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Controlling computational efficiency 
 
Two, maybe not so obvious, items that have a strong 
influence on how efficiently a large scale simulation is 
carried out are: 
 
Data Ordering: Influences two key areas: Cost of equation 
solving and cost of data access. The ordering of the 
unknowns has a strong influence on the time required to 
solve the global systems. The order data is stored is very 
important since on today’s machines the “cost” of memory 
access is higher than computation. Thus you want the 
physical location of the data needed for a calculation to be 
in cache memory as often as possible. (This issue has to 
be addressed at multiple levels, we just consider the 
highest level in what we look at here.) 
  
Load Balance: Without maintaining load balance between 
processes parallel scalability is lost. Must determine 
methods to distribute the computing load as equally as 
possibly while keeping the communication cost as low as 
possible.   
 
Cost of ordering on the global system solution is a function 
of the type of solver used, but is important in all cases. Lets 
look at the simple case of a banded direct solver: The 
solution time is proportional to nb2 where n in the number 
of equations and b is the bandwidth defined as 
b=max[(high node # - low node #) +1] over all elements. 
Typically the rows and columns of the global system are 
based on the nodal numbering (or based on the dof 
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holders which can be associated with mesh topological 
entities). Thus changing the node numbering will change 
the rows and columns in the stiffness matrix. Consider the 
simple mesh with 1 dof/node and two different node point 
numberings: 

 
There is a factor of 5.76=4320/750 in this simple case.    

A reference on some basics related ordering, and other 
aspects of direct solution to matrix equations: 
Alan George and Joseph Liu, Solution of Sparse Positive 
Definite Systems, Prentice Hall, 1981.  

 

There are a number of approaches that have been taken to 
defining ordering with methods based on “space filling 
curves” or heuristics based on operations on “graphs of 
interactions”. Lets start with the graph-based methods.  

 

The graph concepts used are pretty straightforward. 
However, we will have some terminology complications 
since terms like node, vertex and edge are used in each to 
mean different things. WRT graphs vertices, or nodes, are 
the things we order and edges indicated connections of 
vertices or nodes. 
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An unordered graph, G = (X ,E), consist of a set of entities, 
nodes, X , that we want to order, and a set of edges, E , 
that are pairs of “connected” nodes. 

G = (X ,E)
 An ordered graph will be one were we have ordered the 

nodes with a labeling that we want to have. We will add a 
superscript to indicate particular labeling. 

Gα = (X α ,Eα )  
We are concerned with the labeling of the rows and 
columns of a stiffness matrix. Lets assume a symmetric 
matrix K  called matrix of n  equations.   

GK = (X K ,EK )  
where each xi ∈ X

K  corresponds to a row and we will have 
a set of edges EK  where the edges are defined by 

{xi ,x j}∈ E
K  iff Kij ≠ 0 and i ≠ j  

consider simple example: 

 
Because of the non-zero 1,6 location the bandwidth is 6. 
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Note by changing the graph labeling we change the 
ordering of rows and columns which changes the 
sparseness pattern. 

 
With this ordering the bandwidth is only 3. 
 

Note the overall graph structure is based on the 
connections, the unlabeled graph is fixed. However, the 
labeling does influence memory access time and cost of 
computation. 
 

A few more terms: 
Two nodes xi  and yi  are adjacent if {xi , y j}∈ E

k  
The adjacent set of a subset Y ⊂ X  will be denoted 
Adj({Y}) and is defined as 

Adj({Y}) ={x ∈ (X −Y ) |{x, y}∈ E for y ∈Y} 
Consider graph above labeled graph and the set 
Y ={x2 ,x4} then Adj({Y}) ={x1,x3,x6}. If Y  contains a single 
node we write Adj(Y ) . For example Adj(x4 ) ={x2 ,x6}. The 
degree of Y  is denoted deg(Y )  is | Adj(Y ) | which is the 
number of terms in Adj(Y ) . The deg(x2 ,x4 ) = 3 and  
deg(x4 ) = 2 . 
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A subgraph, ʹG = ( ʹX , ʹE ) , of the graph  G = (X ,E)  is a 
graph for which ʹX ⊂ X  and ʹE ⊂ E   
For Y ⊂ X  the section graph G(Y )  is the subgraph  
(Y ,E(Y ))  where 

