Unstructured Meshing Technologies

Presented to

ATPESC 2018 Participants

Tzanio Kolev (LLNL) & Mark Shephard (RPI)

Q Center, St. Charles, IL (USA)
Date 08/06/2018

NTop
‘‘‘‘‘

' ENERGY

Py \
ELCP
Qficeof ATPESC Numerical Software Track

Science EXASCALE COMPUTING PROJECT

"h P‘:b“;’,‘;a'mes @) Rensselaer @ sMuU

AAAAAAAAAAAAAAAAAA

Finite elements are a good foundation for large-scale
simulations on current and future architectures

= Backed by well-developed theory.
= Naturally support unstructured and curvilinear grids.

= High-order finite elements on high-order meshes
* Increased accuracy for smooth problems
* Sub-element modeling for problems with shocks
« Bridge unstructured/structured grids

. . Non-conforming mesh refinement
 Bridge sparse/dense linear algebra on high-order curved meshes

« FLOPs/bytes increase with the order

= Demonstrated match for compressible shock
hydrodynamics (BLAST).

= Applicable to variety of physics (DeRham complex).

H(grad) ~(H (curl) VX H (div) Vol 1, L
“nodes” “edges” “faces” “zones” ahe £

High-order High-order High-order High-order 8th order Lagrangian hydro simulation
kinematics MHD rad. diff. thermodynamics of a shock triple-point interaction

2 ATPESC 2018, July 29 — August 10, 2018

Modular Finite Element Methods (MFEM)

MFEM is an open-source C++ library for scalable FE research

and fast application prototyping D

= Triangular, quadrilateral, tetrahedral and hexahedral; ,
volume and surface meshes E

= Arbitrary order curvilinear mesh elements

= Arbitrary-order H1, H(curl), H(div)- and L2 elements Linear, quadratic and cubic finite
element spaces on curved meshes

= Local conforming and non-conforming refinement
= NURBS geometries and discretizations

= Bilinear/linear forms for variety of methods (Galerkin,
DG, DPG, Isogeometric, ...)

= |Integrated with: HYPRE, SUNDIALS, PETSc, SUPERLU,
PUMI, Vislt, Spack, xSDK, OpenHPC, and more....

= Parallel and highly performant mfem.org
(v3.4, May/2018)

= Main component of ECP’s co-design Center for Efficient

Exascale Discretizations (CEED) E\(E\\ R CEED

. € . 13) . . o . . EXASCALE DISCRETIZATIONS
= Native “in-situ” visualization: GLVis, glvis.org

éib ‘xSDK
3 ATPESC 2018, July 29 — August 10, 2018 FAS]‘MA:"'_l Spack

Example 1 — Laplace equation
= Mesh

63 // 2. Read the mesh from the given mesh file. We can handle triangular,
64 /7 quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65 1/ the same code.

66 Mesh *mesh;

67 ifstream imesh(mesh_file);

68 if (!imesh)

69 {

70 cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
71 return 2;

72 }

73 mesh = new Mesh(imesh, 1, 1);

74 imesh.close();

75 int dim = mesh->Dimension();

76

77 // 3. Refine the mesh to increase the resolution. In this example we do
78 1/ 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
79 /7 largest number that gives a final mesh with no more than 50,000
80 1/ elements.

81 {

82 int ref_ levels =

83 (int) floor(log(50000./mesh->GetNE())/log(2.)/dim);

84 for (int 1 = 0; 1 < ref_levels; l++)

85 mesh->UniformRefinement();

86 }

= Finite element space

88 // 4. Define a finite element space on the mesh. Here we use continuous
89 /7 Lagrange finite elements of the specified order. If order < 1, we
90 /7 instead use an isoparametric/isogeometric space.

91 FiniteElementCollection *fec;

92 if (order > 0)

93 fec = new H1_FECollection(order, dim);

94 else if (mesh->GetNodes())

95 fec = mesh->GetNodes()->OwnFEC();

96 else

97 fec = new H1l_FECollection(order = 1, dim);

98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);

99 cout << "Number of unknowns: " << fespace->GetVSize() << endl;

= Initial guess, linear/bilinear forms

101 // 5. Set up the linear form b(.) which corresponds to the right-hand side of
102 /7 the FEM linear system, which in this case is (1,phi_i) where phi_i are
103 124 the basis functions in the finite element fespace.

104 LinearForm *b = new LinearForm(fespace);

105 ConstantCoefficient one(1.0);

106 b->AddDomainIntegrator(new DomainLFIntegrator(one));

107 b->Assemble();

108

109 // 6. Define the solution vector x as a finite element grid function

110 1/ corr ding to fesp . Initialize x with initial guess of zero,

111 /7 which satisfies the boundary conditions.

112 GridFunction x(fespace);

113 x = 0.0;

114

115 // 7. Set up the bilinear form a(.,.) on the finite element space

116 /7 corresponding to the Laplacian operator -Delta, by adding the Diffusion
117 /7 domain integrator and imposing homogeneous Dirichlet boundary

118 /7 conditions. The boundary conditions are implemented by marking all the
119 1/ boundary attributes from the mesh as essential (Dirichlet). After

120 124 assembly and finalizing we extract the corresponding sparse matrix A.
121 BilinearForm *a = new BilinearForm(fespace);

122 a->AddDomainIntegrator(new DiffusionIntegrator(one));

123 a->Assemble();

124 Array<int> ess_bdr(mesh->bdr_attributes.Max());

125 ess_bdr = 1;

126 a->EliminateEssentialBC(ess_bdr, x, *b);

127 a->Finalize();

128 const SparseMatrix &A = a->SpMat();

4 ATPESC 2018, July 29 — August 10, 2018

= Linear solve

130 | #ifndef MFEM USE_ SUITESPARSE

131 // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
132 /7 solve the system Ax=b with PCG.
133 GSSmoother M(A);
134 PCG(A, M, *b, x, 1, 200, le-12, 0.0);
135 | #else
136 // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
137 UMFPackSolver umf_solver;
138 umf_solver. Control[UHFPACK ORDERING] = UMFPACK_ORDERING_METIS;
139 umf_solver.SetOperator(A);
140 umf_solver.Mult(*b, x);
141 | #endif
. . .
= Visualization
152 // 10. Send the solution by socket to a GLVis server.
153 if (visualization)
154
155 char vxshost[] = "localhost";
156 int visport = 19916;
157 socketstream sol_sock(vishost, visport);
158 sol_sock.precision(8);
159 sol_sock << "solution\n" << *mesh << x << flush;
160 }
800 IX| GLVis [scalar data]

= works for any mesh & any H1 order

= builds without external dependencies

Example 1 — Laplace equation

= Mesh
63 // 2. Read the mesh from the given mesh file. We can handle triangular,
64 // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
65 /7 the same code.
66 Mesh *mesh;
67 ifstream imesh(mesh_file);
68 if (!imesh)
69 {
70 cerr << "\nCan not open mesh file: " << mesh_file << '\n' << endl;
71 return 2;
72 }
73 mesh = new Mesh(imesh, 1, 1);
74 imesh.close();
75 int dim = mesh->Dimension();
76
77 // 3. Refine the mesh to increase the resolution. In this example we do
78 /7 'ref levels' of uniform refinement. We choose 'ref levels' to be the
79 /7 largest number that gives a final mesh with no more than 50,000
80 /7 elements.
81 {
82 int ref_levels =
83 (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
B84 for (int 1 = 0; 1 < ref levels; 1l++)
85 mesh->UniformRefinement();
86 }

5 ATPESC 2018, July 29 — August 10, 2018

Example 1 — Laplace equation

= Finite element space

88 // 4. Define a finite element space on the mesh. Here we use continuous
89 /7 Lagrange finite elements of the specified order. If order < 1, we
90 /7 instead use an isoparametric/isogeometric space.

