
An Introduction to the PUMI libraries

PUMI Developers

January 3, 2019

Abstract

The Parallel Unstructured Mesh Infrastructure (PUMI) is a set of C
and C++ libraries that provide functions for querying and modifying par-
allel meshes, and querying the geometric models they discretize. PUMI
supports a range of real-world projects which make use of parallel tetra-
hedral and mixed meshes.

Support for PUMI was provided through the Department of Energy
(DOE) office of Science’s Scientific Discovery through Advanced Comput-
ing (SciDAC) institute as part of the Frameworks, Algorithms, and Scal-
able Technologies for Mathematics (FASTMath) program, under grant
DE-SC0006617.

For all inquiries on PUMI including PUMI-readable model and mesh
generation, email to shephard@rpi.edu.

1 Overview

PUMI is composed of component libraries, each of them serving a particular
purpose. The four that all users are likely to deal with are listed below:

1. PCU - Communication and parallel coordination

2. APF - Abstract mesh interface and field implementation

3. MDS - Underlying mesh implementation of choice

4. GMI - Interfaces with geometric models

There are other components in PUMI, which provide state-of-the-art func-
tionality for operations like mesh adaptation and load balance.

All the source code for PUMI is contained in one repository and compiled
as one. The repository can be found at:

https://github.com/SCOREC/core

The code is written entirely in C and C++, which gives it a decent compro-
mise between high performance and user-friendly abstraction. More information
about the C++ language can be found at:

http://www.cplusplus.com/doc/tutorial/

1

https://github.com/SCOREC/core
http://www.cplusplus.com/doc/tutorial/

Each library provides a header file with structures and functions for users.
Documentation for all these low-level structures and functions is provided here:

http://www.scorec.rpi.edu/~seol/scorec/doxygen

New user’s should access these structures and functions through the pumi.h

header file. Documentation is provided here:
http://scorec.rpi.edu/~seol/PUMI.pdf

2 PCU

The Parallel Control Utility (PCU) library is built on top of a Message Passing
Interface (MPI) implementation, and is meant to be a higher level interface that
people can use instead of MPI itself.

MPI is the standard system for building massively parallel programs to run
on supercomputers, which all consist at some level of separate computers con-
nected by a network which transmits messages between them. Although it is not
necessary to know MPI in order to use PCU, learning MPI is a recommended
starting point. A decent introduction to MPI can be found here:

https://www.mpi-forum.org/docs/mpi-1.1/mpi1-report.pdf

PCU was built on the notion that scalable parallel programs often use only
the following features of MPI:

1. Basic information like MPI Comm size and MPI Comm rank

2. Collectives like MPI Reduce and MPI Bcast

3. More complex communications implemented with variants of MPI Isend

and MPI Irecv

In particular, PCU implements an efficient algorithm to solve a complex
termination-detection problem and provides an interface that so far has been
able to replace all hand-coded algorithms of the kind described in Item 3 above.

Before we describe complex communication, lets begin with an example of
simple parallel functionality:

#include <PCU.h>

#include <stdio.h>

int main(int argc, char** argv)

{

int i;

MPI_Init(&argc, &argv);

PCU_Comm_Init();

if (PCU_Comm_Self()==0)

printf("There are %d total processes:\n", PCU_Comm_Peers());

printf("Greetings from process %d\n", PCU_Comm_Self());

i = PCU_Comm_Self() + 1;

PCU_Add_Ints(&i, 1);

2

http://www.scorec.rpi.edu/~seol/scorec/doxygen
https://github.com/SCOREC/core/blob/master/pumi/pumi.h
http://scorec.rpi.edu/~seol/PUMI.pdf
https://www.mpi-forum.org/docs/mpi-1.1/mpi1-report.pdf
http://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_size.html
http://www.mpich.org/static/docs/v3.1/www3/MPI_Comm_rank.html
http://www.mpich.org/static/docs/v3.1/www3/MPI_Reduce.html
http://www.mpich.org/static/docs/v3.1/www3/MPI_Bcast.html
http://www.mpich.org/static/docs/v3.1/www3/MPI_Isend.html
http://www.mpich.org/static/docs/v3.1/www3/MPI_Irecv.html

if (PCU_Comm_Self()==0)

printf("The sum of the integers from 1 to %d is %d\n",

PCU_Comm_Peers(), i);

PCU_Comm_Free();

MPI_Finalize();

return 0;

}

This program should be compiled and run as a parallel MPI job. It will print
the number of MPI processes in the job, a greeting message from each of them,
and the sum of the integers from 1 to n, where n is the number of processes
in the job. The output will be a bit out of order, which is a fundamental issue
with outputting text from a parallel job.