E(Y ) ={{x, y}∈ E | x ∈Y , y ∈Y} 
The subgraph of a matrix is equivalent to deleting rows and 
columns of the matrix. Consider again 

 
and select Y ={x2 ,x3,x6} then E(Y ) ={x2 ,x3} (just 1 edge) 

 
Connectedness of a graph: 
Consider two nodes x, y  in a graph G . A path from  x  to y  
of length l ≥1 is the ordered set of  l +1 nodes  
(v1,v2 ,v3,...,vl+1)  such that  

vi+1 ∈ Adj(vi )   i =1(1)l  with  v1 = x  and vl+1 = y  
A graph is connected if each distinct pair (set of two) nodes 
is connected by at least one path between them. If the 
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whole graph is not connected, there are two or more 
connected component. 

 

Y ⊂ X  is a separator if the graph G(X −Y )  is disconnected. 
  

As already mentioned, a key item we use reordering for is 
to label the dof (i.e., row and columns of the global 
stiffness matrix) since this can have a strong influence of 
equation solution time, especially for direct solvers. Some 
terms related to this case for symmetric matrices are: 
For row  i  the highest non-zero term in the i th column is  

mi (K ) =min{ j | Kij ≠ 0, j < i} 
The column height is then 

βi (K ) = i −mi (K )  
The maximum column height is defined as (one less than 
bandwidth defined before) 

β(K ) =max{βi (K ) |1≤ i ≤ n} 
The envelop size (number of terms above the main 
diagonal we will be concerned with for a skyline solver) is 

| env(K ) |= βi (K )i=1

n
∑  

 
For this example | env(K ) |= 0+1+0+3+ 2+3= 9  
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Because solving the problem of optimal ordering in NP 
(nondeterministic in polynomial time) various heuristic 
ordering algorithms have been developed. 
 
Reverse Cuthill-McKee Algorithm: The idea is straight 
forward. If x  and  y  are adjacent nodes, where x  is 
already labeled and y  is not yet labeled, you want to label 
y  to have a label index as close that of x  as possible. The 
reversing of the labeling was added since it was found to 
slightly reduce the envelop (also referred to as the profile). 
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RCM

 

Classes

Pseudo Code

 

renumber
{
int label = n+1 // set the value of the label to the total number of nodes plus 1, this allows the

 // automatic accounting for the reversing process
Node node = getStart( ) // get the starting node that will be labeled first
q  enqueue(node)
while (q  size( ) > 0) //process nodes until the queue is empty

{
label = label -1  // want the reverse order
node = q  dequeue( )
node  setLabel(label)  // sets the label of the object node
adj = node  adjacentNodes(node) // get unnumbered adjacent nodes not already in queue
addList(adj) // add the nodes in adj to the queue in order of degree
}

RCM
getStart( ) : node // get a starting node
addList(adj) // enqueues nodes into nodes in adj in order of degree
renumber( ) // renumbers the nodes

Queue q

Queue

enqueue(item) // adds an item to the queue
dequeue( ) : item // removes an item from the queue
size ( ) : int // returns the current size of the queue

Node
SetLabel(label) // sets node's label to label
adjacentNodes(node) : adj // returns list of unlabeled adjacent nodes that are also not in the

// queue

ï

ï

ï

ï
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In the example above n=10. Lets start the process by having getStart return node 7 as the starting
node. Each of the rows in the table below indicates the status of things for that pass through the
while loop. Note that the new label assigned to a node reflects the reversing of the order as we go.
As we enter the while loop node 7 is the only one in the queue. It is removed from the queue and
the nodes adjacent to it are put in the queue. Note that the adjacencies are ordered by increasing
degree. For example deg(8)=2, deg(5)=3, deg(2)=4, deg(6)=4. Note that on subsequent steps the
first node in the queue is removed and only those in the adjacency list that are neither already rela-
beled, or already in the list are added.

An alternative implementation is to put all the adjacent nodes in the queue. However, instead of
popping just one node from the queue each time through the while loop, you pop already rela-
beled nodes until you get to one that has not been relabeled, you will relabel that one. 

