
Introduction to Parallel Computing

Victor Eijkhout

October, 2012

What is Parallel Computing?
• Parallel computing: use of multiple processors or

computers working together on a common task.
– Each processor works on part of the problem

– Processors can exchange information

Paradigm #1: Data parallelism
• The program models a physical object, which gets

partitioned and divided over the processors

Grid of Problem to be solved

CPU #1 works on this area
of the problem

CPU #3 works on this area
of the problem

 CPU #4 works on this area
of the problem

 CPU #2 works on this area
of the problem

y

x

exchange

exchange

exchange

exchange

Paradigm #2: Task parallelism
• There is a list of tasks (for instance runs of a small

program) and processors cycle through this list until it is
exhausted.

• Tasks can be partially ordered: Directed Acyclic Graph

Why Do Parallel Computing?

• Limits of single CPU computing
– performance

– available memory

• Parallel computing allows one to:
– solve problems that don’t fit on a single CPU

– solve problems that can’t be solved in a reasonable time

• We can solve…
– larger problems

– faster

– more cases

Speedup & Parallel Efficiency

• Speedup:

– p = # of processors

– Ts = execution time of the
sequential algorithm

– Tp = execution time of the parallel
algorithm with p processors

– Sp= P (linear speedup: ideal)

• Parallel efficiency

S p =
Ts
Tp

E p =
S p
p

=
Ts
pTp

Sp

of processors

linear speedup

super-linear speedup

normal speedup

Limits of Parallel Computing

• Theoretical Upper Limits
– Amdahl’s Law

• Practical Limits
– Load balancing

– Non-computational sections

• Other Considerations
– time to re-write code

Amdahl’s Law
• All parallel programs contain:

– parallel sections (we hope!)
– serial sections (unfortunately)

• Serial sections limit the parallel effectiveness
• Amdahl’s Law states this formally

– Effect of multiple processors on speed up

where

• fs = serial fraction of code
• fp = parallel fraction of code
• P = number of processors

SP £
TS
TP

=
1

fs +
fp
P

®
1
fs
, p®¥

Amdahl’s Law

Practical Limits: Amdahl’s Law vs. Reality

• In reality, the situation is even worse than predicted by Amdahl’s
Law due to:
– Load balancing (waiting)
– Scheduling (shared processors or memory)
– Cost of Communications
– I/O

Sp

“Old school” hardware classification

SISD No parallelism in either instruction or data streams (mainframes)

SIMD Exploit data parallelism (stream processors, GPUs)

MISD doesn’t really exist

MIMD Multiple instructions operating independently on multiple data

streams (most modern general purpose computers)

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

Hardware in parallel computing
Memory access
• Shared memory

– SGI Altix

– Cluster nodes

• Distributed memory
– Uniprocessor clusters

• Hybrid
– Multi-processor clusters

– Processor with co-processor
(GPU)

– Cluster with multiple co-
processors (Stampede!)

Processor type
• Single core CPU

– Intel Xeon (Prestonia, Wallatin)
– AMD Opteron (Sledgehammer,

Venus)
– IBM POWER (3, 4)

• Multi-core CPU (since 2005)

– Intel Xeon (Paxville, Woodcrest,
Harpertown…)

– AMD Opteron (Barcelona,
Shanghai, Istanbul,…)

– IBM POWER (5, 6…)

• GPU based
– Tesla systems

Shared and distributed memory

• All processors have access to a

pool of shared memory

• Access times vary from CPU to
CPU in NUMA systems

• Example: SGI Altix, IBM P5
nodes

• Memory is local to each
processor

• Data exchange by message
passing over a network

• Example: Clusters with single-
socket blades

P

Memory

P P P P

P P P P P

M M M M M

Network

Hybrid systems

• A limited number, N, of processors have access to a common pool
of shared memory

• To use more than N processors requires data exchange over a
network

• Example: Cluster with multi-socket blades

Memory

Network

Memory Memory Memory Memory

Multi-core systems

• Extension of hybrid model

• Communication details increasingly complex
– Cache access
– Main memory access
– Quick Path / Hyper Transport socket connections
– Node to node connection via network

Memory

Network

Memory Memory Memory Memory

Co-processor Systems

• Calculations made in both CPUs and co-processors (GPU, MIC)

• No longer limited to single precision calculations

• Load balancing critical for performance

• Requires specific libraries and compilers (GPU: CUDA, OpenCL, MIC: OpenMP)

Network

G P U

Memory

G P U

Memory

G P U

Memory

G P U

Memory

Interconnects

Ken Raffenetti

Software Development Specialist

Programming Models and Runtime Systems Group

Mathematics and Computer Science Division

Argonne National Laboratory

End-host Network Interface Speeds

� Recent network technologies provide high bandwidth links

– InfiniBand EDR gives 100 Gbps per network link

• Upcoming networks expected to increase that by several fold

– Multiple network links becoming a common place

• ORNL Summit and LLNL Sierra machines, Japanese Post T2K machine

• Torus style or other multi-dimensional networks

� End-host peak network bandwidth is “mostly” no longer
considered a major limitation

� Network latency is still an issue

– That’s a harder problem to solve – limited by physics, not technology

• There is some room to improve it in current technology (trimming the fat)

• Significant effort in making systems denser so as to reduce network latency

� Other important metrics: message rate, congestion, …

ATPESC Workshop (07/30/2018)

Simple Network Architecture (past systems)

� Processor, memory,

network are all

decoupled

ATPESC Workshop (07/30/2018)

P0

Core0 Core1

Core2 Core3

P1

Core0 Core1

Core2 Core3

Memory

Memory I

/

O

B

u

s

Network Adapter

Network

Switch

Integrated Memory Controllers (current systems)

� In the past 10 years or so, memory

controllers have been integrated on

to the processor

� Primary purpose was scalable

memory bandwidth (NUMA)

� Also helps network communication

– Data transfer to/from network requires

coordination with caches

� Several network I/O technologies

exist

– PCIe, HTX, NVLink

– Expected to provide higher bandwidth

than what network links will have

ATPESC Workshop (07/30/2018)

P1

Core0 Core1

Core2 Core3

Memory

Memory

I

/

O

B

u

s

Network Adapter
Network

Switch

Memory

Controller

P0

Core0 Core1

Core2 Core3

Memory

Controller

Integrated Networks (current/future systems)

