Analysis Procedure

This set of notes takes a geometry-based, object-oriented view of the implementation of finite ele-
ments which has the flavor similar to that used in Trellis (which is even more general than what is
provided here). In your class assignment, you may wish to take advantage of the fact that your ele-
ments are only first or second order defined by interpolating polynomials to simply implementa-
tion of some of the steps.

Viewing the analysis as a three step transformation process

Discrete
System

Algebraic
System

Continuous
System

The problem definition comes from the continuous system

GeometricModel

ContinuousSystem k>

AttributeCase

The contributors to the discrete system determined while processing the elements
*

DiscreteSystem <>——— StiffnessContributor
ES

add(StiffnessContributor) <>_\— ForceContributor

add(ForceContributor) <

add(EssentialBC) 4

4 EssentialBC

DiscreteSystemZeroOrder DiscreteSystemFirstOrder)
process(Assembler) process(Assembler)

The analysis process (which includes from the analysis on top figure)

Analysis

run()

}
| |

FEAnalysis PP
HeatTransferAnalysis ElasticityAnalysis | oo o

4

StaticHeatTransfer TransientHeatTransfer

The FEAnalysis given assumes a 2-D mesh with mesh faces as stiffness contributors

FEAnalysis

run()

setup() // determines which mesh entities are contributors

solve() // processes the contributors to set-up, evaluate and solve

recover() // recovers secondary variables based on the solved for primary variables
makeStiffContrib(MeshFace face) : StiffnessContributor // face “element” stiffness
makeForceContrib(MeshFace face) : ForceContributor // face body force
makeForceContrib(MeshEdge edge) : ForceContributor // edge forces
makeConstraint(MeshEdge edge) : Constraint member functions
makeConstraint(MeshVertex vertex) : Constraint

DiscreteSystem DS;
Mesh theMesh;

Procedure to perform the analysis
FEAnalysis::run
{
setup(); // determine the contributors
solve(); // process the contributors to determine the system,
/I perform integrations over contributors, assemble and solve system
recover(); // recovers any secondary variables

}

The class Elasticity Analysis is derived from FEAnalysis and implements the specialized function-
ality of an analysis for the case of linear elasticity.

ElasticityAnalysis
makeStiffContrib(MeshFace face) : StiffnessContributor
makeForceContrib(MeshFace face) : ForceContributor
makeForceContrib(MeshEdge edge) : ForceContributor

makeConstraint(MeshEdge edge) : Constraint Better to Ioop
makeConstraint(MeshVertex vertex) : Constraint over geometric
recover()

model entities

For any analysis we need to loop over the mesh entities to determine which are stiffness contribu-
tors, force contributors and constraints. These are then added to the discrete system. The proce-
dure given assumes (i) its a 2-D problem, (ii) the mesh faces are the only ones that are stiffness
contributors (that is elements in the classic terms), (iii) faces may have body loads, (iv) the mesh
edges may be either constrained or “loaded” and the mesh vertices can only have constraints.

It is important to note that setup simply initializes the system contributors by associating the
information fundamental to their construction to them. This process is required when supporting a
highly flexible set of contributor specifications in terms of the analysis attributes associated with
the entities, the discretized fields associated with them, the shape functions used to define the
fields over them, and the mappings used to define the geometric jacobian in the integration pro-
cesses. In your assignment where you are considering only a limited set of specific element shape
functions, isoparametric mappings only, and a simpler set of attributes you can simplify the
details of the setup process.

The setup and make* functions given here assume only knowledge of the classification of the
mesh entity to the geometric model. If there where a list of mesh entities classified on each geo-
metric model entity available, this process could be made simpler by traversing over the geometric

shephard
Typewritten Text
Better to loop
over geometric
model entities

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text
member functions

model entities performing the appropriate make* operations based on the analysis attributes
applied to the model entity.

void FEAnalysis::setup()
{

inti;

Note - this could be made more
efficient using loops over model

entities and reverse classification
StiffnessContrib sc;

ForceContrib fc;
Constraint c; go over mesh faces
for(i=0; i < theMesh->nFace(); i++){ // process all the mesh faces
MeshFace f= theMesh->face(i); // get face object
sc = makeStiffContrib(f); // set-up type of stiffness contributor for the face
DS->add(sc); // all faces contribute to the stiffness - add it to that list
fc = makeForceContrib(f); // set-up force contributor for the face
if(fc) // if the face does have a “body” load on it, add to that list
DS->add(fc);
}
for(i=0; i < theMesh->nEdge(); i++X
MeshEdge e= theMesh->edge(i);
fc = makeForceContrib(e); // set-up force contributor for the edge

go over mesh edges

if(fc) // if the edge is loaded, add to the list of force contributors
DS->add(fc);

¢ = makeContraint(e); // set-up constraint contributor for the edge

if(c)
DS->add(c); / if the edge is constraint, add to the list of constraints

}

for(i=0; i < theMesh->nVertex(); i++){ go over mesh vertices
MeshVertex v= theMesh->vertex(i);
¢ = makeContraint(v); / set-up constraint contributor for the vertex
if(c)

DS->add(c); // if the vertex is constraint, add to the list of constraints
}
}

Note that this procedure is the same for all analyses, the only difference is the type of stiffness
contributor, force contributor or constraint that is created. These are created by a call to the mem-
ber functions makeStiffContrib(...), makeForceContributor(...) and makeConstraint(...) which are
implemented in the derived classes.

note - the stiffness matrix controibutions
are not yet evaluated.

Each of the make* functions in ElasticityAnalysis needs to create the appropriate type of system
contributor. For example makeStiffContrib(...) will create the appropriate type of stiffness contrib-
utor which may be based on the topology of the face. All the make* functions return information
on the shape functions used to define the variation of the solution parameters over the mesh entity
and information of the mapping function used to describe its shape.

shephard
Typewritten Text
note - the stiffness matrix controibutions
are not yet evaluated.

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text
go over mesh faces

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text
go over mesh edges

shephard
Typewritten Text

shephard
Typewritten Text
go over mesh vertices

shephard
Typewritten Text
Note - this could be made more
efficient using loops over model
entities and reverse classification

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

ElasticityAnalysis::makeStiffContrib(MeshFace face)

{
ShapeFunction sf= // make right kind of shape function
Mapping mapping= // make right kind of mapping
return new ElasticitySC(face,mapping, sf);

}

Similarly the makeForce* and makeConstraint(...) functions, must examine the model entity that
the mesh entity is classified on and look at the attributes on that model entity to determine the type
of system contributor to return.

ElasticityAnalysis::makeForceContrib(MeshFace face)
{ // will create a force contributor if the face is loaded
if (force attribute on face){
ShapeFunction sf= // make right kind of shape function
Mapping mapping= // make right kind of mapping
Attribute attri= // puts information point to the attribute so appropriate values can be calculated
return ElasticityFC(face,mapping,sf,attri)

ElasticityAnalysis::makeForceContrib(MeshEdge edge)
{
if (edge not classified on model edge) // has to be on the boundary of the domain to have a traction
return 0; // no force contributor
if (force attribute on edge){
ShapeFunction sf=// make right kind of shape function
Mapping mapping= // make right kind of mapping
Attribute attri= // puts information point to the attribute so appropriate values can be calculated
return new ElasticityFC(edge,mapping,sf,attri)

ElasticityAnalysis::makeConstraint(MeshEdge edge)
{
if (edge not classified on model edge) // has to be on the boundary of the domain to be constrained
return 0; // no constraint
if (edge constrained){
ShapeFunction sf= // make right kind of shape function
Mapping mapping= // make right kind of mapping
Attribute attri= // puts information point to the attribute so appropriate values can be calculated in the case of
/I non-zero boundary constraints

return new DisplacementConstraint(edge,mapping,sf,attri)

ElasticityAnalysis::makeConstraint(MeshVertex vertex)
{
if (vertex not classified on model edge or model vertex) // has to be on the boundary domain to be constrained
return 0; // no force constraint
if (vertex constrained{
ShapeFunction sf= // make right kind of shape function
Mapping mapping= // make right kind of mapping
Attribute attri= // puts information point to the attribute so appropriate values can be calculated in the case of
/I non-zero boundary constraints
return new DisplacementConstraint(vertex,mapping,sf,attri)
}
}

At this point the analysis is set up (the DiscreteSystem has been defined in terms of the contribu-
tors). We now wish to transform the DiscreteSystem into an AlgebraicSystem (set up the linear
algebra). This is implemented in the solve() member function of the analysis class. For example:

ElasticityAnalysis::solve()

{
LinearSystemAssembler assembler; // need to have the appropriate assembly class
AlgebraicSystem AS(DS,assembler); // this class will contain the correct structure for the global system
AS.solve();

}

The two new classes of LinearSystemAssembler and AlgebraicSystem introduced here need to be
described. First we’ll look at AlgebraicSystem. This class represents the matrix equation
Kd = f.1It’s solve() function assembles the global system and invokes a solver to solve it.

