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*************** SCOREC 3-CLAUSE BSD LICENSE ***************

Copyright (c) 2004-2019, Rensselaer Polytechnic Institute, Scientific Computation Research Center
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Questions to shephard@rpi.edu
Derived from the OSI 3-clause BSD
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1 Introduction

1.1 Background and Motivation

An efficient distributed mesh data structure is needed to support parallel adaptive analysis since
it strongly influences the overall performance of adaptive mesh-based simulations. In addition
to the general mesh-based operations [4], such as mesh entity creation/deletion, adjacency and
geometric classification, iterators, arbitrary attachable data to mesh entities, etc., the distributed
mesh data structure must support (i) efficient communication between entities duplicated over
multiple processors, (ii) migration of mesh entities between processors, and (iii) dynamic load
balancing.

Issues associated with supporting parallel adaptive analysis on unstructured meshes include dy-
namic mesh load balancing techniques [7, 10, 29, 30], and data structure and algorithms for parallel
mesh adaptation [2, 8, 14, 16, 18, 19, 22, 23, 24].

The PUMI is a unstructured, distributed mesh data management system that is capable of a
parallel mesh infrastructure capable of handling general non-manifold [15, 31] models and effectively
supporting automated adaptive analysis [12].

This document describes an overview of the PUMI design, its interface functions and example
codes.

1.2 Organization

Chapter 2 introduces the data sets involved with geometry-based analysis and the role of a topolog-
ical mesh representation. Chapters 3-5 introduce the PUMI libraries which include parallel control,
geometric model, distributed mesh data structure in accordance with a partition model, and mesh
partitioning control. Chapters 6-11 present the PUMI API specifications. Chapter 12 presents
example programs. Chapter 13 provides compilation and installation instructions.
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1.3 Nomanclature

V the model, V ∈ {G, P , M} where G signifies the geometric model, P signifies the
partition model, and M signifies the mesh model.

{V {V d}} a set of topological entities of dimension d in model V . (e.g., {M{M2}} is the set
of all the faces in the mesh.)

V d
i the ith entity of dimension1 d in model V . d = 0 for a vertex, d = 1 for an edge,

d = 2 for a face, and d = 3 for a region.
{∂(V d

i )} set of entities on the boundary of V d
i .

{V d
i {V q}} a set of entities of dimension q in model V that are adjacent to V d

i . (e.g., {M1
3 {M3}}

are the mesh regions adjacent to mesh edge M1
3 .)

V d
i {V q}j the jth entity in the set of entities of dimension q in model V that are adjacent to

V d
i . (e.g., M3

1 {M1}2 is the 2nd edge adjacent to mesh region M3
1 .)

Udi
i < V

dj
j classification indicating the unique association of entity Udi

i with entity V
dj
j , di ≤ dj ,

where U , V ∈ {G, P , M} and U is lower than V in terms of a hierarchy of domain
decomposition.

P[Md
i ] set of part id(s) where entity Md

i exists.

8



Geometric
Model

Attributes

Mesh

Field

Figure 1: The relationship between components of the geometry-based analysis environment [3]

Figure 2: Example of (left) manifold and (right) non-manifold models

2 Geometry-based Analysis

2.1 Key Data

The structures used to support the problem definition, the discretization of the model and their
interactions are central to mesh-based analysis methods like finite element and finite volumes. The
geometry-based analysis environment consists of four parts: the geometric model which houses
the topological and shape description of the domain of the problem, attributes describing the rest
of information needed to define and solve the problem, the mesh which describes the discretized
representation of the domain used by the analysis method, and fields which describe the distribution
of solution tensors over the mesh entities [3, 28]. Figure 1 represents the general interactions between
the four components.

2.1.1 Geometric model

The most common geometric representation is a boundary representation. A general representation
of general non-manifold domains is the Radial Edge Data Structure [31]. Non-manifold models
are common in engineering analyses. Simply speaking, non-manifold models consist of general
combinations of solids, surfaces, and wires. Figure 2 illustrates examples of manifold and non-
manifold model.

In the boundary representation, the model is a hierarchy of topological entities called regions,
shells, faces, loops, edges, vertices, and in case of non-manifold models, use entities for vertices,
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type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: load
name: water load
value: (f(z),0,0)

type: probelm definition
name: ...

Geometric
Model

A

A

A

A

A

u = 0

g

f = f(z)

Case

Attributes

Information Nodes

Figure 3: Example geometry-based problem definition [3]

edges, loops, and faces. The data structure implementing the geometric model supports operations
to find the various model entities that make up a model, information about which model entities
are adjacent to a given entity, operations relating to perform geometric shape queries, and queries
about what attributes are associated with model entities.

2.1.2 Attribute

In addition to geometric model, the definition of a problem requires other information that describes
material properties, loads and boundary conditions, etc. These are described in terms of tensor-
valued attributes and may vary in both space and time. Attributes are applied to geometric model
entities.

Figure 3 illustrates an example of a problem definition. The problem being modeled is a dam
subjected to loads due to gravity and due to the water behind the dam. There is a set of attribute
information nodes that are all under the attribute case for the problem definition. When this case
is associated with the geometric model, attributes are created and attached to the individual model
entities on which they act [3, 28]. The attributes are indicated by triangles with A’s inside of them.

2.1.3 Mesh

A mesh is a geometric discretization of a domain. With restrictions on the mesh entity topology [4],
a mesh is represented with a hierarchy of regions, faces, edges and vertices. Each mesh entity
maintains a relation, called geometric classification [4, 26], to the model entity that it was created
to partially represent. Geometric classification allows an understanding of which attributes (e.g.
boundary conditions or material properties) are related to the mesh entities and the how the
solution relates back to the original problem description, and is critical in mesh generation and
adaptation [3, 4, 26]. More discussion on the mesh representation is presented in §2.2.
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Mesh

Field 1 = {Interpolation 1,
Interpolation 2, ... }

Interpolation 2

Interpolation 1

Figure 4: Representation of a field defined over a mesh [3]

In a geometry-based analysis environment, mesh data structures house the discretization of the
domain, a mesh, and provide the mesh-level services to applications.

2.1.4 Field

A field describes the variation of solution tensors over the mesh entities discretizing one or more
entities in a geometric model. The spatial variation of the field is defined in terms of mesh level
distribution functions [3]. Figure 4 demonstrates the concept of a field written in terms of C0

interpolating distribution functions.

2.2 General Topology-Based Mesh Data Structure

The mesh consists of a collection of mesh entities of controlled size, shape, and distribution. The
relationships of the entities defining the mesh are well described by topological adjacencies, which
form a graph of the mesh [4, 6, 11, 20]. A critical capability needed by automated, adaptive
geometry-based analysis procedures is to manipulate the mesh of the analysis domain. A mesh
data structure is a toolbox that provides the mesh-level services to the applications that create/use
the mesh data. The differing needs of the applications dictate that the database be able to answer to
the needed queries about the mesh. The five essential components of a general topology-based mesh
data structure are: topological entities, geometric classification, adjacencies between entities [4],
entity set and arbitrary user data attachable to the topological entities or entity sets, referred as
tag data [13, 17].

2.2.1 Topological entities

Topology provides an unambiguous, shape-independent abstraction of the mesh. With reasonable
restrictions on the topology, a mesh is represented with only the basic 0 to d dimensional topological
entities, where d is the dimension of the domain of the interest. The full set of mesh entities in 3D
is {{M{M0}}, {M{M1}}, {M{M2}}, {M{M3}}}, where {M{Md}}, d = 0, 1, 2, 3, are, respectively,
the set of vertices, edges, faces, and regions. Mesh edges, faces, and regions are bounded by the
lower order mesh entities.

Restrictions on the topology of a mesh are:

11
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Figure 5: Example of simple model(left) and mesh(right) showing their association via geometric
classification [28]

• Regions and faces have no interior holes.

• Each entity of order d in a mesh, Md
i , may use a particular entity of lower order, p, Mp

j ,
p < d, at most once.

• For any entity Md
i , there is the unique set of entities of order d − 1, {Md

i {Md−1}} that are
on the boundary of Md

i . (Note, based on mesh entity classification, it is possible to relax this
restriction in the case of equal order classification [4])

The first restriction means that regions may be represented by one shell of faces that bounds them,
and faces may be represented by one loop of edges that bounds them. The second restriction allows
the orientation of an entity to be defined in terms of its boundary entities without introduction of
use entities. The third restriction means that an interior entity is uniquely specified by its bounding
entities.

2.2.2 Geometric classification

The linkage of the mesh to the geometric model is critical for mesh generation and adaptation
procedures since it allows the specification of analysis attributes in terms of the original geometric
model, the proper approximation of the geometry during mesh adaptation and supports direct links
to the geometric shape information of the original domain need to improve geometric approximation
and useful in p-version element integration [3, 4, 26].

The unique association of a mesh entity of dimension di, Mdi
i , to the geometric model entity of

dimension dj , G
dj
j , di ≤ dj , on which it lies is termed geometric classification, and is denoted Mdi

i

< G
dj
j , where the classification symbol, <, indicates that the left hand entity, or a set of entities, is

classified on the right hand entity. In Figure 5, a mesh of simple square model with entities labeled
is shown with arrows indicating the classification of the mesh entities onto the model entities. All
of the interior mesh faces, mesh edges, and mesh vertices are classified on the model face G2

1.
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Figure 6: Vertex and face order on a region [28]

2.2.3 Adjacencies

Adjacencies describe how mesh entities connect to each other. For an entity of dimension d,
first-order adjacency returns all of the mesh entities of dimension q, which are on the closure
of the entity for a downward adjacency (d > q), or for which the entity is part of the closure
for an upward adjacency (d < q). For denoting specific downward first-order adjacent entity,
Md

i {M q}j , the ordering conventions can be used to enforce the order. Figure 6, 7, and 8 illustrate
a common canonical order of bounding entities. Figure 9 is an adjacency graph that depicts 12 first-
order adjacencies possible in the mesh data structure where a solid box and a solid arrow denote,
respectively, explicitly stored level of entities and explicitly stored adjacencies from outgoing level
to incoming level. In the adjacency graph, a solid box denotes that entities of the level are explicitly
stored, and a solid arrow denotes that adjacencies from an outgoing level to an incoming level are
maintained for the level of entities.

For an entity of dimension d, second-order adjacencies describe all the mesh entities of dimension
q that share any adjacent entities of dimension b, where d 6= b and b 6= q. Second-order adjacencies
can be derived from first-order adjacencies.

Examples of adjacency requests include: for a given face, the regions on either side of the face (first-
order upward); the vertices bounding the face (first-order downward); and the faces that share any
vertex with a given face (second-order).
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Figure 10: Example of 3D mesh representations

2.2.4 Mesh Representation

The mesh representation can be categorized with two criteria (i) full vs. reduced and (ii) complete
vs. incomplete, resulting in 4 different groups [23].

If a mesh representation stores all 0 to d level entities explicitly, it is a full representation, oth-
erwise, it is a reduced representation. Completeness of adjacency indicates the ability of a mesh
representation to provide any type of adjacencies requested without involving an operation de-
pendent on the mesh size such as the global mesh search or mesh traversal. Regardless of full or
reduced, if all adjacency information is obtainable in O(1) time (the first circle), the representation
is complete, otherwise it is incomplete.

The general topology-based mesh data structures must satisfy completeness of adjacencies to sup-
port adaptive analysis efficiently. It doesn’t necessarily mean that all d level entities and adjacencies
need be explicitly stored in the representation so there are many representation options in the design
of general topology-based mesh data structure.

In the mesh representation graph, a dotted box denotes that among entities of the level, only
equally classified ones are explicitly stored, and a dotted arrow denotes that adjacencies from an
outgoing level to an incoming level are maintained only for the stored entities.

In Figure 10 illustrates 6 mesh representations in 3D. Note that in the adjacency graph, a dotted
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box denotes that among entities of the level, only equally classified ones are explicitly stored, and a
dotted arrow denotes that adjacencies from an outgoing level to an incoming level are maintained
only for the stored entities. (a) to (c) are full and complete due to all 0 to d levels of entities exist
and the 12 adjacencies are obtainable in O(1) time either by direct access or local traversal, (d) is
full and incomplete since it requires mesh level global search or traversal to get proper adjacencies,
(e) is reduced and complete, and (f) is reduced and incomplete. Representation (b) is the one-
level adjacency representation as it maintains adjacencies between entities one dimension apart.
Representation (e) is the complete minimum sufficient representation that stores the minimum
sufficient representation plus upward adjacencies from vertices to their bounding entities of level
> 0. Representation (f) is the classic mesh connectivity structure that describes the mesh only in
terms of elements and nodes, and also has been used for several finite element applications [4].

For more discussions on mesh representations, see Reference [23].

2.2.5 Entity set

An entity set provides a mechanism for creating arbitrary groupings of entities for various purposes
such as representing boundary layer, boundary condition and materials. Each entity set can be
either of a set with unique entity or a list with insertion order preserved. The following are the
functionalities of entity set to effectively support the application needs [13, 17].

• populating by addition or removal of entities from the set

• traversal through an iterator with various conditions such as topology, and type of the entity

• set boolean operations of subtraction, intersection, and union

• relationships among entity sets: subset, parent/child

In parallel computing environment, the mesh is distributed over multiple parts across the processes.
Therefore, there are two kinds of set available in distributed mesh.

• mesh set: entity set created in a mesh. entities in the set can be in different part.

– L − SET : a list type entity set created in mesh. Insertion order is preserved and an
entity can be inserted multiple times.

– S −SET : a set type entity set created in mesh. Insertion order is not preserved and an
entity can be inserted at most once.

• part set or P − SET : a set type entity set created in part. Insertion order is preserved and
only entities ithout higher order adjacency can be inserted.

Please be noted that entity set is not supported in the current PUMI release.
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2.2.6 Iterator

Iterators are a generalization of pointers which are objects that point to other objects. Iterators
are often used to iterate over a range of objects: if an iterator points to one element in a range,
then it is possible to increment it so that it points to the next element [25].

Various kinds of iterators are desirable for efficient mesh entity traversal with various conditions
such as entity dimension, entity topology, geometric classification. Furthermore, the iterator validity
shall be guaranteed with mesh modification through entity creation/deletion.

2.2.7 Tag

A tag is a container of arbitrary data attachable to meshes, entities, and entity sets. Different
values of a particular tag can be associated with mesh, entity, or entity set [13, 17].

For efficient manipulation of tags and their association with meshes, entities and entity sets, tags
consist of the following data.

• tag name: character string for identifying tag

• tag data: data stored in the tag

• tag type: data type for tag data
For better performance and management, five specialized tag types, integer, double, mesh
entity, entity set and byte type data are supported through interface. If the tag data consists
of multiple units (e.g. array of integer data), the size of tag data in byte and the number of
units are needed for efficient tag manipulation.

• tag size: the number of units of tag type in tag data

• tag byte: the size of tag data in bytes

2.3 S/W Structure

In development, geometry-based analysis s/w is modularized based on the features and goals as
component. Figure 11 illustrates the software structure of PUMI consisting of the following seven
components.

• The common utility component provides common utilities and services used in multiple other
components such as iterator, set, and tag.

• The parallel control component provides parallel-specific utilities and services such as com-
munications and architecture-aware operations.

• The geometric model component provides a uniform interface for querying geometric model
representations. It uses common utility and parallel control component.
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Figure 11: Software structure of PUMI

• The partition model component is constructed based on the mesh distribution and provides
mesh partitioning representation in topology to the mesh component for the support for
efficient update/manipulation of mesh with respect to partitioning.

• The mesh component provides the storage and management of distributed unstructured
meshes. It uses all components except for the field component.