ATPESC Workshop (07/30/2018)

Network

Switch

P0

Core0 Core1

Core2 Core3

Memory

Controller

Network

Interface

Off-chip Memory

� Several vendors are considering

processor-integrated network

adapters

� May improve network bandwidth

– Unclear if the I/O bus would be a

bottleneck

� Improves network latencies

– Control messages between the

processor, network, and memory are

now on-chip

� Improves network functionality

– Communication is a first-class citizen

and better integrated with processor

features

– E.g., network atomic operations can be

atomic with respect to processor

atomics

In
-p

a
ck

a
g

e

M
e

m
o

ry

P1

Core0 Core1

Core2 Core3

Memory

Controller

Network

Interface

Off-chip Memory

In
-p

a
ck

a
g

e

M
e

m
o

ry

Traditional Network Topologies: Crossbar

� A network topology describes how different network

adapters and switches are interconnected with each other

� The ideal network topology (for performance) is a crossbar

– Alltoall connection between network adapters

– Typically done on a single network ASIC

– Current network crossbar ASICs go up to 64 ports; too expensive to

scale to higher port counts

– All communication is nonblocking

ATPESC Workshop (07/30/2018)

Traditional Network Topologies: Fat-tree

� The most common topology for small and medium scale

systems is a fat-tree

– Nonblocking fat-tree switches available in abundance

• Allows for pseudo nonblocking communication

• Between all pairs of processes, there exists a completely nonblocking

path, but not all paths are nonblocking

– More scalable than crossbars, but the number of network links still

increases super-linearly with node count

• Can get very expensive with scale

ATPESC Workshop (07/30/2018)

Network Topology Trends
� Modern topologies are moving towards

more “scalability” (with respect to cost, not
performance)

� Blue Gene, Cray XE/XK, and K

supercomputers use a torus-network; Cray

XC uses dragonfly

– Linear increase in the number of

links/routers with system size

– Any communication that is more than one

hop away has a possibility of interference –

congestion is not just possible, but common

– Even when there is no congestion, such

topologies increase the network diameter

causing performance loss

� Take-away: topological locality is important

and its not going to get better

ATPESC Workshop (07/30/2018)

Network Congestion Behavior: IBM BG/P

0

500

1000

1500

2000

2500

3000

3500
Ba

nd
w

id
th

 (M
bp

s)

Message Size (bytes)

P2-P5

P3-P4

No overlap

ATPESC Workshop (07/30/2018)

P0 P1 P2 P3 P4 P5 P6 P7

2D Nearest Neighbor: Process Mapping (XYZ)

ATPESC Workshop (07/30/2018)

X-Axis

Z-Axis

Y-Axis

Nearest Neighbor Performance: IBM BG/P

ATPESC Workshop (07/30/2018)

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32 64 128 256 512 1K

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Grid Partition (bytes)

System Size : 16K Cores

XYZT

TXYZ

ZYXT

TZYX

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128 256 512 1K

Ex
ec

ut
io

n
Ti

m
e

(u
s)

Grid Partition (bytes)

System Size : 128K Cores

XYZT

TXYZ

ZYXT

TZYX

2D Halo Exchange

ORNL is managed by UT-Battelle
for the US Department of Energy

Summit at the
Oak Ridge Leadership Computing Facility

Judy Hill
 Oak Ridge Leadership Computing Facility
 Oak Ridge National Laboratory

July 30, 2018
Argonne Training Program on Extreme-Scale Computing

What is the Leadership Computing Facility (LCF)?

•  Collaborative DOE Office of Science program at
ORNL and ANL

•  Mission: Provide the computational and data
resources required to solve the most challenging
problems.

•  2-centers/2-architectures to address diverse and
growing computational needs of the scientific
community

•  Highly competitive user allocation programs
(INCITE, ALCC).

•  Projects receive 10x to 100x more resource than
at other generally available centers.

•  LCF centers partner with users to enable science
& engineering breakthroughs (Liaisons,
Catalysts).

OLCF Path to Exascale

The Exascale Computing Project has
emphasized that Exascale is a measure
of application performance, and this RFP
reflects that, asking for nominally 50×
improvement over Sequoia and Titan.

 -- Design Reviewer

Jaguar: 2.3 PF
World’s Fastest

Titan: 27 PF
Accelerated Computing
World’s Fastest

2008 2012 2017 2021

Summit: 200 PF
Accelerated Computing
5–10× Titan Performance

Frontier: >1000 PF
Competitive Procurement
5-10× Summit
Performance

50–100× application performance of Titan

Support for traditional modeling and simulation,
high-performance data analysis, and artificial
intelligence applications

Peak performance of at least 1300 PF

Smooth transition for existing and future applications

Competitive
procurement
asking for:

Coming Soon: Summit is replacing Titan as
the OLCF’s leadership supercomputer

•  Many fewer nodes

•  Much more powerful nodes

•  Much more memory per node
and total system memory

•  Faster interconnect

•  Much higher bandwidth
between CPUs and GPUs

•  Much larger and faster file
system

Feature Titan Summit
Application Performance Baseline 5-10x Titan

Number of Nodes 18,688 4,608

Node performance 1.4 TF 42 TF

Memory per Node 32 GB DDR3 + 6 GB GDDR5 512 GB DDR4 + 96 GB HBM2

NV memory per Node 0 1600 GB

Total System Memory 710 TB >10 PB DDR4 + HBM2 + Non-volatile

System Interconnect Gemini (6.4 GB/s) Dual Rail EDR-IB (25 GB/s)