AlgebraicSystem::solve()

{
DS->initializeSystem();
createGlobalSystem(); // create and zero the system in preparation for the summations of the assembly process
A-> initialize(K,f) // tells the assembler where the global stiffness matrix and load vectors are
DS->formSystem(A);
solveLinearSystem();

}

The first step is to get the discrete system to process all of the constraints for the system. This
must be done before creating the global stiffness matrix and global force vector. Next, with the
constraints applied, the global matrix and vectors are created by calling createGlobalSystem(). It
is then necessary to tell the assembler which global matrix and vector it is assembling into. This is
done by calling Assembler::initialize(...). Next, DiscreteSystem::formSystemy(...) is called passing
the initialized assembler. This causes the discrete system to evaluate all the system contributors
with the given assembler. Finally the resulting linear system is solved.

AlgebraicSystem

AlgebraicSystem(DiscreteSystem ds, Assembler assem)
solve()

createGlobalSystem()

solveLinearSystem()

DiscreteSystem DS; // gets us the various contributors
Assembler A; // gets us the assembler for our problem
SparseMatrix K; // the stiffness matrix in a proper structure
Vector d; // vector of unknowns to be solved for

Vector f; // force vector(s) - may be multiple RHS cases

DiscreteSystem

add(StiffnessContributor sc)
add(ForceContributor fc)
add(Constraint c)

initializeSystem()
formSystem(Assembler a)

List SCList; // list of stiff. contrib
List FCList; // list of force contrib
List CList; // list of constraints

DiscreteSystem::initializeSystem()
{
for(each constraint)
CList[i]->apply(); // each essential boundary condition will eliminate possible dof from the global system
/l'in the case of non-zero essential boundary conditions must also maintain the non-zero value

DiscreteSystem::formSystem(Assembler assem)
{ // evaluates the force and stiffness contributors, as each one is evaluated it is (in this code) immediately
/l assembled in the to appropriate positions of the global system
/I note that the contributions to the force vector due to non-zero essential bc will also be done at this time using
/I the approiate stiffness terms for the stiffness contributors times the appropriate non-zero esential bdry condition
for(each force contributor)
FCList[i]->evaluate(assem); // perfrom the operations required to evaluate each for
for(each stiffness contributor)
SCList[i]->evaluate(assem);

}
The purpose of the assembler class is to take the contributions of each force and stiffness contrib-

utor and assemble it into the global system. Assembler has two member functions called
accept(...), the first takes a matrix and a list of degrees of freedom, the second takes a vector and a

list of degrees of freedom. The first variation of this function corresponds to assembling a stiffness
contributor and the second corresponds to assembling a force contributor.

The list of degrees of freedom is used by the assembler to figure out if and where to assemble each
term in the matrix into the global matrix. The assembler will be explained later when we have all
the needed pieces explained. The assembler shown here is a limited to a simple linear system. In a
full implementation there are subclasses to support the assembly process for various semi-discrete
systems as seen in time dependent problems where time is discretized by a difference operator.

Assembler
initialize(SparseMatrix k, Vector f)
accept(Matrix k, List dofs); // accepts an “element” stiffness matrix
accept(Vector f, List dofs); // accepts a mesh entity level force contributor

SparseMatrix K; // the global stiffness matrix
Vector F; // the global load vector

LinearSystemAssembler
accept(Matrix k, List dofs);
accept(Vector f, List dofs);

1. Stiffness Contributors

The stiffness contributors are evaluated by the integration over the domain of the mesh entity
associated with the stiffness contributor. As seen in class, one needs the shape functions, the geo-
metric mappings, knowledge of the integrand to be formed and the appropriate integration rule to
evaluate the stiffness contributors. These items are discussed here.

1.1 Mappings

Mapping2d

Mapping(MeshFace face)
jacobianinverse(Point2 pt) : Matrix
detJacobian(Point2 pt): double

MeshFace face;

LinearTriMapping QuadraticTriMapping
LinTriMapping(MeshFace face) QuadraticTriMapping(MeshFace face)
jacobianinverse(Point2 pt) : Matrix jacobianinverse(Point2 pt) : Matrix
detJacobian(Point2 pt): double detJacobian(Point2 pt): double

The mapping classes represent the transformation from the local coordinate system of the shape
functions to the global coordinate system that PDE is written in. There are two important member
functions in a mapping: jacobianInverse(Point2 pt) returns the inverse of the jacobian of the map-
ping at a certain point, detJacobian(Point2 pt) returns the determinate of the jacobian of the map-
ping at a point. Both of these member functions must be implemented for each specific type of

mapping.

1.2 Shape Functions

Shape functions represent the interpolation of degrees of freedom over a mesh entity in a particu-
lar local coordinate system. These are setup back in MakeStiffContrib.

When the shape function is constructed the constructor (LinearTriSF for example) will also ini-
tialize any DOF objects not already constructed. Care must be taken during this process to be sure
that the DOF object was not already constructed by a previously processed stiffness contributor.
This can happen when the shape function is associated with something on the boundary of the ele-
ment. With our current assumptions of up to 2 dof per node, you may want to use a simpler proce-
dure that simply sets up the two DOF objects for each node. Note that this is not as general as the
what is implied here.

ShapeFunction2d::sfdofs() - returns an array of the degrees of freedom used by the shape function
in the order that they are returned by the functions N() and dNds(). Each row in the array may
contain multiple possible dof. In the case we are considering where there is one dof per each of
the two components, the array sfdofs will store the global dof objects (DOF) for each of them. By
the time sfdofs is used to construct the map of the local to global dof, the DOF objects will have
been processes to contain the approptiate information. The degrees of freedom are returned in an
array where the rows correspond to the ordering of the shape functions returned by N and dNds
and the columns correspond to the degrees of freedom at each node.

ShapeFunction2d::N(Point2 pt) - returns the shape functions evaluated at the point pt. This is
returned as a matrix:
Ny(pt) Ny(pt) Ny(pt) ... N, (p1)]

ShapeFunction2d::dNds(Point2 pt) - returns the first derivative of the shape functions (in the local
coordinate system) evaluated at the point pt. This is returned as a matrix:

Ny (pt) N, ,(pt) N3 .(p?) ... N, (p1)
N1 (pt) Ny ((pt) Ny ((p1) ... N, (p1)

ShapeFunction2d
ShapeFunction2d(MeshFace face)
N(Point2 pt) : Matrix
dNds(Point2 pt) : Matrix
sfdofs() : Array

MeshFace Face

LinearTriSF
LinearTriSF(MeshFace face)
N(Point2 pt) : Matrix
dNds(Point2 pt) : Matrix
sfdofs() : Array

1.3 Evaluation of the Stiffness Contributors

StiffnessContributor

StiffnessContributor(MeshEntity entity, Mapping map, ShapeFunction sf)
evaluate(Assembler assem)
getDofs() : List

MeshEntity Entity;
Mapping Map;
ShapeFunction SF;

ElasticitySC HeatTrasferSC
EIasLinTriSC(Mes.hFace face,Mapping ElasLinQuadSC(MeshFace face,
map, ShapeFunction sf) Mapping map, ShapeFunction sf)
evaluatePt(Point2 pt) evaluatePt(Point2 pt)
getDofs() : List getDofs() : List

The stiffness contributors use the shape functions and the mappings to calculate the coupling
between degrees of freedom.

The getDofs() function returns the degrees of freedom for the stiffness contributor in the order
corresponding to that of the calculated local stiffness matrix. That is, an entry in the local stiffness
matrix kl-j couples the i and j degrees of freedom as returned in this list.

Assuming all integrations are done using some type of quadrature, the evaluate(...) function in
StiffnessContributor can be written as:

StiffnessContributor::evaluate(Assembler assem)
{
Matrix k; // assume its initialized to zero
List dofs = getDofs();
for(i=0; i < numIntPts){ // looping over the number of integration points
Point2 pt = // i'th integration point
double weight = // i’'th integration weight
k += Map->detJacobian(pt)*evaluatePt(pt)*weight // add the proper contribution to the entity stiffness matrix
/I note that evaluatePt(pt) represents the evaluation of transpose(B)DB
// at the point
}

assem->accept(k,dofs); // completed entity stiffness matrix is given to the assembler to add into the global system
}

This function will work with the calculation of all stiffness contributors. This function calls the
function StiffnessContributor::evaluatePt(...) to evaluate the stiffness contributor at a specific
point within the domain of the mesh entity. The specifics of the mathematics within each stiffness
contributor are implemented within evaluatePt(...) for each derived class of StiffnessContributor.

