
CONFORMAL MESH ADAPTATION
ON HETEROGENEOUS SUPERCOMPUTERS

By

Daniel Alejandro Ibanez

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Examining Committee:

Dr. Mark S. Shephard, Dissertation Adviser

Dr. Onkar Sahni, Member

Dr. Christopher D. Carothers, Member

Dr. Elliot Anshelevich, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2016
(For Graduation December 2016)

c© Copyright 2016

by

Daniel Alejandro Ibanez

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACKNOWLEDGMENT . xii

ABSTRACT . xiii

1. INTRODUCTION AND BACKGROUND 1

1.1 Introduction . 1

1.2 Terminology . 3

1.3 Notation . 4

1.4 Mesh Definitions . 4

1.4.1 Topological Complex . 5

1.4.2 Adjacency Relation . 6

1.4.3 Mesh . 7

1.4.4 Finite Element Mesh . 7

1.4.4.1 Topological Template 9

1.4.5 Adaptation . 9

1.4.6 Metric Field . 11

1.4.7 Element Quality . 12

1.5 Reference Computer . 13

1.6 Heterogeneous Node Architecture . 14

1.6.1 Multi-core CPUs . 14

1.6.2 GPU Coprocessors . 15

1.6.3 The Intel Xeon Phi . 16

1.7 Programming Environments . 17

1.7.1 Operating System . 17

1.7.2 MPI . 18

1.7.3 OpenMP . 19

1.7.4 CUDA . 20

1.7.5 Kokkos . 22

1.8 Overview of Software . 22

iii

1.8.1 PUMI . 23

1.8.1.1 PCU . 23

1.8.1.2 APF . 23

1.8.1.3 MDS . 23

1.8.1.4 MeshAdapt . 24

1.8.2 Omega h . 24

1.9 Contributions . 24

2. ARRAY-BASED MESH REPRESENTATIONS 26

2.1 Goals . 26

2.2 Related Work . 27

2.3 Choices in Representation . 27

2.3.1 Choosing Entities to Store . 27

2.3.2 Choosing Adjacencies to Store 29

2.4 MDS Data Structure . 29

2.4.1 Adjacencies stored in MDS . 30

2.4.2 Object-Oriented Storage . 32

2.4.3 Structure of Arrays . 33

2.4.4 Lists in Arrays . 35

2.4.5 Dynamically Modifiable Mesh Structure 36

2.5 Omega h Data Structure . 38

2.5.1 Static Mesh . 39

2.5.2 Adjacency Arrays . 39

2.5.3 Alignment Information . 40

2.5.4 Adjacency Cache . 41

2.6 Data Structure Performance . 43

2.6.1 Adjacency Query Performance 43

2.7 Reordering . 44

3. CAVITY-BASED CONFORMAL MESH ADAPTATION 50

3.1 In Context . 50

3.1.1 Conformal and General . 50

3.1.2 Cavity-Based . 51

3.2 Related Work . 53

3.3 MeshAdapt Methods . 53

iv

3.3.1 Template Refinement . 53

3.3.2 Coarsening . 55

3.3.3 Shape Correction . 58

3.3.3.1 Edge Swap . 60

3.3.4 Overall Steps . 61

3.4 Omega h Methods . 62

3.4.1 Refinement . 64

3.4.2 Coarsening . 65

3.4.3 Shape Correction . 66

3.4.4 Overall Steps . 68

3.4.5 Approaching Displacements and Metrics 69

3.5 Size Field Algorithms . 71

3.5.1 Metric Interpolation and Storage 71

3.5.2 Implied Metric Field . 73

3.5.3 Implied Isotropic Size . 75

3.5.4 Targeting an Element Count 75

3.6 Solution Transfer in a Cavity . 77

3.6.1 Conserving Integral Quantities 77

3.6.1.1 Element-Centered Mass-Like Quantities 78

3.6.1.2 Momentum-Conserving Nodal Velocities 81

3.7 Serial Adaptation Performance . 84

3.7.1 Analytic Anisotropy Test . 84

3.7.2 Size Field Scaling Test . 85

4. SCALABLE PARALLEL MESH ADAPTATION 88

4.1 Defining Scalability . 88

4.2 Parallel Operations . 89

4.2.1 Map . 90

4.2.2 Reduce . 90

4.2.3 Scan . 92

4.2.4 Sort . 93

4.2.5 Exchange . 93

4.3 PCU: Scalable Inter-Thread Communication 96

4.3.1 Messaging Primitives in PCU 97

4.3.2 Simple Collectives in PCU . 98

v

4.3.3 Non-blocking Consensus in PCU 101

4.4 Remote Copies and Owners . 102

4.5 Entity-Level Communication . 104

4.6 Migration . 107

4.6.1 Derive Lower Dimensional Partitionings 107

4.6.2 Create and Link New Copies 108

4.6.3 Build New Topological Adjacencies 108

4.7 Ghosting . 110

4.8 Parallel Cavity Operations . 112

4.8.1 Dynamic Migration . 112

4.8.2 Independent Sets . 114

4.8.2.1 Selection of a Set . 114

4.8.2.2 Ghosting for Set Selection 117

4.9 Determinism . 119

4.9.1 Upward Adjacency Ordering 120

4.9.2 Order-Independent Sums . 120

4.10 Parallel Adaptation Performance . 122

4.10.1 Generating Large Meshes . 122

4.10.1.1 MeshAdapt Uniform Refinement 122

4.10.1.2 Omega h Parallel Size Field Scaling 125

4.10.2 Non-Uniform Size Field with Load Balancing 126

4.10.3 Moving Objects on Shared Memory Devices 130

5. APPLICATION TO ADAPTIVE SIMULATIONS 132

5.1 Workflow Integration . 132

5.2 Proteus . 133

5.3 Alexa . 133

5.4 PHASTA Active Flow Control . 135

5.5 Albany Adaptive Loop . 136

6. CONCLUSIONS AND FUTURE WORK 140

6.1 Conclusions . 140

6.2 Future Work . 140

6.2.1 Convergence of PUMI and Omega h 140

6.2.2 Snapping to Boundary Geometry 141

vi

REFERENCES . 142

APPENDICES

A. Key Algorithms . 152

A.1 Mapping Inversion . 152

B. Topological Ratios . 155

B.1 Maximum Upward Adjacencies . 155

B.1.1 From Vertices . 155

vii

LIST OF TABLES

2.1 MDS adjacency timings (in milliseconds) for 100K tet mesh 43

2.2 MDS adjacency timings (in milliseconds) for 200K tet mesh 44

2.3 Omega h traversal timings (in milliseconds) for 100K tet mesh 44

2.4 Omega h incremental construction timings (in milliseconds) for 100K
tet mesh . 45

2.5 Linear arrangement values for different meshes and heuristics 47

2.6 Locality speedups including and excluding BFS reordering time 47

3.1 Metric quality and length histograms for analytic metric test 86

3.2 Element counts and adapt times for size field scaling 86

4.1 Performance metrics of Omega h parallel scaling 127

4.2 Strong scaling with non-uniform size field 129

4.3 Runtime in minutes on different hardware 130

viii

LIST OF FIGURES

1.1 Topological complexes: (left) an airfoil CAD model (right) a single triangle 6

1.2 Polytopes commonly used in FE and FV meshes 8

2.1 A geometric representation of one-level relations among a subset of the
entities that bound a tetrahedron . 31

2.2 Single-entity adjacency derivations in MDS 31

2.3 (left) The example mesh: a reduced representation of two triangles
sharing one edge and two vertices. (middle) The linked-list storage of
upward adjacency information for vertices to triangles. (right) A key
describing the meaning of symbols in the middle figure 32

2.4 Extra space and hole tracking create modifiable arrays 35

2.5 (left) A linked list in object form (right) The same linked list packed
into an array . 36

2.6 (left) An example subset of a mixed mesh: an edge adjacent to a triangle
and a quad (right) The corresponding upward adjacency linkage must
traverse separate triangle and quad arrays 36

2.7 (left) An example 4-vertex 2-triangle mesh (middle) the downward ad-
jacency array (right) The upward adjacency array 40

2.8 Full-mesh adjacency derivations in Omega h 42

2.9 Meshes colored by vertex ordering: (left) BFS, (right) Hilbert curve . . 48

3.1 Non-conforming parent-child adaptive mesh refinement [46] 50

3.2 Relaxed definition of cavity boundary excludes geometric boundary . . 52

3.3 Tetrahedral refinement templates . 54

3.4 Schönhardt’s irreducible polyhedron [53] 55

3.5 Edge collapse in tetrahedral mesh [54] 56

3.6 Edge ring condition check during edge collapse 57

3.7 Illegal collapse of a CAD hole represented by a periodic boundary . . . 58

3.8 Illegal collapse with no new elements and re-classification 58

ix

3.9 Double-split + collapse compound operator [49] 60

3.10 Edge swap in tetrahedral mesh [54] . 61

3.11 MeshAdapt interpolation depends on eigenvector signs 72

3.12 Log-Euclidean versus Power interpolation at 1:1000 anisotropy [56] . . . 73

3.13 Mass conservation case with changing cavity domains 79

3.14 Cavity with buffer layer and associated notation 82

3.15 Mesh before and after adapting to analytic metric 85

3.16 Meshes before and after size field scaling 87

4.1 Two possible binary trees used for reduction 91

4.2 Complete and owner-based remote links for a 4-partition mesh 104

4.3 The stages of a Distributor exchange algorithm 106

4.4 Omega h migration steps for vertices based on triangles 110

4.5 Independent set convergence histogram 117

4.6 Steps for distributed set selection: (left) non-ghosted partitions (mid)
add ghost layers, compute independent set (right) trim away ghost ele-
ments not in owned independent cavities 118

4.7 Times for hybrid MeshAdapt uniform refinement 123

4.8 Neighborhood increase during MeshAdapt uniform refinement 124

4.9 Hybrid file IO performance . 124

4.10 Hybrid migration performance . 125

4.11 (left) The 4×4 solder ball mesh with 160K elements, (right) One of 256
partitions of the mesh with 20M elements 126

4.12 Left to right: size field, input partitions, predictive partitions, adapted
partitions, and post-balanced partitions for a simple 4-part problem . . 128

4.13 A 195K element version of the 90M element mesh used for the non-
uniform size field strong scaling study 129

4.14 Cutaway mesh views at steps 2, 8, and 14 of 16 130

5.1 Floating object fluid-structure-interaction adaptivity 133

x

5.2 Anisotropic mesh near fluid boundary 134

5.3 Triple point problem: (left) purely Lagrangian (right) Lagrangian with
adaptation . 134

5.4 Workflow of parallel PHASTA adaptive loop [72] 135

5.5 Cut views of the initial (left) and adapted (right) anisotropic boundary
layer meshes for NASA TrapWing [111] 136

5.6 Initial (left) and adapted mesh showing the Von Mises stress field that
guides adaptivity (right) [72] . 138

5.7 Graded multi-material mesh to initiate large scale runs 138

5.8 Workflow of parallel Albany adaptive loop [72] 139

B.1 Maximizing quality versus solid angle 156

B.2 Maximum vertex-tetrahedron degree given a minimum tetrahedron mean
ratio . 157

B.3 Maximum vertex-triangle degree given a minimum triangle mean ratio . 158

xi

ACKNOWLEDGMENT

This thesis owes its existence just as much to the support and collaboration of

numerous individuals as it does to the efforts of the author. My family must be

thanked first for providing so much support that I was able to give this thesis my full

attention. I must thank Prof. Mark S. Shephard as my mentor for his unwavering

support (and creation) of my career. My doctoral committee have provided me

with many insights: Prof. Sahni on software development and the needs of advanced

CFD simulations, Prof. Carothers on the ever-changing landscape of supercomputer

architectures, Prof. Anshelevich on graph theory’s elegant solutions to practical

problems, and Prof. Shephard on how topology and adaptivity can greatly improve

existing simulations.

I am honored to have worked alongside students including Cameron Smith,

Brian Granzow, Daniel Zaide, Aleksandr Ovcharenko, and others whom I consider

comrades in the difficult trade of developing good scientific software. Other past

and present members of SCOREC including Fabien Delalondre, Seegyoung Seol,

Max Bloomfield, and Assad Oberai have provided guidance in life as well as work.

I admire and thank those who pioneer the adoption of mesh adaptation in

their important simulation workflows including Kenneth Jansen, Michel Rasquin,

Glen Hansen, Chris Kees, and Mike Park.

This thesis is built upon the decades of work by SCOREC including that of

Xiangrong Li, Rao Garimella, and Mark Beall. It also owes much to the research in

mesh adaptivity by Frédéric Alauzet, Adrien Loseille, and Jean-François Remacle,

and in message passing by Torsten Hoefler, Andrew Lumsdaine, and others.

xii

ABSTRACT

Mesh adaptation is a technique which dynamically modifies the mesh being used

to approximately solve a Partial Differential Equation (PDE) in order to improve

aspects of the approximate solution including the computer time and memory used

to compute it as well as its level of accuracy. Even with the use of mesh adap-

tation, computing ever more accurate PDE solutions requires significant computer

time and memory, motivating the use of supercomputers, which are constructed as

networks of cooperating computational hardware. Trends in the computer hardware

industry at large are introducing heterogeneous designs for current leadership-class

supercomputers, which is both an opportunity and a challenge for programs aiming

to make use of these machines.

This thesis presents implementations of mesh adaptation which are designed

with memory efficient cache-friendly data structures and algorithms which can effec-

tively leverage both distributed memory parallelism and shared memory parallelism

(including GPUs). The data structures used in these implementations are widely

applicable to other tasks involving meshes, and the programming paradigms intro-

duced are general enough to be of use in most programs targeting leadership-class

supercomputers. The implementations presented are being used by several simula-

tion codes in production, and are available as open-source tools so they may continue

providing value to the scientific community.

Several improvements to the design of mesh adaptation programs are pre-

sented, including solution transfer methods which preserve mass and momentum,

methods for the maintenance of high-quality elements, scalable and deterministic

methods for hybrid parallelization of mesh modification operations, and a combi-

nation of modification operators which reduce implementation complexity without

sacrificing effectiveness.

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

A wide variety of aerospace, mechanical, and nuclear engineering problems

require solving complex Partial Differential Equations (PDEs) in time and space.

For efficiency and reliability, the solutions to these PDEs are found using computers.

Computers are equipped with a limited amount of memory to store informa-

tion, and must use a mathematical representation of a PDE solution that can be

described using a limited amount of information. For many engineering problems of

interest, the exact solution as described by any known representation would require

an infinite amount of information, therefore approximate solutions are sought.

A certain minimal amount of memory and processing power are required to

obtain the lowest accuracy approximate solutions, and obtaining more accurate solu-

tions requires more memory and/or processing power. For these reasons, computers

with ever-increasing amounts of memory and processing power are designed and

built to increase the accuracy of existing solutions and to solve previously unsolv-

able engineering problems. At any given point in history, the computers with the

most memory and processing power are called supercomputers.

Supercomputers are expensive to acquire and even more expensive to operate

in terms of electricity, cooling, and other maintenance, so their ability to produce

accurate results at the lowest cost is of critical importance.

When solving PDEs over general domains, it is common to employ equation

discretization methods that operate on a mesh, which is more precisely defined in

Section 1.4.3. Chapter 2 presents the full design and implementation of two new

computer representations of meshes, which are focused on minimizing the amount

of computer memory and processing required to use an accurate mesh, and are also

compatible with mesh adaptation.

Portions of this chapter submitted as: D. Ibanez and M. S. Shephard, “Modifiable array data
structures for mesh topology,” SIAM J. Scientific Comput., under review.

1

2

Mesh adaptation is a way in which the spatial discretization (mesh) can be

altered over time to maximize the accuracy of the solution obtainable with a certain

amount of computing power. There are several open areas of research in mesh

adaptation, and Chapter 3 presents advancements made in this work to design

and implement mesh adaptation that can run efficiently on present and near-future

supercomputers.

Present supercomputers make extensive use of distributed memory parallelism

by being constructed from tens of thousands of smaller computers (nodes) connected

by a fast network. In an effort to reduce acquisition and maintenance costs for a

given amount of computing power, present and future supercomputers will also

make extensive use of shared memory parallelism, by having each node be con-

structed with hundreds to thousands of computing cores, all of which are capable of

working in parallel. The combination of the two forms of parallelism is what makes

a supercomputer heterogeneous.

Designing programs for heterogeneous supercomputers is a critical challenge,

because such programs must be able to precisely coordinate a complex hierarchy of

memory and interaction methods executing on millions of compute cores in order

to solve a given problem at minimal cost. Chapter 4 presents contributions to the

design and implementation of parallel programs, including both widely applicable

tools and tools specifically designed to enable efficient parallel mesh adaptation.

An additional challenge to the design of parallel programs is the fact that

supercomputers fall into different architectural design categories which currently

have very different programming interfaces. Thus, in order to design a program

which is portably performant over all architectures, one must try to abstract away

their differences and, unfortunately, cater to the lowest common denominator of

functionality. Throughout this thesis, we present two systems: the first only operates

on some architectures and provides a wide array of adaptive functionality, while the

second is portably performant across the major architectures and currently provides

less adaptive functionality.

Finally, Chapter 5 presents several application programs which make use of

the tools developed here in order to solve a variety of engineering problems.

3

1.2 Terminology

Topological Complex A breakdown of a Cartesian domain

into topological entities

Mesh A topological complex whose entities

have simple shape

Entity A topological entity of a mesh

Vertex A 0-dimensional entity

Edge A 1-dimensional entity

Face A 2-dimensional entity

Region A 3-dimensional entity

Element An entity not bounding another entity

(Hardware) Node A computer having a single

hardware memory space, cooperating

with others via a network

Core A CPU core or a GPU hardware thread

(the unit of hardware parallelism)

Process An operating system process

(has a software memory space,

contains one or more threads)

Thread An operating system thread

or a CUDA thread

(the unit of software parallelism)

(MPI) rank One of several operating system

processes cooperating using MPI

to execute a parallel program

(mesh) partition The subset of a mesh stored

in a single data structure.

(mesh) part Synonym for mesh partition

4

1.3 Notation
Ω a subset of Cartesian space (a domain)

T d the subset of d-dimensional entities in a topological complex T

T di the i-th entity in T d

∂e the set of lower-dimensional entities adjacent

to entity e, called its boundary

∂S for a set of entities S, ∂S =
⋃
e∈S ∂e

S̄ for a set of entities S, S̄ = S ∪ ∂S
a ⊆ ∂b entity a is a subset of entity b’s boundary,

meaning a is adjacent to b

a{T q} the set of entities in T q adjacent to entity a

S{T q} for a set of entities S, S{T q} =
⋃
e∈S e{T q}

M the (symmetric positive-definite) mesh metric tensor

h the desired length of mesh edges (isotropic size)

diag(a, b, c) a diagonal matrix A ∈ R3×3 with A11 = a,A22 = b, A33 = c

dxe the smallest integer ≥ x

le the length of edge e in real space

l̃e the length of edge e in metric space

VK the volume of tetrahedron K in real space

ṼK the volume of tetrahedron K in metric space

lK,RMS the root-mean-squared edge length of tetrahedron K

ηK the mean ratio quality of simplex K

P the number of processes in an MPI job

T the number of threads per process

ρ density

v velocity

p momentum

1.4 Mesh Definitions

We define here the basic concept of a mesh (Section 1.4.3), based on the general

idea of a topological complex (Section 1.4.1) and focusing on its adjacency relations

(Section 1.4.2). Next we go on to specify the type of meshes we are dealing with

5

(Section 1.4.4), and the unique way in which they are being modified, i.e. mesh

adaptation (Section 1.4.5).

1.4.1 Topological Complex

A point set is a subset of the points in some Cartesian space RD.

A topological complex T is a set of point sets containing points in RD. Each

point set T di in T is an open subset of some d-dimensional manifold embedded in

RD, where 0 ≤ d ≤ D. We say that d is the dimension of point set T di . We can

denote all point sets of dimension d in the complex by T d.

All point sets in T are disjoint from one another, and their union Ω =
⋃
T

is a subset of some D-dimensional manifold, i.e. a D-dimensional manifold with

boundary. We denote the boundary of this complex as Γ = ∂Ω. Each point set is

an open subset of a d-manifold, and the closed equivalent on said manifold, denoted

T̄ di = T di ∪ ∂T di , is the open set plus its boundary. Since the sets are disjoint, only

their boundaries may intersect. For all pairs of equal-dimension point sets, the

intersection of their boundaries must exist as the union of other, lower-dimensional

point sets in T :

∀T di , T dj 6=i ∈ T : ∃S ⊆ {T qk ∈ T
∣∣q < d} :

⋃
S = ∂T di ∩ ∂T dj

Finally, to keep the surface properly divided, we require that the intersection

of any point set boundary with the overall boundary also exist as a union of lower-

dimensional point sets:

∀T di ∈ T : ∃S ⊆ {T qk ∈ T
∣∣q < d} :

⋃
S = ∂T di ∩ Γ

Boundary-representation (BRep) CAD models are examples of topological

complexes, as are meshes. Point sets of dimension 0 are called vertices, those of

dimension 1 are called edges, faces have dimension 2 and regions have dimension 3.

When discussing a topological complex, we refer to point sets as entities.

Figure 1.1 illustrates two topological complexes, both in 2D. On the left is a

cross-section of an airfoil in fluid, showing how the airfoil forms a “hole” in the fluid,

6

Figure 1.1: Topological complexes: (left) an airfoil CAD model (right) a
single triangle

and a boundary may be represented by a single edge that is curved and connects

to only one unique vertex. On the right is a simpler model of a triangular domain,

which is representative of how triangles are viewed in a mesh.

1.4.2 Adjacency Relation

Given a topological complex T , we can describe the relations between point

sets in terms of adjacency. If a point set b bounds a point set a, b ⊆ ∂a, then we say

there is a downward adjacency (a, b). Note that downward adjacency is a transitive

relation:

c ⊆ ∂b, b ⊆ ∂a→ c ⊆ ∂a

For every downward adjacency (a, b), there exists an upward adjacency (b, a).

Together, upward and downward adjacencies defined this way are called first-order

adjacencies.

The first-order adjacency relations in a mesh define a graph, which we call

a topology graph. The majority of our work is concerned with finding efficient

computer representations for topology graphs.

The topology subgraph between a pair of dimensions T p, T q is a bipartite

graph. We have a notation for queries of this bipartite graph: T pi {T q} is the set

of entities (point sets) in T q adjacent to T pi . In general, one can query all entities

adjacent to a set of entities: S{T q} =
⋃
a{T q}, a ∈ S. This makes it easier to define

second-order adjacencies, which are found by two transitive queries, for example

7

T ai {T b}{T c}.
Although these graphs have a natural direction for each edge (from higher

dimension to lower), we are interested in being able to query both outgoing (down-

ward) and incoming (upward) relations, so the storage will be bi-directional in many

cases.

Another useful concept will be the entity use, which is essentially an edge of

the topology graph. If entity b is in the boundary of entity a, then b is used by a,

and that occurrence is an entity use. The term shows up when data is stored once

for every adjacency relation.

1.4.3 Mesh

A mesh M is herein defined as a special case of a topological complex where

the closure of each entity M̄d
i is topologically a polytope of dimesion d. Mesh entities

which do not bound other entities are called elements.

Being polytopes topologically, mesh entities have no holes or internal empty

spaces, so they do not need multiple loop or shell constructs to describe their bound-

ary the way a BRep CAD model would.

1.4.4 Finite Element Mesh

We further define a finite element mesh as a special case of a mesh, with certain

restrictions and requirements. For our current purposes, a finite element mesh is

composed of entities whose closures are one of the following polytope types:

1. point (d = 0)

2. line (d = 1)

3. triangle (d = 2)

4. quadrilateral (d = 2)

5. tetrahedron (d = 3)

6. hexahedron (d = 3)

8

Figure 1.2: Polytopes commonly used in FE and FV meshes

7. (square-based) pyramid (d = 3)

8. triangular prism (d = 3)

This list of polytopes is also illustrated in Figure 1.2, and can be easily ex-

tended to include additional polytope types of interest.

This work is focused on unstructured meshes, meaning their topology must be

explicitly stored because it is not originally defined by some simple pattern such

as a grid. Such unstructured meshes have an advantage in representing complex

geometry and in their ability to easily vary resolution throughout the geometry.

In addition, the Finite Element Method uses fields which are each defined as

the weighted sum of finite number of basis functions, where the weights are referred

to as degrees of freedom and are each attached to one mesh entity. This requires a

data structure that can attach degrees of freedom to mesh entities.

Finite element analysis procedures also require meshes where the number of

elements around some boundary entity (such as a vertex or an edge) is limited to

a reasonable upper bound, otherwise shape quality and numerical conditioning will

degrade. Therefore, in such meshes, all upward adjacencies are bound by a constant.

Any operation whose runtime is proportional to the number of upward adjacencies

can be treated as a constant-time operation (see Appendix B.1.1 for a proof of this

bound).

Finally, if there are multiple polytope types per dimension, such as having

9

both triangles and quadrilaterals in 2D, then we say the mesh is mixed.

1.4.4.1 Topological Template

When dealing with stored mesh topology and attempting to describe the rela-

tionships between adjacent entities, one needs some frame of reference to begin with.

This takes the form of a topological template [1,2] which describes, for a single poly-

tope, a canonical numbering of its boundary entities. For example, the vertices of a

tetrahedron are numbered such that the triple product (x1−x0)×(x2−x0) ·(x3−x0)

yields a positive value, where xi is the coordinate of vertex i. Furthermore, the trian-

gles bounding a tetrahedron have a canonical ordering and orientation, for example

the canonical second face of tetrahedron (a, b, c, d) can be defined as the triangle

(a, b, d). Although these decisions are arbitrary, it is necessary to choose such a

template for each topological type in order to have a frame of reference when pro-

gramming operations that act on the boundary of an entity. It can also be useful

to choose orderings to have certain special properties that ease the programming of

certain algorithms, for example orienting all faces of an element such that the nor-

mal of the face points outwards from the element. See Section 2.5.3 for an example

of how this information is used.

1.4.5 Adaptation

There are two approaches to modifying the topology throughout a simulation.

If an entirely new mesh is constructed, we say that the method is remeshing. If local

changes are applied to the original mesh to transform it into the new mesh, we say

the method adapts. Such local changes require adding and removing entities from

the mesh within local portions of the domain. On the other hand, if the mesh is not

changed during the simulation, we say that the mesh is static.

