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What is Parallel Computing? 
• Parallel computing: use of multiple processors or 

computers working together on a common task. 
– Each processor works on part of the problem 

– Processors can exchange information 



Paradigm #1: Data parallelism 
• The program models a physical object, which gets 

partitioned and divided over the processors 

Grid of Problem to be solved 

CPU #1 works on this area  
of the problem 

CPU #3 works on this area 
of the problem 

   CPU #4 works on this area 
of the problem 

   CPU #2 works on this area 
of the problem 
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Paradigm #2: Task parallelism 
• There is a list of tasks (for instance runs of a small 

program) and processors cycle through this list until it is 
exhausted. 

• Tasks can be partially ordered: Directed Acyclic Graph 



  

Why Do Parallel Computing? 

• Limits of single CPU computing 
– performance 

– available memory 

• Parallel computing allows one to: 
– solve problems that don’t fit on a single CPU 

– solve problems that can’t be solved in a reasonable time 

• We can solve… 
– larger problems 

– faster 

– more cases 

Speedup & Parallel Efficiency 

• Speedup: 

 
– p = # of processors 

– Ts = execution time of the 
sequential algorithm 

– Tp = execution time of the parallel 
algorithm with p processors 

– Sp= P (linear speedup: ideal) 

• Parallel efficiency 
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Limits of Parallel Computing 

• Theoretical Upper Limits 
– Amdahl’s Law 

• Practical Limits 
– Load balancing 

– Non-computational sections 

• Other Considerations 
– time to re-write code  

Amdahl’s Law 
• All parallel programs contain: 

– parallel sections (we hope!) 
– serial sections (unfortunately) 

• Serial sections limit the parallel effectiveness 
• Amdahl’s Law states this formally 

– Effect of multiple processors on speed up 
 

 
 
where 

• fs = serial fraction of code 
• fp = parallel fraction of code 
• P = number of processors 
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Amdahl’s Law 

Practical Limits: Amdahl’s Law vs. Reality 

• In reality, the situation is even worse than predicted by Amdahl’s 
Law due to: 
– Load balancing (waiting) 
– Scheduling (shared processors or memory) 
– Cost of Communications 
– I/O 

 

Sp 



“Old school” hardware classification 

SISD   No parallelism in either instruction or data streams (mainframes) 
 
SIMD Exploit data parallelism (stream processors, GPUs) 
 
MISD doesn’t really exist 
 
MIMD Multiple instructions operating independently on multiple data 

streams (most modern general purpose computers) 

Single Instruction Multiple Instruction 

Single Data SISD MISD 

Multiple Data SIMD MIMD 

Hardware in parallel computing 
Memory access 
• Shared memory 

– SGI Altix 

– Cluster  nodes 

• Distributed memory 
– Uniprocessor clusters 

• Hybrid 
– Multi-processor clusters 

– Processor with co-processor 
(GPU) 

– Cluster with multiple co-
processors (Stampede!) 

Processor type 
• Single core CPU 

– Intel Xeon (Prestonia, Wallatin) 
– AMD Opteron (Sledgehammer, 

Venus) 
– IBM POWER (3, 4) 

 
• Multi-core CPU (since 2005) 

– Intel Xeon (Paxville, Woodcrest, 
Harpertown…) 

– AMD Opteron (Barcelona, 
Shanghai, Istanbul,…) 

– IBM POWER (5, 6…) 
 

• GPU based 
– Tesla systems 

 



Shared and distributed memory 

 
 
 

 
 
• All processors have access to a 

pool of shared memory 
 

• Access times vary from CPU to 
CPU in NUMA systems 
 

• Example: SGI Altix, IBM P5 
nodes 

 
 
 
 
 

• Memory is local to each 
processor 
 

• Data exchange by message 
passing over a network 
 

• Example: Clusters with single-
socket blades 
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Hybrid systems 

• A limited number, N, of processors have access to a common pool 
of shared memory 
 

• To use more than N processors requires data exchange over a 
network 
 

• Example: Cluster with multi-socket blades 

Memory 

Network 

Memory Memory Memory Memory 



Multi-core systems 

• Extension of hybrid model 
 

• Communication details increasingly complex 
– Cache access 
– Main memory access 
– Quick Path / Hyper Transport socket connections 
– Node to node connection via network 

 
 

Memory 

Network 

Memory Memory Memory Memory 

Co-processor Systems 

• Calculations made in both CPUs and co-processors (GPU, MIC) 
 

• No longer limited to single precision calculations 
 

• Load balancing critical for performance 
 

• Requires specific libraries and compilers (GPU: CUDA, OpenCL, MIC: OpenMP) 
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Interconnects 

Ken Raffenetti 

Software Development Specialist 

Programming Models and Runtime Systems Group 

Mathematics and Computer Science Division 

Argonne National Laboratory 

End-host Network Interface Speeds 

� Recent network technologies provide high bandwidth links 

– InfiniBand EDR gives 100 Gbps per network link 

• Upcoming networks expected to increase that by several fold 

– Multiple network links becoming a common place 

• ORNL Summit and LLNL Sierra machines, Japanese Post T2K machine 

• Torus style or other multi-dimensional networks 

� End-host peak network bandwidth is “mostly” no longer 
considered a major limitation 

� Network latency is still an issue 

– That’s a harder problem to solve – limited by physics, not technology 

• There is some room to improve it in current technology (trimming the fat) 

• Significant effort in making systems denser so as to reduce network latency 

� Other important metrics: message rate, congestion, … 

ATPESC Workshop (07/30/2018) 



Simple Network Architecture (past systems) 

� Processor, memory, 

network are all 

decoupled 

ATPESC Workshop (07/30/2018) 
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Integrated Memory Controllers (current systems) 

� In the past 10 years or so, memory 

controllers have been integrated on 

to the processor 

� Primary purpose was scalable 

memory bandwidth (NUMA) 