91 FiniteElementCollection *fec;

92 if (order > 0)

93 fec = new H1l_FECollection(order, dim);

94 else if (mesh->GetNodes())

95 fec = mesh->GetNodes()->OwnFEC();

96 else

97 fec = new Hl FECollection(order = 1, dim);

98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);

99 cout << "Number of unknowns: " << fespace->CetVSize() << endl;

6 ATPESC 2018, July 29 — August 10, 2018

Example 1 — Laplace equation

= |nitial guess, linear/bilinear forms

101
102
103
104
105
106
107
108
109
110
111
112
B B
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

// 5. Set up the linear form b(.) which corresponds to the right-hand side of
/7 the FEM linear system, which in this case is (1,phi_i) where phi_i are
/7 the basis functions in the finite element fespace.

LinearForm *b = new LinearForm(fespace);

ConstantCoefficient one(1.0);

b->AddDomainIntegrator(new DomainLFIntegrator(one));

b->Assemble();

// 6. Define the solution vector x as a finite element grid function

/7 corresponding to fespace. Initialize x with initial guess of zero,

/7 which satisfies the boundary conditions.

GridFunction x(fespace);

x = 0.0;

// 7. Set up the bilinear form a(.,.) on the finite element space

/7 corresponding to the Laplacian operator -Delta, by adding the Diffusion
/7 domain integrator and imposing homogeneous Dirichlet boundary

/7 conditions. The boundary conditions are implemented by marking all the
/7 boundary attributes from the mesh as essential (Dirichlet). After

/7 assembly and finalizing we extract the corresponding sparse matrix A.

BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->Assemble();

Array<int> ess_bdr(mesh->bdr_ attributes.Max()):;
ess_bdr = 1;

a->EliminateEssentialBC(ess_bdr, x, *b);
a->Finalize();

const SparseMatrix &A = a->SpMat():;

7 ATPESC 2018, July 29 — August 10, 2018

Example 1 — Laplace equation

= Linear solve

130
131
12
133
134
135
136
137
138
139
140
141

#ifndef MFEM USE SUITESPARSE
// 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
/7 solve the system Ax=b with PCG.
GSSmoother M(A);
PCG(A, M, *b, x, 1, 200, le-12, 0.0);

#else
// 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_ solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_ METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(*b, x);

#endif

= Visualization

152
153
154
155
156
157
158
159
160

// 10. Send the solution by socket to a GLVis server.
if (visualization)

{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}

8 ATPESC 2018, July 29 — August 10, 2018

Example 1 — parallel Laplace equation

= Parallel mesh = Parallel linear solve with AMG

101 // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine

102 // this mesh further in parallel to increase the resolution. Once the 164 // 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
103 /7 parallel mesh is defined, the serial mesh can be deleted. 165 // preconditioner from hypre.

104 ParMesh *pmesh = new ParMesh(MPI_COMM WORLD, *mesh); 166 HypreSolver *amg = new HypreBoomerAMG(*A);

105 delete mesh; 167 HyprePCG *pcg = new HyprePCG(*A);

106 { 168 pcg->SetTol(le-12);

107 int par_ref_levels = 2; 169 pcg->SetMaxIter(200);

108 for (int 1 = 0; 1 < par_ref_ levels; 1l++) 170 pcg->SetPrintLevel(2);

109 pmesh->UniformRefinement(); 171 pcg->SetPreconditioner(*amg);

110 } 172 pcg->Mult(*B, *X);

= Visualization

Ra

(1) (2) E:g 194 // 14. Send the solution by socket to a GLVis server.
0 195 if (visualization)
X 196
o
5 197 char vishost[] = "localhost";
o8 198 int wvisport = 19916;
E% 199 socketstream sol_sock(vishost, visport);
i§ 200 sol_sock << "parallel " << num procs << " " << myid << "\n";
NS 201 sol_sock.precision(8);
202 sol_sock << "solution\n" << *pmesh << x << flush;
203 }
. . <
= Parallel finite element e
ara ni nt spac
8 00 IX| GLVis [scalar data]

122 ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);

SRl ~
@ 9%
P :true_dof — dof m ‘w]‘
= Parallel initial guess, linear/bilinear forms &,

v

130 ParLinearForm *b = new ParLinearForm(fespace);
138 | ParGridFunction x(fespace);
147| ParBilinearForm *a = new ParBilinearForm(fespace);

= Parallel assembly

155 // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),

156 /7 b(.) and the finite element approximation.

157 HypreParMatrix *A = a->ParallelAssemble();

158 HypreParVector *B = b->ParallelAssemble(); | l Sca a e Wlt I I llnll I Ia C an es
159 HBypreParVector *X = x.ParallelAverage();

A=PlaP B=P'b 2=PX = build depends on hypre and METIS
9 ATPESC 2018, July 29 — August 10, 2018

Example 1 — parallel Laplace equation

101
102
103
104
105
106
107
108
109

__!

122
130 |
138
147 |

155
156
a6
158
159

164
165
166
167
168
169
170
171
172

200
201
202

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
/7 this mesh further in parallel to increase the resolution. Once the
/7 parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);

delete mesh;

{
int par_ref_ levels = 2;
for (int 1 = 0; 1 < par_ref_ levels; l++)
pmesh->UniformRefinement();
}

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
ParLinearForm *b = new ParLinearForm(fespace);

ParGridFunction x(fespace); i

ParBilinearForm *a = new ParBilinearForm(fespace);

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
/7 b(.) and the finite element approximation.

HypreParMatrix *A = a->ParallelAssemble();

HypreParVector *B = b->ParallelAssemble();

HypreParVector *X = x.ParallelAverage();

// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
/7 preconditioner from hypre.

HypreSolver *amg = new HypreBoomerAMG(*A);

HyprePCG *pcg = new HyprePCG(*A);

pcg->SetTol(le-12);

pcg->SetMaxIter(200);

pcg->SetPrintLevel(2);

pcg->SetPreconditioner(*amg);

pcg->Mult (*B, *X);

sol_sock << "parallel " << num procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;

10 ATPESC 2018, July 29 — August 10, 2018

MFEM example codes — mfem.org/examples

8 06 MFEM: Example Codes e

[«]>]) + | @ doxygen.mfem.googlecode.com/ha/ exarmples /README fles /index. hirr ¢ |uReade

[0 ## Apple Yahoo! Google Maps YouTube Wikipedia News<¥ Popular v
MFEM .

Example Codes

This file provides a brief overview of the MFEM example codes. For detailed documentation of the MFEM sources, including the examples, build the Doxygen documentation in the doc/ directory, or browse the online version.

