
 1

Controlling computational efficiency

Two, maybe not so obvious, items that have a strong
influence on how efficiently a large scale simulation is
carried out are:

Data Ordering: Influences two key areas: Cost of equation
solving and cost of data access. The ordering of the
unknowns has a strong influence on the time required to
solve the global systems. The order data is stored is very
important since on today’s machines the “cost” of memory
access is higher than computation. Thus you want the
physical location of the data needed for a calculation to be
in cache memory as often as possible. (This issue has to
be addressed at multiple levels, we just consider the
highest level in what we look at here.)

Load Balance: Without maintaining load balance between
processes parallel scalability is lost. Must determine
methods to distribute the computing load as equally as
possibly while keeping the communication cost as low as
possible.

Cost of ordering on the global system solution is a function
of the type of solver used, but is important in all cases. Lets
look at the simple case of a banded direct solver: The
solution time is proportional to nb2 where n in the number
of equations and b is the bandwidth defined as
b=max[(high node # - low node #) +1] over all elements.
Typically the rows and columns of the global system are
based on the nodal numbering (or based on the dof

 2

holders which can be associated with mesh topological
entities). Thus changing the node numbering will change
the rows and columns in the stiffness matrix. Consider the
simple mesh with 1 dof/node and two different node point
numberings:

There is a factor of 5.76=4320/750 in this simple case.

A reference on some basics related ordering, and other
aspects of direct solution to matrix equations:
Alan George and Joseph Liu, Solution of Sparse Positive
Definite Systems, Prentice Hall, 1981.

There are a number of approaches that have been taken to
defining ordering with methods based on “space filling
curves” or heuristics based on operations on “graphs of
interactions”. Lets start with the graph-based methods.

The graph concepts used are pretty straightforward.
However, we will have some terminology complications
since terms like node, vertex and edge are used in each to
mean different things. WRT graphs vertices, or nodes, are
the things we order and edges indicated connections of
vertices or nodes.

 3

An unordered graph, G = (X ,E), consist of a set of entities,
nodes, X , that we want to order, and a set of edges, E ,
that are pairs of “connected” nodes.

G = (X ,E)
 An ordered graph will be one were we have ordered the

nodes with a labeling that we want to have. We will add a
superscript to indicate particular labeling.

Gα = (X α ,Eα)
We are concerned with the labeling of the rows and
columns of a stiffness matrix. Lets assume a symmetric
matrix K called matrix of n equations.

GK = (X K ,EK)
where each xi ∈ X

K corresponds to a row and we will have
a set of edges EK where the edges are defined by

{xi ,x j}∈ E
K iff Kij ≠ 0 and i ≠ j

consider simple example:

Because of the non-zero 1,6 location the bandwidth is 6.

 4

Note by changing the graph labeling we change the
ordering of rows and columns which changes the
sparseness pattern.

With this ordering the bandwidth is only 3.

Note the overall graph structure is based on the
connections, the unlabeled graph is fixed. However, the
labeling does influence memory access time and cost of
computation.

A few more terms:
Two nodes xi and yi are adjacent if {xi , y j}∈ E

k
The adjacent set of a subset Y ⊂ X will be denoted
Adj({Y}) and is defined as

Adj({Y}) ={x ∈ (X −Y) |{x, y}∈ E for y ∈Y}
Consider graph above labeled graph and the set
Y ={x2 ,x4} then Adj({Y}) ={x1,x3,x6}. If Y contains a single
node we write Adj(Y) . For example Adj(x4) ={x2 ,x6}. The
degree of Y is denoted deg(Y) is | Adj(Y) | which is the
number of terms in Adj(Y) . The deg(x2 ,x4) = 3 and
deg(x4) = 2 .