Interconnect Topology 3D Torus Non-blocking Fat Tree

Bi-Section Bandwidth 112 TB/s 115.2 TB/s

Processors 1 AMD Opteron™
1 NVIDIA Kepler™

2 IBM POWER9™
6 NVIDIA Volta™

File System 32 PB, 1 TB/s, Lustre® 250 PB, 2.5 TB/s, GPFS™

Power Consumption 9 MW 13 MW

Summit Overview

IBM POWER9
•  22 Cores
•  4 Threads/core
•  NVLink

NVIDIA GV100
•  7 TF
•  16 GB @ 0.9 TB/s
•  NVLink

Components

Compute Node

2 x POWER9
6 x NVIDIA GV100
NVMe-compatible PCIe 1600 GB SSD

25 GB/s EDR IB- (2 ports)
512 GB DRAM- (DDR4)
96 GB HBM- (3D Stacked)
Coherent Shared Memory

Compute Rack

39.7 TB Memory/rack
55 KW max power/rack

18 Compute Servers
Warm water (70°F direct-cooled
 components)
RDHX for air-cooled components

Compute System
10.2 PB Total Memory

256 compute racks
4,608 compute nodes

Mellanox EDR IB fabric
200 PFLOPS

~13 MW

GPFS File System
250 PB storage

2.5 TB/s read, 2.5 TB/s write
(**2.5 TB/s sequential and 2.2 TB/s random I/O)

Summit Node Overview

P9 P9

DRAM
256 GBH

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

DRAM
256 GB H

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

TF 42 TF (6x7 TF)
HBM 96 GB (6x16 GB)
DRAM 512 GB (2x16x16 GB)
NET 25 GB/s (2x12.5 GB/s)
MMsg/s 83

N
IC

HBM/DRAM Bus (aggregate B/W)
NVLINK
X-Bus (SMP)
PCIe Gen4
EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

NVM
6.0 GB/s Read
2.2 GB/s Write

12
.5

 G
B/

s

12
.5

 G
B/

s

16 G
B/s 16

 G
B/

s

64
GB/s

13
5

G
B/

s

13
5

G
B/

s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

17
0

G
B

/s

17
0

G
B

/s

Summit Node Overview: System Balance Ratios
Summit Titan

Memory subsystem to Intra-node connectivity ratios

HBM BW : DDR BW 15.8 4.9

HBM BW : CPU-GPU BW 18 39

Per HBM BW : GPU-GPU BW 18 --

DDR BW : CPU-GPU BW 1.13 8

HBM capacity : GPU-GPU BW 0.32 --

Memory subsystem to FLOPS ratios

Memory capacity : GFLOPS 0.01 0.03

Interconnect subsystem to FLOPS ratios

Injection BW : GFLOPS 0.0006 0.004

Other ratios

Filesystem : Memory capacity 89 42

FLOPS : Power (MW) 15.4 3

P9 P9

DRAM
256 GBH

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

DRAM
256 GB H

BM
16

 G
B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

H
BM

16
 G

B

G
PU 7
TF

TF 42 TF (6x7 TF)
HBM 96 GB (6x16 GB)
DRAM 512 GB (2x16x16 GB)
NET 25 GB/s (2x12.5 GB/s)
MMsg/s 83

N
IC

HBM/DRAM Bus (aggregate B/W)
NVLINK
X-Bus (SMP)
PCIe Gen4
EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

NVM
6.0 GB/s Read
2.2 GB/s Write

12
.5

 G
B/

s

12
.5

 G
B/

s

16 G
B/s 16

 G
B/

s

64
GB/s

13
5

G
B/

s

13
5

G
B/

s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50 GB/s

50 GB/s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

50
 G

B/
s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

90
0

 G
B/

s
90

0
 G

B/
s

90
0

 G
B/

s

17
0

G
B

/s

17
0

G
B

/s

Reference: Vazhkudai, et. al. The Design, Deployment, and Evaluation of the
CORAL Pre-Exascale Systems. SC18 Proceedings. To appear.

IBM Power9 Processor
•  Up to 24 cores

–  CORAL has 22 cores for yield optimization
on first processors

•  PCI-Express 4.0
–  Twice as fast as PCIe 3.0

•  NVLink 2.0
–  Coherent, high-bandwidth links to GPUs

•  14nm FinFET SOI technology
–  8 billion transistors

•  Cache
–  L1I: 32 KiB per core, 8-way set associative
–  L1D: 32KiB per core, 8-way
–  L2: 258 KiB per core
–  L3: 120 MiB eDRAM, 20-way

Stream benchmark: Summit vs Titan

•  A simple synthetic benchmark program that measures achievable memory
bandwidth (in GB/s) under OpenMP threading.

For Peak (Summit):
•  GCC compiler
•  Best result in 1000 tests
•  Runtime variability up to 9%

System
Cores

Peak (Summit)
44

Titan
16

Copy 274.6 34.9

Scale 271.4 35.3

Add 270.6 33.6

Triad 275.3 33.7

Peak (theoretical) 340 51.2

Fraction of Peak 82% 67%

System Peak (Summit)

Titan

Copy 789 181

Scale 788 181

Add 831 180

Triad 831 180

Peak (theoretical) 900 250

Fraction of Peak 92% 72%

DRAM Bandwidth GDDR Bandwidth

Slide courtesy of Wayne Joubert, ORNL

NVIDIA Volta Details

Note: The performance numbers are peak and not representative of Summit’s Volta

TensorCores™
Mixed Precision
(16b Matrix-Multiply-Add
and 32b Accumulate)

NVLink Bandwidth

• Measured from core 0 the achieved CPU-GPU NVLink rates with a
modified bandwidthTest from NVIDIA CUDA Samples

• Not necessarily a use case that most applications will employ

GPU 0 1 2 3 4 5 peak

Host to Device 45.93 45.92 45.92 40.63 40.59 40.64 50

Device to Host 45.95 45.95 45.95 36.60 36.52 35.00 50

Bi-Directional 86.27 85.83 77.36 66.14 65.84 64.76 100

Slide courtesy of Wayne Joubert, ORNL

Single Node Single GPU NVLink Rates (GB/s)

NVLink Bandwidth

• Measured the achieved CPU-GPU NVLink rates with a modified
bandwidthTest from NVIDIA CUDA Samples using multiple MPI process
evenly spread between the sockets.

• Ultimately limited by the CPU memory bandwith
•  6 ranks driving 6 GPUs is an expected use case for many applications

MPI Process Count 1 2 3 4 5 6 Peak
(6)

Host to Device 45.93 91.85 137.69 183.54 229.18 274.82 300

Device to Host 45.95 91.90 137.85 183.80 225.64 268.05 300

Bi-Directional 85.60 172.59 223.54 276.34 277.39 278.07 600

Slide courtesy of Wayne Joubert, ORNL

NVLink Rates with MPI Processes (GB/s)

NVLink Bandwidth

• Measured the achived NVLink transfer rates between GPUs, both within a
socket and across them, using p2pBandwidthLatencyTest from NVIDIA
CUDA Samples. (Peer-to-Peer communication turned on).