• The field component provides the services for storage and management of solution information
on the mesh. It uses common utility, parallel control and mesh components.

• The partition control component provides the services for improving mesh partitioning via
graph partitioner or existing mesh information such as adajacencies.

PUMI consists of multiple libraries which are modularized based on supported features.

• pumi: a library with API hearder file and PUMI error codes. PUMI error codes are defined
in the file pumi errorcode.h and the API’s are defined in the file pumi.h.

• pcu: a library with parallel control and comminication. The header file is obtained in PCU.h.

• gmi: a library with SCOREC-formatted geometric model implementation.

• mds: a library with SCOREC-formatted mesh implementation.

• apf: a library with field, common mesh interface, common geometric model interface, inter-
ations between geometric model and mesh implmentation, etc. The header file is obtained in
apf.h.

• parma: a library with adjacency-based mesh partitioning functions. The header file is obtained
in parma.h.
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• zoltan: a library to support interaction with Zoltan [5, 9] graph partitioning S/W.
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3 Parallel Control and Communication

The PCU (Parallel Control Utility) is a library for parallel computation based on MPI with addi-
tional support for hybrid MPI/thread environments. PCU is included in PUMI to support needed
parallel controls and communication for operations with distributed meshes and model.

The PCU provides three things to users:

1. A phased message passing API

2. A thread management API

3. Support for phased message passing between threads instead of processes

Phased message passing is similar to Bulk Synchronous Parallel, but is implemented more efficiently.
All messages are exchanged in a phase, which is a collective operation involving all threads in the
parallel program. During a phase, the following events happen in sequence:

1. All threads send non-blocking messages to other threads

2. All threads receive all messages sent to them during this phase

PCU provides termination detection, which is the ability to detect when all messages have been
received without prior knowledge of which threads are sending to which.

To write hybrid MPI/thread programs, PCU provides a function that creates threads within an
MPI process, similar to the way mpirun creates multiple processes. PCU assigns ranks to these
threads and has them each run the same function, with thread-specific input arguments to the
function.

Once a program has created threads using PCU, it can call the phased message passing API from
within threads, which will behave as if each thread were an MPI process. Threads have unique
ranks and can send messages to one another, regardless of which process they are in.
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4 Geometric Model

PUMI geometric model interface supports the ability to interrogate solid models for topological
adjacency and geometric shape information.

The geometric model representation used by PUMI is a boundary representation based on the
Radial Edge Data Structure [31]. In this representation the model is a hierarchy of topological
entities called regions, shells, faces, loops, edges and vertices. This representation is general and
is capable of representing non-manifold models that are common in engineering analyses. The use
of a boundary representation is convenient for the association of problem attributes (e.g., loads,
material properties and boundary conditions) and mesh generation control information since the
entities defining the model are explicitly represented.

The classes used to represent the geometric model support operations to find the various model
entities that make up a model and to find which model entities are adjacent to a given entity. Other
operations relating to performing geometric queries are also supported.
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Figure 12: Distributed mesh on three processes P0, P1 and P2 with two parts per each process

5 Distributed Mesh Management

A distributed mesh data structure is an infrastructure executing underneath providing all parallel
mesh-based operations needed to support parallel adaptive analysis. An efficient and scalable
distributed mesh data structure is mandatory to achieve performance since it strongly influences
the overall performance of adaptive mesh-based simulations. In addition to the general mesh-based
operations, the distributed mesh data structure must support (i) efficient communication between
entities duplicated over multiple processes, (ii) migration of entities between processes, and (iii)
dynamic load balancing.

This chapter presents the concept and functionalties of distributed mesh management. §5.3 de-
scribes a partition model that is developed in FMDB for the purpose of effectively meeting the
specific functionalities of distributed meshes [23, 24]. The readers not interested in the internal
design and implementation of the distributed meshes in FMDB might skip §5.3

5.1 Distributed Mesh Representation

A distributed mesh is a mesh divided into parts for distribution over a set of processes for specific
reasons, for example, parallel computation.

Definition 3.1 Part
A part consists of the set of mesh entities assigned to a process. For each part, a unique
global part id within an entire system and a local part id within a process can be given.

Each part will be treated as a serial mesh with the addition of mesh part boundaries to describe
groups of mesh entities that are on inter-part boundaries. Mesh entities on part boundaries are
duplicated on all parts on which they are used in adjacency relations. Mesh entities not on the part
boundary exist on only one part and referred as internal entities. In implementation, for effective
manipulation of multiple parts on each process, a single mesh data is defined on each process so
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multiple parts are contained in the mesh data where the mesh data is assigned to a process. The
mesh data defined on each process is referred as mesh instance. Figure 12 depicts a mesh that is
distributed on 6 parts where the mesh instance on each process has two parts respectively. The
dashed lines are part boundaries within a process and the solid black lines are part boundaries
between the processes. The vertices and edges on part boundaries are duplicated on multiple parts.

In order to simply denote a set of parts where a mesh entity physically exist, termed residence part
set, we define an operator P.

Definition 3.2 Residence part set operator P[Md
i ]

An operator that returns a set of global part id(s) where Md
i exists.

Definition 3.3 Residence part equation of Md
i

If {Md
i {M q}} = ∅, d < q, P[Md

i ] = {p} where p is the id of a part where Md
i exists.

Otherwise, P[Md
i ] = ∪ P[M q

j | Md
i ∈ {∂(M q

j )}].

For any entity Md
i not on the part boundary of any higher order mesh entities and on part p,

P[Md
i ] returns {p} since when the entity is not on the boundary of any other mesh entities of

higher order, its residence part set is determined simply to be the part where it resides. If entity
Md

i is on the boundary of other higher order mesh entities, Md
i is duplicated on multiple parts

depending on the residence part set of its bounding entities since Md
i exists wherever a mesh entity

it bounds exists.

Therefore, the residence part set of Md
i is the union of residence part set of all entities that it

bounds. For a mesh topology where the entities of order d > 0 are bounded by entities of order
d− 1, P[Md

i ] is determined to be {p} if {Md
i {M

d+1
k }} = ∅. Otherwise, P[Md

i ] is ∪P[Md+1
k | Md

i

∈ {∂(Md+1
k )}]. For instance, for the 3D non-manifold mesh depicted in Figure 13, where M3

1 and
M2

1 are on P0, M
3
2 and M2

2 are on P1 and M1
1 is on P2, residence part set of M0

1 are {P0, P1, P2}
since the union of residence part set of its bounding edges, {M1

1 , M1
2 , M1

3 , M1
4 , M1

5 , M1
6 }, are {P0,

P1, P2}.

To migrate mesh entities to other parts, the destination part id’s of mesh entities must be specified
before moving the mesh entities. The residence part set equation implies that once the destination
part id of a Md

i that is not on its boundary of any other mesh entities is set, the other entities
needed to migrate are determined by the entities it bounds. Thus, a mesh entity that is not on the
boundary of any higher order mesh entities is the basic unit to assign the destination part id in the
mesh migration procedure.

Definition 3.4 Partition object
The basic unit to which a destination part id is assigned. The full set of partition objects is
the set of mesh entities that are not part of the boundary of any higher order mesh entities. In
a 3D mesh, this includes all mesh regions, the mesh faces not bounded by any mesh regions,
the mesh edges not bounded by any mesh faces or regions, and mesh vertices not bounded
by any mesh edges, faces or regions. A set of unique mesh entities refered as entity set can
also be a partition object if designated to be a migration unit.
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Figure 13: Example 3D mesh distributed on three parts

In case of a manifold model, partition objects are all mesh regions in 3D and all mesh faces in 2D.
In case of a non-manifold model, the careful lookup for entities not being bounded is required over
the entities of one specific dimension. For example, partition objects of the mesh in Figure 13 are
M1

1 , M2
1 , M2

2 , M3
1 , and M3

2 .

5.2 Functional Requirements

5.2.1 Communication links

Mesh entities on the part boundaries (shortly, part boundary entities) must be aware of where they
are duplicated.

Definition 3.5 Remote part
Non-self part2 where a mesh entity is duplicated.

Definition 3.6 Remote copy
Non-owned part boundary entities, in other words, the memory location of a mesh entity
duplicated on remote part.

5.2.2 Ownership

In parallel adaptive analysis, the mesh and its partitioning can change thousands of time during
the simulation [1, 8, 16, 27]. Therefore, at the mesh functionality level, an efficient mechanism to
update the mesh partitioning and keep the links between parts updated are mandatory to achieve
scalability.

2A part that is not in the current local part

24



Figure 14: A distributed mesh on four processes with one part per process [13]

Figure 15: A distributed mesh on four parts with ghost entities [13]

For entities on part boundaries duplicated on multiple parts, it is beneficial to assign a specific part
as the owner with charge of modification, communication or computation of the copies. For the
purpose of simple denotation, a part bounday entity owned by the self part is referred as owner of
other entities copied on other parts.

Figure 14 depicts a mesh that is distributed on four processes with a single part per process. Entities
on part boundaries are either of owner or copies. Internal entities are owners.

5.2.3 Ghosting

To avoid communications between the parts, it is beneficial to support the ability to have a copy
of non-part boundary entities on other part, referred as ghosting [13].

Definition 3.7 Ghost copy or ghost entity
Non-owned, non-part-boundary entity in a part
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Figure 16: 3-layer ghosting: (left to right) initial 6-part mesh, part 3 with 3 ghost layers, and part
4 with 3 ghost layers

Figure 15 depicts a distributed mesh on four parts with ghost entities along the part boundaries.
Similar to ownership of part boundary entities, the original owner entity is designated as owner of
all ghost copies.

To perform a layer-based ghosting, four input parameters are needed:

• bridge (entity) dimension

• ghost (entity) dimension

• the number of layers

• a true/false flag indicating whether to include non-owned part boundary entities will be in-
cluded for bridge entities. If true, all part boundary entities of bridge dimension are considered
to construct ghost layer(s). If false, only owned part boundary entities of bridge dimension
are considered.

Ghost entities are specified through a bridge dimension. The number of layers is measured from the
inter-part interfaces. For example, to get two layers of region entities in the ghost layer, measured
from faces on the interface, bridge dimension, ghost dimention, and the number of layers shall be,
respectively, 2, 3, 2. The number of layers specified is with respect to the global mesh, that is,
ghosting may extend beyond a single neighboring process if the number of layers is high.

In Figure 15, The input parameters of ghosting (bridge dimension, ghost dimension, the number of
layers and a flag) are [1, 2, 1, true].

The left figure in Figure 16 depicts 6-part distributed mesh. The parts 0 to 5 are colored in red,
orange, green, blue, turquoise, and gray respectively. The middle and right figure in Figure 16
illustrate the part 3 and part 4 with 3 ghost layers, where the original mesh entities are colored in
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Figure 17: Hierarchy of domain decomposition: (left to right) geometry model, partition model,
and distributed mesh on 4 processes

blue and the ghost copies are colored in yellow. The input parameters of ghosting procedure are
[0, 2, 3, true].

5.2.4 Migration

For effective management of distributed mesh with multiple parts per process, the following migra-
tion procedures are needed.

• Migrating entities and entity sets between parts with tag

• Migrating whole parts between processes

• Redistributing mesh. For example, splitting n part mesh to m parts, n 6= m, to load the
mesh on an m process machine.

5.3 A Partition Model

To meet the goals and functionalities of distributed meshes, a partition model has been developed
between the mesh and the geometric model. As illustrated in Figure 17, the partition model can be
viewed as a part of hierarchical domain decomposition. Its purpose is to represent mesh partitioning
in topology and support mesh-level parallel operations through inter-part boundary links with ease.

The specific implementation is the parallel extension of the unstructured mesh representation, such
that standard mesh entities and adjacencies are used on processes only with the addition of the
partition entity information needed to support all operations across multiple processes.

The partition model introduces a set of topological entities that represents the collections of mesh
entities based on their location with respect to the partitioning. Grouping mesh entities to define
a partition entity can be done with multiple criteria based on the level of functionalities and needs
of distributed meshes. These constructs are consistent with the ITAPS iMeshP specification [13].
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At a minimum, residence part set must be a criterion to be able to support the inter-part com-
munications. Connectivity between entities is also desirable for a criterion to support operations
quickly and can be used optionally. Two mesh entities are connected if they are on the same part
and reachable via adjacency operations. The connectivity is expensive but useful in representing
separate chunks in a part. It enables diagnoses of the quality of mesh partitioning immediately at
the partition model level. In our implementation, for the efficiency purpose, only residence part set
is used for the criterion.

Definition 2.8 Partition (model) entity
A topological entity in the partition model, P d

i , which represents a group of mesh entities of
dimension d, that have the same P. Each partition model entity is uniquely determined by
P.

Each partition model entity stores dimension, id, residence part set, and the owning part. From a
mesh entity level, by keeping proper relation to the partition model entity, all needed services to
represent mesh partitioning and support inter-part communications are easily supported.

Definition 2.9 Partition classification
The unique association of mesh topological entities of dimension di, M

di
i , to the topological

entity of the partition model of dimension dj , P
dj
j where di ≤ dj , on which it lies is termed

partition classification and is denoted Mdi
i < P

dj
j .

Definition 2.10 Reverse partition classification
For each partition entity, the set of equal order mesh entities classified on that entity de-
fines the reverse partition classification for the partition model entity. The reverse partition
classification is denoted as RC(P d

j ) = {Md
i | Md

i < P d
j }.

Figure 18 illustrates a 3D distributed mesh with mesh entities labeled with arrows indicating the
partition classification of the entities onto the partition model entities and its associated partition
model. The mesh vertices and edges on the thick black lines are classified on partition edge P 1

1 .
The mesh vertices, edges and faces on the shaded planes are classified on the partition faces pointed
with each arrow. The remaining mesh entities are non-part boundary entities, therefore they are
classified on the partition regions. Note the reverse classification returns only the same order mesh
entities. The reverse partition classification of P 1

1 returns mesh edges located on the thick black
lines, and the reverse partition classification of partition face P 2

i returns mesh faces on the shaded
planes.
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6 Interface Structure

The PUMI API’s are provided in the file ‘‘pumi.h’’. Please be noted that in the current PUMI
release, an entity set and multiple parts per process are not supported. Herein, with a single part
per process, a mesh instance and a part handle are interchangeable.

6.1 API naming convention

PUMI API function name consists of two or three words connected with ‘ ’.

• the first word is “pumi”

• the second word is an operation target. If the operation target is system-wide, the operation
target is ommited. For instance, the function that initializes the PUMI service is pumi start.

• the third word is the operation description starting with a verb. For example, the function
pumi mesh getNumEnt returns the number of mesh entities with specific type. The function
pumi gent getID returns the global ID of geometric model entity.

The following are operation targets used in the second word.

• geom: the api is performed on a geometric model

• gent : the api is performed on a geometric model entity

• mesh: the api is performed on a local mesh or global mesh

• ghost : the api performs ghosting functions

• ment : the api is performed on a mesh entity

• tag : the api is performed on a tag handle

• field : the api is performed on a field object

• shape: the api is performed on a field shape object

• node: the api is performed on a field node

• numbering : the api is performed on a numbering object

6.2 Abbreviation

Abbreviations may be used in API naming. See http://scorec.rpi.edu/wiki/Abbriviations for more
information.
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6.3 Data Types and Classes

For a geometry, partition and mesh model, the term instance is used to indicate the model data
existing on each process. For example, a mesh instance on process i means a pointer to a mesh
data structure on process i, in which all mesh entities on process i are contained and from which
they are accessible. For all other data such as entity and entity set, the term handle is used to
indicate the pointer to the data. For example, a mesh entity handle means a pointer to the mesh
entity data. The predefined data type has a prefix p to indicate the pointer data type.

