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Abstract

MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element
methods that features arbitrary high-order finite element meshes and spaces, support for a wide
variety of discretization approaches and emphasis on usability, portability, and high-performance
computing e�ciency. Its mission is to provide application scientists with access to cutting-edge
algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also
enables researchers to quickly and easily develop and test new algorithms in very general, fully
unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms
and finite element abstractions provided by MFEM, discuss the software implementation, and
illustrate various applications of the library.
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1 Introduction

The Finite Element Method (FEM) is a powerful discretization technique that uses general un-
structured grids to approximate the solutions of many partial di↵erential equations (PDEs). It
has been exhaustively studied, both theoretically and in practice, in the past several decades
[34, 108, 39, 11, 41, 36]. High-order finite elements in particular are ideally suited to take ad-
vantage of the changing computational landscape because their order can be used to adjust the
algorithm for di↵erent hardware or to fine tune the performance by increasing the computations
performed with data transferred from memory (the FLOPs/byte ratio).

The MFEM project performs mathematical research and software development that aims to en-
able application scientists to take advantage of cutting-edge algorithms for high-order finite element
meshing, discretizations, and linear solvers. MFEM also enables researchers and computational
mathematicians to quickly and easily develop and test new research algorithms in very general,
fully unstructured, high-order, parallel settings. The MFEM software library [88] features arbi-
trary high-order finite element meshes and spaces, support for a wide variety of discretization ap-
proaches and emphasis on usability, portability, and high-performance computing (HPC) e�ciency.
The MFEM code is freely available via OpenHPC, Spack and GitHub, https://github.com/mfem.

In this paper we provide an overview of some of the key mathematical algorithms and software
design choices that have enabled MFEM to be widely applicable and highly performant from a
relatively small and lightweight code base (Section 6 and Section 8). MFEM’s main capabilities
and their corresponding sections in the paper are outlined in the following paragraphs.

Conceptually, MFEM can be viewed as a finite element toolbox that provides the building
blocks for developing finite element algorithms in a manner similar to that of MATLAB for linear
algebra methods (Section 2). MFEM includes support for the full high-order de Rham complex:
H1-conforming, discontinuous (L2), H(div)-conforming, H(curl)-conforming and NURBS finite
element spaces in 2D and 3D (Subsection 4.2), as well as many bilinear, linear, and nonlinear forms
defined on them (Appendix A) including linear operators such as gradient, curl, and embeddings
between these spaces. It enables the quick prototyping of various finite element discretizations
including: Galerkin methods, mixed finite elements, discontinuous Galerkin (DG), isogeometric
analysis, hybridization, and discontinuous Petrov-Galerkin approaches (Subsection 5.1).

MFEM contains classes for dealing with a wide range of mesh types: triangular, quadri-
lateral, tetrahedral, and hexahedral, as well as surface and topologically periodic meshes (Sec-
tion 3). It has general support for mesh refinement and optimization including local conforming
and non-conforming adaptive mesh refinement (AMR) with arbitrary order hanging nodes, pow-
erful node-movement mesh optimization, anisotropic refinement, derefinement, and parallel load
balancing (Section 7). Arbitrary element transformations allowing for high-order mesh elements
with curved boundaries are also supported. Some commonly used linear solvers, nonlinear meth-
ods, eigensolvers, and some explicit and implicit Runge-Kutta time integrators are also available
(Appendix B).

MFEM supports Message Passing Interface (MPI)-based parallelism throughout the library and
can readily be used as a scalable unstructured finite element problem generator (Subsection 6.1).
MFEM-based applications have been scaled to hundreds of thousands of cores. The library sup-
ports e�cient operator partial assembly and evaluation for tensor-product high-order elements
(Subsection 5.4). A serial MFEM application typically requires minimal changes to transition to a
scalable parallel version of the code where it can take advantage of the integrated scalable linear
solvers from the hypre library, including the BoomerAMG, AMS, and ADS solvers (Subsection 6.2).
Both versions can be further transitioned to high-performing templated variants where operator
assembly/evaluation is fully inlined for particular runtime parameters.
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Comprehensive support for a number of external numerical libraries, e.g., PETSc, SuperLU,
STRUMPACK, SuiteSparse, SUNDIALS, and PUMI is also included, which gives access to many
additional linear and nonlinear solvers, preconditioners, and time integrators. MFEM’s meshes and
solutions can be visualized with its lightweight native visualization tool GLVis [55], as well as with
the VisIt [32, 114] visualization and analysis tool (Subsection 4.4).

MFEM is used in a number of applications in the U.S. Department of Energy, academia, and
industry (Section 8). The object-oriented design of the library separates the mesh, finite element,
and linear algebra abstractions, making it easy to extend and adapt to the needs of di↵erent
simulations. The MFEM code base is relatively small and is written in highly portable C++ (e.g.,
with very limited use of templates and the STL). The serial version of MFEM has no required
external dependencies and is straightforward to build on Linux, Mac, and Windows. The MPI-
parallel version uses two third-party libraries (hypre [67] and METIS [71, 87]) and is easy to build
with an MPI compiler. On most machines, both the serial and the parallel versions can be built in
under a minute by typing: make serial and make parallel, respectively.

Some of the distinguishing features of MFEM compared to other finite element packages, such
as deal.II [10], FEniCS [5], DUNE [22], FreeFem++ [60], Hermes [107], libMesh [72], FETK [65],
etc., are its massively parallel scalability, HPC e�ciency, support for arbitrary high-order finite el-
ements, generality in mesh type and discretization methods, and the focus on maintaining a clean,
lightweight code base. The continued development of MFEM is motivated by close work with a
variety of researchers and application scientists resulting in a combination of features that is not
available in any other finite element package. The wide applicability of the library is illustrated by
the fact that over the last two years (2017-2018) it has been cited in journal articles, conference pa-
pers, and preprints covering topology optimization for additive manufacturing, compressible shock
hydrodynamics, reservoir modeling, fusion-relevant electromagnetic simulations, space propulsion
thrusters, radiation transport, space-time discretizations, PDEs on surfaces, parallelization in time,
and algebraic multigrid methods [80, 33, 95, 53, 83, 18, 46, 16, 6, 96, 2, 8, 101, 86, 115, 56, 118, 77,
116, 106, 63, 21, 81, 102, 59, 104].

2 Overview of the Finite Element Method

This section is intended as a concise introduction to the finite element method. We define some
of the basic finite element terminology and illustrate the corresponding MFEM software abstrac-
tions on a simple model problem. These are discussed in more detail in the following sections;
consequently, computational scientists already familiar with finite elements may choose to skip this
section.

The finite element method builds on concepts from the calculus of variations and linear algebra
to discretize field variables and PDE operators into finite vector and matrix approximations. These
vectors and matrices can then be assembled to create a system of algebraic equations with solutions
that approximate the solutions to the PDE. While the theory of finite elements can be highly
abstract, the application of the method to a given PDE is relatively straightforward and systematic.

The method begins by creating a geometric mesh of elements to represent the domain of the
PDE. These elements can have a variety of shapes and can even have curved edges and faces.
Next, the PDE is translated into a variational integral form (weak formulation), which along with
a choice of basis functions can describe the solution locally on the elements with matrix and vector
representations of the fields and operators of the PDE. These local matrices and vectors are then
assembled together to create a system of equations that approximates the PDE. We will demonstrate
this process in more detail by way of a basic example and explain all of the components and their
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analogues in MFEM in the following paragraphs.
As an illustrative first example, consider Poisson’s equation

��u = f (1)

where u is an unknown scalar field and f is a given forcing function. This partial di↵erential equation
can be used to model a wide variety of physical phenomena, including steady-state heat conduc-
tion, electric potentials and gravitational fields. Adding simple homogeneous Dirichlet boundary
conditions, we can state the strong form of the boundary value problem:

Find u : ⌦ ! R such that

��u = f in ⌦ (2)

u = 0 on �

where ⌦ ⇢ Rd is the domain of interest, � is its boundary, and f : ⌦ ! R is the given source.
The finite element method employs a weak (integral) form of the governing equations instead

of the above strong (di↵erential) form. This approach enlarges the set of admissible solutions and
allows the modeling of discontinuous fields which arise frequently in practice. One characteristic
feature of the integral formulation is the introduction of test functions into the governing equations,
which serves the purpose of locally weighting or testing the approximation. The use of weighting
functions with local support allows us to solve the equations using an integral formulation and still
retain local accuracy.

Multiplying (2) by an arbitrary test function v and integrating over the domain ⌦ yields

�
Z

⌦

�u · v =

Z

⌦

f v. (3)

We then integrate by parts, i.e. apply the divergence theorem, to obtain
Z

⌦

ru · rv �
Z

�

(ru · n)v =

Z

⌦

f v (4)

where n is the outward normal of the boundary �. If we impose the boundary condition on the
test function, v = 0 on �, the second term vanishes and we obtain the weak form of the boundary
value problem

Find u 2 V such that
Z

⌦

ru · rv =

Z

⌦

f v 8v 2 V (5)

where V is the space of admissible functions. In this example, that means all functions which are
zero-valued on the boundary � and have integrate (“well-defined”) first derivatives. In other words,

V =
�
v 2 H1(⌦), v = 0 on �

 
, (6)

where H1 is a well-known Sobolev space [34, 25]. Introducing the notation

a(u, v) =

Z

⌦

ru · rv (7)

l(v) =

Z

⌦

f v, (8)
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we can rewrite the above problem abstractly as

Find u 2 V such that

a(u, v) = l(v) 8v 2 V . (9)

Here a(u, v) is an example of a bilinear form since it is a mapping from V ⇥ V ! R that is linear
in both arguments separately. Similarly, l(v) is an example of a linear form since it is a mapping
from V ! R that is also linear in its argument. The form a(·, ·) is also symmetric in this case,
a(u, v) = a(v, u), but it is possible to have weak formulations where the space for u, the so-called
trial space, is di↵erent than the space for v (the test space). It is also possible to apply variational
formulations to nonlinear problems and handle other types of boundary conditions (Neumann,
Robin).1

The above problem (5) is continuous, meaning that the solution space V is infinite dimensional.
In order to compute an approximate solution on a computer using linear algebra, we approximate
the solution u as

u ⇡ u
h

=
NX

j

c
j

'
j

(10)

where '
j

are basis functions of a finite dimensional subspace V
h

⇢ V and c
j

are scalar unknowns.
We call '

j

trial basis functions and c
j

degrees of freedom (DOFs). Endowing a mesh with a set of
finite elements creates a space of functions. In MFEM, the objects corresponding to these concepts
are the Mesh, the FiniteElementCollection, and the corresponding FiniteElementSpace.2

To define the basis functions '
i

, we subdivide the domain ⌦ into a finite number of elements.
This subdivision of the domain is known as the computational mesh. The discrete points that
define the mesh are the mesh nodes, e.g. the vertices of the mesh in the low-order case. Standard
first order nodal basis functions are defined as having a value of one at a single node and a value
of zero at all other nodes. The function is then linearly interpolated from the non-zero node to its
neighbors. An example of a mesh and basis function is shown on the left in Figure 1. Higher-order
functions have DOFs associated with more points in the element, not just the vertices, but also
points on the edges, faces and the element interior3. The DOFs of some finite element spaces also
may not correspond to values at particular points, e.g. scalar DOFs may represent a vector-valued
function4.

Substituting our approximation (10) into the weak form (5) we get

X

j

c
j

Z

⌦

r'
j

· rv =

Z

⌦

f v 8v 2 V. (11)

Choosing '
i

2 V
h

⇢ V as our test functions, known as the Galerkin method, we obtain the finite
dimensional problem

X

j

c
j

Z

⌦

r'
j

· r'
i

=

Z

⌦

f '
i

8'
i

2 V
h

. (12)

1
See Subsection 5.1 for further examples.

2
These are discussed in detail in Section 3 and Section 4.

3
See Subsection 4.3.

4
See Subsection 4.2.

6



Figure 1: Left: 2D computational mesh and one of the first order nodal basis functions '
i

. Right:
The finite element discrete approximation visualized with GLVis [55].

Defining the linear algebra objects
Z

⌦

r'
j

· r'
i

! A
ij

(13)
Z

⌦

f '
i

! b
i

(14)

c
j

! x
j

, (15)

we arrive at the final discrete system of linear equations

Ax = b (16)

which we can solve on a computer for x to approximate the solution of the original PDE. The size of
the above linear system depends on the number of DOFs in the finite element spaces, and generally
the finer the mesh (or higher the order), the larger the linear system will be, and the closer the
discrete approximate to the continuous solution of the weak form of the PDE. These types of finite
element linear systems are discussed in detail in Subsection 5.2.

Mappings (13) and (14) represent key components of the MFEM library. The BilinearForm

object, defined over a FiniteElementSpace, supplied with a BilinearFormIntegrator, generates a
Matrix. Similarly, in (14), a LinearForm object, defined over a FiniteElementSpace, supplied with
a LinearFormIntegrator, generates a Vector. In this way, it is useful to think about MFEM as a
library for building finite element objects and using them to generate linear algebra objects which
can be used to solve the resulting systems of equations.

As an example of the implementation of the Poisson problem in MFEM, consider the file
examples/ex1.cpp in the MFEM distribution. We first read the mesh from the given mesh file.
We can handle triangular, quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
the same code.5

75 Mesh *mesh = new Mesh(mesh_file , 1, 1);
76 int dim = mesh ->Dimension ();

We then refine our coarse mesh to improve the accuracy of our solution. In this example we
do ref levels of uniform refinement. We choose ref levels to be the largest number that gives a
final mesh with no more than 50, 000 elements.6

5
See Section 3 for discussion of more general meshes.

6
Advanced forms of refinement are discussed in Section 7.
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83 int ref_levels = (int)floor(log (50000./ mesh ->GetNE())/log (2.)/dim);
84 for (int l = 0; l < ref_levels; l++)
85 {
86 mesh ->UniformRefinement ();
87 }

We now define a FiniteElementCollection which determines the type of basis functions we want
on a reference unit master element, e.g. a unit square or triangle. For this example, we use the H1

Sobolev space defined in (6). Note that this collection can be of arbitrary order and dimension.

94 FiniteElementCollection *fec;
95 fec = new H1_FECollection(order , dim);

Once the FiniteElementCollection is defined, we can define a FiniteElementSpace which maps
the basis functions on a reference element to each physical element in our mesh.

108 FiniteElementSpace *fespace = new FiniteElementSpace(mesh , fec);

We can then determine the list of essential (known-value) boundary degrees of freedom. In this
example, the boundary conditions are defined by marking all the boundary attributes from the
mesh as essential (Dirichlet or fixed) and converting them to a list of DOFs.

116 Array <int > ess_tdof_list;
117 if (mesh ->bdr_attributes.Size())
118 {
119 Array <int > ess_bdr(mesh ->bdr_attributes.Max());
120 ess_bdr = 1;
121 fespace ->GetEssentialTrueDOFs(ess_bdr , ess_tdof_list);
122 }

Finally, we can define our finite element objects given in (7). First, we set up the linear form
l(·) which corresponds to the right-hand side of the FEM linear system. In this case it is

R
⌦

1 '
i

where '
i

are the basis functions in the finite element space, fespace.

127 LinearForm *b = new LinearForm(fespace);
128 ConstantCoefficient one (1.0);
129 b->AddDomainIntegrator(new DomainLFIntegrator(one));
130 b->Assemble ();

Second, we set up the bilinear form a(·, ·) on the finite element space corresponding to the
Laplacian operator (��) by adding the di↵usion domain integrator with coe�cient 1.

141 BilinearForm *a = new BilinearForm(fespace);
142 a->AddDomainIntegrator(new DiffusionIntegrator(one));

The next stage is transforming these finite element objects into linear algebra objects. We first
define the solution vector x, which is a GridFunction initialized with the known essential boundary
condition of zero.