Clicking on any of the categories below displays examples that contain the ibed feature. All les support itrarily) high-order meshes and finite element spaces. The numerical results from the example codes can be visualized
using the GLVis visualization tool (based on MFEM). See the GLVis website, for more details.

Users are encouraged to submit any example codes that they have created and would like to share. Contact a member of the MFEM team to report bugs or post questions or comments.

Equation (PDE) Finite Elements Discretization Solver

@Al @Al @Al @Al

(_Laplace () L, discontinuous elements _Galerkin FEM ()Jacobi

(Elasticity) H! nodal elements (OMixed FEM (O Gauss-Seidel

() Definite Maxwell () H(curl) Nedelec elements (_Discontinuous Galerkin (DG) (OPCG

(Ograd-div () H(div) Raviart-Thomas elements _)Discontinuous Petrov-Galerkin (DPG) (OMINRES

(_Darcy C H~*% interfacial elements _lsogeometric analysis (NURBS) (Algebraic Multigrid (BoomerAMG)
(_Advection _)Adaptive mesh refinement (AMR) (Auxiliary-space Maxwell Solver (AMS)

(Auxiliary-space Divergence Solver (ADS)
(OUMFPACK (serial direct)

(O Newton method (nonlinear solver)
(_Explicit Runge-Kutta (ODE integration)
(Olmplicit Runge-Kutta (ODE integration)

Example 1: Laplace Problem
This example code demonstrates the use of MFEM to define a simple i ic finite element di lization of the Laplace problem

—Au=1

with homogeneous Dirichlet boundary conditions. Specifically, we discretize with the FE space coming from the mesh (linear by default, quadratic for quadratic curvilinear mesh, NURBS
for NURBS mesh, etc.)

The example highlights the use of mesh refinement, finite element grid functions, as well as linear and bilinear forms corresponding to the left-hand side and right-hand side of the discrete
linear system. We also cover the explicit elimination of boundary conditions on all boundary edges, and the optional connection to the GLVis tool for visualization.

The example has a serial (ex1.cpp) and a parallel (ex1p.cpp) version.

Example 2: Linear Elasticity

This example code solves a simple linear elasticity problem ibing a multi-material cantilever beam. ifi we { the weak form of

—div(o(u)) =

where

o(u) = Adiv(u) I + 2 (Vu + VuT)

is the stress tensor corresponding to displacement field u, and) and & are the material Lame constants. The boundary conditions are yy — () on the fixed part of the
boundary with attribute 1, and g(u) n= f on the remainder with f being a constant pull down vector on boundary elements with attribute 2, and zero otherwise. The
geometry of the domain is assumed to be as follows:

boundary boundary
attribute 1 material 1 material 2 attribute 2
(fixed) (pull down)

11 ATPESC 2018, July 29 — August 10, 2018

Discretization Demo & Lesson

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/
lessons/mfem_convergence/

12 ATPESC 2018, July 29 — August 10, 2018

Application to high-order ALE shock hydrodynamics

hypre: Scalable linear MFEM: Modular finite BLAST: High-order ALE shock
solvers library element methods library hydrodynamics research code

High performance
preconditioners

www.lInl.gov/casc/hypre mfem.org www.lInl.gov/casc/blast

= hypre provides scalable algebraic multigrid solvers

= MFEM provides finite element discretization abstractions
 uses hypre’s parallel data structures, provides finite element info to solvers

= BLAST solves the Euler equations using a high-order ALE framework
« combines and extends MFEM'’s objects

13 ATPESC 2018, July 29 — August 10, 2018

BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

Lagrange phase
Physical time evolution
Based on physical motion

Remap phase

Pseudo-time evolution
Based on mesh motion

Advection phase (¢ = —Vp,)
. dv d(pv)
Momentum Conservation: — =V.o N ;i ion: =V - v
o « Gauss-Lobatto basis Momentum Conservation o Vm - V(pV)
Mass Conservation: % = —pV .V ® 3 3 M C tion: dp =V, -V
- ac_ * ¢ Discont. Galerkin TR (CEIEE AT qy = Vmo VP
. de __ . d(pe)
Energy Conservation: pa =o0:Vv Energy Conservation: - = Vm - V(pe)
T
. . dx dx
Equation of Motion: — =V Mesh velocity: Vm = —
dt Bernstein basis dr
IWWWW—I—O—A

High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

Symmetry in
3D implosion

)
‘\\\\\\}\

iy

Symmetry in
Sedov blast

Robustness in
Parallel ALE for Q4 Rayleigh- Lagrangian shock-3pt
Taylor instability (256 cores) axisymm. interaction

15 ATPESC 2018, July 29 — August 10, 2018

High-order finite elements have excellent strong

scalability

Strong scaling, p-refinement

BLAST Strong Scaling on Vulcan

10000 2D Lagrangian Sedov Problem on 131,072 zones
--SGH Code
w00 ~600 dofs/zone "7Q2 FEM (Inline)
N \ --Q4 FEM (Inline)
100 SN — --Q8 FEM (Inline)
<
= \\\\ \'\ — ©Q16 FEM (Inline)
o
B 10 AN NG NN
o \ g \
o \ \ 3
£ NN . 1 zone/core
1 \ NS N g
N S
N
0.1
~
~ —
0.01 —~
0.001 o : — :
v ™ L) (J v S -3 © 2 g G o v > D © v
~ A N, . M@. 'vgu w& ‘b:& '&,\,,% ‘g‘;\b é’?;, »;»'6\

Number of cores

Finite element partial assembly

16 ATPESC 2018, July 29 — August 10, 2018

Strong scaling, fixed #dofs

“= SGH
“Q1Q0 S

2D

400 -
Q2Q1 S
2.00 =+=Q4Q3 S
3 .
GE’ 256 cores
£ 1.00
[
=}
[

0.50

0.25

0.13

more FLOPs, | =~
same runtime

T I

2 4 8 16 32 64
Nodes

FLOPs increase faster than runtime

High-order discretizations pose unique challenges

Shock triple-point interaction (4 elements) Smooth RT instability (2 elements)

17 ATPESC 2018, July 29 — August 10, 2018

Unstructured Mesh R&D: Mesh optimization and high-
quality interpolation between meshes

We target high-order curved elements + unstructured meshes + moving meshes

High-order mesh relaxation by neo-Hookean DG advection-based interpolation (ALE
evolution (Example 10, ALE remesh) remap, Example 9, radiation transport)

18 ATPESC 2018, July 29 — August 10, 2018

Unstructured Mesh R&D: Accurate and flexible finite
element visualization

Two visualization options for high-order functions on high-order meshes

GLVis: native MFEM lightweight OpenGL Vislt: general data analysis tool, MFEM
visualization tool support since version 2.9

BLAST computation on 2n?
order tet mesh

glvis.org visit.linl.gov

19 ATPESC 2018, July 29 — August 10, 2018

MFEM'’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:
— Conforming local refinement on simplex meshes
— Non-conforming refinement for quad/hex meshes

— h-refinement with fixed p

General approach:

— any high-order finite element space, H1, H(curl),
H(div), ..., on any high-order curved mesh

Example 15
— 2Dand 3D

— arbitrary order hanging nodes

— anisotropic refinement

— derefinement

— serial and parallel, including parallel load balancing

— independent of the physics (easy to incorporate in
applications)

Shaper miniapp

20 ATPESC 2018, July 29 — August 10, 2018

Conforming & Nonconforming Mesh Refinement

m Conforming refinement

m Nonconforming refinement

m Natural for quadrilaterals and hexahedra

21 ATPESC 2018, July 29 — August 10, 2018

General nonconforming constraints

H(curl) elements

0 High-order elements

d

Constraint: e =f =dj/2

/
Indirect constraints
s e Py (K)

> m e Py (K)
VY Constraint: local interpolation matrix
> s=Q -m, Q&R

More complicated in 3D...