The following are predefined data types used in the interface function parameters.

pGeom geometric model instance
pGeomEnt geometric entity handle

pMesh mesh instance
pMeshEnt mesh entity handle

pOwnership an ownership handle to allow user-defined ownership rule for part boundary entities
Vector3 an array of three doubles to hold the coordinate information of node
Adjacent an array of entities to hold the adjacency
EntityVector std::vector of mesh entity handle (pMeshEnt)
Copies std::map of part ID (int) and mesh entity handle (pMeshEnt) to hold remote or

ghost copies
Parts std::set of part ID (int)

pTag tag handle for geometric model
pMeshTag tag handle for mesh

pGeomIter iterator traversing over global geometric model entities
pMeshIter iterator traversing over local mesh entities
pCopyIter iterator traversing Copies

pShape shape function handle to define how the field nodes are distributed
pField field handle
pNumbering numbering handle to assign local numbering to multiple degree of freedoms in field

nodes
pGlobalNumbering global numbering handle to assign global numbering to multiple degree of freedoms

in field nodes

The following classes are defined to support mesh re-distribution and ghosting.

Migration a class to define migration plan
Distribution a class to define distribution plan
Ghosting a class to define ghosting plan
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6.4 Enumeration Types

The enumeration type for tag data type is:

enum PUMI_TagType {

PUMI_DBL = 0 /* double */,

PUMI_INT, /* 1 - integer */

PUMI_LONG, /* 2 - long integer */

PUMI_ENT, /* 3 - entity handle. Only for geometric model*/

PUMI_SET, /* 4 - set handle. NOT SUPPORTED */

PUMI_PTR, /* 5 - opaque pointer. Only for geometric model*/

PUMI_STR, /* 6 - string. NOT SUPPORTED */

PUMI_BYTE /* 7 - 1 byte character. Only for geometric model */

}

For geometric model, the supported tag types are PUMI DBL, PUMI INT, PUMI LONG, PUMI ENT,
PUMI PTR, and PUMI BYTE. For mesh, the supported tag types are PUMI DBL, PUMI INT,
and PUMI LONG.

The enumeration type for entity topology is:

enum PUMI_EntTopology {

PUMI_VERTEX, // 0

PUMI_EDGE, // 1

PUMI_TRIANGLE, // 2

PUMI_QUAD,// 3

PUMI_TET, // 4

PUMI_HEX, // 5

PUMI_PRISM, // 6

PUMI_PYRAMID // 7

};

The enumeration type for field data type is:

enum PUMI_FieldType {

PUMI_SCALAR, // a single scalar value

PUMI_VECTOR, // a 3D vector

PUMI_MATRIX, // a 3x3 matrix

PUMI_PACKED // a user-defined set of components

};

6.5 Error Codes

If the API function returns an error code and the function succeeds, it returns 0, otherwise, it returns
a positive integer representing a type of error. The error codes are defined in pumi errorcode.h.
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enum PUMI_ErrCode {

PUMI_SUCCESS = 0, // no error

PUMI_MESH_ALREADY_LOADED,

PUMI_FILE_NOT_FOUND,

PUMI_FILE_WRITE_ERROR,

PUMI_NULL_ARRAY,

PUMI_BAD_ARRAY_SIZE,

PUMI_BAD_ARRAY_DIMENSION,

PUMI_INVALID_ENTITY_HANDLE,

PUMI_INVALID_ENTITY_COUNT,

PUMI_INVALID_ENTITY_TYPE,

PUMI_INVALID_ENTITY_TOPO,

PUMI_BAD_TYPE_AND_TOPO,

PUMI_ENTITY_CREATION_ERROR,

PUMI_INVALID_TAG_HANDLE,

PUMI_TAG_NOT_FOUND,

PUMI_TAG_ALREADY_EXISTS,

PUMI_TAG_IN_USE, // try to delete a tag that is in use

PUMI_INVALID_SET_HANDLE,

PUMI_INVALID_ITERATOR,

PUMI_INVALID_ARGUMENT,

PUMI_MEMORY_ALLOCATION_FAILED,

PUMI_INVALID_MESH_INSTANCE,

PUMI_INVALID_GEOM_MODEL,

PUMI_INVALID_GEOM_CLAS,

PUMI_INVALID_PTN_CLAS,

PUMI_INVALID_REMOTE,

PUMI_INVALID_MATCH,

PUMI_INVALID_PART_HANDLE,

PUMI_INVALID_PART_ID,

PUMI_INVALID_SET_TYPE,

PUMI_INVALID_TAG_TYPE,

PUMI_ENTITY_NOT_FOUND,

PUMI_ENTITY_ALREADY_EXISTS,

PUMI_REMOTE_NOT_FOUND,

PUMI_GHOST_NOT_FOUND,

PUMI_CB_ERROR,

PUMI_NOT_SUPPORTED,

PUMI_FAILURE,

}

33



7 Comminication API’s

“PCU.h” provides the API functions for parallel communications including MPI.

34



8 System-wide API’s

This section describes API functions and enumeration types which are not bounded with a specific
geometric model or mesh data.

void pumi_start()

Initialize parallel services pertinent to PUMI.

void pumi_finalize(bool /* in */ do_mpi_finalize=false)

Finalize parallel services and clean the memory. If the input parameter do mpi finalize is
true, MPI finalization is performed as well. do mpi finalize is optional (default: false).

int pumi_size()

Return the number of processes.

int pumi_rank()

Return the MPI rank in communicator. Rank starts from 0.

void pumi_sync()

Synchronize all processes in communicator

void pumi_printSys()

Print system information such as host name, processor, operating system, etc.
(Example) Linux node10.borg.scorec.rpi.edu 2.6.9-89.ELsmp SMP Mon Jun 22 12:31:33 EDT 2009
x86 64.

double pumi_getMem()

Return the heap memory increase (MB) on local process since pumi start().

double pumi_getTime()

Return the current time in second.

void pumi_printTimeMem(

const char* /* in */ msg,

double /* in */ time,

double /* in */ memory)

Display “msg : time (sec) and memory (MB)”.
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9 Geometric Model API’s

This chapter describes geometric model related API functions.

9.1 Model managemant and interrogation

pGeom pumi_geom_load(

const char* /* in */ model_file_name,

const char* /* in */ model_type="mesh",

void (*geom_load_fp)(const char*))

Given geometric model file name and geometric model type (“mesh”, “null”, “analytic”),
create a model, load the model data from the file, and return a geometric model instance. If
model type is not provided, the default is “mesh”.

In case where a geometric model is NOT available, pumi geom load(NULL, ‘‘null") will generate
a “null” geometric model which mimicks the minimal geometric model behavior enough to support
the PUMI.

In case of the analytic model, the user can provide a function pointer in the third argument, which
creates analytic model entities. If the third argument is not provided for the analytic model, a set of
analytic model entities can be created later via functions gmi add analytic, gmi add analytic region,
gmi add analytic cell, and gmi add analytic reparam. For the details of analytic model entity cre-
ation, see top source dir/gmi/gmi analytic.h.

void pumi_geom_delete (pGeom /* in */ g)

Given a geometric model instance, delete the model instance and deallocate the memory.

void pumi_geom_freeze(pGeom /* in */ g)

In some special cases, the model entities can be created by users or derived from the mesh.
In such cases, when the model construction is completed, the function pumi geom freeze has to be
called to update the internal data of the geometric model accordingly. This function finalizes the
geometric model so no more model entity can be created afterwards.

int pumi_geom_getNumEnt(

pGeom /* in */ g,

int /* in */ d)

Given a geometric model instance and dimension d (0− 3), return the number of geometric
model entities of the dimension d.

pGeomEnt pumi_geom_findEnt(

pGeom /* in */ g,

int /* in*/ d,

int /* in */ id)
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Given a geometric model instance, dimension d (0 − 3), and a local ID, find the corresponding
geometric model entity and return its handle. Otherwise, return NULL.

void pumi_geom_print (

pGeom /* in */ g,

bool /* in */ print_entities)

Given a mdoel instance and a boolean flag pecifing whether to print the details of model
entities, display the model information. The information includes size, tag, and individual entities
with global ID. The argument print entities is optional (default: false).

9.2 Geometric model interation

pGeom g;

for (pGeomIter it = g->begin(d); it!=g->end(d);++it)

{

pGeomEnt e = *it;

...

}

Iterate geometric model entities of dimension d.

9.3 Geometric entity interrogation

int pumi_gent_getDim (pGeomEnt /* in */ geom_ent)

Given a geometric model entity, return its dimension (0− 3).

int pumi_gent_getID (pGeomEnt /* in */ geom_ent)

Given a geometric model entity, return its global ID. Note that, in parallel, each process
loads the entire geometric model.

void pumi_gent_getRevClas (

pGeomEnt /* in */ geom_ent,

std::vector<pMeshEnt>& /* inout */ mesh_ents)

Given a geometric model entity, get the vector mesh ents filled with its reverse classification
(equal-order mesh entities classified on the geometric model entity).

int pumi_gent_getNumAdj (

pGeomEnt /* in */ geom_ent,

int /* in */ target_dim)
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Given a geometric model entity and desired adjacency type target dim, get the number of
adjacent entities of the type. Note the following: (i) if the geometric model is constructed by users,
the adjacencies shall be constructed as well using apf::add adj (See gmi.h), (ii) if the geometric
model is a null model or driven by the mesh, the adjacencies may not be fully constructed.

void pumi_gent_getAdj (

pGeomEnt /* in */ geom_ent,

int /* in */ target_dim,

std::vector<pGeomEnt>& /* inout*/ adj_ents)

Given a geometric model entity and desired adjacency type target dim, get the vector adj ents
filled with the adjacent entities of the type. Note the following: (i) if the geometric model is
constructed by users, the adjacencies shall be constructed as well using apf::add adj (See gmi.h),
(ii) if the geometric model is a null model or driven by the mesh, the adjacencies may not be fully
constructed.

void pumi_gent_get2ndAdj (

pGeomEnt /* in */ geom_ent,

int /* in */ brg_dim,

int /* in */ target_dim,

std::vector<pGeomEnt>& /* inout*/ adj_ents)

Given a geometric model entity handle, bridge type brg dim, and desired adjacency type
target dim, get the vector container adj ents filled with 2nd order adjacent entities of type target dim
obtained through the bridge type brg dim. brg dim and target dim should not be equal.

9.4 Geometric model tag management

pTag pumi_geom_createTag (

pGeom /* in */ g,

const char* /* in */ tag_name,

int /* in */ tag_type,

int /* in */ tag_size)

Given a geometric model instance, tag name, tag data type, and tag data size, create a tag
handle in model instance and return the tag handle.

void pumi_geom_deleteTag (

pGeom /* in */ g,

pTag /* in */ tag,

bool force_delete=false)

Given a geometric model instance and a tag handle, destroy the tag from the model instance.
If force delete is true, it checks if any tag data associated with the tag exists and delete any existing
tag data then deletes the tag handle. If force delete is false, the tag is deleted without checking tag
data associated with the tag. force delete is optional (default: false). if force delete is false and
the tag handle is still in use, the function crashes.
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Note: Since PUMI doesn’t keep track of tag data attachment, forced tag deletion is O(N).

pTag pumi_geom_findTag (

pGeom /* in */ g,

const char* /* in */ tag_name)

Given a geometric model instance and character string, return the handle of an existing tag
in the model. If there’s no tag with the given name, NULL is returned.

bool pumi_geom_hasTag (

pGeom /* in */ g,

pTag /* in */ tag)

Given a geometric model instance and a tag handle, return 1 if the tag exists in the model.
Otherwise, 0.

void pumi_geom_getTag (

pGeom /* in */ g,

std::vector<pTag>& /* inout */ tags)

Given a geometric model instance, get the vector tags filled with tag handles created in the
model.

int pumi_tag_getType (const pTag /* in */ tag)

Given a tag handle, return tag type.

void pumi_tag_getName (

const pTag /* in */ tag,

const char** /* out */ name)

Given a tag handle, get the tag name.

int pumi_tag_getSize (const pTag /* in */ tag)

Given a tag handle, get the tag data size.

void pumi_tag_getByte (const pTag /* in */ tag)

Given tag handle, get the byte size of tag data.

9.5 Geometric entity tagging

void pumi_gent_deleteTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag)
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Given geometric entity handle and tag handle, delete the tag data from the entity.

bool pumi_gent_hasTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag)

Given geometric entity handle and tag handle, return true if the tag data is attached to the
entity. Otherwise, return false.

void pumi_gent_getTag (

pGeomEnt /* in */ geom_ent,

std::vector<pTag>& /* inout */ tags)

Given geometric entity handle, get the vector tags filled with all tag handles attached to the
entity.

void pumi_gent_setPtrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const void* /* in */ data)

Given geometric entity handle, tag handle, and opaque data (void*), set or update the tag
value of the entity. It fails if (i) tag type is not PUMI PTR, (ii) tag data size is greater than 1.
In some cases, users do not really care about the geometric model at all. For such cases, there is
a “null” geometric model that can be used, which just mimicks the minimal necessary behavior to
support the rest of the code. You can get a null model as follows:

void pumi_gent_getPtrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

void** /* out */ data)

Given geometric entity handle and tag handle, get pointer type data tagged to the entity. It
fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not PUMI PTR, (iii) tag data size
is greater than 1.

void pumi_gent_setIntTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const int /* in */ data)

Given geometric entity handle, tag handle, and integer data, set or update the tag value of
the entity. It fails if (i) tag type is not PUMI INT, (ii) tag data size is greater than 1.

void pumi_gent_getIntTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

int* /* out */ data)
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Given geometric entity handle and tag handle, get integer type data tagged to the entity. It
fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not PUMI INT, (iii) tag data size is
greater than 1.

void pumi_gent_setLongTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const long /* in */ data)

Given geometric entity handle, tag handle, and long data, set or update the tag value of the
entity. It fails if (i) tag type is not PUMI LONG, (ii) tag data size is greater than 1.

void pumi_gent_getLongTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

long* /* out */ data)

Given geometric entity handle and tag handle, get long type data tagged to the entity. It
fails if (i) tag type is not PUMI LONG, (ii) tag data size is greater than 1.(i) the tag doesn’t exist
with the entity, (ii) tag type is not PUMI LONG, (iii) tag data size is greater than 1.

void pumi_gent_setDblTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const double /* in */ data)

Given geometric entity handle, tag handle, and double data, set or update the tag value of
the entity. It fails if (i) tag type is not PUMI DBL, (ii) tag data size is greater than 1.

void pumi_gent_getDblTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

double* /* out */ data)

Given geometric entity handle and tag handle, get double type data tagged to the entity. It
fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not PUMI DBL, (iii) tag data size
is greater than 1.

void pumi_gent_setEntTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const pGeomEnt /* in */ data)

Given geometric entity handle, tag handle, and another geometric model entity, set or update
the tag value of the entity. It fails if (i) tag type is not PUMI ENT, (ii) tag data size is greater
than 1.
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void pumi_gent_getEntTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

pGeomEnt* /* out */ data)

Given geometric entity handle, tag handle, get the entity tagged to the geometric model
entity. It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not PUMI ENT, (iii) tag
data size is greater than 1.

void pumi_gent_setPtrArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

void* const* /* in */ data)

Given geometric entity handle, tag handle, and opaque array data (void*), set or update the
tag value of the entity. It fails if (i) tag type is not PUMI PTR, (ii) the size of tag data doesn’t
match that of the data.

void pumi_gent_getPtrArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

void** /* out */ data)