135 GridFunction x(fespace);
136 x = 0.0;

We then assemble the bilinear form and the corresponding linear system, applying any necessary
transformations such as eliminating boundary conditions.7

7
See Subsection 5.2.
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149 a->Assemble ();
150

151 SparseMatrix A;
152 Vector B, X;
153 a->FormLinearSystem(ess_tdof_list , x, *b, A, X, B);

We have now formed the linear algebra system of equations Ax = b. To solve the system, we
use an iterative conjugate gradient scheme with a simple Gauss-Seidel preconditioner.8

160 GSSmoother M(A);
161 PCG(A, M, B, X, 1, 200, 1e-12, 0.0);

After computing the solution, we can map it back from the linear algebra to the finite element
representation using (10).

171 a->RecoverFEMSolution(X, *b, x);

We can save the refined mesh and the computed solution.

175 ofstream mesh_ofs("refined.mesh");
176 mesh_ofs.precision (8);
177 mesh ->Print(mesh_ofs);
178 ofstream sol_ofs("sol.gf");
179 sol_ofs.precision (8);
180 x.Save(sol_ofs);

And we can finally visualize the results, e.g., using MFEM’s native visualization tool, GLVis
[55] as illustrated on the right in Figure 1.9

183 if (visualization)
184 {
185 char vishost [] = "localhost";
186 int visport = 19916;
187 socketstream sol_sock(vishost , visport);
188 sol_sock.precision (8);
189 sol_sock << "solution\n" << *mesh << x << flush;
190 }

Extensions to parallel settings10, high-performance computing algorithms11, and various appli-
cations12 are discussed in the following sections. Those sections assume closer familiarity with finite
elements, so we recommend the following excellent as additional references: [69, 52, 108, 41, 24, 34,
25, 109, 119, 54, 89].

3 Meshes

The main mesh classes in MFEM are: Mesh for a serial mesh and ParMesh for an MPI-distributed
parallel mesh. The class ParMesh is derived from Mesh and extends the local mesh representation
(corresponding to the inherited Mesh data and interface) with data and functionality representing
the mesh connections across MPI ranks (see Subsection 6.1).

In this section we describe the internal representation aspects of these two classes. The mesh
manipulation capabilities (refinement, derefinement, etc.) will be described later in Section 7.

8
More powerful preconditioners are discussed in Subsection 6.2.

9
See also Subsection 4.4.

10
Subsection 6.1.

11
Section 6.

12
Section 8.
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3.1 Conforming Meshes

The definition of a serial (or a local component in parallel), unstructured, conforming mesh in
MFEM consists of two parts: topological (connectivity) data and geometrical (coordinates) data.

The primary topology data are: number of vertices, number of elements, number of boundary
elements; vertices have no topological description; each element has a type (triangle, quad, tetrahe-
dron, etc.), an attribute (an integer), and a tuple of vertex indices; boundary elements are described
in the same way, with the assumption that they define elements with dimension one less than the
dimension of the regular elements. Any additional topological data — such as edges, faces, and
their connections to the elements, boundary elements and vertices — is derived internally from the
primary data. Most of the basic topological and geometrical data for the reference elements can
be found in the files fem/geom.hpp and fem/geom.cpp. For example, the canonical orderings of the
vertices of the reference elements are defined in the constructor of class Geometry.

The geometrical locations of the mesh entities can be described in two ways: (1) define the
coordinates of all vertices, and (2) define a GridFunction called nodal grid function, or simply
nodes. Clearly, the first approach can only be used when describing a linear mesh. In the second
case, the GridFunction class is the same class that MFEM uses to describe any finite element
function/solution. In particular, it defines (a) the basis functions mapping each reference element
to physical space, and (b) the coe�cients multiplying the basis functions in the finite element
expansion – we refer to these as nodal coordinates, control points, or nodal degrees of freedom of
the mesh. The nodal geometric description is much richer than the first case of vertex coordinates:
it allows nodes to be associated not only with the mesh vertices but with the edges, faces, and the
interiors of the elements as well, see Figure 2.

ˆK K

Figure 2: Left: The mapping � from the reference element K̂ to a bi-cubic element K in physical
space with high-order nodes shown as black dots. Right: Example of a highly deformed high-order
mesh from a Lagrangian hydrodynamics simulation (see Subsection 8.3).

The exact shape of an element is defined through a mapping � ⌘ �
K

: K̂ ! K from the
reference element K̂, as shown in Figure 2. The mapping � itself is defined in terms of the basis
functions {w

i

(x̂)}N
i=1

(typically polynomials) and the local nodal coordinates x
K

(extracted/derived
from the global nodal vector x)

x(x̂) = �(x̂) =
NX

i=1

x
K,i

w
i

(x̂) . (17)

Both {w
i

} and {x
K

} are defined from the geometric mesh description — either the vertex coordi-
nates with linear (bi-linear for quads, or tri-linear for hexes) polynomials, or the nodal GridFunction
with its respective definition of basis functions and node coordinates. Typically, the basis functions
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{w
i

} are scalar functions and the coe�cients {x
K,i

} are small vectors of the same dimension as

x 2 K ⌘ �(K̂). In MFEM, the mapping �, for a particular element K, is represented by the
class ElementTransormation. The element transformation for an element K can be obtained di-
rectly from its Mesh object using the method GetElementTransformation(k), where k is the index of
the element K in the mesh. Once constructed, the ElementTransformation object can be used for
computing the physical coordinates of any reference point, the Jacobian matrix of the mapping,
the integration weight associated with the change of the variables from K to K̂, etc. All of these
operations generally depend on a reference point of interest which is typically a quadrature point in
a quadrature rule. This motivates the use of class IntegrationPoint to represent reference points.

Note that MFEM meshes distinguish between the dimension of the reference space of all regular
elements (reference dimension) and the dimension of the space into which they are mapped (spatial
dimension). This way, surface meshes are naturally supported with reference and space dimensions
of 2 and 3, respectively.

3.2 Non-Conforming Meshes

Non-conforming meshes, also referred to as meshes with hanging nodes, can be viewed as conforming
meshes (as described above) with a set of constraints imposed on some of their vertices. Typically,
the requirement is that each constrained vertex has to be the convex combination of a set of parent
vertices. Note that, in general, the parent vertices of a constrained vertex can be constrained
themselves. However, it is usually required that all the dependencies can be uniquely resolved
and all constrained vertices can be expressed as linear combinations of non-constrained ones, see
Subsection 7.2 for more details.

The need for such non-conforming meshes arises most commonly in the local refinement of
quadrilateral and hexahedral meshes. In such scenarios, an element that is refined shares a common
entity (edge or face that the first element needs to refine) with another element that does not need to
refine the shared entity. To restrict the propagation of the refinement, the first element introduces
one or more constrained vertices on the shared entity and constrains them in terms of the vertices
of the shared entity. The goal of the constraint is to ensure that the refined sub-entities introduced
by the refinement of the first element are completely contained inside the original shared entity. In
simpler terms, the goal is to make sure that the mesh remains “watertight”, i.e. there are no gaps
or overlaps in the refined mesh.

When working with high-order curved meshes, or high-order finite element spaces on linear
non-conforming meshes, one has to replace the notion of constrained vertices with constrained
degrees of freedom. The goal of the constraints is still the same — ensure there are no gaps or
overlaps in the refined mesh; or, in the case of high-order spaces — ensure that the constrained
non-conforming finite element space is still a subspace of the discretized continuous space, H1,
H(div), etc. High-order finite elements are further discussed in Subsection 4.3.

The observation that a non-conforming mesh can be represented as a conforming mesh plus a set
of linear constraints on some of its nodes, is the basis for the handling of non-conforming meshes in
MFEM. Specifically, the Mesh class represents the topology of the conforming mesh (which we refer
to as the “cut” mesh) while the constraints on the mesh nodes are explicitly imposed on the nodal
GridFunction which contains both the unconstrained and the constrained degrees of freedom. In
order to store the additional information about the fact that the mesh is non-conforming, the Mesh

class stores a pointer to an object of class NCMesh. For example, NCMesh stores the full refinement
hierarchy along with all parent-child relations for non-conforming edges and faces, while Mesh simply
represents the current mesh consisting of the leaves of the full hierarchy, see [31].

Notable features of the NCMesh class include its ability to perform both isotropic and anisotropic
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refinement of quadrilateral and hexahedral meshes while supporting an arbitrary number of refine-
ments across a single edge or face (i.e. arbitrary level of hanging nodes).

3.3 NURBS Meshes

Non-Uniform Rational B-Splines (NURBS) are often used in geometric modeling. In part, this is due
to their capability to represent conic sections exactly. In the last decade, the use of NURBS discrete
functions for PDE discretization has also become popular and is often referred to as IsoGeometric
Analysis (IGA), see [36].

In principle, the construction of NURBS meshes and discrete spaces is very similar to the case
of high-order polynomials. For example, a NURBS mesh can be viewed as a quadrilateral (in 2D)
or hexahedral (in 3D) mesh where the basis functions are tensor products of 1D NURBS basis
functions. However, an important distinction is that the nodal degrees of freedom are no longer
associated with edges, faces, or vertices. Instead, the nodal degrees of freedom (usually called
control points in this context) can participate in the description of multiple layers of elements — a
fact that follows from the observation that NURBS basis functions have support (i.e. are non-zero)
inside of blocks of (p + 1) ⇥ (p + 1) (2D) and (p + 1) ⇥ (p + 1) ⇥ (p + 1) (3D) elements (here p is
the degree/order of the NURBS space).

In MFEM, NURBS meshes are represented internally through the class NURBSExtension which
handles all NURBS-specific implementation details such as constructing the relation between ele-
ments and their degrees of freedom. However, from the user perspective, a NURBS mesh is still
represented by the class Mesh (with quadrilateral or hexahedral elements) which, in this case, has a
pointer to an object of type NURBSExtension and a nodal GridFunction that defines the appropriate
NURBS basis functions and control points. Most MFEM examples can directly run on NURBS
meshes, and some of them also support IGA discretizations. As of version 3.4, MFEM can also
handle variable-order NURBS, see the examples in the miniapps/nurbs directory.

3.4 Parallel Meshes

As mentioned in the beginning of this section, an MPI-distributed parallel mesh is represented in
MFEM by the class ParMesh which is derived from class Mesh. The data structures and functionality
inherited from class Mesh represent the local (to the MPI task) portion of the mesh. Note that each
element in the global mesh is assigned to exactly one MPI rank, so di↵erent processors cannot
own/share the same element; however they can share mesh entities of lower dimensions: faces (in
3D), edges (in 2D and 3D), and vertices (in 3D, 2D, and 1D). In MFEM, such mesh entities are
called shared.

The standard way to construct a ParMesh in MFEM is to start with a serial Mesh object and
a partitioning array that assigns an MPI rank to each element in the mesh. By default, the
partitioning array is constructed using the METIS graph partitioner [71, 87] where mesh elements
are the vertices of the partitioned graph, and the graph edges correspond to the internal faces (3D),
edges (2D) and vertices (1D) connecting two adjacent mesh elements.

Given the partitioning array, each shared entity can be associated with a unique set of processors,
namely, the set of processors that share that entity. Such sets of processors, corresponding to at
least one shared entity, are called processor groups or simply groups. Each MPI rank constructs
its own set of groups and represents it with an object of class GroupTopology which represents the
communication connections of each rank with its (mesh) neighbors. Inside each group one of the
processors is selected as the master for the group. This choice must be made consistently by all
processors in the group. For example, MFEM assigns the processor with the lowest rank in the
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group to be the master.
In order to maintain a consistent mesh description across processors, it is important to ensure

that shared entities are described uniformly across all MPI tasks in the shared entity group. For
example, since ParMesh does not define a global numbering of all vertices, a shared triangle with
local vertex indices (a, b, c) on processor A must be described on processor B as (x, y, z) such that
the shared vertex with index x on processor B is the same as the shared vertex with index a on
processor A, and similarly for the indices y and z. This uniformity must be ensured during the
construction of the ParMesh object and maintained later, e.g. during mesh refinement.

For this reason, shared entities are stored explicitly (as tuples of local vertex indices) on each
processor. In addition, the shared entities are ordered by their dimension (vertices, edges, faces)
and by their group, making it easier to maintain consistency across processors.

The case of parallel non-conforming meshes is treated similarly to the serial case: the ParMesh

object is augmented by an object of class ParNCMesh which inherits from NCMesh and provides all
required parallel functionality. This is discussed in more detail later in Subsection 7.2.

The case of parallel NURBS meshes is also treated similarly to the serial case: the ParMesh object
is augmented with an object of class ParNURBSExtension which inherits from NURBSExtension. Note
that, currently, MFEM does not support parallel refinement of NURBS meshes.

3.5 Supported Input and Output Formats

There are two MFEM native ASCII formats: the first one is for generic meshes (non-NURBS) and
a second one which is specific for NURBS meshes. These are the default formats used when writing
a mesh to a C++ output stream (std::ostream) or when calling the Print() method of class Mesh

or ParMesh. Note that the cross-processor connectivity in a parallel mesh is lost when using the
Print() method which, however, is not required for visualization purposes. To save a parallel mesh
with all cross-processor connections, one needs to use the method ParMesh::ParPrint().

Other input formats supported by class Mesh are: Netgen, TrueGrid, unstructured VTK, Gmsh
(linear elements only), and Genesis format (produced by Cubit, supported when NetCDF support
is enabled in MFEM). Class Mesh also provides output support for the unstructured VTK format
through the method PrintVTK().

For more comprehensive input/output, where a mesh is stored with any number of finite ele-
ment solution fields, MFEM defines the class DataCollection along with several derived classes:
VisItDataCollection: writes an additional .mfem root file that can be opened by the MFEM plugin
in VisIt [32, 114]; SidreDataCollection: a set of data formats based on the Sidre component of
LLNL’s Axom library which, in particular, supports binary I/O and can also be opened by VisIt;
and ConduitDataCollection: a set of data formats based on LLNL’s Conduit library [35] which
also supports binary I/O and can be opened by VisIt. Note that both classes DataCollection and
VisItDataCollection use the default ASCII format to save the mesh and finite element solution
fields.

4 Finite Element Spaces

In this section, we introduce and describe the main classes (in addition to the mesh classes described
in Section 3) required for the full definition of any finite element discretization space: the class
FiniteElement with its derived classes, the class FiniteElementCollection with its derived classes,
and finally the class FiniteElementSpace. In addition, we describe the class GridFunction which
represents a particular discrete function in a finite element space.
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4.1 Finite Elements

The concept of a finite element is represented in MFEM by the abstract base class FiniteElement.
The main characteristics of the class are the following.

Reference element. This is the precise definition of the reference geometric domain along with
descriptions of its vertices, edges, faces, and how they are ordered. As previously mentioned, this
information is included in class Geometry implemented in the files fem/geom.hpp and fem/geom.cpp.
In the FiniteElement class this information is represented by an integer referring to one of the
constants in the enumeration Geometry::Type: POINT, SEGMENT, TRIANGLE, SQUARE, TETRAHEDRON, or
CUBE. This data member can be accessed via the method GetGeomType(). The respective dimension
of the reference element can be accessed via the method GetDim().

Map type. This is an integer given by one of the constants: VALUE, INTEGRAL, H DIV, and H CURL

defined in the FiniteElement class. These constants represent one of the four ways a function on
the reference element K̂ can be transformed into a function on any physical element K through a
transformation � : K̂ ! K. The four choices are:

VALUE This map-type can be used with both scalar- and vector-valued functions on the reference
element: assume that û(x̂), x̂ 2 K̂ is a given function, then the transformed function u(x),
x 2 K is defined by

u(x) = û(x̂) , where x = �(x̂) .

INTEGRAL This map-type can be used with both scalar- and vector-valued functions on the reference
element: assume that û(x̂), x̂ 2 K̂ is a given function, then the transformed function u(x),
x 2 K is defined by

u(x) =
1

w(x̂)
û(x̂) , where x = �(x̂) ,

and w(x̂) is the transformation weight factor derived from the Jacobian J(x̂) of the transfor-
mation �(x̂), which is a matrix of dimensions d ⇥ d̂ (where d̂  d are the dimensions of the
reference and physical spaces, respectively):

w(x̂) =

(
det(J(x̂)) when d̂ = d, i.e. J is square

det(J(x̂)TJ(x̂))
1
2 otherwise.

