition to distributed meshes. We suppose that there is a unique
labeling of vertices for a distributed mesh. It does require some care on
partition boundaries. One easy selection is a unique numbering which
is discussed more with implementation details.

e Any higher dimensional mesh entity M? 1 < d < 3 is defined using
one set of ordered lower order mesh entities. This assumption allows
us to access the set of ordered vertices for any mesh entity.

e Two mesh entities are equal if they have the same vertices. Due to
the previous hypothesis, we always have access to mesh entity vertices
so that it is always possible to compare mesh entities independently
of their representation. This definition of course scales to distributed
meshes because of the unique global vertex iD’s.

We have seen in [12] that the given hypotheses allow us to build efficient
algorithms to search the mesh database. We have shown that efficient hashing
functions for mesh entity insertion, deletion and searching operations have
constant complexity which means that their costs do not depend on the size
of the mesh database. These properties remain applicable to distributed
meshes because every partition is treated as a serial mesh.

A second interesting feature of AOMD is that it is possible to define
a minimum representation of a mesh that allows generation of any other
representation using integer operations (no geometrical tests). A sufficient
minimum set of data is a set in which each mesh entity classified on an equally
dimensioned geometrical entity has to be present in the representation. It
means that all entities M for which we have M? C G? are to be present
and classified if we want the ability to construct a representation. Note that
all vertices are to be present in the representation but only those that are
classified on model vertices need to be classified. Given that minimum set
all the other classifications can be determined. This was outlined in [12].
The mimimum representation does not need to be modified for distributed
meshes.

2 Distributed mesh representation

We consider a mesh divided in partitions for distribution to the various pro-
cessors. Each partition is a mesh that does not differ from a serial mesh.
The only AOMD requirement for distributed meshes is that vertices have a
global labeling through all partitions.

Mesh partitions have mesh entities in common. In Figure 1, we show
an example of a distributed mesh with three partitions. We consider par-
tition boundaries as artificial model entities that represent connections be-
tween partitions. The minimum mesh representation in parallel takes these
new model entities into account: mesh entities equally classified on partition
boundaries must be present as well in the representation. This is a natural
extension of the serial definition.

Pl

Figure 1: Distributed mesh, three partitions P!, P? and P3. Vertex MY is
common to all partition and is then classified to a partition vertex. On each
partition, several mesh edges like M]1 are common to two partitions and so
is classified to a partition edge separating two partitions.

In order to make partitions aware of remote entities that are present in
other partitions, we use the algorithmic capabilities of AOMD. For each mesh
entity M¢ classified on a partition boundary G?, we send a message to each
remote partition. This message contains

e The local adress of M¢,

e The list of Mf vertices iD’s.

With vertices iD’s, we are able to find the counterpart of M on every remote
partition of G?. After this round of communication, each remote partition is
aware of all remote entities present on other partitions with the local adress
of each copy. This simple procedure is called every time the mesh is modified.

3 Parallel mesh adaptation

AOMD being a database, it is possible to add and remove mesh entities in
an efficient manner. We have developed mesh refinement procedures that
produce adaptive meshes in parallel. Our goal was to provide a mesh adap-
tation procedure which is sufficiently efficient to be applied thousands of
times in one computation. A second requirement is the effective support
of non-conformal mesh refinements which are effective for use with specific
discretization methods (Figure 2). Mesh modifications consist of refinements

Figure 2: Adaptive non-conformal quad mesh.

and coarsenings. For reasons of efficiency, we conserve the history of mesh
refinement in a tree structure for the applications presented here. For that,
we use the adjacency list of equivalent dimension in mesh entities. The cur-
rent mesh adaptation procedure is not the most general in the sense that it
can not produce coarser meshes than the initial mesh. The functions needed
to support the more general case, including curved domain issues, are given
in [5].

In mesh refinement, some entities are split. We use the concept of tem-
plates described in [12] which allow us to manage hybrid meshes. For each
distinct topological entity (triangle, tetrahedron, wedge,...), we provide one
splitting pattern that returns a set of sub-entities. Typically a quadrilateral is
split into four quadrilaterals, one tetrahedron is split into eight tetrahedron,
etc.

One round of communications is needed to account for the new mesh en-
tities created by the splitting process. This round of communictaions allows:

e Entities that have remote copies must be be split on all partitions
boundaries to allow connection between partitions.

e Entities that have remote copies must be split while using the same ver-
tex labels as required to conserve the consistency of the mesh database.