• Cross-socket bandwidth is much lower than that between GPUs attached

to the same CPU socket

Socket 0 1 Cross Peak

Uni-Directional 46.33 46.55 25.89 50

Bi-Directional 93.02 93.11 21.63 100

Slide courtesy of Wayne Joubert, ORNL

NVLink Rates for GPU-GPU Transfers (GB/s)

Summit Programming Environment

• Compilers supporting OpenMP
and OpenACC
–  IBM XL, PGI, LLVM, GNU, NVIDIA

• Libraries
–  IBM Engineering and Scientific

Subroutine Library (ESSL)
–  FFTW, ScaLAPACK, PETSc,

Trilinos, BLAS-1,-2,-3, NVBLAS
–  cuFFT, cuSPARSE, cuRAND, NPP,

Thrust

• Debugging
–  Allinea DDT, IBM Parallel

Environment Runtime Edition (pdb)
–  Cuda-gdb, Cuda-memcheck,

valgrind, memcheck, helgrind,
stacktrace

• Profiling
–  IBM Parallel Environment Developer

Edition (HPC Toolkit)
–  VAMPIR, Tau, Open|Speedshop,

nvprof, gprof, Rice HPCToolkit

Summit vs Titan PE comparison

The majority of tools available on Titan are also
available on Summit. A few transitions may be
necessary.

Debugger Titan Summit

DDT Yes Yes

cuda-gdb, -memcheck Yes Yes

Valgrind, memcheck, helgrind Yes Yes

Stack trace analysis tool Yes Yes

pdb No Yes

Compiler Titan Summit

PGI Yes Yes

GCC Yes Yes

XL No Yes

LLVM No Yes

Cray Yes No

Intel Yes No

Performance Tools Titan Summit

Open|SpeedShop Yes Yes

TAU Yes Yes

CrayPAT Yes No

Reveal Yes No

HPCToolkit (IBM) No Yes

HPCToolkit (Rice) Yes Yes

VAMPIR Yes Yes

nvprof Yes Yes

gprof Yes Yes

Programming Multiple GPUs

• Multiple paths, with different levels of flexibility and sophistication
–  Simple model looks like Titan
–  Additional models expose the node-level parallelism mode directly
–  Low-level approaches are available, but not what we would recommend to

users unless there is a particular reason

• Exposing more (node-level) parallelism is key to scalable applications
from petascale up

One GPU Per MPI Rank

• Deploy one MPI rank per GPU (6 per
node)
–  Bind each rank to a specific GPU

• This model looks like Titan
• MPI ranks can use OpenMP (or

pthreads) to utilize more of the CPU
cores
–  CPU is only a small percentage of the

total FLOPS

CPU0
Rank 0 Rank 1 Rank 2

CPU 1
Rank 3 Rank 4 Rank 5

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

One GPU Per MPI Rank

• Expect this to be the most commonly
used approach.

• Pros:
ü Straightforward extension for those

already using Titan

• Cons:
–  Assumes similar amount of work to be

done by all ranks
–  Potentially leaves a core on the Power9

unoccupied (or available to do
something else)

CPU0
Rank 0 Rank 1 Rank 2

CPU 1
Rank 3 Rank 4 Rank 5

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

Multiple GPUs Per MPI Rank

•  Deploy one MPI rank per 2-6 GPUs
–  Likely configurations:

•  3 ranks/node (1:2)
•  2 ranks/node (1:3)
•  1 rank/node (1:6)

•  Use threads and/or language
constructs to offload to specific
devices

•  Multiple approaches possible,
depending on language

CPU0
Rank 0

CPU 1
Rank 1

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

Multiple GPUs Per MPI Rank, Explicit Control

•  OpenMP+OpenACC
–  Launch one OpenMP thread per GPU
–  Within each thread make OpenACC calls

using acc_set_device_num()

•  OpenMP 4 (accelerator target)
–  device_num() clause

•  OpenACC
–  acc_set_device_num()
–  (Need to add similar clause for directives)
–  Eventually: compiler+runtime could break

up large offload tasks across multiple
GPUs automatically

•  CUDA
–  cudaSetDevice()method

CPU0
Rank 0

CPU 1
Rank 1

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

Multiple GPUs Per MPI Rank, Implicit Control

•  OpenMP and OpenACC
–  Eventually: compiler+runtime could break

up large offload tasks across multiple
GPUs automatically

•  Task-based execution models are
available for CUDA, OpenMP and
under development for OpenACC
–  Provide more flexibility to distribute work

to multiple GPUs

•  Multi-GPU aware libraries
–  CUBLAS
–  CUFFT

CPU0
Rank 0

CPU 1
Rank 1

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

08/02/2018

Argonne Training Program on Exascale Computing  

Tim Warburton  
John K. Costain Faculty Chair in the College of Science
Professor Of Mathematics and Affiliate Faculty in CMDA 

Virginia Tech

An Introduction to Graphics Processing Unit  
Architecture and Programming Models

CPU: architecture follows purpose

 21

Original design goals for CPUs:

• Make single threads very fast.

• Reduce latency through large caches.

• Predict, speculate.

Execution context: memory and hardware associated to a specific stream of instructions, e.g. registers.

CPU: abstract modern architecture
Modern “CPU-Style” core design emphasizes 

individual thread performance.

 22

Instruction
Fetch/Decode

ALU (Execute)

Out-of-order control logic

Branch predictor logic

Memory pre fetch unit

Large data cache

Execution
contexts 

 
 
 
 

Adapted from presentations by Andreas Klöckner and Kayvon Fatahalian

http://developer.nvidia.com/object/gpu-gems-3.html

GPU: massively parallel processing
The main purpose of graphics processing units is to project textured

polygons onto the screen in a fiercely competitive consumer-facing industry.

 23

This is an embarrassingly parallel process and specialized MPP chips
have been created by ATi (now AMD), Intel, NVIDIA et al  

to perform floating point intensive operations to render scenes in realtime.

Fallout 4 Screenshot  
http://www.gamespot.com/articles/check-out-fallout-4-1080p-screenshots-from-the-deb/1100-6427822/

GPU: massively parallel compute

 24

Design goals for GPUs:

• Throughput matters and single threads do not.

