

Hierarchical Mesh Representation

ï

Element-Node connectivity is not sufficient for mesh generation
and adaption - Canít be used to verify mesh validity

ï

Operations on other entities (such as faces or edges) are often
more efficient and natural

ï

Topological hierarchy gives a general, shape-independent
abstraction of a mesh

ï

Also a useful representation for analysis procedures

ï

Reference: M.W. Beall and M.S. Shephard, ìA General Topology-
Based Mesh Data Structure,î

Int. J. Num. Meth. Engng

., 40(9):1573-
1596, 1997.

Element
Node 1

Node 2

Node 3

Face

Edge 1

Edge 2

Edge 3
Vertex 1

Vertex 2

Vertex 3

Topological Entities

Topology provides an unambiguous, shape independent,
abstraction of the mesh
Each topological entity of dimension , , is defined by a set of
topological entities of dimension , , which form its
boundary.
A region is a 3-d entity defined by the set of faces that bound it.
A face is a 2-d entity defined by the set of edges that bound it.
An edge is a 1-d entity defined by the two vertices that bound it.
A vertex is a 0-d entity that is the base of the hierarchy, it has no
lower order entities bounding it.

d Mi
d

d 1ñ Mi
d Md 1ñ{ }

Mesh Topology

1. Regions and faces have no interior holes.
2. Each entity of order in a mesh, , may use a particular entity

of lower order, , at most once.
3. For any entity there is a unique set of entities of order ,

 that are on the boundary of if at least one member
of is on the model entity where .

(a) Geometric Model (b) Mesh

d i Md i

Md j d j d i<,

Mi
d i d i 1ñ

Mi
d i Md i 1ñ〈 〉 Mi

d i

M i
d i Md i 1ñ〈 〉 Gj

d j d j d i≥

M 1
1

M 2
1

M 2
0M 1

0

Non-Manifold Models

Supporting the representation of meshes of non-manifold
models gives the ability to represent:
Discontinuous Fields

ï

Contact

ï

Material Interfaces
Representational Incompatibilities in FE model

ï

Interface between different idealizations (shell/solid)

ï

Solid/Fluid interfaces
Both cases have different d.o.f. on each side of interface

Models with mixed dimension entities

ï

Solid (3D), shell (2D) and wire (1D) entities
All give need to differentiate between different uses of a face
or edge

Non-Manifold Geometric Models

Non-manifold models are common in engineering analysis
Two common situations that result in non-manifold models are:

A hierarchic representation of the mesh allows these to be dealt with
in a natural manner

Material Interfaces Dimensional Reductions

Mesh Classification

Definition: Mesh Classification Against the Geometric Domain - The
unique association of a topological mesh entity to a topological geometric
domain entity.

 denotes is classified on

,

ï

Multiple can be classified on a .
A mesh region, , is classified on a
A mesh face, , is classified on a , or .
A mesh edge, , is classified on a , , or
A mesh vertex, , is classified on a , , , or

ï

Mesh entities are always classified with respect to the lowest order
object entity possible.

Mi
d i Gi

d i[
_
_ Mi

d i Gi
d i d i d j≤()

Mi
d i Gi

d i

M i
3 Gi

3

Mi
2 Gi

3 Gi
2

Mi
1 Gi

3 Gi
2 Gi

1

Mi
0 Gi

3 Gi
2 Gi

1 Gi
0

Mesh Classification

G0
0

G3
0

G0
1

G2
0

G1
0G1

1

G3
1

G2
1G0

2

G0
0

G3
0

G0
1

G2
0

G1
0G1

1

G3
1

G2
1

Classification and Attributes

ï Attributes which apply to mesh are retrieved using classification
information

ï Attributes are never ìtransferredî to the mesh - always are only
defined on geometric model

ï When mesh is adapted, attributes do not change

Geometric Model
with Attributes

Mesh with Classfication

Radial Edge Data Structure
MODEL

Region

Shell

Face use

Loop use

Edge use

Vertex use

Face

Loop

Edge

Vertex

MESH

Region

Face use

Edge use

Vertex use

Face

Edge

Vertex

Minimal Use Mesh Data Structure
ï Full non-manifold representation not necessary for meshes

