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Analysis Procedure

 

This set of notes takes a geometry-based, object-oriented view of the implementation of Þnite ele-
ments which has the ßavor similar to that used in Trellis (which is even more general than what is
provided here). In your class assignment, you may wish to take advantage of the fact that your ele-
ments are only Þrst or second order deÞned by interpolating polynomials to simply implementa-
tion of some of the steps.

Viewing the analysis as a three step transformation process

The problem deÞnition comes from the continuous system

The contributors to the discrete system determined while processing the elements

The analysis process (which includes from the analysis on top Þgure)
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The FEAnalysis given assumes a 2-D mesh with mesh faces as stiffness contributors

Procedure to perform the analysis

 

FEAnalysis::run

{

setup(); // determine the contributors

solve(); // process the contributors to determine the system, 

// perform integrations over contributors, assemble and solve system

recover(); // recovers any secondary variables 

}

 

The class ElasticityAnalysis is derived from FEAnalysis and implements the specialized function-
ality of an analysis for the case of linear elasticity.

For any analysis we need to loop over the mesh entities to determine which are stiffness contribu-
tors, force contributors and constraints. These are then added to the discrete system. The proce-
dure given assumes (i) its a 2-D problem, (ii) the mesh faces are the only ones that are stiffness
contributors (that is elements in the classic terms), (iii) faces may have body loads, (iv) the mesh
edges may be either constrained or �loaded� and the mesh vertices can only have constraints.

It is important to note that setup simply initializes the system contributors by associating the
information fundamental to their construction to them. This process is required when supporting a
highly ßexible set of contributor speciÞcations in terms of the analysis attributes associated with
the entities, the discretized Þelds associated with them, the shape functions used to deÞne the
Þelds over them, and the mappings used to deÞne the geometric jacobian in the integration pro-
cesses. In your assignment where you are considering only a limited set of speciÞc element shape
functions, isoparametric mappings only, and a simpler set of attributes you can simplify the
details of the setup process. 

The setup and make* functions given here assume only knowledge of the classiÞcation of the
mesh entity to the geometric model. If there where a list of mesh entities classiÞed on each geo-
metric model entity available, this process could be made simpler by traversing over the geometric

FEAnalysis
run()
setup() // determines which mesh entities are contributors
solve() // processes the contributors to set-up, evaluate and solve
recover() // recovers secondary variables based on the solved for primary variables
makeStiffContrib(MeshFace face) : StiffnessContributor // face “element” stiffness
makeForceContrib(MeshFace face) : ForceContributor // face body force
makeForceContrib(MeshEdge edge) : ForceContributor // edge forces
makeConstraint(MeshEdge edge) : Constraint
makeConstraint(MeshVertex vertex) : Constraint

DiscreteSystem DS;
Mesh theMesh;

ElasticityAnalysis
makeStiffContrib(MeshFace face) : StiffnessContributor 
makeForceContrib(MeshFace face) : ForceContributor
makeForceContrib(MeshEdge edge) : ForceContributor
makeConstraint(MeshEdge edge) : Constraint
makeConstraint(MeshVertex vertex) : Constraint
recover()
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model entities performing the appropriate make* operations based on the analysis attributes
applied to the model entity.

 

void FEAnalysis::setup()

{

int i;

StiffnessContrib sc;

ForceContrib fc;

Constraint c;

for(i=0; i < theMesh->nFace(); i++){ // process all the mesh faces

MeshFace f= theMesh->face(i); // get face object

sc = makeStiffContrib(f); // set-up type of stiffness contributor for the face

DS->add(sc); // all faces contribute to the stiffness - add it to that list

fc = makeForceContrib(f); // set-up force contributor for the face

if(fc) // if the face does have a �body� load on it, add to that list

DS->add(fc);

}

for(i=0; i < theMesh->nEdge(); i++){

MeshEdge e= theMesh->edge(i);

fc = makeForceContrib(e); // set-up force contributor for the edge

if(fc) // if the edge is loaded, add to the list of force contributors

DS->add(fc);

c = makeContraint(e); // set-up constraint contributor for the edge

if(c)

DS->add(c); // if the edge is constraint, add to the list of constraints

}

for(i=0; i < theMesh->nVertex(); i++){

MeshVertex v= theMesh->vertex(i);

c = makeContraint(v); // set-up constraint contributor for the vertex

if(c)

DS->add(c); // if the vertex is constraint, add to the list of constraints

}

}

 

Note that this procedure is the same for all analyses, the only difference is the type of stiffness
contributor, force contributor or constraint that is created. These are created by a call to the mem-
ber functions makeStiffContrib(...), makeForceContributor(...) and makeConstraint(...) which are
implemented in the derived classes.

Each of the make* functions in ElasticityAnalysis needs to create the appropriate type of system
contributor. For example makeStiffContrib(...) will create the appropriate type of stiffness contrib-
utor which may be based on the topology of the face. All the make* functions return information
on the shape functions used to deÞne the variation of the solution parameters over the mesh entity
and information of the mapping function used to describe its shape.
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ElasticityAnalysis::makeStiffContrib(MeshFace face)

{ 

ShapeFunction sf= // make right kind of shape function

Mapping mapping= // make right kind of mapping

return new ElasticitySC(face,mapping, sf);

}

 

Similarly the makeForce* and makeConstraint(...) functions, must examine the model entity that
the mesh entity is classiÞed on and look at the attributes on that model entity to determine the type
of system contributor to return. 