• Hide memory latency through parallelism.

• Let programmer deal with “raw” storage hierarchy.

• Avoid high frequency clock speed:

• Desirable for portable devices, consoles, laptops…

http://developer.nvidia.com/object/gpu-gems-3.html

Compilers may need to be coaxed into generating vector instructions for CPU.
Recall: “Performance, SIMD, Vectorization and Performance Tuning” talk by James Reindeer.

CPU v GPU: fundamental difference #1
Each CPU core executes scalar or vector operations.  

Each GPU core only executes vector instructions.

 28

CPU: Single Instruction Multiple Data (SIMD)  
parallelism through ILP & vector execution units.

http://en.wikichip.org/wiki/intel/microarchitectures/skylake

GPU: SIMD parallel execution
of all operations

Compilers may need to be coaxed into generating vector instructions for CPU.

CPU v GPU: fundamental difference #2
GPU cores are engineered to switch quickly  

between threads to recover stalls

 29

Skylake core: 180 Integer registers and  
168 floating point registers

http://en.wikichip.org/wiki/intel/microarchitectures/skylake

Maxwell core: 16K registers

* SIMD width here is the number of ALUs in one of the core’s vector unit.
The actual specifics vary but this is a good abstract viewpoint.

GPU: summary of architecture
Summary of multi-level GPU parallel architecture

 30

• A GPU has multiple cores and each core:  

• Has one (or more) wide SIMD vector units.  

• Wide SIMD vector units execute one instruction stream.  

• Has a pool of shared memory.  

• Shares a register file shared privately among all the ALUs.  

• Fast switches thread blocks to hide memory latency.

• Branching code (“ifs”) involves partial serialization. 

• Nice summary: 
http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html

* SIMD here is the number of ALUs in one of the core’s vector unit.

GPU: natural thread model
The GPU architecture admits a natural parallel threading model

 46

• Programmer partitions a compute task into kernel code:  

• Programmer assigns kernel code to independent work-blocks:  

• Work-block assigned to a core with sufficient resources to process it:  

• Each core processes work-block kernel code with a work-group of “threads”  

- The work-group is batch processed in sub-groups of SIMD* work-items.  

- Each work-item processed by a “thread” passing through a SIMD lane.  

- A stalling SIMD group of “threads” is idled until it can continue. 

- “Threads” in a work-group can collaborate through shared memory.  

- The work-block stays resident until completed by core (using resources).  

• Main assumption: same instructions for independent work-groups.

Parallel programming models

• Data Parallelism
– Each processor performs the same task on

different data

• Task Parallelism
– Each processor performs a different task on

different data

• Most applications fall between these two

Single Program Multiple Data

• SPMD: dominant programming model for shared and
distributed memory machines.
– One source code is written
– Code can have conditional execution based on which processor is

executing the copy
– All copies of code start simultaneously and communicate and sync

with each other periodically

• MPMD: more general, and possible in hardware, but no
system/programming software enables it

SPMD Model

source.c

processor 3 processor 2 processor 1 processor 0

source.c source.c source.c source.c

Network

Data Parallel Programming Example

• One code will run on 2 CPUs
• Program has array of data to be operated on by 2 CPUs so array is split

into two parts.

program:
…
if CPU=a then
 low_limit=1
 upper_limit=50
elseif CPU=b then
 low_limit=51
 upper_limit=100
end if
do I = low_limit,
upper_limit
 work on A(I)
end do
...
end program

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit,
upper_limit
 work on A(I)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit,
upper_limit
 work on A(I)
end do
…
end program

Distributed Data Parallel Programming

• Since each CPU has local address space: local indexing only

CPU A CPU B

program:
…
low_limit=1
upper_limit=50
do I= low_limit, upper_limit
 work on A(I-low_limit)
end do
…
end program

program:
…
low_limit=51
upper_limit=100
do I= low_limit, upper_limit
 work on A(I-low_limit)
end do
…
end program

Task Parallel Programming Example

• One code will run on 2 CPUs
• Program has 2 tasks (a and b) to be done by 2 CPUs

program.f:
…
initialize
...
if CPU=a then
 do task a
elseif CPU=b then
 do task b
end if
….
end program

CPU A CPU B

program.f:
…
initialize
…
do task a
…
end program

program.f:
…
initialize
…
do task b
…
end program

Introduction to OpenMP

•  Introduction
•  OpenMP basics
•  OpenMP directives, clauses, and library

routines

Motivation

•  Pthread is too tedious: explicit thread
management is often unnecessary
– Consider the matrix multiply example

•  We have a sequential code, we know which loop can
be executed in parallel; the program conversion is
quite mechanic: we should just say that the loop is to
be executed in parallel and let the compiler do the
rest.

•  OpenMP does exactly that!!!

What is OpenMP?

•  What does OpenMP stands for?
–  Open specifications for Multi Processing via collaborative work

between interested parties from the hardware and software
industry, government and academia.

•  OpenMP is an Application Program Interface
(API) that may be used to explicitly direct multi-
threaded, shared memory parallelism.

•  API components: Compiler Directives, Runtime Library
Routines. Environment Variables

•  OpenMP is a directive-based method to invoke parallel
computations on share-memory multiprocessors

What is OpenMP?

•  OpenMP API is specified for C/C++ and Fortran.
•  OpenMP is not intrusive to the original serial

code: instructions appear in comment statements
for fortran and pragmas for C/C++.

•  OpenMP website: http://www.openmp.org
–  Materials in this lecture are taken from various

OpenMP tutorials in the website and other places.

Why OpenMP?

•  OpenMP is portable: supported by HP, IBM, Intel,
SGI, SUN, and others
–  It is the de facto standard for writing shared memory

programs.
–  To become an ANSI standard?

•  OpenMP can be implemented incrementally, one
function or even one loop at a time.
–  A nice way to get a parallel program from a sequential

program.

OpenMP execution model

•  OpenMP uses the fork-join model of parallel
execution.
–  All OpenMP programs begin with a single master thread.
–  The master thread executes sequentially until a parallel region is

encountered, when it creates a team of parallel threads (FORK).
–  When the team threads complete the parallel region, they

synchronize and terminate, leaving only the master thread that
executes sequentially (JOIN).

