
ATPESC Numerical Software Track

Unstructured Meshing Technologies

Presented to
ATPESC 2018 Participants

Tzanio Kolev (LLNL) & Mark Shephard (RPI)

Q Center, St. Charles, IL (USA)
Date 08/06/2018

ATPESC 2018, July 29 – August 10, 2018 2

§  Backed	by	well-developed	theory.	

§  Naturally	support	unstructured	and	curvilinear	grids.	

§  High-order	finite	elements	on	high-order	meshes	
•  Increased	accuracy	for	smooth	problems	
•  Sub-element	modeling	for	problems	with	shocks	
•  Bridge	unstructured/structured	grids	
•  Bridge	sparse/dense	linear	algebra	
•  FLOPs/bytes	increase	with	the	order	

§  Demonstrated	match	for	compressible	shock	
hydrodynamics	(BLAST).	

§  Applicable	to	variety	of	physics	(DeRham	complex).	

	
	

High-order
thermodynamics

High-order
MHD

High-order
rad. diff.

Finite	elements	are	a	good	foundation	for	large-scale	
simulations	on	current	and	future	architectures	

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes” “zones”“edges” “faces”

High-order
kinematics

8th order Lagrangian hydro simulation
of a shock triple-point interaction

Non-conforming mesh refinement
on high-order curved meshes

ATPESC 2018, July 29 – August 10, 2018 3

Modular	Finite	Element	Methods	(MFEM)	
MFEM	is	an	open-source	C++	library	for	scalable	FE	research	
and	fast	application	prototyping	

§  Triangular,	quadrilateral,	tetrahedral	and	hexahedral;	
volume	and	surface	meshes	

§  Arbitrary	order	curvilinear	mesh	elements	
§  Arbitrary-order	H1,	H(curl),	H(div)-	and	L2	elements	

§  Local	conforming	and	non-conforming	refinement	

§  NURBS	geometries	and	discretizations	
§  Bilinear/linear	forms	for	variety	of	methods	(Galerkin,	

DG,	DPG,	Isogeometric,	…)	
§  Integrated	with:	HYPRE,	SUNDIALS,	PETSc,	SUPERLU,	

PUMI,	VisIt,	Spack,	xSDK,	OpenHPC,	and	more	…	

§  Parallel	and	highly	performant	
§  Main	component	of	ECP’s	co-design	Center	for	Efficient	

Exascale	Discretizations	(CEED)	
§  Native	“in-situ”	visualization:	GLVis,	glvis.org	

Linear, quadratic and cubic finite
element spaces on curved meshes

mfem.org	
(v3.4,	May/2018)	

ATPESC 2018, July 29 – August 10, 2018 4

Example	1	–	Laplace	equation	
§  Mesh	

§  Finite	element	space	

§  Initial	guess,	linear/bilinear	forms	

§  Linear	solve	

§  Visualization	

§  works	for	any	mesh	&	any	H1	order	
§  builds	without	external	dependencies	

ATPESC 2018, July 29 – August 10, 2018 5

Example	1	–	Laplace	equation	

§  Mesh	

ATPESC 2018, July 29 – August 10, 2018 6

Example	1	–	Laplace	equation	

§  Finite	element	space	

ATPESC 2018, July 29 – August 10, 2018 7

Example	1	–	Laplace	equation	

§  Initial	guess,	linear/bilinear	forms	

ATPESC 2018, July 29 – August 10, 2018 8

Example	1	–	Laplace	equation	

§  Linear	solve	

§  Visualization	

ATPESC 2018, July 29 – August 10, 2018 9

Example	1	–	parallel	Laplace	equation	
§  Parallel	mesh	

§  Parallel	finite	element	space	

§  Parallel	initial	guess,	linear/bilinear	forms	

§  Parallel	linear	solve	with	AMG	

§  Visualization	

§  highly	scalable	with	minimal	changes	
§  build	depends	on	hypre	and	METIS	

§  Parallel	assembly	

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh

�⇥
(1)

�⇥
(2)

(1) Parallel mesh splitting (domain decomposition using METIS).
(2) Parallel mesh refinement.

Parallel finite element space

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

First Parallel Layer: CPU/MPI Domain Decomposition

Parallel data decomposition in BLAST

Each CPU is assigned a subdomain consisting of a number of zones

MFEM handles the translation between local finite element bilinear forms / grid functions
and global parallel matrices / vectors.

Just a few MPI calls (MPI_Bcast and MPI_Allreduce).

MPI-based parallel finite elements in MFEM

Parallel mesh
Parallel finite element space

�⇥
(1)

�⇥
(2)

(1) Find shared degrees of freedom (dofs).
(2) Form groups of dofs and assign ownership.
(3) Build a parallel Boolean matrix P = dofs truedofs identifying each dof with a master (true) dof.

We use the ParCSR format in the hypre library for parallel matrix storage.

