Hierarchical Mesh Representation

Also a useful representation for analysis procedures Reference: M.W. Beall and M.S. Shephard, "A General Topology-Based Mesh Data Structure," Int. J. Num. Meth. Engng., 40(9):1573-1596, 1997.

Topological Entities

Topology provides an unambiguous, shape independent, abstraction of the mesh

Each topological entity of dimension d, M_i^d , is defined by a set of topological entities of dimension d-1, $M_i^d \{ M^{d-1} \}$, which form its boundary.

A region is a 3-d entity defined by the set of faces that bound it.

A face is a 2-d entity defined by the set of edges that bound it.

An edge is a 1-d entity defined by the two vertices that bound it.

A vertex is a 0-d entity that is the base of the hierarchy, it has no lower order entities bounding it.

Mesh Topology

- 1. Regions and faces have no interior holes.
- 2. Each entity of order d_i in a mesh, M^{d_i} , may use a particular entity of lower order, M^{d_i} , $d_i < d_i$, at most once.
- 3. For any entity $M_i^{d_i}$ there is a unique set of entities of order $d_i 1$, $M_i^{d_i} \langle M_i^{d_{i-1}} \rangle$ that are on the boundary of $M_i^{d_i}$ if at least one member of $M_i^{d_i} \langle M^{d_{i-1}} \rangle$ is on the model entity $G_i^{d_j}$ where $d_j \ge d_j$.

Non-Manifold Models

Supporting the representation of meshes of non-manifold models gives the ability to represent:

Discontinuous Fields

- Contact
- Material Interfaces

Representational Incompatibilities in FE model

- · Interface between different idealizations (shell/solid) Solid/Fluid interfaces
- Both cases have different d.o.f. on each side of interface
- Models with mixed dimension entities
- Solid (3D), shell (2D) and wire (1D) entities

All give need to differentiate between different uses of a face or edge

Non-Manifold Geometric Models Non-manifold models are common in engineering analysis Two common situations that result in non-manifold models are:

Material Interfaces

Dimensional Reductions

A hierarchic representation of the mesh allows these to be dealt with in a natural manner

Mesh Classification

Definition: Mesh Classification Against the Geometric Domain - The unique association of a topological mesh entity to a topological geometric domain entity.

 $M_i^{d_i} \cap G_i^{d_i}$ denotes $M_i^{d_i}$ is classified on $G_i^{d_i}$, $(d_i \le d_i)$

- Multiple $M_i^{d_i}$ can be classified on a $G_i^{d_i}$.
- A mesh region, M_i^3 , is classified on a G_i^3
- A mesh face, M_i^2 , is classified on a G_i^3 , or G_i^2 .
- A mesh edge, M_i^1 , is classified on a G_i^3 , G_i^2 , or G_i^1
- A mesh vertex, M_i^0 , is classified on a G_i^3 , G_i^2 , G_i^1 , or G_i^0
- Mesh entities are always classified with respect to the lowest order object entity possible.

	Requirements for Meshes of Manifold Models
1.	It must be possible to iterate through all the entities of a given type in a mesh.
2.	It must be possible to compare two entities to see if they are the same.
3.	It must be possible to retrieve the classification of any mesh entity.
1 .	It must be possible to store spatial locations in terms of parametric coordinates on each mesh entity.
5.	All adjacencies must be retrievable for any mesh entity.
6.	It must be possible to uniquely associate arbitrary data with each entity.
7	Boundary edges and faces must be orientable.

Application to Analysis Codes

- The hierarchical mesh representation can also be used for analysis
 Rather than having elements and nodes, degrees of freedom are directly associated with mesh entities
 Allows same representation to be used for mesh modification and for analysis important in adaptive environments
 Reduces redundant information storage in higher order formulations
 Multiple nodes on mesh edge or face are pointed to by each
- Multiple nodes on mesh edge or face are pointed to by each element in classic representation
- Hierarchic representation only points to each once - Very important for variable order p-meshes
- Provides links to exact geometry for element integration procedures

Redundant information: Higher-orders nodes on shared edge

First-Order Adjacencies

First-order adjacencies for $M_k^{d_i}$ are the entities, M^{d_i} , $(i \neq j)$ which are either on its closure (j < i) or which it is on the closure of (j > i).