This mapping preserves integrals over mapped subsets of K̂ and K.

H DIV This map-type can be used only with vector-valued functions on the reference element where
the number of the vector components is d̂, i.e. the reference element dimension: assume that
û(x̂), x̂ 2 K̂ is such a function, then the transformed function u(x), x 2 K is defined by

u(x) =
1

w(x̂)
J(x̂)û(x̂) , where x = �(x̂) ,

and w(x̂) and J(x̂) are as defined above. This is the Piola transformation used for map-
ping H(div)-conforming basis functions. This mapping preserves the integrals of the normal
component over mapped (d̂ � 1)-dimensional submanifolds of K̂ and K.

H CURL This map-type can be used only with vector-valued functions on the reference element where
the number of the vector components is d̂, i.e. the reference element dimension: assume that
û(x̂), x̂ 2 K̂ is such a function, then the transformed function u(x), x 2 K is defined by

u(x) =

(
J(x̂)�T û(x̂) when d̂ = d, i.e. J is square

J(x̂)[J(x̂)TJ(x̂)]�1û(x̂) otherwise,
where x = �(x̂) ,
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and w(x̂) and J(x̂) are as defined above. This is the Piola transformation used for mapping
H(curl)-conforming basis functions. This mapping preserves the integrals of the tangential
component over mapped 1D paths.

There is a connection between the way a function is mapped and how its gradient, curl or divergence
is mapped: if a function is mapped with the VALUE map type, then its gradient is mapped with
H CURL; if a vector function is mapped with H CURL, then its curl is mapped with H DIV; and finally,
if a vector function is mapped with H DIV, then its divergence is mapped with INTEGRAL.

The map type can be accessed with the method GetMapType(). In MFEM, the map type also
determines the type of basis functions used by the FiniteElement: scalar (for VALUE or INTEGRAL

map types) or vector (for H CURL or H DIV map types).
Degrees of freedom. The number of the degrees of freedom in a FiniteElement can be

obtained using the method GetDof() which is also the number of basis functions defined by the
finite element. Each degree of freedom i has an associated point in reference space, called its node
(i-th node). For many scalar finite elements, evaluating the j-th basis function at the i-th node
gives �

ij

(the Kronecker delta). However, that is generally not required.
The basis functions can all be evaluated simultaneously at a single reference point, given as an

IntegrationPoint, using the virtual method CalcShape() for scalar finite elements or CalcVShape()

for vector finite elements. Similarly, based on the specific finite element type, the gradient, curl, or
divergence of the basis functions can be evaluated with the method CalcDShape(), CalcCurlShape(),
or CalcDivShape(), respectively.

In order to simplify the construction of a global enumeration for the DOFs, each local DOF in
a FiniteElement is associated with one of its vertices, edges, faces, or the element interior. Then
the local DOFs are ordered in the following way: first all DOFs associated with the vertices (in the
order defined by the reference element), then all edge DOFs following the order and orientation
of the edges in the reference element, and then similarly the face DOFs, and finally, the interior
DOFs. This local ordering is then easier to translate to the global mesh level where global DOFs
are numbered in a similar manner but now traversing all mesh vertices first, then all mesh edges,
then all mesh faces, and finally all element interiors.

For vector finite elements, in addition to the node, each DOF i has an associated d̂-dimensional
vector, ~r

i

. For DOF i, associated with a non-interior entity (usually edge or face) the vector ~r
i

is
chosen to be either normal or tangential to the face/edge based on its map type: H DIV or H CURL,
respectively. The role of these associated vectors is to define the basis functions on the reference
element, so that evaluating the j-th vector basis function at the i-th node and then computing the
dot product with the vector ~r

i

gives �
ij

. Note that the vectors ~r
i

have to be scaled appropriately
in order to preserve the rotational symmetries of the basis functions.

The main classes derived from the base FiniteElement class are the arbitrary order H1-conforming
(with class names beginning with H1), the L2-conforming (i.e. discontinuous, with class names be-
ginning with L2), the H(curl)-conforming (with class names beginning with ND, short for Nedelec),
and the H(div)-conforming (with class names beginning with RT, short for Raviart-Thomas) finite
elements. All of these elements are defined for all reference element types where they make sense.
For an illustration see Figure 3.

In addition to the methods for evaluating the basis functions and their derivatives, class
FiniteElement introduces a number of other useful methods. Among these are: methods to support
mesh refinement: GetLocalInterpolation() and GetTransferMatrix(); methods to support finite el-
ement interpolation/projection: Project() (scalar and vector version), ProjectMatrixCoefficient();
and methods to support the evaluation of discrete operators such as embedding, gradient, curl, and
divergence: ProjectGrad(), ProjectCurl(), etc.
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Figure 3: Linear, quadratic and cubic H1 finite elements and their respective H(curl), H(div)
and L2 counterparts in 2D. Left: The black dots and the green arrows represent the H1 and the
H(curl) DOFs, respectively. Right: The red arrows and the black squares represent the H(div)
and the L2 DOFs, respectively.

In order to facilitate mesh-type independent programming, on one hand, and to define any re-
quired permutations of DOFs shared by neighbor elements in the process of mapping global DOFs to
local DOFs, on the other hand, MFEM introduces the abstract base class FiniteElementCollection.
Its main functionality is to (1) define a specific finite element for every mesh entity type, and (2)
define a permutation for the DOFs on any mesh entity type, based on the orientation of that
entity relative to any other orientation of that entity; these orientations correspond to the di↵erent
permutations of the vertices of the entity, as seen from the points of view of adjacent elements.

The main classes derived from FiniteElementCollection are the arbitrary order * FECollection

classes where the *-prefix is one of H1, L2, ND, or RT which combine the appropriate finite element
classes with the respective prefix for all di↵erent types of reference elements. Note that in the case of
RT FECollection, the regular (non-boundary) elements use RT * finite elements, however, the edges
(2D) or faces (3D) use L2 * elements with INTEGRAL map-type. In addition to these “standard”
FiniteElementCollections, MFEM defines also interfacial collections used for defining spaces on
the mesh skeleton/interface which consists of all lower-dimensional mesh entities, excluding the
regular full-dimension mesh elements. These collections can be used to define discrete spaces for
the traces (on the mesh skeleton) of the regular H1, H(curl), and H(div) spaces.

4.2 Discrete de Rham Complex

In MFEM, the mathematical concept (or definition) of a discrete finite element function space is
encapsulated in the class FiniteElementSpace. The two main components for constructing this
class are a Mesh and a FiniteElementCollection which provides su�cient information in order to
determine global characteristics such as the total number of DOFs and the enumeration of all the
global DOFs. In the FiniteElementSpace constructor, this enumeration is generated and stored as
an object of class Table which represents the mapping: for any given element index i, return the
ordered list of global DOF indices associated with element i. The order of these global DOFs in the
list corresponds exactly to the local ordering of the local DOFs as described by the FiniteElement.
The specific FiniteElement object associated with an element i can be obtained by first looking
up the reference element type in the Mesh and then querying the FiniteElementCollection for the
respective FiniteElement object. Thus, the FiniteElementSpace can produce the basis functions
for any mesh element and the global indices of the respective local DOFs.

The global DOF numbering is created by first enumerating all DOFs associated with all vertices
in the mesh; then enumerating all DOFs associated with all edges in the mesh — this is done, edge
by edge, choosing a fixed direction on each edge and listing the DOFs on the edge following the
chosen direction; next, the DOFs associated with faces are enumerated — this is done face by face,
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§ Large-scale parallel multi-physics simulations
• radiation diffusion
• electromagnetic diffusion
• compressible hydrodynamics

§ Finite elements naturally connect different physics

§ High-order finite elements on high-order meshes
• increased accuracy for smooth problems
• sub-element modeling for problems with shocks
• FLOPs/bytes increase with the order

§ Need new (interesting!) R&D for full benefits
• meshing, discretizations, solvers, AMR, UQ, visualization, …

High-order finite elements are a good foundation for next-
generation scalable multi-physics simulations
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Figure 4: Continuous de Rham complex in 3D and example physical fields that can be represented
in the respective spaces.

choosing a fixed orientation for each face and following it when listing the DOFs on the face; finally,
all DOFs associated with the interiors of all mesh elements are enumerated, element by element.

An additional parameter in the construction of a FiniteElementSpace is its vector dimension
which represents, mathematically, a Cartesian power (i.e. number of components) applied to the
space defined by the FiniteElement basis functions. The additional optional parameter, ordering,
of the FiniteElementSpace constructor, determines how the components are ordered globally: either
Ordering::byNODES (default) or Ordering::byVDIM; the vector DOF (vdof) index k corresponding to
the (scalar) DOF i in component j is given by k = i + jN

d

in the first case (N
d

is the number of
DOFs in one component), and k = j + iN

c

, in the second (N
c

is the number of components).
The de Rham complex [12, 91] is a compatible multi-physics discretization framework that

naturally connects the solution spaces for many common PDEs. It is illustrated in Figure 4. The
finite element method provides a compatible approach to preserve the de Rham complex properties
on a fully discrete level. In MFEM, constructing a FiniteElementSpace using the * FECollection

with * replaced by H1, ND, RT, or L2, creates the compatible discrete finite element space for the
continuous H1, H(curl), H(div), or L2 space, respectively. Note that the order of the space is
simply a parameter in the constructor of the respective * FECollection, see Figure 3.

The finite element spaces in the de Rham sequence are the natural discretization choices respec-
tively for: kinematic variables (e.g., position, velocity), electromagnetic fields (e.g., electric field in
magnetohydrodynamics (MHD)), di↵usion fluxes (e.g., in flux-based radiation-di↵usion) and ther-
modynamic quantities (e.g., internal energy, density, pressure). MFEM includes full support for
the de Rham complex at arbitrary high order, on arbitrary order meshes, as illustrated for example
in the first four example codes that come with the MFEM distribution, see Subsection 8.1.

Finite element functions are represented by the class GridFunction. A GridFunction is the list of
DOFs for a discrete function in a particular FiniteElementSpace, so it could be used both on a linear
algebra level (as a Vector object), or on the finite element level (as a piecewise-smooth function
on the computational mesh). Grid functions are primal vectors, see Subsection 5.2, that are used
to represent the finite element approximate solution. They contain methods for interpolation of
continuous data (ProjectCoefficient), evaluation of integrals and errors (ComputeL2Error), as well
as many linear algebra operations that are inherited from the Vector class. See file fem/gridfunc.hpp
for more details.

4.3 High-Order Spaces

High-order methods are becoming increasingly important in computational science due to their
potential for better simulation accuracy and favorable scaling on modern architectures [108, 41,
39, 26, 30]. Next-generation parallel computing architectures will favor simulation algorithms that
exhibit high data parallelism and perform many floating-point operations (FLOPs) per memory
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access (per byte). Traditional low-order discretization approaches, developed in an era when FLOPs
were the performance-limiting factor, will no longer be an attractive option, since the cost of FLOPs
will be considerably smaller than the cost of data motion.

High-order methods are a win-win proposition with respect to both mathematical accuracy and
performance e�ciency on current and future HPC architectures. It has long been known that high-
order methods provide increased accuracy at low cost for problems with large regions of smooth,
but non-trivial variation, such as vortices, boundary layers, and mixing regions. Our recent work
on Arbitrary Lagrangian Eulerian (ALE) hydrodynamics shows that high-order finite elements on
high-order meshes can also have mathematical benefits with respect to symmetry preservation,
energy conservation, robustness in Lagrangian flow, and sub-zonal resolution for shock problems.
These improvements come at the cost of additional floating-point operations, which map well to
future computer architectures that will favor algorithms able to perform many FLOPs per memory
access.

High-order finite elements use high-order polynomials in reference space for approximating
physics fields and potentially the geometry of mesh elements, see Figure 3 and Figure 2, and require
specialized algorithms for controlling algorithmic complexity not just with respect to problem size
and parallelism, but also with respect to the polynomial order, see Subsection 4.3.

4.4 Visualization

MFEM provides integrations with several external tools for easy and accurate visualization of
finite element meshes and grid functions, including arbitrary high-order meshes and fields. These
integrations are based on sampling of the geometry and grid function data on a reference space
lattice via the GeometryRefiner class in fem/geom.hpp. (One example of its use is the Shaper
miniapp in miniapps/meshing.) MFEM can also provide accurate gradients enabling better surface
normal vector computations.

Two of the visualization tools with which MFEM has been integrated are GLVis [55] and VisIt
[32, 114]. GLVis is MFEM’s lightweight in-situ visualization tool that directly uses MFEM classes
for OpenGL visualization supporting interactive refinement of the reference-space sampling and
uses accurate gradients for surface normals. VisIt is a comprehensive data analysis framework
developed at LLNL, which includes native MFEM support via an embedded copy of the library.
The sampled data in this case is controlled by a multi-resolution slider and is treated as low-order
refined information (cf. Subsection 6.4) so all VisIt functionality can be used directly. Various
file formats are supported, see Subsection 3.5, including in-memory remote visualization via socket
connection in the case of GLVis.

5 Finite Element Operators

5.1 Discretization Methods

MFEM includes the abstractions and building blocks to discretize equations; that is, the process
by which the linear system is formed from a PDE, choice of basis functions, and mesh. There are
many di↵erent approaches for doing this in finite element methods, even for the same given PDE.
One approach already outlined in Section 2 uses H1 elements of any order and spatial dimension,
where the basis functions are continuous across element interfaces, to discretize Poisson’s equa-
tion. This is the most straightforward discretization of the equation, but there are many other
approaches possible. For instance, Example 8 and Example 14 solve the same PDE with discon-
tinuous Petrov-Galerkin (DPG) [17] and discontinuous Galerkin (DG) discretizations, respectively,
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see Subsection 8.1. The examples include interactive documentation organized by the di↵erent
discretization methods available in the library and are the fastest route to learn about MFEM’s
capabilities. A comprehensive list of the bilinear form integrators that come pre-packaged with
MFEM is included in Appendix A.

Examples 3-5 show a wide range of the discretization capability of MFEM and many of the
possible finite elements. Example 3 solves the second-order definite Maxwell equation using the
H(curl) Nedelec finite elements with the curl-curl and mass bilinear form integrators. Example 4
progresses down the de Rham sequence, and solves a second order definite equation with a Neumann
boundary condition using H(div) Raviart-Thomas finite elements and div-div and mass bilinear
form integrators. Example 5 uses a mixed H(div) and L2 (DG) discretization of a Darcy problem,
solving these together in a 2 ⇥ 2 block bilinear form. These three examples are just a few of the
many examples included with the library, but they show a wide range of the finite elements and
discretization approaches possible along the de Rham sequence.

On the meshing side, there are also many di↵erent approaches. As described above in Section 3,
MFEM supports arbitrary-order H1 and L2 meshes, which can be topologically periodic or assigned
boundary tags. However, MFEM also includes an extension to its Mesh class to generate basis func-
tions from non-uniform Rational B-splines (NURBS), see Subsection 3.3 and the NURBSExtension

class in the mesh/nurbs.hpp file. This allows for isogeometric analysis, where the basis is refined
without changing the geometry or its parametrization [36].

MFEM includes various ordinary di↵erential equation (ODE) solvers that can be used in con-
junction with the finite elements and bilinear forms to discretize the time derivative terms. These
work by writing code for a TimeDependentOperator that defines the map (x, t) ! f(x, t) that the
ODE solvers, both implicit and explicit, use to integrate the approximate solution in time, see
Appendix B. Many ODE solvers are distributed with the library: various implicit and explicit
Runge-Kutta (RK) methods including singly-diagonal implicit versions (SDIRK), and symplectic
methods. Additionally, MFEM supports time integration with the SUNDIALS (SUite of Non-
linear and DI↵erential/ALgebraic equation Solver) library, which provides many additional ODE
solvers. Finally, MFEM’s ODE solvers can be extended by inheriting from the base abstract class
ODESolver.