 5

A subgraph, ʹG = (ʹX , ʹE) , of the graph G = (X ,E) is a
graph for which ʹX ⊂ X and ʹE ⊂ E
For Y ⊂ X the section graph G(Y) is the subgraph
(Y ,E(Y)) where

E(Y) ={{x, y}∈ E | x ∈Y , y ∈Y}
The subgraph of a matrix is equivalent to deleting rows and
columns of the matrix. Consider again

and select Y ={x2 ,x3,x6} then E(Y) ={x2 ,x3} (just 1 edge)

Connectedness of a graph:
Consider two nodes x, y in a graph G . A path from x to y
of length l ≥1 is the ordered set of l +1 nodes
(v1,v2 ,v3,...,vl+1) such that

vi+1 ∈ Adj(vi) i =1(1)l with v1 = x and vl+1 = y
A graph is connected if each distinct pair (set of two) nodes
is connected by at least one path between them. If the

 6

whole graph is not connected, there are two or more
connected component.

Y ⊂ X is a separator if the graph G(X −Y) is disconnected.

As already mentioned, a key item we use reordering for is
to label the dof (i.e., row and columns of the global
stiffness matrix) since this can have a strong influence of
equation solution time, especially for direct solvers. Some
terms related to this case for symmetric matrices are:
For row i the highest non-zero term in the i th column is

mi (K) =min{ j | Kij ≠ 0, j < i}
The column height is then

βi (K) = i −mi (K)
The maximum column height is defined as (one less than
bandwidth defined before)

β(K) =max{βi (K) |1≤ i ≤ n}
The envelop size (number of terms above the main
diagonal we will be concerned with for a skyline solver) is

| env(K) |= βi (K)i=1

n
∑

For this example | env(K) |= 0+1+0+3+ 2+3= 9

 7

Because solving the problem of optimal ordering in NP
(nondeterministic in polynomial time) various heuristic
ordering algorithms have been developed.

Reverse Cuthill-McKee Algorithm: The idea is straight
forward. If x and y are adjacent nodes, where x is
already labeled and y is not yet labeled, you want to label
y to have a label index as close that of x as possible. The
reversing of the labeling was added since it was found to
slightly reduce the envelop (also referred to as the profile).

1

RCM

Classes

Pseudo Code

renumber
{
int label = n+1 // set the value of the label to the total number of nodes plus 1, this allows the

 // automatic accounting for the reversing process
Node node = getStart() // get the starting node that will be labeled first
q enqueue(node)
while (q size() > 0) //process nodes until the queue is empty

{
label = label -1 // want the reverse order
node = q dequeue()
node setLabel(label) // sets the label of the object node
adj = node adjacentNodes(node) // get unnumbered adjacent nodes not already in queue
addList(adj) // add the nodes in adj to the queue in order of degree
}

RCM
getStart() : node // get a starting node
addList(adj) // enqueues nodes into nodes in adj in order of degree
renumber() // renumbers the nodes

Queue q

Queue

enqueue(item) // adds an item to the queue
dequeue() : item // removes an item from the queue
size () : int // returns the current size of the queue

Node
SetLabel(label) // sets node's label to label
adjacentNodes(node) : adj // returns list of unlabeled adjacent nodes that are also not in the

// queue

ï

ï

ï

ï

2

In the example above n=10. Lets start the process by having getStart return node 7 as the starting
node. Each of the rows in the table below indicates the status of things for that pass through the
while loop. Note that the new label assigned to a node reflects the reversing of the order as we go.
As we enter the while loop node 7 is the only one in the queue. It is removed from the queue and
the nodes adjacent to it are put in the queue. Note that the adjacencies are ordered by increasing
degree. For example deg(8)=2, deg(5)=3, deg(2)=4, deg(6)=4. Note that on subsequent steps the
first node in the queue is removed and only those in the adjacency list that are neither already rela-
beled, or already in the list are added.