Parallel sti�ness matrix and load vector

Kolev et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 15 / 30

P : true dof 7! dof

A = PTaP B = PT b x = PX

ATPESC 2018, July 29 – August 10, 2018 10

Example	1	–	parallel	Laplace	equation	

ATPESC 2018, July 29 – August 10, 2018 11

MFEM	example	codes	–	mfem.org/examples		
	

ATPESC 2018, July 29 – August 10, 2018 12

Discretization	Demo	&	Lesson	

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/	
								lessons/mfem_convergence/	

ATPESC 2018, July 29 – August 10, 2018 13

Application	to	high-order	ALE	shock	hydrodynamics	

§  hypre	provides	scalable	algebraic	multigrid	solvers	

§  MFEM	provides	finite	element	discretization	abstractions	
•  uses	hypre’s	parallel	data	structures,	provides	finite	element	info	to	solvers	

§  BLAST	solves	the	Euler	equations	using	a	high-order	ALE	framework	
•  combines	and	extends	MFEM’s	objects	

hypre:	Scalable	linear	
solvers	library	

MFEM:	Modular	finite	
element	methods	library	

BLAST:	High-order	ALE	shock	
hydrodynamics	research	code	

www.llnl.gov/casc/blast www.llnl.gov/casc/hypre mfem.org

ATPESC 2018, July 29 – August 10, 2018 14

Advection phase (~c = �~vm)

Momentum Conservation:
d(⇢~v)

d⌧
= ~vm ·r(⇢~v)

Mass Conservation:
d⇢

d⌧
= ~vm ·r⇢

Energy Conservation:
d(⇢e)

d⌧
= ~vm ·r(⇢e)

Mesh velocity: ~vm =
d~x

d⌧

Lagrange	phase	
Physical time evolution
Based	on	physical	motion	

Remap	phase	
Pseudo-time	evolution	
Based	on	mesh	motion	

Lagrangian phase (~c = ~0)

Momentum Conservation: ⇢
d~v

dt
= r · �

Mass Conservation:
d⇢

dt
= �⇢r · ~v

Energy Conservation: ⇢
de

dt
= � : r~v

Equation of Motion:
d~x

dt
= ~v

t = 0

⌧ = 0

⌧ = 0.5

⌧ = 1

t = 1.5

t = 3.0

v  Galerkin	FEM	

v  Discont.	Galerkin	

Gauss-Lobatto basis

Bernstein basis

BLAST	models	shock	hydrodynamics	using	high-order	FEM	
in	both	Lagrangian	and	Remap	phases	of	ALE	

ATPESC 2018, July 29 – August 10, 2018 15

Parallel	ALE	for	Q4	Rayleigh-
Taylor	instability	(256	cores)	

High-order	finite	elements	lead	to	more	accurate,	robust	
and	reliable	hydrodynamic	simulations	

Robustness	in	
Lagrangian	shock-3pt	
axisymm.	interaction	

Symmetry	in	
3D	implosion	

Symmetry	in	
Sedov	blast	

ATPESC 2018, July 29 – August 10, 2018 16

Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K	DOFs	

Strong scaling, fixed #dofs

SGH

Finite	element	partial	assembly	 FLOPs	increase	faster	than	runtime	

more FLOPs,
same runtime

 256 cores

High-order	finite	elements	have	excellent	strong	
scalability	

ATPESC 2018, July 29 – August 10, 2018 17

Shock	triple-point	interaction	(4	elements)	 Smooth	RT	instability	(2	elements)	

High-order	discretizations	pose	unique	challenges	

ATPESC 2018, July 29 – August 10, 2018 18

Unstructured	Mesh	R&D:	Mesh	optimization	and	high-
quality	interpolation	between	meshes	

DG	advection-based	interpolation	(ALE	
remap,	Example	9,	radiation	transport)	

High-order	mesh	relaxation	by	neo-Hookean	
evolution	(Example	10,	ALE	remesh)	

We	target	high-order	curved	elements	+	unstructured	meshes	+		moving	meshes		

ATPESC 2018, July 29 – August 10, 2018 19

Unstructured	Mesh	R&D:	Accurate	and	flexible	finite	
element	visualization	

VisIt:	general	data	analysis	tool,	MFEM	
support	since	version	2.9	

GLVis:	native	MFEM	lightweight	OpenGL	
visualization	tool	

Two	visualization	options	for	high-order	functions	on	high-order	meshes	

glvis.org visit.llnl.gov

BLAST computation on 2nd
order tet mesh

ATPESC 2018, July 29 – August 10, 2018 20

Adaptive mesh refinement on library level:
–  Conforming	local	refinement	on	simplex	meshes	

–  Non-conforming	refinement	for	quad/hex	meshes		

–  h-refinement	with	fixed	p	

General approach:
–  any	high-order	finite	element	space,	H1,	H(curl),	

H(div),	…,	on	any	high-order	curved	mesh	

–  2D	and	3D	

–  arbitrary	order	hanging	nodes	

–  anisotropic	refinement	

–  derefinement	

–  serial	and	parallel,	including	parallel	load	balancing	

–  independent	of	the	physics	(easy	to	incorporate	in	
applications)	

MFEM’s	unstructured	AMR	infrastructure	

Example 15

Shaper miniapp

ATPESC 2018, July 29 – August 10, 2018 21

Conforming	&	Nonconforming	Mesh	Refinement	
Mesh Refinement

Conforming refinement

Nonconforming refinement

Natural for quadrilaterals and hexahedra

ATPESC 2018, July 29 – August 10, 2018 22

General	nonconforming	constraints	Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

High-order	elements	

Constraint:		local	interpolation	matrix	

Constructing the P matrix

Use interpolation property of nodal finite elements

Q – local interpolation matrix

Nonconforming Meshes

Finite element space cut along coarse-fine interfaces
(tangential component discontinuous)
Define constrained FE space with some degrees of
freedom (DOFs) eliminated

Simple example: first order H(curl) (edge elements)

Constraint: e = f = d/2

Constraint:		e	=	f	=	d/2	

H(curl)	elements	

Constructing the P matrix

Indirect constraints: slave DOFs may depend on other
slaves

More complex situations in 3D.
Some methods enforce 2:1 ratio between
edges/faces, we do not.