For example in the case of Elasticity, evaluatePt would be written something like:

Matrix ElasticitySC::evaluatePt(Point2 pt)

{
Matrix dNdx = Map->jacobianinverse()*SF->dNds(pt);
Matrix B = // symmetric gradient
Matrix D= // material props
/I do the work to form transpose(B)*D*B at the point
/l'you will want to take care in the development of your code to properly structure the formation of this
return transpose(B)*D*B;

2. Force Contributors

Do this stuff exactly the same way as the stiffness contributors. As long as we make comparable
shape functions when we create the force contributors then everything works fine. If the load is
over the “element’s” domain, its the element shape functions. If the load is over the one of the
mesh entities bounding the element, the shape functions need to be equivalent to the element
shape functions evaluated over the domain of the boundary entity only.

shephard
Typewritten Text

3. Degrees of Freedom

DOF

setStatus(int s)
setValue(double v)
DOF()

double Value;
int Status;
int EQNumber;

global int ndof;

Objects of the DOF class represent the potential degrees of freedom in the global system.
Each DOF has a value, a status and a global equation number. The status of a DOF can
take on three values: Free, Zero, and Fixed. “Free” indicates that the degree of freedom is
not constrained in any way, “Zero” indicates that the degree of freedom is constrained to
be identically zero, it’s value should also then equal zero, “Fixed” indicates a degree of
freedom that has a fixed value that may be other than zero, it’s value should be set to the
correct value. The individual objects of the class DOF were actually set-up back in makeS-
tiff Contrib when the shape functions over the mesh entities were being set-up. As this was
being done the status of each DOF was set to Free and the global variable ndof was being
incremented for each DOF object created. Therefore at the end of the process of setting up
the stiffness contributors the variable ndof is set to the value of the maximum number of
possible degrees of freedom in the problem. As the constraints are processed, the Status of
appropriate DOF objects are changed from Free to Zero, or Fixed, and the global variable
ndof is decremented by one each time a status is changed from Free.

Each node will have one or more DOF objects to indicate the degrees of freedom that exist
at that node. For example, in 2-D elasticity with Lagrangian polynomials each node has
two and will look like:

Node
(... other stuff a node has...) node = dof holder
getDofs() : List
DOF dofs[2];

4. Constraints

The Constraint class is very similar to the StiffnessContributor and ForceContributor
classes. It is constructed by giving it a shape function and mapping for the mesh entity that
it exists on. In addition the constraint must be given some information on the value of the
constraint. For DisplacementConstraint it is necessary to be able to apply the constraint to
one or more degrees of freedom (since it is constraining a vector quantity).

In the DisplacementConstraint constructor the attribute information, attri, indicates what is
constrained, and, with appropriate interpretation, the shape functions dictate which of the
potential dof are actually constrained. For the simple case we are doing we have three
basic constraint types which you can describe by an integer as follows:

=1 - constrain x component only

= 2 - constrain y component only
= 3 - constraint x and y components

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text
node = dof holder

shephard
Typewritten Text

(o
®

Usia 9 (oo metey Lased aXuelpotes
’\'O OLLD gw\r g;—@v \Q o LW My(C_ov\f}kiﬁ ous

Fo\r CO‘(Y\Q\@\‘Q,VC,%% \)ou wou\& \‘\\z\d;
Consldey 2C. o \;»\IccQ Yo tmpde\ aceS)
edyes amd vewriceg

TC mne avks Yo be cave Sed Wit
\(-&;Qctﬁc’;)? caathewaic ol o deivg RC.
Wwodd e apelicd Yo owly wode fuces
the cese o Menibdd DD Aomatus)éﬁ"a

Tothe cuve & ewsentied B - The BC
Shodd e wbherited oy Yhe closuee
ok Yhe rece.

T Yhe cose of naroved BC - The BC
Snoold only e applicd Yo Yhe e
evirifies ot The ceme oVvAer — vomewdsdr
Wt \nave o \ \r&@g piee nerord By
%ér Aol velated cowviooti ons

Copnsider Yhe case @'@" S et 0 Yhe o of
For essodicd RC.

Ttu O (05255
Rased on Classi %3 fection
%&g ed D K:i puevse. Ql@%? Q\cqﬁ‘@& :

)

B‘” f:ﬁ%\ (1% Q\@&'{N &(fj ‘k 1o

K%E@w\ v

Do %/%v&vavaé,v ouert i) W\b s tnbhe. mq;g@

G‘e:\t “\ne. \(‘LQ,/Q’Y“ \mcﬁm Qm& — W‘\

IQ W\L E G‘Q Yor Gany -l "\“\A@n %\W\&f\w”m&&
{

\% o ¢ wodel ae

IQ G o, an esseniic) B.C Then .
| \ ?{3‘?\{ Prsiess \q‘\‘{"\«\@rt = 5\‘“ @««‘ﬁ“‘“’:\m\ @5%
Woa@f@ e @w@ &é:»%@a;i&cfﬁ\: \m\erx \WL
@i’f@m%& W\i’ %{m«?‘%
Loop over %\ne, W% gh%“mt\w sy -
B Y Cow Wi edge mﬁ‘wot@% qe\
.. ') 3\ ?\ﬁ@e%; E 05 &500dxed, uﬂl&
(e

@t%‘j vl\i;% Q:’gﬂ ki% \lﬁ'@iﬂﬁgﬁg; ‘{ t‘:f\‘(“’
. Qeotess &%‘9’ 65500 Gved »u"‘QU‘?‘ &

@ﬂ()\ij; ECT‘ \“vés;:f ARG x,,«g%tmmg Qﬂm)%
Cond TE 3 oy’

&nd Do

7

me-;‘;;» i‘)&ﬂ"g‘
OssoCer ek Lotk
n] h

%&%e&\ ov Reverse C\a%%i@cé*—iow
Do %‘\\(’(wtvs& suer The Cr ‘Wt ey Ok&\}
L JF Qumw\w 6*\} nas (NN wsu&\@(\ %}L Thren
vovede puer the o Li’i& v Revese
Cmif;@f%'tqlffc\w[fz
Q‘(‘”OC,@:;% ;\‘ Q. di@"{" m@“&*é&&“&@{& Lt “&\« Wz (i W*“?}
and 1§ 6 ey e essedial BC

@M:Ef @ O

The constraints must be applied to the appropriate dof as defined by the shape functions on

the constrained entity. The values of the non-zero constraints can also be processed then
and stored for use.

Constraint

Constraint(MeshEntity entity, Mapping map,
ShapeFunction sf)

apply()

MeshEntity Entity;
Mapping Map;
ShapeFunction SF;

7

DisplacementConstraint TemperatureConstraint

DisplacementConstraint(MeshEdge edge,Mapping | | TemperatureConstraint(MeshEdge edge, Mapping

map, ShapeFunction sf, attribute attri) map, ShapeFunction sf, attribute attri)
apply() apply()

The apply member function of the constraint must modify the degrees of freedom on the
mesh to reflect the application of the constraint.