 

ElasticityAnalysis::makeForceContrib(MeshFace face)

{ // will create a force contributor if the face is loaded 

if (force attribute on face){

ShapeFunction sf= // make right kind of shape function

Mapping mapping= // make right kind of mapping

Attribute attri= // puts information point to the attribute so appropriate values can be calculated 

return ElasticityFC(face,mapping,sf,attri)

}

}

ElasticityAnalysis::makeForceContrib(MeshEdge edge)

{

if (edge not classiÞed on model edge) // has to be on the boundary of the domain to have a traction

return 0; // no force contributor

if (force attribute on edge){

ShapeFunction sf= // make right kind of shape function

Mapping mapping= // make right kind of mapping

Attribute attri= // puts information point to the attribute so appropriate values can be calculated

return new ElasticityFC(edge,mapping,sf,attri)

}

}

ElasticityAnalysis::makeConstraint(MeshEdge edge)

{

if (edge not classiÞed on model edge) // has to be on the boundary of the domain to be constrained

return 0; // no constraint

if (edge constrained){

ShapeFunction sf= // make right kind of shape function

Mapping mapping= // make right kind of mapping

Attribute attri= // puts information point to the attribute so appropriate values can be calculated in the case of 

 // non-zero boundary constraints

return new DisplacementConstraint(edge,mapping,sf,attri)

}

}
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ElasticityAnalysis::makeConstraint(MeshVertex vertex)

{ 

if (vertex not classiÞed on model edge or model vertex) // has to be on the boundary domain to be constrained

return 0; // no force constraint

if (vertex constrained){

ShapeFunction sf= // make right kind of shape function

Mapping mapping= // make right kind of mapping

Attribute attri= // puts information point to the attribute so appropriate values can be calculated in the case of 

 // non-zero boundary constraints

return new DisplacementConstraint(vertex,mapping,sf,attri)

}

}

 

At this point the analysis is set up (the DiscreteSystem has been deÞned in terms of the contribu-
tors). We now wish to transform the DiscreteSystem into an AlgebraicSystem (set up the linear
algebra). This is implemented in the solve() member function of the analysis class. For example:

 

ElasticityAnalysis::solve()

{

LinearSystemAssembler assembler; // need to have the appropriate assembly class

AlgebraicSystem AS(DS,assembler); // this class will contain the correct structure for the global system

AS.solve();

}

 

The two new classes of LinearSystemAssembler and AlgebraicSystem introduced here need to be
described. First we�ll look at AlgebraicSystem. This class represents the matrix equation

. It�s solve() function assembles the global system and invokes a solver to solve it.

 

AlgebraicSystem::solve()

{

DS->initializeSystem();

createGlobalSystem(); // create and zero the system in preparation for the summations of the assembly process

A-> initialize(K,f) // tells the assembler where the global stiffness matrix and load vectors are

DS->formSystem(A);

solveLinearSystem();

}

 

The Þrst step is to get the discrete system to process all of the constraints for the system. This
must be done before creating the global stiffness matrix and global force vector. Next, with the
constraints applied, the global matrix and vectors are created by calling createGlobalSystem(). It
is then necessary to tell the assembler which global matrix and vector it is assembling into. This is
done by calling Assembler::initialize(...). Next, DiscreteSystem::formSystem(...) is called passing
the initialized assembler. This causes the discrete system to evaluate all the system contributors
with the given assembler. Finally the resulting linear system is solved.

Kd f=
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DiscreteSystem::initializeSystem()

{

for(each constraint)

CList[i]->apply(); // each essential boundary condition will eliminate possible dof from the global system

// in the case of non-zero essential boundary conditions must also maintain the non-zero value

}

DiscreteSystem::formSystem(Assembler assem)

{ // evaluates the force and stiffness contributors, as each one is evaluated it is (in this code) immediately 

// assembled in the to appropriate positions of the global system

// note that the contributions to the force vector due to non-zero essential bc will also be done at this time using

// the approiate stiffness terms for the stiffness contributors times the appropriate non-zero esential bdry condition

for(each force contributor)

FCList[i]->evaluate(assem); // perfrom the operations required to evaluate each for 

for(each stiffness contributor)

SCList[i]->evaluate(assem);

}

 

The purpose of the assembler class is to take the contributions of each force and stiffness contrib-
utor and assemble it into the global system. Assembler has two member functions called
accept(...), the Þrst takes a matrix and a list of degrees of freedom, the second takes a vector and a

AlgebraicSystem

AlgebraicSystem(DiscreteSystem ds, Assembler assem)
solve()
createGlobalSystem()
solveLinearSystem()

DiscreteSystem DS; // gets us the various contributors
Assembler A; // gets us the assembler for our problem
SparseMatrix K; // the stiffness matrix in a proper structure
Vector d; // vector of unknowns to be solved for
Vector f; // force vector(s) - may be multiple RHS cases

DiscreteSystem

add(StiffnessContributor sc)
add(ForceContributor fc)
add(Constraint c)

initializeSystem()
formSystem(Assembler a)

List SCList; // list of stiff. contrib
List FCList; // list of force contrib
List CList; // list of constraints
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list of degrees of freedom. The Þrst variation of this function corresponds to assembling a stiffness
contributor and the second corresponds to assembling a force contributor. 

The list of degrees of freedom is used by the assembler to Þgure out if and where to assemble each
term in the matrix into the global matrix. The assembler will be explained later when we have all
the needed pieces explained. The assembler shown here is a limited to a simple linear system. In a
full implementation there are subclasses to support the assembly process for various semi-discrete
systems as seen in time dependent problems where time is discretized by a difference operator.

 

1.  Stiffness Contributors

 

The stiffness contributors are evaluated by the integration over the domain of the mesh entity
associated with the stiffness contributor. As seen in class, one needs the shape functions, the geo-
metric mappings, knowledge of the integrand to be formed and the appropriate integration rule to
evaluate the stiffness contributors. These items are discussed here. 