Indirect	constraints	

More	complicated	in	3D…	

ATPESC 2018, July 29 – August 10, 2018 23

Variational Restriction

General constraint:

y = Px , P =


I

W

�
.

x – conforming space DOFs,
y – nonconforming space DOFs (unconstrained + slave),

dim(x)  dim(y)

W – interpolation for slave DOFs

Constrained problem:

P
T
APx = P

T
b,

y = Px .

Nonconforming	variational	restriction	

ATPESC 2018, July 29 – August 10, 2018 24

Nonconforming	variational	restriction	Constructing the P matrix

ATPESC 2018, July 29 – August 10, 2018 25

Nonconforming	variational	restriction	Constructing the P matrix

Regular	assembly	of	A	on	the	elements	of	the	(cut)	mesh	

ATPESC 2018, July 29 – August 10, 2018 26

Regular	assembly	of	A	on	the	elements	of	the	(cut)	mesh	

Nonconforming	variational	restriction	Anisotropic refinement

ATPESC 2018, July 29 – August 10, 2018 27

Nonconforming	variational	restriction	Anisotropic refinement

Conforming	solution	y	=	P	x	

ATPESC 2018, July 29 – August 10, 2018 28

AMR	=	smaller	error	for	same	number	of	unknowns	

Anisotropic adaptation to
shock-like fields in 2D & 3D

uniform refinement
1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR

ATPESC 2018, July 29 – August 10, 2018 29

8	cores,	random	non-conforming	ref.	 4096	cores,	random	non-conforming	ref.	

Shock	propagates	through	non-conforming	zones	without	imprinting	

Static	parallel	refinement,	Lagrangian	Sedov	problem	

ATPESC 2018, July 29 – August 10, 2018 30

Parallel	dynamic	AMR,	Lagrangian	Sedov	problem	

Adaptive,	viscosity-based	refinement	and	
derefinement.	2nd	order	Lagrangian	Sedov	

Parallel	load	balancing	based	on	space-
filling	curve	partitioning,	16	cores	

ATPESC 2018, July 29 – August 10, 2018 31

 1

 10

 100

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K

Ti
m

e
of

 A
M

R
 it

er
at

io
n

[s
ec

on
ds

]

CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
size 2M
size 4M
size 8M

size 16M
size 32M
size 64M

Parallel decomposition
(2048 domains shown)

Parallel partitioning via
Hilbert curve

•  weak+strong	scaling	up	to	~400K	MPI	tasks	on	BG/Q	

•  measure	AMR	only	components:	interpolation	matrix,	assembly,	marking,	
refinement	&	rebalancing	(no	linear	solves,	no	“physics”)	

Parallel	AMR	scaling	to	~400K	MPI	tasks	

ATPESC 2018, July 29 – August 10, 2018 32

2	Labs,	5	Universities,	30+	researchers	

ceed.exascaleproject.org

ATPESC 2018, July 29 – August 10, 2018 33

•  All runs done on BG/Q (for repeatability), 8192 cores in C32 mode.
Order p = 1, ...,16; quad. points q = p + 2.

•  BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and
deal.ii + gcc (right) on BG/Q.

•  Preliminary results – paper in preparation
•  Cooperation/collaboration is what makes the bake-offs rewarding.

CEED	Bake-off	Problem	1	on	CPU	

ATPESC 2018, July 29 – August 10, 2018 34

•  BK5 – BP5 kernel, just local (unassembled) matvec with E-vectors
•  OCCA-based kernels with a lot of sophisticated tuning
•  > 2 TFLOPS on single V100 GPU

CEED	Bake-off	Kernel	5	on	GPU	

ATPESC 2018, July 29 – August 10, 2018 35

§  More	information	and	publications	
•  MFEM	–	mfem.org	

•  BLAST	–	computation.llnl.gov/projects/blast	

•  CEED	–	ceed.exascaleproject.org	

§  Open-source	software	

	
	

§  Ongoing	R&D		
•  Porting	to	GPUs:	Summit	and	Sierra	

•  Efficient	high-order	methods	on	simplices	

•  Matrix-free	scalable	preconditioners	

High-order	methods	show	promise	for	high-quality	&	
performance	simulations	on	exascale	platforms	