Contains redundant information since classification against
the non-manifold model is available for use information
Takes too much space (many use entities)

ï Can eliminate many uses - Minimal Use Mesh Data Structure
Maintains use entities only on mesh entities classified on the
boundary of the model
Multiple use entities used in the mesh only when necessary
to distinguish between separate use entities in the geometric
model
Elimination of redundant uses can be done by considering
mesh topology and classification information

Plate with crack
Model and Mesh

ï Two uses of entity can be condensed to one use if there is an
entity that they both bound.

Mesh Vertex
Mesh Vertex use

Mesh Edge
Mesh Edge use

Td 2+
m i

Requirements for Meshes of Manifold Models
1. It must be possible to iterate through all the entities of a given

type in a mesh.
2. It must be possible to compare two entities to see if they are the

same.
3. It must be possible to retrieve the classification of any mesh

entity.
4. It must be possible to store spatial locations in terms of

parametric coordinates on each mesh entity.
5. All adjacencies must be retrievable for any mesh entity.
6. It must be possible to uniquely associate arbitrary data with each

entity.
7. Boundary edges and faces must be orientable.

Application to Analysis Codes
ï The hierarchical mesh representation can also be used for analysis
ï Rather than having elements and nodes, degrees of freedom are

directly associated with mesh entities
Allows same representation to be used for mesh modification and
for analysis - important in adaptive environments
Reduces redundant information storage in higher order
formulations
- Multiple nodes on mesh edge or face are pointed to by each

element in classic representation
- Hierarchic representation only points to each once
- Very important for variable order p-meshes
Provides links to exact geometry for element integration
procedures

Redundant information: Higher-orders nodes on shared edge

Classic Representation Hierarchic Representation

Redundant
Information

First-Order Adjacencies
First-order adjacencies for are the entities, , which are
either on its closure or which it is on the closure of .
The complete list of these adjacencies is as follows:
Vertex adjacencies: , ,
Edge adjacencies: , ,
Face adjacencies: , ,
Region adjacencies: , ,

 - ordered list, - ordered cyclic list, - unordered list
Storing all relations would take up too much space.
Can derive some of the above relations from the others.

e.g. can derive from and

Three reasonable implementations will be given that satisfy all
requirements

Mk
d i Md j i j≠()

j i<() j i>()

Mi
0 M 1{ } Mi

0 M 2{ } Mi
0 M 3{ }

Mi
1 M 0 Mi

1 M 2[] Mi
1 M 3[]

Mi
2 M 0[] Mi

2 M ±
1[] Mi

2 M 3

Mi
3 M 0{ } Mi

3 M 1{ } Mi
3 M ±

2{ }

 [] { }

Mi
3 M 1{ } Mi

3 M ±
2{ } Mi

2 M ±
1[]

First-Order Adjacencies
Example: is the circular ordered list of mesh vertices which
are on the closure of the mesh face .

Mi
2 M 0[]

Mi
2

Ma
0

Mb
0

Mc
0

Mi
2

Mi
2 M 0[] Ma

0 Mb
0 Mc

0, ,[]=

Second-Order Adjacencies
Second-order adjacencies of are all of the entities, , which
share a boundary entity of a given order, with the entity.

The complete set of unordered second-order adjacencies can be
expressed as follows:

,
ï Second order adjacencies are derivable from first order

adjacencies.
ï Higher order adjacency relations can be expressed in a similar

manner.

Mk
d i Md j

d b

M i
j Mk{ } Ml{ } j k≠ l k≠,

Second-Order Adjacencies
Example: , which is the set of all faces which share a
vertex with (such a relationship is useful for element
renumbering).