� Also helps network communication 

– Data transfer to/from network requires 

coordination with caches 

� Several network I/O technologies 

exist 

– PCIe, HTX, NVLink 

– Expected to provide higher bandwidth 

than what network links will have 

ATPESC Workshop (07/30/2018) 
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Integrated Networks (current/future systems) 

ATPESC Workshop (07/30/2018) 

Network 

Switch 
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Core2 Core3 

Memory 

Controller 

Network 

Interface 

Off-chip Memory 

� Several vendors are considering 

processor-integrated network 

adapters 

� May improve network bandwidth 

– Unclear if the I/O bus would be a 

bottleneck 

� Improves network latencies 

– Control messages between the 

processor, network, and memory are 

now on-chip 

� Improves network functionality 

– Communication is a first-class citizen 

and better integrated with processor 

features 

– E.g., network atomic operations can be 

atomic with respect to processor 

atomics 
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Traditional Network Topologies: Crossbar 

� A network topology describes how different network 

adapters and switches are interconnected with each other 

� The ideal network topology (for performance) is a crossbar 

– Alltoall connection between network adapters 

– Typically done on a single network ASIC 

– Current network crossbar ASICs go up to 64 ports; too expensive to 

scale to higher port counts 

– All communication is nonblocking 

ATPESC Workshop (07/30/2018) 



Traditional Network Topologies: Fat-tree 

� The most common topology for small and medium scale 

systems is a fat-tree 

– Nonblocking fat-tree switches available in abundance 

• Allows for pseudo nonblocking communication 

• Between all pairs of processes, there exists a completely nonblocking 

path, but not all paths are nonblocking 

– More scalable than crossbars, but the number of network links still 

increases super-linearly with node count 

• Can get very expensive with scale 

ATPESC Workshop (07/30/2018) 

Network Topology Trends 
� Modern topologies are moving towards 

more “scalability” (with respect to cost, not 
performance) 

� Blue Gene, Cray XE/XK, and K 

supercomputers use a torus-network; Cray 

XC uses dragonfly 

– Linear increase in the number of 

links/routers with system size 

– Any communication that is more than one 

hop away has a possibility of interference – 

congestion is not just possible, but common 

– Even when there is no congestion, such 

topologies increase the network diameter 

causing performance loss 

� Take-away: topological locality is important 

and its not going to get better 

ATPESC Workshop (07/30/2018) 



Network Congestion Behavior: IBM BG/P 
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ATPESC Workshop (07/30/2018) 

P0 P1 P2 P3 P4 P5 P6 P7 

2D Nearest Neighbor: Process Mapping (XYZ) 

ATPESC Workshop (07/30/2018) 
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Nearest Neighbor Performance: IBM BG/P 

ATPESC Workshop (07/30/2018) 
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ORNL is managed by UT-Battelle  
for the US Department of Energy 

Summit at the  
Oak Ridge Leadership Computing Facility 

Judy Hill 
   Oak Ridge Leadership Computing Facility 
   Oak Ridge National Laboratory 

 
July 30, 2018 
Argonne Training Program on Extreme-Scale Computing 

What is the Leadership Computing Facility (LCF)? 

•  Collaborative DOE Office of Science program at 
ORNL and ANL 

•  Mission: Provide the computational and data 
resources required to solve the most challenging 
problems. 

•  2-centers/2-architectures to address diverse and 
growing computational needs of the scientific 
community 

•  Highly competitive user allocation programs 
(INCITE, ALCC). 

•  Projects receive 10x to 100x more resource than 
at other generally available centers. 

•  LCF centers partner with users to enable science 
& engineering breakthroughs (Liaisons, 
Catalysts). 



OLCF Path to Exascale  

The Exascale Computing Project has 
emphasized that Exascale is a measure  
of application performance, and this RFP 
reflects that, asking for nominally 50× 
improvement over Sequoia and Titan.  

 -- Design Reviewer 

Jaguar: 2.3 PF 
World’s Fastest 

Titan: 27 PF 
Accelerated Computing 
World’s Fastest 

2008 2012 2017 2021 

Summit: 200 PF 
Accelerated Computing 
5–10× Titan Performance 

Frontier: >1000 PF 
Competitive Procurement 
5-10× Summit 
Performance 

50–100× application performance of Titan 

Support for traditional modeling and simulation,  
high-performance data analysis, and artificial 
intelligence applications 

Peak performance of at least 1300 PF 

Smooth transition for existing and future applications 

Competitive 
procurement  
asking for: 

Coming Soon: Summit is replacing Titan as 
the OLCF’s leadership supercomputer  

•  Many fewer nodes 

•  Much more powerful nodes 

•  Much more memory per node 
and total system memory 

•  Faster interconnect 

•  Much higher bandwidth 
between CPUs and GPUs 

•  Much larger and faster file 
system 

Feature Titan Summit 
Application Performance Baseline 5-10x Titan 

Number of Nodes 18,688 4,608 

Node performance 1.4 TF 42 TF 

Memory per Node 32 GB DDR3 + 6 GB GDDR5 512 GB DDR4 + 96 GB HBM2 

NV memory per Node 0 1600 GB 

Total System Memory 710 TB >10 PB DDR4 + HBM2 + Non-volatile 

System Interconnect Gemini (6.4 GB/s) Dual Rail EDR-IB (25 GB/s) 

