
exascaleproject.org

Continuous Integration

David E. Bernholdt 
Oak Ridge National Laboratory

Jared O’Neal
Argonne National Laboratory

Mark C. Miller, Paul Bryant and the ECP CD/CI Team
Better Scientific Software Tutorial
RF SciDAC 2020 Workshop

See slide 2 for 
license details



2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: David E. Bernholdt, Better Scientific Software tutorial, 

in RF SciDAC 2020 Workshop, Knoxville, Tennessee. DOI: 10.6084/m9.figshare.11918397
• Individual modules may be cited as Speaker, Module Title, in Better Scientific Software Tutorial…

Acknowledgements
• Additional contributors to this this tutorial include: Anshu Dubey, Mike Heroux, Alicia Klinvex, Jared O’Neal, and Katherine 

Riley, James M. Willenbring
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing 

Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department 
of Energy Office of Science and the National Nuclear Security Administration.

• This work was performed in part at the Argonne National Laboratory, which is managed managed by UChicago Argonne, 
LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. 
Department of Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission 
laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned 
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 
under contract DE-NA0003525. SAND NO SAND2017-5474 PE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.11918397


3

The Short & Sweet of Continuous Integration

A master branch that always works

• DVCS workflow isolate master from integration environment
• Extend workflow to address difficulties of integrating

– Minimize likelihood of merge conflict
– Detect bugs immediately
– Make debugging process quick and easy



4

Work Decomposition

Commit and integrate often
• Limit divergence between feature and master branches
• Decreased probability of conflict
• Conflict resolution is simpler and less risky



5

Error Detection

Test at integration to identify failures immediately

• Control quality of code

• Isolate failure to few commits

• No context switching for programmer

We want a system that 

• triggers automated builds/tests on target environments when code changes and 

• ideally tests on proposed merge product without finalizing merge.



6

Test Servers

Servers that 
• automate the execution of a test suite or a subset of a test suite,
• allow for running tests on different environments,
• host an interface for viewing results, and
• allows for configuring when the tests are run.

Examples
• CTest/CDash
• Jenkins
• Travis CI and GitLab CI



7

Cloud-based Test Servers
• Linked to VCS hosts
o GitHub & Travis CI
o GitLab CI
o BitBucket Pipelines

• Automated builds/tests triggered via pushes and pull requests
• Builds/tests can be run on cloud systems
• Test results are reported in repository’s web interface
• Can trigger code coverage analysis & documentation build



8

Continuous integration (CI) Summary

• Has existed for some time and interest is growing
• HPC community working to adapt CI for HPC machines
• Setup, maintenance, and monitoring required
• Prerequisites

o A reasonably-automated build system
o An automated test system with significant test coverage & useful feedback
o Builds/tests must finish in reasonable about of time
o Ability to bundle subset of tests



9

ECP Project: WBS 2.4.4
Software Deployment at Facilities - Software Integration

The Software Integration effort was established to bridge the ECP ST software development effort 
with the Exascale hardware and software environments deployed at the Facilities. 

● Continuous Integration (CI) - Provide the 
ability to continuously test AD/ST software 
on facility hardware resources with 
software environments established at the 
Facility.

Key for software development teams 
targeting systems being deployed agile 
feedback loop is key for development

Based on material provided by Mark C. Miller, 
Paul Bryant, and the ECP CD/CI Team



10

CI Solution for Large-Scale HPC Facilities

Need: HPC centers need new security 

features within Continuous Integration 

systems to serve thousands of users with 

unique hardware and security requirements.

Response: Using GitLab as a basis, extend 

security, permissions, and auditing features 

while improving intra-Lab and inter-Lab 

accessibility to CI pipelines.