Adaptation refers to a process of modifying the mesh by applying mesh entity-

level operations on mesh cavities. We can define a mesh cavity as the union of several

mesh entities, in which the mesh modification changes the interior (open set) of the

mesh entities within the cavity, leaving its boundary unchanged.

Adaptation has a number of benefits compared to complete remeshing. Remesh-

ing has a runtime cost at least proportional to the number of total elements, while

10

the cost of adaptation is only proportional to the number of mesh entities modified.

Moreover, the transfer of field values from the old mesh to the new mesh is a com-

plex procedure when remeshing, requiring spatial search algorithms and tends to

apply remapping operators that are diffusive and/or have to deal with conservation

requirements at a global level.

Adaptation by local mesh modification supports local execution of solution

transfer: refinement splits parent entities and is able to transfer solution exactly us-

ing shape function interpolation, and other operations are confined to a local cavity

so that any searching is fast, and diffusive effects and conservation adjustments are

local.

Local mesh adaptation requires unique properties of the mesh data structure

that are otherwise unnecessary for static meshes. If adaptation is programmed

as a series of entity additions and removals, then we require that entity addition

and removal be constant-time operations. Section 4.8 presents two alternatives to

scheduling cavity operations, the latter of which allows changes to be grouped into

batches, which allows the use of simpler data structures.

For several reasons, it is preferable to modify a cavity by first constructing all

new entities that fill the cavity, which overlap with the old, and then destroying all

old entities. First, this allows both versions to be considered by a solution transfer

algorithm, which needs the mesh topology from both to operate properly in the

general case. Second, we are able to evaluate quality and correctness metrics of the

new entities and, if those are unacceptable, cancel the operation by destroying the

new entities and leaving the old entities in place.

As a consequence, the mesh structure must tolerate temporary topological in-

consistencies introduced by adaptation. For example, the first modification made is

either the addition of an entity which overlaps with existing entities or the removal

of an entity. Adding an overlapping entity causes inconsistencies such as a face

which has three adjacent regions in the temporary mesh. Removing an arbitrary

entity can cause non-manifold configurations, such as that of a vertex adjacent to

only two elements, which in turn only intersect at that vertex.

Certain modifications, such as edge collapsing, can only correctly preserve

11

the boundary of the mesh the mesh structure maintains a direct mapping from

mesh entities to geometric (CAD) model entities. This mapping is referred to as

classification [3]. For example, sharp edges can be preserved when it is known that

a mesh entity is on such a CAD model edge. The inverse map of classification

is called reverse classification, and it defines the groups of mesh entities to which

boundary conditions are applied.

The implementations of edge collapsing which preserve topological similarity

require knowledge of the classification for all mesh entities, hence requiring a com-

plete (though not necessarily full) topological representation [4] to safely coarsen a

mesh. It would be possible to avoid storing some entities, so long as the classification

of entities not stored could be inferred. Beyond that, it is convenient in any case to

represent edges explicitly, given that many adaptive algorithms are based on edge

lengths [5]. The adaptive applications in this work all use representations that store

all entities.

1.4.6 Metric Field

The most common way in which one describes the desired effects on the mesh

to an adaptation program is via a metric field [6–8]. From a continuous perspective,

the metric field is a tensorM which varies over physical space. This tensor describes

a metric because at any given point x in space, one can choose a direction expressed

as a unit vector u, then the product uTM(x)u replaces the inner product uTu for

measuring distance along the given direction. We require the metric tensor to be a

real symmetric positive-definite d× d matrix for spatial dimension d, which means

it can be diagonalized by an orthogonal matrix and has all positive eigenvalues, as

expressed in Equation 1.1.

M = RTΛR, RTR = I, Λ = diag(λ1, . . . , λd), ∀i ∈ [1, d] : λi > 0 (1.1)

The matrix R can be viewed as describing a rotation, while the diagonal

matrix Λ scales a vector by a positive amount along each coordinate axis. One

can then consider the matrix Q as defined by Equation 1.2 to be defining an affine

12

transformation (rotation followed by scaling) that is applied to vectors before their

inner product is taken, as illustrated in Equation 1.3.

Q = Λ
1
2R, Λ

1
2 = diag(

√
λ1, . . . ,

√
λd) (1.2)

uTMv = uTRTΛRv = uTRTΛ
1
2 Λ

1
2Rv = uTQTQv = (Qu)T (Qv) = ũT ṽ (1.3)

Viewed in this way, the metric tensor is actually defining, at each point in

space, an affine transformation that should be applied to vectors before computing

local spatial qualities. For us, it is sufficient to consider how the metric tensor alters

length along a direction u (Equation 1.4), as well as volume (Equation 1.5). We use

a tilde to denote quantities “in metric space” (post-transformation).

l̃ = l ·
√

uTMu (1.4)

Ṽ = V ·
√

det(M) (1.5)

Note that for many applications, a metric which is isotropic may be sufficient,

meaning that the entire tensor may be represented by a single scalar λ, or for con-

venience a single desired length value h = 1/
√
λ. It is useful for an adaptation code

to consider this special case separately because storage and algorithmic complexity

are greatly reduced (see Section 3.5).

1.4.7 Element Quality

Many researchers use a quality measure known as the mean ratio to evaluate

tetrahedra and triangles [6–9]. In Equation 1.6, we define the mean ratio in an

equivalent but slightly different form than presented by other authors. This is to

clearly show that the mean ratio may be interpreted as comparing a tetrahedron’s

volume and the volume of an equilateral tetrahedron with the same root-mean-

squared edge length.

13

ηK =

(
VK

γK · l3K,RMS

) 2
3

, lK,RMS =

(
1

6

6∑
i=1

(lK,i)
2

) 1
2

, γK =
1√
72

(1.6)

In Equation 1.6, VK is the tetrahedron volume, lK,i is the length of edge i

of the tetrahedron, and γK is the volume of an equilateral tetrahedron with unit

edge length. A similar definition exists for a triangle T with area AT as shown in

Equation 1.7.

ηT =
AT

γT · l2T,RMS

, lT,RMS =

(
1

3

3∑
i=1

(lT,i)
2

) 1
2

, γT =

√
3

4
(1.7)

1.5 Reference Computer

Since the following sections will describe a variety of different computer hard-

ware systems, it is useful to have a reference point of hardware to which they can

be compared. We define a “reference computer” as follows:

1. It has a single CPU, which contains a set of registers (places to store single val-

ues), and can perform operations with the inputs and outputs being registers.

Accessing a register is instant, but there are only a dozen or so of them.

2. It has memory which is used to temporarily store all the data required to solve

the problem. The CPU can transfer data between registers and memory at a

moderate cost.

3. It has a disk which is used to permanently store inputs and outputs of the

overall program. The CPU can transfer data between memory and the disk,

at a high cost.

4. It has a user interface, in our case we will simply say a human operator has

some way to receive data from and provide data to the CPU in real time.

5. It has a network interface which transits data to or receives data from other

computers.

6. Only one of the above actions may be performed at one time.

14

7. With the exception of a human or network choosing to provide data, all choice

of actions is dictated by the CPU, which is in turn obeying the instructions of

a single stored program.

We will also not pay much in-depth attention to the architecture of the cache

system, because it is largely transparent to the program. In particular, the program

cannot explicitly command the cache to behave in a certain way; it can only indi-

rectly influence the performance of the cache in they way it transfers data to and

from memory. The key performance principle regardless of cache design is to make

sure the order in which values are stored in memory reflects the order in which they

are accessed.

1.6 Heterogeneous Node Architecture

As mentioned in Section 1.1, a supercomputer is a networked collection of

nodes, and the design of a single node is where much of their diversity has ap-

peared in recent years. This Section describes the three key hardware component

developments influencing this diversity. Any present-day supercomputer node is a

combination components from each of these three categories.

1.6.1 Multi-core CPUs

Personal computers and similar mobile devices are limited to a single CPU due

to the evolution of their hardware and software, so the computing power of a single

CPU defines the quality of the products from which vendors make the majority of

profits. Given the technology at any point in time, a single CPU core can only run

so fast, and the way to add even more performance has been to include multiple

cores per CPU, creating a miniature parallel system on a single chip [10]. At the

time of this writing, most consumer devices have two or four cores, and the high-end

CPUs from which the majority of clusters and previous generation supercomputers

are constructed contain about sixteen cores.

A CPU core has its own set of registers, and more importantly it has the full

capability to dictate transfers to memory, disks, the network, and the user interface.

In comparison with the reference computer from Section 1.5, the key difference is

15

that each core executes independently, and therefore two cores can execute different

actions at the same time.

1.6.2 GPU Coprocessors

For the past two decades, many personal computers came equipped with pieces

of specialized hardware called Graphics Processing Units (GPUs). These compo-

nents were chips specifically hardwired to perform the highly parallelizable opera-

tions involved in displaying graphics, where each screen pixel could be handled by a

separate parallel processor. As research in graphics progressed, there was a need to

move from hardwired to programmable graphics processing to implement more re-

alistic graphics algorithms. GPUs whose operations were somewhat programmable

began appearing in 2002 such as NVidia’s NV30 device. By 2004, Stanford Uni-

versity had developed a useful programming environment called BrookGPU [11],

which enabled researchers to more easily use GPUs to solve new problems and was

subsequently adopted by AMD. Usage spread from the graphics community to the

closely related scientific computing community. GPUs were an affordable personal

solution for researchers to access substantial computing power. The interest soon

motivated NVidia to release a programming environment called the Compute Uni-

fied Device Architecture (CUDA), alongside its GeForce 8800 products in 2006. By

2009, not only was CUDA was being seriously considered as a programming environ-

ment to solve a wide variety of problems [12], but GPUs had made their way onto

the world’s top supercomputers. China’s Tianhe-1A computer, revealed in 2010,

contained over 7K NVidia GPUs, making it the world’s most powerful supercom-

puter until 2011 [13]. American supercomputers soon followed suit, and in 2012 the

Titan supercomputer at Oak Ridge National Laboratory was equipped with over

14K NVidia GPUs [14], making it the world’s most powerful in the year 2012. By

this point, GPUs had thousands of “cores” each.

In comparison to multi-core CPUs and the reference computer in Section 1.5,

a GPU is in many ways limited in comparison to a multi-core CPU. The GPU and

its cores cannot directly access CPU memory, disks, networks, or user interfaces.

Rather, GPUs have their own memory hardware, separate from that of the CPU,

16

and roughly equal in size. GPU cores can only execute a small program called a

kernel, which is given to the GPU by the CPU. Since the GPU accepts a different

instruction set than the CPU, kernel code must be compiled specifically for the GPU.

Other actions of the GPU are dictated at a high level by the CPU, including transfer

of data from CPU to GPU memory. Due to the lack of other access, CPU-GPU data

transfer is required for network communication or disk file access. To make matters

worse, such data transfer is slow (low bandwidth) compared to the rate at which

the GPU can process data, meaning that without careful implementation, one can

spend the majority of computer time simply waiting for data transfers [15].

Despite these limitations, the sheer number of cores in a GPU combined with

the efficiencies gained in exchange for lack of generality means that GPUs can the-

oretically outperform CPUs by an order of magnitude, and should be substantially

more energy efficient. This motivates researchers to re-design algorithms such that

their practical performance can approach this theoretical promise.

1.6.3 The Intel Xeon Phi

During the years that GPUs were being introduced into leading supercomput-

ers, Intel began developing a family of chips which were based on their multi-core

CPUs but tended more and more towards GPU-like capabilities, by increasing the

number of cores from tens to hundreds and while decreasing the amount of power

per core. This family is called the Intel Xeon Phi line, and began with co-processors

that behaved like GPUs, requiring a host CPU to send them specific compute re-

quests. In 2013, China presented their TianHe-2 supercomputer, whose nodes had

two Intel CPUs and three Intel Xeon Phi co-processors each. With 16K total nodes,

TianHe-2 remained the world’s most powerful supercomputer until 2016, the year of

this writing. Intel has since evolved their Xeon Phi co-processor into a full-fledged

processor with nearly one hundred CPU cores [16], which will be used to construct

near-future supercomputers in the United States.

A Xeon Phi processor can for the most part be considered a CPU with many

more cores than usual, with the additional benefit that they have performance prop-

erties close to those of a single GPU. Conversely, it may provide the hardware char-

17

acteristic benefits of a GPU with the generality of a CPU, since all cores can access

main memory, disks, and networks as described in Section 1.5.

1.7 Programming Environments

When writing programs for heterogeneous supercomputers, there are a few key

programming environments which motivate choices about the implementation.

1.7.1 Operating System

Even when given hardware as simple the reference computer from Section 1.5,

one can emulate the presence of more hardware by using an operating system, which

is a program that directly executes on the given computer and in turn allows the

execution of multiple other programs simultaneously on that same computer. The

two operating system concepts most relevant to our work are the process and thread.

An operating system process is an emulation of the reference computer: it has its

own memory space, which emulates hardware memory, as well as access to disks,

user interfaces, and networks, which the operating system manages such that the

process appears to have unique access to these resources. A process also contains one

or more threads, which are software emulations of CPU cores. They have their own

emulated registers, and can execute different actions at the same time. A process has

a single associated program whose instructions the threads are following, although

each thread may be following a different subset of the instructions depending on its

own local state (registers and stack). Operating system threads all have access to

emulated process resources such as networks in the same way that CPU cores all

have access to computer interfaces.

Despite having great complexity in their own right, operating systems are

fundamentally just sharing mechanisms. Increasing the number of threads and pro-

cesses that share a fixed amount of hardware resources will degrade the emulated

performance of all the active threads as they will each be provided with a smaller

fraction of the hardware resources.

If one instead intends to devote all the hardware of a machine to a single

program, then it is natural to align the operating system constructs with their

18

physical counterparts. This means binding an operating system process to a CPU,

such that its memory space maps to the CPU’s entire available memory, and binding

operating system threads to CPU cores, such that the amount of parallelism and the

amount of memory sharing perceived at the software level both match the amount

supported at the hardware level.

1.7.2 MPI

Distributed memory computers have for the past two decades been programmed

using the Message Passing Interface (MPI) [17,18]. This interface remains the most

reliable and portable way to construct programs for all distributed memory super-

computers, and is thus central to any scalable program. Although its early versions

(version 2.0 and earlier) had scalability challenges [19], MPI has evolved to effec-

tively address these challenges and “modern” MPI as described in [20] scales well

into the million-core range. We will present optimal usage of modern MPI fea-

tures in Section 4.2 and show in Section 5.4 that one of the applications using tools

developed in this thesis scales to 768K cores using only MPI [21].

MPI reflects in software the architecture of a distributed-memory machine: a

set of compute nodes which execute in parallel and cooperate via a network. Each

node has its own memory must explicitly send network messages to provide or query

data stored in another node. An MPI rank is an operating system process, and MPI

provides a consistent interface over the various operating system network interfaces.

Whereas operating system networking uses complex addresses and protocols for

generality, MPI maintains a concept of a group of P ranks which are cooperating

and may address one another by a consecutive integer from 0 to (P − 1). MPI

provides many complex algorithms for coordinating such groups of ranks, as well

as a simplified method of transmitting data that allows programs to focus on the

contents of the data as opposed to the details of what protocol may be used on the

network. In software terminology, MPI is implemented as a library, which means it

is simply a set of functions that can be called from a program.

19

Listing 1.1: Serial for loop

1 for (int i = 0; i < n; ++i) {

2 b[i] = a[i] + 3.14159;

3 }

1.7.3 OpenMP

OpenMP is a programming environment mainly for multi-core CPUs. In the

same way that MPI is a software reflection of distributed memory, OpenMP is a

software reflection of shared memory. It is based on the concept of a single operat-

ing system process that contains T operating system threads which are cooperating.

Since memory is shared within an operating system process, OpenMP does not pro-

vide message-passing functionaliy the way MPI does. What OpenMP does provide

is the concept of a parallel for loop, which is a key abstraction for shared memory

programming. In structured serial programming, there is the concept of a for loop.

Listing 1.1 illustrates a for loop in the C++ language, which adds a constant to

the entries of an array a and stores the resulting values in the array b. This is done

for a total of n entries. As written, a single thread does this work one entry after

another.

Unlike MPI, OpenMP is directive-based, meaning that it is integrated directly

into a programming language compiler in order to introduce new language notation.

As Listing 1.2 illustrates, this allows simple annotation of the loop from Listing 1.1

which turns it into a parallel for loop. What now occurs is that all of the cooperating

threads in OpenMP will share the work of this loop. Given T cooperating threads,

each thread will do the work for approximately (n/T) entries of the array, and

OpenMP is responsible for the scheduling of which entries each thread works on.

Assuming all threads are supported by proper CPU cores, the time to complete this

work should be O(n/T), whereas the serial loop would have completed in O(n) time.

Like any form of parallelism, this places restrictions on what serial constructs

may be parallelized. For example, even a simple sum operation as shown in Listing

1.3 could not be parallelized in the same simple manner, because the sum variable is

being read from and written to by multiple threads without the necessary coordina-

20

Listing 1.2: OpenMP parallel for loop

1 #pragma omp parallel for

2 for (int i = 0; i < n; ++i) {

3 b[i] = a[i] + 3.14159;

4 }

Listing 1.3: Dependent for loop

1 for (int i = 0; i < n; ++i) {

2 sum = sum + a[i];

3 }

tion. Such a situation is referred to as a race condition, because depending on the

order in which different threads perform actions with respect to one another (which

is indeterminate), incorrect results may be produced.

We refer to the execution of the body of the for loop for a single value of i as

an iteration. In order to avoid race conditions, we introduce the following principles

of array-based parallel for loop programming:

1. Avoid writing to and reading from the same array in the same loop.

2. No array entry should be written to by more than one iteration.

3. If an array entry must be read from and written to, it must only be accessed

by a single iteration of the loop.

4. If the above rules must still be violated, it must be done via atomic operations.

Atomic operations exist to cover limited cases of multiple writes the same entry

by different threads or loop iterations. For example, an atomic addition operation

allows multiple iterations to add values to the same array entry, with the guaranteed

outcome that after all iterations have executed, the correct sum appears at this entry.

1.7.4 CUDA

CUDA is NVidia’s programming environment for their large family of pro-

grammable GPUs [22]. Like OpenMP’s parallel for concept, CUDA’s programming

21

Listing 1.4: CUDA for loop

1 __global__ add(double* a, double* b) {

2 int i = blockIdx.x;

3 b[i] = a[i] + 3.14159;

4 }

5 add<< n, 1 >>(a, b);

model is based on parallel execution of kernels, which are almost the same as par-

allel for loop iterations. Listing 1.4 shows how one might transform Listing 1.1

into the CUDA programming model. Like OpenMP, CUDA is integrated into the

compiler in order to introduce its own non-standard language notation. The loop

iteration becomes its own function which must be properly annotated to indicate it

is a kernel.

The limitations of GPUs described in Section 1.6.2 make their way into the

design of CUDA and software that uses it. Annotations required on CUDA functions

because the code in them must be compiled specifically for the GPU. CUDA also

provides the functions with which the CPU controls GPU memory allocations. In

Listing 1.4, for example, both arrays a and b need to be explicitly allocated in GPU

memory. As Section 1.6.2 mentions, CPU-GPU data transfer is slow and should

be avoided. Also, for all practical purposes, kernel code should not allocate or

deallocate memory. Although limited support for this exists, it should be avoided

for best performance. This leads to the following principles of GPU programming:

1. Organize data in large allocations, such that the number of allocations is not

proportional to the size of the data. This allows the CPU to manage allocations

efficiently.

2. Allocate all data on the GPU, and only transfer it to the CPU for network

and disk operations.

3. A kernel should do a small, constant amount of work using a small, constant

amount of memory.

The first and third principles have a serious impact on data structure design,

ruling out the many-small-objects approach. Any data structures used locally at the

22

Listing 1.5: Kokkos for loop

1 auto add = KOKKOS_LAMBDA(int i) {

2 b[i] = a[i] + 3.14159;

3 }

4 Kokkos::parallel_for(n, add);

kernel level should be designed such that their size is known at compile time. The

second principle is essentially the most aggressive approach to avoid CPU-GPU data

transfer, and is motivated by the high cost of such data transfer. Although it can be

argued this is too restrictive, we show in this thesis that very complex unstructured

operations can be carried out effectively while adhering to this principle.

1.7.5 Kokkos

Kokkos is a C++ library developed at Sandia National Labs that provides

a portable shared memory programming environment encompassing other environ-

ments such as OpenMP and CUDA [23]. Kokkos maintains the parallel for loop

model of OpenMP while accounting for the separation of code and data that may

occur if CUDA is used. Listing 1.5 illustrates what the loop from Listing 1.1 looks

like when implemented using Kokkos.

The key here is that this code does not change when one moves from multi-

core CPUs using OpenMP to GPUs using CUDA. Even for this simple example, the

changes required would otherwise be significant (compare Listings 1.2 and 1.4).

Kokkos also provides a data structure describing an array allocation with fea-

tures for controlling allocation to GPU memory if necessary and explicit control

over any transfers to the CPU.

1.8 Overview of Software

Below we present the various pieces of software which contain the end products

of the research and development done as part of this thesis.

23

1.8.1 PUMI

The Parallel Unstructured Mesh Infrastructure (PUMI) is a software package

containing several libraries which together provide all the tooling necessary to store,

query, and adapt partitioned meshes with simulation fields attached [24]. PUMI’s

design is based on locally serial software threads which cooperate with one another

using message passing, assuming there is no sharing of memory. Each software

thread is required to have access to all computer functions including memory allo-

cation, message passing, file I/O, and the ability to call any available third party

library. Because of these assumptions, PUMI’s code could not execute on more

restricted architectures such as GPUs without very substantial re-design and re-

implementation. Key components of PUMI include:

1.8.1.1 PCU

The Parallel Control Utility is a C library which implements the key parallel

communication systems required to construct more complex parallel programs which

remain scalable. Its algorithms and implementation will be covered in detail in

Section 4.3. PCU uses MPI to transmit all its messages, making it portable across

many distributed memory supercomputers. PCU also made an effort to implement

hybrid threading in a way that was transparent to the rest of PUMI by providing

MPI-like communication between threads.

1.8.1.2 APF

Attached Parallel Fields is a C++ library whose original goal was to manage

fields discretized over a mesh. In order to achieve that goal without being tied to a

particular mesh implementation, APF included an abstract interface for interacting

with any mesh implementation. Because algorithms based on this interface are

immediately able to operate on multiple different mesh implementations, APF now

contains many such algorithms dealing with topological and parallel operations.

1.8.1.3 MDS

The Mesh Data Structure library is a C library implementing the main mesh

data structure for APF and therefore PUMI. It is array-based, supports adding and

24

removing entities in constant time, can represent multiple element types at once, and

is augmented with parallel connectivity information for partitioned meshes. This

structure will be described in detail in Section 2.4.

1.8.1.4 MeshAdapt

MeshAdapt is a C++ library that leverages PCU, APF, MDS, and other

libraries in PUMI to implement scalable parallel mesh adaptation. MeshAdapt

developments which are part of this thesis will be covered in detail in Sections 3.3

as well as Section 4.8.1.

1.8.2 Omega h

Omega h is a single C++ library which was designed from the beginning with

the restrictions and potential of GPU programming in mind [25]. It aims to provide

as much of the core functionality of PUMI as is feasible in a portably performant

way, which currently amounts to adapting triangular and tetrahedral meshes using

anisotropic metrics. Omega h represents the first such portably performant code

capable of mesh adaptation, and is a major contribution of this thesis. It uses the

Kokkos library to achieve portable on-node parallelism as described in Section 1.7.5,

and techniques it uses to produce deterministic results are presented in Section 4.9.

Its data structure will be described in Section 2.5. Its implementation of mesh

adaption will be discussed mainly in Section 3.4, with key parallel aspects covered

throughout Chapter 4.

1.9 Contributions

This thesis centers around contributions made to the design, implementation,

and distribution of mesh adaptation libraries. In the following summary, any ref-

erence to the design of an algorithm or structure indicates that said design is a

completely novel contribution of this thesis. Likewise, any reference to the im-

plementation of a software library indicates that said library was developed in its

entirety by the author in the course of this thesis work.

1. The design and implementation of a new mesh adaptation library, Omega h,

25

built using the parallel for loop model to allow it to execute on GPUs, Intel

Xeon Phis, etc. There are more novel algorithms encompassed in this contri-

bution than can be included in this summary, see Sections 2.5, 3.4, 3.5, 3.6.1,

4.8.2, and 4.9.

2. The design of a new data structure and its implementation in MDS, which has

an object-oriented interface and an array-based implementation (Section 2.4).

This is the first such design that directly maintains the types of adjacency

arrays needed for a full topological representation.

3. The design of scalable communication for unstructured mesh adaptation codes,

exemplified by the implementation of the PCU communication library (Sec-

tion 4.3) for inter-thread message passing and by certain components of the

Omega h library (Sections 4.5).

4. The implementation of the most recent version of MeshAdapt, which is based

on the scalable communication of PCU and the novel structure of MDS. This

library provides the algorithms developed by decades of research prior to this

thesis (as described in Section 3.3) in a form that is scalable (Section 4.8.1),

efficient, and has high quality source code.

5. The use of MeshAdapt and Omega h to bring adaptive capabilities to real

simulation codes used by universities, government researchers, and private

companies to solve problems in structural mechanics, aerodynamics, hydrody-

namics, and other areas. Chapter 5 describes these applications.

CHAPTER 2

ARRAY-BASED MESH REPRESENTATIONS

This Chapter presents two data structures, each used to represent the portion of

the mesh (a.k.a. mesh part) stored in one shared memory space. Each of these

structures are augmented with information connecting multiple mesh parts across

distributed memory spaces as described in Chapter 4, the result of which is a pair

of fully parallel mesh data structures.

2.1 Goals

An unstructured mesh simulation code relies heavily on multiple core capabil-

ities to deal with the mesh, and the range of features available at this level constrain

the capabilities of the simulation as a whole. As such, the long-term goal towards

which this thesis contributes is the development of a mesh data structure with the

following capabilities:

1. The flexibility to adapt to evolving meshes

2. The ability to represent any of the conforming meshes typically used by Finite

Element (FE) and Finite Volume (FV) methods

3. Low memory use

4. High locality of storage

5. Highly scalable implementation for distributed memory computers

6. The ability to parallelize work inside heterogeneous supercomputer nodes

The first goal is the most consequential. If adaptivity is implemented as a

series of requests to add and remove mesh entities, then a much more complex

structure is required (see Section 1.4.5 for further discussion). Such a structure is

Portions of this chapter submitted as: D. Ibanez and M. S. Shephard, “Modifiable array data
structures for mesh topology,” SIAM J. Scientific Comput., under review.

