1.1. Nomenclature

Models

- domain associated with the model V, V = G, M where G signifies the geometric model Ω_V and M signifies the mesh model
- $\bar{\Omega}_{V}$ the closure of the domain associated with the model V, V = G, M

Topological entities

 V_i^d the *i*th entity of dimension *d* in model *V*. Shorthand for $V\{V^d\}_i$ $\partial(V_i^d)$ the entities on the boundary of V_i^d

- \bar{V}_i^d closure of topological entity defined as $V_i^d \cup \partial(V_i^d)$
- \Box classification symbol used to indicate the association of one or more entities from the mesh, M, with an entity in the geometric model, G

Groups

- $\{V^d\}$ unordered group of topological entities of dimension d in model V
- V^{d} ordered group of topological entities of dimension d in model V
- $\begin{bmatrix} V^d \end{bmatrix}$ cyclically ordered group of topological entities of dimension d in model V
- $\langle V^d \rangle$ a group where the ordering is unspecified (ordering is one of: unordered, ordered or cyclically ordered)
 - φ_i ith topological entity in group φ , where φ is any one of the groups above

Adjacency operations

- $\phi \langle V^d \rangle$ the set of entities of dimension d in model V that are adjacent to, or contained in φ . φ may be a single entity, V_i^d or $\langle V^d \rangle_i$, a group of entities, $\langle V^d \rangle$ (possibly a group resulting from another adjacency operation), or a model V
- $\varphi \langle V_{\pm}^{4} \rangle$ an adjacency relation with directional use information associated with each entity. The \pm indicates the directional use of each entity. A + indicates use in the same direction as the entity definition, a - indicates use in the opposite direction

Examples

 $V\{V^d\}$ all of the entities of order d in model V

- the unordered group of topological entities of dimension d_i that are adjacent to the $V_i^{d_i} \{ V^{d_j} \}$ entity $V_i^{d_i}$ in model V
- $V_k^{d_i} \{V^{d_j}\}_i$ the *i*th member of the unordered group of topological entities of dimension d_i that are adjacent to the entity $V_{k'}^{d_i}$ in model V

The adjacency notation is evaluated from left to right, for example: $V_i^3\{V^0\}\{V^3\}_j$ is found by first finding $\varphi = V_i^3\{V^0\}$ and then the *j*th member of $\varphi\{V^3\}$