Since PCU uses MPI, MPI must be initialized and finalized around PCU,
which has its own initialization and finalization calls. PCU Add Ints performs
an all-reduce operation using an array of integers as the input and output. In
this case, the array is just one integer, i, which starts out as the process rank
plus one and is overwritten with the sum of all such values across the job.

Now lets take a look at the “phased” communication interface of PCU. The
general idea is that all processes participate in a “phase”, during which each
process sends out messages to other processes. PCU takes care of delivering
messages such that by the end of the phase all processes have received the
messages sent to them. The following program exchanges an integer message
between two processes (it should only be run as a two-process job):

#include <PCU.h>

#include <stdio.h>

int main(int argc, char** argv)

{

int message;

MPI_Init(&argc, &argv);

PCU_Comm_Init();

message = PCU_Comm_Self() + 1;

PCU_Comm_Begin();

if (PCU_Comm_Self() == 0)

PCU_COMM_PACK(1, message);

else

PCU_COMM_PACK(0, message);

PCU_Comm_Send();

while (PCU_Comm_Receive()) {

PCU_COMM_UNPACK(message);

printf("%d received \"%d\" from %d\n",

PCU_Comm_Self(), message, PCU_Comm_Sender());

}

PCU_Comm_Free();

MPI_Finalize();

3

http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#abf86ddf22cc114fd2bd3f054a067c225

return 0;

}

A phase begins when all processes call PCU Comm Begin . After that, each
process may call PCU Comm Pack or the more convenient PCU COMM PACK macro
to pack data to be sent to some destination. When all packing is over, a process
should call PCU Comm Send and enter a loop based on PCU Comm Receive . Inside
this loop, it should unpack the stream of incoming data. PCU Comm Sender will
tell where the current data is coming from; all data from the same source arrives
together in the order it was sent.

The functions PCU Comm Init, PCU Comm Free, PCU Comm Peers, PCU Comm Self,
PCU Comm Barrier are respectively equivalent to pumi start, pumi finalize,
pumi size, pumi rank and pumi sync in pumi.h.

3 Mesh

MDS is the library which handles the concrete mesh structure. The header file
apfMDS.h provides the few functions which are not part of the pumi.h interface.
Probably the first used function will be pumi mesh load.

int num_parts = pumi_size();

pGeom g = pumi_geom_load("model.dmg");

pMesh mesh = pumi_mesh_load(g, "mesh.smb", num_parts);

This function will read a geometric model file and mesh files into the data
structure referenced by the variable called g and mesh. See Section 4 for more
information about loading geometric model files.

The second argument of pumi mesh load is the mesh file name. As for the
mesh files, if the mesh is partitioned, there is one file per part, where a part is
the subset of the mesh stored on one process. So, a two-part mesh would have
files named mesh0.smb and mesh1.smb, and a serial (single-part) mesh just has
one file called mesh0.smb. The part number at the end of the name is inserted
automatically, so calling the function with “mesh.smb” in the code results in
mesh0.smb being read into process 0, and so on for other processes.

The third argument of pumi mesh load is the number of mesh files. Suppose
pumi mesh load is called on p processes (p>1) and the number of mesh file is
1 (in other words, you have only mesh0.smb). In this case, the serial mesh is
loaded onto the master process (process 0) and partitioned to p processes.

If you load the p-part mesh onto p processes, the third argument is p, of
which value is pumi size()

At the end of your program, you should release the computer memory that
was used to store the mesh and geometric model.

pumi_mesh_delete(mesh);

In some cases, you may want to construct your own small mesh. The easiest
way to do this is to make an empty MDS mesh on a null geometry. See Section
4 for info on null geometry.

4

http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#aa1821bf79d880c38cdd91515751799ac
http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#afd8a6600d960129089c45fd49c1b2311
http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#a263061f00174fc7a004dcb198778006c
http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#ad02bc960bcfa8e2d6b09458dca38bf53
http://scorec.rpi.edu/~dibanez/core/pcu_8c.html#ac4577ded2ec61de4b4141e3353aac440
https://github.com/SCOREC/core/blob/master/mds/apfMDS.h
https://github.com/SCOREC/core/blob/master/pumi/pumi.h

pMesh mesh = pumi_mesh_create(pumi_geom_load(NULL, "null"), 3, false);

The second argument to pumi mesh create specifies the dimensionality of
the mesh; either 2D or 3D. The final argument of pumi mesh create secifies
whether periodic associations exist between entities, this is almost always false.