ï

Mi
2 M 0{ } M 2{ }
Mi

2

Ma
2 Mb

2 Mc
2

Md
2

M j
2

m

Mh
2Mg

2

Mf
2

Me
2

Mi
2

Mi
2 M 0{ } M 2{ } Ma

2 Mb
2 Mc

2 Md
2 Me

2 Mf
2 Mg

2 Mh
2 M j

2,, , , , , , ,{ }=

Implementation Options
One-Level Representation

, , , , ,
ï all relations are easy/fast to obtain
ï not minimum storage

Circular Representation
, , ,

ï adjacency relations can be derived
ï less storage than one-level representation
ï upward adjacency relations are more costly to obtain than from

one-level adjacency

Mi
3 M ±

2{ } Mi
2 M ±

1[] Mi
1 M 0 Mi

0 M 1{ } Mi
1 M 2[] Mi

2 M 3

M 3 M 2 M 1 M 0

Mi
3 M ±

2{ } Mi
2 M ±

1[] Mi
1 M 0 Mi

0 M 3{ }

M 3 M 2 M 1 M 0

Reduced Interior Representation
Only , on interior

, , , , , on boundary
ï interior faces and edges not explicitly represented
ï ordered region-vertex relation implies interior entities
ï orientation of interior entities determined by a vertex numbering

scheme
ï less storage than either circular or one-level representations
ï inefficient for procedures that modify mesh

Mi
3 M 0 Mi

0 M 3{ }

Mi
2 M ±

1[] Mi
1 M 0 Mi

0 M 1{ } Mi
1 M 2[] Mi

2 M 3 Mi
0 M 3{ }

M 3 M 2 M 1 M 0

Mboundary
2 Mboundary

1 Mboundary
0

Performance Comparison
Operation count to retrieve adjacency relation - tetrahedral mesh

n.a. - cannot be obtained without global search

One-level Circular Reduced
interior Classic

1 304 198 n.a.
70 264 219 n.a.

140 1 1 n.a.
1 1 1 1
1 570 373 n.a.

10 538 230 n.a.
3 3 1 1
1 1 3 3
1 299 293 n.a.
6 6 1 1
9 9 6 6
1 1 4 4

Mi
0 M 1{ }

Mi
0 M 2{ }

Mi
0 M 3{ }

Mi
1 M 0

Mi
1 M 2[]

Mi
1 M 3[]

Mi
2 M 0[]

Mi
2 M ±

1[]
Mi

2 M 3

Mi
3 M 0{ }

Mi
3 M 1{ }

Mi
3 M ±

2{ }

Performance Comparison
Operation count to retrieve adjacency relation - hexahedral mesh

n.a. - cannot be obtained without global search

One-level Circular Reduced
interior Classic

1 228 86 n.a.
24 192 116 n.a.
48 1 1 n.a.
1 1 1 1
1 296 212 n.a.
8 304 112 n.a.
4 4 1 1
1 1 4 4
1 148 176 n.a.
16 16 1 1
20 20 12 12
1 1 8 8

Mi
0 M 1{ }

Mi
0 M 2{ }

Mi
0 M 3{ }

Mi
1 M 0

Mi
1 M 2[]

Mi
1 M 3[]

Mi
2 M 0[]

Mi
2 M ±

1[]
Mi

2 M 3

Mi
3 M 0{ }

Mi
3 M 1{ }

Mi
3 M ±

2{ }

Size Comparison
Comparison to published adaptive data structures shows hierarchic
representation is approximately the same size (and is more general)
For analysis purposes comparison to classic mesh data structure is
of interest
Not fair comparison since, classic mesh data structure:
ï is not suited to needs of adaptivity

no classification information
insufficient representation of mesh to verify that mesh correctly
represents the geometric model

ï is not well suited for variable p-meshes
ï needs auxiliary data structures for operations such as node

renumbering - hidden cost that can be huge

Classic Mesh Data Structure
ï Stores Element-Node connectivity

ï Node reordering storage based on storage needed to build up
node-to-node connectivity graph
typical implementation of Sloan, Gibbs-King, Gibbs-Poole-
Stockmeyer and reverse Cuthill-McKee procedures

Element {
int type;
ptr attributes;
ptr nodes[n]

}
n = 4(linear tet.) 10 (quad. tet.), 16 (cubic tet.),
8 (linear hex), 20 (quad. hex.), 32 (cubic hex.)