DisplacementConstraint::apply()

{ // this procedure is written based on the assumption of only the three possible simple attributes
Array sfdofs = SF->sfdofs(); /based on the shape functions for this constraint - get the DOF objects
if(// x component constrained - that is a 1 or 3 from above){

for(i=0;i< dofs.size(); i++)
if(Values[0] = 0) // for the case of zero essential bc
sfdofs(i,0)->setStatus(Zero) // this sets the status of the correct DOF object
sfdofs(i,0)->setValue(0)
} else {// for the case of non-zero essential bc set the status and value of the correct DOF object
sfdofs(i,0)->setStatus(Fixed)
sfdofs(i,0)->setValue(value) // value based on the attribute evaluation at location

}
}
if(// 'y component constrained - that is a 2or 3 from above){ // process same as for x-constraint
for(i = 0;i< dofs.size(); i++){
if(Values[1] = 0){ / for the case of zero essential bc
sfdofs(i,1)->setStatus(Zero)
sfdofs(i,1)->setValue(0)
} else { // for the case of non-zero essential bc
sfdofs(i,1)->setStatus(Fixed)
sfdofs(i,1)->setValue(value)

}
}

Set initial status of a DOF object

DOF::DOF()

{ // first time a new potential dof is hit set it up and set its status to free - status may change later
status = Free

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

ndof = ndof + 1

}

Reset the Status of a DOF object Counting the actual dof - originally

DOF::setStatus(int) assumed all possible were dof

{ /I resets the status as appropriate
if (Status = Free and s!=Free) // need to decrement ndof for status changes from free to Zero or Fixed
ndof = ndof -1
Status = s

}
Set the value for a non-zero essential BC

DOF::setValue(double v)
{

Value = v

}
Set-up the information indicating the coupling of dof in the global stiffness matrix

AlgebraicSystem::createGlobalSystem()
{
renumber();// renumber the active degrees of freedom using the same basic methodology as before
K->setSize(numDof); // just setting the number of dof in the stiffness matrix, not initializing its memory
for (// each stiffness contributor, sc, in discrete system) { // want to loop over all the stiffness contributors
// for the purpose of determining which dof are related to other dof
/I this information is used to determine the maximum column height, or in the case of the row
// storage given below, the first non-zero column for each row
List dofs = sc->dofs(); // get the list of DOF objects for the stiffness contributor
for(inti=0;i< dofs.size(); i++){ // loop over the number of dof in the dofs
DOF dof1 = dofs]i]; // get the current dof
if(dof1->status == Free){ // only see what its coupled to if it is a global dof
for(int j = 0; j < dofs.size(); j++){// it will be coupled to all the other dof in the contributor
DOF dof2 = dofsj];
if(dof2->status = Free){ // again only reflect coupling of global dof
K->addNonZeroTerm(dof1->EqNumber, dof2->EqNumber) // updates the

} /I appropriate structure to reflect the coupling
}) Example structure - vector of highest
} column for each row

}

K->allocateMemory();

} We will skip the one given here

and look at a modified version
S. Renumbering the dof of what we did before

The algorithm given here is the same algorithm as before. The only difference this time is
that instead of setting the labels on the nodes, it sets the labels on the DOF.

renumber(mesh)

{// Reorders equations and elements in a 2-D mesh using the same assumptions as previously

int labeldof = ndof + 1 // value set to the total number of dofs plus 1, this allows auto. reversing

int labelface = nface + 1 // same issues in labeling elements

Node node

MeshEntity entity = getStart() / get starting entity to be considered first. Use a Ml.0|: Gjo with min. le
q — enqueue(entity)

shephard
Typewritten Text
Counting the actual dof - originally
assumed all possible were dof

shephard
Typewritten Text
Example structure - vector of highest
column for each row

shephard
Typewritten Text

shephard
Typewritten Text
We will skip the one given here
and look at a modified version
of what we did before

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

shephard
Typewritten Text

while (@ — size() > 0) { // process entities until the queue is empty
entity=q — dequeue()
node = entity — getNode()
if (/*dofs on node are unlabeled*/) then { // we are now directly labeling the dof and not the node
List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){
DOF d = dofs][idof]
if(d->Status = Free){
labeldof = labeldof -1
d->EqNumber = labeldof

}
}
/I Find unnumbered adjacent mesh entities and label faces. Additions to queue by keying from vertices
if (entity — dimension()=0) then { // load adjacent entities by order, label faces & specific edge nodes
MeshVertex vertex = entity
for (i=1tovertex — numEdges()){// loop over number of edges using the vertex
MeshEdge edge = vertex — edge(i)
for (j=1toedge — numFaces())do{
MeshFace face = edge — face())
if (/* face not already labeled*/) then {

labelface = labelface -1
face — setLabel(labelface)

if (/* face has node that needs queueing */) then { // queue the face
q — enqueue(face)

}
}

othervertex = edge — otherVertex(vertex)
if (node = edge — getNode()) then {// if the edge has a node on it
if (/* othervertex labeled or in queue and edge node not labeled*/) then {
labeldof = labeldof -1
node = edge — getNode()
List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){
DOF d = dofs][idof]
if(d->Status = Free){
labeldof = labeldof -1
d->EqNumber = labeldof

}
}else {
q — enqueue(edge)
list — add(othervertex)
}
}else {
if (/* node at other vertex is not labeled) then {

list — add(othervertex)

}
}

}// finished the loop over the edges coming into the current vertex
q — enqueuelist(list) // now queue the other vertices loaded into the list

emptyList()

AdjReorder (this one labels dof - see change bars)
Classes

AdjReorder
getStart() : entity // get starting mesh vertex

renumber(mesh) // renumbers the nodes and elements

Queue q
Mesh mesh
List
add(entity) // adds an entity to a list
emptyList() // empties a list
Queue

enqueue(item) // enqueues an item into the queue
enqueuelist(List) // enqueues list into the queue
dequeue() : item // removes an item from the list

size() :int // returns the number of entities in the queue

MeshEntity
dimension() : int // indicates the dimension of a mesh entity 0-vertex, 1-edge, 2-face, 3-region

numEdges() : int // indicates the number of edges bounding or coming into an entity
numFaces() :int // indicates the number of faces bounding or coming into an entity
edge(i) : MeshEdge // returns the i th edge bounding or coming into an entity

face(j) : MeshFace // returns the j th face bounding or coming into an entity
getNode() : Node // gets the node on the mesh entity

MeshEdge
otherVertex(vertex) // gets the other vertex for a given edge

Node

setLabel(label) // sets node label to label

Pseudo Code

renumber(mesh)

{// Reorders nodes and elements in a 2-D mesh assuming that only the mesh faces are elements
/l'lt is also assumed that all dof associated with an entity are associated with a single node on that entity
int labeldof = ndof + 1 // value set to the total number of dofs plus 1, this allows auto. reversing

int labelface = nface + 1 // same issues in labeling elements

Node node

MeshEntity entity = getStart() // get starting entity to be considered first. Use a Ml.oc G].O with min. le
q — enqueue(entity)

while (9 — size() > 0) { // process entities until the queue is empty

entity =q — dequeue()
node = entity — getNode()
if (/*dofs on node are unlabeled*/) then {
List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){
DOF d = dofsJidof]
if(d->Status = Free)X
labeldof = labeldof -1
d->EqNumber = labeldof

}

/' Want to find any unnumbered adjacent mesh entities and label faces
/I All the additions to the queue will be done by looking at adjacencies keying from vertices
if (entity — dimension()=0) then { // need to load adjacent entities by adjaceny order
/I Also label neighboring mesh faces and specific edge nodes
MeshVertex vertex = entity
for (i=1to vertex — numEdges()){// loop over number of edges using the vertex
MeshEdge edge = vertex — edge(i)
for j=1toedge — numFaces())do{
MeshFace face = edge — face(j)
if (/* face not already labeled*/) then {
labelface = labelface -1
face — setLabel(labelface)

if (/* face has node that needs queueing */) then { // queue the face
q — enqueue(face)
}
othervertex = edge — otherVertex(vertex)
if (node = edge — getNode()) then {//if the edge has a node on it
if (/* othervertex labeled or in queue and edge node not labeled*/) then {
labeldof = labeldof -1
node = edge — getNode()
List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){
DOF d = dofs[idof]
if(d->Status = Free}
labeldof = labeldof -1
d->EgNumber = labeldof

}
}else {
g — enqueue(edge)

2

list — add(othervertex)
}
}else {
if (/* node at other vertex is not labeled) then {
list — add(othervertex)

}

} /1 finished the loop over the edges coming into the current vertex
g — enqueuelList(list) // now queue the other vertices loaded into the list
emptyList()

6. An Example

j 1(d1,d2) 2(d3,d4) 3(d5,d6) 4(d7 ﬂﬂ
@ @ g1=1.5
® @ | ..

<=

j 5(d9,d10) 6(d11,d12) 7(d13,d14) 8(d15,d16)

This example assumes all shape functions are associated with nodes and there are two pos-
sible dof per node. The element (face) labels are shown in circles. The node “labels” are
shown next to the nodes. The numbers in the (,) indicates the appropriate DOF object. In
this example the faces and equations are labeled to minimize the computational time. The
nodes “labels” indicated above are just whatever.

In the sfdof arrays given below it is assumed that the dof for each stiffness contributor
(element) are ordered based on traversing the loop around the elements and seeing the
order the nodes are traversed. For the specific example: element 1 - 5,6,2,1; element 2 -
6,7,2; element 3 - 7,3,2; element 4 - 7,8,4,3.