Interconnect Topology 3D Torus Non-blocking Fat Tree 

Bi-Section Bandwidth 112 TB/s 115.2 TB/s 

Processors 1 AMD Opteron™ 
1 NVIDIA Kepler™ 

2 IBM POWER9™ 
6 NVIDIA Volta™ 

File System 32 PB, 1 TB/s, Lustre® 250 PB, 2.5 TB/s, GPFS™ 

Power Consumption 9 MW 13 MW 



Summit Overview 

IBM POWER9 
•  22 Cores 
•  4 Threads/core 
•  NVLink 

NVIDIA GV100 
•  7 TF 
•  16 GB @ 0.9 TB/s 
•  NVLink 

Components 

Compute Node 

2 x POWER9 
6 x NVIDIA GV100 
NVMe-compatible PCIe 1600 GB SSD  

25 GB/s EDR IB- (2 ports) 
512 GB DRAM- (DDR4) 
96 GB HBM- (3D Stacked) 
Coherent Shared Memory 

Compute Rack 

39.7 TB Memory/rack 
55 KW max power/rack 

18 Compute Servers 
Warm water (70°F direct-cooled  
     components) 
RDHX for air-cooled components 
 

Compute System 
10.2 PB Total Memory 

256 compute racks 
4,608 compute nodes 

Mellanox EDR IB fabric 
200 PFLOPS 

~13 MW  

GPFS File System 
250 PB storage 

2.5 TB/s read, 2.5 TB/s write 
(**2.5 TB/s sequential and 2.2 TB/s random I/O) 

Summit Node Overview 
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Summit Node Overview: System Balance Ratios 
Summit Titan 

Memory subsystem to Intra-node connectivity ratios 

HBM BW : DDR BW 15.8 4.9 

HBM BW : CPU-GPU BW 18 39 

Per HBM BW : GPU-GPU BW 18 -- 

DDR BW : CPU-GPU BW 1.13 8 

HBM capacity : GPU-GPU BW 0.32 -- 

Memory subsystem to FLOPS ratios 

Memory capacity : GFLOPS 0.01 0.03 

Interconnect subsystem to FLOPS ratios 

Injection BW : GFLOPS 0.0006 0.004 

Other ratios 

Filesystem : Memory capacity 89 42 

FLOPS : Power (MW) 15.4 3 
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Reference: Vazhkudai, et. al. The Design, Deployment, and Evaluation of the 
CORAL Pre-Exascale Systems.  SC18 Proceedings.  To appear. 
 

IBM Power9 Processor 
•  Up to 24 cores  

–  CORAL has 22 cores for yield optimization 
on first processors 

•  PCI-Express 4.0 
–  Twice as fast as PCIe 3.0 

•  NVLink 2.0 
–  Coherent, high-bandwidth links to GPUs 

•  14nm  FinFET SOI technology 
–  8 billion transistors 

•  Cache 
–  L1I: 32 KiB per core, 8-way set associative 
–  L1D: 32KiB per core, 8-way 
–  L2: 258 KiB per core 
–  L3: 120 MiB eDRAM, 20-way  



Stream benchmark: Summit vs Titan 

•  A simple synthetic benchmark program that measures achievable memory 
bandwidth (in GB/s) under OpenMP threading. 

For Peak (Summit): 
•  GCC compiler 
•  Best result in 1000 tests 
•  Runtime variability up to 9% 

System 
Cores 

Peak (Summit) 
44 

Titan 
16 

Copy 274.6 34.9 

Scale 271.4 35.3 

Add 270.6 33.6 

Triad 275.3 33.7 

Peak (theoretical) 340 51.2 

Fraction of Peak 82% 67% 

System Peak (Summit) 
 

Titan 
 

Copy 789 181 

Scale 788 181 

Add 831 180 

Triad 831 180 

Peak (theoretical) 900 250 

Fraction of Peak 92% 72% 

DRAM Bandwidth  GDDR Bandwidth  

Slide courtesy of Wayne Joubert, ORNL 

NVIDIA Volta Details 

Note: The performance numbers are peak and not representative of Summit’s Volta

TensorCores™ 
Mixed Precision 
(16b Matrix-Multiply-Add 
and 32b Accumulate) 



NVLink Bandwidth 

• Measured from core 0 the achieved CPU-GPU NVLink rates with a 
modified bandwidthTest from NVIDIA CUDA Samples 

• Not necessarily a use case that most applications will employ 

GPU 0 1 2 3 4 5 peak 

Host to Device 45.93 45.92 45.92 40.63 40.59 40.64 50 

Device to Host 45.95 45.95 45.95 36.60 36.52 35.00 50 

Bi-Directional 86.27 85.83 77.36 66.14 65.84 64.76 100 

Slide courtesy of Wayne Joubert, ORNL 

Single Node Single GPU NVLink Rates (GB/s) 

NVLink Bandwidth 

• Measured the achieved CPU-GPU NVLink rates with a modified 
bandwidthTest from NVIDIA CUDA Samples using multiple MPI process 
evenly spread between the sockets. 

• Ultimately limited by the CPU memory bandwith 
•  6 ranks driving 6 GPUs is an expected use case for many applications 

MPI Process Count 1 2 3 4 5 6 Peak 
(6) 

Host to Device 45.93 91.85 137.69 183.54 229.18 274.82 300 

Device to Host 45.95 91.90 137.85 183.80 225.64 268.05 300 

Bi-Directional 85.60 172.59 223.54 276.34 277.39 278.07 600 

Slide courtesy of Wayne Joubert, ORNL 

NVLink Rates with MPI Processes (GB/s) 



NVLink Bandwidth 

• Measured the achived NVLink transfer rates between GPUs, both within a 
socket and across them, using p2pBandwidthLatencyTest from NVIDIA 
CUDA Samples. (Peer-to-Peer communication turned on). 

