
  

     

 
Parallel Unstructured Mesh Infrastructure 
for Massively Parallel Adaptive Simulation 

   Seegyoung Seol, Daniel Ibanez,  
Cameron Smith and Mark S. Shephard 

   Scientific Computation Research Center 
   Rensselaer Polytechnic Institute 

Partition modelGeometric model

PUMI 

Fields 
distribution of solution 

over mesh

Mesh

analysis domain

0-3D topological entities  
and adjacencies

distribution of 
mesh across
computing 
resources  Parallel Control 

communication utilities

   Geometry-Based Analysis 
n Geometry, Attribute: analysis domain 
n Mesh: 0-3D topological entities and adjacencies 
n Field: distribution of solution over mesh 
n Common requirements: data traversal, arbitrarily  

attachable user data, data grouping, etc. 
n Complete representation: store sufficient  

entities and adjacencies to get any  
adjacency in O(1) time 

Background 

Geometric model Mesh 

Mesh

Part

Regions

Edges

Faces

Vertices

Notations 

n Pi: distributed mesh part mapped to a process (1-to-N) 
n Vi

d: entity of dimension d, where V is G (geometric model), M 
(mesh) or P (partition model) 
E.g. Mi

3: mesh regions, Gi
2: geometric face , Pi

0: partition vertex 

n P [Vi
d] : operator to return a set of part id’s where Vi

d exists 
l   E.g. P [M1

0] = {P0, P1, P2}  

n Vi
d     Wj

q, d≤q: classification which represents a relation from 
Vi

d to Wj
q, where Vi

d is partial representation of Wj
q  

l Mi
d     Gj

q, d≤q: geometric classification 
l Mi

d     Pj
q, d≤q: partition classification 

n Si : a set of entities  

   Functional Requirements for Adaptive Simulations 
n Part: A unit of mesh data decomposition for distribution on 

parallel computers.  
n Mesh entities: a constituent of mesh distinguished by type 

l vertex (0D), edge (1D), face (2D), or region (3D) 
n Adjacencies: how the mesh entities connect to each other. 
n Geometric classification: a relation that each mesh entity 

maintains to a geometric model entity for partial representation 
n Entity set: mechanism for grouping mesh entities 
n Tag: mechanism to attach arbitrary user data (tag data) to a 

part, entity set or mesh entity 
n Iterator: mechanism to traverse mesh entities in a specific 

range with various options (type, classification, etc.) 

General Mesh Data Structure Distributed Mesh Data Structure 

Geometric model Partition model

Distributed mesh

n Capability to partition mesh to multiple parts per process 

iM0

jM1

1P

0P
2P

 inter-process part  
boundary

 intra-process part  
boundary

 Proc j Proc i



Distributed Mesh Requirement (1/2) 

n File I/O – parallel mesh/set/tag loading, saving 
n Part – create, delete, query (neighbor, id, etc), entity iterator 
n Part boundary – query, entity iterator 
n Entity – query (owner part, status, copies, etc.) 

l Entity ownership imbues the right to modify (in other words, only 
owning part can modify the entity and transfer the modification to its 
remote copies) 

n Modification 
l Migrating entities and p-sets to destination part 
l Pulling part boundary entity’s remote partition objects to the owner part 
l Pushing owner’s vertex coordinates to remote copies 
l Ghosting – temporarily keeping remote adjacent entities on local part 
l Tag –automatic tag data migration during migration 

n Mesh partitioning control 
l Static/dynamic, global/local 
l Weight control per individual entity/set or type/topology 

 

Distributed Mesh Requirement (2/2) 

  Boundary layer stacks  
n  NP-set: Entity set w/o single part constraint 
n  P-set: Entity set with single part constraint 

l Data structure for boundary layer stack 
l Entity is partition object entity 
l Entity can be contained in at most one p-set 

 

Distributed Mesh Representation (1/6) 

n Parti consists of mesh entities assigned to ith part 
n Multiple-parts per process  

l Changing number of parts per process 
l Dealing with problems with current graph-based partitioners that tend 

to fail on really large numbers of processors (See Slides 19-21) 
l Architecture-aware two-level mesh partitioning (See Slides 22-23) 
l For effective manipulation, a mesh instance defined on each 

processor contains part handles assigned to the process 

 

                    A 3D mesh in 4 parts per process (16 parts total) 

(LEFT) Different color represents different part 

(RIGHT) Different color represents different process 

4 parts 1 process 

Distributed Mesh Representation (2/6) 

Each part Pi  assigned to a processor 
n Uniquely identified by handle or global ID 
n Treated as a serial mesh with the addition of part boundaries  

l Part boundary: groups of mesh  
entities on shared links between  
parts 
l Part boundary entity: duplicated  
entities on all parts for which they  
bound with other higher order  
mesh entities 
l Remote copy: duplicated entity  
copy on non-local part 
l Partition object : basic unit to  
assign dest. part id in migration 
l Residence parts and owing part 
: list of parts where the entity  
exists and the part designated to be in charge of modification 

 

Distributed Mesh Representation (3/6) 

   Partition Object 
n Basic unit to assign destination part id in mesh migration 

l p-set 
l mesh entity with no higher order adjacency not contained in p-set 

n For partition object x, residence part operator P(x) returns a 
set of part id’s where x exists based on adjacencies.  