Q4	Rayleigh-Taylor	single-
material	ALE	on	256	processors			

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-PRES-755924

Disclaimer
This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

K.D. Devine1, V. Dobrev, D.A. Ibanez1, T. Kolev2, K.E. Jansen3,

O. Sahni3, A.G. Salinger1, S. Seol4, M.S. Shephard4, G. Slota4, C.W. Smith4

1Sandia National Laboratories
2Lawrence Livermore National Laboratory

3University of Colorado
4Rensselaer Polytechnic Institute

FASTMath Unstructured Mesh Technologies

§  Background
§  Summary of FASTMath development efforts
§  Discussion of core parallel mesh support tools (the

things other that the unstructured mesh analysis code)
•  Parallel mesh infrastructure
•  Mesh generation/adaptation
•  Dynamic load balancing
•  Unstructured mesh infrastructure

for particle-in-cell codes
§  Some ongoing applications
§  Hands-on demonstration

Unstructured Mesh Technologies – To Be Covered

38

Unstructured mesh – a spatial domain discretization composed
of topological entities with general connectivity and shape

Unstructured Mesh Methods

Advantages
§  Automatic mesh generation for

any level of geometric complexity
§  Can provide the highest accuracy

on a per degree of freedom basis
§  General mesh anisotropy possible
§  Meshes can easily be adaptively

modified
§  Given a complete geometry, with

analysis attributes defined on that
model, the entire simulation work
flow can be automated

Disadvantages
§  More complex data structures and

increased program complexity,
particularly in parallel

§  Requires careful mesh quality
control (level depend required a
function of the unstructured mesh
analysis code)

§  Poorly shaped elements increase
condition number of global system
– makes matrix solves harder

39

Goal of FASTMath unstructured mesh developments include:
§  Provide component-based tools that take full advantage of

unstructured mesh methods and are easily used by
analysis code developers and users

§  Develop those components to operate through multi-level
APIs that increase interoperability and ease integration

§  Address technical gaps by developing specific
unstructured mesh tools to address needs and eliminate/
minimize disadvantages of unstructured meshes

§  Work with DOE applications on the integration of these
technologies with their tools and to address new needs
that arise

Unstructured Mesh Methods

40

Technology development areas:
§  Unstructured Mesh Analysis Codes – Support application’s

PDE solution needs
§  Performant Mesh Adaptation – Parallel mesh adaptation to

integrate into analysis codes to ensure solution accuracy
§  Dynamic Load Balancing and Task Management –

Technologies to ensure load balance and effectively
execute operations by optimal task placement

§  Unstructured Mesh for PIC – Tools to support PIC on
unstructured meshes

§  Unstructured Mesh for UQ – Bringing unstructured mesh
adaptation to UQ

§  In Situ Vis and Data Analytics – Tools to gain insight as
 simulations execute

FASTMath Unstructured Mesh Developments

41

Advanced unstructured mesh analysis codes
§  MFEM – High-order F.E. framework
•  Arbitrary order curvilinear elements
•  Applications include shock hydrodynamics,

Electromagnetic fields in fusion reactors, etc.

§  ALBANY – Generic F.E. framework
•  Builds on Trilinos components
•  Applications include ice modeling, non-linear

solid mechanics, quantum device modeling, etc.

§  PHASTA – Navier Stokes Flow Solver
•  Highly scalable code including turbulence models
•  Applications include nuclear reactors,

multiphase flows, etc.

Unstructured Mesh Analysis Codes

§  Adaptive control of discretization a prerequisite for the
effective application of UQ operations

§  Substantial potential for joint adaptivity
in the physical and stochastic domains
•  Preliminary study mesh adaptivity in the

physical space with spectral/p-adaptivity
in the stochastic space

•  Target of consideration of geometric
uncertainty where unstructured meshes
will be critical

§  Developments
•  Stochastic space error estimators
•  Basis and sample reduction strategies
•  UQ driven load balancing

Unstructured Mesh for Uncertainty Quantification

Expectation

Variance

Adapted Mesh

43

§  Solvers scaled to 3M processes producing 10TB/s need in
situ tools to gain insight to avoid the high cost involved with
saving data
•  Substantial progress made to date in

live, reconfigurable, in situ visualization
•  Effort now focused on user

steering and data analytics

§  Target in situ operations
•  Live, reconfigurable in

situ data analytics
•  Live, analyst-guided grid adaptation
•  Scalable data reduction techniques
•  Live, reconfigurable problem definition, including geometry
•  Live, parameter sensitivity analysis for immersive simulation

In Situ Visualization and Data Analytics

PDE
Analysis

Post
Processing

Visualization
Client

Reliable,
Rapid,
Insight

Mesh
Adaptation

Reliable,
Rapid,
Insight

44

Parallel Unstructured Mesh Infrastructure

Key unstructured mesh technology needed by applications
§  Effective parallel mesh representation for adaptive mesh

control and geometry interaction provided by PUMI
§  Base parallel functions

•  Partitioned mesh control and modification
•  Read only copies for application needs
•  Associated data, grouping, etc.

 iM0

jM1

1P

0P
2P

 inter-process part
boundary

 intra-process part
boundary

 Proc j Proc i

Distributed meshPartition modelGeometric model

45

Mesh Generation
§ Automatically mesh complex domains – should work

directly from CAD, image data, etc.
§ Use tools like Gmsh, Simmetrix, etc.
Mesh Adaptation must
§ Use a posteriori information to improve mesh
§ Account for curved geometry (fixed and evolving)
§ Support general, and specific, anisotropic adaptation
Mesh Shape Optimization
§ Control element shapes as needed by the various

discretization methods for maintaining accuracy and efficiency
Parallel execution of all three functions critical on large meshes

The image cannot be
displayed. Your computer
may not have enough
memory to open the
image, or the image may
have been corrupted.
Restart your computer,
and then open the file
again. If the red x still
appears, you may have to
delete the image and then
insert it again.