The DOF objects after the constraints are processes are:

node its at | DOF object label jequation # status | value
1 dl - Zero
1 d2 -- Zero
2 d3 1 Free
2 d4 2 Free
3 ds 5 Free
3 dé 6 Free
4 d7 - Fixed| 1.5
4 d8 9 Free
5 do - Zero
5 d10 -- Zero
6 dl1 3 Free
6 d12 4 Free
7 di3 7 Free
7 d14 8 Free
8 d15 - Fixed| 1.5
8 dle6 10 Free

The resulting sfdof arrays which contain the labels of the appropriate DOF objects are:

O o o 06

d9 dlo di1 di2 d13 di4 di3 di14

dll di2 di3 di4 ds dé d15 dle
d3 d4 d3 d4 d3 d4 d7 d8
dl d2 d5 dé

The routine getDof uses the stiffness contributors sfdof arrays to construct the list of point-
ers to the correct DOF objects as associated with the rows and columns to the stiffness
contributors (elements) local stiffness matrix. The specific order depends on the local
ordering of equations. For example, one may decide to order the x-component equations
followed by the y-component equations. An alternative, used here, is to order all compo-
nents at the nodes one at a time using the same order for the nodes as used in the construc-
tion of sfdof. Doing it this way yields the dofs vectors for the stiffness contributors in our
current example:

0 0 0 O

dll d13 di13
d10 di2 d14 di4
dil d13 ds d15
di2 dl4 dé dle6
d3 d3 d3 d7
d4 d4 d4 d8
dl - - — - ds
d2 deé

Finally it is instructive to see where the various terms in a couple of the element stiffness
matrices will go in the global matrix.

For element 1

- - -- -- -- -- - - do
- - - - - - - - d10
LT Kez Kag Kap Kap - - di1
Ki=1 - - Ky3 Kyg Kyy Kgp - - di2
- - 13 B4 B Ko 0 7 d3
- - 23 Bog4 Ko Koo == = d4
-- -- -- -- -- -- - - d1
e N
For element 4
(K77 Ky Fy K710 F K79 K75 K6 71 [da13]
Kg7 Kgg Fg Kgio Fg Kg 9 Kgs Kgg d14
- - - - - - - - d15
k*=| Ko7 Kiog Fio Kio10 Fio Koo Kios Kiogs d16
- - - - - - - - d7
Ko7 Kog Fo Koo Fy Ko g Kos Kog ds
Ks7 Ksg Fs Ks10 Fs Ks 9 Kss Ksg ds
| K67 Kes Fe Kei0 Fg Keo Kes Kes || d6 |

Assembly and Solution of Linear Systems Arising from
Finite Element Problems

At some point we need to assemble the individual element
contributions into the global system and solve it. (There are
so-called matrix free methods also — they still have to
“solve”) Our discussion will assume the process flow for
doing that will involve:

1. Performing a preprocessing procedure to determine
the dof (accounting for BC), structuring the global
system and doing needed initializations.

2. Executing a loop over the appropriate mesh entities to:

a. Determine the contributions to the global system
for those mesh entities

b. Assemble the individual terms from the element
contributions into the global system

3. Solve the global system

Note there can be substantial variations in the process. For
example “frontal solvers” begin solving the system as
enough is assembled. “Matrix free” method do not quite do
the matrix assembly as we will define it.

The most time consuming portion of a FE analysis is the
assembly and solution of the global linear system.

ltems the will influence your selection of the method to be
used to solve the global linear systems include:

* The number of unknowns in the system, particularly
when the systems are large enough that we need to
use substantial levels of parallelism

o Direct solvers have a computational growth rate
higher that optimal iterative solvers.

o Direct solvers do not scale as well on high
process counts.

* Conditions number of the system — cost of iterative
solvers (and even their ability to converge to the
solution) is a function of the numerical conditioning of
the system.

* The sparseness of the global matrix

* If the system is symmetric.

* In the case of linear problems the number of right
hand sides (RHS) — direct solvers can solve multiple
RHS with one factorization of the system (the
expensive part) and a back substitution for each RHS.
lterative solvers have to iterate for each RHS.

» Hardware available - # processors, type of
processors/accelerators, communication hierarchy.

For now we will assume that our systems are small enough
that we want to use a direct solver. The global system for
finite element problems is quite sparse — thus we want to
account for this. If the matrix is full the cost of a direct solve

is on the order of n°, where nis the number of equations
while in the case of sparse finite element matrices the cost

can be reduced to »”, with S=1.5.

Divect Solodion 0F Symmekic
Pos itwe DQ‘Q\L%\;"*Q %\lg"&”timé

Ay

b CR] 33 =13

N

mc:‘t’v\w EQ] \ %o PO%F(,JTEL\/L &C,C{MHC

WOy

R0 vk # d
Lo\ Eﬁo AY\rwoug(m ON \/d\r\\@% o

CT&U,&,S , e,\‘»mimt%i 0 {os

T\e

Sveps we Wil Sollow ave

1. Fackor ‘e Mm‘\‘?\rm/
A Forwavrd edycrion

3. Digaone Scaling

Y E)qé\t Suestitutrion

FOK\QLQ"\\N:‘ C\mqp'k\\ OQ“ Huq‘ne&(“*8:’)(‘%"

& @@fo”r\“we, heunthe. 5\)mmg¥v€ec_ M ok it Cal
be weitten as
F=VTDHU W ewe

O (s Up per AV\f’“\f,,,,4,‘LJ.\av~ ewdh O isa
Aah pne) s with a\l positive. Terms
3
T -
i TN 0=

Fovwoavd velockion
deline 2= DUA @)
T\r\e,\r\‘ we hnave

L2= b
“%\ Ve J\L\ ?23 - b?‘;
l\}:,x“”“‘ uh,;\f\l | ;zh B
Obvigudy we con Holve Ywis

ESER2
?—Z:’ \OQ\U el ;2\:’ \Dz,‘ Uz,\ bl

\ -k
3=

O ian‘sﬁ.ho;\’ D)\ g
From 14(0) w ke
Sex \ Y = Y ._._._.,,. (‘p)

D N = Z

2L -
\/b:‘“ﬁi’fg EAOn

e Subsh tution
Scom ey (o) we. \nove
U\ﬁ(= \Z
S¥ e Feom Yoo orvom

\ \be ~ - U /><‘ﬂ“:" Yn
ST Kan® \/ml U‘Hm X
JA.U fzn.\\lu h \ .
| r Una \ L+ (by‘“g
- X \/ "~ VLX\{ k
REM
[ENIRNCIEE

ThWs el \60\;&&: Rasy ~
The o= Comgdrarion Thawk 15
gac‘f‘u\r\m@ B ot UTDV

Tadex vexs von 05 Crodt tador 2cim

- The index version of the Crout factorization is expressed as FO cranis Lion (65

B\/ dctQMi+\om Ay = i UnD Uy 1=i=<j) (DQ" %”ﬁ %QSS‘

R oo
[-
where Note QLJ :"QJ‘; u N h\s a\ "\"\na;)f" \;6 \e};% u)\ﬂe!n
A2 U Dt _ Vi
d o ”j RVRL Ui,' - 19 &;&&Uv&é:\‘{;\ \,uﬂ, \(L&\Jﬁ g‘u’}jﬁltW%

U, =0, fori >j 5\-‘\\ weév@,‘%o Vet $ o
: Uti=A omd Uyi=o L>§
Useful formulas for programmlng may be derived by expandmg the above forj = 1,
2,..., as follows:

Ay = UyDyUy = Dy Fou REL
App —}]]DnUu +}J’2/17D22U22 FO‘C 'L::ﬁ,)): 'Q\
=DuUp = A

Ay = UpDy Uy, + 22:522};}{2'1 For v= 2y 1=
= UpDuUp + Dy -
A = /I,!/%MUB +W522U23 +/U§533U33 For | ()-p ,j 3
= DyU; = pr:sl n
Ay = U12D11U13 + UsrDyUss +%)33U33 For erD\ 3 3
= UnDnUp + DpUy 1 _
[\}33 = UsD11Usz + UpDpUy +/US7§)33‘ % Yov \“’:3J ¥3
= UpDnUp + UpDypUsp + D

Ay =}17‘D11U14 +/D22U24 +/D33U34 + D44U44 U’“l— J =4
— D11U14 ,

Ay = UpD Uy + %DzzUm + (%%33(]34 + 42D44U44 % ’J -1
= UpDnUis + DUy |

Aszy = UpD Uy + UpsDpUy + jD33U34 + 43D44U44 3, $=

{ = UsDn U + UnDnUn + D33 Usg

Ay = UpDy Uy + UyDpUsy + UsyD33Usy + /(/JZDM}ZQ L= ‘Nn

= UyD Uy + UpuDnUy + UsyD33Uss + Dy

4

wLEARIN - unap. llf‘l';‘)