 
• Cross-socket bandwidth is much lower than that between GPUs attached 

to the same CPU socket 

Socket 0 1 Cross Peak 

Uni-Directional 46.33 46.55 25.89 50 

Bi-Directional 93.02 93.11 21.63 100 

Slide courtesy of Wayne Joubert, ORNL 

NVLink Rates for GPU-GPU Transfers (GB/s) 

Summit Programming Environment 

• Compilers supporting OpenMP 
and OpenACC  
–  IBM XL, PGI, LLVM, GNU, NVIDIA  

• Libraries  
–  IBM Engineering and Scientific 

Subroutine Library (ESSL)  
–  FFTW, ScaLAPACK, PETSc, 

Trilinos, BLAS-1,-2,-3, NVBLAS  
–  cuFFT, cuSPARSE, cuRAND, NPP, 

Thrust  

• Debugging  
–  Allinea DDT, IBM Parallel 

Environment Runtime Edition (pdb)  
–  Cuda-gdb, Cuda-memcheck, 

valgrind, memcheck, helgrind, 
stacktrace  

• Profiling  
–  IBM Parallel Environment Developer 

Edition (HPC Toolkit)  
–  VAMPIR, Tau, Open|Speedshop, 

nvprof, gprof, Rice HPCToolkit 



Summit vs Titan PE comparison 

The majority of tools available on Titan are also  
available on Summit.  A few transitions may be  
necessary. 
 

Debugger Titan Summit 

DDT Yes Yes 

cuda-gdb, -memcheck Yes Yes 

Valgrind, memcheck, helgrind Yes Yes 

Stack trace analysis tool Yes Yes 

pdb No Yes 

Compiler Titan Summit 

PGI Yes Yes 

GCC Yes Yes 

XL No Yes 

LLVM No Yes 

Cray Yes No 

Intel Yes No 

Performance Tools Titan Summit 

Open|SpeedShop Yes Yes 

TAU Yes Yes 

CrayPAT Yes No 

Reveal Yes No 

HPCToolkit (IBM) No Yes 

HPCToolkit (Rice) Yes Yes 

VAMPIR Yes Yes 

nvprof Yes Yes 

gprof Yes Yes 

Programming Multiple GPUs 

• Multiple paths, with different levels of flexibility and sophistication 
–  Simple model looks like Titan 
–  Additional models expose the node-level parallelism mode directly 
–  Low-level approaches are available, but not what we would recommend to 

users unless there is a particular reason 

• Exposing more (node-level) parallelism is key to scalable applications 
from petascale up 



One GPU Per MPI Rank 

• Deploy one MPI rank per GPU (6 per 
node) 
–  Bind each rank to a specific GPU 

• This model looks like Titan 
• MPI ranks can use OpenMP (or 

pthreads) to utilize more of the CPU 
cores 
–  CPU is only a small percentage of the 

total FLOPS 

CPU0 
Rank 0 Rank 1 Rank 2 

CPU 1 
Rank 3 Rank 4 Rank 5 

GPU 0 GPU 1 GPU 2 

GPU 3 GPU 4 GPU 5 

One GPU Per MPI Rank 

• Expect this to be the most commonly 
used approach. 

• Pros: 
ü Straightforward extension for those 

already using Titan 

• Cons: 
–  Assumes similar amount of work to be 

done by all ranks 
–  Potentially leaves a core on the Power9 

unoccupied (or available to do 
something else) 

  

CPU0 
Rank 0 Rank 1 Rank 2 

CPU 1 
Rank 3 Rank 4 Rank 5 

GPU 0 GPU 1 GPU 2 

GPU 3 GPU 4 GPU 5 



Multiple GPUs Per MPI Rank 

•  Deploy one MPI rank per 2-6 GPUs 
–  Likely configurations: 

•  3 ranks/node (1:2) 
•  2 ranks/node (1:3) 
•  1 rank/node (1:6) 

•  Use threads and/or language 
constructs to offload to specific 
devices 

•  Multiple approaches possible, 
depending on language 

CPU0 
Rank 0 

CPU 1 
Rank 1 

GPU 0 GPU 1 GPU 2 

GPU 3 GPU 4 GPU 5 

Multiple GPUs Per MPI Rank, Explicit Control 

•  OpenMP+OpenACC 
–  Launch one OpenMP thread per GPU 
–  Within each thread make OpenACC calls 

using acc_set_device_num() 

•  OpenMP 4 (accelerator target) 
–  device_num() clause 

•  OpenACC 
–  acc_set_device_num() 
–  (Need to add similar clause for directives) 
–  Eventually: compiler+runtime could break 

up large offload tasks across multiple 
GPUs automatically 

•  CUDA 
–  cudaSetDevice()method 

CPU0 
Rank 0 

CPU 1 
Rank 1 

GPU 0 GPU 1 GPU 2 

GPU 3 GPU 4 GPU 5 



Multiple GPUs Per MPI Rank, Implicit Control 

•  OpenMP and OpenACC 
–  Eventually: compiler+runtime could break 

up large offload tasks across multiple 
GPUs automatically 

•  Task-based execution models are 
available for CUDA, OpenMP and 
under development for OpenACC 
–  Provide more flexibility to distribute work 

to multiple GPUs 

•  Multi-GPU aware libraries 
–  CUBLAS 
–  CUFFT 

CPU0 
Rank 0 

CPU 1 
Rank 1 

GPU 0 GPU 1 GPU 2 

GPU 3 GPU 4 GPU 5 
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Argonne Training Program on Exascale Computing  

Tim Warburton  
John K. Costain Faculty Chair in the College of Science
Professor Of Mathematics and Affiliate Faculty in CMDA 

Virginia Tech

An Introduction to Graphics Processing Unit  
Architecture and Programming Models

CPU: architecture follows purpose
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Original design goals for CPUs: 

• Make single threads very fast. 

• Reduce latency through large caches.  

• Predict, speculate.



Execution context: memory and hardware associated to a specific stream of instructions, e.g. registers.

CPU: abstract modern architecture
Modern “CPU-Style” core design emphasizes 

individual thread performance.
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Instruction 
Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution 
contexts 

 
 
 
 

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian

http://developer.nvidia.com/object/gpu-gems-3.html

GPU: massively parallel processing
The main purpose of graphics processing units is to project textured 

polygons onto the screen in a fiercely competitive consumer-facing industry.
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This is an embarrassingly parallel process and specialized MPP chips  
have been created by ATi (now AMD), Intel, NVIDIA et al  

to perform floating point intensive operations to render scenes in realtime.