Figure 3 illustrates how parallelism affects mesh adaptation. We have split
some triangles into four. When this refinement is done, vertex M? has to be
created on processor P° because it has a counterpart M? on processor P!.
Vertices M2 and M), must share the same iD. On the other hand some edges
may be split on several processors (in 3-D, this can be more than 2). In this
case, we have to ensure that, for example, vertices M, and M J(-) have the same
iD in order to fulfill consistency requirements of AOMD. For that purpose,
we first assign predictor iD’s to all entities that have to be split. With one
round of communication, we chose as the corrected iD the smallest iD for
all processors: iD(M};) = min(iD(M}),iD(M7)). Then, the mesh refinement
procedures can be applied in serial. Finally we re-connect inter-processor
entities using procedure described in §2.

For the parallel implementation of mesh coarsening, we have followed
principles presented in [5|. If a cavity has to be coarsened, all elements of
this cavity are first migrated to one partition. Then, the coarsening algorithm
can be performed without taking care of parallelism.

4 Dynamic load balancing and mesh migration

Mesh refinement introduces load unbalance, i.e. after the refinement proce-
dures finishes some partitions may have significantly more or less mesh enti-
ties than other partitions. This unbalance is not acceptable since it prevents
the algorithms using the mesh in parallel to scale. Dynamic re-partitioning

Figure 3: Non-conforming parallel mesh adaptation.

of the mesh can eliminate the unbalance. Several load balancing techniques
are available. The Zoltan Dynamic Load-Balancing Library [3] provides crit-
ical capability to a number of parallel applications. Zoltan includes a suite
of algorithms for dynamically computing partitions of problems over sets of
processors; geometric, tree-based and graph-based algorithms are included.
The load balancer takes as input a representation of the parallel mesh,
usually a weighted graph. In a mesh, we have different levels of adjacen-
cies that produce different graphs. An illustration can be found on Figure
4: two different graphs are created for the same mesh using different sets
of adjacencies. The choice of a graph will depend on what the mesh is
used for. In case of a flux-based method (finite volumes, discontinuous fi-
nite elements), information is passed through edges (in two dimensions) so
that the relevant graph would be the one build with edge-face adjacencies.
Typically, a re-partitioning algorithms provides as output a vector containing
the redistribution information for the mesh entities that will restore the load
balance. With that information at hand, the dynamic re-partitioning step is
completed by moving the appropriate entities from one partition to another.
One of the effects of the re-partitioning is that interprocessor boundaries are
changing. The parallel topology of the distributed mesh can change dramat-
ically during one computation: some new inter-processor boundaries may be
created and some other ones may disappear. Entities that were classified

M;o| Mg Mg

7 N T N T
M2 MR M M2 OME O MB
I | | 1>
M} M2 M M M
~_ 7 ~__—7 ~ 7 ~__ 7

Figure 4: Mesh composed of 6 quadrilaterals and two different graphs for
this mesh corresponding to edge-face adjacencies (left) and vertex-face adja-
cencies (right).

on inter-processor boundaries may be re-classified interior and conversely.
Before doing any migration, we first have to re-classify mesh entities in or-
der to be able to restore inter-proccessor links. As shown in Figure 5, the
re-classification procedure involves two steps.

e The result of the application of a load balancing algorithm to a dis-
tributed mesh is, for each element of the mesh, a partition iD which
represents the destination of the element. This is represented in Fig-
ure 5. We first look inside the present partition for destinations of all
vertices. In Figure 5, vertices like M} will be shared by partitions P!
and P?. Vertex M) will be shared by the three partitions.

e Then we perform a round of communications in order to update the
list of destinations with the list of destinations of all remote copies of
vertices. In Figure 5, partition P? thinks that vertex M? will only be in
P? after load balancing. After one round of communication, partition
P? will communicate to partition P? that M) will also be on P°.

It is clear that any other entity will know its destination by taking the in-
tersection of vertices destinations. The edge connecting vertices M and M}
(Figure 5) that was internat to partition P! will be, after load balancing,
in the interface between partitions P° and P2. The concept of AOMD al-
lows a straightforward algorithm to perform mesh migration. Because there
exists a known minimal representation in AOMD, we first reduce the mesh

Figure 5: Illustration of a load balancing. On the left, triangles are tagged
with their destination. On the right, final configuration after load balancing

representation to its minimum in order to minimize the amount of mesh en-
tity data migrated. Then, entities are migrated. Vertices are migrated first,
with their coordinates, iD’s and classification. Then, other mesh entities are
migrated, with their vertices iD’s and classification. Then, one can rebuild
any given mesh representation locally and efficiently using AOMD template
operators [12] in serial. Finally, it is necessary to re-construct inter-processor
adjacencies. For that, we simply call a general procedure that is described
in a further section §5.1.