22 ATPESC 2018, July 29 — August 10, 2018

Nonconforming variational restriction

m General constraint:
— Px P = /
y=r "=1"wl

x — conforming space DOFs,
y —nonconforming space DOFs (unconstrained + slave),

dim(x) < dim(y)
W — interpolation for slave DOFs
m Constrained problem:
P'APx = P'b,

y = Px.

23 ATPESC 2018, July 29 — August 10, 2018

Nonconforming variational restriction

24 ATPESC 2018, July 29 — August 10, 2018

Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

25 ATPESC 2018, July 29 — August 10, 2018

Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

26 ATPESC 2018, July 29 — August 10, 2018

Nonconforming variational restriction

Conforming solutiony = P x

27 ATPESC 2018, July 29 — August 10, 2018

AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)

e

100 ¢ - .
! '5 ! ' ' umforﬁg refinement '
I 18L, 200,41, 8" order
10 -_\: 4 ,,;\.5‘..‘.*;;: ::\ ... T -
- 2 : \\::::332;:;:’-_-57 ________________
E T SN o SUSUIN SRUUURUS SO R T -
o —“~:::t::::=
= g]
& , 15 order AMR |
»n 0.1 b B B g oo feneeenteenne e b e —
:ZE, z s
— i :] : \.;_——'_\‘—‘0;\“-
S 001 P AN B G e 2 GrdeFAMR
c i : ! : : y
.0 :
S [. . " SOOI .. SN, SR N _
E 0.001 .
X : : : :
g_ order 1 uniform ---e--- g ;
Q00001 b order2uniform e e 4" order AMR_:.......
< [order 4 uniform ---e--- 5 3
order 8 uniform ---e---
" order 1 aniso AMR —e— | ; :
1e‘05 = order 2 aniSO AMR —_— ‘ ‘ """" e
- order 4 aniso AMR —— : 8 order AMR &
| order 8 aniso AMR —— : §
16-06 i i i i i i
0 50 100 150 200 250 300

Square root of the number of unknowns

28 ATPESC 2018, July 29 — August 10, 2018

Anisotropic adaptation to
shock-like fields in 2D & 3D

Static parallel refinement, Lagrangian Sedov problem

4096 cores, random non-conforming ref.

8 cores, random non-conforming ref.

= “«! —
e ———

Shock propagates through non-conforming zones without imprinting

29 ATPESC 2018, July 29 — August 10, 2018

Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and Parallel load balancing based on space-
derefinement. 2" order Lagrangian Sedov filling curve partitioning, 16 cores

30 ATPESC 2018, July 29 — August 10, 2018

ParaIIeI AMR scalmg to "'400K MPI tasks

100 —

10 |

Time of AMR iteration [seconds]

|deal strong scallng —_—

weak scaling - |

size 0.6M —— |

size 1M —— |
size 2M ———

size 4M ——=—]
size 8BM ——=—

size 16M]
size 32M ———

size 64M

64

128 256 512

1K

2K

4K 8K
CPU cores

16K 32K 64K 128K 256K 384K

* weak+strong scaling up to ~400K MPI tasks on BG/Q

0

Sl W

Parallel decomposition
(2048 domains shown)

Parallel partitioning via
Hilbert curve

* measure AMR only components: interpolation matrix, assembly, marking,

refinement & rebalancing (no linear solves, no “physics”’
’ y

31 ATPESC 2018, July 29 — August 10, 2018

LEEL]

EXASCALE DISCRETIZATIONS

ceed.exascaleproject.org

* PDE-based simulations on unstructured grids

* high-order and spectral finite elements

v any order space on any order mesh curved meshes,
v unstructured AMR optimized low-order support

10t order basis function non-conforming AMR, 2" order mesh

state-of-the art CEED discretization libraries

v better exploit the hardware to deliver significant performance
gain over conventional methods

v based on MFEM/Nek, low & high-level APIs

T

2 Labs, 5 Universities, 30+ researchers
32 ATPESC 2018, July 29 — August 10, 2018

nek5000.mcs.anl.gov

mfem.org
High-performance spectral elements Scalable high-order finite elements

CEED Bake-off Problem 1 on CPU

MFEM (512 nodes, 32 tasks/node), xlc, BP1 V1

1o deal.ll (512 nodes, 32 tasks/node), gcc, BP1

Points per compute node

Points per compute node

T .sMFEM (512 nodes, 32 tasks/node), xlc, BP1_V1 Ta Ts
-g —e— p=1, q=p+2 g —e— p=2, q=p+2 E —e— p=1,q=p+2

[e] p=2, q=p+2 o p=3, q=p+2 [e] p=2, q=p+2

O (9} O

© 7{ ~* p=3,0=p+2 © 74 —* p=4,q=p+2 © 7] ~* p=3,9=p+2

0 —o— p=4, q=p+2 v —e— p=5, q=p+2 0 —e— p=4,q=p+2

ﬁ —o— p=5, q=p+2 ﬁ —o— p=6, q=p+2 ﬁ —o— p=5,q=p+2

Vg p=6, q=p+2 g p=7,q=p+2 Vg p=6, q=p+2

3 p=7,q=p+2 3 p=8,q=p+2 3 p=7, q=p+2

c p=8, q=p+2 c p=9, q=p+2 e p=8, q=p+2

E 5 —e— p=9, q=p+2 8 5 —o— p=10,g=p+2 : 8 5 —e— p=9, q=p+2

=} —o— p=10, q=p+2 =} —e— p=11, g=p+2 =} —o— p=10, q=p+2

g‘ —o— p=11, q=p+2 g' —o— p=12, q=p+2 g —o— p=11, g=p+2

o —e— p=12, q=p+2 o —o— p=13, q=p+2 o —— p=12, q=p+2

B. 4 —e— p=13, q=p+2 ‘g‘ 4 —e— p=14, q=p+2 8. 4 —e— p=13, q=p+2

~ p=14, q=p+2 ~ ~ p=14, q=p+2

" —e— p=15, g=p+2 i iy —e— p=15, g=p+2

g 3 p=16, q=p+2 g 3 g 3 p=16, q=p+2

© © @©

jad o jud

g 2 H : 4 g 2 g 2

Q » Q O]

O O O

x1 / x1 x 1

n (") P n

5 ‘ 5 5 —
Qo oo [al) o"'/ Qo

— 10! 102 103 104 10° 106 107 = 10! 102 103 104 10° 106 107 — 10* 102 103 104 10° 108 107

Points per compute node

(c) BP1 deal. Il

(a) BP1 MFEM-before (b) BP1 MFEM-after

« All runs done on BG/Q (for repeatability), 8192 cores in C32 mode.
Order p =1, ...,16; quad. points g = p + 2.

 BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and
deal.ii + gcc (right) on BG/Q.

* Preliminary results — paper in preparation

» Cooperation/collaboration is what makes the bake-offs rewarding.

33 ATPESC 2018, July 29 — August 10, 2018

CEED Bake-off Kernel 5 on GPU

OCCA BK5 Summit: Kernel Influence, E=4096

-

2.0 1
-
-0

=
U1
1
AARAARAARARAANARN

L L | R | | | N [|
© 00 NO Ul B WN -

-
—0— K=10
=== Empirical Roofline

o
TFLOPS, n

TFLOPS, n

0.5 1

2 4 6 8 10 12 14
Polynomial order, N

OCCA BK5 Performance on Summit

e 2.00
1.75 1
1.50 4
1.25 1
1.00 1
0.75 1
0.50
0.25 1

0.00 -

¢

e
zZzzzzzzzzz2z=z

P 2 O 00 NOoO Ul WN K-

=
N = O

N=13

=
Il
fui
EN

N=15

EEX XXX

100 10t 102 103 104 10° 108 107

Number of gridpoints

« BKS5 - BPS kernel, just local (unassembled) matvec with E-vectors
* OCCA-based kernels with a lot of sophisticated tuning

« > 2 TFLOPS on single V100 GPU

34 ATPESC 2018, July 29 — August 10, 2018

High-order methods show promise for high-quality &
performance simulations on exascale platforms

= More information and publications

* MFEM - mfem.org

« BLAST - computation.linl.gov/projects/blast

» CEED - ceed.exascaleproject.org

= Open-source software

W (CEEL
‘\! " A
‘ EXASCALE DISCRETIZATIONS

= Ongoing R&D

+ Porting to GPUs: Summit and Sierra

« Efficient high-order methods on simplices

Q4 Rayleigh-Taylor single-
material ALE on 256 processors

« Matrix-free scalable preconditioners

35 ATPESC 2018, July 29 — August 10, 2018

|2

Lawrence Livermore
National Laboratory

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-PRES-755924

Disclaimer

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

FASTMath Unstructured Mesh Technologies

K.D. Devine', V. Dobrev, D.A. Ibanez!, T. Kolev?, K.E. Jansen3,
O. Sahni3, A.G. Salinger?, S. Seol4, M.S. Shephard4, G. Slota*, C.W. Smith*

1Sandia National Laboratories
2L awrence Livermore National Laboratory
3University of Colorado
4‘Rensselaer Polytechnic Institute

Sandia
National
Laboratories

USC University of
Southcm California

freererer o
BERKELEY LA
G
I I Institute of s
Technology

Unstructured Mesh Technologies — To Be Covered
-

= Background
= Summary of FASTMath development efforts

= Discussion of core parallel mesh support tools (the
things other that the unstructured mesh analysis code)

e Parallel mesh infrastructure
 Mesh generation/adaptation
 Dynamic load balancing

e Unstructured mesh infrastructure
for particle-in-cell codes

= Some ongoing applications
= Hands-on demonstration

N .
FASTMATH 38

Unstructured Mesh Methods

-
Unstructured mesh — a spatial domain discretization composed

of topological entities with general connectivity and shape

Advantages Disadvantages

= Automatic mesh generation for = More complex data structures and
any level of geometric complexity increased program complexity,

= Can provide the highest accuracy particularly in parallel
on a per degree of freedom basis = Requires careful mesh quality

= General mesh anisotropy possible control (level depend required a

- Meshes can easily be adaptively function of the unstructured mesh

analysis code)

Poorly shaped elements increase
condition number of global system
— makes matrix solves harder

modified

= Given a complete geometry, with
analysis attributes defined on that
model, the entire simulation work
flow can be automated

MATH 39

Unstructured Mesh Methods

Goal of FASTMath unstructured mesh developments include:

= Provide component-based tools that take full advantage of
unstructured mesh methods and are easily used by
analysis code developers and users

= Develop those components to operate through multi-level
APls that increase interoperability and ease integration

= Address technical gaps by developing specific
unstructured mesh tools to address needs and eliminate/
minimize disadvantages of unstructured meshes

= Work with DOE applications on the integration of these
technologies with their tools and to address new needs
that arise

MATH 40

FASTMath Unstructured Mesh Developments
- 0000000/

Technology development areas:

Unstructured Mesh Analysis Codes — Support application’s
PDE solution needs

Performant Mesh Adaptation — Parallel mesh adaptation to
iIntegrate into analysis codes to ensure solution accuracy

Dynamic Load Balancing and Task Management —
Technologies to ensure load balance and effectively
execute operations by optimal task placement

Unstructured Mesh for PIC — Tools to support PIC on
unstructured meshes

Unstructured Mesh for UQ — Bringing unstructured mesh
adaptation to UQ

In Situ Vis and Data Analytics — Tools to gain insight as
=== simulations execute
MATH

41

Unstructured Mesh Analysis Codes

Advanced unstructured mesh analysis codes
= MFEM - High-order F.E. framework

* Arbitrary order curvilinear elements

e Applications include shock hydrodynamics,
Electromagnetic fields in fusion reactors, etc.

= ALBANY — Generic F.E. framework

e Builds on Trilinos components

e Applications include ice modeling, non-linear
solid mechanics, quantum device modeling, etc.

= PHASTA — Navier Stokes Flow Solver
e Highly scalable code including turbulence models

e Applications include nuclear reactors,
multiphase flows, etc.

Unstructured Mesh for Uncertainty Quantification

= Adaptive control of discretization a prerequisite for the
effective application of UQ operations

= Substantial potential for joint adaptivity
In the physical and stochastic domains

e Preliminary study mesh adaptivity in the
physical space with spectral/p-adaptivity
in the stochastic space

« Target of consideration of geometric

uncertainty where unstructured meshes _
will be critical

= Developments
e Stochastic space error estimators

e Basis and sample reduction strategies
e UQ driven load balancing

N
MATH 43

Expectation

-

Variance

Adapted Mesh

In Situ Visualization and Data Analytics

= Solvers scaled to 3M processes producing 10TB/s need in
situ tools to gain insight to avoid the high cost involved with

saving data

e Substantial progress made to date in
live, reconfigurable, in situ visualization Ezg?db'e,

« Effort now focused on user Insight
steering and data analytics

= Target in situ operations Q

e Live, reconfigurable in

situ data analytics - [}

e Live, analyst-guided grid adaptation

e Scalable data reduction techniques

e Live, reconfigurable problem definition, including geometry
e Live, parameter sensitivity analysis for immersive simulation

N
MATH 44

Parallel Unstructured Mesh Infrastructure

Key unstructured mesh technology needed by applications

= Effective parallel mesh representation for adaptive mesh

control and geometry interaction provided by PUMI
= Base parallel functions i"terl'o'f;lj’:jzrsypa”
» Partitioned mesh control and modificationproci | Proc j
* Read only copies for application needsF,0 >

e Associated data, grouping, etc.