 

original node label new node Label nodes adjacent to node nodes in queue

 

7 10 8,5,2,6 8,5,2,6
8 9 7,6 5,2,6
5 8 3,2,7 2,6,3
2 7 10,3,5,7 6,3,10
6 6 8,1,4,7 3,10,1,4
3 5 5,2,4 10,1,4
10 4 2 1,4
1 3 4,6 4
4 2 9,1,3,6 9
9 1 4 -

 

The original matrix node - i M(i) (i)

 

1 x x 1 1 0
2 x x x x 2 2 0

3 x x 3 2 1 =8
4 x x 4 1 1 |Env(k)|=32

5 x 5 2 3
6 x x 6 1 5

7 x 7 2 5
8 8 6 2

9 9 4 5
10 10 2 8

4 7
5

8

9

3 2 10

1 6

2 10
8

9

1

5 7 4

3 6

Original
graph Re-ordered

graph when
this was
the starting
node

β

β
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Note that the selection of the starting node makes a difference. If we started with node 1 as the
starting node we will get a different result as given below.

 

The reordered matrix node - i M(i) (i)

 

1 x 1 1 0
2 x x x 2 1 1

3 x 3 2 1 =4
4 x 4 4 0 |Env(k)|=22

5 x x 5 2 3
6 x x 6 2 4

7 x x 7 4 3
8 x 8 5 3

9 x 9 6 3
10 10 6 4

 

The reordered matrix now is node - i M(i) (i)

 

1 x 1 1 0
2 x x x 2 1 1

3 x x 3 2 1 =4
4 x x 4 2 2 |Env(k)|=18

5 x 5 4 1
6 x 6 2 4

7 x 7 7 0
8 x x 8 4 4

9 x 9 6 3
10 10 8 2

β

β

4 7
5

8

9

3 2 10

1 6

9 4
3

5

7

6 2 1

10 8

Original
graph Re-ordered

graph when
this was
the starting
node

β

β
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How do we get a good starting node? It has been found 
that given a connected graph, you want to find the two 
nodes that are “furthest apart”, selecting one of them is a 
good starting node to label. What do we mean by furthest 
apart? 

 

A path between of length k  between two nodes x0  and xk  
in a connected graph is (x0 ,x1,x2 ,...xk−1)  where 
xi ∈ adj(xi+1),0 ≤ i ≤ k −1.  

  

The distance, d (x, y) , between x  and y  is the minimum 
length path between x  and y . 

 

The eccentricity of node x ∈ X  is defined as 
l(x) =max{d (x, y) | y ∈ X} 

The diameter of a graph, G , is 
δ(G) =max{l(x) | x ∈ X} 

or equivalently  
δ(G) =max{d (x, y) | x ∈ X , y ∈ X} 

node x ∈ X  is said to be a peripheral node if l(x) = δ(G) . 

 
Again it will be too expensive to do the work needed to find 
the nodes associated with the eccentricity (O(n2 )), or even 
its value. Will settle for one that gets close.  
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One such algorithm builds on a rooted level structure. The 
rooted level structure for node x ∈ X  is defined as 

ζ (xi ) ={L0 (xi ),L1(xi ),L2 (xi ),...Ll ( xi ) (xi )} 
where 

L0 (xi ) ={xi} the node itself 
L1(xi ) = Adj(L0 ) = Adj(xi )  the set of nodes adjacent to xi  

Lj (xi ) = Adj(Lj−1)− Adj(Lj−2 ),i = 2,3...l(xi )  
Lj (xi ) picks up the ones adjacent to the ones in the 
previous level that were not already accounted for in a 
previous one. 

 
Construction of ζ (x6 )  for the given graph. 
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begin {FindStart} 
 r0 ∈ X {select any starting node you like} 
 ζ (r0 ) ={L0 (r0 ),L1(r0 ),L2 (r0 ),...Ll (r0 ) (r0 )} 

{construct level  

structure and determine l(r0 )} 
 r1 ∈ Ll (r0 ) {select node in last level with min degree} 

 ζ (r1) ={L0 (r1),L1(r1),L2 (r1),...Ll (r1) (r1)} 
 {construct level  

structure and determine l(r1)} 
 i =1 
While l(ri ) > l(ri−1)  {do as long as eccentricity is increasing}  
  i = i +1 
  ζ (ri ) ={L0 (ri ),L1(ri ),L2 (ri ),...Ll (ri ) (ri )} 
 end {while} 
 x1 = ri  {starting node is found} 
end {FindStart) 
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Since we are working with methods where we have a mesh 
topology that contains lots of adjacency information, is 
there a way to directly execute reordering based on that 
information? Of course, the answer will be yes or I would 
not ask the question. 