5 User interface, callbacks

The idea of a parallel mesh database is to provide some services to mesh users
that are not experts in parallel programming. There are three services that
involve parallelism. We describe here a C++ callback-type interface for those
services. The application of this interface does not require any parallel calls
or refer to any particular parallel protocol like MPI or OpenMP. Therefore, ap-
plications can be developed with no consideration of parallel implementation
issues.

5.1 Inter-processor communications

Inter-processor communications are done through partition boundaries. A
partition boundary G knows the list of processors P*, k = 1,...,N it is
connected to. On processor P, if a mesh entity M is classified on a inter-
processor boundary G, AOMD sends to all processors P* the list of ver-
tices labels of this entity together with a pointer ptr(P, M) to the entity
itself. Then, each processor P* responds with the adress ptr(P* M¢) of
the mesh entity on its side. AOMD will then store these remote pointers
ptr(P* M%), k =1,.., N so that user can send efficiently a message to all its
remote copies. This procedure of setting up inter-processor communication
is done at startup and each time the mesh is modified. The user is then

class AOMD_RndOfComm
{
public:
virtual void *sendBuffer (const meshEntity &localME,
int destProc, int &bufsize) = 0;
virtual void *receiveBuffer (const meshEntity &remoteME,
int sourceProc, void *buffer) = 0;

+;

Figure 6: Round of communication callback description.

able to pass messages to all it remote copies of a given mesh entity using
the callback procedure of Figure 6. The user creates a particular round of
communications by subclassing the abstract class

AOMD_Rnd0fComm from AOMD. In this, the user sends a buffer of size bufsize
the remote copy of the mesh entity localME on processor destProc. If sev-
eral remote copies of 1localME exist, one message per remote copy is sent. If
user returns 0, no message is sent. Then, the remote copy remoteME on pro-
cessor destProc recieves the message buffer from processor sourceProc.
Typically, one round of communications will look like Figure 7.

5.2 Mesh adaptation

AOMD provides another callback procedure for mesh adaptation (Figure 8).
In this callback, the user must tell if a given mesh entity is too big, too small

10

AOMD_Mesh *theMesh;

e // load the mesh
theMesh->bdryLinkSetup(); // set up communications

class My_RndOfComm : public AOMD_RndOfComm // subclassing
{ ...} // user code
theMesh->Rnd0f Comm (My_Rnd0fComnc()) ;

Figure 7: Typical set of instructions for doing a round of communications
with AOMD.

or of good dimensions. Mesh adaptation consists basically in some mesh
modifications which consequences are the replacement of a set of element (a
cavity) by another one. The user may provide some actions to be performed
when the mesh modification occurs. This can be for example a projection
of the solution defined in the non-modified mesh into the modified mesh.
The AOMD mesh adaptation callback is implemented as: If the callback

class AOMD_ADAPT_Callback

{

public:

virtual int operator () (const meshEntity &e) const = 0;

virtual void action (std::list<meshEntity*> & before,
std::list<meshEntity*> & after) const;

s

Figure 8: Mesh adaptation callback description.

operator(const meshEntity &e) returns 1, mesh entity e has to be refined,
if it returns —1, the mesh entity has to be coarsened and if it returns 0,
the mesh entity does not have to be modified. AOMD provides default
behavior for the class member action: simply not doing anything at all.
One adaptive refinement step with AOMD will look like Figure 9. As we
have already mentioned in §3, a mesh adaptation algorithm based on non
conformal splitting has been implemented. This procedure is an algorithm
that operates on the top of AOMD kernel.

11

AOMD_Mesh *theMesh;

class My_ADAPT : public AOMD_ADAPT_Callback // subclassing
{ ...} // user code
Non_Conformal_Adaptation(theMesh,My_ADAPT());

Figure 9: Typical set of instructions for doing a mesh adaptation with
AOMD.