I
I
|
MO

{
-

=

- o zintra-process part
Geometric model Partition model Distributed mesh boundary

N
—ASTMATH 45

Mesh Generation, Adaptation and Optimization
-

Mesh Generation

= Automatically mesh complex domains - should work
directly from CAD, image data, etc. | g ¢ ,,

= Use tools like Gmsh, Simmetrix, etc. \
Mesh Adaptation must 55 | walyy
= Use a posteriori information to improve mesh
= Account for curved geometry (fixed and evolving)
= Support general, and specific, anisotropic adaptation S
Mesh Shape Optimization

= Control element shapes as needed by the various = |
discretization methods for maintaining accuracy and eff|C|ency

Parallel execution of all three functions critical on large meshes

N
FASTMATH 46

General Mesh Modification for Mesh Adaptation

= Driven by an anisotropic mesh size field that can be set by any

combination of criteria

= Employ a “complete set” of mesh modification operations to
alter the mesh into one that matches the glven mesh size field

= Advantages

e Supports general anisotropic meshes
e Can obtain level of accuracy desired
e Can deal with any level of geometric domain complexity

e Solution transfer can be applied incrementally - provides
more control to satisfy conservation constraints

09 -9

Edge split face split

L&

Edge collapse

MATH

G-

Double split collapse to remove sliver

47

Mesh Adaptation Status

= Applied to very large scale models
— 92B elements on 3.1M processes
on % million cores

= Local solution transfer supported
through callback

= Effective storage of solution
fields on meshes

= Supports adaptation with

boundary layer meshes = W

A

SRS
RS
RN

D V4

/ g“l‘ﬁ R
W

(oA SN

48

Mesh Adaptation Status

= Supports adaptation of curved
elements

= Adaptation based on multiple
criteria, examples

e Level sets at interfaces
e Tracking particles
e Discretization errors

e Controlling element
shape in evolving

49

Attached Parallel Fields (APF)

= Attached Parallel Fields (APF) :
= Effective storage of solution fields on meshes "

= Supports mesh field operations
 Interrogation
 Differentiation
* Integration
 Interpolation/projection
e Mesh-to-mesh transfer
e Local solution transfer

= Example operations — s
e Adaptive expansion of Fields from 2D to 3D In M3D C1

e History-dependent integration point fields
for Albany plasticity models

A\
FASTMATH 50

Dynamic Load Balancing
-
= Purpose: to rebalance load during mesh modification and
before each key step in the parallel workflow

e Equal “work load” with minimum inter-process
communications 9500 | . HYPERGRAPH
= FASTMath load balancing tools 8000

e Zoltan/Zoltan2 libraries

provide multiple dynamic
partitioners with general control

of partition objects and weights

 EnGPar diffusive multi-criteria
partition improvement .

e XtraPuLP scalable graph 0 30768 6553 98304 131072

Part number . 104

partitioning Number of mesh elements in each
- of 128Ki parts

N

MATH 51

Number of Rgn

4000

Zoltan/Zoltan2 suite of partitioners supports a wide range of
applications
... .« "
= Geometric: parts contain physically close objects

e Fast to compute - good for dynamic load
balancing

* Applications: Particle methods, contact
detection, adaptive mesh refinement,
architecture-aware task mapping

 Recursive Coordinate/lnertial Bisection,
MultiJagged, Space Filling Curve

MultiJagged partition of a
particle simulation

= Topology-based: parts contain topologically connected objects

e Explicitly model communication costs - higher quality
partitions

e Applications: Mesh-based methods,
linear systems, circuits, social networks

e Graph (interfaces to XtraPuLP,
ParMETIS, Scotch)
o ’ Hyperg raph Row-based patrtition of a sparse

- matrix via graph partitionin
MATH grapn p 592

PuLP / XtraPuLP provide scalable graph partitioning for

multicore and distributed memory systems
- 0000000/

= PuLP: Shared-memory multi-objective/constraint partitioning

= XtraPuLP: Distributed implementation of PuLP for large-
scale and distributed graph processing applications

= Designed to ...
e balance both graph vertices and edges

e minimize total and maximum °so
communication *

= Effective for irregular graphs and meshes
containing latent ‘community’ properties;
network analysis; information graph processing

= |nterface in Zoltan2

= Library and source at: https://github.com/HPCGraphAnﬂ
PuLP

Dynamic Load Balancing for Adaptive Workflows

At >16Ki ranks, existing tools providing multi-level graph
methods consume too much memory and fail; geometric
methods have high cuts and are inefficient for analysis.

An approach that combines existing methods with ParMA
diffusive improvement accounts for multiple criteria:

B Accounts for DOF on any mesh entity
B Analysis and partitioning is quicker

Goal of current EnGPar developments is to generalize methods
B Take advantage of graph methods and new hardware

B Broaden the areas of application to new applications (mesh
based and others)

Partitioning to 1M Parts

Multiple tools needed to maintain partition quality at scale
B Local and global topological and geometric methods
B ParMA quickly reduces large imbalances :
and improves part shape
Partitioning 1.6B element mesh from 128K to
1M parts (1.5k elms/part) then running ParMA.

B Global RIB - 103 sec, ParMA - 20 sec:
209% vtx imb reduced to 6%, elm imb up
to 4%, 5.5% reduction in avg vtx per part [

B Local ParMETIS - 9.0 sec, ParMA -9.4
sec results in: 63% vtx imb reduced to

| Mesh Generation/Adaptation|

T

split factor T
>1
local

ParMETIS

elmimb <«

F

5%, 12% elm imb reduced to 4%, F)
and 2% reduction in avg vtx per part ey
Partitioning 12.9B element mesh from 128K (< 7% imb) Partih

targetting

to 1Mi parts (12k elms/part) then running ParMA. DOF holders

B Local ParMETIS - 60 sec, ParMA - 36 sec results in: l
35% vitx imb to 5%, 11% elm imb to 5%, and 0.6% reduction [ro analysis
“me inavg vix per part

MATH

Operation on Accelerator Supported Systems

EnGPar based on more standard graph operations than ParMA
B GPU based breath first traversals

scg_int_unroll is 5 times faster
than csr on 28M graph and up
to 11 times faster than serial

push on Intel Xeon (not shown).

Developments:

H Different layouts
(CSR, Sell-C-Sigma),
support migration

Performance Improvement (higher is better)

Timing comparison of OpenCL g
w0 BFS kernels on NVIDIA 1080ti

3.01

.89 183
1.49 1 61 165 17
116 135 139 .33

67k 190k 400k 890k 1.6 3M 28M

3.00

2.00
1.37

0.9507

I 0.84

graph

® csr/scg_int_unroll ® csr_int_unroll/scg_int_unroll ® scg/scg_int_unroll ® scg_int/scg_int_unroll

B Accelerate selection using coloring
W Focus on pipelined kernel implementations for FPGAs

EnGPar for Conforming Meshes

Tests run on billion element mesh
on Mira BlueGene/Q
B Global ParMETIS part k-way to 8Ki

B Local ParMETIS part k-way from 8Ki
to 128Ki, 256Ki, and 512Ki parts

Imbalances after running
EnGPar vtx>elm are shown

B Creating the 512Ki partition from
8Ki parts takes 147 seconds with
ParMETIS (including migration)

B EnGPar reduces a 53% vertex
imbalance to 5% in 7 seconds on
512Ki processes. ParMA requires
17 seconds.