An alternative implementation is to put all the adjacent nodes in the queue. However, instead of
popping just one node from the queue each time through the while loop, you pop already rela-
beled nodes until you get to one that has not been relabeled, you will relabel that one.

original node label new node Label nodes adjacent to node nodes in queue

7 10 8,5,2,6 8,5,2,6
8 9 7,6 5,2,6
5 8 3,2,7 2,6,3
2 7 10,3,5,7 6,3,10
6 6 8,1,4,7 3,10,1,4
3 5 5,2,4 10,1,4
10 4 2 1,4
1 3 4,6 4
4 2 9,1,3,6 9
9 1 4 -

The original matrix node - i M(i) (i)

1 x x 1 1 0
2 x x x x 2 2 0

3 x x 3 2 1 =8
4 x x 4 1 1 |Env(k)|=32

5 x 5 2 3
6 x x 6 1 5

7 x 7 2 5
8 8 6 2

9 9 4 5
10 10 2 8

4 7
5

8

9

3 2 10

1 6

2 10
8

9

1

5 7 4

3 6

Original
graph Re-ordered

graph when
this was
the starting
node

β

β

3

Note that the selection of the starting node makes a difference. If we started with node 1 as the
starting node we will get a different result as given below.

The reordered matrix node - i M(i) (i)

1 x 1 1 0
2 x x x 2 1 1

3 x 3 2 1 =4
4 x 4 4 0 |Env(k)|=22

5 x x 5 2 3
6 x x 6 2 4

7 x x 7 4 3
8 x 8 5 3

9 x 9 6 3
10 10 6 4

The reordered matrix now is node - i M(i) (i)

1 x 1 1 0
2 x x x 2 1 1

3 x x 3 2 1 =4
4 x x 4 2 2 |Env(k)|=18

5 x 5 4 1
6 x 6 2 4

7 x 7 7 0
8 x x 8 4 4

9 x 9 6 3
10 10 8 2

β

β

4 7
5

8

9

3 2 10

1 6

9 4
3

5

7

6 2 1

10 8

Original
graph Re-ordered

graph when
this was
the starting
node

β

β

 8

How do we get a good starting node? It has been found
that given a connected graph, you want to find the two
nodes that are “furthest apart”, selecting one of them is a
good starting node to label. What do we mean by furthest
apart?

A path between of length k between two nodes x0 and xk
in a connected graph is (x0 ,x1,x2 ,...xk−1) where
xi ∈ adj(xi+1),0 ≤ i ≤ k −1.

The distance, d (x, y) , between x and y is the minimum
length path between x and y .

The eccentricity of node x ∈ X is defined as
l(x) =max{d (x, y) | y ∈ X}

The diameter of a graph, G , is
δ(G) =max{l(x) | x ∈ X}

or equivalently
δ(G) =max{d (x, y) | x ∈ X , y ∈ X}

node x ∈ X is said to be a peripheral node if l(x) = δ(G) .

Again it will be too expensive to do the work needed to find
the nodes associated with the eccentricity (O(n2)), or even
its value. Will settle for one that gets close.

 9

One such algorithm builds on a rooted level structure. The
rooted level structure for node x ∈ X is defined as

ζ (xi) ={L0 (xi),L1(xi),L2 (xi),...Ll (xi) (xi)}
where

L0 (xi) ={xi} the node itself
L1(xi) = Adj(L0) = Adj(xi) the set of nodes adjacent to xi

Lj (xi) = Adj(Lj−1)− Adj(Lj−2),i = 2,3...l(xi)
Lj (xi) picks up the ones adjacent to the ones in the
previous level that were not already accounted for in a
previous one.

Construction of ζ (x6) for the given graph.

 10

begin {FindStart}
 r0 ∈ X {select any starting node you like}
 ζ (r0) ={L0 (r0),L1(r0),L2 (r0),...Ll (r0) (r0)}

{construct level

structure and determine l(r0)}
 r1 ∈ Ll (r0) {select node in last level with min degree}

 ζ (r1) ={L0 (r1),L1(r1),L2 (r1),...Ll (r1) (r1)}
 {construct level

structure and determine l(r1)}
 i =1
While l(ri) > l(ri−1) {do as long as eccentricity is increasing}
 i = i +1
 ζ (ri) ={L0 (ri),L1(ri),L2 (ri),...Ll (ri) (ri)}
 end {while}
 x1 = ri {starting node is found}
end {FindStart)

 11

Since we are working with methods where we have a mesh
topology that contains lots of adjacency information, is
there a way to directly execute reordering based on that
information? Of course, the answer will be yes or I would
not ask the question.