26

27

described in Section 2.4. However, this approach tends to conflict with our sixth goal

regarding on-node parallelism. Therefore we also present an alternative approach

in which the additions and removals required for adaptivity are accumulated into

batches to be applied all at once (see Section 4.8.2), which allows us to use a less

complex structure as presented in Section 2.5 while adhering to the principles of

on-node programming established in Sections 1.7.3 and 1.7.4.

2.2 Related Work

There are several other implementations of mesh data structures which offer

various subsets of the features described herein:

First, there are dynamic structures which support mesh adaptation. FMDB

is an object-oriented structure that stores full or reduced representations [1,4]. It is

capable of constant-time local mesh modifications and supporting adaptation code.

Similar to FMDB is the mesh databased used by Compère and Remacle in the

MAdLib adaptation package [7]. Celes, Paulino, and Espinha also implement a

structure capable of adaptation [27]. Another example of an adaptive structure is

the GRUMMP system developed by Ollivier-Gooch [28].

Second, there are array-based structures designed for efficient access of un-

changing meshes. STK is an array-based mesh structure being developed at Sandia

National Laboratory [29]. MOAB is another array-based structure developed pri-

marily at Argonne National Laboratory [30], and working with MOAB an Adjacent

Half-Facet structure was implemented which can perform some modifications [31].

2.3 Choices in Representation

There are key choices in terms of which entities and adjacencies to store which

apply equally well to both of the structures presented in this Chapter.

2.3.1 Choosing Entities to Store

Unstructured mesh applications must represent the portions of the mesh topol-

ogy graph needed to support the operations carried out on the mesh. A represen-

tation which explicitly stores every entity is said to be a full representation. Any

28

schemes which allow some entities to be represented implicitly (i.e. their presence

does not consume memory) are reduced representations [1, 32,33].

As we began to discuss in Section 1.4.5, there are multiple factors in the

decision of which entities to store:

1. For boundary condition application, it is necessary to be able to infer the

classification of mesh faces.

2. For mesh adaptivity, it is necessary to be able to infer the classification of any

mesh entity, whether stored or not.

3. In mesh adaptation, it is often useful to store values on the edges and vertices

(for example, booleans indicating they are candidates for modification).

4. If the basis functions used for PDE discretization have degrees of freedom on

edges or faces, those edges and faces must be stored.

There are also many consequences of storing only a subset of entities that must

be considered:

1. If some entities of a given dimension are not stored, then downward adjacencies

from a higher dimension to the partially-stored dimension would need to be

more complex.

(a) Given a single high-dimensional entity, the ordering of its adjacent bound-

ing entities is crucial. If some of them are not stored, the remaining adja-

cency relationships would need to be annotated with ordering information

such that the correct ordering can still be reconstructed.

(b) Depending on the implementation, downward adjacencies would either

not have constant degree or have “null” values where non-stored entities

are adjacent. Both would complicate all code that queries and manages

downward adjacencies.

2. How to query information (such as classification) about a non-stored entity is

unclear. FMDB took the approach of temporarily creating and storing those

29

entities when queries were made [1]. Celes, Paulino, and Espinha use a similar

solution in their reduced representation [27]. This workaround is incompatible

with portable execution, as GPUs would not allow creating entities individu-

ally in this manner.

Beall and Shephard indicate other complexities involved with handling reduced rep-

resentations [34].

Given that it is convenient to store edges for adaptation and boundary faces

are needed for classification, the remaining consideration is whether to introduce

complexity in exchange for not storing interior faces. The choice made in this work

is to use a full representation, i.e. store all entities.

2.3.2 Choosing Adjacencies to Store

Once the set of explicit entities is chosen, one has options about which adja-

cencies to store. Recall from Section 1.4.2 that downward and upward adjacencies

are transitive, so there are many subsets of the adjacencies from which the others

can be reconstructed. For any given representation, the computation of Md
i {M q}

can either be done efficiently using stored information or using an exhaustive search

if less information is available. If one can compute Md
i {M q} for a single given entity

Md
i in constant time, we say that the stored information is complete [4]. Recall

from Section 1.4.4 that upward adjacencies are bound by a constant, so they are

computable in constant-time if enough information is stored.

A comparison of representations based on the choice of dimensions and ad-

jacencies between dimensions to represent was published by Garimella [32]. The

choices we made in our structures are described separately for each data structure,

in Sections 2.4.1 and 2.5.

2.4 MDS Data Structure

The MDS structure is built around the following key characteristics:

1. The representation centers around graph theoretic interpretations of topolog-

ical adjacency.

30

2. The mesh can remain topologically consistent with and associated with geo-

metric model entities.

3. The common element types of FE/FV methods can coexist in one structure.

4. Additional data can be associated with entities to implement high order basis

functions.

5. A mesh can be modified by adding and removing single entities in constant

time.

6. The entire mesh is stored in a few contiguous dynamic arrays.

One key contribution of this thesis is to show that the latter two properties,

array storage and rapid single-entity modification, are not mutually exclusive and

can be combined in a viable way.

2.4.1 Adjacencies stored in MDS

MDS is based on the full one-level representation, in which we store the upward

and downward adjacencies between each consecutive pair of dimensions [34]. In

particular, it stores region-face, face-edge, and edge-vertex adjacencies (both upward

and downward). Despite this focus on the one-level adjacencies, the general MDS

structure can be used to store any subset of adjacency relations.

Figure 2.1 illustrates geometrically the relationships stored in a full one-level

representation. Each arrow representing an adjacency relation (a.k.a. entity use) is

bi-directional to indicate that we store both the downward (high to low dimension)

and upward (low to high) relations. Note that vertices are related only to edges,

regions are related only to faces, etc.

MDS stores these one-level adjacencies directly and updates them as needed

during entity addition and removals, so we can call them the “permanent” adjacen-

cies. In order to fulfill requests for any adjacency information regarding a single mesh

entity at runtime, MDS carries out derivations based on the permanent adjacency

information as shown in Figure 2.2.

31

Figure 2.1: A geometric representation of one-level relations among a
subset of the entities that bound a tetrahedron

Figure 2.2: Single-entity adjacency derivations in MDS

Downward adjacencies not directly stored are derived locally by intersecting

existing adjacencies. For example, the vertices of a triangle may be found by query-

ing its edges and then the vertices of those edges, and ordering is preserved by

finding a vertex that is adjacent to two particular edges. Such intersection logic

moves down one dimension, and can be repeated if needed.

Conversely, upward adjacencies are found by successive unions of existing adja-

cencies. Given a vertex, one can retrieve adjacent edges, then for each edge retrieve

adjacent faces, then take the union of these sets of faces, giving the set of unique

faces adjacent to the edge.

These derivations are based on the algorithms described in detail in [1].

32

Figure 2.3: (left) The example mesh: a reduced representation of two
triangles sharing one edge and two vertices. (middle) The
linked-list storage of upward adjacency information for ver-
tices to triangles. (right) A key describing the meaning of
symbols in the middle figure

2.4.2 Object-Oriented Storage

We begin by describing how our structure would look if we stored it in an

object-oriented manner. In object-oriented programming, data is organized into

objects of a few types. All objects of the same type have the same attributes, and

for each object and associated attribute a value must be stored. In the present case,

the objects are mesh topological entities and the attributes are pointers encoding

adjacency relations.

The goal is to organize all data into objects whose sizes are known at compile

time based on their type. The first step to doing this is to create separate object

types based on topological type. Objects of the same type are all topologically sim-

ilar to some polytope, for example a triangle or a pyramid. This ensures that their

downward adjacency degrees are all the same, which makes downward adjacency

storage fairly straightforward. For example, a tetrahedron in a full representation

would store four pointers to its bounding faces.

The second step is to use a linked-list technique [2] to distribute upward-

adjacency storage amongst the entities of higher dimension, alleviating the need for

variable-length storage in lower-dimensional objects. If an object stores m downward

pointers, then it also stores m singly-linked list nodes. A singly-linked list node

simply contains a pointer to the next node, which can also be null. Every low-

dimensional object then stores a single “head” node which begins their upward

33

linked list. If a high-dimensional object (h) points to a low-dimensional object (l)

from its jth downward pointer, then its jth list node must be part of object l’s linked

list. Figure 2.3 illustrates this portion of the data structure for a reduced mesh of

two triangles. Notice how, for a shared vertex, one begins at the vertex’s head

node, reaches a node that is stored for triangle 0, then continues to a node stored

for triangle 1, which contains a null pointer. This is fundamentally how upward

adjacency is queried for a vertex. A singly-linked list can be used as opposed to

doubly-linked one because per Section 1.4.3 the number of nodes in this list has a

constant upper bound. This means we can afford the O(m) runtime cost of removing

a node from this list when a high-dimensional entity is removed (m being the number

of upward adjacent entities), in exchange for halving the memory use.

2.4.3 Structure of Arrays

Next we describe how we convert the object-oriented structure into an array-

based one. Instead of storing all data for a single object contiguously, i.e. organizing

by object first and then by attribute, we organize data first by attribute and then

by object. We store all data for a single attribute in a contiguous array, hence this

scheme can be called a structure of arrays [35]. In our case, examples of attribute

arrays would be the “first up” nodes for all entities of dimension d and likewise the

“next up” nodes for all entities of dimension (d+ 1). For a static mesh we would be

done, but this structure needs to support efficient addition and removal of objects.

We therefore need to manage the arrays which store attributes for all objects a single

type, to account for addition and removal of objects of that type.

When users request the addition of a new entity, we are allowed to store it

anywhere in the structure. In this case adding objects in constant time has a well-

known solution called geometric growth [36]. At any time we have some amount

of array storage capacity c(t) which is filled entry at a time. When that storage is

full, we reallocate it to a new capacity c(t + 1), such that the integer function c(t)

approximates the real function f(t) = αt, where 1 < α ≤ 2. Although reallocation

has a runtime cost of O(c(t)), the geometric growth amortizes this cost such that

adding objects is constant-time on average [36]. The tradeoff is that a bounded

34

fraction of the storage is unused extra space. In our case, we use a growth formula

of c(t+1) = (3(c(t)+1))/2 as a heuristic compromise between memory and runtime.

Removing objects is usually the more troublesome operation for array-based

structures. First, we have no control over which object is being removed. This means

a “hole” will be created at some arbitrary index. While some implementations opt

to fill this hole immediately with an existing object, we will avoid this because it

requires changing the index of a live object, which causes great confusion to users and

leads to programming errors. We prefer that object indices are like object pointers:

constant throughout the lifetime of the object. This way a handle/pointer/index

may be maintained by the user and it will have clear meaning even during mesh

modification.

If we cannot change indices then the holes must remain, and we will track them

using a free list, or list of available space [37]. In our implementation, this means

creating a new variable array along with those of the objects. This array which

we call the free list contains pointers from each hole to the next hole, and a single

head pointer outside this list points to the first hole. We can use a singly-linked list

efficiently by adding and removing holes only to and from the front of this list, both

of which are constant-time operations.

In summary, to add an object, we first check whether there are holes in the

free list. If so, the first hole is used as space for the object, and it is removed

from the free list. Otherwise the object is added at the end, which may trigger a

geometric growth of all arrays simultaneously. To remove an object, we simply add

the resulting hole as the first hole in the free list. See Figure 2.4 for a helpful layout

diagram of modifiable object arrays.

One issue with this structure is that memory use does not decrease immediately

when removing objects, and in theory we can only shrink the arrays if the last object

is removed. This is connected to our decision to preserve identifiers, and can be fixed

by temporarily relaxing that constraint. In a single collective step, all objects can

be reordered, given new identifiers, and all links between them updated accordingly.

If the new identifiers are contiguous, the arrays can shrink to minimal size. As

described in detail in Section 2.7, this is implemented in PUMI as an operation that

35

Figure 2.4: Extra space and hole tracking create modifiable arrays

combines hole removal with adjacency-based reordering to improve locality.

An important benefit of this array-based structure is the ease with which

additional attributes can be added or removed at runtime. To add a new attribute

to objects of the same type, we just create a new array and ensure that subsequent

resizing operations apply to that array along with the others. For example, different

simulations may require different attributes such as position, velocity, mass, and

electrical charge. These can each be allocated as a separate array, and each can be

added and removed at runtime as needed with essentially no memory overhead.

2.4.4 Lists in Arrays

Since our initial structure composed of many small objects containing pointers

to one another was recast into a set of large arrays as opposed to individually

allocated objects, pointers to objects get transformed into array indices. As an

example, consider the transformation for a singly-linked list as shown in Figure 2.5.

All the list nodes are packed into an array, and a pointer to a list node becomes

an index into this array, starting with zero. Since zero is a valid index, we can use -1

to denote a null pointer. Notice also that if we have knowledge about the maximum

length of the array, we can choose an integer type that uses less bytes than a pointer,

since pointers must be able to index the entire virtual address space.

Since indices can have the same meaning for several arrays, we can separate

the variables in an object into different arrays.

36

Figure 2.5: (left) A linked list in object form (right) The same linked list
packed into an array

Figure 2.6: (left) An example subset of a mixed mesh: an edge adjacent
to a triangle and a quad (right) The corresponding upward
adjacency linkage must traverse separate triangle and quad
arrays

2.4.5 Dynamically Modifiable Mesh Structure

There is one more detail that needs resolving in the case of mixed meshes.

The problem is that different polytope groups may contain uses of the same entity.

For example, an edge may be used by a triangle and a quadrilateral. They must

be linked together, but their arrays are separated by polytope group. In order to

be able to jump between those arrays, we must enhance the indices being used.

Our solution is to encode information about the polytope group into these indices,

i.e. e = (t, i) where t is an integer uniquely identifying a polytope group, i is the

index into the arrays of that group, and e is the extended index. In particular,

the encoding we choose is e = iT + t, where T is the total number of polytope

groups and 0 ≤ t < T . This allows the extended index to remain an integer and be

37

decoded using simple modulo and division instructions. Figure 2.6 illustrates this

representation. Starting with entry 20 in the “edge first up” array, we are directed

to edge use 2 of quad 10. At entry i = (10 · 4 + 2) of the “quad next up” array, we

are further directed to edge use 0 of triangle 4. At entry i = (4 · 3 + 0), we find a

null pointer and stop.

To get clear picture of all the arrays and their groupings that are allocated

for a real mesh, here is a listing including all polytope types that a complex CFD

mesh might need when boundary layers are constructed with a mix of wedges and

pyramids:

1. Vertices

(a) Coordinates (size = 3×vertex capacity)

(b) First edge (size = vertex capacity)

(c) Free list (size = vertex capacity)

2. Edges

(a) Vertices used (size = 2×edge capacity)

(b) Next edge up (size = 2×edge capacity)

(c) First face up (size = edge capacity)

(d) Free list (size = edge capacity)

3. Triangles

(a) Edges used (size = 3×triangle capacity)

(b) Next face up (size = 3×triangle capacity)

(c) First region up (size = triangle capacity)

(d) Free list (size = triangle capacity)

4. Quadrilaterals

(a) Edges used (size = 4×quadrilateral capacity)

38

(b) Next face up (size = 4×quadrilateral capacity)

(c) First region up (size = quadrilateral capacity)

(d) Free list (size = quadrilateral capacity)

5. Tetrahedra

(a) Faces used (size = 4×tetrahedron capacity)

(b) Next region up (size = 4×tetrahedron capacity)

(c) Free list (size = tetrahedron capacity)

6. Wedges

(a) Faces used (size = 5×wedge capacity)

(b) Next region up (size = 5×wedge capacity)

(c) Free list (size = wedge capacity)

7. Pyramids

(a) Faces used (size = 5×pyramid capacity)

(b) Next region up (size = 5×pyramid capacity)

(c) Free list (size = pyramid capacity)

Where the capacities refer to the geometric growth capacity described in Section

2.4.3 based on the current number of entities of that polytope group.

This structure provides a straightforward mechanism for associating data with

each entity of a polytope group by creating new arrays as described in Section 2.4.3.

This is how vertex coordinates and entity-level fields are stored.

2.5 Omega h Data Structure

Omega h is designed for portable performance across all the different hardware

covered in Section 1.6. As such it makes a few key decisions differently from MDS,

which affect much of its resulting structure and logic. Apart from the focus on GPU

compatibility, when designing Omega h we often prefer to use more memory as

39

opposed to more compute time when such a trade-off is available. Finally, Omega h

is focused strictly on simplex mesh adaptivity, unlike PUMI which aims also to

represent meshes containing prismatic boundary layers [38] or hexahedra [4].

2.5.1 Static Mesh

Recall from Section 1.7.4 that for effective performance on GPUs data must

be consolidated into a few large arrays. Both MDS and Omega h do this, and for

the latter it is a matter of strict necessity.

However, in MDS, the usage of the structure is clearly in terms of requesting

the creation or destruction of a single entity at a time. The clear benefit of this

is ease of programming, but the drawback is the inability to parallelize access to a

single MDS data structure (the free list, growth mechanism, and upward lists would

become points of contention). For PUMI that is not a serious issue, because even

with the use of threads there will be at least a few hundred elements per thread

in typical PUMI use cases. That means it is acceptable to have one MDS data

structure per thread. There are three reasons why this approach does not work on

a GPU:

1. The GPU does not maintain persistent per-thread state from one loop to

another

2. The GPU has more parallelism, closer to a dozen or even a single mesh element

per compute core.

For these reasons, Omega h takes a different approach: its mesh data structure will

efficiently represent a static (unchanging) mesh topology, and the methods in Section

3.4 will construct a whole new mesh structure from the current one, incorporating

many changes at once to amortize the cost of reconstruction. This is the main

design difference in Omega h: the mesh structure is a static read-only topological

structure.

2.5.2 Adjacency Arrays

This static array structure is similar to those of the MOAB mesh database [30],

and also of several solvers which implement their own structures. We assume for

40

Figure 2.7: (left) An example 4-vertex 2-triangle mesh (middle) the
downward adjacency array (right) The upward adjacency ar-
ray

simplicity that either all elements are tetrahedra or they are all triangles (see Section

2.4.5 for the complexity associated with mixed meshes). This allows us to store

downward adjacencies in a single array that can be thought of as two-dimensional

(see Figure 2.7(middle)). Upward adjacencies (and all complex graphs in Omega h,

for that matter) are stored in the widely known compressed row format, used for

example in the METIS graph partitioner interface [39]. This consists of two arrays,

one containing the destinations of all graph edges, sorted by the source of the edge,

and the other containing offsets indicating where in the first array the edges going

out from a given graph node are stored.

2.5.3 Alignment Information

Alongside either of these adjacency representations, Omega h also stores an

array of useful alignment information. A high-dimensional entity will use a low-

dimensional entity as part of its boundary. However, since that low-dimensional

entity is shared with other high-dimensional entities, in general it will not be aligned

according to the canonical orders described in the high-dimensional entity’s topolog-

ical template (see Section 1.4.4.1). For example, a face between two regions cannot

have its normal point into both regions. Therefore it will be “flipped” with respect

to the canonical boundary face of one of these regions.

An alignment array has one 8-bit entry for each entity use, and encodes data

about how the entity being used lines up with the entity using it. Although 8 bits is

the smallest value that current computers allow one to store, we only use 6 of these

bits to store the following three things:

1. Downward ordering (3 bits): what is the canonical order of the low-dimensional

41

entity in the high-dimensional template.

2. Rotation (2 bits): how many times to rotate the low-dimensional entity before

it lines up with the canonical boundary entity of the template.

3. Flip (1 bit): whether the low-dimensional entity also needs to be flipped before

it can line up with the canonical boundary entity.

This alignment information, if stored, can speed up a wide variety of algo-

rithms. It is also typically non-trivial to compute, but can be easier to construct at

the same time as an adjacency is constructed. For example, downward ordering is

easy to construct as one is constructing an upward adjacency based on a downward

one. Therefore the adjacency construction algorithms are the optimal location to

be computing and storing such information (more on this in Section 2.5.4). Because

they occupy only 8 bits per entity use while the existing arrays occupy at least 32

bits per use, this additional information consumes at most 25% more memory, which

is affordable.

2.5.4 Adjacency Cache

In MDS, if a user requests an adjacency other than those which are stored as

per Figure 2.2, it is computed for the single entity the user specifies. As mentioned

in Section 2.4.1, this computation may involve complex set intersections or unions,

and the upward derivations in particular are typically implemented with heavy use

of memory allocation. Per Section 1.7.4, we cannot allow such frequent and small

allocations on GPUs. In addition, we should avoid doing a lot of work in a single

GPU kernel, so it is preferable to have all the needed adjacency information stored

in a convenient manner prior to entering a GPU kernel. Even in the MDS case,

the user may request the same non-stored adjacency information multiple times in

different contexts, and re-computing this can use significant amounts of time (see

Section 2.6.1).

In profiling the execution of Omega h mesh adaptation, we find the majority

of time and memory is consumed by the derivation and storage of mesh adjacen-

cies. To mitigate the runtime cost, our mesh structure acts as an adjacency cache,

42

Figure 2.8: Full-mesh adjacency derivations in Omega h

which derives new adjacencies when they are requested and stores them so they are

available for later requests. Figure 2.8 shows the adjacencies that we start with and

how the others are derived. The permanent adjacencies (those which are provided

upon creation of the mesh and uniquely define topology) are the one-level downward

adjacencies, i.e. the downward portion of Figure 2.2.

We use two forms of adjacency inference:

1. Inversion: an upward adjacency is derived from is corresponding downward

adjacency. This reduces to a low-degree graph inversion problem, which we

solve by using atomic operations to associate graph edges with their destina-

tion graph nodes. The key algorithm behind adjacency inversion is included

in Appendix A.1.

2. Transiting: Similar to the intersection process described in Section 2.4.1 to

derive downward adjacencies, we can combine the downward adjacencies from

dimension p to dimension (q+ 1) and from (q+ 1) to q into a single adjacency

from p to q. By using the alignment information stored in each downward

adjacency, we can avoid having to do any kind of set intersection, because we

can map the (q+ 1)-dimensional entities onto the p-dimensional template and

the template has all adjacency information stored a priori.

Note that the set of permanent adjacencies in Omega h is not technically

complete, because adjacencies cannot be efficiently derived for single entities at a

time. However, because Omega h does derivations on a full-mesh basis, it can use the

43

Table 2.1: MDS adjacency timings (in milliseconds) for 100K tet mesh

dimension entity count
0 19468
1 129010
2 212846
3 103303

to dimension
0 1 2 3

from 0 3.9 48.7 88.9
dimension 1 2.4 11.9 40.4

2 16.2 4.2 9.0
3 21.1 13.1 2.2

inversion algorithm to compute all upward relations based on all downward relations

in O(n) time, whereas there is no O(1) equivalent operation for a single entity. Thus

Omega h obeys a relaxed definition of completeness that requires O(n) full-mesh

derivation operations as opposed to O(1) single-entity derivation operations.

2.6 Data Structure Performance

2.6.1 Adjacency Query Performance

To substantiate our claims that MDS supports O(1) adjacency queries and

give an example of its typical query performance, we create two uniform meshes at

different resolutions, having approximately 100K and 200K elements, respectively.

We then time, for each pair of dimensions, how long it takes to traverse all entities of

the first dimension and query their adjacent entities of the second dimension. The

time required to do this should be approximately the number of entities of the first

dimension times the constant time required for one adjacency query. Tables 2.1 and

2.2 list these timing results for both meshes, and show fairly clearly that all times

grow by about 2X since the number of elements is about 2X larger in the second

mesh. These timings were collected on a workstation with an Intel Xeon E5-2620v4

CPU.

Performing a corresponding study for Omega h is not quite trivial. Because

Omega h uses an adjacency cache, the runtime cost of querying a particular ad-

jacency depends on which adjacencies are already cached at the moment. In the

absolute best case, that adjacency is already cached and need only be read directly

from memory. This best case scenario is illustrated in Table 2.3, showing the time

44

Table 2.2: MDS adjacency timings (in milliseconds) for 200K tet mesh

dimension entity count
0 39696
1 265267
2 439107
3 213535

to dimension
0 1 2 3

from 0 8.7 104.8 191.5
dimension 1 5.0 26.3 84.7

2 33.4 8.7 20.3
3 45.6 27.8 4.5

Table 2.3: Omega h traversal timings (in milliseconds) for 100K tet mesh

to dimension
0 1 2 3

from 0 0.2 0.2 0.2
dimension 1 1.7 1.4 1.4

2 2.6 2.7 2.3
3 1.2 1.2 1.3

required to simply read and traverse cached adjacency information from memory,

for all entities of a given dimension, using the same 100K mesh as Table 2.1. This

data is presented as a lower bound for traversal cost, given that Omega h has op-

timal structures for fast traversal and reading. Table 2.4 presents the more useful

incremental construction times, i.e. the time required to construct an adjacency (for

all entities of the relevant dimension) assuming any pre-requisite adjacencies used

in the construction have already been cached. Values from Table 2.4 can be used in

conjunction with the diagram in Figure 2.8 to determine Omega h performance for

a particular series of queries.

2.7 Reordering

Array-based structures have a natural order of traversal which is to traverse

each array from start to finish. In Omega h, all d-dimensional simplices are in one

traversal order, and in MDS there is a traversal order for each polytope topology.

Typically, mesh operations access multiple arrays but are based on the natural

ordering of a single array. For example, a traversal based on elements may access

45

Table 2.4: Omega h incremental construction timings (in milliseconds)
for 100K tet mesh

to dimension
0 1 2 3

from 0 7.6 31.1 16.1
dimension 1 11.1 9.7

2 5.5 4.7
3 3.2 9.1

the vertices of each element. Recall from Section 1.5 that accessing data in the order

it is stored is key to achieving performance on most cache architectures. Thus, we

would like to establish orderings of each group (e.g. the elements) such that accesses

to other groups (e.g. the vertices) are made in an approximately linear fashion. Since

these accesses are based on adjacency, what we aim to do is order each group such

that locality in the mesh (defined by graph distances) is well correlated to locality

in the array (defined by indices). We further simplify the problem by focusing on

ordering the vertices, and define orderings for other groups based on their adjacencies

to vertices and the vertex ordering.

We interpret the mesh vertices as graph nodes and the mesh edges as graph

edges, which enables us to use the linear arrangement measure from graph theory [40]

as our metric of locality:

la(G = (V,E)) =
∑

(i,j)∈E

|i− j| (2.1)

Where i and j are the array indices of two graph nodes. There is additional

rationale for using this metric in the case of finite element assembly for linear el-

ements, which traverses mesh vertices and accesses adjacent vertices across mesh

edges.