And so on. These formulas may be solved for the U,’s and D;’s:
Fvon ‘\:i Dy = Ay

bk

F\”O‘ﬂf‘» ‘:&;2 B Dll

A
Uis = “,ﬁ
FVOM d::% Uy = Ap — UpDyUss

Frow |2 0, - 4= Unbull

Dy = Ay — D11U%4 - D22U%4 - D33U§4

And so on. For purposes of efficient programming, it is worthwhile to introduce the

auxiliary variable dof .
Lj = DUy

Then, equivalent to the above, we have
From :\31 Dy = Ay
Ly = Ap _2\ p DNU\Q = U\z:- LZ\/OH

Feom 322 4 _ 1 p 00t A7z = OnUE = B2a-0u U, W
Pz =Dl U= Bz labia

Sec. 11.2 Description of Coding Techniques Used in DLEARN

Ly = Azq — UisLy — UnLa

Uiy = L41/D11

Uy = L42/D22
Usy = L43/D33
Dy = Ay — LyyUyy — LpUss — LigUss

639

And so on. Summarizing, forj=1,2,...,n

i—1
Lji:Aij—zUkiij’ 1313‘]—1
k=1 ‘
Uy = Lji/Dii

i1
Dy = Ay — Y, LiUy
i=1

Observe that no additional storage besides that needed for A is necessary in the

torization process

if A is overwritten by U and D, viz.,

For i

For i

[l

2,3,...,j—1
i—1

A,‘j &« AU - Z AkiAkj

k=1

I

1,2,...,j—1
T < Ay
Ay <T/A; = Uy
Ay <Ay — TA;=Ujj

This is the procedure coded in subroutine FACTOR in DLEARN. Additionally,
FACTOR takes account of the profile storage of the coefficient matrix. The indexing
necessary to account for the profile somewhat complicates the procedure but is neces-
.ty to achieve optimal efficiency. Figures 11.2. 1(a) and 11.2.1(b) are presented as
an aid for understanding the indexing and one-dimensional storage of the coefficient
matrix in FACTOR. Note thatif A; = 0, subroutine FACTOR skips the operations in

the second do loop.

@’ ¢ QJV\”\H\W

C.O% S A
‘j\z xk(\\\\mw
[¥ Ry

* X0 0600 0K}

® \& ?‘R‘\{.} A
X o ®\0

e

€

s
s

gi £

Oy Ky O
K K

rrrrrr

FX:V\ \Ntt«\ *a v Ob e %\U;
S W Ly x{

St oovd W O Yo Do +\1;;c

RN J\\mv‘rw ond L se
%ﬂh \m"v\i}w ULJ\«*\(’VL ‘!\\f’um

LRy & e \9"\@ e ov

'g@v e ¢

><>uc> ><k O f\wm

b
L)

dndl Ao wot e
Wy Aare —
ARVAGTS é‘g\ﬁépt \"\/\(3\%{\ \(:V\ﬁ

\‘W“%@ S0 Yo

()

N

NS
@C‘\" §ka"m 3 @“‘gS“" %':5‘

N\ ov\%\m\wa o

Co "aﬁf A 2/ Gt Ao
O*ov 3(\/\ C. PYotesh 3 ¥ '3}3“
Aesuilede’ (I
Con Foevn T
e process of
Qachoving B the
w\tf’bf PRI Ly
- (D\’ N \kw“ ' G e, eve el
’P‘"\‘“\i '2Y wci \;\a_fs\ W’ e g % Ldf

oo veyion

p) Ay e &0 o mj '

C)P\" DV %‘

UQL\ v ;‘L\M k}i)\\ XLQQP

e Ao

Ay m“’ . I f\aoi"\\’i!‘*?~¢v§
to N\ on o\ devng
gu\f k\ wf}\' CDW& (L/&\
JWV‘M wo A Lﬁ WS Now sU

TR l) =

o
- o Shoved columnn ()
‘ E’:ﬁt}‘v J\\\ 6 @kl ‘G\g m,.e;xfly VK \2(5 CC)U\,\M,‘/(i

»»:Li ‘HL%\&) Qgg :k:mt:%m) «-\:L

LC?) @2,1, |
(%"\} - @(2’3\[
(3)“" D&“ﬁ;ﬁ

z
(\Lf) G 712 (3 = 5
()= Q N Hy="7
= By)=l
(\f@)w Py | (& =4
Qq Pyl (D
| m} Aig
&2- 2= Ao

) Ay

o e et e e N e e e

EARE

O'g CCauvst UJ\f\(A4 k/ (bt J‘c\’\{’*m WV \“*gvi \\Hé
WV‘-C}C eALves (/{;):;1 \f\m(,,/t «Sw (OW g&wa‘\ AW Vo, ‘A@{,{J
*\u WUse ml'-f\aw o (\4\\ LS él\f\((/ \J Q.8 \m\, '&(2\ \x
Avedde b Do vpevelime & See Chagph H »
| 'Q*‘ K) J 1§
e will aw o pavicada swe th pun
Poew do code . A Wil lgole comeeniowd
(b \‘Br\«w g et Ve essan \g/ e alose Lebe waest
e.xq \ € \uu - Tt N \\‘mx& e ({} ALe S A é‘ml\i’ etk

Com YL dev U%Y L Qv ,3“&? ' \(’\,(x Les L & ;\,\, a2 \,\ i \M&\uﬁi % &gﬁ%’cﬁ{) é»‘%ﬁ)

Oteedr oy Ao Sdving oy e Feaded Leligee -
Ref- E it OR.T. Orgeny Bkt Clewent Praprenoncins
Q\N,\(y-‘ ’ , -

— %3 O‘\N 3% &f\\(ecﬁ \{\ncif\;\z\?)&,:?a \XY %] 5\\v\(/\}/ \ r%n Q,,\i\qf\\wz'j}\iom
- D @@C'\g '\ca\\‘(dovised (oo Th. e, |
e S | \m\”\@ 0 - RO\ ¢ @\ewme \«-(l'\;‘; aw
(L\\w{\v\af\” ¢ ovaviebles Ad o yon gooe As soon a s
a\\ Co QQ“\;\ CACWY S5 o ? an @ % u’:l cove el ete \l(
G55 ewald e d - QX\W\\\na\ e \\\‘\Jr\\/\ e Loyia\he —

"~ H\\ ’\\/\Cj\‘)" 9 Oz(\\‘/" "oJ\V &‘Q@J/i\ku Lo '\Hmc
o b VAd e Tvieugl ¢ G)}i@‘ Q% %-—\« G (4 e
\A (L(& C O l,\f"\'v\\ \/,7\,,”\"\‘ LMY % (,\\ ¢ J \(TR ‘v\j
(oW \ﬂ\ G,‘g\‘ C \\»\’3 gt r(> Lot C’() - {\n o > 'y \ NG
clled Vo Svork - A i Sedh wid -
\\r& t‘*\ QWG s R Dy Mrase G700 4o //
Gouvtr ned Lo ot LA | e i Q pond eidtl

™~

\)¢
‘%\/\ 05 /l L N oy e M Ci)“(f,:\\” (L
N\ s \/\ o y Q.{' (n N (h acl‘\"“{ e
“\‘\/\ 060 C,’fQ JQ/ '&‘\'\ &\\ \{L(uﬁw \OQQV\ \L\\W\(W&!\‘"L} = \\C& £ G‘(T‘\‘tl\/({{“(’() ’

Q‘(Q\\ f(\/\ \ Wty (el &‘ 0 K\/\(()‘/ 655 "
— (/\(1\1/\\.??1 J)(H;M\H)V‘
~ O e &Q\/\Mu@
,) A
— SC\A N \/ Wotes) L ¢ (n \(WANTEP RN
s, O foy M . R B l‘,f .
(4)i \\ Oy B '\‘\»\ e 3. § (I Ol \,//”f o\ ten G ved

Wi)
o \.@ s o\l NG V’M /24"\\" ¢ s N \é e Nvacle oF

L \H'\ 5 \\ [N) (,M\A c¥[\‘} (5 orl / (w\l f{‘\\"’s \ 0 Catnt

\P A .
\'2 GO \\;i NI e
N N n

Ny e : Ao £ \ 7 |
. \?) At VUG Vin W g (L)\/\ (v 1\) L \ o J(e

é‘:\ Plaa 2407 (:7 Q,\ 2 Q. 9? e 1/1/((7(e "(/é I ‘)\\ PV VLo CAE Y

v, Q\/(&\O\ 4 \o C S ion ey v oy . (o & 5}(‘/&,’/,,2 S
]