Node {
int id;
real x,y,z;

}

One-Level Hierarchic Representation
Region {

ptr classification;
int #faces;
ptr faces[4t or 6h];

}

Face {
ptr classification;
int #edges;
ptr edges[3t or 4h];
ptr regions[2];

}

Edge {
ptr classification;
ptr vertices[2];
int #faces;
ptr faces[5t or 4h]
int node_id[0l,1q or 2c];
Point node_location[0l,1q or 2c];

}
Vertex {

ptr classification;
#edges;
edges[14t or 6h]
int node_id;
Point location;

}

Point {
real x,y,z;

}

Meaning of superscipts:
t: tetrahedral mesh
h: hexahedral mesh
l: linear mesh
q: quadratic mesh
c: cubic mesh

Circular Hierarchic Representation
Region {

ptr classification;
int #faces;
ptr faces[4t or 6h];

}

Face {
ptr classification;
int #edges;
ptr edges[3t or 4h];

}

Edge {
ptr classification;
ptr vertices[2];
int #faces;
int node_id[0l,1q or 2c];
Point node_location[0l,1q or 2c];

}
Vertex {

ptr classification;
#regions;
regions[23t or 8h]
int node_id;
Point location;

}

Point {
real x,y,z;

}

Meaning of superscipts:
t: tetrahedral mesh
h: hexahedral mesh
l: linear mesh
q: quadratic mesh
c: cubic mesh

Reduced Interior Representation:
Region {

ptr classification;
int type;
ptr vertices[4t or 8h];

}

Boundary Face {
ptr classification;
int #edges;
ptr edges[3t or 4h];
ptr regions[2];

}

Boundary Edge {
ptr classification;
ptr vertices[2];
int #faces;
ptr faces[2]
int node_id[0l,1q or 2c];
Point node_loc[0l,1q or 2c];

}
Boundary Vertex {

ptr classification;
b_edges;
ptr b_edges[6t or 4h]
int node_id;
Point location;
int #regions;
ptr regions[12t or 4h];
int #interior edges;
Edge_info edges[4t or 1h];

}

Vertex {
ptr classification;
#regions;
regions[23t or 8h]
int node_id;
Point location;
Edge_info edges[7t or 3h]

}

Meaning of superscipts:
t: tetrahedral mesh
h: hexahedral mesh
l: linear mesh
q: quadratic mesh
c: cubic mesh

Edge_info{
ptr other_vertex;
int node_id[1q or 2c]
Point[1q or 2c];

}

Point {
real x,y,z;

}

Size Comparison
Tetrahedral Meshes

(parenthesis indicate size with data structures for nodal
renumbering)

Element
Order Classic One-Level % of

Classic Circular % of
Classic

Reduced
Interior

% of
Classic

Linear 500%
(368%)

371%
(274%)

186%
(137%)

Quadratic 215%
(75%)

170%
(60%)

110%
(39%)

Cubic 158%
(54%)

130%
(44%)

94%
(32%)

7NM
3

9.5NM
3()

35NM
3 26NM

3 13NM
3

20NM
3

57NM
3()

43NM
3 34NM

3 22NM
3

33NM
3

97NM
3()

52NM
3 43NM

3 31NM
3

Size Comparison
Hexahedral Meshes

(parenthesis indicate size with data structures for nodal
renumbering)

Element
Order Classic One-Level % of

Classic Circular % of
Classic

Reduced
Interior

% of
Classic

Linear 418%
(165%)

324%
(128%)

182%
(72%)

Quadratic 184%
(33%)

152%
(27%)

104%
(19%)

Cubic 136%
(25%)

110%
(20%)

86%
(16%)

17NM
3

43NM
3()

71NM
3 55NM

3 31NM
3

50NM
3

280NM
3()

92NM
3 76NM

3 52NM
3

83NM
3

454NM
3()

113NM
3 91NM

3 71NM
3

Mesh Information Cost
Total mesh storage/number of nodes (words/node)