Finding an ordering of the vertices V such that Equation 2.1 is minimized has

been shown to be NP-complete for general graphs [40]. However, our mesh-based

graphs have at least two useful properties: the degree of each vertex is bound by a

small constant, and they are equipped with an embedding of vertices into R3 such

46

that Euclidean distance closely reflects graph distance. As such, several heuristics

for good linear arrangements have been developed for meshes. The Cuthill-McKee

algorithm [41], developed to minimize the storage complexity of sparse matrices

derived from meshes, is based on Breadth-First Search (BFS) of the graph and sorts

each layer based on the degrees of the vertices. A similar algorithm by Zhou et al. [42]

based on work by Beall and Shephard [34] also reduces to BFS for a linear mesh, and

has special considerations for the starting point of BFS. Other (geometric) methods

take advantage of the vertex coordinates, for example by arranging vertices along

the Hilbert Space-Filling Curve (HSFC) [43]. There are also libraries implementing

hierarchic methods of graph reordering, such as METIS [39]. The most effective

methods at minimizing the linear arrangement metric are those which begin with

one of the above methods and then apply a form of simulated annealing in which

local modifications are made to the ordering that locally improve the metric [44].

However, for our purposes of cache locality it is not worth spending a large amount

of computational power to obtain a slightly better ordering, so we limit ourselves

to BFS-like algorithms and space filling curve algorithms, and we do not consider

simulated annealing.

Table 2.5 shows the values of Equation 2.1 using several of these methods on

three different meshes: a cube meshed with tetrahedra (1254 vertices), a fusion reac-

tor cross-section meshed with triangles (3695 vertices), and a circuit solder geometry

meshed with tetrahedra (2601 vertices). The “input” row represents the mesh’s lin-

ear arrangement value prior to reordering. Parentheses indicate the starting node

used for a search procedure, for example BFS(0) uses the first input node as the

starting point while BFS(n−1) uses the last input node. For the cube, BFS(center)

uses the node closest to the cube’s center. Our two main conclusions based on Table

2.5 are that BFS and HSFC give the best (smallest) linear arrangement values, and

that the BFS result is heavily dependent on the starting point.

PUMI implements a BFS method with heuristics that use geometric classifi-

cation for selecting a starting node [34, 42]. One of the difficulties with the BFS

method is that it is difficult to parallelize, since layers need to be constructed se-

quentially. Early versions of Omega h implemented a BFS method that was not

47

Table 2.5: Linear arrangement values for different meshes and heuristics

cube fusion solder
input 3163141 1743275 8688982

BFS(0) 678166 910451 2085725
BFS(n− 1) 675903 471728 2098239

BFS(center) 1106864 N/A N/A
HSFC 597009 627726 1877633

Cuthill-McKee(0) 822050 956364 2161626
Cuthill-McKee(n− 1) 784566 501883 2198386

METIS 1120368 1234170 2849735

Table 2.6: Locality speedups including and excluding BFS reordering
time

Platform overall excl. reorder
IBM BG/Q 1 thread 3% 7%
IBM BG/Q 16 threads 10% 15%
IBM BG/Q 64 threads 5% 11%
NVidia K40 2% 8%
Intel Phi 1 thread 26% 30%
Intel Phi 120 threads 24% 29%
Intel Phi 240 threads 9% 19%
Intel i7 1 thread 0% 4%
Intel i7 4 threads 11% 16%
Intel i7 8 threads 5% 10%

parallelized for this reason, but we did study its effects on subsequent adaptation

operations on different hardware. Table 2.6 shows the speedup in Omega h adapta-

tion (see Section 3.4) when a reordering is carried out prior to each adaptation call.

Note that even though this reordering was not shared-memory parallel, there was

never a decrease in performance, and in the most extreme case reordering made a

26-30% difference. This result suggests that reordering is quite beneficial and should

be incorporated into array-based adaptation workflows.

Despite non-parallel BFS reordering being adequate, we prefer a reordering

method that takes advantage of shared-memory parallelism. The current Omega h

code implements a Hilbert curve method (HSFC). The Hilbert curve is a numbering

48

Figure 2.9: Meshes colored by vertex ordering: (left) BFS, (right)
Hilbert curve

of the cubes of a regular cubic grid. Since our vertex coordinates are in a floating-

point format with 52 binary digits of precision (see Section 4.9.2), we place our mesh

in an implicit cubic grid that has 252 cubes along each axis of the mesh’s bounding

box. This grid never has to be represented in its entirety; there is a constant-time

algorithm for converting a coordinate in this grid to its integer position in the Hilbert

curve [45]. We map each floating-point vertex coordinate to the cube it lies in, and

assign that vertex the Hilbert curve position of that cube. We then sort vertices by

their Hilbert curve positions. Although our resolution makes it very unlikely that

two vertices fall in the same cube, the sorting procedure would arbitrarily order

them if this did occur. More importantly, we can use efficient sorting algorithms

for shared memory parallelism as described in Section 4.2.4, and the conversion

of coordinates to Hilbert curve positions scales linearly (see Section 4.2.1), so this

reordering method is more readily parallelizable than the BFS methods.

Figure 2.9 shows a cube mesh with its vertices colored by two different re-

ordering methods: the BFS method implemented in PUMI, and the HSFC method

implemented in Omega h. Blue indicates a low vertex index while red indicates a

high index. Note that while the HSFC method has a clear interface along which

indices differ highly, it should have better locality among neighbors in the smooth

areas because in the BFS method most vertices are adjacent to vertices in the pre-

vious or subsequent layer, and those differences are on average the size of one layer

49

(the surface area of a cut through the cube, measured in exposed vertices).

CHAPTER 3

CAVITY-BASED CONFORMAL MESH ADAPTATION

3.1 In Context

The mesh adaptation methods in this work are conformal, general, and cavity-

based. In the following Sections we define these terms in contrast to other techniques

for modifying meshes.

3.1.1 Conformal and General

They are conformal in the sense that the boundaries of all elements (Section

1.4.1) are composed of the set of entities expected by that element’s topological tem-

plate (Section 1.4.4.1). In other words, we avoid the “hanging node” scenarios in-

troduced by non-conformal mesh modification techniques. Typically, non-conformal

mesh modification also restricts itself to subdividing input elements into more ele-

ments, or undoing such subdivisions which were done before. Figure 3.1 illustrates

such a method, and clearly shows the hanging nodes introduced.

Non-conforming meshes require additional support from the PDE-solving code

to deal with hanging nodes, and typically no more than one level of refinement

Figure 3.1: Non-conforming parent-child adaptive mesh refinement [46]

50

51

is allowed between adjacent elements. The more important limitation is due to

non-conforming methods typically being parent-child methods, which fundamentally

limits them to the topology (and geometry) of the coarse input mesh. If this input

mesh is more fine than necessary in some areas, it cannot be coarsened. If moving

objects or object deformation cause input elements to become highly compressed or

even inverted, parent-child refinement can never correct or prevent this. New node

placement when refining along a curved boundaries poses a similar issue to that

of physical deformation. For these reasons we take a general approach, employing

local cavity-based mesh modification operations which are able to coarsen beyond

the input mesh and correct low-quality elements in the input mesh.

3.1.2 Cavity-Based

We restrict ourselves to local cavity operations, meaning that the transforma-

tion from input to output meshes can be expressed as a series of cavity modifications,

each of which can in turn be expressed as the removal of a small number of mesh

entities followed by the addition of a small number of mesh entities.

In general, a cavity can be defined as a manifold sub-domain of the mesh

defined by a set of elements from the original input mesh. A cavity undergoes a

modification, which changes the discretization (set of mesh entities) of its interior

but leaves its “boundary” unchanged. In order to allow changing the discretization

of the overall mesh boundary (i.e. the geometric model boundary) we use a relaxed

definition of a cavity boundary (shown in Figure 3.2) which only includes entities

that are also adjacent to elements outside the cavity. This is the minimum require-

ment for the method to be conformal: it must preserve the topology of this relaxed

boundary. For efficient parallel execution, we also require that attributes of those

boundary entities also remain unchanged. This includes geometric classification, as

discussed in Section 3.3.2 and illustrated in Figure 3.8. This allows two cavities to

be modified simultaneously by two threads or processes, so long as the cavities do

not overlap (i.e. they do not share elements). They may be adjacent (share a sub-

set of their boundaries) and need not coordinate because nothing about the shared

boundary will be changed by either one.

52

Figure 3.2: Relaxed definition of cavity boundary excludes geometric
boundary

Some benefits of using local cavity operations are:

1. It allows more straightforward and reliable parallelization of mesh adaptation

(see Section 4.8).

2. It allows much more careful control of the effects that mesh adaptation has on

the simulation fields attached to the mesh.

On the other hand, the set of known cavity operations have been found by

the trial and error of researchers, and there are many properties which they are not

guaranteed to achieve. The most successful set of cavity operators are those which

operate on simplex meshes, due ultimately to the fact that a simplex is the simplest

polytope of a given dimension and that, conversely, more complex polytopes provide

fewer valid configurations. In our work, we separate cavity operators into several

categories:

1. Refinement: create a strictly more detailed discretization than the input.

Guaranteed not to invert elements, but not to preserve any element quality.

Guaranteed to exactly preserve the distribution of fields.

2. Coarsening: create a strictly less detailed discretization than the input. No

guarantees it can be done without reducing or negating quality, so it must be

checked. By definition, cannot exactly preserve the distribution of the fields.

3. Shape correction: typically maintains similar level of detail, modifies con-

nectivity to improve minimum element quality. There is no known method

53

guaranteed to raise all elements to a quality that is useful for simulation and

adaptation, but heuristic methods can achieve great results in practice [47].

4. Snapping: Many simulations are based on a geometric model, usually a CAD

boundary representation in which the shape of an object is defined by para-

metric descriptions of curves and surfaces. Other boundary representations

which are separate from the mesh may be used. In these cases, mesh adapta-

tion should modify the boundary of the mesh to be as similar as possible to the

geometric (CAD) boundary. We refer to this as “snapping”, because for inter-

polating basis functions it involves snapping mesh nodes onto the geometric

boundary.

3.2 Related Work

There have been several iterations of the MeshAdapt library developed at

RPI. One of the earliest publications by De Cougny and Shephard [48] outlines

the three basic steps and goes into some detail on a use of independent sets for

coarsening purposes (an idea that we extend significantly in Section 4.8.2). Later,

substantial extensions were introduced by Li on anisotropy using the metric tensor

and the selection of operators for shape correction [8, 49]. Our implementations of

tetrahedral edge swaps make use of guidance on fast implementation by Olivier-

Gooch [50]. Researchers at INRIA have provided useful mathematical foundations

for handling the anisotropic metric tensor field [6, 51, 52], and work at the Catholic

University of Louvain explored the use of mesh adaptation to respond to moving

objects [7], a path we continue with our Omega h work.

3.3 MeshAdapt Methods

3.3.1 Template Refinement

The MeshAdapt library uses edge-based refinement templates for its refine-

ment step. The way these work is that all edges whose metric length exceeds some

threshold lup > 1 are marked for refinement. Then each element takes into account

the subset of its edges which are marked for refinement, and chooses one of many

54

Figure 3.3: Tetrahedral refinement templates

possible subdivision patterns (refinement templates) based on this subset of edges.

Figure 3.3 illustrates these templates in the case of tetrahedra. In fact, the center

template shown for three marked edges has two variants which are symmetric by

reflection but not by rotation. In total, this means there are 12 rotationally unique

tetrahedron refinement templates.

One benefit of the use of refinement templates is that adjacent elements can be

refined simultaneously, so all edges, faces, and regions of the mesh can be modified

in a nearly embarrassingly parallel fashion once the set of marked edges is identified.

Another benefit is that the gradation of the mesh is more explicitly controlled com-

pared to methods which split edges independently. However, refinement templates

have some drawbacks as well:

1. In some cases, a subset of the template is a polyhedron that cannot be subdi-

vided into tetrahedra without introducing an extra vertex within the parent

tetrahedron. In particular, Schönhardt’s polyhedron can appear (see Figure

3.4). This reduces the predictability of refinement and makes it more difficult

to transfer solution.

55

Figure 3.4: Schönhardt’s irreducible polyhedron [53]

2. Other cases introduce a geometric decision, such as the case when all edges

of a tetrahedron are refined, or even when two edges of a triangle are refined.

This also reduces predictability.

3. It takes substantial code to implement all rotationally unique combinations

for all the relevant element polytopes. This increases the likelihood of errors

and decreases the productivity of modifying any aspect of refinement.

4. Due to the simultaneous nature of the operation and the difficulty of predict-

ing the outcome, it is prohibitively difficult to reject a local portion of the

refinement based on criteria such as new elements having too low quality.

3.3.2 Coarsening

Like other adaptation libraries, MeshAdapt implements coarsening via edge

collapses. Figure 3.5 shows a typical edge collapse in a tetrahedral mesh for reference.

One vertex in the mesh is “moved” onto another vertex which is adjacent via a mesh

edge, collapsing this edge and all its adjacent faces and regions. For programming

purposes, when dealing with sets of entities we can call those being removed the

“collapsing” set and those being conceptually elongated to fill the cavity as the set

to “keep”. In practice all old entities are removed and the set of entities to keep

is rebuilt with modified connectivity (where they were adjacent to the collapsed

vertex, now they are adjacent to the kept vertex).

Edge collapsing is an operation which, if not properly controlled, can invali-

date the mesh topologically or undo its topological similarity to a CAD model [3].

56

Figure 3.5: Edge collapse in tetrahedral mesh [54]

MeshAdapt uses a set of checks which is somewhat expensive to compute but is

topologically robust:

1. The vertex being collapsed must have the same classification as the edge being

collapsed. This preserves similarity to the CAD model by preventing collapses

from the boundary into the interior.

2. If there exists a ring of three edges including the collapsing edge (Figure 3.6),

then those three edges must bound a single triangle in the mesh. This prevents

collapsing an empty hole in the mesh to zero volume as in Figure 3.7. While

some [34] consider Figure 3.7 a valid operation, current mesh data structures

assume an entity is uniquely defined by its set of bounding entities, which

precludes the two overlapping mesh edges that Figure 3.7 produces. In ad-

dition, the non-collapsing edge adjacent to the collapsing vertex must have

the same classification as the triangle. This prevents collapsing a cavity on a

curved boundary down to zero volume (see Figure 3.8), which would require

re-classifying entities on the cavity boundary (which breaks parallelism guar-

antees), and creates no elements in the new cavity (which is problematic for

solution transfer).

3. Analogous to the edge ring check, in 3D we check for two triangles which share

a non-collapsing edge and whose remaining two vertices are the endpoints of

the collapsing edge (a “face ring”). The two triangles and the collapsing edge

57

Figure 3.6: Edge ring condition check during edge collapse

must bound a single tetrahedron, and the triangle adjacent to the collapsing

vertex must have the same classification as this tetrahedron.

4. All the resulting tetrahedra must have positive volume. In the 2D planar

case, triangle normals should all be positive in the Z axis. For straight-sided

simplices in an equal-dimensional space (i.e. triangles in 2D and tetrahedra

in 3D), this check on its own can prevent some topological invalidities, except

those in Figure 3.7 and Figure 3.8.

The edge and face ring conditions are more complete versions of those de-

scribed by Garimella [55]. Most of the expense of checking these conditions is in the

search procedure to identify edge rings and face rings, as the naive approach costs

O(n2) comparisons where n is the number of edges (or faces) adjacent to one vertex.

For typical tetrahedral meshes there may be 36 or more faces adjacent to a vertex,

meaning close to 1000 comparisons would be needed. We can reduce the cost by

using a set structure to store the n vertices (or edges) that may complete a ring

from one endpoint, and use its O(log(n)) membership check capability to reduce

the comparison cost to O(n log(n)).

Finally, when applying a series of edge collapses to a mesh, one must addition-

ally filter the set of edges targeted for collapse until it forms an independent set,

in order to avoid a pathological sequence of edge collapses reducing large portions

of the mesh down to a single edge. We resolve this by visiting vertices which are

marked for collapse and unmarking them so long as each edge that needs collapsing

still keeps one adjacent marked vertex. Similar methods of establishing an indepen-

dent set were in use in early versions of MeshAdapt [48] and continue to be used by

58

Figure 3.7: Illegal collapse of a CAD hole represented by a periodic
boundary

Figure 3.8: Illegal collapse with no new elements and re-classification

other adaptation codes [56].

3.3.3 Shape Correction

Shape correction, otherwise known in the literature as “sliver removal”, is

one of the most important open problems in tetrahedral meshing. When meshing a

planar domain with triangles, techniques such as Delaunay refinement can guarantee

triangles of a certain quality, where quality can be measured by angles at corners or

the mean ratio (see Appendix B.1.1 for the relationship between these measures).

However, when meshing a volumetric domain with tetrahedra, there are no known

methods to provably guarantee element quality (dihedral angles or the mean ratio).

What is typically done is to carry out a method which satisfies edge length criteria

and at a minimum produces positive-volume tetrahedra. Following this, heuristic

methods (sliver removal) are carried out to attempt to remove tetrahedra with

quality below a constant user-defined threshold.

Despite these methods being heuristic, their combination can often give very

59

good results in practice. The most aggressive approaches [47, 57] can usually bring

tetrahedral dihedral angles into the range [30◦, 130◦], which is sufficient for most

simulation purposes. However, these aggressive approaches may be either too ex-

pensive for use in mesh adaptation (which is executed within a performance-critical

simulation), or they may modify the mesh too much (a large movement of all the

nodes in the mesh would change the physical distribution of the fields defined by

values at the nodes).

Mesh adaptation has the advantage of being provided with an input mesh, and

therefore one can in theory reject any operation which would decrease the quality of

the mesh lower than it was on input. In this sense, mesh adaptation can guarantee

quality at least as good as the input. We will see this approach taken to some

degree in the Omega h methods described in Section 3.4. The danger of rejecting

operations based on quality is that if too many operations are rejected then edge

lengths will not conform well enough to the metric field. However, we are having

increasing success with careful rejection of operations and some researchers are able

to avoid using sliver removal techniques altogether if their quality requirements are

low enough [56,58].

Typically, mesh adaptation libraries implement a balance between prevention

of quality degradation and repairing quality that has been degraded. The repair

process uses a subset of the known sliver removal techniques, with a focus on be-

ing able to repair the average sliver using minimal computational resources, while

resorting to more expensive techniques when the cheaper ones fail.

Li describes a fairly comprehensive set of sliver removal heuristics implemented

in an earlier version of MeshAdapt [49]. The current version uses a similar approach,

based on a taxonomy of sliver tetrahedra. The taxonomy can be described in terms of

some boundary entity being too close to another boundary entity of the tetrahedron:

1. In the first case, we have two vertices being too close, which is really just

an edge being too short. If quality is low in metric space, this is a case of an

edge which should have collapsed but didn’t. We attempt to more aggressively

collapse it by trying to collapse each edge adjacent to either endpoint vertex.

2. In the second case, we have a vertex being too close to its opposing triangle

60

Figure 3.9: Double-split + collapse compound operator [49]

face. Here we try to execute an edge swap (see Figure 3.10) on each of the

three edges bounding the opposing triangle face. The work of Li suggests

that a face split and collapse operation should also be implemented as future

work [49].

3. In the third case, we have the classic sliver tetrahedron which has two opposing

edges being too close to one another. We first attempt to perform an edge

swap on each of the two opposing edges. If that fails, we attempt a double

split collapse operation as shown in Figure 3.9.

Each of the above attempted operations is judged in terms of quality. If the minimum

quality of any element in the cavity after a modification exceeds minimum quality

of any element in the cavity before the modification, then we say the quality has

locally improved. In most cases, one of the above attempts succeeds. However, it

is possible in practice for none to succeed, in which case MeshAdapt will leave the

sliver as-is.

3.3.3.1 Edge Swap

The edge swap operation deserves a detailed consideration due to its complex-

ity. Its goal is to remove the elements adjacent to an edge and replace them with a

new set of elements such that the edge is not recreated. In the tetrahedral case, this

essentially reduces to the problem of forming an output triangular mesh based on

the “ring” vertices (those vertices which are opposite to the central edge across an

input triangle), as Figure 3.10 illustrates. Furthermore, since this operation is used

61

Figure 3.10: Edge swap in tetrahedral mesh [54]

almost exclusively for the purpose of repairing quality degradation (sliver removal),

what we are interested in is finding the triangular mesh of the ring such that the

resulting tetrahedral mesh of the cavity contains elements above a certain quality.

The quality to beat is usually the lowest quality input tetrahedron, i.e. we want to

at least improve the minimum quality.

A naive search of the space of possible triangular meshes can be quite expen-

sive, so we use an optimized algorithm described by Freitag and Ollivier-Gooch [50].

The algorithm consists of limiting oneself to rings of a certain number of vertices

(in our case, not attempting rings that have more than 7 vertices), and storing in-

teger tables describing all possible trianglulations of such rings. The triangulations

are described in terms of unique triangles (two triangulations may share the same

triangle). Because the qualities of the two adjacent tetrahedra adjacent to such a

triangle are uniquely defined, then if either quality is below the target threshold,

all triangulations that include that triangle can be ignored. Otherwise, the lower

of the two qualities is stored in association with the unique triangle, to avoid later

re-computation.

3.3.4 Overall Steps

Listing 3.1 shows an abbreviated version of the C++ code for MeshAdapt’s

main function. The central loop executes a fixed number of iterations. At each

iteration, we first coarsen as described in Section 3.3.2, followed by refinement as

described in Section 3.3.1. We perform coarsening before refinement because this

should reduce the peak memory usage between the two operations. Shape correction

62

Listing 3.1: MeshAdapt main function

1 void adapt(Input* in) {

2 Adapt* a = new Adapt(in);

3 preBalance(a);

4 for (int i = 0; i < in->maximumIterations; ++i) {

5 coarsen(a);

6 midBalance(a);

7 refine(a);

8 }

9 fixElementShapes(a);

10 postBalance(a);

11 delete a;

12 delete in;

13 }

is performed after the main loop has completed, using the algorithm in Section 3.3.3.

The functions whose names end in Balance execute parallel load balancing. We treat

mesh elements as the units being balanced, and assign weights to them based on

the metric space volume defined by Equation 1.5. Either graph partitioners [59] or

diffusive partitioning methods [60] may be used at each step.

3.4 Omega h Methods

The Omega h code aims to provide MeshAdapt-like functionality on a wide

variety of computing hardware. Due to the restrictions introduced by shared mem-

ory parallelism, Omega h initially chose a simpler set of algorithms to reduce the

cost of redesigning each algorithm for portability.

There are several key characteristics of MeshAdapt’s design which need to be

changed in order to execute efficiently with high degrees of shared memory paral-

lelism (e.g. on GPUs):

1. The assumption of a persistent thread which can maintain substantial amounts

of local data (e.g. a data structure representing a mesh partition) and act on

that data in serial is invalid for GPUs, because the increased degree of paral-

lelism requires lowering the per-thread overhead in memory use and runtime.

Shared memory parallelism is better expressed at the loop level (see Section

63

1.7.3), and per-thread data should be avoided. This means data storage con-

cerns (data structures) move up to the process level (in terms of software) and

up to the node level (in terms of hardware).

2. Modification of the mesh cannot be based on a local series of single entity

additions and removals that are immediately applied to the mesh, because

this introduces increasing contention on the mesh data structure as the number

of threads increase. Most other research in shared-memory parallelization of

mesh modification has focused either on methods which assume the degree of

parallelism is somewhat small [61] (as it is in CPUs) or methods which use

entity-level non-deterministic mutual exclusion mechanisms [62]. We instead

propose a deterministic independent set selection system in Section 4.8.2 that

allows us to go from one simple static structure to another (the data structure

is described in Section 2.5.1).

3. The operations that are performed in parallel should avoid making use of dy-

namic local memory allocation (see Section 1.7.4). For example, when threads

need access to variable-length adjacency data such as upward adjacencies, it

is better for them to cooperate and form a single data structure representing

said information for all entities, instead of having each thread recompute its

portion on demand during a higher-level operation.

Altogether, this results in the need to write the entire program in an array-based

and loop-based style and requires algorithms that are intuitively expressed in that

style.

We have designed such alternative algorithms for performing mesh adaptation,

and so far they have demonstrated comparable and in some cases higher quality

results for simplex mesh adaptation. Additional efforts are still underway to examine

algorithmic details, and additional test cases are being developed in collaboration

with other research groups to better qualify mesh adaptation methods, independent

of parallelization.

The following sections describe the algorithms implemented in Omega h in

contrast to those of MeshAdapt.

64

3.4.1 Refinement

Instead of using template-based refinement, Omega h uses single edge splits,

meaning a single edge is bisected and adjacent elements are bisected at a single

operation. Unlike the simultaneous execution that is possible with template-based

refinement, only edge splits whose cavities do not overlap can be applied simultane-

ously (see Section 4.8.2 for how such splits are selected). Several researchers have

similarly had success using only single edge splits rather than template-based re-

finement [7,56,58]. Like MeshAdapt, Omega h marks all edges whose metric length

exceeds some threshold (typically
√

2) as candidates for edge splits.

Omega h uses a more accurate formula to measure edges when determining

whether to split or collapse them. This formula, shown as Equation 3.1 is suggested

by Loseille and Löhner [58] and is based on the assumption that the desired length

varies geometrically along the edge (h(t) = h1−t
a htb where ha and hb are the desired

lengths at the endpoints). This assumption is consistent with the Log-Euclidean

interpolation method we use for the metric tensor (see Section 3.5.1).

l̃ =
l̃a − l̃b

log
(
l̃a/l̃b

) l̃a =
l

ha
, l̃b =

l

hb
(3.1)

Omega h then unmarks any edges whose splitting would produce elements of

low mean ratio quality (typically less than 20%). There is a trade-off here between

two desired outcomes. On the one hand, when mesh adaptation is used to con-

trol discretization error, it is preferable to produce meshes of higher than desired

resolution as opposed to lower than desired (in many cases the latter is unaccept-

able). Combined with the fact that refinement cannot technically produce inverted

elements or invalid meshes, this is a strong motivation to immediately and uncondi-

tionally refine all edges that exceed a given threshold. On the other hand, immediate

refinement can produce elements of arbitrarily bad quality, making it increasingly

difficult to apply future mesh modifications and driving numerical conditioning of

the physical simulation to unwanted extremes. Since computers use finite precision

arithmetic, there are cases in practice where the refined element volumes are indis-

tinguishable from zero to the computer. In Omega h, we choose to avoid immediate

65

refinement that would violate quality criteria under the assumption that, in most

cases, subsequent operations (including other edge splits) will improve the situation

sufficiently that the deferred refinement will eventually be accepted (see the loop in

Listing 3.2). This is especially important when using single edge splits instead of

applying refinement templates, because the order in which edges are split strongly

affects the resulting quality. We have confirmed that at the end of adaptation we

do meet the desired upper bound on metric edge length in the cases considered to

date.