Fallout 4 Screenshot  
http://www.gamespot.com/articles/check-out-fallout-4-1080p-screenshots-from-the-deb/1100-6427822/ 



GPU: massively parallel compute
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Design goals for GPUs: 

• Throughput matters and single threads do not. 

• Hide memory latency through parallelism. 

• Let programmer deal with “raw” storage hierarchy. 

• Avoid high frequency clock speed: 

• Desirable for portable devices, consoles, laptops…

http://developer.nvidia.com/object/gpu-gems-3.html

Compilers may need to be coaxed into generating vector instructions for CPU. 
Recall: “Performance, SIMD, Vectorization and Performance Tuning” talk by James Reindeer.

CPU v GPU: fundamental difference #1
Each CPU core executes scalar or vector operations.  

Each GPU core only executes vector instructions.
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CPU: Single Instruction Multiple Data (SIMD)  
parallelism through ILP & vector execution units.

http://en.wikichip.org/wiki/intel/microarchitectures/skylake

GPU: SIMD parallel execution 
of all operations



Compilers may need to be coaxed into generating vector instructions for CPU.

CPU v GPU: fundamental difference #2
GPU cores are engineered to switch quickly  

between threads to recover stalls
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Skylake core: 180 Integer registers and  
168 floating point registers

http://en.wikichip.org/wiki/intel/microarchitectures/skylake

Maxwell core: 16K registers

* SIMD width here is the number of ALUs in one of the core’s vector unit. 
The actual specifics vary but this is a good abstract viewpoint.

GPU: summary of architecture
Summary of multi-level GPU parallel architecture
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• A GPU has multiple cores and each core:  

• Has one (or more) wide SIMD vector units.  

• Wide SIMD vector units execute one instruction stream.  

• Has a pool of shared memory.  

• Shares a register file shared privately among all the ALUs.  

• Fast switches thread blocks to hide memory latency. 

• Branching code (“ifs”) involves partial serialization. 

• Nice summary: 
http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html  



* SIMD here is the number of ALUs in one of the core’s vector unit.

GPU: natural thread model
The GPU architecture admits a natural parallel threading model
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• Programmer partitions a compute task into kernel code:  

• Programmer assigns kernel code to independent work-blocks:  

• Work-block assigned to a core with sufficient resources to process it:  

• Each core processes work-block kernel code with a work-group of “threads”  

- The work-group is batch processed in sub-groups of SIMD* work-items.  

- Each work-item processed by a “thread” passing through a SIMD lane.  

- A stalling SIMD group of “threads” is idled until it can continue. 

- “Threads” in a work-group can collaborate through shared memory.  

- The work-block stays resident until completed by core (using resources).  

• Main assumption: same instructions for independent work-groups.



Parallel programming models 

• Data Parallelism 
– Each processor performs the same task on 

different data 
 

• Task Parallelism 
– Each processor performs a different task on 

different data 
 

• Most applications fall between these two 

Single Program Multiple Data 

• SPMD: dominant programming model for shared and 
distributed memory machines. 
– One source code is written 
– Code can have conditional execution based on which processor is 

executing the copy 
– All copies of code start simultaneously and communicate and sync 

with each other periodically 
 

• MPMD: more general, and possible in hardware, but no 
system/programming software enables it 

 



SPMD Model 

source.c 

processor 3 processor 2 processor 1 processor 0 

source.c source.c source.c source.c 

Network 

Data Parallel Programming Example 

• One code will run on 2 CPUs 
• Program has array of data to be operated on by 2 CPUs so array is split 

into two parts. 

program: 
…  
if CPU=a then 
   low_limit=1 
   upper_limit=50 
elseif CPU=b then 
   low_limit=51 
   upper_limit=100 
end if 
do I = low_limit, 
upper_limit 
   work on A(I) 
end do 
... 
end program 

CPU A CPU B 

program: 
… 
low_limit=1 
upper_limit=50 
do I= low_limit, 
upper_limit 
   work on A(I) 
end do 
… 
end program 

program: 
… 
low_limit=51 
upper_limit=100 
do I= low_limit, 
upper_limit 
   work on A(I) 
end do 
… 
end program 



Distributed Data Parallel Programming 

• Since each CPU has local address space: local indexing only 

CPU A CPU B 

program: 
… 
low_limit=1 
upper_limit=50 
do I= low_limit, upper_limit 
   work on A(I-low_limit) 
end do 
… 
end program 

program: 
… 
low_limit=51 
upper_limit=100 
do I= low_limit, upper_limit 
   work on A(I-low_limit) 
end do 
… 
end program 

Task Parallel Programming Example 

• One code will run on 2 CPUs 
• Program has 2 tasks (a and b) to be done by 2 CPUs 

program.f: 
…  
initialize 
... 
if CPU=a then 
   do task a 
elseif CPU=b then 
   do task b 
end if 
…. 
end program 
 

CPU A CPU B 

program.f: 
… 
initialize 
… 
do task a 
… 
end program 

program.f: 
… 
initialize 
… 
do task b 
… 
end program 



Introduction to OpenMP 

•  Introduction 
•  OpenMP basics 
•  OpenMP directives, clauses, and library 

routines 

Motivation 

•  Pthread is too tedious: explicit thread 
management is often unnecessary 
– Consider the matrix multiply example 

•  We have a sequential code, we know which loop can 
be executed in parallel; the program conversion is 
quite mechanic: we should just say that the loop is to 
be executed in parallel and let the compiler do the 
rest. 

•  OpenMP does exactly that!!! 



What is OpenMP? 

•  What does OpenMP stands for? 
–  Open specifications for Multi Processing via collaborative work 

between interested parties from the hardware and software 
industry, government and academia.  

•  OpenMP is an Application Program Interface 
(API) that may be used to explicitly direct multi-
threaded, shared memory parallelism. 