SNV IANT //Q (. ‘,,,/'\\A 0 s % \,i‘\ (i :{/ Lot ot Utad \z ; (7‘} g A0 A

N
\l\/\ e l'(/:QJJ L S\‘ « \\“/ A \J‘L,{"\A? z ('*(/) \‘

; Q(;\\ ‘k At L& U{ “ (/(5)ay {(I::,\.f\ e5 Cuvrin K (\({ ey (,«‘zu,\»f r? VLA }

- . i |
C—« Y & w6 \ o x)\\} L
PRSIV . ’ P

o,
g’ }

g 4
¥

w it Ay e\ e el

T L f—} C.g{m‘ L. (“ A% 2 ? S ' _) = (a\ d\@&,,,\ {4\ 0 } ‘ st’}wl- s W A \)’l "

P WY
Aomedel 0% “nake v eo,
DM % Qe el e\imituatale
N Q@ %\} r\ (Teg Ov) = L3 =% ,,{- d&‘@ Q Byl ‘i“v\s*{
Ve ERCINY ﬁf} = @O "&?:s v\l\ 3 *Qv c,m“!s’
ﬁ | g
AR f:ﬁ*{%;% ey oadin o ;3“ .

%} "\ \ " ! \A&‘Lﬂ gm f f‘i\ -",_ \:L»:;\'.k Ligs {‘ T

CL\,\ SHTRT RN €Ay vt }x 3 *f ¢ R T
\i '».',-w‘

wf

T

| | NONdN vl |m\ H).._u,“.,‘,,_.\wz_\@

clolalstln|eslels]v]slale]aiuja YAOYN
siimier[zifuiolslajele mT ezt NONd W ‘L= NO¥d T
- L. 7
3vdé Mowd :
zifufon]sjefefaystr = 1s3ON
-ssaoold uoneururs/AjquUIasse 9y IO, suonersdo Furdosyesnoy £°8—1°8 "SOIQ giori-en) 9 | S 1Y 16181 L * a0 @ @ @ 7o
neu/ Al 5 10§ . e " elz|t]lefz]|vje|z|1] NdoONT1=Nd0QT
R £ z 1 JAON N ‘1= 300N
. LNONS /u
ATEWNISSY - ¢ IN3W313 £
NOY=N -
LR AVIRCE AR
0% NO¥AN : *u PR) ./‘
olololalolojels|v]ojojolat|st]ot = VADYN ~wi S\ ./..
ojojo|o|ojojoojojojojoj0]o}0 = VAOWN alolelz]tnlo|s|8|e]osliz]etzlt] no¥dw L=NO¥dI N A
silvilelz o sfe|elols|r{ejzi! NONHW © 1= NO¥ST 1 ? /amuoc. So.bq
z 1 s . : o/

; S /ﬂt AT
® | ® ® 8 913 ® © O £e o

’ inous : NGIVNIAI3 - | LNGW313
¢ /U
NOILVNIWI1E - € INGW313 € 7 : Kot
NO¥AN _S_«/.,:V_\;\/w T AR M
T _ - _ o wy *rw czd/.d. olojolojolols|s|7 e[zt [afulo] = waown vt
oJololojofo[s[s[z{6la|cjajujot) = VAN ; OM? sirile]a| o] s|s|ciajsirfele|t] NOwdW I=NONS ’
a ot |er|aju]o]s]e clofs|r[efz]] nowan® 1= noust / SR _ _ _ LNO¥A Lw,u;\»wﬂu
(z N T AL
™~ : ; AL
- . g ~ [
’ gcafs|rfelz] = 1s3ON
afufot[s]s]v[6]e|s} = 1is3ON _ slslyje-le-{-Jajujo = 13301 ONNO) ® z'sad
z-[u-lor | 6- e e=|a-[s-[7-] = 73001 . 98 9ld cleltelz]t]efzl] naoan'i=nz001 :
clz]tlelzltelz]t] wnaoon “t=nNdoOr . z N 206NN L= 3QONT
¢ : L] Eoonniracont ‘ TRRESSY - T INGRET ¢ ’ Vi)
T1BA3S5Y - € INZna 13 iNO¥S\E . ’ N)
.) . \NL v.«b?dx)? . Y Lﬁf\.u(c,mu/\W
NOMAN o du\ao;d S
.\mum ALY u\ﬂ a]olo]olofafofelofalu]o

w
~
@
@
N

o]olololofo]s NOUdW ‘1= NOBHI

. VAJYN ml) Q*AWA.\J.

] u]ot = VAOWN ;5 -
HERBE NOWAW ¢ = NO¥A | o*qu//\w sunfeafuoalelsfefsls]”

©
~
[*-3

si|nfet|alufo]s

CFm [

. E s $'Z°€ S3A0N Z'7 5300N
. \ﬂ APA
ofolojofojolofojo = 1s30N AIPAO
R olojolojolalale]o = 73201 ®|0O ® veoud
ololoja|o]ofo]olo N40G N’1=N40Q1
NOILVNIWIG3 ~ ¢ INIW313 0 0 0 3QONN‘1=30ON1 2¢'7 SIAON
Tt
KVILING LR Jm [)
YARAN a,\ INOYS
LLL Wl\, -019 “10198A UOIIBUNIS3IP aYl 4O uoleNWIOoY e aunnoIqns uonN[os uonenbs ayy g i g/l

S R

7. Assembly

The purpose of the assembler class is to take the contributions of each force and stiffness
contributor and assemble it into the global system. Assembler has two member functions
called accept(...), the first takes a matrix and a list of degrees of freedom, the second takes
a vector and a list of degrees of freedom. The first variation of this function corresponds to
assembling a stiffness contributor and the second corresponds to assembling a force con-
tributor. The list of degrees of freedom is used by the assembler to figure out if, and where
to assemble each term in the matrix into the global matrix.

LinearSystemAssember::accept(Matrix k, List dofs)
{// given a stiffness contributor stiffness matrix and list of associated DOF objects - add into global matrix
int size = dofs->size(); // get size of matrix, same as size of list dofs
for(int i = 0; i < size; i++){ // loop over the rows of the stiffness contributor
DOF idof = dofs][i]; // get ith degree of freedom from the DOF object
int ki = idof->EqNumber; // get global equation number for the current row from DOF object
for(int j = 0; j < size; j ++){ // for the current row, loop over the columns of the local stiffness matrix
DOF jdof = dofs[j]; // get jth degree of freedom from the DOF object
int kj = jdof->EqNumber; // get global equation number for column from the DOF object
if (ki > kj) // check that this term is in the upper diagonal of K, if not, skip it
continue;
if (jdof->Status = Free && idof->Status = Free){ // we have a potential upper triangle term
// see if it is by checking the status - both must be free
K(ki,kj) += k(i,j); // add the local stiffness term to the correct location in the global matrix
} else { // if both not free, then one or both are constrained, if one of them is constrained as
/I Fixed (nonzero essential b’dry. cond.) and the other is free, the proper term must go
/I into the load vector
DOF cdof; // will need the value of the non-zero essential b’dry. cond. from the DOF object
if(jdof->Status = Free and idof->Status = Fixed) { // adds to the kj force term

cki = kj;
cdof = idof;

} else if((idof->Status = Free and jdof->Status = Fixed)){ // adds to the kj force term
cki = ki;
cdof = jdof;

}

/I cki is the equation number, cdof is the constrained dof

if(cdof)

f(cki) -= cdof->Value*k(i,j);
}
}
}
}

8. Sparse Matrix

The SparseMatrix class implements a symmetric skyline storage scheme used for the glo-
bal stiffness matrix.

Note: there are several other ways of implementing equivalent functionality. What is
described in the following uses some specific C++ (and C) syntax and semantics which
leads to a convenient implementation in which the functions factor() and backsub(...) can
be written using standard array notation to access the elements of the stiffness matrix
(KT[i][jD even though a skyline storage scheme is used.