3.4.2 Coarsening

Like MeshAdapt, Omega h uses single edge collapses for mesh coarsening.

Since all operations in Omega h use the quality-driven independent set system de-

scribed in Section 4.8.2, that explicitly takes care of the need for an independent

set of collapsing vertices. Edge collapses have some confusion in what their “key”

entity is, because in reality it is the combination of an edge and one of its endpoint

vertices that defines a collapse. We first mark all edges whose metric length is be-

neath some threshold (typically 1/
√

2) as candidates to collapse via either endpoint.

In addition, Omega h will mark all edges adjacent to either endpoint of a short edge

as additional candidates, since collapsing an endpoint along one of these additional

edges may still elongate it. Then, for all candidate edges, collapses in the allowed

directions are evaluated using almost all of the checks described in Section 3.3.2.

Omega h saves time by skipping the full edge ring and face ring checks, re-

placing them with a requirement that each d-dimensional simplex adjacent to the

collapsing edge must be classified on the same geometry as its (d − 1)-dimensional

side adjacent to the collapsing vertex. In other words, Omega h checks for the prob-

lematic case shown in Figure 3.8, but not for the case in Figure 3.7. As a result,

Omega h requires that the input mesh, model or metric be constructed such that the

case in Figure 3.7 doesn’t arise. One simple way to ensure this is to mesh “holes” in

the geometry. For Omega h’s first target applications, this makes sense because the

interaction of both the fluid and the structure is of interest. Barring that solution,

one can topologically break up periodic geometry, for example a periodic CAD edge

66

becomes three or more edges, which is quite reasonable in the vast majority of cases.

Omega h also applies the same quality restriction to coarsening that it applies

to refinement, i.e. changes are not accepted if they produce elements below a user-

defined threshold.

Finally, Omega h implements what we call “overshoot protection” as suggested

by Michal and Krakos [56]. This means that edge collapses are rejected if they

would create new edges that are longer than the edge refinement threshold from

Section 3.4.1. This restriction allows us to alternate refinement and coarsening

without entering an infinite loop in which a collapse operation is exactly undone by

a refinement operation, which is then undone by a subsequent collapse, etc.

We mark candidate collapses using two boolean flags per edge, one for each

endpoint. Once all collapses that violate the checks mentioned above are unmarked,

we move the focus of the problem from edges to vertices. To do this, every vertex

chooses a single adjacent candidate edge collapse which is the one it will represent for

the remainder of the coarsening operation. The selection is made first preferring the

shortest edge (as suggested in [56]), preferring higher element qualities if lengths are

equal, and ties in both length and quality are broken using global entity numbers.

All others collapses in which the vertex could have participated for which it is an

endpoint are discarded. Now the independent set selection in Section 4.8.2 is used

with vertices as the keys and their selected collapse qualities as the values. The

selected independent set of vertices is then collapsed, along each vertex’s chosen

edge.

3.4.3 Shape Correction

Omega h uses simpler and yet possibly more effective shape correction logic.

We have found that it is beneficial to consider a wider portion of the mesh sur-

rounding a sliver when attempting to remove said sliver, rather than being overly

concerned with the particular shape of said sliver. Omega h has a user-defined pa-

rameter for how many layers of elements around a sliver will be considered. In this

case, layers are defined by elements adjacent to one another across faces, simply

because this graph is much cheaper to compute than that of elements adjacent via

67

vertices. For every sliver, elements that are at most the specified distance via face

adjacency are marked as being involved in sliver removal. Then we do one of two

things:

1. Mark all edges of all considered elements as candidates for edge swaps. For

each such edge we compute the best possible edge swap operation using the

optimizations described in Section 3.3.3.1, and give those quality values to the

method in Section 4.8.2 to select a set of edge swaps to perform. Only edge

swaps which locally improve the quality in their cavity are accepted.

2. Mark all vertices of all considered elements as candidates for collapsing. For

each of these vertices, we consider collapsing it along any adjacent edge. This

is just a marking process, after which the procedure in Section 3.4.2 is carried

out, with the only difference being that for a collapse to be accepted, the

quality in the cavity must locally improve, instead of being above a constant

threshold.

Note that although these algorithms describe using layers around a sliver, they

remain cheap because the layers need only be marked, after which only small cavities

around the marked elements are considered. The full set of elements marked around

a sliver is never collected or examined as a whole in any way. The marking itself

can be done in a local iterative fashion, each step adding marks to all face-adjacent

elements of currently marked elements.

Unlike MeshAdapt, Omega h requires that all elements be above a certain

mean ratio quality, and will continue to attempt shape correction until this goal is

satisfied or all attempts stall (see Section 3.4.4). So far, we have been able to achieve

minimum mean ratios between 20% and 30% for all mesh elements in a variety of

cases.

However, in general there are known examples where minimum quality cannot

be improved above an arbitrary bound, for example if the CAD model being ap-

proximated has an arbitrarily small angle, elements adjacent to that angle will be

limited in quality. Such forced angles have already begun to arise dynamically in

deforming simulations, for example in Figure 5.3. This is a well-researched problem

68

in mesh generation, and the literature still suggests that we identify such “forced”

bad quality elements and treat them differently from elements which have a chance

of being improved [63]. Implementing such identification and isolation is considered

future work.

3.4.4 Overall Steps

Listing 3.2 shows an abbreviated version of the C++ code for Omega h’s main

function. There are two loops involved: the first attempts to satisfy edge lengths

and the second attempts to repair element quality. The edge length loop consists

of one refinement pass as described in Section 3.4.1 (on line 5), followed by one

coarsening pass as per Section 3.4.2 (on line 6). This first loop continues until

neither of the passes could modify the mesh, which is detected by the did anything

boolean variable remaining false. The termination of this loop is dependent on the

overshoot protection described in Section 3.4.2.

The second loop attempts passes of shape correction operations, in decreasing

order of preference. First a pass of edge swaps is attempted as described in Section

3.4.3. Only if no swaps could be performed are edge collapses attempted on the

edges around slivers. This loop continues until the worst element is above the desired

threshold (checked on line 8) or no valid correction operations could be found (the

break at line 11) is reached.

Listing 3.3 shows the options structure. It specifies the following user-adjustable

parameters:

Line 2: The minimum desired length of edges in metric space (used to mark edges for

coarsening).

Line 3: The maximum desired length of edges in metric space (used to mark edges for

refinement).

Line 4: The minimum allowed quality of any edge-length focused operation. During

the first loop of Listing 3.2, any operations that would create elements below

this quality are rejected.

69

Listing 3.2: Omega h main function

1 bool adapt(Mesh* mesh, AdaptOpts const& opts) {

2 bool did_anything;

3 do {

4 did_anything = false;

5 if (refine_by_size(mesh, opts)) did_anything = true;

6 if (coarsen_by_size(mesh, opts)) did_anything = true;

7 } while (did_anything);

8 while (mesh->min_quality() < opts.min_quality_desired) {

9 if (swap_edges(mesh, opts)) continue;

10 if (coarsen_slivers(mesh, opts)) continue;

11 break;

12 }

13 }

Listing 3.3: Omega h parameters

1 struct AdaptOpts {

2 Real min_length_desired;

3 Real max_length_desired;

4 Real min_quality_allowed;

5 Real min_quality_desired;

6 Int nsliver_layers;

7 Verbosity verbosity;

8 };

Line 5: The minimum desired quality of elements after adaptation. The second loop

in Listing 3.2 will continue until all elements are above this quality or no

improvements can be made.

Line 6: The number of face-adjacent element layers around a sliver to consider for

shape correction.

Line 7: The amount of information to print to the user regarding the operations being

carried out.

3.4.5 Approaching Displacements and Metrics

A common problem that arises when doing Lagrangian simulations (those in

which the mesh follows the simulated fluid and objects) as described in Sections 5.2,

70

5.3, and 5.5, is that vertex motions may be requested such that after deformation

the mesh has inverted or arbitrarily low-quality elements. Similarly, when aiming

to satisfy an anisotropic metric tensor field, it may be that the elements of an initial

mesh have arbitrary low (though not negative) quality when measured in the desired

metric space.

Omega h implements two methods (which are similar to one another) in order

to maintain good element quality throughout adaptation in each of these respective

cases. The idea is to establish an initial field which is known to be compatible

with the initial mesh in terms of element quality, and then to use an interpolation

method to gradually travel from the initial field to the given target field. Each step

along this interpolation will degrade element quality, and the subsequent adaptation

will repair it sufficiently that another step may be taken. Because it is difficult to

predict a priori how far one may interpolate towards the target before quality limits

are met, we use a predictor-corrector method which begins by stepping all the way

to the target field and iteratively halves the step size until quality criteria are met.

The quality criteria is usually the same as the minimum allowed quality during

adaptivity, see Section 3.4.4. After each step, mesh adaptation is used to improve

element qualities which enables a subsequent step.

In the case of large displacement problems, the initial displacement field is

zero for all the vertices. Linear interpolation between this and the solved-for large

displacement equates to linear motion in space of the vertices. The mesh is deformed

until qualities reach a limit, after which point adaptation is used to correct low

quality elements.

In the case of metric fields, the initial metric field is the implied metric field

described in Section 3.5.2. This metric field is closely aligned with the initial mesh

and its elements typically have good quality when measured in this metric space.

We use the Log-Euclidean metric tensor interpolation described in Section 3.5.1 to

step from the implied metric field to the desired metric field. Each change in the

metric field will tend to decrease element quality in metric space, and subsequent

adaptation will improve quality by bringing the mesh into agreement with the new

metric field.

71

3.5 Size Field Algorithms

3.5.1 Metric Interpolation and Storage

The metric tensor field introduced in Section 1.4.6 is typically provided as a

set of values defined at mesh vertices. This leads to an important question about

how to compute metric tensor values at other points in the mesh, i.e. how to

interpolate the metric tensor. We can illustrate the issues involved with the simplest

interpolation case, that of deriving a metric tensor for the center of a mesh edge given

the two metric tensors at its endpoints. Unfortunately, linear interpolation of the

components of the tensor M itself has the undesirable property that interpolating

between two highly anisotropic metrics of even slightly different orientations will

tend to produce isotropic results with very small desired lengths, i.e. the longer

desired length will be lost. For this reason, alternative interpolation methods have

been developed focusing on getting desired results in the case of high anisotropy.

Some of the most relevant are as follows:

1. MeshAdapt works with an internal representation consisting of the orthogonal

matrix R and the vector of desired lengths h = (h1, h2, h3)T which form the

metric tensor:

M = RT


1/h2

1 0 0

0 1/h2
2 0

0 0 1/h2
3

R (3.2)

Each of these is then interpolated separately. The vector h is linearly in-

terpolated, while the matrix R is first linearly interpolated, and then re-

orthogonalized using the Gram-Schmidt process [64]. The benefit of this is

that anisotropy is fully preserved due to the separate interpolation of lengths.

However, there are three main drawbacks to this method:

(a) The interpolation of R is fragile, because if the linearly interpolated value

is rank-deficient then re-orthogonalization will fail. This can happen, for

example, if the two input R matrices represent rotations that are 180◦

away from each other. Even though these represent exactly the same

metric tensor, interpolation would fail.

72

Figure 3.11: MeshAdapt interpolation depends on eigenvector signs

(b) The overall method gives results which depend too much on the details

of how the tensor was decomposed. If we have two metrics which are 90◦

away from each other as shown in Figure 3.11, their interpolated result

depends heavily on the signs of the eigenvectors chosen for R.

(c) This method stores 12 components per vertex on a 3D mesh, whereas the

alternatives below store only 6.

2. One can instead compute the inverse of the metric tensors, then interpolate

those linearly and invert the result. This is a method proposed by Alauzet

and Frey as a compromise between the anisotropic fidelity and high runtime

costs of the following two methods [65].

3. The highest fidelity interpolation suggested by Alauzet and Frey is the Power

method which linearly interpolate M−1/2, which equals M replacing each

eigenvalue λ with (1/
√
λ). This requires the additional expense of computing

an eigendecomposition.

4. An even better fidelity interpolation suggested by Loseille and Löhner [58] and

later confirmed by Michal and Krakos [56] is the Log-Euclidean method which

linearly interpolates log(M), which equalsM replacing the eigenvalues λ with

log(λ). Figure 3.12 shows how this method better preserves very high levels

of anisotropy. This is the method now used by Omega h.

73

Figure 3.12: Log-Euclidean versus Power interpolation at 1:1000
anisotropy [56]

3.5.2 Implied Metric Field

It is often useful to develop an “implied” metric field [56]. Given a mesh,

the implied metric field is the one which the mesh currently satisfies. Since there

often does not exist a metric field which is exactly satisfied, the computed field is

an approximation of the field which is most closely satisfied by the existing mesh.

An implied metric field can be used to maintain a mesh’s initial gradation while

responding only to mesh motion. More importantly, it can be combined with the

user’s desired metric field to produce one or more intermediate metric fields which

are more suitable for mesh adaptation (for example, gradually interpolating from

one to the other).

For any simplex element, there exists a single metric tensor such that all its

edges are unit length in metric space, which implies it is equilateral and has a perfect

mean ratio quality in metric space. To find this metric, consider that each edge i of

the simplex forms a single scalar constraint:

1 =
√

vTiMvi (3.3)

Where vi is the real space vector along edge i. Also note that the metric tensor

M has exactly as many independent scalars as the simplex has edges (3 in 2D, 6

in 3D). The constraint can be converted into a scalar equation for the independent

variables:

74

12 =

(√
vTiMvi

)2

1 = vTiMvi

1 =
[
xi yi zi

]
a d f

d b e

f e c



xi

yi

zi


1 = ax2

i + by2
i + cz2

i + 2dxiyi + 2eyizi + 2fxizi

In our 3D example, this leads to a 6× 6 linear system:

x2
1 y2

1 z2
1 2x1y1 2y1z1 2x1z1

x2
2 y2

2 z2
2 2x2y2 2y2z2 2x2z2

x2
3 y2

3 z2
3 2x3y3 2y3z3 2x3z3

x2
4 y2

4 z2
4 2x4y4 2y4z4 2x4z4

x2
5 y2

5 z2
5 2x5y5 2y5z5 2x5z5

x2
6 y2

6 z2
6 2x6y6 2y6z6 2x6z6





a

b

c

d

e

f





1

1

1

1

1

1


(3.4)

Where y3 is the y component of the length of edge 3, and so on. The matrix and

right hand side are formed based on the element and the linear system is solved via

QR decomposition [64], resulting in the implied metric tensor for an element. This

derivation can be repeated for triangles in 2D, giving a 3 system for the symmetric

tensor components.

In order to compute metric tensors at vertices, what is used is conceptually an

average the implied values obtained at adjacent elements. First, we transform the

element metric tensors into their “linear” form, which is one of the forms described

in Section 3.5.1 used for metric interpolation (for example, Omega h uses the ma-

trix logarithm). Then we take at each vertex the average of these linear tensors

at adjacent elements. Applying the inverse “de-linearizing” transformation to the

average linear tensor gives the metric tensor at the vertex.

75

3.5.3 Implied Isotropic Size

If we are doing isotropic adaptation, we can follow a similar procedure to

that in Section 3.5.2 for metric tensors, by identifying a desired edge length for

each element and averaging this value to vertices. This is different from the typical

approach of averaging the lengths of edges adjacent to a vertex, because only con-

sidering edges adjacent to the vertex can produce inaccurate results at corners of

even simple meshes, where the axis-aligned edges are considered but diagonal edges

are ignored. Unlike metric tensors, there rarely exists a single desired length which

is satisfied by all edges of an element. The approximation we use is the root-mean-

square of the element’s current edge lengths (lRMS) defined in Equations 1.6 and 1.7.

This is done for consistency with our method of predicting output element counts,

described in Section 3.5.4.

3.5.4 Targeting an Element Count

For users developing a desired metric field, it can be useful to have the ability

to scale their desired metric field such that the resulting adapted mesh will have

a certain desired number of elements. This is due to the limited amount of mem-

ory on computer systems; simulations making use of supercomputers will typically

approach the limit of memory when storing their mesh. Therefore, it is preferable

to limit resolution and execute correctly rather than exceed the memory limit in

an attempt to reach high resolution. Together with re-partitioning onto a larger

amount of hardware memory, metric field scaling should provide better control of

parallel adaptive workflows.

Pain, Umpleby, de Oliveira, and Goddard describe one such method for pre-

dicting the number of elements produced and accordingly adjusting the metric

field [66]. They begin with the assumption that after mesh adaptation all ele-

ments will have metric volume γK , where γK is the volume of a perfectly equilateral

tetrahedron with unit edge lengths. This leads to their volumetric prediction of the

new element count Enew based on the old elements which are here numbered from

1 to Eold:

76

Enew =

∑Eold

e=1 Ṽe
γK

(3.5)

Where Ṽe is the volume of element e in metric space, as we defined in Equation

1.5. They then seek a scalar β such that the scaled size field βM will produce the

desired number of elements Edes. They arrive at the following:

β =

(
γKθEdes∑Eold

e

√
det(Me)Ve

)2/3

(3.6)

Where θ is a correction factor which they state should be set to approxi-

mately 0.85. We claim this correction factor is compensating for the invalidity of

the equilateral-volume assumption. It is impossible to mesh Euclidean space with

equilateral tetrahedra, and should likewise be difficult in metric space. We propose

using the mean ratios of input elements (in metric space) as an indication of how far

typical element volumes would deviate from the equilateral volume (recall the inter-

pretation of the mean ratio from Section 1.4.7). Instead of summing metric space

volumes Ṽe, we sum the volumes that current elements would have if they were

made equilateral while their root-mean-squared edge length was preserved. This

makes them more comparable to the idealized equilateral elements being assumed

on output:

Enew =

∑Eold

e=1 γK l̃
3
e,RMS

γK
=

Eold∑
e=1

l̃3e,RMS (3.7)

This leads to a simpler conclusion: the number of elements that input element

e will become after adaptation is approximately l̃de,RMS, i.e. its root-mean-squared

metric edge length raised to the power that represents area in 2D or volume in 3D.

See Equations 1.6 and 1.7 for a definition or root-mean-squared metric length. This

can be used to compute a new metric scaling factor:

β =

(
Edes∑Eold

e l̃de,RMS

)2/d

(3.8)

Equation 3.8 can also be used to compute element weights to estimate future

77

memory usage for load balancing purposes.

3.6 Solution Transfer in a Cavity

When using mesh adaptation within the context of a simulation, one needs to

maintain the simulation fields defined on the input mesh, and return the adapted

mesh with the fields properly defined on it. Compared to full re-meshing methods,

cavity-based adaptation has the advantage that field transfer can be localized to

cavities, meaning that fields are only altered where the mesh topology was altered

and that transfer algorithms need only consider this local problem as opposed to

dealing with general mesh-to-mesh searches and global, typically expensive and/or

unsatisfactory field fitting operations.

We are usually dealing with an input sub-mesh which has a field defined over

it and an output sub-mesh over which we need to define a new field. While other

researchers may have sub-meshes equal to the entire mesh, in our case these sub-

meshes are always those associated with a local cavity before and after a mesh

modification operation.

3.6.1 Conserving Integral Quantities

Integral conservation of specific fields may be required of solution transfer

algorithms. There are typically infinitely many solutions which preserve the integral

of some quantity over some portion of the mesh, and transfer algorithms differ in

how well they preserve the variation of the solution field over space. In the context of

conservative algorithms we use the terms “donor” and “target” to denote the input

and output sub-meshes, respectively. Jiao and Heath develop a conservative method

which minimizes the Sobolev error between the input and transferred fields by taking

intersections of donor and target elements and solving a linear system based on a

weighted residual formulation over these intersected elements which form a “common

refinement” mesh [67]. Farrell and Maddison apply a similar method (in which they

refer to the element intersections as the “supermesh”) with a focus on transferring

quantities to support mesh adaptation [68]. Theirs can still be considered a full

mesh-to-mesh method, which they apply to the meshes before and after adaptation.

78

Alauzet develops methods very similar to what we present in this section in their

handling of C−1 piecewise constants and C0 piecewise linear functions as well as

starting to account for different domains [69]. Surprisingly, Alauzet still applies this

as a full mesh-to-mesh transfer despite building on a cavity-based mesh adaptation

code.

We need conservative transfer in our work to develop the adaptive Lagrangian

hydrodynamics application Alexa using Omega h (see Section 5.3). In particular,

our two goals to support Alexa are:

1. Conserve the mass of each physical object in the simulation. An object may be

a fluid body or a solid mass. Mass is a piecewise constant scalar field defined

over the element volumes. The algorithm we developed is described in Section

3.6.1.1.

2. Conserve the total momentum of the simulation system. This is done by using

a special algorithm to transfer velocities (which are defined as vectors at mesh

vertices) such that combined with the above mass transfer result in momentum

conservation. This algorithm is described in Section 3.6.1.2.

In both these cases, the additional goal beyond conservation is the preservation of

the variation or distribution of these fields, as much as possible within the bounds

of conservation.

3.6.1.1 Element-Centered Mass-Like Quantities

The integral conservation requirement for mass can be expressed in terms of

a density field ρ, which has donor (ρD) and target (ρT) forms. Our goal is to find a

target density ρT such that Equation 3.9 is satisfied, where ΩD is the domain of the

donor cavity and ΩT is the domain of the target cavity. Figure 3.13 illustrates such

a scenario, and also illustrates the important case ΩD 6= ΩT , which we eventually

attempt to address with Equation 3.14.

∫
ΩT

ρT dV =

∫
ΩD

ρD dV (3.9)

79

Figure 3.13: Mass conservation case with changing cavity domains

Our discretization of density is piecewise constant in that there is a single value

over the domain of each element, and values are discontinuous between elements.

The value of density in an element multiplied by the element’s volume is the element

mass. We define two sets of elements: the donor elements ED and the target elements

ET . Then discrete conservation is simply an equality of sums, and the goal is to

find target element masses ma.

∑
a∈ET

ma =
∑
b∈ED

mb (3.10)

To choose target masses that preserve the density distribution well, we begin

with related work [67,68] which suggests that computing the geometric intersections

of input and output elements allows the formulation of good conservative transfer

algorithms. Their method is based on an assumption that donor and target do-

mains are equal (ΩT = ΩD), and formulating the problem as a weighted residual of

Equation 3.9:

∀w ∈ H :

∫
ΩT

wρT dV =

∫
ΩD

wρD dV (3.11)

Where H is the space of weighting functions, and following [67] we choose H

to be the basis function space of the target mesh, meaning the space of piecewise

constant functions on the target mesh. This just means H can be used to single out

each target element, giving the relationship:

80

∀a ∈ ET :

∫
Ωa

ρT dV =

∫
ΩD∩Ωa

ρD dV =
∑
b∈ED

∫
Ωb∩Ωa

ρD dV (3.12)

Where Ωa is the domain of element a, and the intersection of the domains of

two elements a and b is written Ωa ∩Ωb. Knowing that ρD is constant in Ωb, we get

a simple sum of intersection volumes:

∀a ∈ ET :

∫
Ωa

ρT dV = ma =
∑
b∈ED

V (Ωb ∩ Ωa)mb (3.13)

Where V (Ωb∩Ωa) is the volume of the intersection of elements a and b. In order

to compute this volume, we use the algorithms proposed by Powell and Abel [70] to

first compute the polyhedron which is the intersection of the two element simplices,

then compute its volume.

However, Equation 3.13 is based on the assumption that the domains of donor

and target cavities are the same, and that there are not multiple objects requiring

separate mass conservation. In the single object case, adaptation at the boundary of

the object may produce different target and donor domains. We augment Equation

3.13 with a correction term to account for the fact that not all of ΩD intersects with

ΩT :

∀a ∈ ET : ma =
∑
b∈ED

V (Ωb ∩ Ωa)∑
c∈ET

V (Ωb ∩ Ωc)
mb (3.14)

We can confirm Equation 3.14 conserves mass by summing all target masses:

81

∑
a∈ET

ma =
∑
a∈ET

∑
b∈ED

V (Ωb ∩ Ωa)∑
c∈ET

V (Ωb ∩ Ωc)
mb

∑
a∈ET

ma =
∑
b∈ED

∑
a∈ET

V (Ωb ∩ Ωa)∑
c∈ET

V (Ωb ∩ Ωc)
mb

∑
a∈ET

ma =
∑
b∈ED

∑
a∈ET

V (Ωb ∩ Ωa)∑
c∈ET

V (Ωb ∩ Ωc)
mb∑

a∈ET

ma =
∑
b∈ED

mb

Equation 3.14 can thus conserve mass between two cavities which may not

have the same volume, so long as every donor element has a non-null intersection

with the target cavity (the sum in the denominator). This requirement is satisfied

for edge collapses (see Figure 3.5) and edge swaps (see Figure 3.10), because in

both cases it is true that all donor elements are adjacent to at least one face of the

relaxed cavity boundary (see Figure 3.2), and each face of the relaxed boundary is

also adjacent to a donor element. If all donor and target elements have non-zero

volume, then each donor element will overlap with at least one target element via

this boundary face relationship.

Note that in the case of an edge split (with no snapping), every donor element

becomes two target elements of equal volume, so we simply assign half the donor

element mass to each.

3.6.1.2 Momentum-Conserving Nodal Velocities

In the element formulation used in Alexa, velocity is a piecewise linear C0

continuous function (its value is continuous between elements, but not its derivative).

Such a field is defined in terms of common values at vertices, and the value at any

point inside the element is a weighted sum of that element’s vertex values, where the

weights are the element basis functions, which in the linear case equal the barycentric

coordinates of the point in the element.

The most important transfer done for piecewise linear fields is that during

82

Figure 3.14: Cavity with buffer layer and associated notation

refinement, new vertices will receive values via interpolation. For the refinement

operation, this transfer is exact because it preserves the value of the field at all

points in space. For any other modifications (those that do not create new ver-

tices) we would typically leave the values at vertices unchanged, accepting the small

perturbations introduced by changes to the element connectivity.