The complete list of these adjacencies is as follows:

Vertex adjacencies: $M_i^0\{M^1\}$, $M_i^0\{M^2\}$, $M_i^0\{M^3\}$

Edge adjacencies: $M_i^1 \lfloor M^0 \rfloor$, $M_i^1 \lfloor M^2 \rfloor$, $M_i^1 \lfloor M^3 \rfloor$

Face adjacencies: $M_i^2[M^0]$, $M_i^2[M_{\pm}^1]$, $M_i^2\lfloor M^3 \rfloor$

Region adjacencies: $M_i^3 \{M^0\}$, $M_i^3 \{M^1\}$, $M_i^3 \{M_{\pm}^2\}$

 $\lfloor \ \rfloor$ - ordered list, $[\]$ - ordered cyclic list, $\{ \ \}$ - unordered list

Storing all relations would take up too much space.

Can derive some of the above relations from the others.

e.g. can derive $M_i^3 \{ M^1 \}$ from $M_i^3 \{ M_{\pm}^2 \}$ and $M_i^2 [M_{\pm}^1]$

Three reasonable implementations will be given that satisfy all requirements

Second-Order Adjacencies

Second-order adjacencies of $M_k^{d_i}$ are all of the entities, M^{d_i} , which share a boundary entity of a given order, d_b with the entity.

The complete set of unordered second-order adjacencies can be expressed as follows:

$M_i^i\{M^k\}\{M^l\}\,, j\neq k,\, l\neq k$

- \cdot Second order adjacencies are derivable from first order adjacencies.
- \cdot Higher order adjacency relations can be expressed in a similar manner.

Implementation Options

One-Level Representation

- $M_{1}^{3}\{M_{2}^{2}\}, M_{1}^{2}[M_{1}^{1}], M_{1}^{3}[M_{0}^{0}], M_{1}^{0}\{M_{1}^{1}\}, M_{1}^{3}[M_{2}^{2}], M_{1}^{2}[M_{1}^{3}]$
- · all relations are easy/fast to obtain
- · not minimum storage

$$M^3 \longrightarrow M^2 \longrightarrow M^1 \longrightarrow M^0$$

Circular Representation

- $M_i^3 \{ M_{\pm}^2 \}, M_i^2 [M_{\pm}^1], M_i^1 \lfloor M^0 \rfloor, M_i^0 \{ M^3 \}$
- adjacency relations can be derived
- less storage than one-level representation

.

upward adjacency relations are more costly to obtain than from one-level adjacency

	One-level	Circular	Reduced interior	Classic
$M^{0}_{i}\{M^{1}\}$	1	304	198	n.a.
$M_{i}^{0}\{M^{2}\}$	70	264	219	n.a.
$M_{i}^{0}\{M^{3}\}$	140	1	1	n.a.
$M_{i}^{1} [M^{0}]$	1	1	1	1
$M_{i}^{1}[M^{2}]$	1	570	373	n.a.
$M_{1}^{1}[M^{3}]$	10	538	230	n.a.
$M_{i}^{2}[M^{0}]$	3	3	1	1
$M_{1}^{2}[M_{1}^{1}]$	1	1	3	3

Opera

	1 15 23				
	$M_I^2 \lfloor M^3 \rfloor$	1	299	293	n.a.
	$M_{i}^{3}\{M^{0}\}$	6	6	1	1
	$M_{i}^{3}\{M^{1}\}$	9	9	6	6
	$M_{i}^{3} \{ M_{\pm}^{2} \}$	1	1	4	4
a . ca	nnot he ohta	ined with	out alobal	search	

n.a.

Performance Comparison

Operation count to retrieve adjacency relation - hexahedral mesh

	One-level	Circular	Reduced interior	Classic
$M^0_i \{ M^1 \}$	1	228	86	n.a.
$M^0_i \{ M^2 \}$	24	192	116	n.a.
$M^0_i \{ M^3 \}$	48	1	1	n.a.
$M_i^1 \lfloor M^0 \rfloor$	1	1	1	1
$M_{i}^{1}[M^{2}]$	1	296	212	n.a.
$M_{i}^{1}[M^{3}]$	8	304	112	n.a.
$M_{i}^{2}[M^{0}]$	4	4	1	1
$M_{i}^{2}[M_{\pm}^{1}]$	1	1	4	4
$M_1^2 \lfloor M^3 \rfloor$	1	148	176	n.a.
$M_{i}^{3}\{M^{0}\}$	16	16	1	1
$M_{i}^{3}\{M^{1}\}$	20	20	12	12
$M_{i}^{3}\{M_{+}^{2}\}$	1	1	8	8

n.a. - cannot be obtained without global search

Size Comparison

Comparison to published adaptive data structures shows hierarchic representation is approximately the same size (and is more general)