 

1.1  Mappings

Assembler
initialize(SparseMatrix k, Vector f)
accept(Matrix k, List dofs); // accepts an “element” stiffness matrix
accept(Vector f, List dofs); // accepts a mesh entity level force contributor 

SparseMatrix K; // the global stiffness matrix
Vector F; // the global load vector

LinearSystemAssembler
accept(Matrix k, List dofs);
accept(Vector f, List dofs);

Mapping2d

Mapping(MeshFace face)
jacobianInverse(Point2 pt) : Matrix
detJacobian(Point2 pt): double

MeshFace face;

LinearTriMapping

LinTriMapping(MeshFace face)
jacobianInverse(Point2 pt) : Matrix
detJacobian(Point2 pt): double

QuadraticTriMapping

QuadraticTriMapping(MeshFace face)
jacobianInverse(Point2 pt) : Matrix
detJacobian(Point2 pt): double

���
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The mapping classes represent the transformation from the local coordinate system of the shape
functions to the global coordinate system that PDE is written in. There are two important member
functions in a mapping: jacobianInverse(Point2 pt) returns the inverse of the jacobian of the map-
ping at a certain point, detJacobian(Point2 pt) returns the determinate of the jacobian of the map-
ping at a point. Both of these member functions must be implemented for each speciÞc type of
mapping.

 

1.2  Shape Functions

 

Shape functions represent the interpolation of degrees of freedom over a mesh entity in a particu-
lar local coordinate system. These are setup back in MakeStiffContrib.

When the shape function is constructed the constructor (LinearTriSF for example) will also ini-
tialize any DOF objects not already constructed. Care must be taken during this process to be sure
that the DOF object was not already constructed by a previously processed stiffness contributor.
This can happen when the shape function is associated with something on the boundary of the ele-
ment. With our current assumptions of up to 2 dof per node, you may want to use a simpler proce-
dure that simply sets up the two DOF objects for each node. Note that this is not as general as the
what is implied here. 

ShapeFunction2d::sfdofs() - returns an array of the degrees of freedom used by the shape function
in the order that they are returned by the functions N() and dNds(). Each row in the array may
contain multiple possible dof. In the case we are considering where there is one dof per each of
the two components, the array sfdofs will store the global dof objects (DOF) for each of them. By
the time sfdofs is used to construct the map of the local to global dof, the DOF objects will have
been processes to contain the approptiate information. The degrees of freedom are returned in an
array where the rows correspond to the ordering of the shape functions returned by N and dNds
and the columns correspond to the degrees of freedom at each node. 

ShapeFunction2d::N(Point2 pt) - returns the shape functions evaluated at the point pt. This is
returned as a matrix:

ShapeFunction2d::dNds(Point2 pt) - returns the Þrst derivative of the shape functions (in the local
coordinate system) evaluated at the point pt. This is returned as a matrix:

N1 pt( ) N2 pt( ) N3 pt( ) � Nn pt( )

N1 r, pt( ) N2 r, pt( ) N3 r, pt( ) � Nn r, pt( )

N1 s, pt( ) N2 s, pt( ) N2 s, pt( ) � Nn s, pt( )
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1.3  Evaluation of the Stiffness Contributors

 

The stiffness contributors use the shape functions and the mappings to calculate the coupling
between degrees of freedom. 

ShapeFunction2d
ShapeFunction2d(MeshFace face)
N(Point2 pt) : Matrix
dNds(Point2 pt) : Matrix
sfdofs() : Array

MeshFace Face

LinearTriSF
LinearTriSF(MeshFace face)
N(Point2 pt) : Matrix
dNds(Point2 pt) : Matrix
sfdofs() : Array

���

StiffnessContributor

StiffnessContributor(MeshEntity entity, Mapping map, ShapeFunction sf)
evaluate(Assembler assem)
getDofs() : List 

MeshEntity Entity;
Mapping Map;
ShapeFunction SF;

ElasticitySC

ElasLinTriSC(MeshFace face,Mapping 
map, ShapeFunction sf)
evaluatePt(Point2 pt)
getDofs() : List

HeatTrasferSC

ElasLinQuadSC(MeshFace face, 
Mapping map, ShapeFunction sf)
evaluatePt(Point2 pt)
getDofs() : List

���
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The getDofs() function returns the degrees of freedom for the stiffness contributor in the order
corresponding to that of the calculated local stiffness matrix. That is, an entry in the local stiffness
matrix  couples the  and  degrees of freedom as returned in this list.

Assuming all integrations are done using some type of quadrature, the evaluate(...) function in
StiffnessContributor can be written as:

 

StiffnessContributor::evaluate(Assembler assem)

{

Matrix k; // assume its initialized to zero

List dofs = getDofs();

for(i=0; i < numIntPts){ // looping over the number of integration points 

Point2 pt = // i�th integration point

double weight = // i�th integration weight

k += Map->detJacobian(pt)*evaluatePt(pt)*weight // add the proper contribution to the entity stiffness matrix

// note that evaluatePt(pt) represents the evaluation of transpose(B)DB

// at the point 

}

assem->accept(k,dofs); // completed entity stiffness matrix is given to the assembler to add into the global system

}

 

This function will work with the calculation of all stiffness contributors. This function calls the
function StiffnessContributor::evaluatePt(...) to evaluate the stiffness contributor at a speciÞc
point within the domain of the mesh entity. The speciÞcs of the mathematics within each stiffness
contributor are implemented within evaluatePt(...) for each derived class of StiffnessContributor.

For example in the case of Elasticity, evaluatePt would be written something like:

 

Matrix ElasticitySC::evaluatePt(Point2 pt)

{

Matrix dNdx = Map->jacobianInverse()*SF->dNds(pt);

Matrix B = // symmetric gradient

Matrix D= // material props

// do the work to form transpose(B)*D*B at the point 

// you will want to take care in the development of your code to properly structure the formation of this

return transpose(B)*D*B;

}

 

2.  Force Contributors

 

Do this stuff exactly the same way as the stiffness contributors. As long as we make comparable
shape functions when we create the force contributors then everything works Þne. If the load is
over the �element�s� domain, its the element shape functions. If the load is over the one of the
mesh entities bounding the element, the shape functions need to be equivalent to the element
shape functions evaluated over the domain of the boundary entity only. 

kij ith jth
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3.  Degrees of Freedom

 

Objects of the DOF class represent the potential degrees of freedom in the global system.
Each DOF has a value, a status and a global equation number. The status of a DOF can
take on three values: Free, Zero, and Fixed. �Free� indicates that the degree of freedom is
not constrained in any way, �Zero� indicates that the degree of freedom is constrained to
be identically zero, it�s value should also then equal zero, �Fixed� indicates a degree of
freedom that has a Þxed value that may be other than zero, it�s value should be set to the
correct value. The individual objects of the class DOF were actually set-up back in makeS-
tiffContrib when the shape functions over the mesh entities were being set-up. As this was
being done the status of each DOF was set to Free and the global variable ndof was being
incremented for each DOF object created. Therefore at the end of the process of setting up
the stiffness contributors the variable ndof is set to the value of the maximum number of
possible degrees of freedom in the problem. As the constraints are processed, the Status of
appropriate DOF objects are changed from Free to Zero, or Fixed, and the global variable
ndof is decremented by one each time a status is changed from Free. 