OpenMP general code structure
#include <omp.h>
main () {
 int var1, var2, var3;
 Serial code
 . . .
 /* Beginning of parallel section. Fork a team of threads. Specify variable scoping*/
 #pragma omp parallel private(var1, var2) shared(var3)
 {
 /* Parallel section executed by all threads */
 . . .
 /* All threads join master thread and disband*/
 }
 Resume serial code
 . . .
}

Data model

•  Private and shared variables
• Variables in the global data space
are accessed by all parallel threads
(shared variables).

•  Variables in a thread�s private
space can only be accessed by the
thread (private variables)

•  several variations, depending on the
initial values and whether the results are
copied outside the region.

#pragma omp parallel for private(privIndx, privDbl)
 for (i = 0; i < arraySize; i++) {
 for (privIndx = 0; privIndx < 16; privIndx++)

{ privDbl = ((double) privIndx) / 16;
 y[i] = sin(exp(cos(- exp(sin(x[i]))))) +

cos(privDbl);
 }
}

Parallel for loop index is
Private by default.

Sequential Matrix Multiply

For (I=0; I<n; I++)
 for (j=0; j<n; j++)
 c[I][j] = 0;
 for (k=0; k<n; k++)
 c[I][j] = c[I][j] + a[I][k] * b[k][j];

OpenMP Matrix Multiply

#pragma omp parallel for private(j, k)
For (I=0; I<n; I++)
 for (j=0; j<n; j++)
 c[I][j] = 0;
 for (k=0; k<n; k++)
 c[I][j] = c[I][j] + a[I][k] * b[k][j];

1

An Introduction to MPI
Parallel Programming with the  

Message Passing Interface
William Gropp

Ewing Lusk
Argonne National Laboratory

2

The Message-Passing Model

•  A process is (traditionally) a program counter
and address space.

•  Processes may have multiple threads
(program counters and associated stacks)
sharing a single address space. MPI is for
communication among processes, which
have separate address spaces.

•  Interprocess communication consists of
–  Synchronization
–  Movement of data from one process�s address

space to another�s.

3

Types of Parallel Computing
Models

•  Data Parallel - the same instructions are carried out
simultaneously on multiple data items (SIMD)

•  Task Parallel - different instructions on different data
(MIMD)

•  SPMD (single program, multiple data) not
synchronized at individual operation level

•  SPMD is equivalent to MIMD since each MIMD
program can be made SPMD (similarly for SIMD, but
not in practical sense.)

 Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of an SIMD interface.

4

Cooperative Operations for
Communication

•  The message-passing approach makes the exchange
of data cooperative.

•  Data is explicitly sent by one process and received by
another.

•  An advantage is that any change in the receiving
process�s memory is made with the receiver�s explicit
participation.

•  Communication and synchronization are combined.

Process 0 Process 1

Send(data)
Receive(data)

5

One-Sided Operations for
Communication

•  One-sided operations between processes include
remote memory reads and writes

•  Only one process needs to explicitly participate.
•  An advantage is that communication and

synchronization are decoupled
•  One-sided operations are part of MPI-2.

Process 0 Process 1

Put(data)

(memory)

(memory)
Get(data)

6

What is MPI?
•  A message-passing library specification

–  extended message-passing model
–  not a language or compiler specification
–  not a specific implementation or product

•  For parallel computers, clusters, and
heterogeneous networks

•  Full-featured
•  Designed to provide access to advanced

parallel hardware for
–  end users
–  library writers
–  tool developers

7

MPI Basic Send/Receive

•  We need to fill in the details in

•  Things that need specifying:
–  How will �data� be described?
–  How will processes be identified?
–  How will the receiver recognize/screen messages?
–  What will it mean for these operations to

complete?

Process 0 Process 1

Send(data)
Receive(data)

8

What is message passing?
•  Data transfer plus synchronization

•  Requires cooperation of sender and receiver
•  Cooperation not always apparent in code

Data Process 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

9

Some Basic Concepts

•  Processes can be collected into groups.
•  Each message is sent in a context, and must

be received in the same context.
•  A group and context together form a

communicator.
•  A process is identified by its rank in the group

associated with a communicator.
•  There is a default communicator whose group

contains all initial processes, called
MPI_COMM_WORLD.

10

MPI Datatypes

•  The data in a message to sent or received is
described by a triple (address, count, datatype),
where

•  An MPI datatype is recursively defined as:
–  predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE_PRECISION)
–  a contiguous array of MPI datatypes
–  a strided block of datatypes
–  an indexed array of blocks of datatypes
–  an arbitrary structure of datatypes

•  There are MPI functions to construct custom
datatypes, such an array of (int, float) pairs, or a row
of a matrix stored columnwise.

11

MPI Tags

•  Messages are sent with an accompanying
user-defined integer tag, to assist the
receiving process in identifying the message.

•  Messages can be screened at the receiving
end by specifying a specific tag, or not
screened by specifying MPI_ANY_TAG as the
tag in a receive.

•  Some non-MPI message-passing systems
have called tags �message types�. MPI calls
them tags to avoid confusion with datatypes.

12

MPI Basic (Blocking) Send
MPI_SEND (start, count, datatype, dest, tag, comm)

•  The message buffer is described by (start, count,
datatype).

•  The target process is specified by dest, which is the
rank of the target process in the communicator specified
by comm.

•  When this function returns, the data has been delivered
to the system and the buffer can be reused. The
message may not have been received by the target
process.

13

MPI Basic (Blocking) Receive
MPI_RECV(start, count, datatype, source, tag, comm, status)

•  Waits until a matching (on source and tag) message is

received from the system, and the buffer can be used.
•  source is rank in communicator specified by comm, or
MPI_ANY_SOURCE.

•  status contains further information
•  Receiving fewer than count occurrences of datatype is

OK, but receiving more is an error.

14

MPI is Simple

•  Many parallel programs can be written using
just these six functions, only two of which are
non-trivial:
–  MPI_INIT
–  MPI_FINALIZE
–  MPI_COMM_SIZE
–  MPI_COMM_RANK
–  MPI_SEND
–  MPI_RECV

•  Point-to-point (send/recv) isn�t the only way...

