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   Geometry-Based Analysis 
n Geometry, Attribute: analysis domain 
n Mesh: 0-3D topological entities and adjacencies 
n Field: distribution of solution over mesh 
n Common requirements: data traversal, arbitrarily  

attachable user data, data grouping, etc. 
n Complete representation: store sufficient  

entities and adjacencies to get any  
adjacency in O(1) time 
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n Pi: distributed mesh part mapped to a process (1-to-N) 
n Vi

d: entity of dimension d, where V is G (geometric model), M 
(mesh) or P (partition model) 
E.g. Mi

3: mesh regions, Gi
2: geometric face , Pi

0: partition vertex 

n P [Vi
d] : operator to return a set of part id’s where Vi

d exists 
l   E.g. P [M1

0] = {P0, P1, P2}  

n Vi
d     Wj

q, d≤q: classification which represents a relation from 
Vi

d to Wj
q, where Vi

d is partial representation of Wj
q  

l Mi
d     Gj

q, d≤q: geometric classification 
l Mi

d     Pj
q, d≤q: partition classification 

n Si : a set of entities  

   Functional Requirements for Adaptive Simulations 
n Part: A unit of mesh data decomposition for distribution on 

parallel computers.  
n Mesh entities: a constituent of mesh distinguished by type 

l vertex (0D), edge (1D), face (2D), or region (3D) 
n Adjacencies: how the mesh entities connect to each other. 
n Geometric classification: a relation that each mesh entity 

maintains to a geometric model entity for partial representation 
n Entity set: mechanism for grouping mesh entities 
n Tag: mechanism to attach arbitrary user data (tag data) to a 

part, entity set or mesh entity 
n Iterator: mechanism to traverse mesh entities in a specific 

range with various options (type, classification, etc.) 

General Mesh Data Structure Distributed Mesh Data Structure 

Geometric model Partition model

Distributed mesh

n Capability to partition mesh to multiple parts per process 
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Distributed Mesh Requirement (1/2) 

n File I/O – parallel mesh/set/tag loading, saving 
n Part – create, delete, query (neighbor, id, etc), entity iterator 
n Part boundary – query, entity iterator 
n Entity – query (owner part, status, copies, etc.) 

l Entity ownership imbues the right to modify (in other words, only 
owning part can modify the entity and transfer the modification to its 
remote copies) 

n Modification 
l Migrating entities and p-sets to destination part 
l Pulling part boundary entity’s remote partition objects to the owner part 
l Pushing owner’s vertex coordinates to remote copies 
l Ghosting – temporarily keeping remote adjacent entities on local part 
l Tag –automatic tag data migration during migration 

n Mesh partitioning control 
l Static/dynamic, global/local 
l Weight control per individual entity/set or type/topology 

 

Distributed Mesh Requirement (2/2) 

  Boundary layer stacks  
n  NP-set: Entity set w/o single part constraint 
n  P-set: Entity set with single part constraint 

l Data structure for boundary layer stack 
l Entity is partition object entity 
l Entity can be contained in at most one p-set 

 

Distributed Mesh Representation (1/6) 

n Parti consists of mesh entities assigned to ith part 
n Multiple-parts per process  

l Changing number of parts per process 
l Dealing with problems with current graph-based partitioners that tend 

to fail on really large numbers of processors (See Slides 19-21) 
l Architecture-aware two-level mesh partitioning (See Slides 22-23) 
l For effective manipulation, a mesh instance defined on each 

processor contains part handles assigned to the process 

 

                    A 3D mesh in 4 parts per process (16 parts total) 

(LEFT) Different color represents different part 

(RIGHT) Different color represents different process 

4 parts 1 process 

Distributed Mesh Representation (2/6) 