Element
Order Classic One-Level Circular Reduced

Interior

Tetrahedral Mesh

Linear 40 (56) 201 153 76

Quadratic 15 (41) 31 25 16

Cubic 13 (37) 20 17 12

Hexahedral Mesh

Linear 17 (43) 71 55 31

Quadratic 13 (70) 23 19 13

Cubic 12 (65) 16 13 10

Solution Process Information Cost

n = #d.o.f per node
Solution: values of degrees of freedom
Element Matrices: unassembled element matrices
Global Stiffness: assembled, compressed row storage

Element
Order Solution Element

Matrices Global Stiffness

Tetrahedral Mesh

Linear

Quadratic

Cubic

Hexahedral Mesh

Linear

Quadratic

Cubic

2n 376n2 21n2

2n 292n2 41n2

2n 398n2 64n2

2n 256n2 39n2

2n 400n2 86n2

2n 585n2 132n2

Is Mesh Storage Significant?
Example
ï 3-d elasticity problem, quadratic tetrahedral elements, iterative

solver using compressed row storage for global stiffness.
storage for solution process 375 words/node
(6 words/node for solution, 369 words/node for global matrix)

Classic mesh data structure adds 15 words/node, total = 390
words/node
Largest hierarchic data structure (one-level representation) adds
31 words/node, total = 406 words/node
4% difference in total storage
Same problem with hexahedral elements results in 1% difference

Extra storage for hierarchic data structure does not seem significant

Comparison of Hierarchic Data Structures for Adaptive
Analysis

Ref: R. Biswas and R. Strawn, AIAA-93-0672
ï Storage ≈≈≈≈ (not counting boundary information)
ï Faces only represented on boundary
ï Tailored for an edge-based refinement procedure

Ref: Y. Kallinderis and P. Vijayan, AIAA Journal 31(8), 1993
ï Storage ≈≈≈≈
ï Fast retrieval of downward adjacencies
ï Some relations cannot be found without global searching

M 3
Mboundary

2 M 1 M 0

22.5NM
3

M 3 M 2 M 1 M 0

27NM
3

SCOREC Mesh Database
ï Generic database for mesh information
ï Mesh represented as a hierarchy of topological entities
ï All information is accessed through set of operators (callable from

C/C++ and Fortran)
ï Common mesh representation allows various codes to be

developed separately and then work together
ï Object-oriented design, written in C (also a C++ implementation)
ï All user interactions are through a set of operators that act on the

objects in the database
ï Bindings to other language provided by wrapper functions around

native C functions
ï User must give downward adjacency and classification - upward

adjacency and all use structures are automatically created by
mesh database

ï Both dynamic and static versions of objects in database allow
optimization for these different situations

ï Operators constructed from core routines that provide next level
adjacency and classification information

Database Modes
ï Database can be operated in three modes:

Static, minimal use
Static, no entity uses
Dynamic, no entity uses
Static mode - only queries allowed
Dynamic mode - queries and modifications allowed

ï Internal representation of data varies between modes
ï User interface remains the same for all modes

Implementation - Core Routines
Core routines depend on internal representation of data

ï Next-level adjacency
R_faces - get faces bounding region
F_regions - get regions using face
F_edges - get edges bounding face
E_faces - get faces using edge
E_vertices - get vertices bounding edge
V_edges - get edges using vertex

ï Classification
EN_whatIn - get classification of entity

Higher level routines
Independent of internal representation of data - call core routines to
access data.
Examples:
ï Multilevel adjacency

R_edges - retrieve edges bounding region
R_vertices - retrieve vertices bounding region
etc.

ï Other queries
E_otherFace - get the other face using an edge connected to a
given mesh region
F_inClosure, E_inClosure, V_inClosure - determine whether an
entity is in the closure of another entity

Model Operators
Model - topological representation of either a F.E. Mesh or a
geometric model

ï Information retrieval
M_nRegion, M_nFace, etc. - return the number of the given entities
in the model
M_nextRegion, M_nextFace, etc. - sequentially return each of the
given entity in the model

ï Modification
M_addRegion, M_addFace, etc. - add an entity of the given type to
the model
M_removeRegion, M_removeFace, etc. - remove an entity of the
given type from the model