Element Imbalance

Vertex Imbalance

1.08

1.07 |
1.06

1.05

1.04 |
1.03 |
1.02 |
1.01 |

1.5 |

1.4 r

1.3 |

1.2

11 |

ParMA sl
EnGPar ===
Initial
Tolerance
y N B B
A 4 W W

A—/

F’arMA -
EnGPar =@=
Initial
Tolerance
- - i
4 W —
128 256 512

Processes(Ki)

Parallel Unstructured Mesh PIC - PUMIpic

Current approaches have copy of entire mesh on each process

PUMIpic supports a distributed mesh
m Employ large overlaps to avoid communication during push
m All particle information accessed through the mesh

/ Particle Push (update x, v) \

dx
dt
dv

=DV

dat
/" Field to Particle A= 9B + v x B @g Charge Deposition

(mesh — particle) Y (particle — mesh)
/ \Q‘ A\ 5 jgnatir]tgesB gjsesgf:?a:?er:jatsith
\\/ \/

particles and mesh, resp.

VA4
\ E(x) — E(x), B(x) - B(x) Field solve on mesh
with new RHS
——— V2 (x) = 4 7p (x)
ASTMA E(x) = —Vp(x)
| — |

Y

p(x) — p () /

58

Parallel Unstructured Mesh PIC - PUMIpic

= Components interacting with mesh
e Mesh distribution
e Particle migration
e Adjacency search
e Charge-to-mesh mapping
e Field-to-Particle mapping
 Dynamic load balancing
e Continuum solve

= Builds on parallel unstructured
mesh infrastructure

= Developing set of components
to be integrated into applications
o XGC — Gyrokinetic Code

“me. * GITR - Impurity Transport
MATH . M3D-C1 — Core Plasma

Times in milliseconds

Total Search Timings on Sampled Compute Ranks

i
/Si

16 17 18 19 20 21 22 23
Compute Ranks

=
o [N w > w o ~ o]) o
L L ! L L 1 ! ! !

Adjacenc y searc h XGC1 grid search ‘

Require knowledge of
element that particle is in
after push
m Particle motion small per
time step
m Using mesh adjacencies
on distributed mesh
m Overall >4 times

improvement "

Construction of Distributed Mesh
T,
= Steps to construct PICparts:

e Define non-overlapping mesh partition considering the needs of
the physics/numerics of the PIC code

e Add overlap to safely ensure particles remain on PICpart during
a push

e Evaluate PICpart safe zone: Defined as elements for which
particles are “safe” for next push (no communication) — must be
at least original core, preferably larger

= After a Push particles that move out of a safe zone element
must be migrated into a copy of element in the safe zone on
another PICpart

A PICpart core — Buffer elements
minimum safe zone added A PICpart g9

Dynamic Load balancing

Load balance can be lost as particles migrate
Use EnGPar to migrate particles for better load balance
B Construct subgraphs connecting processes
for each overlapping safe zone
B Set the weights of vertices to be the number of particles
In the elements for the overlapping safe zone
B Diffusively migrate weight
(# of particles) in each
subgraph until processes
are balanced

Safe zone overlap for A,B,C

(A)
Safe zone overlap for ABD ‘ —Pp ®‘®

-~ D Overlapping safe zones between parts A,B,C,
FASTMATH and D near the A-B boundary 61

PUMIpic for XGC Gyrokinetic Code

XGC uses a 2D poloidal plane mesh considering particle paths

J

X

N
5

Y

. . . 2
O
e Mesh distribution takes advait |tage VY. 2.
S/
RV a5
. . R
NS
| | i —
AP T &
SN S e,
R PR R ey
NESEE Aty o

o
RS
BRSO
SRS

ity
g

T
i
A

oy
2%

7
%
X

i
KED
%
L

oy,
G

KX

AY

o

i
o
=
<
&
s
o

peEEr

TS S
£
)
7%

Rt

S
N
Y

2ok

%)

g
i,
7

3!

s
7
i

i

e Separate parallel field solve on

each poloidal plane
XGC gyro-averaging
for Charge-to-Mesh
PETSc used for field solve
e Solves on each plane

e Mesh partitioned over
Nranks/NpIaneS ranks

e Ranks for a given plane form MPI
sub-communicators

A
g

&

SR
e
AR
3 RATeRIRLR

RS
A

R

5
oy
5
AR
ANAX

K
KR
o
X
>
{5

0
s
Al

("
.
:
-
v

X
I/
<)

Sl
=
s
p
g
3
o
5
&
ot
&
S
AN

=,
5

S
4
s
e
2

a2
t
5
CECth
:
/i
g
i
B

AV
B
e A'

%

s
i

RRE]

R

5

i
R

Wl

o

g

g

5

0
I
SR

gviva

e

SEoE

e
&g

T,
ke

=
A
Sl
5

Vs
s
X
2
o
S
&
SR

<
&

oK

E5E

VA4
o
K
A0
1S
3%
4
>
N

)
R
vAN,

o

N
5

\Va
b
A
i
=X
3
S

=

s

VA

NN

4
KIS
AR

=

PAvSESES
-
QB
X
X
=

=

AP
7Y 74%,
)

o
<=

o/
AN

N

o

Daas

W

VA
N%X‘“ﬁ
i)

A
v

A
o
T v,

]

Group 1
Group 0 [Rank 16~31]
[Rank 0~15]

Plane 1
Two-level partition for solver

_— N
"MATH (left) and particle push (right)

Building In-Memory Parallel Workflows

-
A scalable workflow requires effective component coupling

« Avoid file-based information passing

— On massively parallel systems I/O dominates power
consumption

— Parallel file system technologies lag behind performance
of processors and interconnects

— Unlike compute nodes, the file system resources are
shared and performance can vary significantly

e Use APIs and data-streams to keep inter-component
information transfers and control in on-process memory

— Component implementation drives the selection of an in-
memory coupling approach

- Link component libraries into a single executable

MATH 63

Creation of Parallel Adaptive Loops

e
Parallel data and services are the core

= Geometric model topology for domain linkage
= Mesh topology — it must be distributed
= Simulation fields distributed over geometric model and

mesh
.l Physics and Model Parameters Input Domain Definition with Attributes
= Partition control
ion non-manifold
: ; | tructi
u Dynamlc IOad . Mesh Generation model construction
. . Solution . and/or Adaptation geometric
balancing required Transfer interrogation
. PDE’s and mesh size
at multiple steps | iicetistion and fieids

methods Attributed BNeele] [S1E:

m API’S to ||nk to mesh size Parallel Data & Services Domain

¢ CAD Corr.ectlon a eometry updates
Indicator Mesh Topology/Shape g y up

H e o S
and adaptation e i

 Error estimation Analysis

* efc calculated fields . . mesh with fields

FASTMATH 64

Parallel Adaptive Simulation Workflows

= Automation and adaptive methods critical
to reliable simulations

" In-memory examples

e MFEM - High order
FE framework

e PHASTA — FE for NS

e FUN3D - FV CFD

e Proteus — multiphase FE
e Albany — FE framework

velocity Magnitude
4.50 9.00 13.5

/ 5 '\ :‘ &
° ACE3P - High Order FE N "((““1'""“N“NH““N"!‘.‘-“‘“l\‘llI‘l‘@““.".‘“‘.;";*;";;‘l
e I eCtrO m ag n etl CS . ILC cryon:odu\e of 8 Sruperconducting RF cavities
([*

e M3D-C1 - FE based MHD LSRN INENY

: M ER I "_"
« Nektar++ — High order FE flow FT T TR

Fields iti"&’ ppatticte ‘attelerator

e N

Fields in beam frame moving at speed of light

Application interactions — Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

Final mesh with
380K elements

Initial mesh with
126K elements

A

efield_Magnitude

0.00 7.50 150 225
—

efield_Magnitude

0.00 750 150 225
o

30.0

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with

~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,

(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)
hAe. shows the first eigenmode of the electric field on the final (adapted) mesh.