For analysis purposes comparison to classic mesh data structure is of interest

Not fair comparison since, classic mesh data structure:

- · is not suited to needs of adaptivity
- no classification information
- insufficient representation of mesh to verify that mesh correctly represents the geometric model

is not well suited for variable p-meshes

· needs auxiliary data structures for operations such as node renumbering - hidden cost that can be huge

Classic Mesh Data Structure Stores Element-Node connectivity Node { Element { int id: int type: ptr attributes; real x,y,z; ptr nodes[n] } n = 4(linear tet.) 10 (quad. tet.), 16 (cubic tet.), 8 (linear hex), 20 (quad. hex.), 32 (cubic hex.) Node reordering storage based on storage needed to build up node-to-node connectivity graph typical implementation of Sloan, Gibbs-King, Gibbs-Poole-Stockmeyer and reverse Cuthill-McKee procedures

One-Level Hierarchic Representation

Region { ptr classification; int #faces; ptr faces[4 ^t or 6 ^h]; }	Face { ptr classification; int #edges; ptr edges[3 ^t or 4 ^h]; ptr regions[2]; }	Edge { ptr classification; ptr vertices[2]; int #faces; ptr faces[5 ^t or 4 ^h] int node_id[0 ¹ ,1 ^q or 2 ^c]; Point node_location[0 ¹ ,1 ^q or 2 ^c]; }
Vertex { ptr classification; #edges; edges[14 ^t or 6 ^h] int node_id; Point location; }	Point { real x,y,z; }	Meaning of superscipts: t: tetrahedral mesh h: hexahedral mesh l: linear mesh q: quadratic mesh c: cubic mesh

Region { ptr classification; int #faces; ptr faces[4 ^t or 6 ^h]; }	Face { ptr classification; int #edges; ptr edges[3 ^t or 4 ^h]; }	Edge { ptr classification; ptr vertices[2]; int #faces; int node_id[0 ¹ ,1 ^q or 2 ^c]; Point node_location[0 ¹ ,1 ^q or 2 }
Vertex { ptr classification; #regions; regions[23 ^t or 8 ^h] int node_id; Point location; }	Point { real x,y,z; }	Meaning of superscipts: t: tetrahedral mesh h: hexahedral mesh l: linear mesh q: quadratic mesh c: cubic mesh

Reduc	ed Interior Represe	entation:
Region { ptr classification; int type; ptr vertices[4 ^t or 8 ^h]; }	Boundary Face { ptr classification; int #edges; ptr edges[3 ^t or 4 th]; ptr regions[2]; }	Boundary Edge { ptr classification; ptr vertices[2]; int #faces; ptr faces[2] int node_id[0 ¹ ,1 ^q or 2 ^c]; Point node_ioc[0 ¹ ,1 ^q or 2 ^c]; }
Boundary Vertex { ptr classification; # b_edges; ptr b_edges;[6 ^t or 4 ^h] int node_ld; Point location; int #regions; ptr regions[12 ^t or 4 ^h]; int #interior edges; Edge_info edges[4 ^t or 1 ^h];	<pre>Vertex { ptr classification; #regions; regions[23^t or 8^h] int node_ld; Point location; Edge_info edges[7^t or 3^h] }</pre>	Meaning of superscipts: t: tetrahedral mesh h: hexahedral mesh l: linear mesh q: quadratic mesh c: cubic mesh
} Edge_info{ ptr other_vertex; int node_id[1 ^q or 2 ^c] Point[1 ^q or 2 ^c]; }	Point { real x,y,z; }	

Element Order	Classic	One-Level	% of Classic	Circular	% of Classic	Reduced Interior	% of Classic
Linear	7 N ³ _M	35 N _M	500% (368%)	26N ³ _M	371% (274%)	13 N _M	186% (137%)
Quadratic	$(9.5 N_M^3)$ $20 N_M^3$ $(57 N_M^3)$	43 N ³ _M	215% (75%)	34 N ³ _M	170% (60%)	22 N ³ _M	110% (39%)
Cubic	$33N_{M}^{3}$	52 N ³ _M	158% (54%)	43 N ³ _M	130% (44%)	31 N _M ³	94% (32%)

Size Comparison								
Hexahedral Meshes								
Element Order	Classic	One-Level	% of Classic	Circular	% of Classic	Reduced Interior	% of Classic	
Linear	$17N_{M}^{3}$ (43 N_{M}^{3})	71 N ³ _M	418% (165%)	55 N _M	324% (128%)	31 N ³ _M	182% (72%)	
Quadratic	$50N_M^3$ (280 N_M^3)	$92 N_{M}^{3}$	184% (33%)	76 N ³ _M	152% (27%)	52 N ³ _M	104% (19%)	
Cubic	$83 N_M^3$ (454 N_M^3)	113 N ³ _M	136% (25%)	91 N ³ _M	110% (20%)	$71 N_M^3$	86% (16%)	