Once you have constructed your mesh as described in Section 5.6, you may
want to create a simple geometry around it using this special function:

pumi_mesh_freeze(mesh);

4 Geometric Model

GMI is the library which bridges geometric model structures to a mesh that
users interact with. Interactions are mainly through pumi.h, but for advanced
modeling operations direct calls to GMI may be necessary. Usually, though,
users are concerned only with loading geometric model files. As there are many
kinds of geometric models, the user has to specify the “model type” along with
geometric model files. In case of PUMI API, the function pumi geom load per-
forms both model type set-up and model loading as the second argument is
a character string specifying the model type (“null” for no model, “mesh” for
mesh-driven model, and “analytic” for analytic model). The simple format is
the “mesh model” format whose files end in .dmg and contain just enough in-
formation to maintain the relationship between the mesh and geometric model.
To load a mesh model,

pumi_geom_load(/path/to/your/mesh/model.dmg, "mesh");

In some cases, users do not really care about the geometric model at all.
For such cases, there is a “null” geometric model that can be used, which just
mimicks the minimal necessary behavior to support the rest of the code. You
can get a null model as follows:

pumi_geom_load(NULL, "null");

5 APF

APF is a library to provide an abstract interface to various mesh implementa-
tions and fields on meshes. Part of its structures and functionalities are accessi-
ble through pumi.h. However, since it is abstract, users may need to interact a
little with the concrete implementations behind it. When the underlying objects
need to be accessed it is important to understand that a apf::Mesh object can
be queried but not modified, while a apf::Mesh2 object may be queried and
modified. In pumi.h, the data type to a modifiable mesh instance (pointer to a
mesh data structure) is pMesh .

5

https://github.com/SCOREC/core/blob/master/pumi/pumi.h
https://github.com/SCOREC/core/blob/master/pumi/pumi.h
http://scorec.rpi.edu/~dibanez/core/classapf_1_1Mesh.html
http://scorec.rpi.edu/~dibanez/core/classapf_1_1Mesh2.html
https://github.com/SCOREC/core/blob/master/pumi/pumi.h

5.1 Entities

These functions will refer to mesh entities in the form of pMeshEnt variable. One
of the most fundamental pieces of information you can get out of an pMeshEnt

variable is what kind of entity it is. The kind is encoded in a C++ enumeration
value,

enum PUMI_EntTopology {

PUMI_VERTEX, // 0

PUMI_EDGE, // 1

PUMI_TRIANGLE, // 2

PUMI_QUAD, // 3

PUMI_TET, // 4

PUMI_HEX, // 5

PUMI_PRISM, // 6

PUMI_PYRAMID // 7

);

and obtained using pumi ment getTopo.

pMeshEnt e = ...;

int topology = pumi_ment_getTopo(e);

if (topology == PUMI_QUAD)

std::cout << "this is a quad\n";

5.2 Numbering

First-time users may want a way to identify mesh entities for printing to appli-
cation output (i.e. via printf and friends) and/or for viewing in Paraview (see
Appendix A). A general way to do this is using a Numbering object. To number
the regions, one can do the following:

pNumbering numbers = pumi_numbering_createOwned(

mesh, "my_numbers", 3);

The second argument is a name of your choice, unique to this numbering ob-
ject. The last argument says to number three-dimensional entities, i.e. regions.

Due to details of how we communicate with Paraview, there is a function
which is better for numbering vertices than pumi numbering createOwned(...,

0), which is pumi numbering createOwnedNode.
After numbering entities, you can call the following to obtain the number of

an entity:

pMeshEnt vertex = ...;

int vertex_id = pumi_ment_getNumber(numbers, vertex, 0, 0);

The last two arguments are used to number high-order fields and multiple
degrees of freedom per node, if you don’t use those advanced features just set
them to zero.

6

In other cases, you may want to assign numbers yourself. To do that, start
by making an empty numbering:

pNumbering numbers = pumi_numbering_create(

mesh, "my_numbers", pumi_mesh_getShape(mesh), 1);

The third argument specifies that we are numbering the mesh nodes and the
last argument specifies that there is just one number per node. Then you can
set the numbers yourself using pumi ment getNumber.

Also note that Numbering is a good way to store any integer value on mesh
entities, not necessarily an ordered numbering.