N~
FASTMATH

66

Application interactions — Land Ice

= FELIX, a component of the Albany
framework is the analysis code

= Omega_h parallel mesh adaptation e

Is integrated with Albany to do:

= Estimate error
= Adapt the mesh

= |ce sheet mesh is modified to
minimize degrees of freedom

= Field of interest is the ice sheet
velocity

Application interactions — RF Fusion

= Accurate RF simulations require

Detailed antenna CAD geometry
CAD geometry defeaturing
Extracted physics curves from EFIT
Faceted surface from coupled mesh

Analysis geometry combining CAD,
physics geometry and faceted surface

Well controlled 3D meshes for
accurate FE calculations in MFEM

Integration with up-stream and down-
stream simulation codes

o L\o i ST
\‘ k L,) o oloe
T/\;
\‘\\ :
T Splole % old mim&i : @'
N ;i}?:i" @@@@ @) @»]
29)

CAD model of antenna a‘r@\

Simplified antenna array and
plasma surface merged into
reactor geometry and meshed

Integration of PUMI/MeshAdapt into MFEM

MFEM ideally suited to address RF simulation needs

e Higher convergence rates of high-order methods
can effectively deliver needed level of accuracy

* Well demonstrated scalability
* Frequency domain EM solver developed
Components integrated

e Curve straight sided meshes — includes mesh topology
modification — just curving often yields invalid elements)

* Element geometry inflation up to order 6

 PUMI parallel mesh management

e Curved mesh adaptation based on mesh modification
 EngPar for mesh partition improvement

N .
MATH 69

Geometry and Meshing for RF Simulations

De-featuring Antenna CAD:
 Models have unneeded details

e SimModeler provides tools
to “de-feature” CAD models

e Bolts, mounts & capping holes
removed

Combining Geometry:

e Import components:

— De-featured CAD assemblies
— EFIT curves for SOL (psi = 1.05)
— TORIC outer surface mesh

e Create rotated surfaces from cross section
* Assemble components into analysis geometry

N .

ALY

P e

o o < oY I
| MM 1
¥ & 11 [HAAY
/ L B AN
,F\L_f_?__——’:l\ (\,“' /
A0
f

,
=

70

Geometry and Meshing for RF Simulations

e Mesh controls set on Analysis Geometry
. . Nz VAVAVATAATLLy,
« Mesh generation — linearor & r/f,
Pl e NS

BN A uﬂﬁ ——

4
A poe

or quadratic curved meshed | @ s
e Order inflation up to 6" order | -

pa

T
=<2
=7

E
TSN
VAVAVA 7avavaYAVAN
‘ﬂggb 77
= 2 e

=

Vi

X

ZavAVAVAVL

i
=

i
Swa,
<\

s

i ATAYe
IR AR
o

AVAY
S5

pas Ay
LS
s

VAVAVAN
AVAVA

VAN
AV

AN

2

VAVAYAS
Vs

Py
Ay
&

A
R

Linear mesh
A v ;
iy ' '
8Melements | & - e
e L NI . . e t
p v 24 i
, < N NS

AVAVAVAY"”:: I
S,
i

D,

NS DA

PR
‘Vﬁ‘%

5
AVAVAV“‘ ,

IS
oLy
T AAs:
gg&%ﬁ"vm

Quadratic mesh
2.5M elements 8M elements mesh

with refined SOL

LA

s

71

Zi -
PAVAVAT AT

Va0
TN,
q}‘.;, ‘r

Hands-on Exercise: Workflow Introduction

Exercising Simmetrix and PUMI tools for model prepartion and

mesh generation on a complex CAD model

AR

e
A A

LEAZEEA T

NS KGTRTT

| A S VAVAVA
D e — =

-
e

https://xsdk-project.github.io/ATPESC2018HandsOnLessons/lessons/pumi/

N~
FASTMATH

72

MFEM - Extra Slides

73 ATPESC 2018, July 29 — August 10, 2018

Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh
topology, basis, and components:

A=Pl'GT"BT" DBGP

global domain sub-domains elements quadrature D
all (shared) dofs device (local) dofs element dofs point values /->
P G B
> —_— —_—
— P P o o P : . . . L L —
PT P P P o o G T o o o o B T
T-vector L-vector E-vector Q-vector

* partial assembly = store only D, evaluate B (tensor-product structure)
* better representation than A: optimal memory, near-optimal FLOPs

* purely algebraic, applicable to many apps

74 ATPESC 2018, July 29 — August 10, 2018

CEED high-order benchmarks (BPs)

» CEED's bake-off problems (BPs) are high-order kernels/benchmarks -
designed to test and compare the performance of high-order codes. N IO [e

e

[‘wopeaj; j0 seaibaq]

Ee/mentsj

BP1: Solve {Mu=f}, where {M} is the mass matrix, q=p+2

BP2: Solve the vector system {Mu.=f} with {M} from BP1, g=p+2

(Processors

BP3: Solve {Au=f}, where {A} is the Poisson operator, q=p+2

BP4: Solve the vector system {Au=f.} with {A} from BP3, q=p+2

BP5: Solve {Au=f}, where {A} is the Poisson operator, q=p+1

%ments

BP6: Solve the vector system {Au=f.} with {A} from BP3, q=p+1

[Cuopee,u j0 seaibeq] ‘

(Processors]

* Compared Nek and MFEM implementations on BG/Q, KNLs, GPUs.

Community involvement — deal.ii, interested in seeing your results. BP terminology: T- and E-

)) vectors of HO dofs
* Goalis to learn from each other, benefit all CEED-enabled apps.

github.com/ceed/benchmarks

75 ATPESC 2018, July 29 — August 10, 2018

Bri = ¢i(qr)

Tensorized partial assembly

= 0. (qr) i (ar,) = By Biti,

p—order, d—mesh dim, O(pld)—dofs

Full Matrix
Assembly pra’) oP13d) pra’)

Partial

Assembly

2
Optd) Optd) pld+1
)

Storage and floating point operation scaling for
different assembly types

Uik, = B

DOF / sec (Millions) [CG Solve]

500 {

100 ~

10

klllBkz’Lz‘/llﬁ = U — BldV(B1d>T

Partial Assembly

Full Matrix Assembly

—8— Full Assem. C++ Templ. (2 P8 CPUs)
—A— Part. Assem. C++ Templ. (2 P8 CPUs)
—4— Part. Assem. OCCA-Enabled (2 P8 CPUs)
—— Part. Assem. OCCA-Enabled (1 P100 GPU)

1 2 3 4 5 6 7 8
Order

Poisson CG solve performance with different

assembly types (higher is better)

Full matrix performance drops sharply at high orders while partial assembly scales well!

76 ATPESC 2018, July 29 — August 10, 2018