Mesh Generation, Adaptation and Optimization

46

General Mesh Modification for Mesh Adaptation

§  Driven by an anisotropic mesh size field that can be set by any
combination of criteria

§  Employ a “complete set” of mesh modification operations to
alter the mesh into one that matches the given mesh size field

§  Advantages
•  Supports general anisotropic meshes
•  Can obtain level of accuracy desired
•  Can deal with any level of geometric domain complexity
•  Solution transfer can be applied incrementally - provides

more control to satisfy conservation constraints

Edge split face split Double split collapse to remove sliverEdge collapse

47

Mesh Adaptation Status

§  Applied to very large scale models
– 92B elements on 3.1M processes
on ¾ million cores

§  Local solution transfer supported
through callback

§  Effective storage of solution
fields on meshes

§  Supports adaptation with
boundary layer meshes

48

§ Supports adaptation of curved
elements

§ Adaptation based on multiple
criteria, examples
•  Level sets at interfaces
•  Tracking particles
•  Discretization errors
•  Controlling element

shape in evolving
geometry

Mesh Adaptation Status

49

§  Attached Parallel Fields (APF)
§  Effective storage of solution fields on meshes
§  Supports mesh field operations

•  Interrogation
•  Differentiation
•  Integration
•  Interpolation/projection
•  Mesh-to-mesh transfer
•  Local solution transfer

§  Example operations
•  Adaptive expansion of Fields from 2D to 3D in M3D-C1
•  History-dependent integration point fields

for Albany plasticity models

Attached Parallel Fields (APF)

50

§  Purpose: to rebalance load during mesh modification and
before each key step in the parallel workflow
•  Equal “work load” with minimum inter-process

communications
§  FASTMath load balancing tools

•  Zoltan/Zoltan2 libraries
provide multiple dynamic
partitioners with general control
of partition objects and weights

•  EnGPar diffusive multi-criteria
partition improvement

•  XtraPuLP scalable graph
partitioning

Dynamic Load Balancing

51

Number of mesh elements in each
of 128Ki parts

§  Geometric: parts contain physically close objects
•  Fast to compute à good for dynamic load

balancing
•  Applications: Particle methods, contact

detection, adaptive mesh refinement,
architecture-aware task mapping

•  Recursive Coordinate/Inertial Bisection,
MultiJagged, Space Filling Curve

§  Topology-based: parts contain topologically connected objects
•  Explicitly model communication costs à higher quality

partitions
•  Applications: Mesh-based methods,

linear systems, circuits, social networks
•  Graph (interfaces to XtraPuLP,

ParMETIS, Scotch)
•  Hypergraph

Zoltan/Zoltan2 suite of partitioners supports a wide range of
applications

52

MultiJagged partition of a  
particle simulation

4

2

5

36

11
2
3
4
5
6

1 2 3 4 5 6
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X
X X X X X X

Row-based partition of a sparse
matrix via graph partitioning

§  PuLP: Shared-memory multi-objective/constraint partitioning
§  XtraPuLP: Distributed implementation of PuLP for large-

scale and distributed graph processing applications
§  Designed to …

•  balance both graph vertices and edges
•  minimize total and maximum

communication
§  Effective for irregular graphs and meshes

containing latent ‘community’ properties;
network analysis; information graph processing

§  Interface in Zoltan2
§  Library and source at: https://github.com/HPCGraphAnalysis/

PuLP

PuLP / XtraPuLP provide scalable graph partitioning for
multicore and distributed memory systems

Dynamic Load Balancing for Adaptive Workflows

   At >16Ki ranks, existing tools providing multi-level graph
methods consume too much memory and fail; geometric
methods have high cuts and are inefficient for analysis.

   An approach that combines existing methods with ParMA
diffusive improvement accounts for multiple criteria:
■ Accounts for DOF on any mesh entity
■ Analysis and partitioning is quicker

   Goal of current EnGPar developments is to generalize methods
■ Take advantage of graph methods and new hardware
■ Broaden the areas of application to new applications (mesh

based and others)

Partitioning to 1M Parts

   Multiple tools needed to maintain partition quality at scale
■  Local and global topological and geometric methods
■  ParMA quickly reduces large imbalances

and improves part shape
   Partitioning 1.6B element mesh from 128K to
1M parts (1.5k elms/part) then running ParMA.

■  Global RIB - 103 sec, ParMA - 20 sec:
209% vtx imb reduced to 6%, elm imb up
to 4%, 5.5% reduction in avg vtx per part

■  Local ParMETIS - 9.0 sec, ParMA - 9.4
sec results in: 63% vtx imb reduced to
5%, 12% elm imb reduced to 4%,
and 2% reduction in avg vtx per part

   Partitioning 12.9B element mesh from 128K (< 7% imb)
to 1Mi parts (12k elms/part) then running ParMA.