(parenthesis indicate size with data structures for nodal renumbering)

Element Order	Classic	One-Level	Circular	Reduced Interior
		Tetrahedral Me	sh	
Linear	40 (56)	201	153	76
Quadratic	15 (41)	31	25	16
Cubic	13 (37)	20	17	12
	1	Hexahedral Me	sh	1
Linear	17 (43)	71	55	31
Quadratic	13 (70)	23	19	13
Cubic	12 (65)	16	13	10

Solution	Process	Information	Cost
----------	----------------	-------------	------

	-	-					
Element Order	Solution	Element Matrices	Global Stiffness				
	Tetr	ahedral Mesh	1				
Linear	2 <i>n</i>	376 <i>n</i> ²	21 n ²				
Quadratic	2 <i>n</i>	292 <i>n</i> ²	41 n ²				
Cubic	2 <i>n</i>	398 <i>n</i> ²	64 n ²				
Hexahedral Mesh							
Linear	2 <i>n</i>	256 <i>n</i> ²	39 <i>n</i> ²				
Quadratic	2 <i>n</i>	400 <i>n</i> ²	86 n ²				
Cubic	2 <i>n</i>	585 n ²	132 <i>n</i> ²				

n = #d.o.f per node

Re

Solution: values of degrees of freedom

Element Matrices: unassembled element matrices

Global Stiffness: assembled, compressed row storage

Comparison of Hierarchic Data Structures for Adaptive Analysis

$$M^3 - -M^2_{boundary} - M^1 - M^0$$

- · Storage $\approx 22.5 N_M^3$ (not counting boundary information)
- · Faces only represented on boundary
- · Tailored for an edge-based refinement procedure

 $M^3 \longrightarrow M^2 \longrightarrow M^1 \longrightarrow M^0$

- Ref: Y. Kallinderis and P. Vijayan, AIAA Journal 31(8), 1993 Storage $\approx 27N_M^3$
- · Fast retrieval of downward adjacencies
- · Some relations cannot be found without global searching

- **SCOREC Mesh Database**
- Generic database for mesh information
- · Mesh represented as a hierarchy of topological entities
- \cdot All information is accessed through set of operators (callable from C/C++ and Fortran)
- \cdot Common mesh representation allows various codes to be developed separately and then work together
- Object-oriented design, written in C (also a C++ implementation) • All user interactions are through a set of operators that act on the
- objects in the database Bindings to other language provided by wrapper functions around native C functions
- User must give downward adjacency and classification upward adjacency and all use structures are automatically created by mesh database
- \cdot Both dynamic and static versions of objects in database allow optimization for these different situations
- Operators constructed from core routines that provide next level adjacency and classification information

Database Modes

- · Database can be operated in three modes:
- Static, minimal use
- Static, no entity uses
- Dynamic, no entity uses
- Static mode only queries allowed
- Dynamic mode queries and modifications allowed Internal representation of data varies between modes
- · User interface remains the same for all modes
 - user interface remains the same for all modes

Implementation - Core Routines

Core routines depend on internal representation of data

- · Next-level adjacency
- R_faces get faces bounding region
- F_regions get regions using face
- F_edges get edges bounding face E faces - get faces using edge
- E_vertices get vertices bounding edge
- V_edges get edges using vertex
- Classification
 EN_whatIn get classification of entity

Higher level routines

Independent of internal representation of data - call core routines to access data.

Examples:

- Multilevel adjacency
- R_edges retrieve edges bounding region
- R_vertices retrieve vertices bounding region
- etc.
- · Other queries

 $\mathsf{E_otherFace}$ - get the other face using an edge connected to a given mesh region

F_inClosure, E_inClosure, V_inClosure - determine whether an entity is in the closure of another entity

Model Operators

Model - topological representation of either a F.E. Mesh or a geometric model

Information retrieval

 $M_nRegion,\,M_nFace,\,etc.$ - return the number of the given entities in the model

 $M_nextRegion,\,M_nextFace,\,etc.$ - sequentially return each of the given entity in the model

Modification

 $M_addRegion,\,M_addFace,\,etc.$ - add an entity of the given type to the model

 $M_removeRegion,\,M_removeFace,\,etc.$ - remove an entity of the given type from the model