11

GitLab

• GitLab is a single platform for the entire 
DevOps lifecycle

– Plan, create, verify, and release
• Core functionality (free)

– Version control, collaboration, CI/CD, and 
documentation tools

• Open source and capable of self 
management

– MIT License
• Additional tiers of functionality are only 

available via license
– https://about.gitlab.com/pricing/self-

managed/feature-comparison/

Source: https://docs.gitlab.com/ee/

https://about.gitlab.com/pricing/self-managed/feature-comparison/


12

GitLab CI/CD

• GitLab offers robust support for CI/CD (Continues Delivery)
• Primarily controlled via a ‘.gitlab-ci.yml’ file defined in your project repository

– Defines the jobs that will be run, their structure, and what will trigger their potential execution
– https://docs.gitlab.com/ee/ci/yaml/

• Terms:
– Jobs: Core elements of CI, where commands are defined for execution
– Stages: Defined order for job execution within a pipeline
– Pipelines: Collection of jobs

• Pipelines can be triggered through a number of mechanisms, including: commits, manually, api, 
scheduling, merge requests, upstream projects, and more...

https://docs.gitlab.com/ee/ci/yaml/


13

GitLab Runner

• “GitLab Runner is the open source project that is used to run your CI/CD jobs and send the results 

back to GitLab”

• Using GitLab CI/CD requires management of a runner:
– Application supports the execution and reporting of CI jobs on target systems

– Installed on target test resources and registered to a GitLab instance

– Responsible for the execution of scripts whose creation is dictated by both the user’s CI file as well as 

administrative configuration



14

Our Vision

Delivering a secure, easy-to-use CI solution to support Software 

Product testing against E6 HPC environments.



15

Security Challenges and Use Cases

• All GitLab CI jobs run as the single gitlab-runner user

• Achieving any level of isolation between CI jobs requires either:
– 1) Targeting specific runners such as Docker or Virtual machines

– 2) Having each user/team manage their own runner

– Neither of these are ideal

• Use cases we aim to support
– Runner data isolation

– Account specific resources

– Sensitive data sets

– Administrator management



16

Enhanced GitLab Functionality

• Developing and supporting enhancements to GitLab applications to ensure targeted HPC testing 
resources can be available to code teams

– Integrating facility feedback to improve technical aspects and support logistical challenges.
• Runner capable of setuid, enforcing local permissions

– Jobs are executed under a users local account
• Batch executor added to interface with Cobalt, LSF, and Slurm

– A runner side configuration that dictates how a CI job will be executed.
• Federated cross site continuous integration

– Previously auth endpoints only used at login, now they have been expanded and integrated into the CI 
process as well.

• Existing GitLab functionality will continue to be supported
– For instance continued upstream development efforts and improved to GitLab’s core CI/CD capabilities 

can be used for



17

What is the GitLab Runner Doing?

• The GitLab runner polls the server to identify available CI jobs
– Will only begin executing a job once it has been scheduled by the server

• Job local to runner result in generated Bash scripts based upon the contents of the .gitlab-ci.yml
– Works similar to upstream GitLab (https://docs.gitlab.com/runner/shells/index.html)
– Scripts are executed by piping them into a non-interactive Bash login shell.

• Every step in a CI job is executed by a valid local user account
– This is a key change with setuid enabled runner

• Each user is provided with a clean login shell
– Ensures runner environment does not compromise subsequent jobs
– Users experience an environment similar to what they would see on a login node
– Depending on your environment this may affect the results of your CI

https://docs.gitlab.com/runner/shells/index.html


18

Federation

• Goal of allowing cross site CI in a secure manner while still empowering site admins with the tools 
to ensure policy is enforced.

– Site Identify Providers are used and also linked to specific runners
– Valid site credentials must be present before a job could be run at any specific site.

• Enhanced identity model that establishes a connection between a site runner, auth provider, and 
the user’s session.

• Gitlab Omniauth as a first class citizen:
– “...Users can choose to sign in using any of the configured mechanisms.”
– I.e. LDAP and standard Gitlab login can still function, but many providers can be added

• Ongoing communication directly with GitLab to upstream enhancements.



19

• Separate and isolated Gitlab Server provided and 
administered by the site’s Operations team.