However, in the case of momentum conservation, we find a need to modify

the vertex velocity values in order to prevent changing element connectivity from

destroying or creating momentum. One important difficulty here is that the way

cavities for edge collapses and swaps are defined, there are no vertices on the inte-

rior. Recall from Section 3.1.2 that we require modifications leave their boundaries

unchanged, making it impossible to alter vertex values without changing the cavity

definition. This leads us to expand our cavity definition for collapses and swaps, as

shown in Figure 3.14. By pushing the boundary outwards by one layer of elements,

we bring the original boundary vertices into the interior which allows us to modify

their values. In exchange for this, we pay a significant price in the complexity of

parallelizing this method, because the selection of independent sets must now pre-

vent cavities within distance three of one another from modifying simultaneously

(see Section 4.8.2). This in turn requires that we increase the amount of ghosting

to three layers during the selection procedure (see Section 4.8.2.2).

83

Because piecewise linear functions are continuous, we cannot use discontinuity

to isolate the cavity as we did in Section 3.6.1.1. Instead, we must explicitly require

that the new boundary vertices NF remain fixed. This means the weighted residual

technique from Equation 3.11 is no longer applicable.

The momentum field is the product of the velocity field and the density field,

which in our case is stored as masses at elements. The integral of momentum over

the domain of an element e (in the case of mass and velocity being piecewise constant

and linear, respectively) can be written as a discrete sum:

pe = me
1

d+ 1

∑
a∈N (e)

va (3.15)

Where N (e) is the set of vertices of e and d is the dimensionality of e (assumed

to be a simplex), with vertex velocity values va. We begin by leaving the velocity

values unchanged between donor and target, and compute the momentum integrals

over both donor and target cavities.

pT =
∑
e∈ET

me
1

d+ 1

∑
a∈N (e)

va (3.16)

pD =
∑
e∈ED

me
1

d+ 1

∑
a∈N (e)

va (3.17)

Note that the sum in Equation 3.16 can be rearranged to sum over vertices

first:

pT =
∑
a∈NT

va
1

d+ 1

∑
e∈E(a)

me (3.18)

Where NT is the set of vertices in the target cavity and E(a) is the set of

elements adjacent to vertex a. Our momentum conservation method will begin by

computing the momentum loss (pD − pT), then we use Equation 3.18 as the basis

for altering vertex velocities such that each vertex contributes an equal amount

of the momentum difference to the cavity, using these contributions to correct for

momentum loss. In particular, for a target vertex a the adjusted velocity ṽa is given

84

by Equation 3.19.

∀a ∈ NT : ṽa = va +
(d+ 1)(pD − pT)

|NT |
∑

e∈E(a)me

(3.19)

In the studies of this method to date we find that the momentum loss in a

cavity is typically a small percentage, i.e. (|pD − pT |/pD ≤ 1%). For this reason it

is less of a concern that we do not take into account the variation of velocity over

space when distributing these corrections.

The final complication involved in altering these velocities is that Alexa (and

simulation codes in general) apply boundary conditions involving velocity, meaning

they require that vertices on a subset of the overall mesh boundary have velocity

values which are equal to some user-defined function v(x, y, z, t) over space and

time. This means we should not apply velocity corrections to vertices with that

restriction. Alexa will identify which boundary surfaces have boundary conditions

applied to them and communicate them Omega h. Omega h will then reduce the

set of modified target nodes NT in Equation 3.19 accordingly. If no vertices remain

in this set, we disallow that mesh modification from taking place. So far this has

not been a serious limitation, but care needs to be taken in areas heavily affected

by boundary conditions, such as the corner of a cube where all three surfaces are

restricted.

Since refinement is exact, it automatically conserves momentum and does not

need to employ the above cavity expansion or velocity correction. As discussed in

Section 3.4.1, this is important because we prefer not to disallow refinement.

3.7 Serial Adaptation Performance

3.7.1 Analytic Anisotropy Test

In order to compare against other anisotropic adaptation software, we run

Omega h on the first test case presented by Park, Loseille, Krakos and Michal [71].

This case consists of a unit cube and an analytic metric defined in Equation 3.20.

Figure 3.15 shows the mesh before and after Omega h adapts it to conform to this

analytic metric. We use the metric approaching method described in Section 3.4.5,

85

Figure 3.15: Mesh before and after adapting to analytic metric

which takes 10 steps to reach the final metric while restricted to keep all elements

above 20% mean ratio quality. These 10 steps include 49 total refinement passes,

65 coarsening passes, and 22 swapping passes, and took 8.1 seconds to execute in

serial on an Intel Xeon E5-2620v4 CPU. Table 3.1 shows the element quality and

edge length statistics in metric space for the final adapted mesh. Note that shape

correction was able to bring all elements above 30% quality while keeping edges in

the length range shown in the histogram (the minimum edge length is 0.16).

M =


h−2
x 0 0

0 h−2
y 0

0 0 h−2
z

 where


hx = 0.1

hy = 0.1

hz = 0.001 + 0.198|z − 0.5|

(3.20)

3.7.2 Size Field Scaling Test

In order to demonstrate the implied size field formula described in Section

3.5.3 and the size field scaling to target a given element count described in Section

3.5.4, we use a series of mesh adaptations to increase the element count of a mesh

by a factor of 2 at each adaptation. Note that uniform template refinement, which

involves marking all edges for refinement and using the corresponding template

described in Section 3.3.1, increases element count by a factor of 8 in 3D, so for a

factor 2 increase we need general non-uniform refinement.

86

Table 3.1: Metric quality and length histograms for analytic metric test

quality #elements
0.00-0.10 0
0.10-0.20 0
0.20-0.30 0
0.30-0.40 295
0.40-0.50 1268
0.50-0.60 4117
0.60-0.70 9241
0.70-0.80 13221
0.80-0.90 19660
0.90-1.00 5224

length #edges
0.00-0.20 1
0.20-0.40 120
0.40-0.60 782
0.60-0.80 13644
0.80-1.00 18290
1.00-1.20 15847
1.20-1.40 16215
1.40-1.60 654
1.60-1.80 23
1.80-2.00 7

Table 3.2: Element counts and adapt times for size field scaling

desired elements actual elements seconds to adapt
7000 6912 0.19

14000 13079 0.50
28000 26255 0.96
56000 50441 1.62

112000 99320 3.07

We begin with graded mesh as shown in Figure 3.16(left), taken from our

circuit simulation work described in Section 5.5. We compute its implied isotropic

size, scale this size field such that a mesh conforming to the scaled size field would

have approximately twice the elements, and adapt to the scaled size field. Notice

that despite the curved boundary, no snapping takes place. We repeat this procedure

4 times, going from 7K elements to 112K elements, with the final mesh shown in

Figure 3.16(right). Table 3.2 shows the desired and actual element counts at each

step when this procedure is carried out using Omega h. We do expect the actual

element count to be less than desired due to the thresholds used to decide when to

refine edges. Also as expected in serial, adaptation time is directly proportional to

element count (given that this workflow does approximately equal work per element).

87

Figure 3.16: Meshes before and after size field scaling

CHAPTER 4

SCALABLE PARALLEL MESH ADAPTATION

4.1 Defining Scalability

It is important to first define scalability in the context of parallel computers.

First, we define a single scalar N describing the problem size. For mesh-based

simulations, the number of mesh elements is a good approximate measure of problem

size. Then we consider any operation which would take O(N) time to execute

on a single processor such as the reference computer in Section 1.5, and analyze

the runtime bound of this operation when it is parallelized using P cooperating

processes. When the parallel runtime is O(N/P), we say the operation has perfect

linear scaling. Linear scaling typically only occurs when the processes do not have to

coordinate, and coordination usually adds a factor log(P) to the runtime, meaning

that the operation takes O((N/P) log(P)) time in parallel.

Notice that we are considering a single operation which takes O(N) time in

serial. For example, a Recursive Inertial Bisection partitioning method is a divide-

and-conquer algorithm which uses O(log(P)) steps, each taking O(N) time, to assign

N items to P partitions for a total serial runtime which is O(N log(P)) (analogous

to an incomplete sorting algorithm) [75]. If the items are already well partitioned

amongst P processes and we run a parallel version of this procedure to adjust the

partitioning, each O(N) step becomes O((N/P) log(P)) and the whole operation

can be expected to take O((N/P) log2(P)).

Next, we define parallel runtime bounds which are considered non-scalable.

The simplest example is one where an O(N) serial operation becomes an O(N) par-

Portions of this chapter previously appeared as: D. A. Ibanez, E. S. Seol, C. W. Smith, and
M. S. Shephard, “PUMI: Parallel unstructured mesh infrastructure,” ACM Trans. Math. Softw.,
vol. 42, no. 3, pp. 17:1–17:28, May 2016.

Portions of this chapter previously appeared as: D. Ibanez, I. Dunn, and M. S. Shephard,
“Hybrid mpi-thread parallelization of adaptive mesh operations,” Parallel Comput., vol. 52, pp.
133 – 143, Jan. 2016.

Portions of this chapter previously appeared as: D. Ibanez and M. Shephard, “Mesh adap-
tation for moving objects on shared memory hardware,” in Proc. 25th Int. Meshing Roundtable.
Washington, DC: Elsevier, Sep. 16–29, 2016.

88

89

allel operation, i.e. there is asymptotically no scaling. Although trivial, an alarming

number of parallel programs in production use exhibit this degree of scaling for key

parallel operations (for example, partitioning is done is serial prior to a parallel

simulation). Because non-scalable operations may not consume a large percent-

age of runtime at low degrees of parallelism, these systems can show good parallel

speedups up to a certain degrees of parallelism, but ultimately run into difficulties

for large P (106). The second example is an operation which has O(P) runtime in

parallel. Once again, may systems in production use today suffer from such trivial

non-scalability. For example, it is natural when organizing communications for each

process to create an array of size P with information about what is being sent to

each other process (or worse, to actually send data to every other cooperating pro-

cess). The continued use of O(P) algorithms is a significant obstacle to increasing

the degree of shared memory parallelism in leadership-class supercomputers. The is-

sue is made worse by the fact that until fairly recently, MPI (see Section 1.7.2) itself

would either use or encourage the use of such algorithms [19]. Section 4.2 describes

how to use modern MPI to avoid non-scalable operations during communication.

All the above considerations have analogues for the case of shared-memory

programming, in which case one can exchange the number of parallel processes

P for a number of parallel threads T . In the case of shared memory only, there

are fewer communication concerns because all threads may access all data directly.

Although there are Non-Uniform Memory Access (NUMA) costs incurred if threads

do not organize their data to minimize sharing, these costs are much smaller than

the cost of network communication.

4.2 Parallel Operations

In this section we introduce a set of key collective parallel operations used to

write parallel programs. All of these are scalable operations as described in Section

4.1. As such, a good approach to designing scalable programs is to use only these

operations for parallelism.

90

4.2.1 Map

This is the most basic parallel operation, and is included to place our def-

initions in the context of the map-reduce programming model which has gained

popularity in processing Internet data sets [76]. The simplest definition of a map

operation takes in an array a = {a0, a1, a2, ...aN} and a unary operator f and returns

an array b = {f(a0), f(a1), f(a2), ..., f(aN)}.
We generalize it to the idea of running N independent operations in paral-

lel with no need for coordination. The shared memory implementation of a map

operation is the parallel for concept introduced in Section 1.7.3. The need for

these operations to be independent often forces the result to exist as one or more ar-

rays of N result values. The distributed memory implementation is anything inside

a normal MPI program. Since MPI processes always execute in parallel, anytime

all processes perform the same operation without coordination (message passing),

it can be interpreted as an implicit map operation. This illustrates an important

distinction between MPI programming and shared memory programming: MPI is

parallel by default, while shared memory programming environments like OpenMP

and CUDA are serial by default and parallelism must be explicitly requested per

operation.

The map operation is the prime example of an operation which scales perfectly.

Assuming the operator f requires O(1) time, a serial execution requires O(N) time

and a parallel operation over P processes and T threads takes O(N/(PT)) time.

4.2.2 Reduce

A reduction operation takes as input an array a = {a0, a1, a2, ..., aN} of scalar

values and a binary operator ⊗, and returns a single scalar result. The result

is related to the array entries via a binary expression tree, and in order to allow

flexibility of implementation, any valid binary tree may be used. Figure 4.1 shows

two valid binaries trees an implementation may use to reduce an array of five entries.

The value of a leaf node in this tree is the value of a unique array entry, and the value

of the non-leaf nodes is the result of applying the binary operator to the values of

its two child nodes. The value of the root of the tree is the overall reduction result.

91

Figure 4.1: Two possible binary trees used for reduction

The left tree in Figure 4.1 illustrates the typical serial reduction process of

maintaining an accumulator value and adding each consecutive array entry to it. The

right tree in Figure 4.1 illustrates the most theoretically scalable implementation,

i.e. a balanced tree. Assuming we have as many parallel processes as we have

array entries, each of the dlog(N)e layers of the balanced tree can be evaluated

simultaneously and the runtime to evaluate the reduction is O(log(N)) for arrays

of size N . However, the balanced tree requires O(N) memory for the intermediate

result at one layer, while the serial tree can be evaluated with a single accumulator

(O(1) memory). The memory requirement is one reason why the serial tree is chosen

in cases when no parallelism is available.

If we have fewer parallel processes than array entries, we can use a hybrid

mix of the two trees in Figure 4.1, where each processor uses a serial tree to reduce

O(N/P) values in O(N/P) time, and then each process’ local results are reduced

using a balanced tree in O(log(P)) time resulting in an O((N/P)+log(P)) runtime.

The binary operators used most often in Omega h reductions are the sum,

minimum, and maximum of the two inputs. Notice that the ability of implementa-

tions to choose any tree is a problem when the operator ⊗ is not commutative (the

result depends on the tree structure), as is the case with typical computer imple-

mentations of floating-point summation. Section 4.9.2 will describe a technique for

dealing with this issue.

The shared memory implementation of reductions is in our case provided by the

92

Kokkos library’s Kokkos::parallel reduce function [23]. The distributed memory

implementation (which accepts a single value per process) is provided by MPI’s

MPI Reduce and MPI Allreduce functions (the later makes the result available to

all processes, which is often desired). Combining these gives a reduction that can

be expected to complete in O((N/(PT)) + log(PT)) time.

4.2.3 Scan

Scan operations are key to scalable parallel programming, especially when

using arrays for storage. Given an input array a = {a0, a1, a2, ..., aN} and a binary

operator ⊗, an inclusive scan returns an array b = {b0, b1, b2, ..., bN} where each

bi = reduce({a0, a1, a2, ..., ai},⊗), i.e. the i-th output value is the result of reducing

the first i input values. An exclusive scan differs in that the i-th output value is the

reduction of the first (i − 1) values only (meaning the first output value must be

defined separately). A scan with (⊗) = (+) is often referred to as a prefix sum.

Intuitively, a scan operation may be implemented with help from the interme-

diate values of a reduction tree. For example, the intermediate values in the serial

tree (Figure 4.1(left)) are exactly the output values for scanning, meaning a scan

takes O(N) time in serial. Parallel scanning is a bit more complex and requires

essentially traversing a balanced tree twice (Figure 4.1(right)), which still gives it a

time complexity of O(log(N)) assuming as many processors as input values.

We use the Kokkos::parallel scan function to provide the shared memory

implementation of scans, and the MPI Exscan function to provide the distributed

memory implementation, which accepts one value per process.

The utility of exclusive scans is in generating offsets for sub-groups of items

in a global collection based on the size of each subgroup. For example, given the

number of mesh elements per part, the MPI Exscan takes O(log(P)) time to returns

offsets which can be used to establish a global numbering of mesh elements without

further communication. Likewise, given the number of edges adjacent to each mesh

vertex, a Kokkos::parallel scan takes O((N/T) log(T)) to produce offsets for all

vertices that allow the construction of compressed-row storage for the vertex-to-edge

adjacency (see Section 2.5.2).

93

4.2.4 Sort

Although we do not yet require a full distributed memory sorting algorithm in

our work, we do have uses for sorting at the shared memory level (see Section 2.7),

so we include this as a key parallel operation. In Omega h, we use a slightly unusual

definition of sorting: given an array k = {k0, k1, k2, ..., kN} of keys and a strict weak

ordering (≺) [77], return a permutation array p = {i0, i1, i2, ..., iN} which indicates

a sorted order for k, meaning that (kij ≺ kij+1
). We use this definition so that the

permutation array can be re-used to sort multiple other arrays that are associated

with the array of keys. We also require that the algorithm be stable (keys which

are “equal” in the ordering (≺) retain the same relative order) for determinism

reasons. This is especially important when other arrays are being sorted using the

permutation array.

Implementing a parallel sorting algorithm is considerably more challenging

than implementing scans and reductions. At the time of this writing, Kokkos does

not offer a highly general sorting capability. Instead, Omega h relies on the Thrust

library to provide sorting functionality on GPUs [78]. There several algorithms for

sorting on GPUs [79], ranging in complexity up to O((N/T) log2(N)), which we still

consider scalable. On manycore CPUs, we use a parallel merge sort implementation

provided by researchers at Intel [80].

4.2.5 Exchange

We use the term exchange to refer to the distributed memory operation in

which each process has a set of messages to send, each message having a unique

destination process, and these messages are exchanged such that each process re-

ceives all the messages addressed to it during the operation. The difficult part

of implementing an exchange is determining, for a given destination process, the

full set of messages addressed to it. Hoefler, Siebert, and Lumsdaine [81] describe

a communication-optimal algorithm for conducting a “sparse dynamic exchange”.

They define a sparse exchange as one in which the number of messages sent from

or received by any single process is O(log(P)). This is important, because if a pro-

cess tries to send O(P) messages then it is impossible to execute the exchange in

94

a scalable way. They define a dynamic exchange as one in which the set of mes-

sages a process must receive is unknown to that process at first, hence the difficulty

described above.

Many codes in use today solve this problem by using a variant of the “per-

sonalized consensus” algorithm in [81], reproduced here as Algorithm 1. By relying

on a table (array) of size P , this algorithm is non-scalable. A scalable solution is

the “non-blocking consensus” algorithm in [81], seen here as Algorithm 2. This

algorithm uses synchronous sends, meaning that when a message is received at its

destination, a confirmation is returned to the sender. Once a process receives con-

firmation that all its outgoing messages reached their destinations, it enters the

non-blocking barrier. This barrier can execute concurrently with other message

traffic, and once all processes enter it, it will signal its completion to all processes.

Upon detecting completion, a process can be sure that all messages in flight have

been received, thus it is safe to stop waiting for incoming messages. The barrier

must be non-blocking because in order to make progress, processes must be able to

continue receiving incoming messages until the time of overall completion. Knowing

the communication is sparse, this algorithm runs in O(log(P)) time [81].

Algorithm 1: Personalized Consensus [81]

input : List S of destinations and data
output: List R of received data and sources

1 allocate local table with P entries, initialize all entries to ‘0’;
2 foreach i ∈ S do
3 set row target(i) in local table to ‘1’;
4 g = global sum of my table row;
5 foreach i ∈ S do
6 start nonblocking sends to dest(i);
7 for round from 1 to g do
8 msg = blocking probe for incoming message;
9 allocate buffer, receive message, add buffer to R;

Section 4.3.3 describes how PUMI’s communication library, PCU, implements

Algorithm 2. This implementation goes beyond MPI because it is designed to allow

communication between operating system threads instead of just processes.

As of the MPI 3.0 standard, however, it is no longer necessary to program

95

Algorithm 2: Non-Blocking Consensus [81]

input : List S of destinations and data
output: List R of received data and sources

1 done=false;
2 barrier active=false;
3 foreach i ∈ S do
4 start nonblocking synchronous send to process dest(i);
5 while not (done) do
6 msg = nonblocking probe for incoming message;
7 if msg exists then
8 allocate buffer, receive message, add buffer to R;
9 if barrier active then

10 comp = test barrier for completion;
11 if comp then done=true;

12 else
13 if all sends are finished then
14 start nonblocking barrier;
15 barrier active=true;

one’s own exchange algorithm, as it can be accomplished by combining two key MPI

systems: scalable process topology (graph communicators) [82], and neighborhood

collectives [83]. This is the approach taken for distributed memory exchanges in

Omega h.

MPI’s neighborhood collective functions perform non-dynamic exchanges, mean-

ing that they must be informed of the incoming as well as outgoing messages. This

is semantically the same as performing a series of single-message sends and receives,

but comes with a few benefits. First, MPI’s understanding that the messages are all

to be sent at once enables it to perform certain optimizations. Second, the interface

specifies that the data for all outgoing messages is to be packed in a single array (with

data going to the same destination being contiguous). This is good for integrating

MPI with shared-memory code, because the shared-memory code may efficiently

prepare the outgoing data array and may efficiently process the incoming data ar-

ray, thus minimizing the amount of work done by MPI (which is not guaranteed to

use shared-memory parallelism to accelerate its work). Unfortunately, the neighbor-

hood collective exchange functions have the name prefix MPI Neighbor alltoall,

where alltoall is too reminiscent of the non-scalable practice of transmitting O(P)

96

messages from one processor.

The remaining problem of determining messages to receive can be delegated to

MPI’s scalable process topology description via the function MPI Dist graph create.

First, note that the above process is a graph theoretical problem of determining in-

coming graph edges to a graph node when each graph node knows only its outgoing

edges. MPI Dist graph create allows each process to specify any subset of the

edges in the communication graph, and assumes responsibility for informing each

process of all its incoming and outgoing edges. This is a more general and difficult

problem than the one described above, and we restrict our use of this function to

having each process specify all its outgoing edges. Given this restriction, we assume

it executes in O(log(P)) time.

Note that the exchange operation does not have a clear shared-memory equiv-

alent in the context of Omega h, because accessing shared memory directly is pre-

ferred over sending explicit messages amongst threads.

4.3 PCU: Scalable Inter-Thread Communication

PCU is a library that provides a parallel programming model including paral-

lel control functions. Its two major functionalities are message passing that allows

parallel tasks to coordinate and thread management that extends the MPI program-

ming model into a hybrid MPI/thread system.

The foundation of PCU is its point-to-point message passing routines where

non-blocking synchronous message passing primitives are defined. There are two

versions, one of which is a direct interface to MPI, and the second supports message

passing between threads [73]. The two versions are interchangeable, and PCU can

change which set of them is being used at runtime without affecting the rest of

software components.

Building on the point-to-point primitives, PCU has an extensible framework

for collective operations such as reduction, broadcast, scan, and barrier. Any collec-

tive whose communication pattern can be encoded as some kind of tree is supported,

and the most common ones come built-in to PCU. These collectives are directly

available to users.

97

Using both collectives and point-to-point communication, PCU provides a

flexible user interfaces similar to MPI 3.0’s MPI Neighbor alltoallw. The first

phase allows tasks to construct messages to multiple neighbors at once and then

send them. The second phase ensures that neighbors receive all the messages they

have been sent. This “phased” communication algorithm is conceptually the same

as Algorithm 2.

Finally, PCU has a system for creating a pool of threads within each process

and assigning them ranks the way MPI does to processes. Users can call this API

to enter a hybrid MPI+threads mode in which all the communication APIs (point-

to-point, collective, and phased) work between threads. These capabilities support

PUMI’s overall hybrid MPI+thread operation.

4.3.1 Messaging Primitives in PCU

The main unusual design choice of PCU compared to other hybrid program-

ming systems is its focus on inter-thread message passing. Since we must rebuild

some of the high-level message passing capabilities, we identify a set of primitive

operations as described by the MPI standard [18] which are sufficient for our appli-

cations:

1. Non-blocking synchronous send

2. Non-blocking send request completion test

3. Non-blocking probe

4. Blocking receive

These conceptual message-passing primitives are independent of their partic-

ular implementation. Note that because we require the send operation to be syn-

chronous, it will complete if and only if the message is completely received at its

destination.

All the remaining algorithms rely only on these guaranteed properties of the

message passing primitives. To develop inter-thread message passing, we implement

inter-thread message passing passing primitives. These are currently based on calling

98

thread-safe MPI versions of the same primitives, but an area of future work involves

implementing more efficient primitives.

In order to use MPI itself to pass messages between threads, we require that

the implementation correctly handle self-sends. Then, we need to encode the source

and destination thread IDs into the message metadata such that messages can be

multiplexed out of a single process and demultiplexed at their destination process.

The encoding of thread IDs makes use of the standard MPI TAG metadata integer,

which is typically a 32-bit signed integer. We use 10 bits of this integer to encode

each of the local IDs for the source and destination threads. This encoding of source

and destination means that threads must inspect messages with more sophisticated

checking of the tag than MPI Recv offers, since messages arriving at the same process

may be destined for different threads within that process. We use MPI Iprobe

to inspect the tag before using MPI Recv to commit to being the receiver. This

combined probe and conditional receive procedure is specified in Algorithm 3.

Algorithm 3: Non-blocking pattern-match receive

input : pattern P
output: received message metadata M and data b, or null

1 let message M ← non-blocking probe;
2 if M is null (there is no message) then
3 return null;
4 if metadata of M does not match P then
5 return null;
6 allocate buffer b per metadata of M ;
7 blocking receive M into b;
8 return (M, b);

4.3.2 Simple Collectives in PCU

Collective operations are a necessary staple of distributed-memory high-performance

computing. Operations such as parallel reduction, broadcast, and other collectives

are key to coordinating threads [84]. More details on these collective algorithms and

tradeoffs in their implementation can be found in [85]. Non-blocking collectives are

more advanced implementations which are typically used to overlap communication

and computation. By using them, PCU benefits from this overlap. Furthermore,

99

in Section 4.3.3, we use Algorithm 2 for which a non-blocking implementation is

necessary.

Since collectives are used by nearly all applications, we place a focus on devel-

oping built-in multithreaded collective operations based on the inter-thread message

passing primitives.

We consider three fundamental collective operations: broadcast, reduce, and

scan. Other operations such as exclusive scan and all-reduce can be built from

the first three. These operations were selected as the minimal subset of collectives

needed for our unstructured mesh operations.

These three collectives share many common features: they use O(log n) steps

for n threads, and at each step each thread is either idle, sending one message, or

receiving one message. These shared characteristics make it easier to implement all

the collectives in a general framework which abstracts away their differences, starting

with the specific communication pattern used. A thread only needs to know which of

the three actions to perform at each step and with which thread it is communicating,

if any. This combined information is referred to as the communication pattern.

The second abstraction we can make is that of a merge operator, which is

essentially the MPI reduction operator (e.g. MPI SUM or MPI MAX). The merge oper-

ator modifies the local data based on incoming data. For example, an reduction sum

adds incoming values to local values. We do not refer to it as the reduction operator

because it is used in all cases, including broadcast. As an interesting corner case, the

merge operator for broadcast simply assigns the incoming value as the local value.