Each node will have one or more DOF objects to indicate the degrees of freedom that exist
at that node. For example, in 2-D elasticity with Lagrangian polynomials each node has
two and will look like:

 

4. Constraints

 

The Constraint class is very similar to the StiffnessContributor and ForceContributor
classes. It is constructed by giving it a shape function and mapping for the mesh entity that
it exists on. In addition the constraint must be given some information on the value of the
constraint. For DisplacementConstraint it is necessary to be able to apply the constraint to
one or more degrees of freedom (since it is constraining a vector quantity). 

In the DisplacementConstraint constructor the attribute information, attri, indicates what is
constrained, and, with appropriate interpretation, the shape functions dictate which of the
potential dof are actually constrained. For the simple case we are doing we have three
basic constraint types which you can describe by an integer as follows:

 

= 1 - constrain x component only
= 2 - constrain y component only
= 3 - constraint x and y components

DOF

setStatus(int s)
setValue(double v)
DOF()

double Value;
int Status;
int EqNumber;

global int ndof;

Node

(... other stuff a node has...)
getDofs() : List
DOF dofs[2];
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The constraints must be applied to the appropriate dof as deÞned by the shape functions on
the constrained entity. The values of the non-zero constraints can also be processed then
and stored for use.

The apply member function of the constraint must modify the degrees of freedom on the
mesh to reßect the application of the constraint.

 

DisplacementConstraint::apply()
{ // this procedure is written based on the assumption of only the three possible simple attributes
Array sfdofs = SF->sfdofs(); //based on the shape functions for this constraint - get the DOF objects
if( // x component constrained - that is a 1 or 3 from above){

for( i = 0; i < dofs.size(); i++){
if(Values[0] = 0){ // for the case of zero essential bc

sfdofs(i,0)->setStatus(Zero) // this sets the status of the correct DOF object
sfdofs(i,0)->setValue(0)

} else { // for the case of non-zero essential bc set the status and value of the correct DOF object
sfdofs(i,0)->setStatus(Fixed) 
sfdofs(i,0)->setValue(value) // value based on the attribute evaluation at location

}
}

}
if( // y component constrained - that is a 2or 3 from above){ // process same as for x-constraint

for( i = 0; i < dofs.size(); i++){
if(Values[1] = 0){ // for the case of zero essential bc

sfdofs(i,1)->setStatus(Zero) 
sfdofs(i,1)->setValue(0)

} else { // for the case of non-zero essential bc
sfdofs(i,1)->setStatus(Fixed)
sfdofs(i,1)->setValue(value)

}
}

}
}

 

Set initial status of a DOF object

 

DOF::DOF()
{ // Þrst time a new potential dof is hit set it up and set its status to free - status may change later
status = Free

Constraint

Constraint(MeshEntity entity, Mapping map, 
ShapeFunction sf)
apply()

MeshEntity Entity;
Mapping Map;
ShapeFunction SF;

DisplacementConstraint

DisplacementConstraint(MeshEdge edge,Mapping 
map, ShapeFunction sf, attribute attri)
apply()

TemperatureConstraint

TemperatureConstraint(MeshEdge edge, Mapping 
map, ShapeFunction sf, attribute attri)
apply()

���
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ndof = ndof + 1
}

 

Reset the Status of a DOF object

 

DOF::setStatus(int s)
{ // resets the status as appropriate 
if (Status = Free and s!=Free) // need to decrement ndof for status changes from free to Zero or Fixed

ndof = ndof -1
Status = s

}

 

Set the value for a non-zero essential BC

 

DOF::setValue(double v)
{
Value = v

}

 

Set-up the information indicating the coupling of dof in the global stiffness matrix

 

AlgebraicSystem::createGlobalSystem()
{
renumber();// renumber the active degrees of freedom using the same basic methodology as before
K->setSize(numDof); // just setting the number of dof in the stiffness matrix, not initializing its memory
for ( // each stiffness contributor, sc, in discrete system) { // want to loop over all the stiffness contributors

// for the purpose of determining which dof are related to other dof
// this information is used to determine the maximum column height, or in the case of the row 
// storage given below, the Þrst non-zero column for each row
List dofs = sc->dofs(); // get the list of DOF objects for the stiffness contributor
for( int i = 0; i < dofs.size(); i++){ // loop over the number of dof in the dofs

DOF dof1 = dofs[i]; // get the current dof
if( dof1->status == Free){ // only see what its coupled to if it is a global dof

for(int j = 0; j < dofs.size(); j++){ // it will be coupled to all the other dof in the contributor
DOF dof2 = dofs[j];
if(dof2->status = Free){ // again only reßect coupling of global dof

K->addNonZeroTerm(dof1->EqNumber, dof2->EqNumber) // updates the 
} // appropriate structure to reßect the coupling

}
}

}
}
K->allocateMemory();

}

 

5. Renumbering the dof

 

The algorithm given here is the same algorithm as before. The only difference this time is
that instead of setting the labels on the nodes, it sets the labels on the DOF. 