5.2 Finite Element Linear Systems

At the heart of any finite element application is a finite element linear system which, as discussed
in Section 2, can be written in the canonical form

Ax = b

where the matrix A is square and non-singular. Such systems are well-suited for either iterative
or direct linear solvers but creating this linear system is non-trivial. MFEM’s primary task is to
build this linear system and interpret the resulting solution vector x. When using first order nodal
basis functions on a conforming mesh existing on only one processor this is a relatively straight
forward task. However, supporting distributed memory architectures, high-order basis functions,
non-conforming meshes, or more general basis function types each introduce complications that
require more care. To manage these complications MFEM makes use of abstractions which clearly
separate finite element concepts from linear algebra concepts.

MFEM’s linear algebra objects include Vector and SparseMatrix in serial and HypreParVector

and HypreParMatrix in parallel, as well as various linear solvers derived from the Solver class.
The finite element objects include (Par)GridFunction, (Par)LinearForm, and (Par)BilinearForm.
For convenience (Par)GridFunction and (Par)LinearForm inherit from the Vector class and can
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therefore be used as vectors, and similarly (Par)BilinearForm can be used as a matrix, but these
convenience features should be used with care.

The ParGridFunction object contains, among other things, all of the degrees of freedom needed
to interpolate field values within every element contained in the local portion of the computational
mesh, see the lowercase x in Figure 5. The uppercase X in Figure 5 is a linear algebra Vector related
to this ParGridFunction but potentially quite di↵erent. The uppercase X contains only the true
degrees of freedom from x. For example, some of the degrees of freedom in the ParGridFunction

may be subject to constraints if they happen to be shared with neighboring elements in a non-
conforming portion of the mesh, or they may be constrained to match degrees of freedom owned by
elements found on another processor. Some of the degrees of freedom in the ParGridFunction may
not even directly contribute to the linear system if static condensation or hybridization is being
used. For all of these reasons, the linear algebra Vector stored in X might be much smaller than
the ParGridFunction stored in x. The P and R operators shown in Figure 5, called the prolongation
and restriction operators, respectively, are created and managed by the ParFiniteElementSpace and
can be used to map data between the finite element representation of a field and its linear algebra
representation.

FormLinearSystem()	

RecoverFEMSolu8on()	

x	

b	

a	

X	

B	

A	

Finite	
Elements	
(dofs)	

Linear	
Algebra	
(tdofs)	

Primal	

Dual	

P	t	

P	
Mult()	

Solve	

Variables	(see	ex1p)	
x	=	ParGridFunction	
				(dof	primal	vector)	

a	=	ParBilinearForm	
				(dof-to-dof	block-diag)	

b	=	ParLinearForm	
				(dof	dual	vector)	

X	=	HypreParVector	
				(tdof	primal	vector)	

A	=	HypreParMatrix	
				(tdof	primal-to-dual)	

B	=	HypreParVector	
				(tdof	dual	vector)	

P	=	HypreParMatrix	
				(tdof-to-dof	rect)	

	
Identities	
A	=	Pt	a	P	(commutativity)	
x	=	P	A^{-1}	Pt		
R	P	=	I,	Pt	Rt	=	I	

Bilinear	and	Linear	Forms	

R	t	

R	

Figure 5: Graphical depiction of the relationship between the finite element bilinear and linear
form objects, and the linear algebra matrices and primal/dual vectors in MFEM.

The ParGridFunction, labeled x in Figure 5, and its linear algebra counterpart X, are called
primal vectors because of their direct relationship with the finite element expansion of a field.
Indeed the values stored in x are the expansion coe�cients f

i

needed in Equation 18.

f(~x) =
X

i

f
i

'
i

(~x). (18)

Conversely, a ParLinearForm, labeled b in Figure 5, or the vector labeled B are dual vectors. In
this context duality refers to the fact that dual vectors map primal vectors to the set of real
numbers. More importantly, they can be used to map a ParGridFunction to a physical quantity of
interest. For example, if we have a ParGridFunction ⇢ representing the mass density of a fluid, and
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a ParLinearForm v such that v
i

=
R
⌦

'
i

, i.e. a ParLinearForm representing the constant function 1,
then v�⇢ would approximate the integral of the density over the computational domain which would
equal the total mass of the fluid in this illustration. Dual vectors will be of the same length as their
primal counterparts but their entries have very di↵erent meanings. The relationship between b and
B is complimentary to that between x and X. Whereas the restriction operator removes dependent
entries from x to produce the shorter vector X, the transpose of the prolongation operator is used
to coalesce entries from b to form those of B. For example Pt will add together entries from b to
sum the contributions from di↵erent elements to the basis function integral over its entire support
which will be stored in B.

Dual vectors can be created directly by integrating a function times the appropriate basis
functions as occurs inside a (Par)LinearForm or indirectly by applying a (Par)BilinearForm or a
system matrix to a primal vector. The resulting dual vector should be identical in either case. Which
scheme is used to create a particular dual vector is usually determined by how the source terms in
the PDE arise. If the sources are determined by known functions it is generally most e�cient to
provide these functions to a (Par)LinearForm object and compute the dual vector directly. If, on
the other hand, the source term is the result of a field represented by a (Par)GridFunction it could
be more e�cient to simply apply a (Par)BilinearForm to the appropriate primal vector.

As implied in Figure 5, the linear algebra operator A can be computed from the (Par)BilinearForm
a as A = P taP ; however, many finite element linear systems require boundary conditions to ensure
that they are non-singular. To facilitate the application of boundary conditions the (Par)BilinearForm
class has a FormLinearSystem method which prepares the three linear algebra objects, as well as
applying boundary conditions. In the simplest case this method performs the following operations:

A = P taP,

X = Rx,

B = P tb.

If a set of essential degrees of freedom have also been provided the system matrix and right-hand
side vector B are further modified as follows:

A0 = (I � D)A(I � D) + D,

B0 = (I � D)(B � ADX) + DX.

Here I is the identity matrix and D is a diagonal matrix with ones on the diagonals corresponding to
essential degrees of freedom and zeros otherwise. The first equation eliminates the rows and columns
corresponding to essential degrees of freedom and places a one at the corresponding diagonal entry.
The second equation strategically places the desired boundary values from X, scaled by A when
necessary, in the appropriate entries in B.

The FormLinearSystem method also supports two more advanced and closely related techniques
for reducing the size of a finite element linear system: Hybridization and Static Condensation.
These approaches are briefly reviewed below, see [48] for more details.

Hybridization can be viewed as a technique for solving linear systems obtained through finite
element assembly. The assembled matrix A can be written as:

A = P T ÂP,

where P is the matrix mapping the conforming finite element space to the purely local finite
element space without any inter-element constraints imposed, and Â is the block-diagonal matrix
of all element matrices. We assume that:
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• Â is invertible,

• P has a left inverse R, such that RP = I,

• a constraint matrix C can be constructed, such that Ker(C) = Im(P ).

Under these conditions, the linear system AX = B can be solved using the following procedure:

• Solve for � in the linear system:

(CÂ�1CT )� = CÂ�1RTB.

• Compute
X = RÂ�1(RTB � CT�). (19)

Hybridization is advantageous when the matrix H = (CÂ�1CT ) of the hybridized system is
either smaller than the original system, or is simpler to invert with a known method.

In some cases, e.g. high-order elements, the matrix C can be written as

C =
�
0 C

b

�
,

and then the hybridized matrix H can be assembled using the identity

H = C
b

S�1

b

CT

b

,

where S
b

is the Schur complement of Â with respect to the same decomposition as the columns of
C:

S
b

= Â
b

� Â
bf

Â�1

f

Â
fb

.

Hybridization can also be viewed as a discretization method for imposing (weak) continuity
constraints between neighboring elements.

Static condensation is a technique for solving linear systems by eliminating groups/blocks of
unknowns and reducing the original system to the remaining interfacial unknowns. The assumption
is that unknowns in one group are connected (in the graph of the matrix) only to unknowns in the
same group or to interfacial unknowns but not to other groups.

For finite element systems, the groups correspond to degrees of freedom associated with the
interior of the elements. The rest of the DOFs (associated with the element boundaries) are
interfacial.

In block form the matrix of the system can be written as

A =

✓
A

11

A
12

A
21

A
22

◆
– groups: element interior/private DOFs
– interface: element boundary/exposed DOFs

where the block A
11

is itself block diagonal with small local blocks and it is, therefore, easily
invertible.

Starting with the block system
✓

A
11

A
12

A
21

A
22

◆✓
X

1

X
2

◆
=

✓
B

1

B
2

◆

the reduced, statically condensed system is given by

S
22

X
2

= B
2

� A
21

A�1

11

B
1

,
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where the Schur complement matrix S
22

is given by

S
22

= A
22

� A
21

A�1

11

A
12

.

After solving the Schur complement system, the X
1

part of the solution can be recovered using the
formula

X
1

= A�1

11

(B
1

� A
12

X
2

). (20)

Static condensation can be beneficial when using su�ciently high-order basis functions, i.e.
when the number of internal degrees of freedom outweighs the number of degrees of freedom on
element interfaces.

These more advanced techniques, which compute only portions of the solution vector, necessitate
a further step of reconstructing the entire solution vector. The (Par)BilinearForm class provides a
RecoverFEMSolution method for exactly this purpose. Given the partial solution vector X and the
(Par)LinearForm b this method computes the full degree of freedom vector x needed to properly
represent the solution field throughout the mesh. Additional details can be found in [48].

5.3 Operator Decomposition

Finite element operators are typically defined through weak formulations of partial di↵erential
equations that involve integration over a computational mesh. The required integrals are computed
by splitting them as a sum over the mesh elements, mapping each element to a simple reference
element (e.g. the unit square) and applying a quadrature rule in reference space, see Section 2.

This sequence of operations highlights an inherent hierarchical structure present in all finite
element operators where the evaluation starts on global (trial) degrees of freedom on the whole
mesh, restricts to degrees of freedom on subdomains (groups of elements), then moves to independent
degrees of freedom on each element, transitions to independent quadrature points in reference space,
performs the integration, and then goes back in reverse order to global (test) degrees of freedom
on the whole mesh.

This is illustrated in Figure 6 for the simple case of a symmetric linear operator on third order
(Q

3

) scalar continuous (H1) elements, where we use the notions T-vector, L-vector, E-vector
and Q-vector to represent the sets corresponding to the (true) degrees of freedom on the global
mesh, the split local degrees of freedom on the subdomains, the split degrees of freedom on the
mesh elements, and the values at quadrature points, respectively.

One of the challenges with high-order methods is that a global sparse matrix is no longer a
good representation of a high-order linear operator, both with respect to the FLOPs needed for
its evaluation, as well as the memory transfer needed for a matvec. Thus, high-order methods
require a new “format” that still represents a linear (or more generally, nonlinear) operator, but
not through a sparse matrix.

We refer to the operators that connect the di↵erent types of vectors as:

• Subdomain restriction P .

• Element restriction G.

• Basis (Dofs-to-Qpts) evaluator B.

• Operator at quadrature points D.

More generally, when the test and trial space di↵er, they get their own versions of P , G and B.

23



Figure 6: Fundamental finite element operator decomposition. This algebraically factored form
is a much better description than a global sparse matrix for high-order methods and is easy to
incorporate in a wide variety of applications. See also the libCEED library in [30].

Note that in the case of adaptive mesh refinement (AMR), the restrictions P and G will involve
not just extracting sub-vectors, but evaluating values at constrained degrees of freedom through
the AMR interpolation, see Subsection 7.2. There can also be several levels of subdomains (P

1

, P
2

,
etc.), and it may be convenient to split D as the product of several operators (D

1

, D
2

, etc.).
After the application of each of the first three transition operators, P , G and B, the operator

evaluation is decoupled on their ranges, so P , G and B allow us to “zoom-in” to subdomain, element,
and quadrature point level, ignoring the coupling at higher levels. Thus, a natural mapping of A on
a parallel computer is to split the T-vector over MPI ranks in a non-overlapping decomposition, as
is typically used for sparse matrices, and then split the rest of the vector types over computational
devices (CPUs, GPUs, etc.) as indicated by the shaded regions in Figure 6. This is discussed
further in Subsection 6.1.

One of the advantages of the decomposition perspective in these settings is that the operators
P , G, B and D clearly separate the MPI parallelism in the operator (P ) from the unstructured
mesh topology (G), the choice of the finite element space/basis (B) and the geometry and point-
wise physics D. These components also naturally fall in di↵erent classes of numerical algorithms –
parallel (multi-device) linear algebra for P , sparse (on-device) linear algebra for G, dense/structured
linear algebra (tensor contractions) for B and parallel point-wise evaluations for D.

Since the global operator A is just a series of variational restrictions with B, G and P , starting
from its point-wise kernel D, a “matvec” with A can be performed by evaluating and storing some of
the innermost variational restriction matrices, and applying the rest of the operators “on-the-fly”.
For example, one can compute and store a global matrix on T-vector level. Alternatively, one can
compute and store only the subdomain (L-vector) or element (E-vector) matrices and perform
the action of A using matvecs with P or P and G. While these options are natural for low-order
discretizations, they are not a good fit for high-order methods due to the amount of FLOPs needed
for their evaluation, as well as the memory transfer needed for a matvec.

Much higher performance can be achieved instead by the use of partial assembly algorithms, see
Subsection 5.4, where we compute and store only D (or portions of it) and evaluate the actions of P ,
G and B on-the-fly. Critically for performance, we take advantage of the tensor-product structure
of the degrees of freedom and quadrature points on quad and hex elements to perform the action
of B without storing it as a matrix. Implemented properly, the partial assembly algorithm requires
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the optimal amount of memory transfers (with respect to the polynomial order) and near-optimal
FLOPs for operator evaluation. It consists of an operator setup phase, that evaluates and stores D
and an operator apply (evaluation) phase that computes the action of A on an input vector. When
desired, the setup phase may be done as a side-e↵ect of evaluating a di↵erent operator, such as a
nonlinear residual. The relative costs of the setup and apply phases are di↵erent depending on the
physics being expressed and the representation of D.

5.4 High-Order Partial Assembly

In the traditional finite element setting, the operator is assembled in the form of a matrix, whose
action is the operator evaluation. At high orders this requires both a large amount of memory to
store the matrix, as well as many floating point operations to apply it. By exploiting the structure
shown in Section 5 as well as the basis functions structure, there are options for creating opera-
tors that require much less storage space and scale better at high orders. This section introduce
partial assembly and sum factorization [94, 41], which reduce both the assembly storage and num-
ber of floating point operations required to apply the operator, and discusses general algorithm
opportunities and challenges in the MFEM code.

Removing the finite element space restriction operator from the assembly for domain-based
operators yields the element-local matrices at the E-vector level. This storage can lead to faster
data access, since the block is stored contiguously in memory, and applications of the block can be
designed to maximally use the cache.

Partial assembly operates at the Q-vector level, after additionally removing the basis functions
and gradients from the assembled operator. This leaves on the D operator to store for every element,
see Subsection 5.3. This by itself reduces the storage but not the number of floating point operations
required for evaluation. As will be discussed later, this is key to o✏oading the operator action to
a co-processor that may have less memory.