15

When to use MPI

•  Portability and Performance
•  Irregular Data Structures
•  Building Tools for Others

–  Libraries
•  Need to Manage memory on a per processor

basis

MPI for Scalable Computing

William Gropp1 Rajeev Thakur2 Pavan Balaji2
1University of Illinois

2Argonne National Laboratory

5

Timeline of the MPI Standard
§ MPI-1 (1994), presented at SC’93

– Basic point-to-point communication, collectives, datatypes, etc

§ MPI-2 (1997)
– Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes,

thread support, C++ bindings, …

§ ---- Unchanged for 10 years ----

§ MPI-2.1 (2008)
– Minor clarifications and bug fixes to MPI-2

§ MPI-2.2 (2009)
– Small updates and additions to MPI 2.1

§ MPI-3.0 (2012)
– Major new features and additions to MPI (nonblocking collectives, neighborhood

collectives, improved RMA, tools interface, Fortran 2008 bindings, etc.)

§ MPI-3.1 (2015)
– Small updates to MPI 3.0

Understanding MPI Performance on Modern
Processors
§ MPI was developed when a single processor required multiple chips and

most processors and nodes had a single core.

§ Building effective, scalable applications requires having a model of how

the system executes, how it performs, and what operations it can perform

– This is (roughly) the execution model for the system, along with a performance
model

§ For decades, a simple model worked for designing and understanding MPI

programs

– Programs communicate either with point-to-point communication

(send/recv), with a performance model of T = s + r n, where s is latency

(startup) and r is inverse bandwidth (rate), or collective communication

§ But today, processors are multi-core and many nodes are multi-chip.

– How does that change how we think about performance and MPI?

11

Introduction to Collective Operations in MPI

§ Collective operations are called by all processes in a
communicator.

§ MPI_BCAST distributes data from one process (the root) to all
others in a communicator.

§ MPI_REDUCE combines data from all processes in the
communicator and returns it to one process.

§ In many numerical algorithms, SEND/RECV can be replaced by
BCAST/REDUCE, improving both simplicity and efficiency.

63

MPI Collective Communication

§ Communication and computation is coordinated among a
group of processes in a communicator

§ Tags are not used; different communicators deliver similar
functionality

§ Non-blocking collective operations in MPI-3

§ Three classes of operations: synchronization, data movement,
collective computation

64

Synchronization

§ MPI_BARRIER(comm)
– Blocks until all processes in the group of communicator comm call it
– A process cannot get out of the barrier until all other processes have

reached barrier

§ Note that a barrier is rarely, if ever, necessary in an MPI program
§ Adding barriers “just to be sure” is a bad practice and causes unnecessary

synchronization. Remove unnecessary barriers from your code.

§ One legitimate use of a barrier is before the first call to MPI_Wtime to
start a timing measurement. This causes each process to start at
approximately the same time.

§ Avoid using barriers other than for this.

65

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

66

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

67

Collective Computation

P0
P1
P2
P3

P0

P1
P2
P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

68

MPI Collective Routines

§ Many Routines, including: MPI_ALLGATHER, MPI_ALLGATHERV,
MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV,
MPI_BCAST, MPI_EXSCAN, MPI_GATHER, MPI_GATHERV,
MPI_REDUCE, MPI_REDUCE_SCATTER, MPI_SCAN,
MPI_SCATTER, MPI_SCATTERV

§ “All” versions deliver results to all participating processes

§ “V” versions (stands for vector) allow the chunks to have different
sizes

§ “W” versions for ALLTOALL allow the chunks to have different sizes
in bytes, rather than units of datatypes

§ MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCE_SCATTER,

MPI_REDUCE_SCATTER_BLOCK, MPI_EXSCAN, and MPI_SCAN
take both built-in and user-defined combiner functions

69

MPI Built-in Collective Computation Operations

§ MPI_MAX
§ MPI_MIN
§ MPI_PROD
§ MPI_SUM
§ MPI_LAND
§ MPI_LOR
§ MPI_LXOR
§ MPI_BAND
§ MPI_BOR
§ MPI_BXOR
§ MPI_MAXLOC
§ MPI_MINLOC
§ MPI_REPLACE,

MPI_NO_OP

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Bitwise and
Bitwise or
Bitwise exclusive or
Maximum and location
Minimum and location
Replace and no operation (RMA)

70

Defining your own Collective Operations

§ Create your own collective computations with:
MPI_OP_CREATE(user_fn, commutes, &op);
MPI_OP_FREE(&op);

user_fn(invec, inoutvec, len, datatype);

§ The user function should perform:
inoutvec[i] = invec[i] op inoutvec[i];
for i from 0 to len-1

§ The user function can be non-commutative, but must be
associative

71

Nonblocking Collectives

72

Nonblocking Collective Communication

§ Nonblocking communication
– Deadlock avoidance

– Overlapping communication/computation

§ Collective communication
– Collection of pre-defined optimized routines

§ Nonblocking collective communication
– Combines both advantages

– System noise/imbalance resiliency

– Semantic advantages

73

Nonblocking Communication

§ Semantics are simple:

– Function returns no matter what

– No progress guarantee!

§ E.g., MPI_Isend(<send-args>, MPI_Request *req);

§ Nonblocking tests:

– Test, Testany, Testall, Testsome

§ Blocking wait:

– Wait, Waitany, Waitall, Waitsome

74

Nonblocking Collective Communication

§ Nonblocking variants of all collectives
– MPI_Ibcast(<bcast args>, MPI_Request *req);

§ Semantics:
– Function returns no matter what

– No guaranteed progress (quality of implementation)

– Usual completion calls (wait, test) + mixing

– Out-of order completion

§ Restrictions:
– No tags, in-order matching

– Send and vector buffers may not be touched during operation

– MPI_Cancel not supported

– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
75

Nonblocking Collective Communication

§ Semantic advantages:
– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization
• Noise resiliency!

– Allow overlapping communicators
• See also neighborhood collectives

– Multiple outstanding operations at any time
• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
76

A Non-Blocking Barrier?

§ What can that be good for? Well, quite a bit!

§ Semantics:

– MPI_Ibarrier() – calling process entered the barrier, no
synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

§ Uses:

– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but

synchronize collectively!