Given geometric entity handle and tag handle, get pointer array data tagged to the entity.
It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not PUMI PTR, (iii) the size of
tag data doesn’t match that of the data.

void pumi_gent_setIntArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const int* /* in */ data)

Given geometric entity handle, tag handle, and integer array data, set or update the tag
value of the entity. It fails if (i) tag type is not PUMI INT, (ii) the size of tag data doesn’t match
that of the data.

void pumi_gent_getIntArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

int** /* out */ data,

int* /* out */ data_size)

Given geometric entity handle and tag handle, get integer array data tagged to the entity.
data size is the size of data. It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not
PUMI INT, (iii) the size of tag data doesn’t match that of the data.

void pumi_gent_setLongArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const int* /* in */ data)
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Given geometric entity handle, tag handle, and long array data, set or update the tag value
of the entity. It fails if (i) tag type is not PUMI LONG, (ii) the size of tag data doesn’t match
that of the data.
(NOT SUPPORTED)

void pumi_gent_getLongArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

int** /* out */ data,

int* /* out */ data_size)

Given geometric entity handle and tag handle, get long array data tagged to the entity.
data size is the size of data. It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not
PUMI LONG, (iii) the size of tag data doesn’t match that of the data.
(NOT SUPPORTED)

void pumi_gent_setDblArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const double* /* in */ data)

Given geometric entity handle, tag handle, and double array data, set or update the tag
value of the entity. It fails if (i) tag type is not PUMI DBL, (ii) the size of tag data doesn’t match
that of the data.

void pumi_gent_getDblArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

double** /* out */ data,

int* /* out */ data_size)

Given geometric entity handle and tag handle, get double array data tagged to the entity.
data size is the size of data. It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not
PUMI DBL, (iii) the size of tag data doesn’t match that of the data.

void pumi_gent_setEntArrTag (

pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

const pGeomEnt* /* in */ data,

int /* in */ data_size)

Given geometric entity handle, tag handle, and entity array data, set or update the tag value
of the entity. It fails if (i) tag type is not PUMI ENT, (ii) the size of tag data doesn’t match that
of the data.

void pumi_gent_getEntArrTag (
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pGeomEnt /* in */ geom_ent,

pTag /* in */ tag,

pGeomEnt** /* out */ data,

int* /* out */ data_size)

Given geometric entity handle and tag handle, get entity array data tagged to the entity.
data size is the size of data. It fails if (i) the tag doesn’t exist with the entity, (ii) tag type is not
PUMI ENT, (iii) the size of tag data doesn’t match that of the data.
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10 Mesh API’s

This chapter describes mesh API functions.

10.1 Mesh Functions

10.1.1 Mesh management

pMesh pumi_mesh_create(

pGeom /* in */ g,

int /* in */ mesh_dim)

Given a geometric model instance and mesh dimension, create an empty mesh instance.
Call this function only if mesh entities will be created afterwards. Mesh vertex can be created by
pumi mesh createVtx. Non-vertex mesh entity can be created by pumi mesh createEnt. Mesh
element (faces in 2D or regions in 3D) can be created by either by pumi mesh createEnt or
pumi mesh createElem. Note the followings: (i) in parallel, part boundaries construction should be
set by users (ii) after finishing mesh entity creation, the function pumi mesh freeze must be called
to update internal mesh data accordingly.

void pumi_mesh_freeze(pMesh /* in */ m)

Given a mesh instance, finalize the mesh entity creation. This function updates the internal
geometric model data and partition model accordingly. No more mesh entity creation is allowed
afterwards.

pMeshEnt pumi_mesh_createVtx(

pMesh /* in */ m,

pGeomEnt /* in */ ge,

double* /* in */ xyz)

Given a mesh instance, geometric model entity handle and xyz coordinates, create a mesh
vertex and return its handle.

pMeshEnt pumi_mesh_createEnt(

pMesh /* in */ m,

pGeomEnt /* in */ ge,

int /* in */ target_topology,

pMeshEnt* /* in */ downward)

Given a mesh instance, geometric model entity handle, target entity topology, and an array of
one-level downward entities, create a non-vertex mesh entity and return its handle. The supported
entity topologies are PUMI EDGE, PUMI TRIANGLE, PUMI QUAD, PUMI TET, PUMI HEX,
PUMI PRISM, and PUMI PYRAMID. For instance, to create an edge, target topology is PUMI EDGE

and downward is an array with two vertices. To create a prism, target topology is PUMI PRISM and
downward is an array of five faces. In terms of the order of downward entities, see Figures 6 and 8.
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pMeshEnt pumi_mesh_createElem(

pMesh /* in */ m,

pGeomEnt /* in */ ge,

int /* in */ target_topology,

pMeshEnt* /* in */ vertices)

Given a mesh instance, geometric model entity handle, target entity topology, and an array
of vertices, create a mesh element (regions in 3D and faces in 2D) and return its handle. The
supported en tity topologies are PUMI TRIANGLE and PUMI QUAD for 2D mesh, PUMI TET,
PUMI HEX, PUMI PRISM, and PUMI PYRAMID for 3D mesh. For instance, To create a prism,
target topology is PUMI PRISM and vertices is an array of six vertices. In terms of the order of
downward vertices, see Figures 6 and 8.

pMesh pumi_mesh_loadSerial(

pGeom /* in */ g,

const char* /* in */ filename,

const char* /* in */ type="mds")

Given a model instance, mesh file name, and mesh type, create a mesh instance, load the
mesh data onto the master process, then return the mesh instance. If this function is called in p
processes (p>1), only the master process (process 0) loads a mesh from the mesh file and the rest
of processes have an empty mesh.

As PUMI is designed to support multiple mesh types, the third argument is used to specify the
mesh type in file. If type is not specified, the default value is “mds” where the file with exension
“.smb” is loaded. “mds” mesh file contains number i before the file extension (“.smb”), where i
represents the process rank.

For instance, for a four-part distributed mesh, the mesh files are “filename0.smb”, “filename1.smb”,
“filename2.smb” and “filename3.smb”. For a serial mesh, the mesh file is “filename0.smb”.

Note to drop the process rank i in the second argument. For instance, to load a serial mesh in
“filename0.smb”, the second argument should be “filename.smb”.

pMesh pumi_mesh_load(

pGeom /* in */ g,

const char* /* in */ filename,

int /* in */ n,

const char* /* in */ type="mds")

Given a model instance, file name, the number of input mesh files and mesh type, create a
mesh instance, load the mesh data from the file, then return the mesh instance. The number of
files n is 1 and the number of process p is greater then 1, first, the serial mesh is loaded onto the
master process then partitioned to p parts.

As PUMI is designed to support multiple mesh types, the third argument is used to specify the
mesh type. If type is not specified, the default value is “mds” where the file with exension “.smb”
is loaded. “mds” mesh file contains number i before the file extension (“.smb”), where i represents
the process rank. For instance, for a four-part distributed mesh, the mesh files are “filename0.smb”,
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“filename1.smb”, “filename2.smb” and “filename3.smb”. For a serial mesh, the mesh file is “file-
name0.smb”.

Note to drop the process rank i in the second argument. For instance, to load a serial mesh in
“filename0.smb” onto p processes (p>1), the second and the third arguments are “filename.smb”
and 1. In order to load a three-part mesh in “filename0.smb”, “filename1.smb”, “filename2.smb”,
the second and the third arguments are “filename.smb” and 3.

void pumi_mesh_delete (pMesh /* in */ m)

Given a mesh instance, delete the mesh instance and deallocate the memory.

bool pumi_mesh_hasAdjacency (

pMesh /* in */ m,

int /* in */ from_dim,

int /* in */ to_dim)

Given a mesh instance and dimensions from dim and to dim, return true if the adjacency
from from dim to to dim is explicitly stored and maintained. The default mesh representation is
the one-level representation (See Figure 10(b)).

void pumi_mesh_createAdjacency(

pMesh /* in */ m,

int /* in */ from_dim,

int /* in */ to_dim)

Given a mesh instance and dimensions from dim and to dim, if the adjacency from from dim
to to dim is not explicitly stored and maintained, create the explicit adjacency from from dim
to to dim. The performance of adjacency queries from from dim to to dim will improve at the
cost of storing the adjacency. Please be noted that the development with the user-defined mesh
representation is on-going, therefore currently not all PUMI API’s are supported with user-defined
mesh representation.

void pumi_mesh_deleteAdjacency (

pMesh /* in */ m,

int /* in */ from_dim,

int /* in */ to_dim)

Given a mesh instance and dimensions from dim and to dim, if the adjacency from from dim
to to dim is explicitly stored and maintained, delete the adjacency from from dim to to dim. If
from dim is one-level apart from to dim, the function doesn’t perform. Please be noted that the
development with the user-defined mesh representation is on-going, therefore currently not all
PUMI API’s are supported with user-defined mesh representation.

void pumi_mesh_createFullAdjacency (pMesh /* in */ m)
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Given a mesh instance, create the full adjacencies. For instance, in 3D mesh, 12 adjacencies
are explicitly stored (See Figure 9). Please be noted that the development with the full adjacencies
is on-going, therefore currently not all PUMI API’s are supported with the full adjacencies.

void pumi_mesh_write (

pMesh /* in */ m,

const char* /* in */ filename,

const char* /* in */ type="mds")

Given a model instance, write a mesh into mesh file(s). The third argument is used to specify
the mesh file type. The supported type is “mds” and “vtk”. If type is not specified, the default
value is “mds”. If the second and third argument are “filename.smb” and “mds”, each process i
writes its mesh data in the file “filenamei.smb”. If the second and third argument are “output”
and “vtk”, all vtk files are created in the directory output. See Appendix A for how to visualize
the vtk mesh files in Paraview.

10.1.2 Mesh interrogation

pGeom pumi_mesh_getGeom(pMesh /* in */ m)

Given a mesh instance, return the geometry model instance associated with.

int pumi_mesh_getDim(pMesh /* in */ m)

Given a mesh instance, return the dimension.

void pumi_mesh_setCount(

pMesh /* in */ m,

pOwnership /* im */ o=NULL)

Given a mesh instance and an ownership rule handle, compute the global/owned entity
counts for dimension 0−3 on local process. The ownership rule is an optional argument (default:
NULL). If NULL, the default ownership rule provided by PUMI is used, where an owning part of
part boundary entities is a part with the minimum number of elements among residence parts.

This function must be called before pumi mesh getNumGlobalEnt and pumi mesh getNumOwnEnt,

int pumi_mesh_getNumEnt(

pMesh /* in */ m,

int /* in */ d)

Given a mesh instance and dimension d (0−3), return the local entity count of the dimension
d on local process. When a mesh entity is duplicated (part boundary or ghost) on N processes,
each duplicate copy is counted.

int pumi_mesh_getNumGlobalEnt(

pMesh /* in */ m,

int /* in */ d)
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Given a mesh instance and dimension d (0−3), return the global entity count of the dimension
d on all processes. When a mesh entity is duplicated (part boundary or ghost) on N processes,
only the owner copy is counted.

Prerequisite: pumi mesh setCount

int pumi_mesh_getNumOwnEnt(

pMesh /* in */ m,

int /* in */ d)

Given a mesh instance and dimension d (0−3), return the owned entity count of the dimension
d on local process.

Prerequisite: pumi mesh setCount

pMeshEnt pumi_mesh_findEnt(

pMesh /* in */ m,

int /* in*/ d,

int /* in */ id)

Given a mesh instance, dimension d (0−3), and a local ID, find the corresponding mesh entity and
return its handle. If a mesh entity of the ID doesn’t exist, return NULL. For local ID of mesh
entity, see pumi ment getID.

10.1.3 Mesh iteration

pMeshEnt e;

pMeshIter it = m->begin(d);

while ((e = m->iterate(it)))

{ ... }

m->end(it);

Iterate mesh entities by dimension d.

10.1.4 Tag management

pMeshTag pumi_mesh_createIntTag (

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ size)

Given a mesh instance, tag name, and tag data size (¿0), create an integer tag and return its
handle. If size is 1, the associated tag data is single integer. If size is greater than 1, the associated
tag data is an integer array.
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pMeshTag pumi_mesh_createLongTag (

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ size)

Given a mesh instance, tag name, and tag data size (¿0), create a long tag and return its handle.
If size is 1, the associated tag data is single long. If size is greater than 1, the associated tag data
is a long array.

pMeshTag pumi_mesh_createDblTag (

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ size)

Given a mesh instance, tag name, and tag data size (¿0), create a double tag and return its
handle. If size is 1, the associated tag data is single double. If size is greater than 1, the associated
tag data is a double array.

void pumi_mesh_deleteTag(

pMesh /* in */ m,

pMeshTag /* in */ tag,

bool /* in */ force_delete=false)

Given a mesh instance and a tag handle, destroy the tag from the mesh instance. If
force delete is true, delete any existing tag data associated with the tag handle before deleting
tag handle. If force delete is false, the tag handle is deleted without checking tag data associated
with the tag. force delete is optional (default: false).

Note: Since PUMI doesn’t keep track of tag data attachment, forced tag deletion is O(N).

pMeshTag pumi_mesh_findTag (

pMesh /* in */ m,

const char* /* in */ name)

Given a mesh instance and tag name, return a tag handle with the given name. If no tag
handle is found, return NULL.

bool pumi_mesh_hasTag (

pMesh /* in */ m,

const pMeshTag /* in */ tag)

Given a mesh instance and a tag handle, return true if the tag handle exists in the mesh.
Otherwise, return false.

void pumi_mesh_getTag (

pMesh /* in */ m,

std::vector<pMeshTag> /* inout */ tags)

Given a mesh instance, get the vector tags filled with tag handles created.
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10.1.5 Mesh migration

class Migration

{

public:

Migration(pMesh m);

~Migration();

// assign a destination part ID to an element

void send(pMeshEnt e, int to);

// return the destination part ID of an element

int sending(pMeshEnt e);

...

};

Mesh migration is a mesh-level procedure to send a local partition object (or element) to a single
destination part. Duplicated off-part entities along the part boundaries are accessible through re-
mote copies. The class Migration provides the mechanism to register a local element for migration.
Using the member function Migration::send, an element can be registed to migrate to at most
one remote part. As the Migration object keeps the list of elements to be migrated, it is termed
migration plan.

void pumi_mesh_migrate (

pMesh /* in */ m,

Migration* /* in */ plan)

Given a mesh instance and a migration object plan, migrate the elements as registed in plan.
Tagged data, field, global numbering and global entity ID are maintained during the migration.

10.1.6 Mesh distribution

class Distribution

{

public:

Distribution(pMesh m);

~Distribution();

// assign a destination part ID to an element

void send(pMeshEnt e, int to);

// return destination part ID’s of an element

std::set<int>& sending(pMeshEnt e);

...

};

Mesh distribution is a mesh-level procedure to send a local partition object (or element) to multiple
destination parts. Duplicated off-part elements are accessible through remote copies. The class
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Distribution provides the mechanism to register a local element for distribution. Using the member
function Distribution::send, an element can be registed to distribute to other remote part. As
the Migration object keeps the list of elements to be distributed, it is termed distribution plan.

void pumi_mesh_distribute (

pMesh /* in */ m,

Distribution* /* in */ plan)

Given a mesh instance and a distribution object plan, distribute the elements as registed
in plan. Tagged data, field, global numbering and global entity ID are maintained during the
distribution.

10.1.7 Ghosting

class Ghosting

{

public:

// create a ghosting object with ghost dimension (1-3)

Ghosting(pMesh, int d);

~Ghosting();

// assign a destination part ID to an entity of ghost dimension

void send(pMeshEnt e, int to);

// assign a destination part ID to all entities of ghost dimension

void send(int to);

// return destination part ID’s of an entity

std::set<int>& sending(pMeshEnt e);

...