As an illustration of partial assembly, the decomposition of the mass matrix evaluated on a
single element E

(M
E

)
ij

=

Z

E

⇢ '
j

'
i

dx (21)

when mapped to a reference element and integrated with a quadrature rule of points {x̂} and
weights {↵

k

} yields
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Defining the tensor of basis functions at quadrature points as B
ki

= '̂
i

(x̂
k

), the above equation
can be rewritten as
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Using this definition, the matrix operator can be written simply as M
E

= BTD
E

B. Matrix-vector
evaluations are computed as the series of products by B, D

E

, and BT without explicitly forming
M

E

.
Applying B requires the same number of floating point operations as applying the fully-

assembled M
E

matrix (O(p2d)), but as described in Subsection 5.3 when taking advantage of the
tensor-product structure of the basis functions and quadrature points on quad and hex elements,
B

ki

can be written as
B

ki

= '̂
i1(x̂k1) . . . '̂

id(x̂kd
) (24)
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Method Storage Assembly Evaluation

Traditional full assembly + Matvec O(p2d) O(p3d) O(p2d)

Sum factorization full assembly + Matvec O(p2d) O(p2d+1) O(p2d)

Partial assembly + Matrix-free action O(pd) O(pd) O(pd+1)

Table 1: Comparison of storage and Assembly/Evaluation FLOPs required for full and partial
assembly algorithms on tensor-product element meshes (quads and hexes). Here, p represents the
polynomial order of the basis functions and d represents the number of spatial dimensions. The
number of DOFs on each element is O(pd) so the “sum factorization full assembly” and “partial
assembly” algorithms are nearly optimal.

with d the number of dimensions. In this case the tensor B itself can be decomposed as a series of
smaller one-dimensional matrices, for instance represented for the first dimension as B̃

i1k1 . The one-
dimensional index sets {i

1

. . . i
d

} and {k
1

. . . k
d

} form a multi-index to represent a single value of the
multi-dimensional index i and k, respectively. The equivalent expression using this decomposition
is

B
ki

= B̃
k1i1 . . . B̃

kdid
. (25)

Applying the series of B̃ tensors reduces the overall number of floating point operations when
applying M

E

to O(pd+1). This formulation is often referred to as sum factorization.
To make this point concrete, consider the application of a quad basis to a vector v for interpo-

lation at a tensor product of quadrature points. Without taking advantage of the structure of the
basis, the product takes the form

B
ki

v
i

= '
i1(x̂1

)'
i2(x̂2

)v
i

, (26)

which requires O(p2d) (d = 2) storage and operations for the tensor-vector product. When using
the alternative form (25) the operation can be rewritten as

B̃
k1i1B̃k2i2 ṽi1i2 = B̃ṽB̃T . (27)

This highlights an interesting aspect of sum factorization: with each smaller matrix product with
B̃, an additional axis is converted from basis (i) to quadrature (k) indices. The reasoning applies to
three spatial dimensions as well, but additional reshaping is required. Using the sum factorization
approach, the storage was reduced to O(p2) and the number of operations to O(p3).

Choosing to store the partially assembled operator instead of the full matrix a↵ects the solvers
that can be used, since the full matrix is not available to be queried. This means for instance
that traditional multigrid solvers are di�cult to apply. However, the operator does have structure
which can be exploited to expose the diagonal of the matrix, making it possible to use diagonal
preconditioners. This is discussed further in Subsection 6.4.

The storage and asymptotic number of floating point operations per second (FLOP/s) required
for assembly and evaluation using the di↵erent methods are recorded in Table 1. Sum factoriza-
tion reduces the cost of assembling the operator, even the cost of full assembly (T-vector level).
Furthermore, partial assembly has improved asymptotic scaling for high orders in both storage and
number of floating point operations for assembly and evaluation. Therefore, partial assembly is
ideal for high orders.

There are many opportunities and challenges for parallelization with partial assembly using sum
factorization. At the E-vector level the products can be applied independently for every element in
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Figure 7: Parallel classes inherit from, and partially override, serial classes.

parallel, which makes partial assembly with sum factorization an ideal portion of the finite element
algorithm to o✏oad to co-processors, such as GPUs. However, since these are small, algorithms
will assuredly remain bandwidth bound if looping over the elements on the inner-most loop. In
order to increase e�ciency, the series of matrix contractions needs to be fused into a specialized
kernel.

In MFEM these algorithms are in the bilinear and nonlinear form integrators themselves. In
the construction phase of the integrator the partially assembled operator is usually constructed,
and the Mult method implements the matrix-free evaluation using the operator.

6 High-Performance Computing

6.1 Parallel Meshes, Spaces, and Operators

The MFEM design handles large scale parallelism by utilizing the Message Passing Interface (MPI)
library in additional layer that reuses as much of the serial code as possible. In terms of object-
oriented design, this is done by sub-classing the serial classes to augment them with parallel logic,
see Figure 7, occasionally overriding small parts of the code using virtual functions.

If K is the number of MPI tasks, we decompose the problem domain into K parts and try to
process the parts locally as much as possible, see Figure 8. The parallel mesh object, ParMesh, is
just a regular serial Mesh on each MPI task plus additional information that describes the geometric
entities (faces, edges, vertices) that are shared with other processors. See Subsection 3.4 and the
file mesh/pmesh.hpp for more details. The parallel finite element space, ParFiniteElementSpace is
just a regular serial FiniteElementSpace on each task plus a description of the shared degrees of
freedom, grouped in communication groups, see fem/pfespace.hpp. As in the serial case, one of the
main responsibilities of the parallel finite element space is to provide, via GetProlongationMatrix(),
the prolongation matrix P , see Subsection 5.3, which is used for parallel assembly (see below) or
adaptive mesh refinement, see Section 7. Parallel grid functions, ParGridFunction, are just regular
GridFunction objects on L-vector level which can be mapped back and forth to T-vectors, e.g.
with the ParallelAverage and Distribute methods. See fem/pgridfunc.hpp for details.

The global finite element sti↵ness matrix A has K diagonal blocks and can be assembled without
any parallel communication. The prolongation matrix P is parallel and its construction requires
communication, however part of that communication can be overlapped with the computation of
A. As a general rule, we try to keep MPI messages to a minimum and only communicate with
immediate neighbors in the parallel mesh, ideally overlapping communication with computation
using asynchronous MPI calls.

Based on the variational restriction perspective presented in Subsection 5.3, the final parallel
assembly can be computed with a parallel P TAP triple matrix product, which in MFEM is based
on the hypre library [67]. We make use of the highly optimized RAP triple-product kernel which
hypre provides internally for the coarse-grid operator construction in its algebraic multigrid solvers.
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Figure 8: Left: Parallel Example 1 (examples/ex1p.cpp) on 100 processors with a relatively coarse
version of data/square-disc.mesh. Right: Unstructured parallel decomposition of a fourth order
NURBS mesh of the unit ball obtained in the solution of Example 1 on 16 processors.

One of the advantages of handling parallelism by sub-classing the serial finite element classes is
that serial MFEM-based application codes are easily converted to highly-scalable parallel versions
by simply adding the Par prefix to the types of finite element variables. To emphasize this point,
the MFEM distribution includes serial and parallel versions of most of its example codes, so the
changes needed to transition between the two are easy to compare.

Here are, for example, the main changes between examples/ex1.cpp and examples/ex1p.cpp.

94 ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD , *mesh);
95 {
96 int par_ref_levels = 2;
97 for (int l = 0; l < par_ref_levels; l++)
98 {
99 pmesh ->UniformRefinement ();

100 }
101 }
102 ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh , fec);
103 ParLinearForm *b = new ParLinearForm(fespace);
104 ParGridFunction x(fespace);
105 ParBilinearForm *a = new ParBilinearForm(fespace);

The results can be visualized with GLVis in parallel (each MPI tasks sends its data indepen-
dently) where di↵erent regions can be identified/split to emphasize the parallelism in the compu-
tation, see Figure 8 and Subsection 4.4.

6.2 Scalable Linear Solvers

Parallel matrices in MFEM are computed and stored directly in the ParCSR format of the hypre
library, which gives the user direct access to high-performance parallel linear algebra algorithms.
For example, MFEM uses hypre’s matvec routines, as well as the RAP function, see Subsection 6.1,
which has been optimized in hypre for the construction of coarse-grid operators in a multigrid
hierarchy.

This tight integration with hypre enables MFEM applications to easily access the powerful alge-
braic multigrid (AMG) preconditioner in the library, which has demonstrated scalability to millions
of parallel tasks. All parallel MFEM examples are using these scalable preconditioners, which only
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take a line of code in MFEM. For example the parallel linear system in examples/ex1p.cpp is defined
by

183 HypreParMatrix A;
184 Vector B, X;
185 a->FormLinearSystem(ess_tdof_list , x, *b, A, X, B);

hypre’s BoomerAMG preconditioner can then be used with Conjugate Gradient to solve it
simply with

194 HypreSolver *amg = new HypreBoomerAMG(A);
195 HyprePCG *pcg = new HyprePCG(A);
196 pcg ->SetTol (1e-12);
197 pcg ->SetMaxIter (200);
198 pcg ->SetPrintLevel (2);
199 pcg ->SetPreconditioner (*amg);
200 pcg ->Mult(B, X);

In addition to general black-box solvers, such as BoomerAMG, the MFEM interface enables ac-
cess to discretization-enhanced AMG methods such as the auxiliary-space Maxwell solver (AMS) [74]
which is specifically designed for second-order definite Maxwell problems discretized with Nedelec
H(curl)-conforming elements, see Subsection 4.2. The AMS algorithm needs the discrete gradient
operator between the nodal H1-type and the Nedelec spaces, which in MFEM is represented as
a DiscreteLinearOperator corresponding to an embedding between spaces. This operator is con-
structed in general parallel settings (including on surfaces and mesh skeletons) with the following
code from linalg/hypre.cpp.

2815 ParDiscreteLinearOperator *grad;
2816 grad = new ParDiscreteLinearOperator(vert_fespace , edge_fespace);
2817 if (trace_space)
2818 {
2819 grad ->AddTraceFaceInterpolator(new GradientInterpolator);
2820 }
2821 else
2822 {
2823 grad ->AddDomainInterpolator(new GradientInterpolator);
2824 }
2825 grad ->Assemble ();
2826 grad ->Finalize ();
2827 G = grad ->ParallelAssemble ();

From the user perspective, this is handled automatically given a FiniteElementSpace object,
and the use of AMS is also a one-liner in MFEM. This is illustrated in the following excerpt
from examples/ex3p.cpp, which also shows how static condensation is seamlessly handled by the
preconditioner.

195 ParFiniteElementSpace *prec_fespace =
196 (a->StaticCondensationIsEnabled () ? a->SCParFESpace () : fespace);
197 HypreSolver *ams = new HypreAMS(A, prec_fespace);
198 HyprePCG *pcg = new HyprePCG(A);
199 pcg ->SetTol (1e-12);
200 pcg ->SetMaxIter (500);
201 pcg ->SetPrintLevel (2);
202 pcg ->SetPreconditioner (*ams);
203 pcg ->Mult(B, X);

Finally, di↵erent preconditioning options are also easy to combine as illustrated in Example 4p
which solves an H(div) problem discretized with Raviart-Thomas finite elements. Depending on the
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dimension, and the use of hybridization or static condensation, see Subsection 5.2, several di↵erent
preconditioning options could be appropriate. All of them can be handled with the following simple
code segment.

221 if (hybridization) { prec = new HypreBoomerAMG(A); }
222 else
223 {
224 ParFiniteElementSpace *prec_fespace =
225 (a->StaticCondensationIsEnabled () ? a->SCParFESpace () : fespace);
226 if (dim == 2) { prec = new HypreAMS(A, prec_fespace); }
227 else { prec = new HypreADS(A, prec_fespace); }
228 }
229 pcg ->SetPreconditioner (*prec);

6.3 Vectorization and GPU Acceleration

A high-performance implementation of the partial assembly algorithms targeting high-order finite
element discretizations (see Subsection 5.4) is available in MFEM via the HPC versions of Example
1 under miniapps/performance. These codes use a set of templated classes to e�ciently implement
the inner-most portion BTDB of the fundamental finite element operator decomposition (see Sub-
section 5.3). The C++ template approach allows the element evaluation kernel to be fully inlined,
facilitating fixed loop bounds and compiler vectorization without intrinsics. These classes are fully
documented at http://mfem.org/performance/; we summarize some of the major classes below.

Fixed-size container classes TVector, TMatrix, TTensor3 and TTensor4 for 1D/2D/3D/4D tensors
stored in column-major layout are defined in linalg/ttensor.hpp. The following tensor contrac-
tion/product operations are supported:

• Mult 1 2 : C
i,j,k

=
P

s

A
s,j

B
i,s,k

,

• Mult 2 1 : C
i,j,k

=
P

s

A
i,s

B
s,j,k

,

• TensorAssemble : C
i,k,j,l

=
P

s

A
s,i

A
s,j

B
k,s,l

and D
i,k,j,l

=
P

s

A
i,s

B
s,j

C
k,s,l

,

• TensorProduct : C
i,j,k,l

= A
i,j,k

B
j,l

.

Several kernel classes (e.g. mass, di↵usion) that represent the matrix D from the above finite
element operator decomposition can be found in fem/tbilininteg.hpp. These classes also specify
the type of the local operator that needs to be applied before and after the D matrix - these are the
B

in

and BT

out

matrices, respectively. The product BT

out

DB
in

is the local element matrix, which is
the result when using the BilinearFormIntegrator classes. The kernel classes provide the following
methods:

• Action: Evaluate the action of D without explicitly storing the partially assembled data; this
is needed for matrix-free action.

• Assemble: Evaluate the partially assembled data, D, which is kernel-specific: e.g., for mass,
the data is one scalar per quadrature point; for di↵usion, the data is one d ⇥ d matrix (in
d-dimensions) per quadrature point.

• MultAssembled: Perform the action of D using the pre-computed partially assembled data.

The overall bilinear form operator, templated on the mesh, finite element space, integration
rule and bilinear form integrator can be found in fem/tbilinearform.hpp. The following assembly
and evaluation schemes are supported:
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• MultUnassembled: Matrix-free action using the mesh nodes and the input vector.

• Assemble, MultAssembled: Partial assembly and operator action using the partially assembled
data at quadrature points and the input vector.

• AssembleMatrix(DenseTensor &): Assemble the local element matrices and store them as a
DenseTensor.

• AssembleMatrix(SparseMatrix &): Assemble the operator in a global (CSR) SparseMatrix.

• AssembleBilinearForm(BilinearForm &): Assemble element matrices and add them to the
bilinear form.

The MFEM project is also actively engaged with exploring GPU acceleration for partial assem-
bly high-order algorithms. A lot of these e↵orts take place in the CEED co-design center [30], where
for example a GPU accelerated version of the library has been developed based on OCCA [92]. Ad-
ditional e↵orts in this area include the AcroTensor library [1], collaboration with the MAGMA
team at UTK, the development of CUDA kernels using warp shu✏e intrinsics and the use of the
RAJA performance portability layer [66]. The MFEM team is working on each of these approaches,
and we expect to have a unifying GPU interface in the next major release of the library.

6.4 Matrix-Free Preconditioning

With high-order methods the explicit assembly of finite element matrices becomes a bottleneck, as
discussed in Subsection 5.4. While matrix-free (partially assembled) high-order operators o↵er a
lot of benefits, one of their drawbacks is that the entries of the matrix are not easily available, so
we cannot use algebraic preconditioners for such operators.

Most work on linear solvers and preconditioning focuses on robustness and scalability with
respect to the mesh spacing h, insuring that iteration counts, algorithmic complexity, and solve
times behave nicely as h goes to 0. Here we are concerned instead with how solvers behave as the
polynomial order p increases. As one example of the importance of this perspective, naive finite
element assembly of a system matrix has a complexity of O(p3d) arithmetic operations, where d is
the spatial dimension. As shown in Subsection 5.4, for tensor-product finite elements, this same
operator can be applied in O(pd+1) operations. This consideration alone argues against assembling
high-order finite element operators explicitly.

Multigrid solvers for high-order discretizations are a fairly well-studied area [90, 93, 110]. How-
ever, these works rely on traditional matrix assembly, which is not practical for very high p. Matrix-
free multigrid solvers are also fairly common in a geometric multigrid context—see [85] for a recent
example, but the application of algebraic multigrid techniques to matrix-free implementations of
high-order discretizations has, to our knowledge, not been attempted.