• Local systems/resources capacity

Federated - Centralized (OSTI) Sever Site - Local Site Server

• Single, centrally managed Gitlab Server instance provided and 
administered by the OSTI team.

• Federated runners at sites
• Multi-site run capabilities

Deployment Models



20

Deployment Models - Contd.Federated with Site 
Local - Hybrid

• Most likely to be the typical 
deployment model for DOE 
facilities

• Federated capabilities
• Control over Site 

deployment

Deployment Models - Contd.



21

CI Testing Tier - HPC Resources
Testing Tier Description Notes

Tier 0 • What AD/ST projects do now
• Existing CI

• May include GitHub/Travis, existing 
internal systems, cron jobs, etc...

Tier 1 • Base ECP CI - Build and Run resources
• Possible 2 build and 2 run nodes 
• Build and Smoke tests
• Run multiple builds on resource
• Unit / Integration tests
• Cross-site CI target

• What is ratio of build to test resources?
• Work with AD and ST teams to support 

their needs
• Possible to allocate from other HPC 

resources with separate scheduling policy

Tier 2 • Facility test resource (~10 + nodes)
• In security enclave – site dependent
• Larger scale tests
• Facility approval for projects

• Facility managed and may want to 
approve projects

• Possible production security constraints

Tier 3 • Production machines
• Need allocation
• Production job rules
• Scale tests

• Facility managed and may want to 
approve projects

• Production security constraints

CI 
Cross-Site 
Targeting

CI 
Cross-Site 
Facilitating



22

CI Testing Tier - HPC Resources
Testing Tier Description Notes

Tier 0 • What AD/ST projects do now
• Existing CI
• Regression tests (no CI)

• May include GitHub/ Travis - internet
• cron job based regression on misc. 

hardware

Tier 1 • Base ECP CI - Build and Run resources
• Possible 2 build and 2 run nodes 
• Build and Smoke tests
• Run multiple builds on resource
• Unit / Integration tests
• Cross-site CI target

• What is ratio of build to test resources?
• Work with AD and ST teams to support 

their needs
• Possible to allocate from other HPC 

resources with separate scheduling policy

Tier 2 • Facility test resource (~10 + nodes)
• In security enclave – site dependent
• Larger scale tests
• Facility approval for projects

• Facility managed and may want to 
approve projects

• Possible production security constraints

Tier 3 • Production machines
• Need allocation
• Production job rules
• Scale tests

• Facility managed and may want to 
approve projects

• Production security constraints

CI 
Cross-Site 
Targeting

CI 
Cross-Site 
Facilitating



23

CI Readiness

Site readiness for OSTI hosted CI with federated runners

Local CI MOU Auth Endpoint Federated(OSTI) CI

ORNL Available In-process In-process: 2/2020

NERSC Available In-process Complete In-process

ANL Available In-process In-process: 2/2020

LANL Available In-process In-process

LLNL Available In-process In-process

SNL Available In-process In-process

NMC In-process In-process: 1/2020 Complete



24

What’s available and Where?
ANL
● Local Gitlab CE Server with ECP enhanced runners
● Integration with Iota(test) and Theta HPC systems

ORNL
● Local Gitlab EE Server with ECP enhanced runners
● Integration with Ascent(test) HPC system

NERSC
● Local Gitlab EE Server with ECP enhanced runners
● Integration with Cori HPC system

Other
● Local Gitlab CE Server with ECP enhanced runners
● Integration with P9, x86, and ARM systems

Local Preview Environments



25

• Need to address ongoing requests for organized 
documentation

• https://ecp-ci.gitlab.io
– Using GitLab Pages
– Ongoing effort to provide value up to date 

information
• Goal is not to replace upstream documentation 

but highlight HPC focused enhancements and 
best-practices. 