};

Mesh ghosting is a mesh-level procedure to create local copy of off-part (internal or part boundary)
entities. The local copy of off-part entities are termed “ghost copy”. The ghost copy maintains
the link to its original entity copy. If the ghost copy is originated from a part boundary entity, it
maintains the link only to the owning copy of part boundary entity. However all duplicate copies of
part part entity (owned or not) maintain the link to the ghost copy. The class Ghosting provides
the mechanism to register a local entity for ghosting. Using the member function Ghosting::send,
an entity can be registed to be ghosted on at least one destination part ID. As the Ghosting

object keeps the list of entities to be ghosted, it is termed ghosting plan. Ghosting procedure is
accumulative; it can be performed multiple times with different options resulting in adding more
ghost copies or ghost layers incrementally.

void pumi_ghost_create (

pMesh /* in */ m,

Ghosting* /* in */ plan)

Given a mesh instance and a ghosting object plan, create ghost copies as registed in plan.
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void pumi_ghost_createLayer (

pMesh /* in */ m,

int /* in */ brg_dim,

int /* in */ ghost_dim,

int /* in */ num_layer,

int /* in */ include_copies)

Given a mesh instance, desired bridge entity type (0-2) on part boundary, desired ghost
entity type (1-3), the number of ghost layers, and an integer flag indicating whether to include
non-owned bridge entity (1: yes, 0: no) in ghosting plan computation, create ghost entities. If
include copies equals 0 and part boundary entity of type brg dim is not owned by a local part
(shortly, non-owned bridge type entity), ghost dim-dimensional entities adjacent to the non-owned
bridge type entity is not ghosted. If include copies is non-zero integer, all ghost dim dimensional
entities adjacent to the bridge type entities on part boundaries are ghost copied.

The function fails in the following cases:

1. bridge dimension is greater than or equal to ghost dimension

2. bridge dimension is greater than or equal to mesh dimension

3. ghost dimension is mesh vertex

4. ghost dimension is grester than mesh dimension

Tagged data, field, global numbering and global entity ID are maintained during the ghosting.

int pumi_ghost_delete (pMesh /* in */ m)

Given a mesh instance, delete ghost entities.

10.1.8 Miscellaneous

void pumi_mesh_createGlobalID(

pMesh /* in */ m,

pOwnership /* im */ o=NULL)

Given a mesh instance and an ownership rule handle, generate global entity ID’s for each
dimension 0−3. Note that the global entity ID is maintained during mesh re-partitioning (migration
and distribution) and ghosting. To retrieve mesh entity’s global ID, use pumi ment getGlobalID.

The ownership rule is an optional argument (default: NULL). If NULL, the default ownership rule
provided by PUMI is used, where an owning part of part boundary entities is a part with the
minimum number of elements among residence parts.

void pumi_mesh_deleteGlobalID(pMesh /* in */ m)

Given a mesh instance, delete global ID’s generated by pumi mesh createGlobalID.
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void pumi_mesh_verify (

pMesh /* in */ m,

bool abort_on_error=true)

Given a mesh instance and a boolean flag specifing whether to abort on error or not, print
the details of mesh entities,, check if the mesh is valid or not. Mesh verification with ghosted mesh
is not supported. The argument abort on error is optional (default: true).

void pumi_mesh_print (

pMesh /* in */ m,

bool /* in */ print_entities=false)

Given a mesh instance and a boolean flag specifing whether to print the details of mesh
entities, display the mesh information. The information includes size, tag, field and individual
entities with global ID per part. The argument print entities is optional (default: false).

10.2 Entity Functions

10.2.1 General entity information

int pumi_ment_getDim(pMeshEnt /* in */ e)

Given a mesh entity handle, return the dimension (or type) of the entity (0-3).

int pumi_ment_getTopo(pMeshEnt /* in */ e)

Given a mesh entity handle, return the topology of the entity. The entity topology is encoded
in a C++ enumeration value,

enum PUMI_EntTopology {

PUMI_VERTEX, // 0

PUMI_EDGE, // 1

PUMI_TRIANGLE, // 2

PUMI_QUAD, // 3

PUMI_TET, // 4

PUMI_HEX, // 5

PUMI_PRISM, // 6

PUMI_PYRAMID // 7

);

int pumi_ment_getID(pMeshEnt /* in */ e)

Given a mesh entity handle, return its local ID. The local entity ID is not sequential and
not maintained during mesh modification (migration, re-partitioning, and ghosting, etc.).

54



int pumi_ment_getGlobalID(pMeshEnt /* in */ e)

Given a mesh entity handle, return its global ID generated. Note that the global entity ID
is maintained during mesh migration, re-partitioning, and ghosting.

Prerequisite: pumi mesh createGlobalID

int pumi_ment_getNumAdj(

pMeshEnt /* in */ e,

int /* in */ target_dim)

Given a mesh entity and desired adjacency type target dim, get the number of adjacent
entities of the type.

int pumi_ment_getAdjacent(

pMeshEnt /* in */ e,

int /* in */ target_dim,

Adjacent& /* out*/ adj_ents)

Given a mesh entity and desired adjacency type target dim, get the Adjacent type container
adj ents filled with the adjacent entities of the type and return the number of resulting entities.
target dim should not be the same as the entity type. The type Adjacent is an array of entities.
See how to iterate the resulting adjacent entities. This function is faster than pumi ment getAdj.

pMeshEnt vertex = ...;

Adjacent adjacent;

int num_adj=pumi_ment_getAdjacent(vertex, 2, adjacent);

for (int i=0; i<num_adj; ++i)

pMeshEnt face = adjacent[i];

...

int pumi_ment_get2ndAdjacent(

pMeshEnt /* in */ e,

int /* in */ brg_dim,

int /* in */ target_dim,

Adjacent& /* out*/ adj_ents)

Given a mesh entity handle, bridge type brg dim, and desired adjacency type target dim,
get the Adjacent type container adj ents filled with 2nd order adjacent entities of type target dim
obtained through the bridge type brg dim and return the number of resulting entities. target dim
should be greater than brg dim. The type Adjacent is an array of entities. This function is faster
than pumi ment get2ndAdj. See how to iterate the resulting adjacent entities.

pMeshEnt face = ...;

Adjacent adjacent;

int num_adj=pumi_ment_get2ndAdjacent(face, 0, 2, adjacent);
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for (int i=0; i<num_adj; ++i)

pMeshEnt neighboring_face = adjacent[i];

...

void pumi_ment_getAdj(

pMeshEnt /* in */ e,

int /* in */ target_dim

std::vector<pMeshEnt>& /* inout */ adj_ents)

Given a mesh entity and desired adjacency type target dim, get the vector container adj ents
filled with the adjacent entities of the type. target dim should not be the same as the entity type.
If target dim is negative, get all downward adjcent entities.

void pumi_ment_get2ndAdj (

pMeshEnt /* in */ e,

int /* in */ brg_dim,

int /* in */ target_dim,

std::vector<pMeshEnt>& /* inout */ adj_ents)

Given a mesh entity handle, bridge type brg dim, and desired adjacency type target dim,
get the vector container adj ents filled with 2nd order adjacent entities of type target dim obtained
through the bridge type brg dim. brg dim and target dim should not be equal.

pGeomEnt pumi_ment_getGeomClas(pMeshEnt /* in */ e)

Given a mesh entity handle, return the geometric entity classified on.

pMeshEnt pumi_medge_getOtherVtx (

pMeshEnt /* in */ edge,

pMeshEnt /* in */ vtx)

Given a mesh edge and a vertex handle which is adjacent to the edge, return the other vertex
handle.

10.2.2 Mesh entity tagging

void pumi_ment_deleteTag (

pMeshEnt /* in */ e,

pMeshTag /* in */ tag)

Given mesh entity handle and tag handle, delete the tag data from the entity.

bool pumi_ment_hasTag (

pMeshEnt /* in */ e,

pMeshTag /* in */ tag)
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Given mesh entity handle and tag handle, return true if the tag data is attached to the
entity. Otherwise, return false.

void pumi_ment_setIntTag (

pMeshEnt /* in */ e,

pMeshTag /* in */ tag,

int const* /* in */ data)

Given mesh entity handle, tag handle, and integer data, set or update the tag value of the
entity. It fails if (i) tag type is not PUMI INT, or (ii) the size of data doesn’t match that of tag
handle.

void pumi_ment_getIntTag(pMeshEnt e, pMeshTag tag, int* data)

Given mesh entity handle and tag handle, get integer type data tagged to the entity. It fails
if (i) the tag doesn’t exist with the entity, or (ii) tag type is not PUMI INT.

void pumi_ment_setLongTag(pMeshEnt e, pMeshTag tag, long const* data)

Given mesh entity handle, tag handle, and long data, set or update the tag value of the
entity. It fails if (i) tag type is not PUMI LONG, or (ii) the size of data doesn’t match that of tag
handle.

void pumi_ment_getLongTag(pMeshEnt e, pMeshTag tag, long* data)

Given mesh entity handle and tag handle, get long type data tagged to the entity. It fails if
(i) the tag doesn’t exist with the entity, or (ii) tag type is not PUMI LONG.

void pumi_ment_setDblTag(pMeshEnt e, pMeshTag tag, double const* data)

Given mesh entity handle, tag handle, and double data, set or update the tag value of the
entity. It fails if (i) tag type is not PUMI DBL, or (ii) the size of data doesn’t match that of tag
handle.

void pumi_ment_getDblTag (

pMeshEnt /* in */ e,

pMeshTag /* in */ tag,

double* /* out */ data)

Given mesh entity handle and tag handle, get double type data tagged to the entity. It fails
if (i) the tag doesn’t exist with the entity, or (ii) tag type is not PUMI DBL.

10.2.3 Entity in parallel

int pumi_ment_getOwnPID(

pMeshEnt /* in */ e,

pOwnership /* in */ o=NULL)
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Given a mesh entity handle and an ownership rule, return owning part ID (part ID where
the owning entity exists). The ownership rule is an optional argument (default: NULL). If NULL,
the default ownership rule provided by PUMI is used, where an owning part of part boundary
entities is a part with the minimum number of elements among residence parts. Note that the
global numbering is maintained during mesh migration, re-partitioning, and ghosting.

pMeshEnt pumi_ment_getOwnEnt(

pMeshEnt /* in */ e,

pOwnership /* in */ o=NULL)

Given a mesh entity handle and an ownership rule, return owning entity handle. The
ownership rule is an optional argument (default: NULL). If NULL, the default ownership rule
provided by PUMI is used, where an owning part of part boundary entities is a part with the
minimum number of elements among residence parts.

bool pumi_ment_isOwned(

pMeshEnt /* in */ e,

pOwnership /* in */ o=NULL)

Given a mesh entity handle and an ownership rule, return true if the entity is owned by
the local process. Otherwise, return false. The ownership rule is an optional argument (default:
NULL). If NULL, the default ownership rule provided by PUMI is used, where an owning part of
part boundary entities is a part with the minimum number of elements among residence parts.

bool pumi_ment_isOnBdry (pMeshEnt /* in */ e)

Given a mesh entity handle, return true if the entity is on part boundary. Otherwise, return
false.

int pumi_ment_getNumRmt (pMeshEnt /* in */ e)

Given a mesh entity handle, return the number of remote copies. If the entity is duplicated
on N processes, N − 1 is returned.

void pumi_ment_getAllRmt(

pMeshEnt /* in */ e,

Copies& /* out */ copies)

Given a mesh entity handle, get copies filled with remote part ID and the memory address of
the entity on the remote part. Copies is a http://www.cplusplus.com/reference/map/map/std::map
whose keys are part ID’s and whose values are pointers to entities on those parts. All operations
available for std::map can be applied to Copies. For instance, copies.size() indicates the num-
ber of remote copies and copies[i] is the remote entity copy on part i.

See how to iterate the remote copies using the iterator type pCopyIter.
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pMeshEnt vertex = ...;

Copies remotes;

pumi_ment_getAllRmt(vertex, remotes);

for (pCopyIter it = remotes.begin(); it != remotes.end(); ++it)

std::cout << "shared with part "<<it->first<<" on address "<<it->second<<"\n";

pMeshEnt pumi_ment_getRmt(

pMeshEnt /* in */ e,

int /* in */ part_id)

Given a mesh entity handle and remote part ID, return the memory address of the entity on
the part.

bool pumi_ment_isGhost(pMeshEnt /* in */ e)

Given a mesh entity handle, return true if the entity is a ghost copy. Otherwise, return
false.

bool pumi_ment_isGhosted(pMeshEnt /* in */ e)

Given a mesh entity handle, return true if the entity is ghosted (its ghost copy exists on
off-part process). Otherwise, return false.

int pumi_ment_getNumGhost (pMeshEnt /* in */ e)

Given a mesh entity handle, get the number of ghost copies. If the entity is a ghost copy, 0
is retured.

void pumi_ment_getAllGhost(

pMeshEnt /* in */ e,

Copies& /* out */ copies)

Given a mesh entity handle, get copies filled with ghost part ID and the memory address of
the ghost copy on the part. If e is a ghost copy, the owner part ID and the memory address of the
owning copy is returned. Copies is a http://www.cplusplus.com/reference/map/map/std::map
whose keys are part IDs and whose values are pointers to entities on those parts. All operations
available for std::map can be applied to Copies

See how to iterate the ghost copies using the iterator type pCopyIter.

pMeshEnt vertex = ...;

Copies ghosts;

pumi_ment_getAllGhost(vertex, ghosts);

for (pCopyIter it = ghosts.begin(); it != ghosts.end(); ++it)

std::cout << "ghosted on part "<<it->first<<" on address "<<it->second<<"\n";
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pMeshEnt pumi_ment_getGhost(

pMeshEnt /* in */ e,

int /* in */ part_id)

Given a mesh entity handle and ghost part ID, return the memory address of the ghost copy
on the part.

bool pumi_ment_isOn (

pMeshEnt /* in */ e,

int /* in */ partID)

Given a mesh entity handle and part ID, return true if the entity exists on the part as a
remote copy or ghost copy. Otherwise, return false.

void pumi_ment_getResidence(

pMeshEnt /* in */ e,

Parts& /* inout */ residence)

Given a mesh entity handle, get residence filled with residence part ID’s where the entity
physically exists as a remote copy or a ghost copy. Parts is a http://www.cplusplus.com/reference/set/set/std::set
whose values are integers indicating part ID’s. All operations available for std::set can be applied
to Parts. For instance, insert, size, union, etc.

void pumi_ment_getClosureResidence(

pMeshEnt /* in */ e,

Parts& /* inout */ residence)

Given a mesh entity handle, get residence filled with residence part ID’s where the entity
and its downward adjacent entities physically exist as for a remote copy or a ghost copy. Parts is
a http://www.cplusplus.com/reference/set/set/std::set whose values are integers indicating part
ID’s. All operations available for std::set can be applied to Parts. All operations available for
std::set can be applied to Parts. For instance, insert, size, union, etc.
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11 Field API’s

This chapter describes API functions for field shape, field node and field management.

11.1 Field Shape

A field shape defines the node distribution where the coordinates and field values (DOF’s) are
stored. PUMI supports the following field shapes:

• Linear: The default field shape. Nodes are associated only with vertices and there is no node
associated with other entities.

• Lagrange: Lagrangian shape function of some polynomial order (first and second order only)

• Serendipity: Serendipity shape functions of second order

• Constant: Constant shape function over a specific dimension. Shape function places a node
on every element of the given dimension up to 3

• Integration Point (IP): Shape function over the integration points of elements. Orders 1 to 3
for dimension 2 or 3 are available.