5.3 Load Balancing

In order to perform load balancing, we define a model for computational load.
We mentioned in §4 that load balancers need a weighted graph. The load
of a given processor P is defined as the number of elements in its partition
multiplied by a weight that can be determined based, for example, on the ele-
ments computational demands. If no weight information is provided, AOMD
sets all weights to 1 by default so that the load is simply proportional to the
number of elements. The aim of load balancing is to balance loads between
processors while minimizing inter-processor communications i.e. size of par-
tition boundaries. The user can also provide weights for partition boundaries
in order to take into account differing communication costs. Finally, user de-
fined data can be migrated as well as mesh entities. The interface for load
balancing is described in Figure 10. The interface looks very much the same

class AOMD_LB_Callback
{
public:
virtual void *sendBuffer (const meshEntity &localME,
int destProc, int &bufsize) = 0;
virtual void *receiveBuffer (const meshEntity &remoteME,
int sourceProc, void *buffer) = 0;
virtual int vWeight (const meshEntity&);
virtual int eWeight (const meshEntity&);
3

Figure 10: Load balancing callback description.

as the one for round of communications. Some default values are provided

12

for weight functions as we discussed above so that base class members are
not pure virtual functions. One load balancing with AOMD will look like
Figure 11.

AOMD_Mesh *theMesh;

class My_LB : public AOMD_LBCallback // subclasssing
{ ...} // user code
theMesh->LB(My_LB());

Figure 11: Typical set of instructions for doing a dynamic load balancing
with AOMD.

5.4 Message Packing

An important remark concerns the strategy for message passing. In all
AOMD callback procedures, it appears that we send messages one by one
which is usually not efficient because of the inherent latency of inter-processor
communications. Messages are not sent one by one but are packed in order to
optimize message size. The choice of message sizes strongly depends on the
network architecture. We use autopack, a message packing library developed
at Argonne by Ray Loy [10]. Note that this allows unexperienced users to
use their hardware optimally without having to deal with packet size opti-
mizations. For finding the optimum packet size, the AOMD user can easily
tune this size parameter by doing some simple test cases.

6 Results
6.1 AOMD and Trellis

Trellis [2] is the computational framework developed at the Scientific Com-
putation Research Center at Rensselaer. We present here the example of an
elliptic problem computed with the higher-order finite element capabilities
of Trellis. AOMD was shaped for each of these problems: linear tetrahedron
only require element-node adjacencies while second order element require
edge modes. Third order elements require also face modes. With AOMD,
we were able to shape the database for each of the different computations.

13

{

Figure 12: Mesh of a mechanical part

We have solved a linear elasticity problem on the 121,792 tetrahedra
mesh of figure 6.1. We held the shaft steady and applied a constant force
distribution to one of the teeth. The resulting displacement distribution
can be seen in figure 6.1. Memory requirements were as follows: 38 MB
for the minimum representation, 66 MB with edges created and tet-edge
adjacencies and 83 MB with faces created and tet-faces adjacencies. First
order element computations were done on the minimum representation. For
the computations using higher order elements the representation containing
the edges and faces have been used, respectively.

6.2 A stand alone example of parallel AOMD

In this example, we take as input a two dimensional triangular mesh (Figure
14). After an initial partitioning into four partitions, we apply adaptive
refinements and coarsening using the following rule. Let us consider a circular
level set function

f(xa Y, Z,t) = (x - .’IZ‘C)2 + (y - yc)z + (Z - Zc)z - tz.

We create a mesh refinement callback that asks for splitting all elements
that have an intersection with f = 0. After each refinement, we apply load
balancing to the refined mesh and change ¢ to ¢ + dt. This artificial problem

14

MSC/PATRAN Version 9.0 21-Aug-01 09:31:26 12304
[Fringe: Title, pat.disp0: Deformations, Displacements-(NON-LAYERED) (MAG) i

IDeform: Title, pat.disp0: Deformations, Displacements-(NON-LAYERED) 11504

1.06-04
9.82:05
9.00-05
8.18-05
7.36-05
6.54-05
5.73-05
4.91-05
4.09-05
3.27-05
2.45-05
1.64-05

8.18-06

5.46-12

default_Fringe
M Max 1.23-04 @Nd 3723
Min 0. @Nd 3042

default_Deformation :
Max 1.23-04 @Nd 3723

Figure 13: Deformation of a mechanical part

(i) (i)

(iv)
AT A ATV AV AT ATAA YAV AVAN S VX v s
s T A Sl Sy S W S e s
AT VLA, VAT s G S O 8 iy A avavATIS S AAN
S uSTAVAVATAN V0 i TANAYAYCHAVAT vy VA AVAVAA ;< bTAVAVG yAYAS
RN BRI ROSK K XK AL
) vy e B %
e OO e o
LY ma KSR S'S RBR)
KK BO4S RS K5 KK
S RA KRR avaay AL
RN B % R % s
R TR RS : KK
S s Rk i
Y A
S S e e
s
% R KRR ARRAARI IR R0