 

Continuing to look into minimizing bandwidth or profile, lets 
consider the fact that the degrees of freedom (dof) are 
actually associated with mesh topological entities. That is 
all mesh entities can be “dof holders”.    

Consider C0 finite elements based on Lagrange shape 
functions. Then the dof are associated with the finite 
element nodes. For linear elements nodes are associated 
with only mesh vertices. For quadratic serendipity elements 
we add edge dof. For tensor product elements greater than 
linear we pick-up dof on edges, faces and regions. The 
same for C0 p-version elements. In this case of C-1 (DG or 
finite volume methods) all the dof are associated with the 
“element” (regions in 3D and faces in 2D) – even if they are 
“located” at coordinates on the element boundary. This is 
because the values of the dof are different for each 
element. However, all DG and finite volume methods have 
operations to relate the dof across boundaries. Thus, the 
specifics of these operations define the graph edges. With 
isogeometric you need to couple across multiple elements. 

 

Lets look at the basics of RCM working from mesh 
adjacency information. Lets considering labeling the finite 
element nodes in C0 Lagrangian finite elements, The finite 
element nodes are the graph nodes. Given a next node in 
the queue, we want to label it and add to the queue all 
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nodes adjacent to it that are not already labeled, or in the 
queue, preferably with the ones with lowest degree going 
in first. Consider a mesh where I start with the node at a 
well selected vertex, the nodes that need to be added to 
the queue are nodes adjacent to it based on the mesh 
adjacencies. We have some flexibility is determining which 
adjacencies we account for and how. Remember the RCM 
algorithm is based on a simple heuristic where we have 
flexibility, within the limit of being sure to have edges 
connecting what need to be connected, in how we want to 
define the details of what we define as adjacent at a 
particular point in the process and how we want order 
adding a set of adjacent nodes to the queue.  

 

Initializing the queue: Doing the level structures is a pain 
and expensive. Want something simple. One option that is 
been found to work is to look the mesh vertices classified 
on model vertices, {Mi

0}[{Gj
0}, select one that has the 

minimum number of edges coming into it, or one that is 
closest to a corner of the bounding box of the domain. Note 
that if one has a reason for trying to get a pattern in the 
ordering, one could actually queue a set of node. For 
example flow over an airfoil, you may want to have nodes 
associated with the fine mesh ordered first. Assuming the 
mesh is fine near the airfoil, you could initialize the queue 
with all the nodes on the airfoil surface. This will give me a 
numbering that spirals going out from the airfoil – form the 
fine mesh the coarse mesh. 

 

The following is the logic of the adjacency reordering 
algorithm we found to works well.  
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AdjReorder 

 

Classes (not all items indicated)

Pseudo Code

 

renumber(mesh)
{ // Reorders nodes and elements in a 2-D mesh assuming that only the mesh faces are elements
// It is also assumed that all dof associated with an entity are associated with a single node on that entity
int labelnode = nnode + 1 // value set to the total number of nodes plus 1, this allows auto. reversing
int labelface = nface + 1 // same issues in labeling elements
Node node
MeshEntity entity = getStart( ) // get starting entity. Use a  with min. number of  using it.

AdjReorder
getStart( ) : entity // get starting mesh vertex
renumber(mesh) // renumbers the nodes and elements
Queue q
Mesh mesh

List
add(entity) // adds an entity to a list
emptyList( ) // empties a list

Queue
enqueue(item) // enqueues an item into the queue
enqueueList(List) // enqueues list into the queue
dequeue( ) : item // removes an item from the queue
size( ) : int // returns the number of entities in the queue

MeshEntity
dimension( ) : int // indicates the dimension of a mesh entity 0-vertex, 1-edge, 2-face, 3-region
numEdges( ) : int // indicates the number of edges bounding or coming into an entity
numFaces( ) : int // indicates the number of faces bounding or coming into an entity
edge(i) : MeshEdge // returns the i th edge bounding or coming into an entity
face(j) : MeshFace // returns the j th face bounding or coming into an entity
getNode( ) : Node // gets the node on the mesh entity