5.3 Iteration

Most operations will require iterating over mesh entities, which can be done one
dimension at a time. Iteration uses an iterator pointer as follows:

pMeshIter it = mesh->begin(1);

pMeshEnt e;

while ((e = mesh->iterate(it))) {

/* use "e" somehow */

}

mesh->end(it);

5.4 Coordinates and Vector3

You can query and modify the coordinates of mesh nodes. Using pumi.h the co-
ordinate information is handled in the form of an array of three double-precision
floating point values. For example, the following code changes the y-coordinate
of vertex v and print:

#include <iostream>

#include <pumi.h>

double v[3];

pumi_node_getCoord(vertex, 0, v);

v[1] = 0.8;

pumi_node_setCoord(vertex, 0, v);

std::cout << "vertex coord (" << v[0]<<", "<<v[1]<<", "<<v[2]<< ")\n";

In the low-level implementation, the coordinate information is handled in
the form of Vector3 objects. You can treat Vector3 just like an array, but it
is possible to apply mathematical operators like addition, subtraction, multipli-
cation by a scalar, etc. to these objects. There is also a C++ stream output
operator for these objects, which means they can be given to C++’s std::cout.

#include <iostream>

#include <pumi.h>

Vector3 v1;

pumi_node_getCoordVector(vertex1, 0, v1);

7

https://github.com/SCOREC/core/blob/master/pumi/pumi.h

std::cout << "vertex coord "<<v1<<"\n";

Vector3 v2(8.0 / 4 * i, 8.0 / 6 * j, 0);

pumi_node_setCoordVector(vertex2, 0, v2);

// cross product of v1 and v2

double V = pumi_vector3_cross(v1, v2);

The second argument to set/get coordination information is intended to
handle high order fields where there is more than one node per mesh entity. For
first-order mesh entities, set this to zero. For quadratic meshes, these functions
will operate on edges as well as vertices.

Speaking of quadratic meshes, you can convert a linear mesh to a quadratic
mesh using the following call:

pumi_mesh_setShape(mesh, pumi_shape_getLagrange(2));

5.5 Adjacency

Most finite element algorithms require adjacency information. The most impor-
tant information is downward adjacency, for example, getting the vertices of an
element.

pMeshEnt element = ...;

std::vector<pMeshEnt> v;

pumi_ment_getAdj(element, 0, v);

size_t numVertices = v.size();

pMeshEnt lastVertex = v[numVertices - 1];

The second argument to pumi ment getAdj is the target dimension, in this
case 0 meaning vertices.

The inverse of downward adjacency is upward adjacency, for example, what
elements are around a vertex.

pMeshEnt vertex = ...;

std::vector<pMeshEnt> e;

pumi_ment_getAdj(vertex, pumi_mesh_getDim(m), e);

pMeshEnt element = e[e.size() - 1];

Below is a full example program demonstrating file reading, adjacency queries,
and coordinate output using PUMI API. It will print one line for each element
in the mesh, containing its vertex coordinates.

#include <mpi.h>

#include <vector>

#include <iostream>

#include "pumi.h"

int main(int argc, char** argv)

{

MPI_Init(&argc, &argv);

8

pumi_start(); // equivalent to PCU_Comm_Init()

pGeom g = pumi_geom_load("cube.dmg", "mesh");

pMesh mesh = pumi_mesh_load(g, "tet-mesh-1.smb", pumi_size());

pMeshIter it = mesh->begin(pumi_mesh_getDim(mesh));

pMeshEnt e;

while ((e = mesh->iterate(it))) {

std::vector<pMeshEnt> vertices;

pumi_ment_getAdj(e, 0, vertices);

size_t numVertices = vertices.size();

for (size_t i = 0; i < numVertices; ++i) {

double point[3];

pumi_node_getCoord(vertices[i], 0, point);

std::cout <<"point "<<i<<": "<<point[0]<<’ ’<<point[1]<<’ ’<<point[2]<<’ ’;

}

std::cout<<"\n";

}

mesh->end(it);

pumi_mesh_delete(mesh);

pumi_finalize(); // equivalent to PCU_Comm_Free()

MPI_Finalize();

}

5.6 Construction

Finally, you may want to construct your own mesh at some point. This is usually
best separated into two steps:

1. create the vertices at the right points.

2. create the elements based on their vertices

Prior to these steps, refer to Section 3 for how to create an empty mesh.
Then use pumi mesh createVtx to create a vertex. Its arguments are mesh
instance, the geometric classification, and xyz coordinates. The geometric clas-
sification can be left as NULL if the model derivation described in 3 is used
after construction.