Each part Pi  assigned to a processor 
n Uniquely identified by handle or global ID 
n Treated as a serial mesh with the addition of part boundaries  

l Part boundary: groups of mesh  
entities on shared links between  
parts 
l Part boundary entity: duplicated  
entities on all parts for which they  
bound with other higher order  
mesh entities 
l Remote copy: duplicated entity  
copy on non-local part 
l Partition object : basic unit to  
assign dest. part id in migration 
l Residence parts and owing part 
: list of parts where the entity  
exists and the part designated to be in charge of modification 

 

Distributed Mesh Representation (3/6) 

   Partition Object 
n Basic unit to assign destination part id in mesh migration 

l p-set 
l mesh entity with no higher order adjacency not contained in p-set 

n For partition object x, residence part operator P(x) returns a 
set of part id’s where x exists based on adjacencies.  

        E.g. P [Mi
0] = {P0, P1, P2, P3},  P [Mj

1] = {P0, P1} 
n Partition object graph: weighted graph G(V, E)   
 

•  Node V: partition object 
•  Edge E: dependencies 

between graph nodes 
identified by adjacencies 

•  Node and edge weights 

Partition object graph A mesh part with 3 p-sets 

Distributed Mesh Representation (4/6) 

   Partition Model 
n a conceptual model existing between a geometric model and 

distributed mesh representing mesh partitioning in topology 
n Partition (model) entity: a topological entity in the partition 

model, Pi
d, representing a group of mesh entities of 

dimension d with the same residence parts. 

Partition model of mesh in Slide 14 Partition classification in arrows 



Distributed Mesh Representation (5/6) 

n For each partition model entity, owning part is defined by a 
rule which says the part with the fewest number of partition 
object entities is the owner.  
l Rationale: keeping load balance during adaptation - part boundary 

entity’s remote partition objects are migrated to the owner part to 
obtain cavity 

n Proper maintenance of partition  
classification is all about modifying  
entity’s residence parts and owning part 

l M1
j@P0 and M1

j@P1 know they are  
duplicated in P0 and P1 
l M1

j ’s owning part changes dynamically 
as mesh partitioning changes 
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Distributed Mesh Representation (6/6) 

   Other tools for efficient mesh modification 
n No global ID synchronization 

l global part ID = process rank * local part ID  
     local part ID = 0..n-1, where n is # parts per process 
l No global entity ID 

n No mesh size operation 
l O(1) Entity search based on adjacencies 
l O(N) Mesh migration, N - # entities to migrate 

n Parallel Control Utility 
l Provides parallel infrastructure to control communications 
l Being extended to deal with hybrid (message passing and threads) 
l More on this later 

Mesh Migration (1/2) 

   Purpose: Moving mesh entities between parts 
n Dictated by operation - in swap and collapse it’s the mesh 

entities on other parts needed to complete the mesh 
modification cavity 

n Entities to migrate are determined based on adjacencies 
   Major Complexities 
n A function of mesh representation w.r.t. adjacencies, p- set 

and arbitrary user data attached to them 
l Complete mesh representation can provide any adjacency without 

mesh traversal - a requirement for satisfactory efficiency 
n Performance factorized by  

l Synchronization, communications, load balance and scalability 
l How to benefit from on-node thread communication (all threads in a 

processor share the same memory address space) 

   Migration Steps 

Mesh Migration (2/2) 
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n Goals: localizing off-part  
mesh data to avoid inter-process 
communications for  
computations 
n Ghost: read-only, duplicate 
entity copies not on part  
boundary including tag data  
n Ghosting rule: triplet (ghost dim, bridge dim, # layers) 

l Ghost dim: entity dimension to be ghosted 
l bridge dim: entity dimension used to obtain entities to be ghosted 

through adjacency 
l # layers: the number of ghost layers measured from the part boundary 
 
E.g, to get two layers of region entities in the ghost layer, measured from 
faces on part boundary, use ghost_dim=3, bridge_dim=2, and # layers=2 
(source: FASTMath iMeshP.h) 

Ghosting (1/2) 

   Ghosting Steps 

Ghosting (2/2) 

Ghosting rule
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