•  API components: Compiler Directives, Runtime Library 
Routines. Environment Variables 

•  OpenMP is a directive-based method to invoke parallel 
computations on share-memory multiprocessors   

What is OpenMP? 

•  OpenMP API is specified for C/C++ and Fortran. 
•  OpenMP is not intrusive to the original serial 

code: instructions appear in comment statements 
for fortran and pragmas for C/C++. 

•  OpenMP website: http://www.openmp.org 
–  Materials in this lecture are taken from various 

OpenMP tutorials in the website and other places. 



Why OpenMP? 

•  OpenMP is portable: supported by HP, IBM, Intel, 
SGI, SUN, and others 
–  It is the de facto standard for writing shared memory 

programs. 
–  To become an ANSI standard? 

•  OpenMP can be implemented incrementally, one 
function or even one loop at a time. 
–  A nice way to get a parallel program from a sequential 

program. 

OpenMP execution model 

•  OpenMP uses the fork-join model of parallel 
execution. 
–  All OpenMP programs begin with a single master thread. 
–  The master thread executes sequentially until a parallel region is 

encountered, when it creates a team of parallel threads (FORK). 
–  When the team threads complete the parallel region, they 

synchronize and terminate, leaving only the master thread that 
executes sequentially (JOIN). 



OpenMP general code structure 
#include <omp.h>  
main () { 
   int var1, var2, var3;  
   Serial code  
   . . .  
  /* Beginning of parallel section. Fork a team of threads. Specify variable scoping*/ 
   #pragma omp parallel private(var1, var2) shared(var3)  
   {  
      /* Parallel section executed by all threads */ 
     . . .  
     /* All threads join master thread and disband*/ 
    }  
    Resume serial code 
    . . .  
}  

Data model 

•  Private and shared variables   
• Variables in the global data space 
are accessed by all parallel threads 
(shared variables). 

•   Variables in a thread�s private 
space can only be accessed by the 
thread (private variables) 

•  several variations, depending on the 
initial values and whether the results are 
copied outside the region. 



#pragma omp parallel for private( privIndx, privDbl )  
  for ( i = 0; i < arraySize; i++ ) {  
     for ( privIndx = 0; privIndx < 16; privIndx++ ) 

{ privDbl = ( (double) privIndx ) / 16;  
      y[i] = sin( exp( cos( - exp( sin(x[i]) ) ) ) ) + 

cos( privDbl );  
   }  
}  

Parallel for loop index is 
Private by default. 

Sequential Matrix Multiply 

For (I=0; I<n; I++) 
    for (j=0; j<n; j++) 
        c[I][j] = 0; 
        for (k=0; k<n; k++) 
              c[I][j] = c[I][j] + a[I][k] * b[k][j]; 



OpenMP Matrix Multiply 

#pragma omp parallel for private(j, k) 
For (I=0; I<n; I++) 
    for (j=0; j<n; j++) 
        c[I][j] = 0; 
        for (k=0; k<n; k++) 
              c[I][j] = c[I][j] + a[I][k] * b[k][j]; 
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An Introduction to MPI 
Parallel Programming with the  

Message Passing Interface 
William Gropp 

Ewing Lusk 
Argonne National Laboratory 
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The Message-Passing Model 

•  A process is (traditionally) a program counter 
and address space. 

•  Processes may have multiple threads 
(program counters and associated stacks) 
sharing a single address space.  MPI is for 
communication among processes, which 
have separate address spaces. 

•  Interprocess communication consists of  
–  Synchronization 
–  Movement of data from one process�s address 

space to another�s. 
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Types of Parallel Computing 
Models 

•  Data Parallel - the same instructions are carried out 
simultaneously on multiple data items (SIMD) 

•  Task Parallel - different instructions on different data 
(MIMD) 

•  SPMD (single program, multiple data) not 
synchronized at individual operation level 

•  SPMD is equivalent to MIMD since each MIMD 
program can be made SPMD (similarly for SIMD, but 
not in practical sense.) 

 Message passing (and MPI) is for MIMD/SPMD 
parallelism.  HPF is an example of an SIMD interface. 
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Cooperative Operations for 
Communication 

•  The message-passing approach makes the exchange 
of data cooperative. 

•  Data is explicitly sent by one process and received by 
another. 

•  An advantage is that any change in the receiving 
process�s memory is made with the receiver�s explicit 
participation. 

•  Communication and synchronization are combined. 

Process 0 Process 1 

Send(data) 
Receive(data) 
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One-Sided Operations for 
Communication 

•  One-sided operations between processes include 
remote memory reads and writes 

•  Only one process needs to explicitly participate. 
•  An advantage is that communication and 

synchronization are decoupled 
•  One-sided operations are part of MPI-2. 

Process 0 Process 1 

Put(data) 

(memory) 

(memory)
Get(data) 
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What is MPI? 
•  A message-passing library specification 

–  extended message-passing model 
–  not a language or compiler specification 
–  not a specific implementation or product 

•  For parallel computers, clusters, and 
heterogeneous networks 

•  Full-featured 
•  Designed to provide access to advanced 

parallel hardware for 
–  end users 
–  library writers 
–  tool developers 
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MPI Basic Send/Receive 

•  We need to fill in the details in 

•  Things that need specifying: 
–  How will �data� be described? 
–  How will processes be identified? 
–  How will the receiver recognize/screen messages? 
–  What will it mean for these operations to 

complete? 

Process 0 Process 1 

Send(data) 
Receive(data) 
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What is message passing? 
•  Data transfer plus synchronization 

•  Requires cooperation of sender and receiver 
•  Cooperation not always apparent in code 

Data Process 0 

Process 1 

May I Send? 