■  Local ParMETIS - 60 sec, ParMA - 36 sec results in:
35% vtx imb to 5%, 11% elm imb to 5%, and 0.6% reduction
 in avg vtx per part

   EnGPar based on more standard graph operations than ParMA
■ GPU based breath first traversals

   Developments:
■ Different layouts

(CSR, Sell-C-Sigma),
support migration

■ Accelerate selection using coloring
■ Focus on pipelined kernel implementations for FPGAs

Operation on Accelerator Supported Systems

Timing comparison of OpenCL  
BFS kernels on NVIDIA 1080tiscg_int_unroll is 5 times faster

than csr on 28M graph and up
to 11 times faster than serial
push on Intel Xeon (not shown).

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

128 256 512

El
em

en
t I

m
ba

la
nc

e

Processes(Ki)

ParMA
EnGPar

Initial
Tolerance

EnGPar for Conforming Meshes

   Tests run on billion element mesh
on Mira BlueGene/Q

■  Global ParMETIS part k-way to 8Ki
■  Local ParMETIS part k-way from 8Ki

to 128Ki, 256Ki, and 512Ki parts

   Imbalances after running
EnGPar vtx>elm are shown

■  Creating the 512Ki partition from
8Ki parts takes 147 seconds with
ParMETIS (including migration)

■  EnGPar reduces a 53% vertex
imbalance to 5% in 7 seconds on
512Ki processes. ParMA requires
17 seconds.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

128 256 512

Ve
rte

x
Im

ba
la

nc
e

Processes(Ki)

ParMA
EnGPar

Initial
Tolerance

Parallel Unstructured Mesh PIC – PUMIpic

Red and Blue designate
quantities associated with
particles and mesh, resp.

Particle Push (update x, v)

Field to Particle

(mesh → particle)

 Field solve on mesh
with new RHS

Charge Deposition
(particle → mesh)

58

Current approaches have copy of entire mesh on each process

PUMIpic supports a distributed mesh
■  Employ large overlaps to avoid communication during push
■  All particle information accessed through the mesh

§  Components interacting with mesh
•  Mesh distribution
•  Particle migration
•  Adjacency search
•  Charge-to-mesh mapping
•  Field-to-Particle mapping
•  Dynamic load balancing
•  Continuum solve

§  Builds on parallel unstructured
mesh infrastructure

§  Developing set of components
to be integrated into applications

•  XGC – Gyrokinetic Code
•  GITR - Impurity Transport
•  M3D-C1 – Core Plasma

Parallel Unstructured Mesh PIC – PUMIpic

Require knowledge of
element that particle is in
after push
■  Particle motion small per

time step
■  Using mesh adjacencies

on distributed mesh
■  Overall >4 times

improvement
59

Construction of Distributed Mesh

§  Steps to construct PICparts:
•  Define non-overlapping mesh partition considering the needs of

the physics/numerics of the PIC code
•  Add overlap to safely ensure particles remain on PICpart during

a push
•  Evaluate PICpart safe zone: Defined as elements for which

particles are “safe” for next push (no communication) – must be
at least original core, preferably larger

§  After a Push particles that move out of a safe zone element
must be migrated into a copy of element in the safe zone on
another PICpart

A PICpart core –  
minimum safe zone

Buffer elements
added A PICpart

+ =
60

   Load balance can be lost as particles migrate
   Use EnGPar to migrate particles for better load balance
n Construct subgraphs connecting processes

for each overlapping safe zone
n Set the weights of vertices to be the number of particles

in the elements for the overlapping safe zone
n Diffusively migrate weight

(# of particles) in each
subgraph until processes
are balanced

61
Overlapping safe zones between parts A,B,C,

and D near the A-B boundary

Dynamic Load balancing

PUMIpic for XGC Gyrokinetic Code

§  XGC uses a 2D poloidal plane mesh considering particle paths
•  Mesh distribution takes advantage

of physics defined model/mesh
•  Separate parallel field solve on

each poloidal plane
§  XGC gyro-averaging

for Charge-to-Mesh
§  PETSc used for field solve
•  Solves on each plane
•  Mesh partitioned over

Nranks/Nplanes ranks
•  Ranks for a given plane form MPI

sub-communicators

Two-level partition for solver
(left) and particle push (right)

Model
Mesh

Distribution

Building In-Memory Parallel Workflows

  A scalable workflow requires effective component coupling
•  Avoid file-based information passing

- On massively parallel systems I/O dominates power
consumption
- Parallel file system technologies lag behind performance

of processors and interconnects
- Unlike compute nodes, the file system resources are

shared and performance can vary significantly
•  Use APIs and data-streams to keep inter-component

information transfers and control in on-process memory
- Component implementation drives the selection of an in-

memory coupling approach
- Link component libraries into a single executable

63

Parallel data and services are the core
§  Geometric model topology for domain linkage
§  Mesh topology – it must be distributed
§  Simulation fields distributed over geometric model and