It is advisable to store the vertex pointers in some sort of structure to prepare
them for the second step, which is to create elements using pumi mesh createElem.
Note that pumi mesh createElem is given an array of vertices, and the order of
those vertices is important. The documentation for apf::Mesh::getDownward

shows pictures of the expected ordering for vertices in this array, for each ele-
ment type.

Finally, when mesh construction is over, the function pumi mesh freeze has
to be called to finalize the mesh data structure. After pumi mesh freeze is
called, it is possible to run a stringent verification on the mesh structure itself,
to make sure no mistakes were made during construction. This is done using
pumi mesh verify.

9

http://scorec.rpi.edu/~dibanez/core/classapf_1_1Mesh.html#ae9af2075129ffd4553092049d85b276b

Here is a full example code which constructs a one-tet mesh and writes
Paraview files.

#include <mpi.h>

#include "pumi.h"

int main(int argc, char** argv)

{

MPI_Init(&argc, &argv);

pumi_start();

pGeom g = pumi_geom_load(NULL, "null");

pMesh mesh = pumi_mesh_create(g, 3, false);

double points[4][3] = {{0,0,0},{1,0,0},{0,1,0},{0,0,1}};

pMeshEnt vertices[4];

for (int i = 0; i < 4; ++i)

vertices[i] = pumi_mesh_createVtx(mesh, NULL, points[i]);

pumi_mesh_createElem(mesh, NULL, PUMI_TET, vertices);

pumi_mesh_freeze(mesh);

pumi_mesh_verify(mesh);

pumi_mesh_write(mesh, "onetet", "vtk");

pumi_mesh_delete(mesh);

pumi_finalize();

MPI_Finalize();

}

5.7 Classification

When the mesh is classified onto a geometric model of some sort, we can query
that relationship. In pumi.h, the data type to a geometric model instance (a
pointer to geometric model data structure) is pGeom. Given a mesh instance, the
function pumi mesh getGeom returns its associated geometric model instance.
The data type to a geometric model entity is pGeomEnt . For many meshing
operations, two integers are all the information we need about a geometric model
entity. First, its dimension (like mesh entities, there are vertices, faces, etc.).
Second, a unique integer ID which sets the entity apart from all other entities
of the same dimension (these ID’s are not necessarily unique across all model
entities). Given a geometric model entity, the function pumi ment getGeomClas

returns the geometric model entity instance where it’s generated from.

pGeom g = pumi_mesh_getGeom(mesh);

pMeshEnt e = ...;

pGeomEnt ge = pumi_ment_getGeomClas(e);

10

https://github.com/SCOREC/core/blob/master/pumi/pumi.h

int dimension = pumi_gent_getDim(ge);

int id = pumi_gent_getID(ge);

assert(pumi_geom_getNumEnt(g, dimension));

5.8 Parallel Meshes

Once you are dealing with parallel, or partitioned, meshes, it will be important
to get information about how the mesh is partitioned. In PUMI, we partition
meshes by elements. That is, each element will exist in exactly one part. All
mesh entities which bound that element will also exist on the same part. Because
mesh entities may bound multiple elements, they may exist on multiple parts.
This is where remote copies come in. Each mesh entity stores information about
the other parts on which it exists, including pointers to its other copies.

pMeshEnt vertex = ...;

Copies remotes;

pumi_ment_getAllRmt(vertex, remotes);

for (pCopyIter it = remotes.begin();

it != remotes.end(); ++it)

std::cout << "shared with part " << it->first << ’\n;

Copies is a std::map whose keys are part numbers and whose values are
pointers to copies on those parts. We will return later to the issue of these
pointers and why they are there.

Before that, a few more basics. First, recall from Section 2 that pumi rank

gives you the process rank. This is identical to the part number, so remember
that the two can be used interchangeably. Second, given a mesh entity with
copies, the PUMI system decides on one of the copies to designate as the owner.
You can check whether the local copy is the owner:

if (pumi_ment_isOwned(vertex))

std::cout << "yes\n";

Now we can put those concepts all together and write a program which sets
up a numbering by first assigning numbers to the vertices which it owns, and
then communicating those numbers to the non-owned copies so that all copies
of the same vertex have the same number. To do this, we need to use the
pointer values in Copies. This gives us pMeshEnt values which are usable on
the destination part to refer to the copy.