Yes 

Data 
Data 

Data 
Data 

Data 
Data 

Data 
Data 

Time 
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Some Basic Concepts 

•  Processes can be collected into groups. 
•  Each message is sent in a context, and must 

be received in the same context. 
•  A group and context together form a 

communicator. 
•  A process is identified by its rank in the group 

associated with a communicator. 
•  There is a default communicator whose group 

contains all initial processes, called 
MPI_COMM_WORLD. 
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MPI Datatypes 

•  The data in a message to sent or received is 
described by a triple (address, count, datatype), 
where 

•  An MPI datatype is recursively defined as: 
–  predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE_PRECISION) 
–  a contiguous array of MPI datatypes 
–  a strided block of datatypes 
–  an indexed array of blocks of datatypes 
–  an arbitrary structure of datatypes 

•  There are MPI functions to construct custom 
datatypes, such an array of (int, float) pairs, or a row 
of a matrix stored columnwise. 
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MPI Tags 

•  Messages are sent with an accompanying 
user-defined integer tag, to assist the 
receiving process in identifying the message. 

•  Messages can be screened at the receiving 
end by specifying a specific tag, or not 
screened by specifying MPI_ANY_TAG as the 
tag in a receive. 

•  Some non-MPI message-passing systems 
have called tags �message types�.  MPI calls 
them tags to avoid confusion with datatypes. 
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MPI Basic (Blocking) Send 
MPI_SEND (start, count, datatype, dest, tag, comm) 
 
•  The message buffer is described by (start, count, 
datatype). 

•  The target process is specified by dest, which is the 
rank of the target process in the communicator specified 
by comm. 

•  When this function returns, the data has been delivered 
to the system and the buffer can be reused.  The 
message may not have been received by the target 
process. 
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MPI Basic (Blocking) Receive 
MPI_RECV(start, count, datatype, source, tag, comm, status) 
 
•  Waits until a matching (on source and tag) message is 

received from the system, and the buffer can be used. 
•  source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE. 

•  status contains further information 
•  Receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error. 
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MPI is Simple 

•  Many parallel programs can be written using 
just these six functions, only two of which are 
non-trivial: 
–  MPI_INIT 
–  MPI_FINALIZE 
–  MPI_COMM_SIZE 
–  MPI_COMM_RANK 
–  MPI_SEND 
–  MPI_RECV 

•  Point-to-point (send/recv) isn�t the only way... 
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When to use MPI 

•  Portability and Performance 
•  Irregular Data Structures 
•  Building Tools for Others 

–  Libraries 
•  Need to Manage memory on a per processor 

basis 
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Timeline of the MPI Standard
§ MPI-1 (1994), presented at SC’93

– Basic point-to-point communication, collectives, datatypes, etc

§ MPI-2 (1997)
– Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, 

thread support, C++ bindings, …

§ ---- Unchanged for 10 years ----

§ MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

§ MPI-2.2 (2009)
– Small updates and additions to MPI 2.1

§ MPI-3.0 (2012)
– Major new features and additions to MPI (nonblocking collectives, neighborhood 

collectives, improved RMA, tools interface, Fortran 2008 bindings, etc.)

§ MPI-3.1 (2015)
– Small updates to MPI 3.0



Understanding MPI Performance on Modern 
Processors
§ MPI was developed when a single processor required multiple chips and 

most processors and nodes had a single core.

§ Building effective, scalable applications requires having a model of how 

the system executes, how it performs, and what operations it can perform

– This is (roughly) the execution model for the system, along with a performance 
model 

§ For decades, a simple model worked for designing and understanding MPI 

programs

– Programs communicate either with point-to-point communication 

(send/recv), with a performance model of T = s + r n, where s is latency 

(startup) and r is inverse bandwidth (rate), or collective communication

§ But today, processors are multi-core and many nodes are multi-chip.

– How does that change how we think about performance and MPI?

11

Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a 
communicator.

§ MPI_BCAST distributes data from one process (the root) to all 
others in a communicator.

§ MPI_REDUCE combines data from all processes in the 
communicator and returns it to one process.

§ In many numerical algorithms, SEND/RECV can be replaced by 
BCAST/REDUCE, improving both simplicity and efficiency.
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MPI Collective Communication

§ Communication and computation is coordinated among a 
group of processes in a communicator

§ Tags are not used; different communicators deliver similar 
functionality

§ Non-blocking collective operations in MPI-3

§ Three classes of operations: synchronization, data movement, 
collective computation

64

Synchronization

§ MPI_BARRIER(comm)
– Blocks until all processes in the group of communicator comm call it
– A process cannot get out of the barrier until all other processes have 

reached barrier

§ Note that a barrier is rarely, if ever, necessary in an MPI program
§ Adding barriers “just to be sure” is a bad practice and causes unnecessary 

synchronization. Remove unnecessary barriers from your code.

§ One legitimate use of a barrier is before the first call to MPI_Wtime to 
start a timing measurement. This causes each process to start at 
approximately the same time.

§ Avoid using barriers other than for this.
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Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3
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More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3
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Collective Computation

P0
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P2
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P0
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P2
P3
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C

A
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D
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A
AB

ABC
ABCD

Reduce
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MPI Collective Routines

§ Many Routines, including:  MPI_ALLGATHER, MPI_ALLGATHERV, 
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, 
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV, 
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, 
MPI_SCATTER, MPI_SCATTERV

§ “All” versions deliver results to all participating processes

§ “V” versions (stands for vector) allow the chunks to have different 
sizes

§ “W” versions for ALLTOALL allow the chunks to have different sizes 
in bytes, rather than units of datatypes

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER, 

MPI_REDUCE_SCATTER_BLOCK, MPI_EXSCAN, and MPI_SCAN
take both built-in and user-defined combiner functions
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MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE, 

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location
Replace and no operation (RMA)
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Defining your own Collective Operations

§ Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:
inoutvec[i]  =  invec[i]  op  inoutvec[i];
for i from 0 to len-1

§ The user function can be non-commutative, but must be 
associative

71



Nonblocking Collectives

72

Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized routines

§ Nonblocking collective communication
– Combines both advantages

– System noise/imbalance resiliency

– Semantic advantages
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Nonblocking Communication

§ Semantics are simple:

– Function returns no matter what

– No progress guarantee!