 

renumber(mesh)
{ // Reorders equations and elements in a 2-D mesh using the same assumptions as previously
int labeldof = ndof + 1 // value set to the total number of dofs plus 1, this allows auto. reversing
int labelface = nface + 1 // same issues in labeling elements
Node node
MeshEntity entity = getStart( ) // get starting entity to be considered Þrst. Use a  with min. 
q enqueue(entity)

Mi
0
   Gj

0
Gk

1

→
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while (q size( ) > 0) { // process entities until the queue is empty
entity = q dequeue( )
node = entity getNode( )
if (/*dofs on node are unlabeled*/) then { // we are now directly labeling the dof and not the node

List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){

DOF d = dofs[idof]
if(d->Status = Free){

labeldof = labeldof -1
d->EqNumber = labeldof

}
}

}
// Find unnumbered adjacent mesh entities and label faces. Additions to queue by keying from vertices
if (entity dimension( )=0) then { // load adjacent entities by order, label faces & speciÞc edge nodes

MeshVertex vertex = entity
for (i = 1 to vertex numEdges( ) ) { // loop over number of edges using the vertex

MeshEdge edge = vertex edge(i)
for (j = 1 to edge numFaces( )) do {

MeshFace face = edge face(j)
if (/* face not already labeled*/) then {

labelface = labelface -1
face setLabel(labelface)

}
if (/* face has node that needs queueing */) then { // queue the face

q enqueue(face)
}

}
othervertex = edge otherVertex(vertex)
if (node = edge getNode( )) then { // if the edge has a node on it

if (/* othervertex labeled or in queue and edge node not labeled*/ ) then {
labeldof = labeldof -1
node = edge getNode( )
List dofs = node->getDofs()
for(int idof = 0; idof < dofs->size(); idof++){

DOF d = dofs[idof]
if(d->Status = Free){

labeldof = labeldof -1
d->EqNumber = labeldof

}
}

} else {
q enqueue(edge)
list add(othervertex)

}
} else { 

if (/* node at other vertex is not labeled) then {
list add(othervertex)

}
}

} // Þnished the loop over the edges coming into the current vertex 
q enqueueList(list) // now queue the other vertices loaded into the list
emptyList( )

}
}

→
→

→

→

→
→

→
→

→

→

→
→

→

→
→

→

→
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AdjReorder (this one labels dof - see change bars)

 

Classes

Pseudo Code

 

renumber(mesh)

{ // Reorders nodes and elements in a 2-D mesh assuming that only the mesh faces are elements

// It is also assumed that all dof associated with an entity are associated with a single node on that entity

int labeldof = ndof + 1 // value set to the total number of dofs plus 1, this allows auto. reversing

int labelface = nface + 1 // same issues in labeling elements

Node node

MeshEntity entity = getStart( ) // get starting entity to be considered Þrst. Use a  with min. 

q enqueue(entity)

while (q size( ) > 0) { // process entities until the queue is empty

AdjReorder

getStart( ) : entity // get starting mesh vertex

renumber(mesh) // renumbers the nodes and elements

Queue q

Mesh mesh

List

add(entity) // adds an entity to a list

emptyList( ) // empties a list

Queue

enqueue(item) // enqueues an item into the queue

enqueueList(List) // enqueues list into the queue

dequeue( ) : item // removes an item from the list

size( ) : int // returns the number of entities in the queue

MeshEntity

dimension( ) : int // indicates the dimension of a mesh entity 0-vertex, 1-edge, 2-face, 3-region

numEdges( ) : int // indicates the number of edges bounding or coming into an entity

numFaces( ) : int // indicates the number of faces bounding or coming into an entity

edge(i) : MeshEdge // returns the i th edge bounding or coming into an entity

face(j) : MeshFace // returns the j th face bounding or coming into an entity

getNode( ) : Node // gets the node on the mesh entity

MeshEdge

otherVertex(vertex) // gets the other vertex for a given edge

Node

setLabel(label) // sets node label to label

Mi
0
   Gj

0
Gk

1

→

→
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entity = q dequeue( )

node = entity getNode( )

if (/*dofs on node are unlabeled*/) then {

List dofs = node->getDofs()

for(int idof = 0; idof < dofs->size(); idof++){

DOF d = dofs[idof]

if(d->Status = Free){

labeldof = labeldof -1

d->EqNumber = labeldof

}

}

}

// Want to Þnd any unnumbered adjacent mesh entities and label faces

// All the additions to the queue will be done by looking at adjacencies keying from vertices

if (entity dimension( )=0) then { // need to load adjacent entities by adjaceny order

// Also label neighboring mesh faces and speciÞc edge nodes

MeshVertex vertex = entity

for (i = 1 to vertex numEdges( ) ) { // loop over number of edges using the vertex

MeshEdge edge = vertex edge(i)

for (j = 1 to edge numFaces( )) do {

MeshFace face = edge face(j)

if (/* face not already labeled*/) then {

labelface = labelface -1

face setLabel(labelface)

}

}

if (/* face has node that needs queueing */) then { // queue the face

q enqueue(face)

}

othervertex = edge otherVertex(vertex)

if (node = edge getNode( )) then { // if the edge has a node on it

if (/* othervertex labeled or in queue and edge node not labeled*/ ) then {

labeldof = labeldof -1

node = edge getNode( )

List dofs = node->getDofs()

for(int idof = 0; idof < dofs->size(); idof++){

DOF d = dofs[idof]

if(d->Status = Free){

labeldof = labeldof -1

d->EqNumber = labeldof

}

}

} else {

q enqueue(edge)

→

→

→

→

→

→

→

→

→

→

→

→

→
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list add(othervertex)

}

} else { 

if (/* node at other vertex is not labeled) then {

list add(othervertex)

}

}

} // Þnished the loop over the edges coming into the current vertex 

q enqueueList(list) // now queue the other vertices loaded into the list

emptyList( )

}

}

→

→

→
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6. An Example

 

This example assumes all shape functions are associated with nodes and there are two pos-
sible dof per node. The element (face) labels are shown in circles. The node �labels� are
shown next to the nodes. The numbers in the ( , ) indicates the appropriate DOF object. In
this example the faces and equations are labeled to minimize the computational time. The
nodes �labels� indicated above are just whatever.