#include <mpi.h>

#include "PCU.h"

#include "pumi.h"

int main(int argc, char** argv)

{

MPI_Init(&argc, &argv);

pumi_start();

11

http://www.cplusplus.com/reference/map/map/

pGeom g = pumi_geom_load("cube.dmg", "mesh");

pMesh mesh = pumi_mesh_load(g, "parallelMesh.smb", pumi_size());

pMeshEnt vertex;

pMeshIter it;

int numOwned = 0;

it = mesh->begin(0);

while ((vertex = mesh->iterate(it)))

if (pumi_ment_isOwned(vertex))

++numOwned;

mesh->end(it);

int offset = numOwned;

PCU_Exscan_Ints(&offset, 1);

pNumbering numbers = pumi_numbering_create(

mesh, "my_numbers", pumi_mesh_getShape(mesh), 1);

int i = offset;

it = mesh->begin(0);

while ((vertex = mesh->iterate(it)))

if (pumi_ment_isOwned(vertex))

pumi_ment_setNumber(vertex, numbers, 0, 0, i++);

mesh->end(it);

PCU_Comm_Begin();

it = mesh->begin(0);

while ((vertex = mesh->iterate(it)))

if (pumi_ment_isOwned(vertex)) {

Copies remotes;

pumi_ment_getAllRmt(vertex, remotes);

int number = pumi_ment_getNumber(vertex, numbers, 0, 0);

for (pCopyIter it = remotes.begin();

it != remotes.end(); ++it) {

PCU_COMM_PACK(it->first, it->second);

PCU_COMM_PACK(it->first, number);

}

}

mesh->end(it);

PCU_Comm_Send();

while (PCU_Comm_Receive()) {

int number;

PCU_COMM_UNPACK(vertex);

PCU_COMM_UNPACK(number);

pumi_ment_setNumber(vertex, numbers, 0, 0, number);

}

pumi_mesh_write(mesh, "numbered", "vtk");

pumi_mesh_delete(mesh);

pumi_finalize();

12

MPI_Finalize();

}

5.9 Migration

An additional topic of interest when dealing with parallel meshes is migration.
In this case, that means the ability to send elements from one part to another.
Since each part is controlled by a separate process, the process collects a list of
elements which it wants to send and the destination parts to which it wants to
send them. This “plan” is stored in an Migration object. This object should
be created like this:

Migration* plan = new Migration(mesh);

Once the migration plan of elements to send from the local process is com-
plete, it is given to the pumi mesh migrate function. All processes should call
this function at the same time, even if they have nothing to send. This function
will delete the plan, so users do not have to delete it themselves.

A Paraview

Paraview is program created by Kitware, Inc. which can visualize meshes and
fields on meshes. It is the program of choice for viewing meshes created by the
PUMI libraries. PUMI provides the function pumi mesh write in the pumi.h

header file. If this code is executed for a mesh distributed over two processes:

pumi_mesh_write(mesh, "output", "vtk");

It would create the folder output and files 0.vtu, 1.vtu, and output.pvtu.
Opening the output.pvtu file in Paraview will show users the mesh.

By default, Paraview will just render the mesh in “Surface” mode. Changing
this to “Surface with Edges” will outline each visible element, actually making
the decomposition visible.

Also, the mesh by default is rendered in one “Solid Color”. There should
be other options corresponding to the fields and numberings that were on this
mesh at the time of file writing. There is usually an “apf part” alternative for
files written by PUMI, which allows users to see the parallel partitioning of the
mesh in color.

When vertices are numbered, it may be useful to display their numbers.
See Section 5.2 for information on creating numberings. Right above the mesh
viewing area there is a button to select nodes, you may also press the “D” key.

Click and drag to select all the nodes you want to display. Then go to
View->Selection Display Inspector in the menu and click on the Point La-
bels options. There you can choose what to display. If you used Numbering

13

http://scorec.rpi.edu/~dibanez/core/classapf_1_1Migration.html
https://github.com/SCOREC/core/blob/master/pumi/pumi.h

properly, there should be an option with the same name that you gave to the
numbering. Note that in some later versions of Paraview, there is a bug which
displays all values as floating point numbers by default. If you are trying to
show Numbering values, you may see strange scientific notation instead. Click
the following icon in the Selection Display Inspector:

There you will find a format string option, which you can change to “%d” in
order to show integers.

14

	Overview
	PCU
	Mesh
	Geometric Model
	APF
	Entities
	Numbering
	Iteration
	Coordinates and Vector3
	Adjacency
	Construction
	Classification
	Parallel Meshes
	Migration

	Paraview