• Voronoi: Equivalent to the Integration Point except that it is capable of evaluating as a shape
function whose value at any point in the element is the value of the closest integration point
in that element.

• Integration Point Fit (IPF): equivalent to the Integration Point except that it is capable of
evaluating as a shape function whose value at any point in the element is a polynomial fit to
the integration point data in that element.

• Hierarchic: Quadratic hierarchic shape function (first and second order only)

pShape pumi_mesh_getShape (pMesh /* in */ m)

Given a mesh instance, return its shape handle. The default field shape of the mesh is a
linear field shape, where xyz coordinates and DOF’s are created only over the mesh vertices. Use
pumi mesh setShape to change the default field shape.

void pumi_mesh_setShape (

pMesh /* in */ m,

pShape /* in */ s,

bool /* in */ project=true)

Given a mesh instance and field shape handle, set the field shape associated with the mesh.
Mesh’s existing coordinate field is replaced with a new fresh coordinate field. If project is true,
project coordinate values from the old coordinate field to the new coordinate field. If project to
false and coordinate field is not manually set, the file I/O with the new shape will fail. If project
is not provided, the default is true.
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int pumi_shape_getNumNode (

pShape /* in */ s,

int /* in */ t)

Given a field shape handle and entity topology, return the number of nodes associated with
the entity topology.

int pumi_shape_hasNode (

pShape /* in */ s,

int /* in */ topology)

Given a field shape handle and an entity topology, return true if nodes exist for the topology.
Otherwise, return false. The entity topology is encoded in a C++ enumeration type.

enum PUMI_EntTopology {

PUMI_VERTEX, // 0

PUMI_EDGE, // 1

PUMI_TRIANGLE, // 2

PUMI_QUAD, // 3

PUMI_TET, // 4

PUMI_HEX, // 5

PUMI_PRISM, // 6

PUMI_PYRAMID // 7

);

pShape pumi_shape_getLagrange (int /* in */ order)

Given a polynomial order, get the Lagrangian shape function of the order (first and second
order only).

pShape pumi_shape_getSerendipity ()

Get the Serendipity shape functions of second order.

pShape pumi_shape_getConstant (int /* in */ dimension)

Given an entity dimension (0-3), get the constant shape function over the specific dimension.
The constant shape function places a node on every element of the given dimension.

pShape pumi_shape_getIP (

int /* in */ dimension,

int /* in */ order)

Given a dimension and order, get the Integration Point distribution. dimension is the di-
mensionality of the elements order. order is the order of accuracy, which determines the integration
points. This allows users to create a field which has values at the integration points of elements.
Orders 1 to 3 for dimension 2 or 3 are supported.
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pShape pumi_shape_getVoronoi (

int /* in */ dimension,

int /* in */ order)

Given a dimension and order, get the Voronoi shape function. The Voronoi FieldShape is
equivalent to the IPShape except that it is capable of evaluating as a shape function whose value
at any point in the element is the value of the closest integration point in that element.

pShape pumi_shape_getIPFit (

int /* in */ dimension,

int /* in */ order)

Given a dimension and order, get the IP Fit shape function. The IP Fit FieldShape is
equivalent to the IPShape except that it is capable of evaluating as a shape function whose value
at any point in the element is a polynomial fit to the integration point data in that element.

pShape pumi_shape_getHierarchic (int /* in */ order)

Given an order, get the quadratic hierarchic shape function (only first and second order are
supported).

11.2 Field Node

11.2.1 Node Coordinates

void pumi_node_setCoord (

pMeshEnt /* in */ e,

int /* in */ n,

double* /* in */ coord)

Given a mesh entity handle, node order n and xyz coordinates, set or update the coordinates
of the nth node of the entity. n starts from 0 and must be less than the number of nodes associated
with the entity type. If the entity type is vertex, the order n is 0.

void pumi_node_getCoord (

pMeshEnt /* in */ e,

int /* in */ n,

double* /* out */ coord)

Given a vertex handle and node order n, get xyz coordinates of the nth node of the entity.
n starts from 0 and must be less than the number of nodes associated with the entity type. If the
entity type is vertex, the order n is 0.

void pumi_node_setCoordVector (

pMeshEnt /* in */ e,

int /* in */ n,

Vector3& /* out */ coord)
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Given a mesh entity handle, node order n and xyz coordinates in data type Vector3, set or
update the coordinates of the nth node of the entity. n starts from 0 and must be less than the
number of nodes associated with the entity type. If the entity type is vertex, the order n is 0. The
data type Vector3 is a vector of three doubles. Vector3 can be treated like an array, but users
can use a C++ stream output operator (std::cout) and mathematical operators like addition,
subtraction, multiplication by a scalar, cross production, etc.

void pumi_node_getCoordVector (

pMeshEnt /* in */ e,

int /* in */ n,

Vector3& /* out */ coord)

Given a vertex handle and node order n, get xyz coordinates of the nth node of the entity
in Vector3 object. n starts from 0 and must be less than the number of nodes associated with the
entity type. If the entity type is vertex, the order i is always 0. Vector3 can be treated like an
array, but users can use a C++ stream output operator (std::cout) and mathematical operators
like addition, subtraction, multiplication by a scalar, cross production, etc.

Vector3 pumi_vector3_cross (

Vector3 const& /* in */ a,

Vector3 const& /* in */ b)

Given two Vector3 objects, return cross production in Vector3 object.

11.2.2 Node Numbering

pNumbering pumi_numbering_create(

pMesh /* in */ m,

const char* /* in */ name,

pShape /* in */ shape=NULL,

int /* in */ num_component=1)

Given a mesh instance, character string name, a field shape handle, and the number of compo-
nent (degree of freedom) per node, (i) create a numbering object and (ii) return the numbering han-
dle. Note that no number is assigned to DOF’s. pumi node setNumber and pumi node getNumber

allow the user to set/get the number of node.

The argument shape is optional (NULL). If NULL, the field shape of the mesh (a field shape
returned by pumi mesh getShape) is used. See Section 11.1 for the details of field shape.

The argument num component is also optional (default: 1).

pNumbering pumi_numbering_createLocal(

pMesh /* in */ m,

const char* /* in */ name,

pShape /* in */ shape=NULL)
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Given a mesh instance, character string name and a field shape handle, (i) create a numbering
object for nodes, (ii) assign a local number to all nodes, and (iii) return the numbering handle.
The number begins from 0 on each process. Call pumi node getNumber to retrieve the number.

The argument shape is optional (NULL). If NULL, the field shape of the mesh (a field shape
returned by pumi mesh getShape) is used. See Section 11.1 for the details of field shape.

pNumbering pumi_numbering_createGlobal (

pMesh /* in */ m,

const char* /* in */ name,

pShape /* in */ shape=NULL,

pOwnership /* in */ own=NULL)

Given a mesh instance, character string name, a field shape handle and an ownership rule,
(i) create a numbering object for owned entities, (ii) assign a global number to owned nodes, and
(iii) return the numbering handle. Call pumi node getNumber to retrieve the number.

The argument shape is optional (NULL). If NULL, the field shape of the mesh (a field shape
returned by pumi mesh getShape) is used. See Section 11.1 for the details of field shape

The ownership rule is optional (default: NULL). If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

pNumbering pumi_numbering_createOwn(

pMesh /* in */ m,

const char* /* in */ name,

pShape /* in */ shape=NULL,

pOwnership /* in */ own=NULL)

Given a mesh instance, character string name, a field shape handle and an ownership rule, (i)
create a numbering object for owned nodes, (ii) assign a local number to owned nodes, and (iii) re-
turn the numbering handle. The number begins from 0 on each process. Call pumi node getNumber

to retrieve the number.

The argument shape is optional (NULL). If NULL, the field shape of the mesh (a field shape
returned by pumi mesh getShape) is used. See Section 11.1 for the details of field shape

The ownership rule is optional (default: NULL). If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

pNumbering pumi_numbering_createOwnDim(

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ dimension,

pOwnership /* in */ own=NULL)
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Given a mesh instance, character string name, an entity dimension (0-3) and an ownership
rule, (i) create a numbering object for owned entities of the dimension, (ii) assign a local number to
owned nodes, and (iii) return the numbering handle. The number begins from 0 on each process.
Call pumi node getNumber to retrieve the number.

The ownership rule is optional (default: NULL). If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

pNumbering pumi_numbering_createProcGrp (

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ n_pgrp,

int /* in */ dimension,

pOwnership /* in */ own=NULL)

Given a mesh instance, character string name, the number of process group n pgrp, and
entity dimension, (i) create a numbering object for all entities of the dimension, (ii) assign a intra-
plane global number to nodes of entities, and (iii) return the numbering handle. For 16 processes,
if n pgrp is 4, the processes 0 to 3 are process group 0, and the processes 4 to 7 are process group
1, and so on. Therefore, the sequential and unique numbers are assined to nodes in each process
group (start number is 0). Call pumi node getNumber to retrieve the number.

The ownership rule is optional (default: NULL). If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

Prerequisite 1: # total processes modulo n pgrp = 0
Prerequisite 2: any mesh entity in process group p is owned by a process belonging to the group p

void pumi_numbering_delete (pNumbering /* in */ nb)

Given a numbering handle, delete the numbering object.

void pumi_numbering_print (

pNumbering /* in */ nb,

int /* in */ p=-1)

Given a numbering handle and a process rank p, print the node numbering of the process p.
The process rank is an optional argument (default: −1). If −1, the numbering of all processes will
be printed.

int pumi_numbering_getNumNode (pNumbering /* in */ nb)

Given a numbering handle, return the number of nodes numbered in the numbering object.

void pumi_node_setNumber (
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pNumbering /* in */ nb,

pMeshEnt /* in */ e,

int /* in */ n,

int /* in */ c,

int /* in */ number)

Given a numbering handle, a mesh entity handle, node order (n), component (DOF) order
(c), and an integer number, number the cth component of nth node of the entity. The optional
arguments n and c specify a high-order field node and degree of freedom per node (default: 0). In
case the mesh entity has only one node and one component, n and c are 0.

int pumi_node_getNumber (

pNumbering /* in */ nb,

pMeshEnt /* in */ e,

int /* in */ n=0,

int /* in */ c=0,

int /* in */ number)

Given a numbering handle, a mesh entity handle, node order (n), component (DOF) order
(c), return the number of the cth component of nth node of the entity. The optional arguments n
and c specify a high-order field node and degree of freedom per node (default: 0). In case the mesh
entity has only one node and one component, n and c are 0.

bool pumi_node_isNumbered (

pNumbering /* in */ nb,

pMeshEnt /* in */ e,

int /* in */ n=0,

int /* in */ c=0)

Given a numbering handle, a mesh entity handle, node order (n), component (DOF) order
(c), return true if the cth component of nth node of the entity is numbered. Otherwise, return
false. The optional arguments n and c specify a high-order field node and degree of freedom per
node (default: 0). In case the mesh entity has only one node and one component, n and c are 0.

11.3 Field Management

pField pumi_field_create (

pMesh /* in */ m,

const char* /* in */ name,

int /* in */ num_component,

int /* in */ type=PUMI_PACKED,

pShape /* in */ shape = NULL)

Given a mesh handle, name, size (the number of DOF’s per node), field type and field
shape, create a field and return the field handle. The supported field type is encoded in a C++
enumeration type.
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• PUMI SCALAR: a single scalar value (size=1)

• PUMI VECTOR: a 3D vector (size=3)

• PUMI MATRIX: a 3x3 matrix (size=9)

• PUMI PACKED: a user-defined set of field data of any size

The argument type is optional (default: PUMI PACKED). The argument num component is used
only if the field type is PUMI PACKED.

The argument shape is optional (NULL). If NULL, the field shape of the mesh (a field shape
returned by pumi mesh getShape) is used. See Section 11.1 for the details of field shape.

There are two options to store the field data: (i) a double tag per entity and (ii) a contiguous
double array over the entire mesh. By default, the field data is stored in a double tag for each
entity. pumi field freeze and pumi field unfreeze allow the user to change the field data
structure from tag to array, and vice versa.

void pumi_node_setField (

pField /* in */ f,

pMeshEnt /* in */ e,

int /* in */ n,

double* /* in */ dof_data)

Given a field handle, a mesh entity handle, node order n, and double array, set or update
the field data of nth node of the entity. n starts from 0 and must be less than the number of nodes
associated with the entity type. If the entity type is vertex, the order i is 0.

void pumi_node_getField (

pField /* in */ f,

pMeshEnt /* in */ e,

int /* in */ n,

double* /* out*/ dof_data)

Given a field handle, a mesh entity handle, and node order n, get field data of nth node of
the entity. n starts from 0 and must be less than the number of nodes associated with the entity
type. If the entity type is vertex, the order i is 0.

int pumi_field_getSize (pField /* in */ f)

Give a field handle, return the number of components (DOF’s) per node.

int pumi_field_getType (pField /* in */ f)

Give a field handle, return the field type.

std::string pumi_field_getName (pField /* in*/ f)
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Give a field handle, return the field name.

pShape pumi_field_getShape (pField /* in */ f)

Give a field handle, return the field shape handle.

pNumbering pumi_field_getNumbering (pField /* in */ f)

Given a field handle, return a numbering object associated with the field shape where local
numbers for all nodes are assigned.

void pumi_field_delete (pField /* in */ f)

Given a field handle, delete the field.

void pumi_field_synchronize (

pField /* in */ f,

pOwnership /* in */ own=NULL)

Given a field handle and an ownership rule, synchronize field data between remote, ghost
and matched copies. The owner copy’s field data is copied to the rest of copies. The ownership rule
is an optional argument and the default is NULL. If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

void pumi_field_accumulate (pField /* in */ f)

Given a field handle, add up field data between remote copies then synchronize.

void pumi_field_freeze (pField /* in */ f)

Given a field handle, turn the data structure of field data storage from a contiguous double
array tag per entity to a double array over the entire mesh.

void pumi_field_unfreeze (pField /* in */ f)

Given a field handle, turn the data structure of field data storage from a contiguous double
array over the entire mesh to double array tag per entity.

pField pumi_mesh_findField (

pMesh /* in */ m,

const char* /* in */ name)

Given a mesh instance and field name, return a field handle with the given name. If no field
handle is found, return NULL.
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int pumi_mesh_getNumField (pMesh /* in */ m)

Given a mesh instance, return the number of fields created in the mesh.

pField pumi_mesh_getField (

pMesh /* in */ m,

int /* in */ i)

Given a mesh instance and integer i, return the ith field handle of the mesh.

void pumi_field_copy (

pField /* in */ f,

pField /* out */ r)

Copy the field data from field f to field r.

void pumi_field_add (

pField /* in */ f1,

pField /* in */ f2,

pField /* out */ r)

Add the field data in field f1 and field f2 and write the result to field r.

void pumi_field_multiply (

pField /* in */ f,

double /* in */ d,

pField /* out */ r)

Multiply the field data in field f by a double d, and write the result to field r.

void pumi_field_verify (

pMesh /* in */ m,

pField /* in */ f=NULL,

pOwnership /* in */ own=NULL)

Given a mesh instance, a field handle and an ownership rule, verify the field data between
remote and ghost copies. The field handle is an optional argument. If it is NULL, all field handles
in the mesh are verified. If field data between copies don’t match, warning messages are displayed.

The ownership rule is optional (default: NULL). If NULL, the default ownership rule provided by
PUMI is used, where an owning part of part boundary entities is a part with the minimum part
ID among residence parts.

void pumi_field_print (pField /* in */ f)

Given a field handle, print the field data for all nodes.
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12 Example Programs

This chapter presents example programs with PUMI API’s.