In the sfdof arrays given below it is assumed that the dof for each stiffness contributor
(element) are ordered based on traversing the loop around the elements and seeing the
order the nodes are traversed. For the speciÞc example: element 1 - 5,6,2,1; element 2 -
6,7,2; element 3 - 7,3,2; element 4 - 7,8,4,3.

The DOF objects after the constraints are processes are:

The resulting sfdof arrays which contain the labels of the appropriate DOF objects are:

41
2

3

1(d1,d2) 2(d3,d4) 3(d5,d6) 4(d7,d8)

5(d9,d10) 6(d11,d12) 7(d13,d14) 8(d15,d16)

g1=1.5

g2=1.5

node its at DOF object label equation # status value

1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8

d1
d2
d3
d4
d5
d6
d7
d8
d9
d10
d11
d12
d13
d14
d15
d16

--
--
1
2
5
6
--
9
--
--
3
4
7
8
--
10

Zero
Zero
Free
Free
Free
Free
Fixed
Free
Zero
Zero
Free
Free
Free
Free
Fixed
Free

1.5

1.5
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The routine getDof uses the stiffness contributors sfdof arrays to construct the list of point-
ers to the correct DOF objects as associated with the rows and columns to the stiffness
contributors (elements) local stiffness matrix. The speciÞc order depends on the local
ordering of equations. For example, one may decide to order the x-component equations
followed by the y-component equations. An alternative, used here, is to order all compo-
nents at the nodes one at a time using the same order for the nodes as used in the construc-
tion of sfdof. Doing it this way yields the dofs vectors for the stiffness contributors in our
current example:

Finally it is instructive to see where the various terms in a couple of the element stiffness
matrices will go in the global matrix.

For element 1

For element 4

1 2 3 4

d9 
d11
d3
d1

d10
d12
d4
d2

d11
d13
d3

d12
d14
d4

d13
d5
d3

d14
d6
d4

d13 
d15
d7
d5

d14
d16
d8
d6

d9
d10
d11
d12
d3
d4
d1
d2

d11
d12
d13
d14
d3
d4

d13
d14
d5
d6
d3
d4

d13
d14
d15
d16
d7
d8
d5
d6

1 2 3 4

k1 = 

--
--
--
--
--
--
--
--

--
--
--
--
--
--
--
--

--
--
--
--
--
--
--
--

--
--
--
--
--
--
--
--

--
--
K3,3
K4,3
K1,3
K2,3
--
--

--
--
K3,4
K4,4
K1,4
K2,4
--
--

--
--
K3,1
K4,1
K1,1
K2,1
--
--

--
--
K3,2
K4,2
K2,1
K2,2
--
--

d9
d10
d11
d12
d3
d4
d1
d2

k4 = 

K7,7
K8,7
--
K10,7
--
K9,7
K5,7
K6,7

K7,8
K8,8
--
K10,8
--
K9,8
K5,8
K6,8

K7,5
K8,5
--
K10,5
--
K9,5
K5,5
K6,5

K7,6
K8,6
--
K10,6
--
K9,6
K5,6
K6,6

F7
F8
--
F10
--
F9
F5
F6

K7,10
K8,10
--
K10,10
--
K9,10
K5,10
K6,10

F7
F8
--
F10
--
F9
F5
F6

K7,9
K8,9
--
K10,9
--
K9,9
K5,9
K6.9

d13
d14
d15
d16
d7
d8
d5
d6
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Assembly and Solution of Linear Systems Arising from 
Finite Element Problems 
 
At some point we need to assemble the individual element 
contributions into the global system and solve it. (There are 
so-called matrix free methods also – they still have to 
“solve”) Our discussion will assume the process flow for 
doing that will involve: 

1. Performing a preprocessing procedure to determine 
the dof (accounting for BC), structuring the global 
system and doing needed initializations. 

2. Executing a loop over the appropriate mesh entities to: 
a. Determine the contributions to the global system 

for those mesh entities 
b. Assemble the individual terms from the element 

contributions into the global system 
3. Solve the global system 

Note there can be substantial variations in the process. For 
example “frontal solvers” begin solving the system as 
enough is assembled. “Matrix free” method do not quite do 
the matrix assembly as we will define it. 
 
The most time consuming portion of a FE analysis is the 
assembly and solution of the global linear system.  
 
  



 2 

Items the will influence your selection of the method to be 
used to solve the global linear systems include: 
• The number of unknowns in the system, particularly 

when the systems are large enough that we need to 
use substantial levels of parallelism 
o Direct solvers have a computational growth rate 

higher that optimal iterative solvers.  
o Direct solvers do not scale as well on high 

process counts. 
• Conditions number of the system – cost of iterative 

solvers (and even their ability to converge to the 
solution) is a function of the numerical conditioning of 
the system.  

• The sparseness of the global matrix 
• If the system is symmetric. 
• In the case of linear problems the number of right 

hand sides (RHS) – direct solvers can solve multiple 
RHS with one factorization of the system (the 
expensive part) and a back substitution for each RHS. 
Iterative solvers have to iterate for each RHS.  

• Hardware available - # processors, type of 
processors/accelerators, communication hierarchy. 

  

For now we will assume that our systems are small enough 
that we want to use a direct solver. The global system for 
finite element problems is quite sparse – thus we want to 
account for this. If the matrix is full the cost of a direct solve 
is on the order of n3, where n is the number of equations 
while in the case of sparse finite element matrices the cost 
can be reduced to nβ , with β ≥1.5.  
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7. Assembly
The purpose of the assembler class is to take the contributions of each force and stiffness
contributor and assemble it into the global system. Assembler has two member functions
called accept(...), the Þrst takes a matrix and a list of degrees of freedom, the second takes
a vector and a list of degrees of freedom. The Þrst variation of this function corresponds to
assembling a stiffness contributor and the second corresponds to assembling a force con-
tributor. The list of degrees of freedom is used by the assembler to Þgure out if, and where
to assemble each term in the matrix into the global matrix.