mesh
§  Partition control
§  Dynamic load

balancing required
at multiple steps

§  API’s to link to
•  CAD
•  Mesh generation

and adaptation
•  Error estimation
•  etc

Parallel	Data	&	Services	

	Domain	Topology	

Mesh	Topology/Shape	

Dynamic	Load	Balancing	

Simulation	Fields	

Physics	and	Model	Parameters	 Input	Domain	Definition	with	Attributes	

Mesh-Based	
Analysis	

Complete	
Domain	
Definition	

Mesh	Generation	
and/or	Adaptation	

Postprocessing/
Visualization	

Solution	
Transfer	

Correction	
Indicator	

PDE’s	and	
discretization	
methods	

Solution		transfer	constraints	

mesh	with	fields	

mesh	
with	
fields	

	calculated	fields	

mesh	size		
										field	

meshes	
and	fields	

meshing		
operation	 geometric	

										interrogation	

Attributed		

				topology		

non-manifold	
model	construction	

geometry	updates	

mesh	size		
field	

mesh		

	Partition	Control	

Creation of Parallel Adaptive Loops

64

§ Automation and adaptive methods critical
to reliable simulations

§ In-memory examples
•  MFEM – High order

 FE framework
•  PHASTA – FE for NS
•  FUN3D – FV CFD
•  Proteus – multiphase FE
•  Albany – FE framework
•  ACE3P – High order FE

 electromagnetics
•  M3D-C1 – FE based MHD
•  Nektar++ – High order FE flow

Parallel Adaptive Simulation Workflows

Application of
active flow control

to aircraft tails

Blood flow on the
arterial system

Fields in a particle accelerator

Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with
~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)

shows the first eigenmode of the electric field on the final (adapted) mesh.
66

Application interactions – Land Ice

▪  FELIX, a component of the Albany
framework is the analysis code

▪  Omega_h parallel mesh adaptation
is integrated with Albany to do:
▪  Estimate error
▪  Adapt the mesh

▪  Ice sheet mesh is modified to
minimize degrees of freedom

▪  Field of interest is the ice sheet
velocity

Application interactions – RF Fusion

§  Accurate RF simulations require
•  Detailed antenna CAD geometry
•  CAD geometry defeaturing
•  Extracted physics curves from EFIT
•  Faceted surface from coupled mesh
•  Analysis geometry combining CAD,

physics geometry and faceted surface
•  Well controlled 3D meshes for

accurate FE calculations in MFEM
•  Integration with up-stream and down-

stream simulation codes
 Simplified antenna array and

plasma surface merged into
reactor geometry and meshed

CAD model of antenna array

Integration of PUMI/MeshAdapt into MFEM

 MFEM ideally suited to address RF simulation needs
•  Higher convergence rates of high-order methods

can effectively deliver needed level of accuracy
•  Well demonstrated scalability
•  Frequency domain EM solver developed

 Components integrated
•  Curve straight sided meshes – includes mesh topology

modification – just curving often yields invalid elements)
•  Element geometry inflation up to order 6
•  PUMI parallel mesh management
•  Curved mesh adaptation based on mesh modification
•  EngPar for mesh partition improvement

69

De-featuring Antenna CAD:
•  Models have unneeded details
•  SimModeler provides tools

to “de-feature” CAD models
•  Bolts, mounts & capping holes

removed
Combining Geometry:
•  Import components:
- De-featured CAD assemblies
- EFIT curves for SOL (psi = 1.05)
- TORIC outer surface mesh

•  Create rotated surfaces from cross section
•  Assemble components into analysis geometry

Geometry and Meshing for RF Simulations

70

•  Mesh controls set on Analysis Geometry
•  Mesh generation – linear or

or quadratic curved meshed
•  Order inflation up to 6th order

Linear mesh
8M elements

   8M elements mesh
with refined SOL

Quadratic mesh
2.5M elements

Geometry and Meshing for RF Simulations

71

Hands-on Exercise: Workflow Introduction

72

   Exercising Simmetrix and PUMI tools for model prepartion and
mesh generation on a complex CAD model

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/pumi/

ATPESC 2018, July 29 – August 10, 2018 73

MFEM	–	Extra	Slides	

ATPESC 2018, July 29 – August 10, 2018 74

A = PTGTBTDBGP

The	assembly/evaluation	of	FEM	operators	can	be	decomposed	into	parallel,	mesh	
topology,	basis,	and	geometry/physics	components:	

•  partial	assembly	=	store	only	D,	evaluate	B		(tensor-product	structure)	
•  better	representation	than	A:	optimal	memory,	near-optimal	FLOPs	
•  purely	algebraic,	applicable	to	many	apps	

Fundamental	finite	element	operator	decomposition	

ATPESC 2018, July 29 – August 10, 2018 75

•  CEED's	bake-off	problems		(BPs)	are	high-order	kernels/benchmarks	
designed	to	test	and	compare	the	performance	of	high-order	codes.	

BP1:	Solve	{Mu=f},	where	{M}	is	the	mass	matrix,	q=p+2	

BP2:	Solve	the	vector	system	{Mui=fi}	with	{M}	from	BP1,	q=p+2	

BP3:	Solve	{Au=f},	where	{A}	is	the	Poisson	operator,	q=p+2	

BP4:	Solve	the	vector	system	{Aui=fi}	with	{A}	from	BP3,	q=p+2	

BP5:	Solve	{Au=f},	where	{A}	is	the	Poisson	operator,	q=p+1	

BP6:	Solve	the	vector	system	{Aui=fi}	with	{A}	from	BP3,	q=p+1	

•  Compared	Nek	and	MFEM	implementations	on	BG/Q,	KNLs,	GPUs.	