§ E.g., MPI_Isend(<send-args>, MPI_Request *req);

§ Nonblocking tests:

– Test, Testany, Testall, Testsome

§ Blocking wait:

– Wait, Waitany, Waitall, Waitsome
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Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics:
– Function returns no matter what

– No guaranteed progress (quality of implementation)

– Usual completion calls (wait, test) + mixing

– Out-of order completion

§ Restrictions:
– No tags, in-order matching

– Send and vector buffers may not be touched  during operation

– MPI_Cancel not supported

– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collective Communication

§ Semantic advantages:
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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A Non-Blocking Barrier?

§ What can that be good for? Well, quite a bit!

§ Semantics:

– MPI_Ibarrier() – calling process entered the barrier, no
synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses: 

– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but 

synchronize collectively!
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Nonblocking And Collective Summary

§ Nonblocking communication
– Overlap and relax synchronization

§ Collective communication
– Specialized pre-optimized routines 

– Performance portability

– Hopefully transparent performance

§ They can be composed
– E.g., software pipelining

78

Advanced Topics: One-sided Communication



One-sided Communication

§ The basic idea of one-sided communication models is to 
decouple data movement with process synchronization
– Should be able to move data without requiring that the remote 

process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible 

Memory

Remotely
Accessible 

Memory

Global 
Address 

Space
Private
Memory

Private
Memory

Private
Memory

Private
Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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Hybrid MPI + X : Most Popular Forms

117

GPU

Memory

CPU

Memory

Network 
Card

MPI + X

CPU

Memory

Network 
Card

CPU

Memory

Network 
Card

CPU

Memory

Network 
Card

CoreCore

MPI + 0 MPI + Threads MPI + 
Shared Memory

MPI +  ACC

CoreCore CoreCore

P0 P1P0 P1

MPI Process

T0 T1

Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is 
increasing in importance
– Hardware limitations: not all 

resources scale at the same 
rate as cores (e.g., memory 
capacity, network resources)

– Desire to solve the same 
problem faster on a bigger 
machine

• Nek5000, HACC, LAMMPS

119

Evolution of the memory capacity per core in the 
Top500 list (Peter Kogge. PIM & memory: The need for a 
revolution in architecture.)

Sunway
TaihuLight

§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all)  costly



Why Hybrid MPI+X? Towards Strong Scaling (2/3)

120

§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data 

structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px) 
communication patterns

§ Example 1: the Nek5000 team is working at the strong 
scaling limit

Nek5000

Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo 

Simulation (QCMPACK)

– Size of the physical system to 

simulate is bound by memory 

capacity [1]

– Memory space dominated by large 

interpolation tables (typically several 

GB of storage)

– Threads are used to share those 

tables

– Memory for communication buffers 

must be kept low to be allow 

simulation of larger and highly 

detailed simulations.
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Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2

MPI Process

Core Core Core

Communicate 
Walker 

information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.



Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

MPI Process MPI Process

MPI + ThreadsMPI only

Threads

Multi- or Many-
core Nodes

122

MPI + Threads: How To? (1/3)

§ MPI describes parallelism between 
processes (with separate address spaces)

§ Thread parallelism provides a shared-
memory model within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-

level parallelism. Threads are created and 
managed by the compiler, based on user 
directives.

– Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user.
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MPI Process
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MPI + Threads: How To? (2/3)



§ MPI_THREAD_SINGLE

– No additional threads

§ MPI_THREAD_FUNNELED

– Master thread communication only

§ MPI_THREAD_SERIALIZED

– Threaded communication serialized

§ MPI_THREAD_MULTIPLE

– No restrictions

•Restriction

•Low 
Thread-

Safety Costs

•Flexibility

•High 
Thread-

Safety Costs
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MPI   + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)

MPI+OpenMP correctness semantics

§ For OpenMP threads, the 
MPI+OpenMP correctness semantics 
are similar to that of MPI+threads
– Caution: OpenMP iterations need to be 

carefully mapped to which thread 
executes them (some schedules in 
OpenMP make this harder)

§ For OpenMP tasks, the general model 
to use is that an OpenMP thread can 
execute one or more OpenMP tasks
– An MPI blocking call should be assumed to 

block the entire OpenMP thread, so other 
tasks might not get executed
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Applications

OpenMP, Cilk, TBB MPI

Pthreads
or other threading packages



Hybrid Programming with Shared Memory

§ MPI-3 allows different processes to allocate shared memory 
through MPI
– MPI_Win_allocate_shared

§ Uses many of the concepts of one-sided communication

§ Applications can do hybrid programming using MPI or 
load/store accesses on the shared memory window

§ Other MPI functions can be used to synchronize access to 
shared memory regions

§ Can be simpler to program than threads
– Because memory locality is clear (needed for performance) and data 

sharing is explicit
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Accelerators in Parallel Computing

§ General purpose, highly parallel processors
– High FLOPs/Watt

– Unit of execution Kernel
– Separate physical memory subsystems

– Programming Models: OpenAcc, CUDA, OpenCL, …

§ Clusters with accelerators are becoming 
common

§ New programmability and performance 
challenges for programming models and 
runtime systems
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MPI + Accelerator Programming Examples
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GPU

Memory

CPU

Memory

Network 
Card

GPU

Memory

CPU

Memory

Network 
Card

How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI 
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”

Section Summary

§ Programming with accelerators is becoming increasingly 
important

§ MPI is playing its role in enabling the usage of accelerators 
across distributed memory nodes

§ The situation with MPI + GPU support is improving in both 
MPI implementations and in GPU hardware/software 
capabilities
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Web Pointers
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§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations: 
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, NEC MPI, Fujitsu MPI, …

§ Several MPI tutorials can be found on the web

Tutorial Books on MPI
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Basic MPI Advanced MPI, including MPI-3