12.1 Model/Mesh loading

// [INPUT]

// argv[1]: geometric model file

// argv[2]: mesh file

// argv[3]: # parts in mesh file

//

// 1. display system information, # processes running

// 2. load geometric model and mesh

// 3. display the elapsted time and heap memory increase

#include <mpi.h>

#include <pumi.h>

#include <pumi_errorcode.h>

const char* modelFile = 0;

const char* meshFile = 0;

int num_in_part = 0;

void getConfig(int argc, char** argv)

{

if ( argc < 4 ) {

if ( !pumi_rank() )

printf("Usage: %s <model> <mesh> <num_part_in_mesh>\n", argv[0]);

MPI_Finalize();

exit(EXIT_FAILURE);

}

modelFile = argv[1];

meshFile = argv[2];

num_in_part = atoi(argv[3]);

}

int main(int argc, char** argv)

{

MPI_Init(&argc,&argv);

pumi_start();

pumi_printSys();

cout<<"Running Test on "<<pumi_size()<<" processes\n";

// read input args - in-model-file in-mesh-file num-in-part

getConfig(argc,argv);

double begin_mem = pumi_getMem(), begin_time=pumi_getTime();

pGeom g = pumi_geom_load(modelFile);

pMesh m = pumi_mesh_load(g, meshFile, num_in_part);
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// print elapsed time and increased heap memory

pumi_printTimeMem("elapsed time and increased heap memory:",

pumi_getTime()-begin_time, pumi_getMem()-begin_mem);

// clean-up

pumi_mesh_delete(m);

pumi_finalize();

MPI_Finalize();

return PUMI_SUCCESS;

}

12.2 Communication with PCU.h

// 1. iterate over mesh faces

// 2. if mesh face is ghosted, send the first ghost copy and the mesh face to its first ghost part

#include <mpi.h>

#include <PCU.h>

#include <pumi.h>

#include <pumi_errorcode.h>

int main(int argc, char** argv)

{

char message[50];

MPI_Init(&argc,&argv);

pumi_start();

...

// begin message exchange

PCU_Comm_Begin();

pMeshEnt e;

pMeshIter it = m->begin(2);

while ((e = m->iterate(it))) // iterate mesh faces

{

if (!pumi_ment_isGhosted(e)) continue; // skip if not ghosted

Copies temp;

pumi_ment_getAllGhost(e,temp);

int to = temp.begin()->first;

PCU_COMM_PACK(to,temp.begin()->second); // sender

PCU_COMM_PACK(to,e);

}

PCU_Comm_Send();

while (PCU_Comm_Receive())

{

int from = PCU_Comm_Sender();

pMeshEnt g;

PCU_COMM_UNPACK(g);

pMeshEnt s;

PCU_COMM_UNPACK(s);
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}

pumi_finalize();

MPI_Finalize();

return PUMI_SUCCESS;

}

12.3 Tagging with geometric model

#include <pumi.h>

#include <string.h>

#include <cstring>

template <class T>

void TEST_TAG (pTag tag, char* in_name, int name_len, int in_type, int in_size)

{

const char* tag_name;

// verifying byte tag info

pumi_tag_getName (tag, &tag_name);

int tag_type= pumi_tag_getType (tag);

int tag_size = pumi_tag_getSize (tag);

int tag_byte= pumi_tag_getByte (tag);

assert(!strncmp(tag_name, in_name, name_len));

assert(tag_type == in_type);

assert(tag_size == in_size);

assert(tag_byte==sizeof(T)*tag_size);

assert(!strcmp(tag_name, in_name)

&& tag_type == in_type && tag_size == in_size

&& ((size_t)tag_byte)==sizeof(T)*tag_size);

}

void TEST_GENT_SETGET_TAG (pGeom g, pGeomEnt ent)

{

char data[] = "abcdefg";

pTag pointer_tag=pumi_geom_findTag(g, "pointer");

pTag int_tag=pumi_geom_findTag(g, "integer");

pTag long_tag = pumi_geom_findTag(g, "long");

pTag dbl_tag = pumi_geom_findTag(g, "double");

pTag ent_tag = pumi_geom_findTag(g, "entity");

pTag intarr_tag = pumi_geom_findTag(g, "integer array");

pTag longarr_tag = pumi_geom_findTag(g, "integer array");

pTag dblarr_tag = pumi_geom_findTag(g, "double array");

pTag entarr_tag = pumi_geom_findTag(g, "entity array");

// get the first geometric vertex to use as tag data

pGeomEnt ent_tag_data=*(g->begin(0));

// pumi_gent_set/getPtrTag

pumi_gent_setPtrTag (ent, pointer_tag, (void*)(data));

void* void_data = (void*)calloc(strlen(data), sizeof(char));
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pumi_gent_getPtrTag (ent, pointer_tag, &void_data);

assert(!strcmp((char*)void_data, data));

// pumi_gent_set/getIntTag

pumi_gent_setIntTag(ent, int_tag, 1000);

int int_data;

pumi_gent_getIntTag (ent, int_tag, &int_data);

assert(int_data == 1000);

// pumi_gent_set/getLongTag

pumi_gent_setLongTag(ent, long_tag, 3000);

long long_data;

pumi_gent_getLongTag (ent, long_tag, &long_data);

assert(long_data==3000);

// pumi_gent_set/getDblTag

pumi_gent_setDblTag (ent, dbl_tag, 1000.37);

double dbl_data;

pumi_gent_getDblTag (ent, dbl_tag, &dbl_data);

assert(dbl_data == 1000.37);

// pumi_gent_set/getEntTag

pumi_gent_setEntTag (ent, ent_tag, ent_tag_data);

pGeomEnt ent_data;

pumi_gent_getEntTag (ent, ent_tag, &ent_data);

assert(ent_data == ent_tag_data);

// pumi_gent_set/GetIntArrTag with integer arr tag

int int_arr[] = {4,8,12};

int arr_size;

pumi_gent_setIntArrTag (ent, intarr_tag, int_arr);

int* int_arr_back = new int[4];

pumi_gent_getIntArrTag (ent, intarr_tag, &int_arr_back, &arr_size);

assert(arr_size==3 && int_arr_back[0] == 4 && int_arr_back[1] == 8 && int_arr_back[2] == 12);

// pumi_gent_set/getDblArrTag

double dbl_arr[] = {4.1,8.2,12.3};

pumi_gent_setDblArrTag (ent, dblarr_tag, dbl_arr);

double* dbl_arr_back = new double[4];

pumi_gent_getDblArrTag (ent, dblarr_tag, &dbl_arr_back, &arr_size);

assert(arr_size==3 && dbl_arr_back[0] == 4.1 && dbl_arr_back[1] == 8.2 &&

dbl_arr_back[2] == 12.3);

// pumi_gent_set/getEntArrTag

pGeomEnt* ent_arr = new pGeomEnt[3];

ent_arr[0] = ent_arr[1] = ent_arr[2] = ent_tag_data;

pumi_gent_setEntArrTag (ent, entarr_tag, ent_arr);

pGeomEnt* ent_arr_back = new pGeomEnt[4];

pumi_gent_getEntArrTag (ent, entarr_tag, &ent_arr_back, &arr_size);

assert(arr_size==3 && ent_arr_back[0] == ent_tag_data && ent_arr_back[1] ==

ent_tag_data && ent_arr_back[2] == ent_tag_data

&& ent_arr[0]==ent_arr_back[0] && ent_arr[1]==ent_arr_back[1] &&

ent_arr[2] == ent_arr_back[2]);
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delete [] int_arr_back;

delete [] long_arr_back;

delete [] dbl_arr_back;

delete [] ent_arr;

delete [] ent_arr_back;

}

void TEST_GENT_DEL_TAG (pGeom g, pGeomEnt ent)

{

pTag pointer_tag=pumi_geom_findTag(g, "pointer");

pTag int_tag=pumi_geom_findTag(g, "integer");

pTag long_tag = pumi_geom_findTag(g, "long");

pTag dbl_tag = pumi_geom_findTag(g, "double");

pTag ent_tag = pumi_geom_findTag(g, "entity");

pTag intarr_tag = pumi_geom_findTag(g, "integer array");

pTag longarr_tag = pumi_geom_findTag(g, "long array");

pTag dblarr_tag = pumi_geom_findTag(g, "double array");

pTag entarr_tag = pumi_geom_findTag(g, "entity array");

pumi_gent_deleteTag(ent, pointer_tag);

pumi_gent_deleteTag(ent, int_tag);

pumi_gent_deleteTag(ent, long_tag);

pumi_gent_deleteTag(ent, dbl_tag);

pumi_gent_deleteTag(ent, ent_tag);

pumi_gent_deleteTag(ent, intarr_tag);

pumi_gent_deleteTag(ent, longarr_tag);

pumi_gent_deleteTag(ent, dblarr_tag);

pumi_gent_deleteTag(ent, entarr_tag);

assert(!pumi_gent_hasTag(ent, pointer_tag));

assert(!pumi_gent_hasTag(ent, int_tag));

assert(!pumi_gent_hasTag(ent, long_tag));

assert(!pumi_gent_hasTag(ent, dbl_tag));

assert(!pumi_gent_hasTag(ent, ent_tag));

assert(!pumi_gent_hasTag(ent, intarr_tag));

assert(!pumi_gent_hasTag(ent, longarr_tag));

assert(!pumi_gent_hasTag(ent, dblarr_tag));

assert(!pumi_gent_hasTag(ent, entarr_tag));

}

void TEST_GEOM_TAG(pGeom g)

{

pTag pointer_tag = pumi_geom_createTag(g, "pointer", PUMI_PTR, 1);

pTag int_tag = pumi_geom_createTag(g, "integer", PUMI_INT, 1);

pTag long_tag = pumi_geom_createTag(g, "long", PUMI_LONG, 1);

pTag dbl_tag = pumi_geom_createTag(g, "double", PUMI_DBL, 1);

pTag ent_tag = pumi_geom_createTag(g, "entity", PUMI_ENT, 1);

pTag intarr_tag=pumi_geom_createTag(g, "integer array", PUMI_INT, 3);

pTag longarr_tag=pumi_geom_createTag(g, "long array", PUMI_LONG, 3);

pTag dblarr_tag = pumi_geom_createTag(g, "double array", PUMI_DBL, 3);

pTag entarr_tag = pumi_geom_createTag(g, "entity array", PUMI_ENT, 3);
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// verifying tag info

TEST_TAG<void*>(pointer_tag, "pointer", strlen("pointer"), PUMI_PTR, 1);

TEST_TAG<int>(int_tag, "integer", strlen("integer"), PUMI_INT, 1);

TEST_TAG<long>(long_tag, "long", strlen("long"), PUMI_LONG, 1);

TEST_TAG<double>(dbl_tag, "double", strlen("double"), PUMI_DBL, 1);

TEST_TAG<pMeshEnt>(ent_tag, "entity", strlen("entity"), PUMI_ENT, 1);

TEST_TAG<int>(intarr_tag, "integer array", strlen("integer array"), PUMI_INT, 3);

TEST_TAG<long>(longarr_tag, "long array", strlen("long array"), PUMI_LONG, 3);

TEST_TAG<double>(dblarr_tag, "double array", strlen("double array"), PUMI_DBL, 3);

TEST_TAG<pMeshEnt>(entarr_tag, "entity array", strlen("entity array"), PUMI_ENT, 3);

assert(pumi_geom_hasTag(g, int_tag));

pTag cloneTag = pumi_geom_findTag(g, "pointer");

assert(cloneTag);

std::vector<pTag> tags;

pumi_geom_getTag(g, tags);

assert(cloneTag == pointer_tag && tags.size()==9);

for (gGeomIter gent_it = g->begin(0); gent_it!=g->end(0);++gent_it)

{

TEST_GENT_SETGET_TAG(g, *gent_it);

TEST_GENT_DEL_TAG(g, *gent_it);

}

// delete tags

for (std::vector<pTag>::iterator tag_it=tags.begin(); tag_it!=tags.end(); ++tag_it)

pumi_geom_deleteTag(g, *tag_it);

tags.clear();

pumi_geom_getTag(g, tags);

assert(!tags.size());

}

int main(int argc, char** argv)

{

MPI_Init(&argc,&argv);

pumi_start();

...

getConfig(argc,argv);

pGeom g = pumi_geom_load(modelFile);

TEST_GEOM_TAG(g);

...

return PUMI_SUCCESS;

}

12.4 Mesh/Entity information

int main(int argc, char** argv)

{

...
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pMeshEnt e;

vector<pMeshEnt> adj_ents;

int mesh_dim=pumi_mesh_getDim(m);

pMeshIter mit = m->begin(mesh_dim);

while ((e = m->iterate(mit)))

{

assert(pumi_ment_getDim(e)==mesh_dim);

// check # one-level up adjancent entities

assert(pumi_ment_getNumAdj(e, mesh_dim+1)==0);

// check # one-level down adjancent entities

adj_ents.clear();

pumi_ment_getAdj(e, mesh_dim-1, adj_ents);

assert(adj_ents.size()==pumi_ment_getNumAdj (e, mesh_dim-1));

if (!pumi_ment_isOnBdry(e)) continue; // skip internal entity

// if entity is on part boundary, count remote copies

Copies copies;

pumi_ment_getAllRmt(e,copies);

// check #remotes

assert (pumi_ment_getNumRmt(e)==copies.size() && copies.size()>0);

// check the entity is not ghost or ghosted

assert(!pumi_ment_isGhost(e) && !pumi_ment_isGhosted(e));

}

m->end(mit);

...

}

12.5 2D mesh construction

// create an empty model and 2D mesh

pGeom g = pumi_geom_load (NULL, "null");

pMesh m = pumi_mesh_create(g, 2);

double xyz[3];

std::vector<pMeshEnt> new_vertices;

std::vector<pMeshEnt> new_edges;

pMeshEnt vertices[2];

pMeshEnt edges[3];

for (int i=0; i<num_new_vertices; ++i)

{

//create a new vertex and store in vector "new_vertices"

new_vertices.push_back (pumi_mesh_createVtx(m, NULL, xyz));

}

for (size_t i=0; i< new_vertices.size()/2-1; ++i)

{

vertices[0] = new_vertices[i];

vertices[1] = new_vertices[i+1];

// create a new edge and store in vector "new_edges"

new_edges.push_back(pumi_mesh_createEnt(m, NULL, 1, vertices));

}
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// note face-edge order is ignored in this example

for (size_t i=0; i< new_edges.size()/3-1; ++i)

{

for (int k=0; k<3; ++k)

edges[k] = new_edges[i+k];

pumi_mesh_createEnt(m, NULL, 2, edges);

}

// finalize mesh entity creation

pumi_mesh_freeze(m);

12.6 Mesh tagging

#include "pumi.h"

int main(int argc, char** argv)

{

...

pMesh m;

pMeshEnt e;

...

pMeshTag int_tag = pumi_mesh_findTag(m, "integer");

if (!int_tag) // int_tag doesn’t exist

int_tag = pumi_mesh_createIntTag(m, "integer", 1);

pMeshTag long_tag = pumi_mesh_createLongTag(m, "long", 1);

pMeshTag dbl_tag = pumi_mesh_createDblTag(m, "double", 1);

pMeshTag intarr_tag=pumi_mesh_createIntTag(m, "integer array", 3);

pMeshTag longarr_tag=pumi_mesh_createLongTag(m, "long array", 3);

pMeshTag dblarr_tag = pumi_mesh_createDblTag(m, "double array", 3);

// set/get integer tag

int int_value=pumi_ment_getLocalID(ent), int_data;

pumi_ment_setIntTag(ent, int_tag, &int_value);

pumi_ment_getIntTag (ent, int_tag, &int_data);

assert(int_data == int_value);

...