LinearSystemAssember::accept(Matrix k, List dofs)
{ // given a stiffness contributor stiffness matrix and list of associated DOF objects - add into global matrix
int size = dofs->size(); // get size of matrix, same as size of list dofs
for(int i = 0; i < size; i++){ // loop over the rows of the stiffness contributor

DOF idof = dofs[i]; // get ith degree of freedom from the DOF object
int ki = idof->EqNumber; // get global equation number for the current row from DOF object
for(int j = 0; j < size; j ++){ // for the current row, loop over the columns of the local stiffness matrix

DOF jdof = dofs[j]; // get jth degree of freedom from the DOF object 
int kj = jdof->EqNumber; // get global equation number for column from the DOF object
if ( ki > kj ) // check that this term is in the upper diagonal of K, if not, skip it

        continue;
if (jdof->Status = Free && idof->Status = Free){ // we have a potential upper triangle term 

// see if it is by checking the status - both must be free
K(ki,kj) += k(i,j); // add the local stiffness term to the correct location in the global matrix

} else { // if both not free, then one or both are constrained, if one of them is constrained as  
// Fixed (nonzero essential b�dry. cond.) and the other is free, the proper term must go
// into the load vector 

DOF cdof; // will need the value of the non-zero essential b�dry. cond. from the DOF object
        if( jdof->Status = Free and idof->Status = Fixed ) { // adds to the kj force term

cki = kj;
cdof = idof;

} else if( (idof->Status = Free and jdof->Status = Fixed)){ // adds to the kj force term
cki = ki;
cdof = jdof;

}
// cki is the equation number, cdof is the constrained dof
if(cdof)

f(cki) -= cdof->Value*k(i,j);
}

      }
}

}

8. Sparse Matrix
The SparseMatrix class implements a symmetric skyline storage scheme used for the glo-
bal stiffness matrix. 

Note: there are several other ways of implementing equivalent functionality. What is
described in the following uses some speciÞc C++ (and C) syntax and semantics which
leads to a convenient implementation in which the functions factor() and backsub(...) can
be written using standard array notation to access the elements of the stiffness matrix
(K[i][j]) even though a skyline storage scheme is used. 
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In this implementation the lower triangular portion of the matrix will be stored for conve-
nience in accessing the elements. This does not alter the fact that we were adding only
upper triangular terms. All that is required is to use the version of the SparseMatrix opera-
tor () that reverses the order. The variable FirstEntry is a vector that will be used to store
the Þrst non-zero column in each row. 

In the skyline storage scheme, only the terms �under the shyline� need to be stored. We
will use the following stiffness matrix to demonstrate what is done.

The FirstEntry vector is to indicate the Þrst column that a non-zero term appears in for
each row. Note the Þrst column is column 0:

Before anything else the matrix must know the number of rows in the stiffness matrix. The
size is simply ndof, the determination of which was stated before. The setSize member
function is used to initialize the vector at the right size. 

SparseMatrix::setSize(int s)
{
Size = s // the size is equal to the variable ndof
FirstEntry = new int[size]; // deÞne the vector of that length
for(int i = 0; i < s; i++) // this loop simply initializes the Þrst column for each row to the main diagonal term

// since the main diagonal terms always exist, and you want to be sure thats reßected
FirstEntity[i] = i;

}

SparseMatrix

setSize(int s) // sets the number of equations in the problem and initializes vector of pointers
addNonZeroTerm(int i, int j) // accounts for the coupling of a nonzero term
allocateMemory() // allocates memory to the matrix
operator ()(int i, int j) : double // accesses the i,j entity of the stiffness matrix, i,j term must

// be within the skyline
factor() // factors the global stiffness matrix
backsub(Vector f, Vector d) // does a back substitution of f on factored matrix, d returned

int Size;
int *FirstEntry;
double **K; // K is a pointer to a pointer of a double which is a stiffness matrix term

K00            

K10 K11     sym     

0 K21 K22        

0 K31 K32 K33       

0 0 K42 K43 K44      

0 0 K52 K53 K54 K55     

K60 K61 K62 K63 K64 K65 K66    

0 0 0 0 0 K75 K76 K77   

0 0 0 0 K84 K85 K86 K87 K88  

0 0 0 0 0 0 K96 K97 K98 K99

0 0 1 1 2 2 0 5 4 6
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In this function the ith entry in FirstEntity is set equal to i (each row must have an entry on
the diagonal).

Next the structure of the matrix must be determined. That is the lowest non-zero column
for each row. The procedure createGlobalSystem() was determining the basic coupling
information while traversing the mesh. The addNonZeroTerm(int i, int j) member function
actually carries out the updating of the FirstEntity vector based on the existence of the
non-zero stiffness terms seen in createGlobalSystem(). The implementation of this for the
skyline matrix is:

SparseMatrix::addNonZeroTerm(int i, int j)
{
if(FirstEntry[j] > i) // will update only if it is a lower column number than the current lowest

FirstEntry[j] = i;
}

This simply checks if the entry is outside the range currently stored in FirstEntry and if it
is updates the appropriate item in FirstEntry.

Once addNonZeroTerm(...) is called for each non zero term in the stiffness matrix, the
allocateMemory() member function must be called to allocate memory for the matrix and
Þnish it�s initialization. The pointer vector is also updated to point into the memory loca-
tion of the stiffness matrix of the Þrst term of a row assuming the row was Þlled. This
allows the convenient indexing by i,j.