The basic idea of the low-order refined (LOR) technique is to put a first order mesh on the
nodal points of a high-order mesh, as in Figure 9. For a nodal discretization this induces a very
close relation between the high-order and the low-order spaces, where, in particular, the identity
matrix can be thought of as the interpolation between them. As a result, a finite-element matrix
assembled on the low-order mesh has the same size as the corresponding high-order operator but
is much sparser, and so can be explicitly assembled and stored for preconditioning.

The templated HPC Example 1p, discussed in the previous section, includes a LOR precondi-
tioning option where we set up hypre’s BoomerAMG based on the LOR sparse matrix, and then use
this AMG to precondition CG with the “matrix-free” tensor-based application of the high-order
operator.
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Figure 9: A four-element high-order mesh on the left and its corresponding low-order refined mesh
on the right. The high-order mesh is fourth order, and the low-order refined mesh has a vertex for
each nodal point of the high-order mesh.

7 Finite Element Adaptivity

MFEM includes extensive support for serial and parallel finite element adaptivity on general high-
order unstructured meshes, including: local conforming mesh refinement on triangular and tetrahe-
dral meshes (conforming h-adaptivity), non-conforming adaptive mesh refinement on quadrilateral
and hexahedral meshes (non-conforming h-adaptivity), and support for mesh optimization by node
movement (r-adaptivity). The unified support for local refinement on simplex and tensor-product
elements is one of the distinguishing features of the MFEM library.

These capabilities are described in the following subsections. Additional parallel conforming
mesh adaptivity and modification algorithms are available via the integration with RPI’s parallel
unstructured mesh infrastructure (PUMI) [68], see the mesh/pumi.hpp file and the PUMI example
codes in the examples/pumi directory.

7.1 Conforming Adaptive Mesh Refinement

The conforming h-adaptivity algorithm in MFEM is based on the bisection procedure for tetrahedral
meshes proposed in [13]. This approach supports both uniform refinement of all elements in the
mesh, as well as local refinement of only elements of interest with additional (forced) refinement of
nearby elements to ensure a conforming mesh. Note that in parallel these forced refinements may
propagate to neighboring processors, which MFEM handles automatically for the user.

When a tetrahedral mesh is marked for refinement with Mesh::MarkForRefinement() the vertices
of each tetrahedron are permuted so that the longest edge of the tetrahedron becomes the edge
between vertices 0 and 1. MFEM ensures that the longest edge in each tetrahedron is chosen
consistently in neighbor tetrahedrons based on a global sort of all edges (by length). The edge
between vertices 0 and 1 becomes the marked edge, i.e. the edge that will be bisected during
refinement. Initially, this is the longest edge in the element (with equal length edges ordered
according to the global sort). However, later, the bisection algorithm may choose to mark an edge
that is not the longest. When a tetrahedron is bisected, its type (M, A, etc., see [13]) determines
which edges in the two children become marked, as well as what types are assigned to them. The
initial type of the tetrahedron is also determined based on the globally sorted edges, see the method
Tetrahedron::MarkEdge() in tetrahedron.cpp for more details.

The bisection algorithm consists of several passes. For example, during green refinement, every
tetrahedron is checked if it “needs refinement” by calling the method Tetrahedron::NeedRefinement()
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and if it does, the element is bisected once. The method NeedRefinement() returns true if any of
its edges have been refined. When a tetrahedron is bisected, it is replaced (in the list of elements)
by one of its children and the other child is appended at the end of the element list. That way, the
children will be checked if they need refinement in the next loop over the elements. If no elements
“need refinement”, the green refinement step is done.

We note that the algorithm implemented in MFEM is not exactly the algorithm from [13].
Specifically, after refinement (including propagation of forced refinements) we replace the type of
the Pf tetrahedrons with type Pu. The reason for the modification is to avoid cases where more
than three levels of bisection need to be performed in a single call to Mesh::LocalRefinement(). (To
support that case, one needs a more flexible data structure than the DSTable class, e.g. DSTable does
not allow insertion of newly created vertices and the corresponding newly created edges.) When
performing local refinement (i.e. when not all elements in the mesh are refined) one can observe
some deterioration of the quality of the tetrahedrons after consecutive local refinements. With
uniform refinement (i.e. when all elements are refined), the quality of the tetrahedrons may get
worse only after the first two levels of uniform refinement. After that no new shapes of tetrahedrons
can be generated through uniform refinement.

In parallel, the tetrahedrons are marked consistently across processors, as inherited from the
serial mesh before the parallel partitioning. The consistently marked tetrahedrons guarantee that
a face between any two tetrahedrons will be refined the same way from both sides. This implies
in particular that uniform refinement can be performed in parallel without communication. In the
case of local refinement we need to know which of the five possible cases of face refinement was
actually performed on the other side of a shared face. These five cases are as described in the
comment before the implementation of ParMesh::GetFaceSplittings().

7.2 Non-Conforming Adaptive Mesh Refinement

Many high-order applications can be enriched by parallel adaptive mesh refinement (AMR) on
unstructured quadrilateral and hexahedral meshes. Quadrilateral and hexahedral elements are
attractive for their tensor product structure (enabling e�ciency) and for their refinement flexibility
(enabling e.g., anisotropic refinement). However, as opposed to the bisection-based methods for
simplices considered in the previous section, hanging nodes that occur after local refinement of
quadrilaterals and hexahedra are not easily avoided by further refinement [40, 105, 61]. We are
thus interested in non-conforming (irregular) meshes, in which adjacent elements need not share
a complete face or edge and where some finite element degrees of freedom (DOFs) need to be
constrained to obtain a conforming solution.

In this section we review MFEM’s software abstractions and algorithms for handling parallel
non-conforming meshes on a general discretization level, independent of the physics simulation.
These methods support the entire de Rham sequence of finite element spaces (see Subsection 4.2),
at arbitrarily high-order, and can support high-order curved meshes, as well as finite element
techniques such as hybridization and static condensation (see Subsection 5.2). They are also highly
scalable, easy to incorporate into existing codes, and can be applied to complex (anisotropic, n-
irregular) 3D meshes. While MFEM’s approaches can be extended to general hp-refinement, the
current implementation focuses exclusively on non-conforming h-refinement with a fixed p � 1.

A lot of the above benefits stem from the variational restriction approach to AMR that we
describe below. For more details, see [31].

Consider the weak variational formulation (9) where for simplicity we assume that the bilinear
form a(·, ·) is symmetric. To discretize the problem, we cover the computational domain ⌦ with a
mesh consisting of mutually disjoint elements K

i

, their vertices V
j

, edges E
m

, and faces F
n

. Except
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for the vertices, we consider these entities as open sets, so that ⌦ = ([
i

K
i

) [ ([
j
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j

) [ ([
m
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([

n

F
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). In the case of non-conforming meshes, there exist faces F
s

that are strict subsets of other
faces, F

s

( F
m

, see Figure 10. We call F
s

slave faces and F
m

master faces. The remaining standard
faces F

c

are disjoint with all other faces and will be referred to as conforming faces. Similarly, we
define slave edges, master edges and conforming edges.

Non-conforming meshes in MFEM are represented by the NCMesh and ParNCMesh classes described
in files mesh/ncmesh.hpp and mesh/pncmesh.hpp respectively. We use an octree data structure to
represent refinements which has been optimized to rely only on the following information: 1) edges
are identified by pairs of vertices; 2) faces are identified by four vertices; 3) elements contain
indices of eight vertices, or indices of eight child elements if refined. Edges and faces are tracked
by associative maps (see below), which reduce both code complexity and memory footprint. In
the case of a uniform hexahedral mesh, our data structure requires about 290 bytes per element,
counting the complete refinement hierarchy and including vertices, edges, and faces.

Figure 10: Illustration of conformity constraints for lowest order nodal elements in 2D. Left: Nodal
elements (subspace of H1), constraint c = (a+b)/2. Right: Nedelec elements (subspace of H(curl),
constraints e = f = d/2. In all cases, fine degrees of freedom on a coarse-fine interface are linearly
interpolated from the values at coarse degrees of freedom on that interface.

To construct a standard finite dimensional FEM approximation space V
h

⇢ V on a given non-
conforming mesh, we must ensure that the necessary conformity requirements are met between
the slave and master faces and edges so that we get V

h

that is a (proper) subspace of V . For
example, if V is the Sobolev space H1, the solution values in V

h

must be kept continuous across
the non-conforming interfaces. In contrast, if V is an H(curl) space, the tangential component of
the finite element vector fields in V

h

needs to be continuous across element faces. More generally,
the conformity requirement can be expressed by requiring that values of V

h

functions on the slave
faces (edges) are interpolated from the finite element function values on their master faces (edges).
Finite element degrees of freedom on the slave faces (and edges) are thus e↵ectively constrained
and can be expressed as linear combinations of the remaining degrees of freedom. The simplest
constraints for finite element subspaces of H1 and H(curl) in 2D are illustrated in Figure 10.

The degrees of freedom can be split into two groups: unconstrained (or true) degrees of freedom
and constrained (or slave) degrees of freedom. If z is a vector on all slave DOFs, then z can be
expressed as z = Wx, where x is a vector on all true DOFs and W is a global interpolation matrix,
handling indirect constraints and arbitrary di↵erences in refinement levels of adjacent elements.
Introducing the conforming prolongation matrix

P =

✓
I
W

◆
,

we observe that the coupled AMR linear system can be written as

P TAPx
c

= P T b, (28)
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where A and b are the finite element sti↵ness matrix and load vector corresponding to discretiza-
tion of (9) on the broken space bV

h

= [
i

(V
h

|
Ki). After solving for the true degrees of free-

dom x
c

we recover the complete set of degrees of freedom, including slaves, by calculating x =
Px

c

. Note that in MFEM this is handled automatically for the user via FormLinearSystem() and
RecoverFEMSolution(), see Subsection 5.2. An illustration of this process is provided in Figure 11.

Figure 11: Illustration of the variational restriction approach to forming the global AMR problem.
Randomly refined non-conforming mesh (left and center) where we assemble the matrix A and
vector b independently on each element. The interpolated solution x = Px

c

(right) of the system
(28) is globally conforming (continuous for an H1 problem).

In MFEM, given an NCMesh object, the conforming prolongation matrix can be defined for
each FiniteElementSpace class and accessed with the GetConformingProlongation() method. The
algorithm for constructing this operator can be interpreted as a sequence of interpolations P =
P
k

P
k�1

· · · P
1

, where for a k-irregular mesh the DOFs in bV
h

are indexed as follows: 0 – true DOFs,
1 – first generation of slaves that only depend on true DOFs, 2 – second generation of slaves that
only depend on true DOFs and first generation of slaves, ..., k – last generation of slaves, and
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are the local interpolation matrices defined only in terms of the edge-to-edge and face-to-face
constraining relations.

The basis for determining face-to-face relations between hexahedra is the function FaceSplitType,
sketched below. Given a face (v

1

, v
2

, v
3

, v
4

), it tries to find mid-edge and mid-face vertices and de-
termine if the face is split vertically, horizontally (relative to its reference domain), or not split.

1 Split FaceSplitType(v1 , v2 , v3 , v4)
2 {
3 v12 = FindVertex(v1 , v2);
4 v23 = FindVertex(v2 , v3);
5 v34 = FindVertex(v3 , v4);
6 v41 = FindVertex(v4 , v1);
7

8 midf1 = (v12 != NULL && v34 != NULL) ? FindVertex(v12 , v34) : NULL;
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9 midf2 = (v23 != NULL && v41 != NULL) ? FindVertex(v23 , v41) : NULL;
10

11 if (midf1 == NULL && midf2 == NULL)
12 return NotSplit;
13 else
14 return (midf1 != NULL) ? Vertical : Horizontal;
15 }

The function FindVertex uses a hash table to map end-point vertices to the vertex in the middle of
their edge. This algorithm naturally supports anisotropic refinement, as illustrated in Figure 12.

Figure 12: Left: 2D benchmark problem for a Poisson problem with a known exact solution. Center:
Isotropic AMR mesh at 2197 DOFs. Right: Anisotropic AMR mesh at 1317 DOFs. Even though
the wave front in the solution is not really aligned with the mesh, many elements could still be
refined in one direction only, which saved up to 48% DOFs in this problem for similar error.

The algorithm to build the P matrix in parallel is more complex, but conceptually similar to
the serial algorithm. We still express slave DOF rows of P as linear combinations of other rows,
however some of them may be located on other MPI tasks and may need to be communicated
first. The mesh is partitioned between MPI tasks by splitting the space-filling curve obtained by
enumerating depth-first all leaf elements of all refinement octrees. The simplest traversal with a
fixed order of children at each octree node leads to the well-known Morton ordering, or the Z-curve.
We use instead the more e�cient Hilbert curve that can be obtained just by changing the order of
visiting subtrees at each level of the octree [23]. The use of space-filling curve partitioning ensures
that balancing the mesh so that each MPI task has the same number of elements (±1 if the total
number of elements is not divisible by the number of tasks) is relatively straightforward.

These algorithms have been heavily optimized for both weak and strong parallel scalability
as illustrated in Figure 13, where we report results from a 3D Poisson problem on the unit cube
with exact solution having two shock-like features. We initialize the mesh to 323 hexahedra and
repeat the following steps, measuring their wall clock times (averaged over all MPI ranks): 1)
Construct the finite element space for the current mesh (create the P matrix); 2) Assemble locally
the sti↵ness matrix A and right hand side b; 3) Form the products P TAP , P T b; 4) Eliminate
Dirichlet boundary conditions from the parallel system; 5) Project the exact solution u to u

h

by
nodal interpolation; 6) Integrate the exact error e

i

= ||u
h

� u||
E,Ki on each element; 7) Refine

elements with e
j

> 0.9 max{e
i

}; 8) Load balance so each process has the same number of elements
(±1). Out of the approximately 100 iterations of the AMR loop, we select 8 iterations that have
approximately 0.5, 1, 2, 4, 8, 16, 32 and 64 million elements in the mesh at the beginning of the
iteration and plot their times as if they were 8 independent problems. We run from 64 to 393216
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(384K) cores on LLNL’s Vulcan BG/Q machine. The solid lines in Figure 13 show strong scaling,
i.e. we follow the same AMR iteration and its total time as the number of cores doubles. The
dashed lines skip to a double-sized problem when doubling the number of cores showing weak
scaling, and should ideally be horizontal. To the best of our knowledge, these are some of the best
weak and strong scaling results for a fully unstructured AMR implementation.
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Figure 13: Left: One octant of the parallel test mesh partitioned by the Hilbert curve (2048 domains
shown). Right: Overall parallel weak and strong scaling for selected iterations of the AMR loop.
Note that these results test only the AMR infrastructure, no physics computations are being timed.

MFEM’s variational restriction-based AMR approach can be remarkably unintrusive when it
comes to integration in a real finite element application code. To illustrate this point we show two
results from the Laghos miniapp (see Subsection 8.3) which required minimal changes for static
refinement support, see Figure 14 and about 550 new lines of code for full dynamic AMR, including
derefinement, see Figure 15.

Figure 14: MFEM-based static refinement in a triple point shock-interaction problem. Initial mesh
at t = 0 (background) refined anisotropically in order to obtain more regular element shapes at
target time (foreground).
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Figure 15: MFEM-based dynamic refinement/derefinement in the 3D Sedov blast problem. Mesh
and density shown at t = 0.0072 (left), t = 0.092 (center) and t = 0.48 (right). Q3Q2 elements
(p = 3 kinematic, p = 2 thermodynamic quantities).

7.3 Mesh Optimization

A vital component of high-order methods is the use of high-order representation not just for the
physics fields, but also for the geometry, represented by a high-order computational mesh. High-
order meshes can be relatively coarse and still capture curved geometries adequately, leading to
equivalent simulation quality for a smaller number of elements. High-order meshes can also be very
beneficial in a wide range of applications, where e.g. radial symmetry preservation, or alignment
with physics flow or curved model boundary is important [103, 49, 82]. Such applications can utilize
static meshes, where a good-quality high-order mesh needs to be generated only as an input to the
simulation, or dynamic meshes, where the mesh evolves with the problem and its quality needs to
be constantly controlled. In both cases, the quality of high-order meshes can be di�cult to control,
because their properties vary in space on a sub-zonal level. Such control is critical in practice, as
poor mesh quality leads to small time steps or simulation failures.