// set/get double array tag

double dbl_arr[] = {4.1,8.2,12.3};

pumi_ment_setDblTag (ent, dblarr_tag, dbl_arr);

double* dbl_arr_back = new double[3];

pumi_ment_getDblTag (ent, dblarr_tag, dbl_arr_back);

...

// retrieve all tags on mesh

std::vector<pMeshTag> tags;

pumi_mesh_getTag(m, tags);

...

// delete tags

for (std::vector<pMeshTag>::iterator tag_it=tags.begin(); tag_it!=tags.end(); ++tag_it)

pumi_mesh_deleteTag(m, *tag_it);

...
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}

12.7 Mesh partitioning

// 1. load 2D serial mesh

// 2. create a migration plan to partition the mesh as per model faces.

// (if mesh face is classified on model face i (i>0), send the mesh face to part i.

// 3. check mesh validity

Migration* get_plan_per_model(pGeom g, pMesh m)

{

int dim = pumi_mesh_getDim(m);

int num_peers = pumi_size();

Migration* plan = new Migration(m);

if (!pumi_rank()) return plan; // only master process construct the plan

pMeshEnt e;

int num_gface = pumi_geom_getNumEnt(g, dim);

assert(num_gface==pumi_size());

int gface_id;

int dest_pid;

pMeshIter it = m->begin(2); // face

while ((e = m->iterate(it)))

{

pGeomEnt gface = pumi_ment_getGeomClas(e); // get the classification

gface_id = pumi_gent_getID(gface); // get the geom face id

dest_pid = gface_id-1;

plan->send(e, dest_pid);

}

m->end(it);

return plan;

}

int main(int argc, char** argv)

{

...

pGeom g = pumi_geom_load(modelFile);

pMesh m = pumi_mesh_loadSerial(g, meshFile);

Migration* plan = get_plan_per_model(g, m);

pumi_mesh_migrate(m, plan);

pumi_mesh_verify(m);

...

}

12.8 Mesh distribution

// 1. load 2D serial mesh

// 2. send 1/5 of mesh elements to three parts i-1, i, i+i.

// i is modulo(element’s local ID,# processes)

// 3. write the distributed mesh into file "part.smb"
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int main(int argc, char** argv)

{

...

pGeom g = pumi_geom_load(modelFile);

pMesh m = pumi_mesh_loadSerial(g, meshFile);

Distribution* plan = new Distribution(m);

int dim=pumi_mesh_getDim(m), count=0, pid;

pMeshIter it = m->begin(dim);

while ((e = m->iterate(it)))

{

pid=pumi_ment_getLocalID(e)%pumi_size();

plan->send(e, pid);

if (pid-1>=0) plan->send(e, pid-1);

if (pid+1<pumi_size()) plan->send(e, pid+1);

if (count==pumi_mesh_getNumEnt(m, dim)/5) break;

++count;

}

m->end(it);

pumi_mesh_distribute(m, plan);

// write mesh in part.smb

pumi_mesh_write(m,"part.smb");

}

12.9 Computing the area of adjacent faces

// loop over mesh vertices and calculate the area of adjacent faces

// if a mesh vertex is on part boundary, do communications to add

// the area of remote faces

pMeshEnt e;

pMeshTag area_tag = pumi_mesh_createDblTag(m, "area", 1);

PCU_Comm_Begin(); // start communication

pMeshIter it = m->begin(0);

while ((e = m->iterate(it)))

{

double area = 0.;

std::vector<pMeshEnt> faces;

pumi_ment_getAdj(e, 2, faces);

for (std::vector<pMeshEnt>::iterator fit=faces.begin(); fit!=faces.end(); ++fit)

area += get_face_area(m, *fit); // get_face_area computes the face area

pumi_ment_setDblTag(e, area_tag, &area);

if (!pumi_ment_isOnBdry(e)) continue;

Copies remotes;

pumi_ment_getAllRmt(e,remotes);

// loop over remote copies and send message to remote copies

for (pCopyIter rit = remotes.begin(); rit != remotes.end(); ++rit)
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{

PCU_COMM_PACK(rit->first, rit->second);

PCU_Comm_Pack(rit->first, &area, sizeof(double));

}

}

m->end(it);

PCU_Comm_Send(); // send messages collected in buffers

// part boundary vertices receive area from the remote copies and add them up

while (PCU_Comm_Listen())

while (!PCU_Comm_Unpacked())

{

pMeshEnt rmt_e;

PCU_COMM_UNPACK(rmt_e);

double rmt_area;

PCU_Comm_Unpack(&rmt_area, sizeof(double));

double area;

pumi_ment_getDblTag (rmt_e, area_tag, &area);

area+=rmt_area;

pumi_ment_setDblTag (rmt_e, area_tag, &area);

}

12.10 Entity-wise ghosting

Ghosting* getGhostingPlan(pMesh m)

{

int mesh_dim=pumi_mesh_getDim(m);

pMeshEnt e;

Ghosting* plan = new Ghosting(m, mesh_dim);

{

pMeshIter it = m->begin(mesh_dim);

int count=0, pid;

while ((e = m->iterate(it)))

{

for (int i=0; i<pumi_size()/2; ++i)

{

pid = (pumi_ment_getGlobalID(e)+rand())%pumi_size();

plan->send(e, pid);

}

++count;

if (count==pumi_mesh_getNumEnt(m, mesh_dim)/3) break;

}

m->end(it);

}

return plan;

}

int main(int argc, char** argv)

{

...

int mesh_dim=pumi_mesh_getDim(m);

pMeshEnt e;
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int* org_mcount=new int[4];

for (int i=0; i<4; ++i)

org_mcount[i] = pumi_mesh_getNumEnt(m, i);

Ghosting* ghosting_plan = get_ghosting_plan(m);

pumi_ghost_create(m, ghosting_plan);

int num_ghost_vtx=0;

pMeshIter mit = m->begin(0);

while ((e = m->iterate(mit)))

{

if (pumi_ment_isGhost(e))

{

++num_ghost_vtx;

assert(pumi_ment_getOwnPID(e)!=pumi_rank());

}

}

m->end(mit);

assert(num_ghost_vtx+org_mcount[0]==pumi_mesh_getNumEnt(m,0));

pumi_mesh_verify(m); // this should throw an error message

pumi_ghost_delete(m);

for (int i=0; i<4; ++i)

assert(org_mcount[i] == pumi_mesh_getNumEnt(m, i));

...

}

12.11 Layer-wise ghosting

int main(int argc, char** argv)

{

...

int mesh_dim=pumi_mesh_getDim(m);

int* org_mcount=new int[4];

for (int i=0; i<4; ++i)

org_mcount[i] = pumi_mesh_getNumEnt(m, i);

for (int brg_dim=mesh_dim-1; brg_dim>=0; --brg_dim)

for (int num_layer=1; num_layer<=3; ++num_layer)

for (int include_copy=0; include_copy<=1; ++include_copy)

{

pumi_ghost_createLayer (m, brg_dim, mesh_dim, num_layer, include_copy);

pumi_ghost_delete(m);

pumi_mesh_verify(m);

for (int i=0; i<4; ++i)

assert(org_mcount[i] == pumi_mesh_getNumEnt(m, i));

}

...

}
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12.12 Accumulative layer ghosting

int main(int argc, char** argv)

{

...

int mesh_dim=pumi_mesh_getDim(m);

int* org_mcount=new int[4];

for (int i=0; i<4; ++i)

org_mcount[i] = pumi_mesh_getNumEnt(m, i);

for (int brg_dim=mesh_dim-1; brg_dim>=0; --brg_dim)

for (int num_layer=1; num_layer<=3; ++num_layer)

for (int include_copy=0; include_copy<=1; ++include_copy)

pumi_ghost_createLayer (m, brg_dim, mesh_dim, num_layer, include_copy);

pumi_ghost_delete(m);

pumi_mesh_verify(m);

for (int i=0; i<4; ++i)

assert(org_mcount[i] == pumi_mesh_getNumEnt(m, i));

...

}

12.13 Field shape

// get the default shape of the mesh - only vertex has a node

pShape s = pumi_mesh_getShape(m);

assert(pumi_shape_getNumNode(s, 1)==0);

// change shape to Lagrange with order 2 - edge has a node

pumi_mesh_setShape(m, pumi_shape_getLagrange(2));

assert(pumi_shape_getNumNode(pumi_mesh_getShape(m), 1)==1);

double xyz[3];

pMeshIter it = m->begin(1);

pMeshEnt e;

// loop over edges and get and set the node coordinates

while ((e = m->iterate(it)))

{

pumi_node_getCoord(e, 0, xyz);

for (int i=0; i<3; ++i) xyz[i] += 0.5;

pumi_node_setCoord(e, 0, xyz);

}

m->end(it);

12.14 Field manipulation

int num_dofs_per_node=3;

pField f =pumi_field_create(m, "xyz_field", num_dofs_per_node);

assert(pumi_field_getName(f)==std::string("xyz_field"));

83



assert(pumi_field_getType(f)==PUMI_PACKED);

assert(pumi_field_getSize(f)==num_dofs_per_node);

// create global numbering for field node

pGlobalNumbering gn = pumi_mesh_createNumbering(m, "xyz_numbering", pumi_field_getShape(f));

// fill the dof data

double xyz[3];

pMeshIter it = m->begin(0);

pMeshEnt e;

while ((e = m->iterate(it)))

{

if (!pumi_ment_isOwned(e)) continue;

pumi_node_getCoord(e, 0, xyz);

if (pumi_ment_isOnBdry(e))

for (int i=0; i<3;++i)

xyz[i] *= pumi_ment_getLocalID(e);

pumi_ment_setField(e, f, 0, xyz);

}

m->end(it);

pumi_field_synchronize(f); // synchronize field value between remote copies

double data[3];

it = m->begin(0);

while ((e = m->iterate(it)))

{

if (!pumi_ment_isOwned(e)) continue;

pumi_node_getCoord(e, 0, xyz);

pumi_ment_getField(e, f, 0, data);

for (int i=0; i<3;++i)

if (pumi_ment_isOnBdry(e))

assert(data[i] == xyz[i]*pumi_ment_getLocalID(e));

}

m->end(it);

// delete global numbering

pumi_mesh_deleteNumbering(gn);
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13 Installation

PUMI is a free open source software available in https://github.com/SCOREC/core. This section
discuss the S/W requirements and compilation briefly. The detailed discussion on how to build
PUMI can be found in https://github.com/SCOREC/core/wiki/General-Build-instructions.

13.1 S/W Requirements

At a minumum, the following softwares are required to install PUMI.

• cmake - v3.0 or higher

• MPI

• METIS/ParMETIS [21]

• Zoltan [9]

13.2 Compilation

To build PUMI libraries, run a cmake configuration file and do “make install”. Three exam-
ple cmake configuration files are available in the top source folder; ‘example config.sh”, ‘mpich3-
gcc4.4.5-config.sh”, ‘mpich3-gcc4.9.2-config.sh”.

The essential configuration options include:

• ZOLTAN LIBRARY: path and file name of Zoltan library

• PARMETIS LIBRARY: path and file name of ParMETIS library

• METIS LIBRARY: path and file name of METIS library

• SCOREC INCLUDE DIR: path to PUMI header files

• SCOREC LIB DIR: path and file name of PUMI libraries

• ENABLE PETSC: set ON to link MSI with PETSc solver

• PETSC INCLUDE DIR: path to PETSc header files

• PETSC LIB DIR: path to PETSc libraries

• ENABLE TRILINOS: set ON to link MSI with Trilinos solver

• TRILINOS INCLUDE DIR: path to Trilinos header files

• TRILINOS LIB DIR: path to Trilinos libraries

• DENABLE COMPLEX: set ON to build MSI complex value
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• CMAKE INSTALL PREFIX: path to install MSI header file and library

In the current version, build with Trilinos is not supported.

For a complete list of configuration options, see “CMakeLists.txt” in the top source folder.

13.3 Test Program

A test program with PETSc is available in test/petsc/main.cc in the top source folder.

To compile “MSI API” test program, do “make test pumi” in your build directory. The input
arguments of the executable “test pumi” are the following:

• argv[1] - input model file (.dmg)

• argv[2] - input mesh file (.smb)

• argv[3] - output mesh file (.smb)

• argv[4] - the number of parts in input mesh

How to generate PUMI-readable model and mesh files is beyond the scope of this document.

Many other test programs are available in “test” folder. See “test/CMakeLists.txt” for a complete
list of available test programs. The test programs are good start to learn how to use PUMI.
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14 Closing Remark

Support for PUMI was provided through the Department of Energy (DOE) office of Science’s
Scientific Discovery through Advanced Computing (SciDAC) institute as part of the Frameworks,
Algorithms, and Scalable Technologies for Mathematics (FASTMath) program, under grant DE-
SC0006617.

The latest source is downloadable from https://github.com/SCOREC/core and the user’s guide
is available from http://www.scorec.rpi.edu/~seol/PUMI.pdf.

For all inquiries on PUMI including how to generate PUMI-readable model and mesh files, email
to shephard@rpi.edu.
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[1] Frédérik Alauzet, Xiangrong Li, E. Seegyoung Seol, and Mark S. Shephard. Parallel anisotropic
3d mesh adaptation by mesh modification. Engineering with Computers, 21(3):247–258, jan
2006.

[2] C. Ozturan amd H.L. de Cougny, M.S. Shephard, and J.E. Flaherty. Parallel adaptive mesh
refinement and redistribution on distributed memory. Comp. Meth. Appl. Mech. Engng.,
119:123–127, 1994.

[3] Mark W. Beall. An object-oriented framework for the reliable automated solution of problems
in mathematical physics. PhD thesis, Rensselaer Polytechnic Institute, Troy, NY, 1999.

[4] Mark W. Beall and Mark S. Shephard. A general topology-based mesh data structure. Inter-
national Journal for Numerical Methods in Engineering, 40(9):1573–1596, may 1997.
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A Mesh Visualization

Paraview is program created by Kitware, Inc. which can visualize meshes and fields on meshes. It
is the program of choice for viewing meshes created by the PUMI libraries. PUMI API provides a
function pumi mesh write and if this is executed with mesh type “vtk” for a mesh distributed over
two processes:

pumi_mesh_write(mesh, "output", "vtk");

It would create the files output0.vtu, output1.vtu, and output.pvtu. Opening the output.pvtu

file in Paraview will show users the mesh.

By default, Paraview will just render the mesh in “Surface” mode. Changing this to “Surface with
Edges” will outline each visible element, actually making the decomposition visible.

Also, the mesh by default is rendered in one “Solid Color”. There should be other options corre-
sponding to the fields and numberings that were on this mesh at the time of file writing. There
is usually an “apf part” alternative for files written by APF, which allows users to see the parallel
partitioning of the mesh in color.

When vertices are numbered, it may be useful to display their numbers. See Section 10.1.8 for
information on creating numberings. Right above the mesh viewing area there is a button to select
nodes, you may also press the “D” key.

Click and drag to select all the nodes you want to display. Then go to View->Selection Display

Inspector in the menu and click on the Point Labels options. There you can choose what to
display. If you used numbering properly, there should be an option with the same name that you
gave to the numbering. Note that in some later versions of Paraview, there is a bug which displays
all values as floating point numbers by default. If you are trying to show numbering values, you may
see strange scientific notation instead. Click the following icon in the Selection Display Inspector:

There you will find a format string option, which you can change to “%d” in order to show integers.
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