Following good software design, the communication pattern, merge operator,

and data are each specified separately and are orthogonal from one another. This

follows the example of interfaces such as MPI Reduce.

With these abstract components specified, we can execute a collective opera-

tion using the non-blocking point-to-point message passing primitives developed in

Section 4.3.1. Although the simplicity of collectives would allow blocking primitives

to be used, using non-blocking primitives gives us a great benefit: we obtain a non-

blocking collective operation. Such operations were implemented by Hoefler and

Lumsdaine outside MPI [86] and their subsequent proposal to make them part of

100

the MPI standard [87] was accepted. Our work implements hybrid threaded versions

of such collectives.

Users of this system initiate a collective operation, and can interleave compu-

tation with communication progress queries. Communication progress consists of

checking for incoming messages in the current step and proceeding to the next step

when they are received.

Non-blocking collectives are useful from the perspective of of hiding latency,

but they prove to be indispensable to Algorithm 2.

As a detailed example of how our non-blocking collectives work, Algorithms 4

and 5 show the functions that would begin and advance a non-blocking reduction,

respectively. In these algorithms we use ∧ to denote a bitwise and operation and ⊕
to denote a bitwise exclusive or operation. The operator ⊗ continues to represent

the binary reduction, e.g. summation. Several helper functions were inlined for

brevity, hence there is some repetition. For example, the termination condition on

line 4 of Algorithm 4 and lines 1 and 14 of Algorithm 5. This condition is one of

the aspects which varies depending on which type of collective is being executed

(broadcasts and scans have different logic here). We implement a balanced binary

tree (similar to Figure 4.1(right)) based on the binary digits of the thread ID (rank).

Algorithm 4: Starting a non-blocking reduction

input : local data dl
1 peers ← total thread count;
2 rank ← local thread rank ∈ [0,peers−1];
3 bit ← 1;
4 if ((rank= 0) and (bit≥peers)) or
5 ((rank6= 0) and (((bit/2)∧rank)6= 0)) then
6 return;
7 if rank⊕bit<peers then
8 if bit∧rank6= 0 then
9 request ← send dl to (rank⊕bit);

10 return state as (bit,request)

101

Algorithm 5: Progress a non-blocking reduction

input : access to local data dl
input : access to state tuple (bit,request)

1 if ((rank= 0) and (bit≥peers)) or
2 ((rank6= 0) and (((bit/2)∧rank)6= 0)) then
3 return false;
4 step done ← false;
5 if rank⊕bit≥peers then step done ← true;
6 else
7 if bit∧rank6= 0 then
8 if request is done then step done ← true;
9 else

10 if received message from (rank⊕bit) with data dr then
11 dl ← dl ⊗ dr;
12 step done ← true;

13 bit ← 2·bit;
14 if ((rank= 0) and (bit≥peers)) or
15 ((rank6= 0) and (((bit/2)∧rank)6= 0)) then
16 return false;
17 if rank⊕bit<peers then
18 if bit∧rank6= 0 then
19 request ← send dl to (rank⊕bit);

20 return true

4.3.3 Non-blocking Consensus in PCU

A common problem that arises when dealing with parallel graphs, and similar

structures, such as the adjacency relations of unstructured meshes, has to do with

transporting graph, or mesh entities, from one thread to another due to changes in

the graph or to other operations which affect load balance. Such transportation is

specified in a one-sided, push-driven manner, which means that each thread knows

which entities it should send to which other threads, but does not know what it will

be receiving.

Without a priori knowledge of the extent of information to be received, it is

difficult to determine when to stop receiving information. A thread can perform a

continuous loop which receives messages, but we must determine when to terminate

that loop.

This problem has been solved previously in a slightly less efficient manner [88],

102

and is an important special case of the general termination detection problem. PCU

implements an optimal solution based on Algorithm 2 described in Section 4.2.5.

Note that Algorithm 2 overlaps all incoming message processing with all outgoing

message wait operations, so the potential for latency hiding is maximized.

When implementing phased message passing, we also optimize performance by

buffering small messages. Users see an interface which allows sending small amounts

of data to any destination. The user interface of phased communication allows us to

pack all data traveling between the same pair of threads into a single message. This

is done prior to executing Algorithm 2, which expects that the number of messages

sent |S| is equal to the number of unique destinations and the number of messages

received |R| is equal to the number of unique sources.

This relation of message counts to communication neighbors (sources and des-

tinations) is quite useful in the process of determining runtime bounds. This is

because, due to mesh partitioning, each thread should have a small and constant

number of neighbors, with 40 being a maximum value among several meshes stud-

ied [89].

We have shown previously that buffering small messages can greatly improve

performance due to the latency cost α and MPI’s own management overhead per

message, especially for applications with a tendency to send very small messages

between the same pair of threads [88]. In the case of multiple threads per process,

buffering also reduces the number of calls to MPI Send and MPI Recv, which reduces

contention for the MPI library between the threads in that process. When these

calls are protected by a lock, avoiding contention is important [90].

4.4 Remote Copies and Owners

For distributed memory parallelism, we are required to separate our data

amongst multiple memory spaces. In order to find a piece of data across an en-

tire distributed memory machine, one needs to pieces of information: which of the

memory spaces it is in, and where in that memory space it is. The first value is

provided by MPI and is called a “rank”, which is a 32-bit integer identifying an MPI

process. In object-oriented codes, the second value is a pointer to an object, which

103

is a memory address (typically 64 bits). If data is stored mainly in arrays as we do

in our work, the second value can be an integer, and can be 32 bits if that is the

size chosen for array indices.

The way we partition a mesh onto a distributed memory machine is to have

each MPI process create a data structure (one of those described in Chapter 2) and

store in it a subset of the entities in the overall mesh. Partitioning begins with a

subset of the elements that will reside in a given partition, and then requires that

this partition also contain all entities on the boundary of those elements. The choice

of elements is typically such that each element resides in exactly one partition (we

call this an “element-based” partitioning), or an element may reside in multiple

partitions (the most common example of this is a special case we call “ghosting”

[72, 91]). A partitioning may be represented as a map from unique entities to a

subset of partitions (MPI ranks). Each single mapping from a unique entity to a

single partition causes a “copy” of that entity to be included in the data structure

on that partition.

In order to maintain an understanding of the mesh as a whole, we need to

maintain some information about which copies represent the same unique mesh

entity. When working with a partitioned mesh, it is also very useful to designate

one of the copies that represent the same unique entity as the owner copy, making

it responsible for changes involving that unique entity [1, 4, 72]. Figure 4.2 shows

the two ways in which we maintain this information. On the left, we have the

PUMI implementation in which every copy stores a set of “remote copies”, which

are links to all other copies that represent the same unique mesh entity. This forms

a complete graph of connectivity between the copies of one unique entity. What

Omega h maintains most of the time is a more sparse representation in which each

entity stores a link to its owner (which may be itself, note the self-edge in Figure

4.2(right)). In both cases (PUMI and Omega h), a remote link is a pair containing

an MPI rank and an entity pointer, where the entity pointer decomposes into one

or more array indices (see Section 2.4.5).

The main disadvantage of a complete set of links at every entity is the ad-

ditional storage requirement and maintenance of the links during migration (see

104

Figure 4.2: Complete and owner-based remote links for a 4-partition
mesh

Section 4.6.2). The storage format is also more complicated because there is a vari-

able number of links per entity, which requires some kind of indirection. In the case

of PUMI, links for a single entity are allocated in their own small array and a single

large array maps each entity to its associated small array of links. The advantage, as

is often the case, is that this additional memory can save time in certain algorithms,

for example ownership rules may be changed without communication.

4.5 Entity-Level Communication

A common operation in both PUMI and Omega h is to send data in a way

that can be interpreted as mesh entities communicating with one another. A good

example of this would be mesh nodes communicating field values to one another to

add up contributions from different mesh partitions. In a more general sense, we

would like to have communications in which data is sent to and from many small

objects, where there are more objects than threads.

In PCU, there is no explicit support for this, but it is straightforward to achieve

by sending small messages which begin with the entity pointer of a copy (obtained

from remote copies as described in Section 4.4), followed by the data aimed at that

copy. When receiving data using PCU, a thread will loop over these small messages

(which are packed into one large message for the entire thread) and bring up the

relevant entity for each message.

In Omega h, we have a more explicit implementation of this communica-

105

tion pattern in an object called the Dist, which is short for “distributor”. The

Dist model is that of a directed communication graph from one set of copies (the

“sources”) to another set (the “destinations”). The two sets may be the same, for

example the copies of nodes of a mesh communicating with one another, or they may

be different, for example the copies of vertices of the input mesh communicating with

the copies of vertices of the adapted mesh. Each source may communicate with mul-

tiple destinations, although we assume the number of destinations per source (and

the number of sources per destination) is bound by a small constant. It should be

noted that both the sources and destinations are sets of copies which are distributed

throughout the whole machine.

Along each edge of this communication graph, we will transmit a small amount

of data. These transmissions will happen all at once. First a type of data (integer,

floating-point, etc.) and a width (a very small constant, for example 3 values)

are selected. Then the input values for each source are provided, and the Dist is

responsible for relaying these to the destinations, such that each destination can

readily access the data sent to it. Note that this is really the exchange algorithm

from Section 4.2.5, it is simply implemented at a finer-grained level.

The Dist system goes through several stages in order to complete its task,

as illustrated in Figure 4.3. Data begins as an array within the memory space of

each source rank, with one entry per source. It is then expanded such that there is

one entry per communication graph edge whose source is in this rank. The array

is then permuted such that data whose destinations are on the same rank is stored

contiguously. At this point, we use the MPI 3.0 exchange mechanism described in

Section 4.2.5 to send out the contents of the given array. This MPI exchange then

receives all the data whose destinations are on this rank into a new array whose

contents are sorted by the rank of their sources. This received array is permuted

such that data is sorted by destination object index. Finally (and optionally), the

data may be reduced such that multiple values with the same destination become a

single value (recall the common reductions in Section 4.2.2).

Figure 4.3 illustrates well the symmetry of this process, and the ease with

which it can be executed in reverse. This symmetry is reflected in the program-

106

Figure 4.3: The stages of a Distributor exchange algorithm

ming interface. Each of the five transformations requires storing some data. The

expansion and reduction steps can each be described by an array of offsets (see the

compressed row format from Section 2.5.2). The permutation steps each store a

permutation array. Finally, the message-passing step also stores arrays describing

which portions of the input and output arrays are associated with which MPI ranks

(these are also symmetric).

The generality of this interface covers a wide variety of communication needs.

Most of the time, we use it such that each source has a single destination (e.g.

entities to their owners), or symmetrically each destination may have a single source

(owners back to entities). In order to create a Dist system, users need only specify

the destination of each source on a given rank, where destinations are specified as

pairs of rank and index (see Section 4.4). We use a shared-memory parallel sort (see

Section 4.2.4) to obtain the first permutation, by sorting these destinations by their

rank. We then construct the MPI information from the sorted ranks, and transmit

the destination indices on their own. At the destination, we apply the mapping

inversion algorithm described in Appendix A.1 to obtain the second permutation

and the offsets used for reduction (this is where the small degree assumption comes

into play). If there are multiple destinations per source, one need only specify the

offsets from sources to the provided destination links.

107

Notice that all of these data manipulation steps can be performed in a shared-

memory parallel fashion. In the case of a machine which has a CPU and a GPU, the

GPU performs all the array transformations, and data is only copied to the CPU

in the form appropriate for MPI’s neighborhood exchange. After the exchange it

returns to the GPU for the second half of the transformations. Despite this effective

use of shared memory, it is still expensive to set up a Dist system. The ones which

are most likely to be reused are those that Omega h builds for communicating from

copies of one dimension to their owners, and so we cache these systems the same

way adjacencies are cached in Section 2.5.4.

4.6 Migration

As described in Section 4.4, a partitioned mesh involves careful duplication of

mesh entities into “copies” in different memory spaces, and establishing the needed

links between copies of the same entity. Creation of a partitioned mesh is handled

by a procedure called “migration” [1, 4, 72]. It accepts as input a partitioned mesh

(the input partitioning may be such that the entire mesh is in a single partition),

and outputs a new partitioned mesh based on an input description of where the

user would like certain mesh elements. This process is expected to take advantage

of as much parallelism as possible, within the constraints of the input and output

partitionings (for example, if either one has the whole mesh in one partition, portions

of the migration will be inherently serial).

Following their respective styles, PUMI will modify the given mesh by incre-

mentally adding and removing entities and remote copy links, while Omega h will

construct a new mesh structure.

The following sub-sections cover the key sub-problems involved in mesh mi-

gration:

4.6.1 Derive Lower Dimensional Partitionings

The user specifies only the element partitioning, and the required partitioning

for lower-dimensional entities needs to be derived from it. This is a set union prob-

lem: each partition will request lower-dimensional entities adjacent to the elements

108

it has been assigned. These requests are sent to the owners of the lower-dimensional

entities in the input mesh, who will resolve duplicate requests (from multiple adja-

cent elements on the same partition) and derive the set of unique copies to generate.

4.6.2 Create and Link New Copies

For a given dimension, the new copies need to be set up and related via remote

copy links. As above, the owner copy of an entity in the input mesh is responsible

for setting up these links. This is where PUMI’s task is more difficult due to it

maintaining a complete set of remote links (see Figure 4.2). PUMI uses several

stages of communication to first construct new copies, send their identities back to

the old owner, and then have the old owner transmit all copy identities to all copies

(all-to-all amongst copies is required to form a complete graph).

Algorithm 6 combines the full-mesh rebuild approach from Omega h with the

readability of PUMI-style communications to present an understandable implemen-

tation of new entity and link creation. A single conditional controls whether com-

plete or owner-based links are used. The actual differences between Algorithm 6 and

the actual C++ code are minor, for example PUMI only creates new copies that

do not exist in the old mesh (because it is being directly transformed into the new

mesh) and Omega h transmits almost no information in the messages m1 because

creating a copy simply means establishing a local numbering of new copies.

Omega h can use a subset of the Dist setup procedure to establish and number

all new copies as described in Section 4.6.3 and illustrated in Figure 4.4. The sources

are old owners and the destinations are new copies defined at first by rank only (step

3 in Figure 4.4). Their identities are transmitted back to the old owners, who then

selects a new owner amongst the new copies and transmits that single identity back

to all new copies (step 5 of Figure 4.4). Note that all three of these communications

are carried out by a single Dist.

4.6.3 Build New Topological Adjacencies

Permanent topological adjacencies need to be constructed between different

dimensions (see Figures 2.2 and 2.8). This brings about an interesting considera-

tion, which is that we usually create adjacency information in a bottom-up fashion

109

Algorithm 6: Establish new entity copies and links of one dimension

input : Old entities EO, where old owners know their new ranks
input : New entities EN with good remote links

1 foreach old owner o ∈ EO do
2 foreach new rank r that needs a copy of o do
3 Record a message m1 to r with data to build a copy of o;

4 exchange messages m1;
5 foreach message m1 received do
6 c← build a copy of an old owner o based on m1;
7 add c to EN (usually implicit);
8 send the identity of c back to o as a message m2;

9 exchange messages m2;
10 foreach message m2 received do
11 let Co be the set of new copies of o;
12 add the new copy c to Co;

13 foreach old owner o ∈ EO do
14 if not maintaining complete links then
15 select new owner q ∈ Co;
16 foreach c ∈ Co do
17 if maintaining complete links then
18 send Co to c in message m3;
19 else
20 send q to c in message m3;

21 exchange messages m3;
22 foreach message m3 received do
23 let Lc be the set of links maintained for new copy c;
24 Lc ← the links in message m3;

(vertices are created, then edges are defined from vertices, etc.), but partition in-

formation is specified first at elements, and then derived in a top-down fashion.

PUMI resolves this in a V-cycle fashion, meaning that it will first derive the new

partitionings for all lower dimensional entities in a top-down fashion and then input

all these partitionings to a bottom-up algorithm for actually building new entities

and setting up remote links.

Unlike PUMI (and APF in particular), whose programming interfaces are

based on the concept of an entity being an object, Omega h has no concept of

entity objects, only adjacency structures and associated data. This allows it to

loosen constraints and build adjacencies in a top-down fashion. Each dimension d

110

Figure 4.4: Omega h migration steps for vertices based on triangles

is handled as depicted for vertices in Figure 4.4. It first resolves the unique copies

of d-dimensional entities as described in Section 4.6.1 (steps 1 and 2 in Figure 4.4).

This results in an accurate prediction of the new identities (indices) for those enti-

ties, which can be fed back to their old owners (step 3), and forwarded again to form

the new adjacency structure (step 4). It also sets up the partitioning for dimension

(d − 1) by sending new owners links to new copies (step 5). This can all be done

with two Dist objects. One from new high-dimensional (e.g. triangle) copies to old

low-dimensional (e.g. vertex) owners, formed in step 1 of Figure 4.4. The second

from old low-dimensional owners to their new copies, formed in step 3 of Figure

4.4, and mentioned in Section 4.6.2. Repeating these steps in order of decreasing

dimension, Omega h can carry out a full migration.

4.7 Ghosting

As mentioned in Section 4.4, mesh partitioning can in some cases copy an

element onto multiple partitions. The term ghosting typically refers to a partitioning

algorithm that begins with an element-based partitioning (all elements exist on only

one partition) and gradually copies layers of elements from neighboring partitions.

Formally, a partition after ghosting one layer will have copies of all mesh elements

adjacent to all b-dimensional entities it had copies of before ghosting, where b is

called the bridge dimension. In our work we only consider vertex bridges (b = 0).

The interface to PUMI’s element-based migration procedure is “push-based”,

111

meaning that each partition specifies, for each of its current elements, a single desti-

nation partition to send that element to. By definition, such a specification cannot

express ghosting. Although PUMI has recently acquired a ghosting capability, it

was not developed as part of this thesis and treats ghost elements in a specialized

manner.

We focus here on Omega h’s implementation, which begins with a migration

procedure capable of handling any amount of element duplication. The input to

Omega h migration specifies a list of element copies in the input mesh (which may

be in other partitions) which define the element copies desired in the newly parti-

tioned mesh. This way, one may request all the elements currently in the partition

plus several elements in other partitions. Since the Omega h migration procedure

treats element duplication the same as duplication in lower dimensions, implement-

ing ghosting only requires specifying the right set of elements. We form a graph

from vertices to all adjacent elements (including those on other partitions) by hav-

ing every vertex copy send its adjacent element identifiers to the vertex owner. The

vertex owners send back the full list of adjacent elements, allowing partitions to

request all elements adjacent to its current vertices.

The only care that needs to be taken in the migration procedure is to preserve

the owner ranks of all entities when ghosting, because this is the only mechanism

for distinguishing ghosted elements in case one needs to remove them and return to

an element-based partitioning. This also gives a critical guarantee for parallelism:

after ghosting, an owned entity will have all upward adjacent entities available as

copies in shared memory. Any computations that need to consider entities adjacent

to a central entity can be programmed without any communication, assuming all

information is present in the data structure. As this is only true for owned entities,

one need only communicate the result of this computation from owned entities to

their other copies. This is an alternative to the dynamic migration system presented

in Section 4.8.1.

112

4.8 Parallel Cavity Operations

When doing operations that account for higher-dimensional entities around

a lower-dimensional entity, it is useful to have a mechanism for altering the mesh

partition such that the cavity being operated on (defined by the elements adjacent

to a lower-dimensional entity) is copied in its entirety onto at least one partition,

so that this partition can perform the computation [48]. In this way, the code that

operates within the cavity need not change when going from a serial (non-parallel)

code to a scalable parallel code. Section 4.7 above hints at how ghosting plays this

role in Omega h. The equivalent system for PUMI is described in Section 4.8.1.

When the cavity operations alter mesh topology, one additionally needs mech-

anisms for scheduling the application of these modifications such that no two threads

make conflicting modifications to the mesh, and threads are made aware of changes

by other threads as needed. The following two Sections describe how this is done in

PUMI and Omega h.

4.8.1 Dynamic Migration

There is a system in APF called CavityOp which is responsible for carrying

out dynamic mesh migration in order to apply a set of requested cavity operations.

These operations may modify topology (e.g. MeshAdapt operators) or they may

not (e.g. averaging element values to vertices). At all times, this system maintains

an element-based partitioning, meaning that elements are copied onto only one

partition. It begins by iterating over the mesh and performing any cavity operations

for which the cavity is entirely within the local partition (we say the cavity is

local). If the mesh is well partitioned, this should account for the majority of

desired operations. Afterwards, it will mark any cavities which are distributed over

multiple partitions and execute a single migration that aims to localize as many

non-local cavities as possible. These two steps are repeated until all cavities have

been operated on.

Cavities are required to be centered around a certain key entity, such as an

edge or vertex. To use this system, users supply certain low-level functions to be

executed. The first function accepts a central key entity and returns information

113

about whether or not that entity represents a cavity that still needs to be operated

on and whether the required cavity is local. If the cavity is not local, it indicates

which low-entities need their upward adjacent entities localized. The second function

is run after the first if the cavity is local, and applies the user-defined operation.

The dynamic migration system will try to localize a cavity onto the partition

that owns the central key entity. Repeated migration is necessary because cavities

may overlap, which creates a possibility of conflicts in which two overlapping cav-

ities cannot be simultaneously localized by this heuristic, because their owners are

different. We use a ranking of partitions to choose which competing partition has

its request satisfied. This ensures at least that progress is guaranteed to be made at

every iteration, because the highest ranked partition in a conflict will have its cavity

localized. In practice, the number of iterations required is small and not dependent

on the problem size, which makes this a scalable system.

There are a few drawbacks to the dynamic migration system, however. First,

it alters the partitioning of the mesh, often significantly. Because it is focused on

satisfying locality requests, it result in a poor partitioning (high surface areas) or

even remove all elements from a partition. This has required us in practice to keep

at least a few thousand elements per partition to avoid partitions being emptied

by dynamic migration. Second, if the order of application of the cavity operations

matters (as it does in the case of topological modifications), dynamic migration

makes no attempt to order them intelligently; they will be applied in the order that

key entities are encountered during mesh iteration and partition boundaries will

by definition be acted upon later than partition interiors. This makes the results

dependent on the partitioning of the mesh and the ordering of mesh entities within

a partition.

Ghosting as described in 4.7 can be used instead of dynamic migration for

operations that do not modify topology and where the order in which the cavities

are processed does not matter. The original partition is a subset of the ghosted

partition (so will never be empty), and can always be recovered afterwards. For

operations which modify topology and therefore are order-dependent when cavities

overlap, Sections 4.8.2 and 4.8.2.2 describe a system which depends on neither input

114

partitioning nor traversal order of the mesh.

4.8.2 Independent Sets

As mentioned in Section 4.8.1, it may be beneficial to have some control over

the ordering of cavity operations in the case when two or more cavities overlap. In

the case of topology modifications, it is often the case that performing a modification

will change topology such that overlapping modifications that used to be possible are

no longer applicable. In this sense, the ordering also determines which operations

will definitely be applied and which may be discarded in favor of others.

The following Sections 4.8.2.1 and 4.8.2.2 describe the algorithm used by

Omega h to select operations to apply. It aims to choose an independent set of

operations (i.e. their cavities do not overlap), such that they may be applied in

any order (including simultaneously) and produce the same result. This allows us

to execute each modification using fine-grained shared-memory parallelism. Such

an approach was suggested for GPU use by Pande et al. [92], although their imple-

mentation computed the independent set on the CPU. Recall also that independent

sets are used in MeshAdapt [48] during coarsening to prevent a chain of overlapping

edge collapses from removing too many mesh elements (see Section 3.3.2).

Similar to the dynamic migration system from Section 4.8.1, this algorithm

may be repeated several times as each iteration discards some operations that can

then be reconsidered. For example, when refining long edges as per Section 3.4.1, one

iteration will split a set of long edges such that no two of them are adjacent to the

same element. There usually remain long edges after these splits, so the algorithm

is repeated after measuring the edges of the modified mesh. In the specific case of

Omega h, an independent set of edge collapses would first be tried, but the concept

of iteration remains the same.

4.8.2.1 Selection of a Set

We have to solve a graph independent set problem, with a graph whose graph

nodes are possible modifications around certain key entities and the graph edges

represent an overlap between their cavities, in our case meaning the key entities are

adjacent to a common element. We have either vertices or edges as the key entities,

115

and either triangles or tetrahedra for elements. Fast algorithms can construct the

graph of keys that are adjacent to a common element, which we use as the basis for

our conflict graph. Note that the expanded cavities used in Section 3.6.1.2 require

more expensive algorithms to establish the conflict graph.

At the beginning of each pass, each key entity is annotated as either being a

candidate or not based on the conditions described throughout Section 3.4. If it is

a candidate, it is annotated with its output cavity quality (the minimum quality of

any element that would be created by the modification). We would like to resolve

conflicts in a way that prefers “better” mesh modifications, which in this case is

defined by output quality.

In 1986, Luby presented a highly parallelizable algorithm for finding maximal

independent sets of graphs [93]. A maximal independent set is simply one that

cannot be improved by adding more graph nodes to it, as opposed to a maximum

independent set which is NP-hard to find and has the most graph nodes of any

possible independent set. We develop a variant of Luby’s algorithm that is still

iterative, where at each iteration graph nodes which are local maxima of some

function are added to the independent set. Each vertex can, in parallel, determine

whether its function value is less than that of its neighbors, and alter its own state

(whether or not it is in the set) with confidence that no neighbor will make an

inconsistent decision. Luby’s original algorithm assigned random integers to each

graph node at each iteration.

Instead of local maxima of random numbers, we use local maxima of output

quality. Our modified Luby iteration is listed in full detail as Algorithm 7. Its

parallel for loop will have its iterations scheduled by the current runtime (CUDA,

OpenMP, etc.) onto the available hardware threads. In the extreme case, there

may be enough threads for all iterations to execute simultaneously. Recall that the

principles of shared memory programming described in Section 1.7.3 suggest careful

control over array accesses. All arrays involved in Algorithm 7 are either read-only

or write-only, and the latter (new state) has each entry written by one thread only,

by aligning its writes with the iterations of the parallel for loop.