The MFEM project has developed a general framework for the optimization of high-order curved
meshes based on the node-movement techniques of the Target-Matrix Optimization Paradigm
(TMOP) [73]. This enables applications to have very precise control over local mesh quality,
while still optimizing the mesh globally. Note that while our new methods are targeting high-order
meshes, they are general, e.g., they can also be applied to low-order mesh applications that use
linear meshes.

A brief description of the MFEM mesh optimization framework is provided in the rest of this
section. For more details see [42, 43]. To the best of our knowledge this is the first ever user-friendly
implementation of general parallel high-order mesh optimization tools in open-source software.

TMOP is a general approach for controlling mesh quality, where mesh nodes (vertices in the
low-order case) are moved so-as to optimize a multi-variable objective function that quantifies
global mesh quality. Specifically, at a given point of interest (inside each mesh element), TMOP
uses three Jacobian matrices:

• The Jacobian matrix A
d⇥d

of the transformation from reference to physical coordinates, where
d is the space dimension.

• The target matrix, W
d⇥d

, which is the Jacobian of the transformation from the reference to
the target coordinates. The target matrices are defined according to a user-specified method
prior to the optimization; they define the desired properties in the optimal mesh.
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• The weighted Jacobian matrix, T
d⇥d

, defined by T = AW�1, represents the Jacobian of the
transformation between the target and the physical coordinates.

The T matrix is used to define the local quality measure, µ(T ). The quality measure can evaluate
shape, size, or alignment of the region around the point of interest. The combination of targets and
quality metrics is used to optimize the node positions, so that they are as close as possible to the
shape/size/alignment of their targets. This is achieved by minimizing a global objective function,
F (x), that depends on the local quality measure throughout the mesh:

F (x) :=
X

E2E

Z

Et

µ(T (x))dx
t

=
X

E2E

X

xq2QE

w
q

det(W (x
q

)) µ(T (x
q

)) , (29)

where E
t

is the target element corresponding to the physical element E, Q
E

is the set of quadrature
points for element E, w

q

are the corresponding quadrature weights, and both T (x
q

) and W (x
q

)
are evaluated at the quadrature point x

q

of element E. The objective function can be extended by
using combinations of quality metrics, space-dependent weights for each metric, and limiting the
amount of allowed mesh displacements. As F (x) is nonlinear, MFEM utilizes Newton’s method to
solve the critical point equations, @F (x)/@x = 0, where x is the vector that contains the current
mesh positions. This approach involves the computation of the first and second derivatives of µ(T )
with respect to T . Furthermore, boundary nodes are enforced to stay fixed or move only in the
boundary’s tangential direction. Additional modifications are performed to guarantee that the
Newton updates do not lead to inverted meshes, see [42].

The current MFEM interface provides access to 12 two-dimensional mesh quality metrics, 7
three-dimensional metrics, and 5 target construction methods, together with the first and second
derivatives of each metric with respect to the matrix argument. The quality metrics are defined
by the inheritors of the class TMOP QualityMetric, and target construction methods are defined
by the class TargetConstructor, which are all contained in the source file fem/tmop.hpp. The
file linalg/invariants.hpp contains computations of matrix invariants and their first and second
derivatives (with respect to the matrix), which are used by MFEM’s NewtonSolver class to solve
@F (x)/@x = 0. The library interface allows users to choose between various options concerning
target construction methods and mesh quality metrics and adjust various parameters depending
on their particular problem. The mesh optimization module can be easily extended by additional
mesh quality metrics and target construction methods. Illustrative examples are presented in the
form of a simple mesh optimization miniapp, mesh-optimizer, in the miniapps/meshing directory,
which includes both serial and parallel implementations. Some examples of simulations that can
be performed by this miniapp are shown in Figure 16. MFEM’s mesh optimization capabilities are
also routinely used in production runs for many of the ALE simulation problems in the BLAST
code, see Figure 17.

Work to extending MFEM’s mesh optimization capabilities to simulation-driven adaptivity
(a.k.a. r-adaptivity) [43], and coupling h- and r-adaptivity of high-order meshes by combining the
TMOP and AMR concepts is ongoing. See Figure 18 for some preliminary results in that direction.

8 Applications

MFEM has been used in many applications and research publications, including [75, 31, 48, 14,
8, 17, 42, 49, 112, 113, 3, 97, 70, 80, 33, 95, 53, 83, 18, 46, 101, 78, 45, 44, 37, 47, 9, 111, 64,
50, 57, 76, 16, 6, 96, 2, 86, 115, 27, 28, 51, 100, 84, 117, 56, 118, 77, 116, 106, 63, 21, 81, 102].
The project is a member of the FASTMath institute in the SciDAC program and is also a major
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Figure 16: In the left panel, a perturbed (top left) fourth order 2D mesh is being optimized by
targeting shape-only optimization (top right), shape and equal size (bottom right), shape and
space-dependent size (bottom left). In the middle and right panels, a second order 3D mesh is
being optimized with respect to shape.

Figure 17: Optimized meshes in parallel inertial confinement fusion simulation, see [8] and Sub-
section 8.3. Shown is the region around the capsule’s fill tube. Both meshes are optimized with
respect to shape, size, and amount of mesh displacement. On the left, material interfaces are kept
fixed. On the right, interfaces are relaxed later in the simulation.

participant in the co-design Center for E�cient Exascale Discretizations (CEED) in the Exascale
Computing Project (ECP) where MFEM’s software is being upgraded to exploit increasing on-node
concurrency targeting multiple complex architectures, including GPUs, see Subsection 6.3.

8.1 Example Codes

The MFEM codebase includes a wide array of example applications that utilize numerous MFEM
features and demonstrate the finite element discretization of many PDEs. The goal of these well
documented example codes is to provide a step-by-step introduction to MFEM in simple model
settings. Most of the examples have both serial and parallel versions (indicated by a p appended
to the filename) which illuminate the straightforward transition to parallel code and the use of
the hypre solvers and preconditions. There are also variants of many example codes in the petsc,
sundials and pumi subdirectories that display integration with those packages. Each example code
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Figure 18: Example of MFEM r-adaptivity to align the mesh with materials in a multi-material
ALE simulation of high velocity gas impact, cf. [19].Time evolution of the materials and mesh
positions at times 2.5 (left), 5 (center), and 10 (right). See [43] for details.

has the flexibility to change the order of the calculations, switch various finite element features on
or o↵, and utilize di↵erent meshes through command line options. Once the example codes are
built using the accompanying makefile, their options can be displayed by running the code with
--help as a command line option. The outputs of the examples can be visualized with GLVis, see
Subsection 4.4.

The example codes are simply named ex1–ex19, roughly in order of complexity, so it is recom-
mended that users start with earlier numbered examples in order to learn the basics of interfacing
with MFEM before moving on to more complicated examples. Here we will provide a brief overview
of these examples and the topics they elucidate. More details can be found in our online documen-
tation http://mfem.org/examples/.

The first example ex1 begins with the solution of the Laplace problem with homogeneous
Dirichlet (fixed) boundaries utilizing nodal H1 elements. This parallels the problem solved in
Section 2. Examples ex6, ex8, and ex14 also solve the Poisson problem, but they also highlight
AMR, DPG and DG formulations, respectively. Examples ex2 and ex17 solve the equations of linear
elasticity with Galerkin and DG formulations, respectively, while ex10 provides an implementation
of nonlinear elasticity utilizing a Newton solver. An elementary introduction to utilizing H(curl)
vector elements to solve problems arising from Maxwell’s equations can be found in ex3 and ex13.
An example of utilizing surface meshes embedded in a 3D space can be found in ex7 while more
advanced dynamic AMR is explored in ex15. Finally, examples ex9, ex10, ex16, and ex17 show the
solution of time dependent problems, while ex11, ex12, and ex13 tackle frequency domain problems
solving for eigenvalues of their respective systems. Sample results from some of the example runs
are shown in Figure 19.

8.2 Electromagnetics

The electromagnetic miniapps in MFEM are designed to provide a jumping-o↵ point for developing
real-world electromagnetic applications. As such, they cover a few common problem domains and
attempt to support a variety of boundary conditions and source terms. This way application
scientists can easily adapt these miniapps to solve particular problems arising in their research.

The Volta miniapp solves Poisson’s equation with boundary conditions and sources tailored
to electrostatic problems. This miniapp supports fixed voltage or fixed charge density boundary
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Figure 19: Left: Solution of a Maxwell problem on a Klein bottle surface with ex3; mesh generated
with the klein-bottle miniapp in miniapps/meshing. Right: An electromagnetic eigenmode of a
star-shaped domain computed with 3rd order finite elements computed with ex13p.

conditions which correspond to the usual Dirichlet or Neumann boundary conditions, respectively.
The volumetric source terms can be derived from either a prescribed charge density or a fixed
polarization field.

Figure 20: Screen shot showing some of the fields computed using the Tesla miniapp.

The Tesla miniapp models magnetostatic problems. Magnetostatic boundary conditions are
more complicated than those for electrostatic problems due to the nature of the curl-curl operator.
We support two types of boundary conditions: the first leads to a constant magnetic field at the
boundary, the second arises from a surface current. The surface current is itself the solution of a
Poisson problem restricted to the surface of the problem domain. The motivation for this surface
current boundary condition is to approximate the magnetic fields surrounding current carrying
conductors. Tesla also supports volumetric sources due to current densities or materials with a
fixed magnetization (i.e. permanent magnets). Note that the curl-curl operator cannot be solved
with an arbitrary source term; the source must be a solenoidal vector field. To ensure this, the
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Tesla miniapp must remove any irrotational components by performing a projection operation
known as “divergence cleaning”.

The Maxwell miniapp simulates full-wave time-domain electromagnetic wave propagation.
This miniapp solves the Maxwell equations as a pair of coupled first order partial di↵erential equa-
tions using a symplectic time-integration algorithm, see Subsection B.4, designed to conserve energy
(unless, of course, lossy materials are present.) The simulation can be driven by a time-varying
applied electric field boundary condition or by a volumetric current density. Perfect electrical con-
ductor, perfect magnetic conductor, and first order Sommerfeld absorbing boundary conditions are
also available. A frequency-domain version of this miniapp is currently under development.

One of the most practical applications of electromagnetics is the approximation of the Joule
heating caused by an alternating electrical current in an imperfect conductor. The MFEM miniapp
Joule models this behavior with a system of coupled partial di↵erential equations which approxi-
mate low-frequency electromagnetics and thermal conduction. The boundary conditions consist of
a time-varying voltage, used to drive a volumetric current, and a thermal flux boundary condition,
which can approximate a thermal insulator. This miniapp is a good example of a simple multi-
physics application which could be modified to simulate a variety of important real-world problems
in electrical engineering.

8.3 Compressible Hydrodynamics

The MFEM-based Laghos miniapp models time-dependent, compressible, inviscid gas dynamics
via the Euler equations in the Lagrangian form. The Euler equations are a system which describe
the conservation of mass, momentum, and energy of an inviscid fluid. In the Lagrangian picture,
the elements represent regions of fluid of fixed identity that move with the flow, resulting in a
moving and deforming mesh. The high-order curved mesh capabilities of MFEM provide a great
advantage in this context, since curved meshes can describe larger deformations more robustly than
meshes using only straight segments, and mitigate problems with the mesh intersecting itself when
it becomes highly deformed.

The Laghos miniapp uses continuous finite element spaces to describe the position and velocity
fields, and a discontinuous space to describe the energy field. The order of these fields is determined
by runtime parameters, making the code arbitrarily high order. The assembly of the finite elements
in Laghos can be accomplished using either standard full assembly, or by a method which is more
e�cient in the high-order case known as partial assembly, see Subsection 5.4. With partial assembly,
the global matrices are never fully created and stored, but rather only the local action of these
operators is required. This reduces both memory footprint and computational cost.

Laghos is also a simplified model for a more complex multi-physics MFEM-based code system
known as BLAST [8, 49, 47], which contains not only Lagrangian gas dynamics capabilities, but
also has mesh remapping or ALE capabilities, solid mechanics, and multi-material zones. The
remapping capability allows arbitrarily large deformations to be modeled, since the mesh can be
regularized at intervals su�cient to continue a simulation indefinitely. This capability to vary
smoothly between Lagrangian and Eulerian meshes is known as the Arbitrary Lagrangian-Eulerian
method, or ALE. The remap capability in BLAST is accomplished with a high-order Discontinuous
Galerkin method, which is both conservative and monotonic [7]. (The DG component of the remap
algorithm is very close to the DG advection in Example 9.)

BLAST uses a general stress tensor formulation which allows for the simulation of elastic-
plastic flows in 2D, 3D, and in axisymmetric coordinates. Multi-material elements are described
using high-order material indicator functions, which describe the volume fractions of materials at
all points in the domain. A new, high-order multi-material closure model was developed to solve

43



Figure 21: Left: A shock interface 3D hydrodynamics calculation on 16,384 processors with BLAST.
Center: Static non-conforming AMR in a Sedov blast simulation, see Subsection 7.2. Right: High-
order axisymmetric multi-material inertial confinement fusion (ICF)-like implosion in BLAST.

the resulting multi-material system of equations [50]. This capability has been used to model many
types of hydrodynamic systems, such as Rayleigh-Taylor instability, shock-interface interactions,
solid impact problems, and inertial confinement fusion dynamics. Some examples of BLAST
calculations are shown in Figure 21.

8.4 Other Applications

MFEM has been applied successfully to a variety of applications including radiation-di↵usion,
additive manufacturing, topology optimization, heart modeling applications, linear and nonlinear
elasticity, reaction-di↵usion, time-domain electromagnetics, DG advection problems, Stokes/Darcy
flow, and more. Two examples of such applications are the Cardioid and ParElag project described
below.

The Cardioid project at LLNL recently used MFEM to rewrite and simplify two cardiac simula-
tion tools. The first is a fiber generation code which solves a series of Poisson problems to compute
cardiac fiber orientations on a given mesh. See Figure 22 for sample output. Additionally, a de-
formable cardiac mechanics code which solves incompressible anisotropic hyperelasticity equations
with active tension has also been developed. The methods implemented are outlined in [20] and
[58]. A second MFEM-based code to generate electrocardiograms using simulated electrophysiology
data is also under development.

Another project that is built extensively around MFEM is ParElag [98], which is a library
organized around the idea of algebraic coarsening of the de Rham complex introduced in Sub-
section 4.2. ParElag leverages MFEM’s high-order Lagrange, Nedelec, and Raviart-Thomas finite
element spaces as well as its auxiliary space solvers (Subsection 6.2) to systematically provide a
de Rham complex on a coarse level, even for unstructured grids with no geometric hierarchy. Its
algorithms and approach are described in [79, 99].

9 Conclusions

In this paper we provided an overview of the algorithms, capabilities and applications of the MFEM
finite element library as of version 3.4, released in May 2018. Our goal was to emphasize the
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Figure 22: Heart fiber orientations computation in Cardioid using MFEM.

mathematical ideas and software design choices that enable MFEM to be widely applicable and
highly performant from a relatively small and lightweight code base.

While we tried to cover all major MFEM components, this paper is really just an introduction
to MFEM, and readers interested in learning more should consult the additional material available
on the website http://mfem.org and in the MFEM code distribution.

In particular, new users should start with the interactive documentation of the example codes,
available online as well as in the examples/ directory, and may be interested in reading some of the
references in Section 8, e.g. [8, 115, 86, 64, 101, 18].