YavAY

Figure 14: Mesh evolution for the artificial problem. Initial mesh (i) and
refined meshes after 10 (ii) , 24 (iii) and 45 (iv) adaptive steps. Elements
colors (black, blue, green and red) refer to mesh partitions.

may be seen as a model for the propagation of a cylindrical discontinuity in
a medium. The source code for this example can be found on the AOMD
web site at http://www.scorec.rpi.edu/AOMD/LB.html. Figure 14 shows

15

resulting meshes and partitions for this artificial problem at four different
time steps. This example shows how load balancing can affect topology of
inter-connections between processors. We see that black and green partitions
that were not topologically connected at stratup have a common boundary
at iteration 24. At startup, there is one vertex that is common to 3 partitions
(red, blue and black). It is then classified on an inter-processor model vertex.
After 10 iterations, there are no inter-processor model vertex anymore. In
this problem, we have used a graph-based load balancer. This is obvious by
looking how the load balancing algorithm has dealt with islands inside letters
A, 0 and D that are not topologically connected with the rest of the mesh.

Figure 15 shows a plot of the average load on all processors divided by
the maximal load on all processors as a function of the adaptation step.
Load balancing greatly improves this factor which is a good measure of the
scalability of the computation.

12

T
_ with load balancing —+—

without load balancing ---x---

worst case, only one processor loaded ---%---

IRV A AV e AE

0.8 |

06 [
3K 3 KX

/ X x|
X / Fox K s XX

S 1 KK -
X, / oK s
0.4 T

average load/maximal load

0.2

0 10 20 30 40 50 60
adaptive step

Figure 15: Comparison of mesh adaptation with and without load balancing.

6.3 Coupling AOMD with an adaptive solver

In [11], we have developped an adaptive discontinuous Galerkin method
(DGM) for solving non-linear conservation laws. We have used AOMD as
the mesh tool for our DGM. We present here some results for a 3-D Rayleigh
Taylor instability. A Rayleigh-Taylor instability involves a heavy (cold) fluid

16

overlying a light (warm) fluid [15, 7]. We consider two inviscid fluids initially
in hydrostatic (unstable) equilibrium in a cavity. The upper half of the cavity
is filled with a fluid of density two while the lower part is filled with a fluid
of unit density. The initial pressure corresponds to hydrostatic equilibrium.
An initial perturbation of the velocity initiates the instability. The pertur-
bation is made of one Fourier mode which wave length is the width of the
cavity. The flow is governed by the Euler equations of gas dynamics. The
mesh refinement callbacks are based on the error indicator described in [11].
The initial mesh is a regular hexahedron mesh.

Our first set of results were computed on a 4 processor machine powered
with 700 MHz Intel Pentium 3 processors. The computation started with 10°
degrees of freedom and reached 6.5 10° degrees of freedom after 1.3 seconds
of computation (Figure 16). Figure 17 shows the mesh after 6720 time steps

7e+06 T T
"DG.log"u 4:1 ——

1

6e+06 Hﬁ
5e+06 H_L|_uq

4e+06 JJVJ
3e+06 fﬂ

2e+06 ptl

JLJJ’J

Nb. of DOF's

1e+06 —‘Wr_m—/

0 0.2 0.4 0.6 0.8 1 1.2 1.4
time (sec)

Figure 16: Number of degrees of freedom vs. time for the Rayleigh Taylor
problem

and 104 refinement steps. In figure 18, (i) shows the part of the domain where
the fluid density p < 1.5 and (ii) shows the part of the domain where the
fluid density p > 1.5. Other computations were performed on 64 and 256
processors of Blue Horizon, an IBM supercomputer based at the San-Diego
supercomputing center. On 64 processors, we have kept the single mode
perturbation. On the 256 processors, we have used a random perturbation.

17

(iii)

Figure 17: Pictures show the mostly refined elements in the mesh for the
Rayleigh Taylor instability problem. Picture (i) shows mesh after 24 refine-
ments, picture (ii) shows the mesh after 72 refinements and picture (iii) shows
the mesh after 104 refinements. Element colors are for partitions iD’s.

Figuer 19 show some pictures of the two computations. On the 64 processors,
we have reached 3 x 107 degrees of freedon and on 256 processors, we have
reached 1.18 x 108 degrees of freedom, both after 10 hours of wall clock time.