Continuing to look into minimizing bandwidth or profile, lets
consider the fact that the degrees of freedom (dof) are
actually associated with mesh topological entities. That is
all mesh entities can be “dof holders”.

Consider C0 finite elements based on Lagrange shape
functions. Then the dof are associated with the finite
element nodes. For linear elements nodes are associated
with only mesh vertices. For quadratic serendipity elements
we add edge dof. For tensor product elements greater than
linear we pick-up dof on edges, faces and regions. The
same for C0 p-version elements. In this case of C-1 (DG or
finite volume methods) all the dof are associated with the
“element” (regions in 3D and faces in 2D) – even if they are
“located” at coordinates on the element boundary. This is
because the values of the dof are different for each
element. However, all DG and finite volume methods have
operations to relate the dof across boundaries. Thus, the
specifics of these operations define the graph edges. With
isogeometric you need to couple across multiple elements.

Lets look at the basics of RCM working from mesh
adjacency information. Lets considering labeling the finite
element nodes in C0 Lagrangian finite elements, The finite
element nodes are the graph nodes. Given a next node in
the queue, we want to label it and add to the queue all

 12

nodes adjacent to it that are not already labeled, or in the
queue, preferably with the ones with lowest degree going
in first. Consider a mesh where I start with the node at a
well selected vertex, the nodes that need to be added to
the queue are nodes adjacent to it based on the mesh
adjacencies. We have some flexibility is determining which
adjacencies we account for and how. Remember the RCM
algorithm is based on a simple heuristic where we have
flexibility, within the limit of being sure to have edges
connecting what need to be connected, in how we want to
define the details of what we define as adjacent at a
particular point in the process and how we want order
adding a set of adjacent nodes to the queue.

Initializing the queue: Doing the level structures is a pain
and expensive. Want something simple. One option that is
been found to work is to look the mesh vertices classified
on model vertices, {Mi

0}[{Gj
0}, select one that has the

minimum number of edges coming into it, or one that is
closest to a corner of the bounding box of the domain. Note
that if one has a reason for trying to get a pattern in the
ordering, one could actually queue a set of node. For
example flow over an airfoil, you may want to have nodes
associated with the fine mesh ordered first. Assuming the
mesh is fine near the airfoil, you could initialize the queue
with all the nodes on the airfoil surface. This will give me a
numbering that spirals going out from the airfoil – form the
fine mesh the coarse mesh.

The following is the logic of the adjacency reordering
algorithm we found to works well.

1

AdjReorder

Classes (not all items indicated)

Pseudo Code

renumber(mesh)
{ // Reorders nodes and elements in a 2-D mesh assuming that only the mesh faces are elements
// It is also assumed that all dof associated with an entity are associated with a single node on that entity
int labelnode = nnode + 1 // value set to the total number of nodes plus 1, this allows auto. reversing
int labelface = nface + 1 // same issues in labeling elements
Node node
MeshEntity entity = getStart() // get starting entity. Use a with min. number of using it.

AdjReorder
getStart() : entity // get starting mesh vertex
renumber(mesh) // renumbers the nodes and elements
Queue q
Mesh mesh

List
add(entity) // adds an entity to a list
emptyList() // empties a list

Queue
enqueue(item) // enqueues an item into the queue
enqueueList(List) // enqueues list into the queue
dequeue() : item // removes an item from the queue
size() : int // returns the number of entities in the queue

MeshEntity
dimension() : int // indicates the dimension of a mesh entity 0-vertex, 1-edge, 2-face, 3-region
numEdges() : int // indicates the number of edges bounding or coming into an entity
numFaces() : int // indicates the number of faces bounding or coming into an entity
edge(i) : MeshEdge // returns the i th edge bounding or coming into an entity
face(j) : MeshFace // returns the j th face bounding or coming into an entity
getNode() : Node // gets the node on the mesh entity