Researchers interested in learning mathematical details about MFEM’s finite element algo-
rithms and potentially contributing to the library can follow up with [31, 42, 17, 48, 43] and the
instructions/developer documentation in the CONTRIBUTING.md file.
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M. Nolte, M. Piatkowski, and O. Sander. The distributed and unified numerics environment,
version 2.4. Archive of Numerical Software, 4(100):13–29, 2016. {4}

[23] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and Isorropia
parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring.
Scientific Programming, 20(2):129–150, 2012. {36}

[24] D. Braess. Finite elements: theory, fast solvers, and applications in elasticity theory, volume
166. Cambridge University Press, 2007. {9}

[25] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer,
New York, NY, USA, 1994. {5, 9}

[26] J. Brown. E�cient nonlinear solvers for nodal high-order finite elements in 3D. Journal of
Scientific Computing, 45:48–63, 2010. {17}

[27] T. A. Brunner. Mulard: A multigroup thermal radiation di↵usion mini-application. In DOE
Exascale Research Conference, Portland, Oregon, 2012. {39}

47



[28] T. A. Brunner, T. V. Kolev, T. S. Bailey, and A. T. Till. Preserving spherical symmetry
in axisymmetric coordinates for di↵usion. In International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering, 2013. {39}

[29] J. Candy and W. Rozmus. A symplectic integration algorithm for separable Hamiltonian
functions. Journal of Computational Physics, 92(1):230 – 256, 1991. {62}

[30] CEED: Center for E�cient Exascale Discretizations in the U.S. Department of Energy’s
Exascale Computing Project. http://ceed.exascaleproject.org. {17, 24, 31}

[31] J. Ceverny, V. Dobrev, and T. Kolev. Non-conforming mesh refinement for high-order finite
elements. SIAM Journal on Scientific Computing, 2018. submitted. {11, 33, 39, 45}

[32] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller,
C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel,
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Appendix A Bilinear Form Integrators

MFEM includes numerous types of bilinear form integrators which are listed here to provide a
quick reference for developers. For more information regarding the appropriate trial and test
spaces, supported coe�cient types, etc. see the MFEM online documentation at http://mfem.

org/bilininteg/. While we have tried to include support for a wide variety of operators, this list
can be easily extended by adding customized bilinear form integrators which would inherit from
the BilinearFormIntegrator abstract base class.

A.1 Scalar Field Operators

These operators, described in Table 2, require scalar-valued trial spaces. Many of these operators
will work with either H1 or L2 basis functions but some, those that require a gradient operator,
should be used with H1.

Class Name Operator Continuous Operator

Square Operators

MassIntegrator (�u, v) �u

DiffusionIntegrator (�ru, rv) �r · (�ru)

General Operators

MixedScalarMassIntegrator (�u, v) �u

MixedScalarWeakDivergenceIntegrator (�~�u, rv) r · (~�u)

MixedScalarWeakDerivativeIntegrator (��u, dv

dx

) d

dx

(�u)

MixedScalarWeakCurlIntegrator (�u, r ⇥ ~v) r ⇥ (� u ẑ)

MixedVectorProductIntegrator (~�u,~v) ~�u

MixedScalarWeakCrossProductIntegrator (~�u ẑ,~v) ~� ⇥ ẑ u

MixedScalarWeakGradientIntegrator (��u, r · ~v) r(�u)

MixedDirectionalDerivativeIntegrator (~� · ru, v) ~� · ru

MixedScalarCrossGradIntegrator (~� ⇥ ru, v) ~� ⇥ ru

MixedScalarDerivativeIntegrator (�du

dx

, v) �du

dx

MixedGradGradIntegrator (�ru, rv) �r · (�ru)

MixedCrossGradGradIntegrator (~� ⇥ ru, rv) �r · (~� ⇥ ru)

MixedVectorGradientIntegrator (�ru,~v) �ru

MixedCrossGradIntegrator (~� ⇥ ru,~v) ~� ⇥ ru

MixedCrossGradCurlIntegrator (~� ⇥ ru, r ⇥ ~v) r ⇥ (~� ⇥ ru)

MixedGradDivIntegrator (~� · ru, r · ~v) �r(~� · ru)

Special Purpose Operators

DerivativeIntegrator (� @u

@xi
, v) � @u

@xi

ConvectionIntegrator (~� · ru, v) ~� · ru

GroupConvectionIntegrator (↵~� · ru, v) ↵~� · ru

BoundaryMassIntegrator (� u, v) � u

Table 2: Scalar field integrators.
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A.2 Vector Finite Element Operators

These operators, described in Table 3, require vector-valued basis functions in the trial space. Many
of these operators will work with either Nedelec or Raviart-Thomas finite elements.

Class Name Operator Continuous Operator

Square Operators

VectorFEMassIntegrator (�~u,~v) �~u

CurlCurlIntegrator (�r ⇥ ~u, r ⇥ ~v) r ⇥ (�r ⇥ ~u)

DivDivIntegrator (�r · ~u, r · ~v) �r(�r · ~u)

General Operators

MixedDotProductIntegrator (~� · ~u, v) ~� · ~u
MixedScalarCrossProductIntegrator (~� ⇥ ~u, v) ~� ⇥ ~u

MixedVectorWeakDivergenceIntegrator (��~u, rv) r · (�~u)

MixedWeakDivCrossIntegrator (�~� ⇥ ~u, rv) r · (~� ⇥ ~u)

MixedVectorMassIntegrator (�~u,~v) �~u

MixedCrossProductIntegrator (~� ⇥ ~u,~v) ~� ⇥ ~u

MixedVectorWeakCurlIntegrator (�~u, r ⇥ ~v) r ⇥ (�~u)

MixedWeakCurlCrossIntegrator (~� ⇥ ~u, r ⇥ ~v) r ⇥ (~� ⇥ ~u)

MixedScalarWeakCurlCrossIntegrator (~� ⇥ ~u, r ⇥ ~v) r ⇥ (~� ⇥ ~u)

MixedWeakGradDotIntegrator (�~� · ~u, r · ~v) r(~� · ~u)

MixedScalarCurlIntegrator (�r ⇥ ~u, v) �r ⇥ ~u

MixedCrossCurlGradIntegrator (~� ⇥ r ⇥ ~u, rv) �r · (~� ⇥ r ⇥ ~u)

MixedVectorCurlIntegrator (�r ⇥ ~u,~v) �r ⇥ ~u

MixedCrossCurlIntegrator (~� ⇥ r ⇥ ~u,~v) ~� ⇥ r ⇥ ~u

MixedScalarCrossCurlIntegrator (~� ⇥ ẑ r ⇥ ~u,~v) ~� ⇥ ẑ r ⇥ ~u

MixedCurlCurlIntegrator (�r ⇥ ~u, r ⇥ ~v) r ⇥ (�r ⇥ ~u)

MixedCrossCurlCurlIntegrator (~� ⇥ r ⇥ ~u, r ⇥ ~v) r ⇥ (~� ⇥ r ⇥ ~u)

MixedScalarDivergenceIntegrator (�r · ~u, v) �r · ~u
MixedDivGradIntegrator (~�r · ~u, rv) �r · (~�r · ~u)

MixedVectorDivergenceIntegrator (~�r · ~u,~v) ~�r · ~u
Special Purpose Operators

VectorFEDivergenceIntegrator (�r · ~u, v) �r · ~u
VectorFEWeakDivergenceIntegrator (��~u, rv) r · (�~u)

VectorFECurlIntegrator (�r ⇥ ~u,~v) or (�~u, r ⇥ ~v) �r ⇥ ~u or r ⇥ (�~u)

Table 3: Vector field integrators.

A.3 Nodal Vector Field Operators

These operators, described in Table 4, require vector-valued basis functions constructed by using
multiple copies of scalar fields. Specifically, the trial basis functions used with these operators
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should be either (H1)d or (L2)d. In each of these integrators, the scalar basis function index
increments most quickly followed by the vector index. This leads to local element matrices which
have a block structure.

Class Name Operator Continuous Operator

Square Operators

VectorMassIntegrator (�~u,~v) �~u

VectorCurlCurlIntegrator (�r ⇥ ~u, r ⇥ ~v) r ⇥ (�r ⇥ ~u)

VectorDiffusionIntegrator (�ru
i

, rv
i

) �r · (�ru
i

)

ElasticityIntegrator (c
ikjl

ru
j

, rv
i

) �r
k

· (c
ikjl

r
l

u
j

)

General Operators

VectorDivergenceIntegrator (�r · ~u, v) �r · ~u

Table 4: Nodal vector field integrators.

A.4 Discontinuous Galerkin Operators

The notation used for the Discontinuous Galerkin (DG) operators shown in Table 5 may be un-
familiar to some readers so we provide a few definitions in Table 6. The details of the operator
implemented in the DGElasticityIntegrator can be found in [38].

Class Name Operator

DGTraceIntegrator ↵ h⇢
u

(~u · n̂){v}, [w]i + � h⇢
u

|~u · n̂|[v], [w]i
DGDiffusionIntegrator � h{Qru · n̂}, [v]i + � h[u], {Qrv · n̂}i + 

⌦{h�1Q}[u], [v]
↵

DGElasticityIntegrator � h{�(u) · ~n}, [v]i + ↵ h{�(v) · ~n}, [u]i + 
⌦
h�1{� + 2µ}[u], [v]

↵

TraceJumpIntegrator hv, [w]i
NormalTraceJumpIntegrator hv, [~w · ~n]i

Table 5: Discontinuous Galerkin operators.

Description Notation

Inner Product hu, vi =
R
F

u · v for face F

Average {u} = 1

2

(u|
K1 + u|

K2) for elements K
1

and K
2

Jump [u] = u|
K1 � u|

K2 for elements K
1

and K
2

Table 6: Discontinuous Galerkin definitions.

A.5 Special Purpose Integrators

These “integrators”, described in Table 7, do not actually perform integrations, they merely alter
the results of other integrators. As such, they provide a convenient and easy way to reuse existing
integrators in special situations rather than needing to re-implement their functionality.
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Class Name Description

Square Operators

LumpedIntegrator

Returns a diagonal local matrix where each entry is the sum
of the corresponding row of a local matrix computed by an-
other BilinearFormIntegrator

InverseIntegrator

Returns the inverse of the local matrix computed by another
BilinearFormIntegrator which produces a square local ma-
trix

SumIntegrator
Returns the sum of a series of integrators with compatible
dimensions

General Operators

TransposeIntegrator
Returns the transpose of the local matrix computed by an-
other BilinearFormIntegrator

Table 7: Special purpose integrators.
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Appendix B Ordinary Di↵erential Equation Integrators

Ordinary Di↵erential Equation (ODE) integrators are not an integral part of a finite element library,
but we include them in MFEM because they can be an important component of many finite element
applications. In general, ODEs of any order can be written as systems of first order ODEs, therefore,
solution methods focus on the solution equations of the type:

d~y

dt
= f(t, ~y) (30)

MFEM comes pre-packaged with a handful of explicit and implicit Runge-Kutta methods (as well
as some specialized methods, see below). Easy-to-use interfaces to the time integrators in the
SUNDIALS [62] and PETSc [15] suites are also provided.

B.1 Explicit Runge-Kutta Methods

Explicit Runge-Kutta methods can be written in the form:

y
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= y
n

+ h
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k
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+ c
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The number of stages and the choice of coe�cients determines the particular method being em-
ployed. In the general explicit case the coe�cients are often displayed in a Butcher tableau such
as shown in Table 8.
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Table 8: General explicit Butcher tableau.

The MFEM class ExplicitRKSolver can be used, along with user defined a
ij

, b
j

, and c
i

co-
e�cients, to perform an arbitrary explicit Runge-Kutta iteration. Other explicit Runge-Kutta
methods provided by MFEM are shown in Table 9. Butcher tableau for many of these methods
are shown in Tables 10–13.
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Method Order Stages
ForwardEulerSolver 1 1
RK2Solver 2 2
RK3SSPSolver 3 3
RK4Solver 4 4
RK6Solver 6 8
RK8Solver 8 12

Table 9: Explicit Runge-Kutta methods and their numbers of stages and orders.

0
1

Table 10: Butcher tableau for ForwardEulerSolver.

0
a a

(1 � 1

2a

) 1

2a

Table 11: Butcher tableau for RK2Solver parameterized with user-defined a. Common choices would
be: the midpoint method with a = 1

2

, Heun’s method with a = 1, and a minimum truncation error
method with a = 2/3.

0
1 1

1/2 1/4 1/4
1/6 1/6 2/3

Table 12: Butcher Tableau for RK3SSPSolver, a third order, strong stability preserving (SSP)
method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 13: Butcher Tableau for RK4Solver which implements the classical forth order Runge-Kutta
algorithm.

B.2 Implicit Methods

Implicit Runge-Kutta methods can be written in the form:

y
n+1

= y
n

+ h
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The available implicit Runge-Kutta methods and their stability are shown in Table 14. Butcher
tableau for each of these methods are shown in Tables 15–19. For more information about the
SDIRK methods see [4].

Method A-Stable L-Stable
BackwardEulerSolver X X
ImplicitMidpointMethod X
SDIRK23Solver(option) for option � 1 for option � 2
SDIRK34Solver X
SDIRK33Solver X X

Table 14: Stability of the available implicit Runge-Kutta methods.

1 1
1

Table 15: Butcher tableau for BackwardEulerSolver.

1/2 1/2
1

Table 16: Butcher tableau for ImplicitMidpointSolver.

� �
(1 � �) (1 � 2�) �

1/2 1/2

Table 17: Butcher tableau for SDIRK23Solver(option) where � depends upon the value of option:

0 ! � = 1
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Table 18: Butcher tableau for SDIRK34Solver where a = 1

2

+ cos(⇡/18)p
3

and b = 1
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2 .

a a
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Table 19: Butcher tableau for SDIRK33Solver where a is the root of x3 � 3x+ 3

2

x� 1
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6

, 1

2

), b = (6a � (8 � p
58))((8 +

p
58) � 6a)/24 and c = (1 + a)/2.
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B.3 Time-Dependent Operator

The implementation of Runge-Kutta methods requires a means to evaluate the ODE function f(t, ~y)
appearing in (30). In MFEM these functions are implemented as TimeDependentOperator objects.
Let ~k ⌘ f(t, ~y), a TimeDependentOperator must find ~k such that F (~y,~k, t) = G(~y, t) where F and G
represent the implicit and explicit parts of the operator f(t, ~y), respectively.

Two special cases of TimeDependentOperator objects exist: explicit when F (~y,~k, t) = ~k, and
homogeneous when G(~y, t) = 0. In general, such operators are called implicit.

MFEM’s TimeDependentOperator objects contain several methods, but two are of particular
importance for Runge-Kutta methods. The TimeDependentOperator::Mult(y,k) method finds the
vector ~k which satisfies

F (~y,~k, t) = G(~y, t) or equivalently ~k = f(t, ~y)

and is needed by explicit Runge-Kutta methods. The TimeDependentOperator::ImplicitSolve(�t,y,k)

method finds the vector ~k which satisfies

F (~y + �t~k,~k, t) = G(~y + �t~k, t) or equivalently ~k = f(t, ~y + �t~k)

and is only needed by implicit Runge-Kutta methods.

B.4 Symplectic Integration Solvers

An important class of problems in physics, including wave phenomena, can be described by second
order ODEs which can be derived from a Hamiltonian operator

H(~q, ~p, t) = T (~p) + V (~q, t).

Which leads to Hamilton’s equations

d~p

dt
= �@H

@~q
⌘ F (~q, t) ,

d~q

dt
=

@H

@~p
⌘ P (~p).

Such ODEs could be reduced to a first order system of equations as in Equation 30 and solved
with a Runge-Kutta method. However, such a procedure would fail to preserve quantities, such as
total energy, which should be conserved during the evolution of the system. Symplectic Integration
algorithms [29] were designed to preserve such quantities.

MFEM contains implementations of the four symplectic integration algorithms described in [29]
which perform numerical integration of Hamiltonian systems with orders 1–4. These integrators
make use of the same TimeDependentOperator mentioned in Subsection B.3 to define the function
F (~q, t). On the other hand, the operator P (~p) is a standard MFEM Operator object.
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