7 Conclusions

The concept of AOMD proposed in [12] has been extended to distributed
meshes. We have shown that the hypotheses we have made on mesh rep-

18

Figure 18: Representation of the fluid density p for the Rayleigh Taylor
instability. Figure (i) shows the part of the domain where p < 1.5 and
Figure (ii) shows the part of the domain where p > 1.5

resentations were applicable to a distributed mesh. AOMD and its paral-
lel extensions is open source. It can be downloaded from the Internet at
http://www.scorec.rpi.edu/AOMD/.

Currently we are working on predictive load balancing. The load model
that we are using now is based on weights provided by the user. It is diffi-
cult for the user to take into account parameters like network heterogenity,
relative speeds of processors or relative amount of cache memory available
on different nodes. Supercomputers are usually made of a set of SMP boxes

19

Figure 19: Iso-surface of the fluid density. Values of the modulus of the
velocity are used for colors.

connected together with a fast network. The load balancer should be able to
take into account that fact and create neighboring partitions for processors
located in the same box, for example. We think that a priori models are not
sufficient. Automatic agents based, for example, on time passed at barriers,
should be added to the system. Alerts could be thrown to processors to ask
for some load balancing when the system detects an unbalance.

References

[1] BEALL, M. W. ; SHEPHARD, M. S.: A General Topology-Based Mesh
Data Structure. In: International Journal for Numerical Methods in
Engineering 40 (1997), S. 1573-1596

20

2]

3]

[4]

[5]

[6]

7]

18]

19]

[10]

[11]

BEALL, M. W. ; SHEPHARD, M. S.: An Object-Oriented Framework for
Reliable Numerical Simulations. In: Engineering With Computers 15
(1999), S. 61-72

BomAN, E. ; DEVINE, K. D. ; HENDRICKSON, B. ; MITCHELL,

W. F. ; JoHN, M. S. ; VAUGHAN, C. : Zoltan: A Dynamic
Load-Balancing Library For Parallel Applications. Sandia National
Labs., 2001. — Zoltan’s User Guide version 1.23, available at

http://www.cs.sandia.gov/Zoltan/

CAREY, G. F. ; SHARMA, M. ; WANG, K. C.: A class of data structures
for 2-D and 3-D adaptive mesh refienement. In: International Journal
for Numerical Methods in Engineering 26 (1997), S. 2607-2622

DE COUGNY, H. L. ; SHEPHARD, M. S.: Parallel Refinement and Coars-

ening of Tetrahedral Meshes. In: International Journal for Numerical
Methods in Engineering 46 (1999), S. 1101-1125

DANNELONGUE, H. ; TANGUY, P. : Efficient Data Structure for adap-

tive remeshing with FEM. In: Journal of Computational Physics 91
(1990), S. 94-109

GriMmM, J. ; GROVE, J. ; L1, X. ; OH, W. ; TAN, D. C.: The dynamics of
bubble growth for Rayleigh-Taylor unstabe interfaces. In: Phys. Fluids
31 (1988), S. 447-465

HAWKEN, D. ; TOWNSEND, P. ; WEBSTER, M. : The use of dynamic
data structures in finite elememt applications. In: International Journal
for Numerical Methods in Engineering 33 (1992), S. 1795-811

LOHNER, R. : Some useful data structures for the generation of un-
structured grids. In: Comm. appl. numer. methods 4 (1997), S. 123-135

Loy, R.: AUTOPACK User Manual. Science Division, Argonne Na-
tional Laboratory, 2000. — Technical Memorandum ANL/MCS-TM-241,
Mathematics and Computer

REMACLE, J.-F. ; FLAHERTY, J. E. ; SHEPHARD, M. S.: An efficient
local time stepping scheme in adaptive transient computations. In: Sub-

mitted to SIAM J. Sci. Comput. (2000)

21

[12] REMACLE, J.-F. ; KARAMETE, B. K. ; SHEPHARD, M. S.: Algorithm
Oriented Mesh Database. In: Ninth International Meshing Roundtable,
2000

[13] SHEPHARD, M. S.: The specification of physical attribute information
for engineering analysis. In: Engineering With Computers 4 (1988), S.
145-155

[14] TERESCO, J. D. ; BEALL, M. W. ; FLAHERTY, J. E. ; SHEPHARD, M. S.:
A hierarchical partition model for adaptive finite element computations.

In: Computer Methods in Applied Mechanics and Engineering 184(4)
(2000), S. 269-285

[15] YOUNG, Y.-N.; TUFO, H. ; DUBEY, A. ; ROSNER, R.: On the Miscible
Rayleigh-Taylor Instability. In: Under consideration for publication in
J. Fluid Mech. (2000)

22