77

Nonblocking And Collective Summary

§ Nonblocking communication
– Overlap and relax synchronization

§ Collective communication
– Specialized pre-optimized routines

– Performance portability

– Hopefully transparent performance

§ They can be composed
– E.g., software pipelining

78

Advanced Topics: One-sided Communication

One-sided Communication

§ The basic idea of one-sided communication models is to
decouple data movement with process synchronization
– Should be able to move data without requiring that the remote

process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory

Private
Memory

Private
Memory

Process 0

Private
Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Remotely
Accessible

Memory

Global
Address

Space
Private
Memory

Private
Memory

Private
Memory

Private
Memory

80

Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

81

One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

82

Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending

process is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

83

Hybrid MPI + X : Most Popular Forms

117

GPU

Memory

CPU

Memory

Network
Card

MPI + X

CPU

Memory

Network
Card

CPU

Memory

Network
Card

CPU

Memory

Network
Card

CoreCore

MPI + 0 MPI + Threads MPI +
Shared Memory

MPI + ACC

CoreCore CoreCore

P0 P1P0 P1

MPI Process

T0 T1

Why Hybrid MPI+X? Towards Strong Scaling (1/3)

§ Strong scaling applications is
increasing in importance
– Hardware limitations: not all

resources scale at the same
rate as cores (e.g., memory
capacity, network resources)

– Desire to solve the same
problem faster on a bigger
machine

• Nek5000, HACC, LAMMPS

119

Evolution of the memory capacity per core in the
Top500 list (Peter Kogge. PIM & memory: The need for a
revolution in architecture.)

Sunway
TaihuLight

§ Strong scaling pure MPI applications is getting harder
– On-node communication is costly compared to load/stores

– O(Px) communication patterns (e.g., All-to-all) costly

Why Hybrid MPI+X? Towards Strong Scaling (2/3)

120

§ MPI+X benefits (X= {threads,MPI shared-memory, etc.})
– Less memory hungry (MPI runtime consumption, O(P) data

structures, etc.)

– Load/stores to access memory instead of message passing

– P is reduced by constant C (#cores/process) for O(Px)
communication patterns

§ Example 1: the Nek5000 team is working at the strong
scaling limit

Nek5000

Why Hybrid MPI+X? Towards Strong Scaling (3/3)

§ Example 2: Quantum Monte Carlo

Simulation (QCMPACK)

– Size of the physical system to

simulate is bound by memory

capacity [1]

– Memory space dominated by large

interpolation tables (typically several

GB of storage)

– Threads are used to share those

tables

– Memory for communication buffers

must be kept low to be allow

simulation of larger and highly

detailed simulations.

121

Shared large B-spline table

W W W W W W

Thread 0 Thread 1 Thread 2

MPI Process

Core Core Core

Communicate
Walker

information

W
Walker data

[1] Kim, Jeongnim, et al. "Hybrid algorithms in quantum Monte Carlo." Journal of Physics, 2012.

Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

MPI Process MPI Process

MPI + ThreadsMPI only

Threads

Multi- or Many-
core Nodes

122

MPI + Threads: How To? (1/3)

§ MPI describes parallelism between
processes (with separate address spaces)

§ Thread parallelism provides a shared-
memory model within a process

§ OpenMP and Pthreads are common models
– OpenMP provides convenient features for loop-

level parallelism. Threads are created and
managed by the compiler, based on user
directives.

– Pthreads provide more complex and dynamic
approaches. Threads are created and managed
explicitly by the user.

123

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI + Threads: How To? (2/3)

§ MPI_THREAD_SINGLE

– No additional threads

§ MPI_THREAD_FUNNELED

– Master thread communication only

§ MPI_THREAD_SERIALIZED

– Threaded communication serialized

§ MPI_THREAD_MULTIPLE

– No restrictions

•Restriction

•Low
Thread-

Safety Costs

•Flexibility

•High
Thread-

Safety Costs

124

MPI + Threads

Interoperability

Interoperation or thread levels:

MPI + Threads: How To? (3/3)

MPI+OpenMP correctness semantics

§ For OpenMP threads, the
MPI+OpenMP correctness semantics
are similar to that of MPI+threads
– Caution: OpenMP iterations need to be

carefully mapped to which thread
executes them (some schedules in
OpenMP make this harder)

§ For OpenMP tasks, the general model
to use is that an OpenMP thread can
execute one or more OpenMP tasks
– An MPI blocking call should be assumed to

block the entire OpenMP thread, so other
tasks might not get executed

141

Applications

OpenMP, Cilk, TBB MPI

Pthreads
or other threading packages

Hybrid Programming with Shared Memory

§ MPI-3 allows different processes to allocate shared memory
through MPI
– MPI_Win_allocate_shared

§ Uses many of the concepts of one-sided communication

§ Applications can do hybrid programming using MPI or
load/store accesses on the shared memory window

§ Other MPI functions can be used to synchronize access to
shared memory regions

§ Can be simpler to program than threads
– Because memory locality is clear (needed for performance) and data

sharing is explicit

156

Accelerators in Parallel Computing

§ General purpose, highly parallel processors
– High FLOPs/Watt

– Unit of execution Kernel
– Separate physical memory subsystems

– Programming Models: OpenAcc, CUDA, OpenCL, …

§ Clusters with accelerators are becoming
common

§ New programmability and performance
challenges for programming models and
runtime systems

167

GPU

Memory

CPU

Memory

Network
Card

MPI + Accelerator Programming Examples

168

GPU

Memory

CPU

Memory

Network
Card

GPU

Memory

CPU

Memory

Network
Card

How to move data between GPUs with MPI?

Real answer: It depends on what GPU library, what hardware and what MPI
implementation you are using

Simple answer: For modern GPUs, “just like you would with a non-GPU machine”

Section Summary

§ Programming with accelerators is becoming increasingly
important

§ MPI is playing its role in enabling the usage of accelerators
across distributed memory nodes

§ The situation with MPI + GPU support is improving in both
MPI implementations and in GPU hardware/software
capabilities

177

Web Pointers

196

§ MPI standard : http://www.mpi-forum.org/docs/docs.html

§ MPI Forum : http://www.mpi-forum.org/

§ MPI implementations:
– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, NEC MPI, Fujitsu MPI, …

§ Several MPI tutorials can be found on the web

Tutorial Books on MPI

197

Basic MPI Advanced MPI, including MPI-3