SparseMatrix

setSize(int s) // sets the number of equations in the problem and initializes vector of pointers
addNonZeroTerm(int i, int j) // accounts for the coupling of a nonzero term
allocateMemory() // allocates memory to the matrix
operator ()(int i, int j) : double // accesses the i,j entity of the stiffness matrix, i,j term must
/I be within the skyline
factor() // factors the global stiffness matrix
backsub(Vector f, Vector d) // does a back substitution of f on factored matrix, d returned
int Size;
int *FirstEntry;
double **K; // K is a pointer to a pointer of a double which is a stiffness matrix term

In this implementation the lower triangular portion of the matrix will be stored for conve-
nience in accessing the elements. This does not alter the fact that we were adding only
upper triangular terms. All that is required is to use the version of the SparseMatrix opera-
tor () that reverses the order. The variable FirstEntry is a vector that will be used to store
the first non-zero column in each row.

In the skyline storage scheme, only the terms “under the shyline” need to be stored. We
will use the following stiffness matrix to demonstrate what is done.

KOO

K,y Ky sym

0 K21 K22

0 K31 K32 K33

0 0 Ky Kyy Ky

0 Ksy K53 Ksq Kis

K60 K61 K62 K63 K64 K65 K66

0 0 0 0 0 K;5 Ky Koy

0 0 0 0 Kgy Kgs Kgg Ky Kgg

0 0 0 0 0 0 Ko Ky; Kgg Koy

The FirstEntry vector is to indicate the first column that a non-zero term appears in for
each row. Note the first column is column O:

001122054 ¢

Before anything else the matrix must know the number of rows in the stiffness matrix. The
size is simply ndof, the determination of which was stated before. The setSize member
function is used to initialize the vector at the right size.

SparseMatrix::setSize(int s)
{
Size = s // the size is equal to the variable ndof
FirstEntry = new int[size]; // define the vector of that length
for(inti = 0; i < s; i++) // this loop simply initializes the first column for each row to the main diagonal term
// since the main diagonal terms always exist, and you want to be sure thats reflected
FirstEntity[i] = i;

In this function the i entry in FirstEntity is set equal to i (each row must have an entry on
the diagonal).

Next the structure of the matrix must be determined. That is the lowest non-zero column
for each row. The procedure createGlobalSystem() was determining the basic coupling
information while traversing the mesh. The addNonZeroTerm(int i, int j) member function
actually carries out the updating of the FirstEntity vector based on the existence of the
non-zero stiffness terms seen in createGlobalSystem(). The implementation of this for the
skyline matrix is:

SparseMatrix::addNonZeroTerm(int i, int j)
{
if(FirstEntry[j] > i) // will update only if it is a lower column number than the current lowest
FirstEntry[j] = i;
}

This simply checks if the entry is outside the range currently stored in FirstEntry and if it
is updates the appropriate item in FirstEntry.

Once addNonZeroTerm(...) is called for each non zero term in the stiffness matrix, the
allocateMemory() member function must be called to allocate memory for the matrix and
finish it’s initialization. The pointer vector is also updated to point into the memory loca-
tion of the stiffness matrix of the first term of a row assuming the row was filled. This
allows the convenient indexing by 1i,j.

SparseMatrix::allocateMemory()
{ // first must figure out how much total memory is needed, sum of all matrix elements within skyline
inti;
int totalEntries = 0;
for(i=0; i < size; i++) { // for each row add from the first non-zero column through the main diagonal
totalEntries += i-FirstEntry[i]+1;
}
/I allocate memory for K, the memory will store the stiffness matrix and the pointers in K will allow us
// to address that memory by directly indicating the ith row and jth column
K = new double *[Size];
double *mem = new double[totalEntries] // allocate vector of memory to store the entire stiffness matrix
/I set up the pointers so that can access as K{i][j]
int currentDiag = -1;
for (inti=0;i< size; i++){
currentDiag += i - FirstEntry[i]+1;
K[i] = &(memlcurrentDiag-i]) // setting the pointer for ith row to the location where the a non-zero
// term would be stored if the Oth column was non-zero
/1 by doing this the desired K;; term is easily found by going j positions
// from this location in memory
}
}

The storage for our matrix is actually one large vector in which the elements are stored in
the order (assuming the example matrix shown earlier):

[Koo» Ky0> K15 Koy Koy, K3, K3, K33 Kyps Kyzo Kygs etc]

The final part of the allocateMemory() member function is setting up an array of pointers
so that we can conveniently access the entries in K using the K[i][j] notation (this portion
of the code is assuming we are coding in C++ or C (with minor changes)). Without going

into the full details of how and why this works, what needs to be done is to allocate an
array of pointers into K and set each pointer K[i] to point to where in memory the element
0 of the corresponding row is (or would be if it existed). This way to get the desired 1i,]
stiffness matrix term by simply going j locations past where K[i] pointed into the memory.

K[O]K[1]K[2] K[3] K[4]

TYY v ¥

Koo K190 K115 Ky Kyps Ky, Ky, Kszs Ky, Kyzo Kyas etc]

Using this type of setup the element access operator (int i, int j) can be written as:

double SparseMatrix::operator()(int i, int j)
{ return K[i][j]; }

If we desire it to appear (from the point of view of anyone using the SparseMatrix class)
that we are storing the upper diagonal of the matrix then this should be written as:

double SparseMatrix::operator()(int i, int j)
{ return K[j][i]; }

This is the one we would need to use with our current assembly operator.

9. Equation Solving

The two routines that follow implement the Crout solver discussed in class using our cur-
rent storage structures.

void SparseMatrix::factor()
{
inti,j,r;
int mj,mi,mm;
double *G = new double[Size]; // temporary vector of size = Size
for (j=1;] != Size; j++X
if (K[j][j] <= 0.0) // system is suppose to be positive definite, so this should not happen
/I give an error message if it does
cerr << "factor: Initial Negative or Zero Diagonal Term\n";
mj = FirstEntry[j]; / get column of first entry in j'th row in K
G[mj] = K[j][mj]; // initialize G
for (i= mj+1; i <=j-1; i++){ // loop over the remainder of entries in j'th row
G[i] = K[I0iT;
i = FirstEntry[i]; // get column of first entry in i'th row of K
mm = (mi >= mj) ? mi : mj; // get maximum of mi and mj
for (r = mm;r <=i-1; r++) // loop over columns from mm to diagonal
G[i] -= K[i][r"G[r];
}
for (i=mj; i <= j-1; i++) // loop mj to diagonal
Kl = GLV/KIL;
for (r = mj; r <=j-1; r++) // loop from mj to diagonal
K01 -= KO GIrd;
}
delete G;

}

20

void SparseMatrix::backsub(double *f, double *d)
// f and d are vectors of size = Size, f has the RHS, d will hold the solution
{
intij;
int mi;
for (i = 0; i = Size; i++){ // initialize d to equal f
dfi] = f{il;
}
for (i=1;i = Size; i++){ // loop over rows of K
mi = FirstEntry[i]; / get column of first entry in row i
for (j= mi ;j<=i-1; j++) // loop over entries in row i
d(i] -= K[ilild(l;
}
for (i=0; i!= Size; i++) // loop over diagonal terms
dfi] /= Kli;
for (i= Size - 1;i>= 1 ;i--¥ // loop backwards over rows
mi = FirstEntry[i]; / get column of first entry in i'th row
for (j = mi; j <= i-1; j++)}{ // loop over entries in i'th row
dfi] -= K[iJGrdiil;
}
}
}

10. Recovering Secondary Variables

In order to recover secondary variables (such as stress and strain) we must have already
solved the global system and placed the results back into the correct DOF objects on the
mesh (set the Value field of each DOF that had a Free status). In this manner the DOF
object values represent a complete vector of the primary variables, both solved for and
given (essential boundary conditions).

Once this is done, the calculation of secondary variables is fairly straightforward. This
procedure will be explained without introducing any new functionality to the existing
classes to keep things simple. In reality we would probably want to add some functionality
to and perhaps add another class to do this.

In order to calculate strain from displacement, we need to calculate u; ; . This can be cal-
culated using the ShapeFunction class member functions dNds and sfdofs. Remember that
dNds(pt) gives:

N, ,(pt) N, (pt) N3 (p?) ... N, (p?)
Ny (1) N, ((p1) Ny (p?) ... N, (p?)

and sfdofs returns the DOF’s for the shape function in the corresponding order where each
row contains the DOF objects for the two displacement components at the corresponding
node (see example earlier in the notes). Note that each of these DOFs now has a value. If
we take the above matrix and create a new one with the values of the DOFs denoting
entries in the first column u; and the second column v, (to stand for the u and v compo-
nents of displacement) and multiply it by what is returned by ShapeFunction::dNds we get

21

something very useful, the derivatives of the displacement with respect to the local coordi-
nate system. With this, and information from the mapping class, the derivatives with
respect to the global coordinate system can be found and the secondary variables calcu-

lated.

22