MeshEdge
otherVertex(vertex) // gets the other vertex for a given edge

Node
setLabel(label) // sets node label to label

Mi
0
 Gj

0
Gk

1

2

q enqueue(entity)
while (q size() > 0) { // process entities until the queue is empty

entity = q dequeue()
node = entity getNode()
if (/*node is unlabeled*/) then {

labelnode = labelnode -1
node setLabel(labelnode)

}
// Want to find any unnumbered adjacent mesh entities and label faces
// All the additions to the queue will be done by looking at adjacencies keying from vertices
if (entity dimension()=0) then { // need to load adjacent entities by adjaceny order

// Also label neighboring mesh faces and specific edge nodes
MeshVertex vertex = entity
for (i = 1 to vertex numEdges()) { // loop over number of edges using the vertex

MeshEdge edge = vertex edge(i)
for (j = 1 to edge numFaces()) do {

MeshFace face = edge face(j)
if (/* face not already labeled*/) then {

labelface = labelface -1
face setLabel(labelface)

}
if (/* face has node that needs queueing */) then { // queue the face
q enqueue(face)
}

}
othervertex = edge otherVertex(vertex)
if (node = edge getNode()) then { // if the edge has a node on it

if (/* othervertex labeled or in queue and edge node not labeled*/) then {
labelnode = labelnode -1
edge getNode() setLabel(labelnode)

} else {
q enqueue(edge)
list add(othervertex)

}
} else {

if (/* node at other vertex is not labeled) then {
list add(othervertex)

}
}

} // finished the loop over the edges coming into the current vertex
q enqueueList(list) // now queue the other vertices loaded into the list
emptyList()

}
}

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→ →

→

→

→

→

3

The current pseudo code sets the labeling of the nodes and elements. This is what is needed for
assignment 2. In assignment 4 you will not really care if you order the labels on the mesh entities,
what you really care about is ordering the dof in the global system in the best way. This can be
done directly using essentially the same procedure. That is you work your way through the mesh
entities in exactly the same manner. However, in the code segments above where the nodes are
labeled is replaced by code labeling the dof associated with those mesh entities (again starting
with the last equation number and working down to 1).

Example of the procedures on setting mesh entity labels

The status of the queue and the nodes labeled on each pass through

Queue At Node label assigned

a - start of process - none assigned yet
b,c a 16
c,e,f b 15
e,f,h,g,j c 14,13 (d done since e already in queue)
f,h,g,j,i,l e 12
h,g,j,i,l,m f 11
g,j,i,l,m h 10
j,i,l,m g 9
i,l,m,n,o j 8,7 (k done since l already in queue)
l,m,n,o i 6
m,n,o,p l 5
n,o,p m 4
o,p n 3
p o 2
- p 1

5
4

3
2

1

a b

c d e
f

g h i

j k l m

n

o p 12

3

45

6

78
9

10
11

121314

1516

16 nodes
5 faces

Starting
configuration

With nodes and
elements labeled

 13

An example result:

Note – Another popular ordering method, particularly for
memory control, is space filling curves. As indicated in the
discussion on dynamic load balancing, they are also of
interest for that need.

In work we have done, we have used graph-based
algorithm at the inter-process level (MPI level) and
adjacency based reordering for better memory access on
process.

Slide 21 Space-Filling Curve
Partitioning (SFC)

• Developed by Peano, 1890.
• Space-Filling Curve:

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
–  Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
–  Patra and Oden, 1995, adaptive mesh refinement.

Slide 22

9

20

19

18

17

16

15

14

13 12

11 10

8

7

6 5

4

3 2 1

9

20

19

18

17

16

15

14

13 12

11 10

8

7

6 5

4

3 2 1

9

20

19

18

17

16

15

14

13 12

11 10

8

7

6 5

4

3 2 1

SFC Algorithm

• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.

Slide 23

SFC Repartitioning

• Implicitly incremental.
• Small changes in data results in small
movement of cuts in linear ordering.

Slide 24 SFC Advantages
and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in

processors.
– Linear ordering of objects may improve cache

performance.
• Disadvantages:

– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.