SparseMatrix::allocateMemory()
{ // Þrst must Þgure out how much total memory is needed, sum of all matrix elements within skyline
int i;
int totalEntries = 0;
for(i=0; i < size; i++) { // for each row add from the Þrst non-zero column through the main diagonal

totalEntries += i-FirstEntry[i]+1;
}
// allocate memory for K, the memory will store the stiffness matrix and the pointers in K will allow us 
// to address that memory by directly indicating the ith row and jth column
K = new double *[Size]; 
double *mem = new double[totalEntries] // allocate vector of memory to store the entire stiffness matrix
// set up the pointers so that can access as K[i][j]
int currentDiag = -1;
for (int i = 0; i < size; i++){

currentDiag += i - FirstEntry[i]+1;
K[i] = &(mem[currentDiag-i]) // setting the pointer for ith row to the location where the a non-zero

// term would be stored if the 0th column was non-zero
// by doing this the desired Kij term is easily found by going j positions 
// from this location in memory

}
}

The storage for our matrix is actually one large vector in which the elements are stored in
the order (assuming the example matrix shown earlier):

The Þnal part of the allocateMemory() member function is setting up an array of pointers
so that we can conveniently access the entries in K using the K[i][j] notation (this portion
of the code is assuming we are coding in C++ or C (with minor changes)). Without going

K00 K10 K11 K21 K22 K13 K32 K33 K42 K43 K44 etc, , , , , , , , , , ,[ ]
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into the full details of how and why this works, what needs to be done is to allocate an
array of pointers into K and set each pointer K[i] to point to where in memory the element
0 of the corresponding row is (or would be if it existed). This way to get the desired i,j
stiffness matrix term by simply going j locations past where K[i] pointed into the memory.

Using this type of setup the element access operator (int i, int j) can be written as:

double SparseMatrix::operator()(int i, int j)
{ return K[i][j]; }

If we desire it to appear (from the point of view of anyone using the SparseMatrix class)
that we are storing the upper diagonal of the matrix then this should be written as:

double SparseMatrix::operator()(int i, int j)
{ return K[j][i]; }

This is the one we would need to use with our current assembly operator.

9. Equation Solving
The two routines that follow implement the Crout solver discussed in class using our cur-
rent storage structures.

void SparseMatrix::factor()
{
int i,j,r;

  int mj,mi,mm;
 double *G = new double[Size]; // temporary vector of size = Size
  for (j=1; j != Size; j++){

if (K[j][j] <= 0.0) // system is suppose to be positive deÞnite, so this should not happen
// give an error message if it does

cerr << "factor: Initial Negative or Zero Diagonal Term\n";
mj = FirstEntry[j]; // get column of Þrst entry in j�th row in K
G[mj] = K[j][mj]; // initialize G
for (i= mj+1; i <= j-1; i++){ // loop over the remainder of entries in j�th row

G[i] = K[j][i];
mi = FirstEntry[i]; // get column of Þrst entry in i�th row of K
mm = (mi >= mj) ? mi : mj; // get maximum of mi and mj
for (r = mm; r <= i-1; r++) // loop over columns from mm to diagonal

G[i] -= K[i][r]*G[r];
    }
    for (i=mj; i <= j-1; i++) // loop mj to diagonal

K[j][i] = G[i]/K[i][i];
    for (r = mj; r <= j-1; r++) // loop from mj to diagonal

K[j][j] -= K[j][r]*G[r];
  }
delete G;

}

K00 K10 K11 K21 K22 K31 K32 K33 K42 K43 K44 etcú, , , , , , , , , , ,[ ]

K 0[ ] K 1[ ] K 2[ ] K 3[ ] K 4[ ]
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void SparseMatrix::backsub(double *f, double *d)
// f and d are vectors of size = Size, f has the RHS, d will hold the solution
{
  int i,j;
  int mi;
  for (i = 0; i != Size; i++){ // initialize d to equal f

d[i] = f[i]; 
}

  for (i = 1; i != Size; i++){ // loop over rows of K
mi = FirstEntry[i]; // get column of Þrst entry in row i

    for (j= mi ; j <= i-1; j++) // loop over entries in row i 
   d[i] -= K[i][j]*d[j];
  }
  for (i=0; i!= Size; i++) // loop over diagonal terms

d[i] /= K[i][i];
  for (i= Size - 1; i >= 1 ; i--){ // loop backwards over rows

mi = FirstEntry[i]; // get column of Þrst entry in i�th row
    for (j = mi; j <= i-1; j++){ // loop over entries in i�th row

d[j] -= K[i][j]*d[i];
    }
  }
}

10. Recovering Secondary Variables
In order to recover secondary variables (such as stress and strain) we must have already
solved the global system and placed the results back into the correct DOF objects on the
mesh (set the Value Þeld of each DOF that had a Free status). In this manner the DOF
object values represent a complete vector of the primary variables, both solved for and
given (essential boundary conditions).

Once this is done, the calculation of secondary variables is fairly straightforward. This
procedure will be explained without introducing any new functionality to the existing
classes to keep things simple. In reality we would probably want to add some functionality
to and perhaps add another class to do this.

In order to calculate strain from displacement, we need to calculate . This can be cal-
culated using the ShapeFunction class member functions dNds and sfdofs. Remember that
dNds(pt) gives:

 or 

and sfdofs returns the DOF�s for the shape function in the corresponding order where each
row contains the DOF objects for the two displacement components at the corresponding
node (see example earlier in the notes). Note that each of these DOFs now has a value. If
we take the above matrix and create a new one with the values of the DOFs denoting
entries in the Þrst column  and the second column  (to stand for the u and v compo-
nents of displacement) and multiply it by what is returned by ShapeFunction::dNds we get

ui j,

N1 r, pt( ) N2 r, pt( ) N3 r, pt( ) � Nn r, pt( )

N1 s, pt( ) N2 s, pt( ) N2 s, pt( ) � Nn s, pt( )
r∂
∂ Ni

s∂
∂ Ni

ui vi
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something very useful, the derivatives of the displacement with respect to the local coordi-
nate system. With this, and information from the mapping class, the derivatives with
respect to the global coordinate system can be found and the secondary variables calcu-
lated.

u∂
r∂

----- v∂
r∂

-----

u∂
s∂

----- v∂
s∂

-----

r∂
∂ Ni

s∂
∂ Ni

u1 v1

u2 v2

� �
un vn

=