•  Community	involvement	–	deal.ii,	interested	in	seeing	your	results.	

•  Goal	is	to	learn	from	each	other,	benefit	all	CEED-enabled	apps.	

github.com/ceed/benchmarks	

BP terminology: T- and E-
vectors of HO dofs

CEED	high-order	benchmarks	(BPs)	

ATPESC 2018, July 29 – August 10, 2018 76

Method Memory Assemb
ly Action

Full Matrix
Assembly

𝑂(​
𝑝↑2𝑑 ) 𝑂(​𝑝↑3𝑑 ) 𝑂(​

𝑝↑2𝑑 )

Partial
Assembly 𝑂(​𝑝↑𝑑 ) 𝑂(​𝑝↑𝑑 )

𝑂(​
𝑝↑𝑑+1 

)

Storage	and	floating	point	operation	scaling	for	
different	assembly	types	

𝒑−order, 𝒅−mesh dim, 𝑶(​𝒑↑𝒅 )−dofs	

Poisson	CG	solve	performance	with	different	
assembly	types	(higher	is	better)	

Partial Assembly

Full Matrix Assembly

Full	matrix	performance	drops	sharply	at	high	orders	while	partial	assembly	scales	well!	

TENSOR OPERATIONS FOR FINITE ELEMENT
ASSEMBLY/EVALUATION

1. General Mass Matrix Assembly

The finite element (FE) mass matrix for an element (zone) E is:

(ME)ij =
nq∑

k=1

αk ρ(qk)ϕi(qk)ϕj(qk) |JE(qk)| , i, j = 1, . . . , nd

where
• nd is the number of FE degrees of freedom (dofs)
• nq is the number of quadrature points
• {ϕi}ndi=1 are the FE basis functions on the reference element
• |JE| is the determinant of the element transformation
• {qk}nqk=1 and {αk}nqk=1 are the points and weights of the quadrature rule
• ρ is an optional weight function

Introduce the element-independent nq × nd matrix B that transfers FE data from
the dofs to the quadrature points,

Bki = ϕi(qk) = ϕ1d
i1 (qk1)ϕ

1d
i2 (qk2) = B1d

k1i1B
1d
k2i2

U = BV "→ Uk1k2 = B1d
k1i1B

1d
k2i2Vi1i2 "→ U = B1dV (B1d)T

Bk1,k2,i1,i2 = B1d
k1,i1B

1d
k2,i2

and the nq × nq diagonal matrix DE of element-specific geometric and physics data
associated with quadrature points,

(DE)kk = αk ρ(qk) |JE(qk)|.
Then, (ME)ij =

∑nq
k=1 Bki(DE)kkBkj , so

ME = BTDEB .

2. Tensor Product Form

Consider a tensor-product nodalH1 finite element of order p in d dimensions, where
nd = nd1×nd2×· · ·×ndd = O(pd), nq = nq1×nq2×· · ·×nqd = O(pd), i = (i1, . . . , id)
and k = (k1, . . . , kd). Since the matrices B and DE are full in general, evaluating all
entries of ME by the above formula required O(p3d) operations (and O(p2d) storage).

1

TENSOR OPERATIONS FOR FINITE ELEMENT
ASSEMBLY/EVALUATION

1. General Mass Matrix Assembly

The finite element (FE) mass matrix for an element (zone) E is:

(ME)ij =
nq∑

k=1

αk ρ(qk)ϕi(qk)ϕj(qk) |JE(qk)| , i, j = 1, . . . , nd

where
• nd is the number of FE degrees of freedom (dofs)
• nq is the number of quadrature points
• {ϕi}ndi=1 are the FE basis functions on the reference element
• |JE| is the determinant of the element transformation
• {qk}nqk=1 and {αk}nqk=1 are the points and weights of the quadrature rule
• ρ is an optional weight function

Introduce the element-independent nq × nd matrix B that transfers FE data from
the dofs to the quadrature points,

Bki = ϕi(qk) = ϕ1d
i1 (qk1)ϕ

1d
i2 (qk2) = B1d

k1i1B
1d
k2i2

U = BV "→ Uk1k2 = B1d
k1i1B

1d
k2i2Vi1i2 "→ U = B1dV (B1d)T

Bk1,k2,i1,i2 = B1d
k1,i1B

1d
k2,i2

and the nq × nq diagonal matrix DE of element-specific geometric and physics data
associated with quadrature points,

(DE)kk = αk ρ(qk) |JE(qk)|.
Then, (ME)ij =

∑nq
k=1 Bki(DE)kkBkj , so

ME = BTDEB .

2. Tensor Product Form

Consider a tensor-product nodalH1 finite element of order p in d dimensions, where
nd = nd1×nd2×· · ·×ndd = O(pd), nq = nq1×nq2×· · ·×nqd = O(pd), i = (i1, . . . , id)
and k = (k1, . . . , kd). Since the matrices B and DE are full in general, evaluating all
entries of ME by the above formula required O(p3d) operations (and O(p2d) storage).

1

Tensorized	partial	assembly	