• Site specific information organized using 
Confluence

– https://confluence.exascaleproject.org/display/HI
SD/Getting+Started+with+CI

Documentation

https://ecp-ci.gitlab.io/
https://confluence.exascaleproject.org/display/HISD/Getting+Started+with+CI


26

CI Integration and AD/ST Project Teams

• Effort includes the on-boarding of ECP AD/ST and E6 software projects onto the ECP/E6 CI 
infrastructure.

– Derives capability from the CI Optimization effort and the CI Test Resources effort. It is focused on 
supporting software teams and helping them port and utilize the ECP CI infrastructure.

• Goals:
– Helping individual teams on-board and teams
– Developing documentation and training
– Support development of tools to support CI teams
– Identify limitations of CI infrastructure / resources and areas of potential growth

• Ready to support more projects at sites in a preview environment
– We want to help teams to get running locally at the sites
– Assist in transition to the OSTI model down the road, if desired



27

Agenda
Time Module Topic Speaker

1:00pm-1:05pm 00 Introduction David E. Bernholdt, ORNL

1:05pm-1:30pm 01 Overview of Best Practices in HPC Software Development David E. Bernholdt, ORNL

1:30pm-2:00pm 02 Agile Methodologies and Useful GitHub Tools David E. Bernholdt, ORNL

2:00pm-2:30pm 03 Improving Reproducibility through Better Software 
Practices

David E. Bernholdt, ORNL

2:30pm-2:45pm Q&A All

2:45pm-3:30pm Break

3:30pm-4:15pm 04 Software Design and Testing David E. Bernholdt, ORNL

4:14pm-4:45pm 05 Continuous Integration David E. Bernholdt, ORNL

4:45pm-5:00pm Q&A All



28

BACKUP:
CI HELLO WORLD

Simplest CI example
https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld

CI example w/ multiple platforms and specific compiler versions
https://github.com/jrdoneal/CI_Multiplatform

Code coverage, testing and CI tutorial (C++)
https://github.com/amklinv/morpheus

Code coverage, testing, and CI example (Fortran, C++)
https://github.com/jrdoneal/infrastructure

https://github.com/jrdoneal/CI_HelloWorld
https://travis-ci.org/jrdoneal/CI_HelloWorld
https://github.com/jrdoneal/CI_Multiplatform
https://github.com/amklinv/morpheus
https://github.com/jrdoneal/infrastructure


29

GitHub Repository Page

https://github.com/jrdoneal/CI_HelloWorld

https://github.com/jrdoneal/CI_HelloWorld


30

Travis CI Configuration File
.travis.yml



31

The Script Phase

hello_world.sh



32

Connecting GitHub & Travis CI



33

Repository in Travis CI
https://travis-ci.org/jrdoneal/CI_HelloWorld

https://travis-ci.org/jrdoneal/CI_HelloWorld


34

Commit History

.travis.yml
added



35

Travis CI Build History



36

Travis CI Build History



37

Travis CI Build History

!


	Continuous Integration
	License, Citation and Acknowledgements
	The Short & Sweet of Continuous Integration
	Work Decomposition
	Error Detection
	Test Servers
	Cloud-based Test Servers
	Continuous integration (CI) Summary
	ECP Project: WBS 2.4.4
Software Deployment at Facilities - Software Integration
	CI Solution for Large-Scale HPC Facilities
	GitLab
	GitLab CI/CD
	GitLab Runner
	Our Vision
	Security Challenges and Use Cases
	Enhanced GitLab Functionality
	What is the GitLab Runner Doing?
	Federation
	Deployment Models
	Deployment Models - Contd.
	CI Testing Tier - HPC Resources
	CI Testing Tier - HPC Resources
	CI Readiness
	What’s available and Where?
	Documentation
	CI Integration and AD/ST Project Teams
	Agenda
	Slide Number 28
	GitHub Repository Page
	Travis CI Configuration File
	The Script Phase
	Connecting GitHub & Travis CI
	Repository in Travis CI
	Commit History
	Travis CI Build History
	Travis CI Build History
	Travis CI Build History