MeshEdge
otherVertex(vertex) // gets the other vertex for a given edge

Node
setLabel(label) // sets node label to label

Mi
0
   Gj

0
Gk

1
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q enqueue(entity)
while (q size( ) > 0) { // process entities until the queue is empty

entity = q dequeue( )
node = entity getNode( )
if (/*node is unlabeled*/) then {

labelnode = labelnode -1
node setLabel(labelnode)

}
// Want to find any unnumbered adjacent mesh entities and label faces
// All the additions to the queue will be done by looking at adjacencies keying from vertices
if (entity dimension( )=0) then { // need to load adjacent entities by adjaceny order

// Also label neighboring mesh faces and specific edge nodes
MeshVertex vertex = entity
for (i = 1 to vertex numEdges( ) ) { // loop over number of edges using the vertex

MeshEdge edge = vertex edge(i)
for (j = 1 to edge numFaces( )) do {

MeshFace face = edge face(j)
if (/* face not already labeled*/) then {

labelface = labelface -1
face setLabel(labelface)

}
if (/* face has node that needs queueing */) then { // queue the face
q enqueue(face)
}

}
othervertex = edge otherVertex(vertex)
if (node = edge getNode( )) then { // if the edge has a node on it

if (/* othervertex labeled or in queue and edge node not labeled*/ ) then {
labelnode = labelnode -1
edge getNode( ) setLabel(labelnode)

} else {
q enqueue(edge)
list add(othervertex)

}
} else { 

if (/* node at other vertex is not labeled) then {
list add(othervertex)

}
}

} // finished the loop over the edges coming into the current vertex 
q enqueueList(list) // now queue the other vertices loaded into the list
emptyList( )

}
}

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→ →

→

→

→

→
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The current pseudo code sets the labeling of the nodes and elements. This is what is needed for
assignment 2. In assignment 4 you will not really care if you order the labels on the mesh entities,
what you really care about is ordering the dof in the global system in the best way. This can be
done directly using essentially the same procedure. That is you work your way through the mesh
entities in exactly the same manner. However, in the code segments above where the nodes are
labeled is replaced by code labeling the dof associated with those mesh entities (again starting
with the last equation number and working down to 1).

Example of the procedures on setting mesh entity labels

The status of the queue and the nodes labeled on each pass through 

 

Queue At Node label assigned

 

a - start of process - none assigned yet
b,c a 16
c,e,f b 15
e,f,h,g,j c 14,13 (d done since e already in queue)
f,h,g,j,i,l e 12
h,g,j,i,l,m f 11
g,j,i,l,m h 10
j,i,l,m g 9
i,l,m,n,o j 8,7 (k done since l already in queue)
l,m,n,o i 6
m,n,o,p l 5
n,o,p m 4
o,p n 3
p o 2
- p 1

5
4

3
2

1

a b

c d e
f

g h i

j k l m

n

o p 12

3

45

6

78
9

10
11

121314

1516

16 nodes
5 faces

Starting
configuration

With nodes and
elements labeled
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An example result: 

 
 
Note – Another popular ordering method, particularly for 
memory control, is space filling curves. As indicated in the 
discussion on dynamic load balancing, they are also of 
interest for that need. 
 
In work we have done, we have used graph-based 
algorithm at the inter-process level (MPI level) and 
adjacency based reordering for better memory access on 
process.  



Slide 21 Space-Filling Curve  
Partitioning (SFC) 

• Developed by Peano, 1890. 
• Space-Filling Curve: 

– Mapping between R3 to R1 that completely fills a domain. 
– Applied recursively to obtain desired granularity. 

• Used for partitioning by … 
– Warren and Salmon, 1993, gravitational simulations. 
–  Pilkington and Baden, 1994, smoothed particle 

hydrodynamics. 
–  Patra and Oden, 1995, adaptive mesh refinement. 
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SFC Algorithm 

• Run space-filling curve through domain. 
• Order objects according to position on curve. 
• Perform 1-D partition of curve. 

Slide 23 

SFC Repartitioning 

• Implicitly incremental. 
• Small changes in data results in small 
movement of cuts in linear ordering. 

Slide 24 SFC Advantages 
and Disadvantages 

• Advantages: 
– Simple, fast, inexpensive. 
– Maintains geometric locality of objects in 

processors. 
– Linear ordering of objects may improve cache 

performance.  
• Disadvantages: 

– No explicit control of communication costs. 
– Can generate disconnected subdomains. 
– Often lower quality partitions than RCB. 
– Geometric coordinates needed. 