        E.g. P [Mi
0] = {P0, P1, P2, P3},  P [Mj

1] = {P0, P1} 
n Partition object graph: weighted graph G(V, E)   
 

•  Node V: partition object 
•  Edge E: dependencies 

between graph nodes 
identified by adjacencies 

•  Node and edge weights 

Partition object graph A mesh part with 3 p-sets 

Distributed Mesh Representation (4/6) 

   Partition Model 
n a conceptual model existing between a geometric model and 

distributed mesh representing mesh partitioning in topology 
n Partition (model) entity: a topological entity in the partition 

model, Pi
d, representing a group of mesh entities of 

dimension d with the same residence parts. 

Partition model of mesh in Slide 14 Partition classification in arrows 



Distributed Mesh Representation (5/6) 

n For each partition model entity, owning part is defined by a 
rule which says the part with the fewest number of partition 
object entities is the owner.  
l Rationale: keeping load balance during adaptation - part boundary 

entity’s remote partition objects are migrated to the owner part to 
obtain cavity 

n Proper maintenance of partition  
classification is all about modifying  
entity’s residence parts and owning part 

l M1
j@P0 and M1

j@P1 know they are  
duplicated in P0 and P1 
l M1

j ’s owning part changes dynamically 
as mesh partitioning changes 

iM0

jM1

1P

0P
2P

 inter-process part  
boundary

 intra-process part  
boundary

 Proc j Proc i

Distributed Mesh Representation (6/6) 

   Other tools for efficient mesh modification 
n No global ID synchronization 

l global part ID = process rank * local part ID  
     local part ID = 0..n-1, where n is # parts per process 
l No global entity ID 

n No mesh size operation 
l O(1) Entity search based on adjacencies 
l O(N) Mesh migration, N - # entities to migrate 

n Parallel Control Utility 
l Provides parallel infrastructure to control communications 
l Being extended to deal with hybrid (message passing and threads) 
l More on this later 

Mesh Migration (1/2) 

   Purpose: Moving mesh entities between parts 
n Dictated by operation - in swap and collapse it’s the mesh 

entities on other parts needed to complete the mesh 
modification cavity 

n Entities to migrate are determined based on adjacencies 
   Major Complexities 
n A function of mesh representation w.r.t. adjacencies, p- set 

and arbitrary user data attached to them 
l Complete mesh representation can provide any adjacency without 

mesh traversal - a requirement for satisfactory efficiency 
n Performance factorized by  

l Synchronization, communications, load balance and scalability 
l How to benefit from on-node thread communication (all threads in a 

processor share the same memory address space) 

   Migration Steps 

Mesh Migration (2/2) 

1

(B) Get affected entities and compute 
post-migration residence parts

(D) Delete migrated entities

P0 P2

P1

2

1 1
1 1 1

2
2

2 222√ √ √√

√√

√

1

(A) Mark destination part id 

2

1 1
1 1 1

2
2

2 222

1

(C) Exchange entities
and update part boundary

P0

P2

P1

2

1
1 1 1

2

2
2
22 2

1

n Goals: localizing off-part  
mesh data to avoid inter-process 
communications for  
computations 
n Ghost: read-only, duplicate 
entity copies not on part  
boundary including tag data  
n Ghosting rule: triplet (ghost dim, bridge dim, # layers) 

l Ghost dim: entity dimension to be ghosted 
l bridge dim: entity dimension used to obtain entities to be ghosted 

through adjacency 
l # layers: the number of ghost layers measured from the part boundary 
 
E.g, to get two layers of region entities in the ghost layer, measured from 
faces on part boundary, use ghost_dim=3, bridge_dim=2, and # layers=2 
(source: FASTMath iMeshP.h) 

Ghosting (1/2) 

   Ghosting Steps 

Ghosting (2/2) 

Ghosting rule

√

(B) Get entities to ghost

√ √

√√ √

√

√ √ √

P0 P2

√ P1

•  Ghost Dim: 2
•  Bridge Dim:1
•  Num. Layers: 1

1

0

200
P1

2

(C) Mark destination part id

P0 P2

1 1 0,1

2

2 0,1 11 1

2

2

0 20 2

0

(D) Exchange entities

P0 P2

P1
(A) Initial mesh

P2
P0

P1

G

G G

G

G
GG

G

G

G G G

(E) Final mesh

P2P0

P1