The proof of the time complexity of Luby’s original algorithm relied on prob-

116

Algorithm 7: One iteration of independent set selection

input : Conflict graph G = (V,E) represented by n, xadj and adj
input : Current vertex state in old state (entries are either IN, NOT IN,

or UNKNOWN)
input : Quality measure for each graph vertex in quality
input : Unique graph node IDs in global
output: Updated vertex state in new state

1 for v ← 0 to n− 1 do // shared memory parallel for loop

2 if old state [v] 6=UNKNOWN then
3 return;
4 begin ← xadj [v];
5 end ← xadj [v + 1];

// vertices adjacent to chosen ones are rejected

6 for j ←begin to end −1 do
7 u←adj [j];
8 if old state [u] =IN then
9 new state [v]←NOT IN;

10 return;

// check if vertex is local maximum

11 v qual ←quality [v];
12 for j ←begin to end −1 do
13 u←adj [j];

// neighbor was rejected, ignore its presence

14 if old state [u] =NOT IN then continue to next j ;
15 u qual ←quality [u];

// neighbor has higher quality

16 if u qual >v qual then return;
// neighbor has equal quality, tiebreaker by global ID

17 if (u qual =v qual) and (global [u] >global [v]) then return;

// only local maxima reach this line

18 new state [v]←IN;

ability theory and changing the graph node numbers at each iteration [93]. In our

algorithm, the number of iterations is bounded by the length of the longest path

in the conflict graph whose nodes have monotonically increasing quality values. Al-

though it may be theoretically possible to construct pathological meshes where this

path length grows proportional to the number of elements, in practice such paths

are bound by a constant. Figure 4.5 shows a histogram of the number of iterations

required to find a maximal independent set during execution of a typical Omega h

117

Figure 4.5: Independent set convergence histogram

mesh adaptation. The algorithm terminates in fewer than ten iterations in all cases,

typically requiring about four iterations.

Finally, note that in line 20 of Algorithm 7 we compare graph node global

IDs in the case of equal quality values. Ties could otherwise cause the algorithm to

deadlock, and we prefer a deterministic tie-breaker. Thus in some cases the output is

affected by the global ID values, however this does not mean it is ordering-dependent

because we update global ID values in a way that is independent of the local ordering

of entities.

4.8.2.2 Ghosting for Set Selection

As mentioned in Section 4.7, a ghosted partition has the useful property that

every owned entity (most importantly vertices and edges) has local copies of all

its upward adjacent entities. All operations centered around a key entity which

read information from upward adjacent entities and write information to the key

entity can now be parallelized easily. Every MPI rank performs the local operation

around the key entities that it owns, and then the information written to the key

entities is communicated from owned copies to all other copies. For example, the

worst element quality resulting from splitting an edge can be evaluated locally by

the MPI rank owning that edge (because all surrounding element information is

available) and then communicated to the MPI ranks that have copies of that edge

with incomplete surrounding information.

118

Figure 4.6: Steps for distributed set selection: (left) non-ghosted parti-
tions (mid) add ghost layers, compute independent set (right)
trim away ghost elements not in owned independent cavities

During each adaptation pass in Omega h, we do what is possible without

a ghost layer first. Typically, this means measuring edge lengths and determining

whether any of them are too long or two short. Then a ghost layer is constructed and

possible operations are evaluated as described in Section 3.4 and an independent set

is chosen as described in Section 4.8.2. Once an independent set has been chosen, we

return to an element-based partitioning, but one which is altered such that cavities

in the independent set reside on one MPI rank. At that point, the code can proceed

to apply the independent cavity modifications simultaneously and produce a new

local mesh structure without further communication because entities on the partition

boundary are not modified. Figure 4.6 illustrates this process at a simple partition

boundary, in the case of selecting which mesh vertices ought to be collapsed.

We can create the global numberings of the new mesh based on the global

numberings of the old mesh. Entities of the same dimension are numbered together.

In an effort to preserve the spatial locality of the global numbering, we number newly

created entities based on the numbers of their old cavity counterparts. Specifically,

we designate an entity of dimension d in the old cavity to represent all entities of

dimension d created in the new cavity. If the cavity created r such entities, then we

assign the value r to the representative old entity. Other d-dimensional entities that

were destroyed by the modification are assigned the value 0. Entities which stayed

the same in the mesh are assigned the value 1. These values are put through a global

exclusive scan operation (see Section 4.2.3), resulting in offsets for the old entities.

These offsets can then be used to number the new entities. The exclusive scan is

performed in the order that entities appear in the old numbering. Combined with

119

the upward adjacency sorting mechanism described in Section 4.9.1, this results

in a global renumbering mechanism that is independent of partitioning and local

ordering.

This overall selection process based on ghosting allows Omega h mesh adapta-

tion method to be unaffected by partition boundaries, in the sense that the decision

process of what modifications to apply is not influenced by the partition. The output

is independent of local ordering so long as global IDs are independent of ordering

as described above. Most other parallel adaptation implementations that we know

of explicitly consider interior modifications first, followed by a repartitioning that

allows consideration and modification of the near-boundary mesh [6, 48], making

them at least partitioning-dependent.

4.9 Determinism

Section 4.8.2.2 described how Omega h takes steps to select operations and

number entities in a partitioning independent and ordering independent way. Omega h

is also deterministic, meaning that its output is the same if run twice with exactly

the same inputs, which may not be the case if it were affected by the relative order

in which distributed processes and shared threads reach a certain point in execu-

tion. That ordering is dependent on computer system state beyond the control of

the program, such as other programs currently running, operating system state, or

even the physical temperature of hardware cores altering their processing speed.

Each of these properties is important for software development purposes for

two reasons. First, when symptoms of a bug are encountered, it is important to

be able to re-run the program with additional instrumentation to determine the

root cause. Non-determinism can cause symptoms to appear with arbitrarily low

probability, requiring an arbitrarily large number of trials to reproduce the issue.

If a program is partitioning-independent, a highly parallel case that exhibits

symptoms can be run with less parallelism for debugging purposes. As a practi-

cal example, MeshAdapt at one point had a bug which would exhibit symptoms

with sufficient probability only using 4096 or more processes. Much of the time

required to diagnose the issue was spent waiting for sufficient computing resources.

120

Conversely, if a code is partitioning-independent then one can construct regression

tests which confirm that exactly the same results are produced with several differ-

ent partitionings. This can catch a wide array of issues in parallel implementation.

For example, if a bug causes 0.01% of the edge splits along a partition boundary

to be incorrectly rejected, it may go unnoticed indefinitely for partition-dependent

programs while it would be detected by a strict comparison of serial and parallel

results.

Omega h is developed and debugged using a small number of threads and

processes, but has regression tests requiring the exact same results at varying degrees

of parallelism. This tends to quickly catch parallel bugs, and it has been scaled

to thousands of GPU CUDA cores and tens of thousands of MPI ranks without

exhibiting any symptoms of bugs that depend on the degree of parallelism.

The following sections cover two more key operations that Omega h uses to

establish partitioning-independence and determinism.

4.9.1 Upward Adjacency Ordering

The mapping inversion algorithm in Section A.1 relies on atomic operations

to determine the local ordering of upward adjacent entities, and so by itself is non-

deterministic (it depends on the temporal order in which two threads attempt to

access a single value). We run a post-processing step which locally sorts upward ad-

jacent entities of a single entity by their global numbers. Recall from Section 4.8.2.2

that global numbers are independent of local ordering, so this operation likewise

makes upward adjacency information independent of local traversal order and tem-

poral thread access order. This is important because operations like floating-point

summation are non-associative (see Section 4.9.2) and so higher-level operations like

averaging values from elements to vertices produce slightly different values depend-

ing on the traversal order of upward adjacencies.

4.9.2 Order-Independent Sums

Computers typically implement floating-point numbers following the IEEE 754

standard [10]. This format represents real numbers as the nearest rational number

which can be represented as (m · 2p), where m and p are both integers within a

121

predefined range. Varying the exponent p can be interpreted as shifting the position

of the decimal point, hence the term floating-point numbers. The exponent p is

adjusted such that the digits of m capture the most significant digits of the real

number being approximated. When adding a series of floating-point numbers whose

exponents vary significantly, the resulting value can be different depending on the

order of summation. If the values are added in descending order of magnitude,

the intermediate values will all have exponents equal to or greater than the largest

exponent pmax, so they will truncate all values less than 2pmax . When the sum

follows the ascending order of magnitude, intermediate values start with the smallest

exponent and gradually increase their exponent as small values are added. This more

accurately accumulates digits of low significance, which may amount to a substantial

difference in the final sum.

Mesh adaptation is highly sensitive to floating point values, because as de-

scribed in Chapter 3 we choose to make modifications based on whether floating

point values such as the length of an edge in metric space are above and below an

exact threshold. Thus any perturbation could change the result of this comparison

in certain cases, and produce a different mesh topologically. For our purposes, it is

more important to have a consistent (ordering independent) set of operations rather

than the most accurate method possible. Simple floating point summation can be

performed very quickly relative to other mesh adaptation operations, so we prefer

faster options so long as they are consistent. For this reason, we do not carry out a

full global sort of the values into ascending order, as that would be too expensive.

That said, we would prefer that the accuracy of our method be comparable to that

of the non-deterministic algorithm.

We add global values using a fixed-point accumulator, meaning we select some

pfixed and represent all intermediate values as M · 2pfixed , where M is an integer. We

select pfixed = pmax, which ensures that our accuracy is at least as good as the worst-

case non-deterministic ordering, i.e. summation in descending order. The integer M

must have a large enough range to store the largest magnitude intermediate value

(modulo 2pfixed). The most common format for scientific computations is a 64-bit

floating point number in which 52 bits are devoted to the integer m. We devote 128

122

bits to our intermediate M values, meaning they can reliably add up to (276 > 1022)

input values. By comparison, the largest-scale problems being solved at the time of

this writing require summing at most 1012 floating-point values, meaning that 128

bits will remain sufficient until the maximum problem size of interest increases by

an additional factor of 1010. To implement this algorithm, we need to perform two

reductions: one to determine pmax, and one to add up all the values in discrete units

of 2pmax . Since not all computers have built-in instructions for 128-bit integers, we

sometimes have to implement intermediate values as a pair of 64-bit values emulating

a 128-bit value.

The resulting method has a runtime that is small compared to the other oper-

ations of mesh adaptation and produces the exact same (bitwise consistent) values

regardless of ordering. Combining this with other techniques such as upward adja-

cency sorting (see Section 4.9.1), we can carry out mesh adaptation such that all

floating point values are partition-independent and ordering-independent, which is a

prerequisite to having fully independent results for the overall adaptation algorithm.

4.10 Parallel Adaptation Performance

4.10.1 Generating Large Meshes

4.10.1.1 MeshAdapt Uniform Refinement

In order to test the capability of the hybrid MPI-thread system, PCU, and the

overall PUMI system supporting MeshAdapt, a 1.6 billion element mesh is created

using up to 16K cores of an IBM Blue Gene/Q.

Mesh generation begins with a 4-part, 400K element tetrahedral mesh and

proceeds so as to maintain a part density of 100K elements per part. Each up-scaling

repartitioning uses uniform mesh refinement (see Section 3.3.1), which multiplies

element counts and part counts by a factor of 8. At each step, we start with 2

processes per node and then create 8 threads per process, repartition the mesh

among those threads with the help of migration (see Section 4.6), and then apply

uniform refinement using those threads. The Blue Gene/Q has 16 cores per node,

which is why we choose 2 processes per node so that the total threads per node

equals the number of cores per node. At the end of each step, files are written out

123

from each of the threads, which will be read in by the initial processes of the next

step, where the next step allocates 8 times more nodes than the current step.

Figure 4.7: Times for hybrid MeshAdapt uniform refinement

Figure 4.7 shows the time consumed by each step of the PCU-supported Me-

shAdapt workflow as the number of parts is increased from 4 to 16K. The final step

converts 2K parts into 16K parts. In this workflow, both migration and mesh file

writing are being done using 8 threads per process. By comparison, file reading is

done by the initial processes without multi-threading, and the times are very com-

parable even though each process is writing 8 times more data, so thread parallelism

is achieved (the sizes of files are constant, so the times to read and write a single

file should be similar). Migration shows an increase in runtime as part count is

increased, which can be correlated with Figure 4.8, which shows how the number

of neighbors of a mesh partition are increasing at the same rate as the migration

runtime, both of which grow logarithmically with the number of elements and parti-

tions. Recall that the exchange algorithm described in Section 4.2.5 and migration

in general have runtimes proportional to the number of neighbors.

After generating this mesh, we study the overhead of threading with a simple

workflow. Beginning with P processes and T threads per process such that (P · T)

always equals 16K, we read the 16K-part, 1.6 billion element mesh. In terms of

124

Figure 4.8: Neighborhood increase during MeshAdapt uniform refine-
ment

hardware, we are using 16K cores of the Blue Gene/Q, which is 1024 nodes or one

full rack. Then every thread migrates 10K elements to one of its neighbors. The

resulting mesh is then written out. All operations are done in the hybrid mode, and

the number of threads per process T is varied. In all cases, the ideal outcome is

that runtime remains the same.

Figure 4.9: Hybrid file IO performance

Figure 4.9 shows the times for hybrid file IO. File IO is more prone to fluctu-

ation because the filesystem and associated networks are shared by all users of the

supercomputer. Despite this, we see file IO performance remains fairly constant as

125

we move from process-only to hybrid operation.

Figure 4.10: Hybrid migration performance

Figure 4.10 shows migration time over threads per process. Since the ideal

result is constant, we see a logarithmic overhead in this part of the workflow.

4.10.1.2 Omega h Parallel Size Field Scaling

In order to carry out a study similar to the one in Section 4.10.1.1 using

Omega h instead of MeshAdapt, we choose to use general mesh adaptation with a

scaled size field because Omega h does not use refinement templates, including the

uniform refinement template. We therefore parallelize the size field scaling workflow

from Section 3.7.2. Our initial geometry, as illustrated by Figure 4.11, is a 4 × 4

array of the solder ball geometry used in Section 3.7.2. The initial mesh contains

80K elements. At each step i, two programs are run. The first program uses P = 2i

processes to read a mesh of 2i−1 parts and use global Recursive Inertial Bisection

to repartition it into 2i parts [75]. The second program uses P = 2i processes to

compute the implied isotropic size field, scale it with the goal of obtaining (80·103·2i)
elements, and run mesh adaptation. At all times we use d2i/16e nodes such that

there are at most 16 processes in a node. Note that because we use size field scaling,

we can multiply by a factor of 2 at each step, whereas uniform refinement is limited

to a factor of exactly 8, which can be too coarse a mechanism for achieving a desired

element count.

Table 4.1 shows several performance metrics collected during this study. The

126

Figure 4.11: (left) The 4×4 solder ball mesh with 160K elements, (right)
One of 256 partitions of the mesh with 20M elements

correlation between actual and target element counts is consistent with the behavior

described in Section 3.7.2. Both repartitioning and adaptation times show good

scalability, growing roughly logarithmically with the number of elements and parts,

with the notable exception of the jump in repartitioning time to reach 8K parts.

Note that here we are exercising all components of adaptation described in Section

3.4, not just refinement. Even collapses are exercised, as the edge length loop in

Section 3.4.4 will carry out many collapses of short edges created during refinement

(e.g. splitting the long edge of an obtuse triangle creates a very short edge). These

components are all parallelized using the methods described in Sections 4.8.2, 4.8.2.1,

and 4.8.2.2, and all of them scale well in this study. Memory usage per part shows

a similar pattern of scalability. The speedup in the last column is the weak scaling

speedup, computed as the number of processes times the parallel efficiency, where

parallel efficiency is the slowdown in adaptation compared to ideal linear scaling.

4.10.2 Non-Uniform Size Field with Load Balancing

The test in Section 4.10.1.2 demonstrates the scalability of adapting to a uni-

form size field. However, many interesting load balancing and performance consid-

erations come into play when adapting to a non-uniform size field, and this section

studies that capability using Omega h. First, recall from Section 3.5.4 that in the

process of targeting a particular element count we derived a formula to predict how

many output elements an input element would generate during adaptivity, based

roughly on its size in metric space. We can use these values as weights in a load-

127

Table 4.1: Performance metrics of Omega h parallel scaling

target actual repart. adapt MB parts speedup
elements elements time time per

(×103) (×103) (sec.) (sec.) part
160 160 4.52 398 149 2 2
320 283 6.46 362 125 4 4
640 566 6.26 409 133 8 8

1280 1146 6.18 370 119 16 17
2560 2340 8.13 385 117 32 33
5120 4615 8.78 482 131 64 53

10240 9320 10.5 422 110 128 121
20480 18784 10.8 525 129 256 194
40960 37273 16.8 544 138 512 374
81920 74847 22.1 607 148 1024 671

163840 150338 34.1 660 157 2048 1235
327680 299090 46.8 677 159 4096 2408
655360 599510 165 711 160 8192 4586

1310720 1201815 146 876 190 16384 7444

balancing problem, such that partitions are created not only on how many elements

they have prior to adaptation, but also based on how many they will have at the

end of adaptation. If a partition is sized based on input elements and it ends up

refining much more than others, then during or after adaptation a load imbalance

and possibly a memory overflow (of the memory space where this partition is) could

occur. Conversely, if a partition is sized based only on output elements, and it is

due for heavy coarsening, then before adaptation we again have severe imbalance

and possibly a memory overflow. Thus, our load-balancing weight for an element

is actually the average of 1.0 and the predicted output element count of the given

element, where 1.0 represents how many elements the element is prior to adaptation.

In this way we establish a partition which is halfway between the optimal partitions

for input and output meshes.

The above load balancing algorithm is here referred to as predictive load bal-

ancing. After adaptation, we apply a post-processing load balance step based on

the exact number of output elements. Figure 4.12 illustrates this process on a ge-

ometry that is purposely elongated to induce a 1D partitioning when our Recursive

128

Figure 4.12: Left to right: size field, input partitions, predictive parti-
tions, adapted partitions, and post-balanced partitions for
a simple 4-part problem

Inertial Bisection method is used. The initial mesh is uniformly sized, and the first

part of Figure 4.12 shows the desired size field, which is three times larger at the

top and bottom than at the center. The following four parts of Figure 4.12 show

how the mesh is initially partitioned, how the predictive load balancing increases

the size of the top and bottom partitions to account for their coarsening (but only

halfway), and how after adaptation the other half of the distance is covered by post-

balancing to arrive at a well-balanced partitioning. In this example, the mesh is

perfectly balanced at the start and end of the workflow (to within ±1 element), and

the “halfway” partition used for adaptivity has an imbalance value of 1.32, where

imbalance is defined as the maximum partition size divided by the average partition

size.

We now take this same non-uniform size field in which the center of a solder

ball geometry aims to be 3X finer than the top and bottom, and conduct a scaling

study on an IBM Blue Gene/Q computer. We start with a uniformly-sized 90 million

element mesh, which is partitioned into versions with 2048, 4096, and 8192 parts.

A 195K element version of this mesh is shown in Figure 4.13. Then each version is

adapted to the non-uniform size field using the predictive method described above.

We use size field scaling to ensure the mesh has about 90 million elements after

129

Figure 4.13: A 195K element version of the 90M element mesh used for
the non-uniform size field strong scaling study

Table 4.2: Strong scaling with non-uniform size field

predictive adapted adapt
#parts imbalance imbalance time speedup

(max/avg) (max/avg) (seconds)
2048 1.658 1.797 1447 1.00
4096 1.722 1.874 828 1.74
8192 1.775 1.941 507 2.85

adaptation, and in all cases we do end up with 89.5 million elements (recall that

Omega h produces the same mesh regardless of partitioning). Since the size of the

problem is constant (i.e. we are “strong scaling”), we expect runtime to decrease

in proportion to the increase in parallelism. Table 4.2 shows the adaptation times,

speedups relative to the 2048 part case, and imbalances after “halfway” predictive

load balancing and after adaptation. Before predictive load balancing and after

post-balancing, there is essentially no imbalance (1.0± 10−4). Since the goal of our

predictive method is to find the middle ground between partitions optimal for the

input and output meshes, then we expect that if we are successful the imbalance

values after predictive balance and after adaptation will be similar, i.e. two values

which vary inversely to one another are minimized by making them equal. We do

see these two imbalances being close in Table 4.2.

130

Figure 4.14: Cutaway mesh views at steps 2, 8, and 14 of 16

Table 4.3: Runtime in minutes on different hardware

number of OpenMP threads
hardware GPU 1 2 4 8 16 32 64
Intel Xeon 2620 v4 203 115 76 55
Intel Knights Landing 1196 598 299 153 79 42 24
NVidia K80 35
NVidia GTX 980 Ti 15

4.10.3 Moving Objects on Shared Memory Devices

In this test case, we focus on the potential for mesh adaptation to support

simulations that have 3D solid bodies moving through a fluid. Mesh adaptation

can be used to adjust connectivity between iterations of mesh motion, preventing

tangling and inversion. Several other researchers have made good progress in ap-

plying general adaptation for these purposes [7,94–96]. In this test case, we created

a geometry consisting of two “rotors” whose ranges of motion overlap. This geom-

etry is meant to be similar to simulations of interest such as helicopter rotors and

manufacturing processes in which a fluid product is stirred.

The case is executed in a series of 16 time steps, where the following happens

at each step:

1. A velocity field is prescribed for each object as vectors at mesh nodes.

2. This velocity field is spread onto the surrounding fluid mesh nodes by solv-

131

ing Laplace’s equation using the objects and domain boundary as Dirichlet

conditions.

3. The mesh is moved according to the velocity field and stops right before any

element goes below 20% mean ratio quality. Using a lower threshold here

causes quality repair to take much longer or fail.

4. Mesh adaptation is applied to the deformed mesh to recover edge lengths and

ensure all elements are above 30% mean ratio quality. Our shape correction

algorithms can have difficulties bringing all elements above a higher thresh-

old than this. Mesh adaptation will rebuild the mesh about ten times when

applied.

5. Steps 2 to 4 are repeated for any remaining motion that would previously have

inverted elements. This repetition occurs ten to twenty times per time step.

We generated the initial mesh using Gmsh [97] with optimization by Netgen to

remove sliver elements. All subsequent motion and adaptation is handled by our

code. Figure 4.14 shows cutaway views of the mesh after time steps 2, 8, and 14 out

of 16. The number of elements increases from one million to two million from start

to finish.

Table 4.3 shows the runtime performance across different hardware. We first

run on an Intel Xeon processor typical of current servers and clusters. Then, we

run the same case on two pieces of hardware found on current supercomputers: the

Intel Knights Landing CPU and the NVidia Tesla K80 GPU. Finally, we also run

on a more consumer-market GPU, the NVidia GTX 980 Ti. Unlike CPUs, GPUs

do not offer clear controls for using a subset of threads, so it is typical to simply

show GPU speedup versus serial (in this case, 7X for the GTX 980 Ti) as opposed

to some kind of scaling on the GPU. The Xeon 2620 has 8 cores and the Knights

Landing CPU has 64 cores, and we see decent scaling until the number of OpenMP

threads equals the number of cores, on both CPUs.

CHAPTER 5

APPLICATION TO ADAPTIVE SIMULATIONS

5.1 Workflow Integration

In order to realize its fullest potential to benefit simulations, mesh adaptation

needs to be incorporated into a simulation workflow [98]. This can be implemented

in a loosely coupled manner in which which a simulation runs several (or even all)

steps with an unchanging mesh, then gives the solution and mesh files to an a poste-

riori error estimator, whose results are fed as files to a standalone mesh adaptation

program, that outputs a new mesh file back to the original simulation program to

run all over again. A loosely coupled implementation requires few modifications

(sometimes none) to the simulation program, however the overhead of file I/O and

switching programs introduces inefficiencies and complexities that may preclude

some of the more interesting uses of mesh adaptation. By contrast, in a closely

coupled system mesh adaptation and physics code are linked together into a single

program, with minimal overhead in transferring data between the various compo-

nents, and all components having comparable parallel efficiencies. This allows, for

example, adapting the mesh after every simulation time step in a simulation that is

massively parallel. In practice, all integrations of mesh adaptation into simulation

programs fall somewhere along this spectrum.

A goal of this thesis has been to bring maximal value to simulation codes by

integrating mesh adaptation into their workflows with the most appropriate degree

of coupling. This chapter covers multiple instances of such integrations and discusses

aspects unique to each of the simulation programs.

Portions of this chapter previously appeared as: D. A. Ibanez, E. S. Seol, C. W. Smith, and
M. S. Shephard, “Pumi: Parallel unstructured mesh infrastructure,” ACM Trans. Math. Softw.,
vol. 42, no. 3, pp. 17:1–17:28, May 2016.

Portions of this chapter submitted as: D. Ibanez and M. S. Shephard, “Modifiable array data
structures for mesh topology,” SIAM J. Scientific Comput., under review.

132

133

Figure 5.1: Floating object fluid-structure-interaction adaptivity

5.2 Proteus

In collaboration with the U.S. Army Corp of Engineers’ Coastal Hydraulics

Laboratory and their Proteus CFD code, we are using our flexible array structure

to enable coupled mesh adaptation with mesh motion in the face of fluid-structure

interaction with moving objects. Figure 5.1 shows a mesh of a buoyant object splash-

ing down inside a tank of water. Proteus carries out an initial nodal repositioning

and smoothing to track this motion, while adaptivity guided by error estimates en-

sure the discretization error and element quality remain controlled. The adaptation

metric may also be anisotropic, as shown in Figure 5.2.

5.3 Alexa

In collaboration with Sandia National Laboratories, an experimental shock

hydrodynamics application is being developed to explore the benefits of using a La-

grangian formulation with adaptivity and mesh motion. Figure 5.3 shows one of our

early test cases, a triple point problem [99]. The figure compares the solution with

and without adaptation included in the workflow. When adaptation is included, it

is attempted after every explicit time step. Given the small amount of nodal motion

per time step, relative to element sizes, each adaptivity call should be making very

134

Figure 5.2: Anisotropic mesh near fluid boundary

Figure 5.3: Triple point problem: (left) purely Lagrangian (right) La-
grangian with adaptation

minimal changes to the topology and solution, if any. The code can proceed quickly

without rebuilding any structures if no mesh modification is deemed necessary after

a given time step. For the triple point case, the adaptive workflow required 7722

time steps to reach the point (t = 4) in Figure 5.3. The non-adaptive workflow re-

quired 105,832 time steps (a 14X increase over the adaptive workflow) due to better

element quality. We are just starting to develop the proper size field controls for

this kind of application and its validation is ongoing work beyond the scope of this

thesis. We have also developed solution transfer methods for cavity operators that

satisfy certain properties, such as conservation of mass and momentum. Continued

135

ParaView

gmi

mds with partition model

Zoltan and ParMA

PUMI

Parasolid Physics and Model Parameters

gmi parasolid PHASTA

Solution Transfer

Simmetrix MeshSim
and MeshAdapt

Hessian-based Anisotropic
Correction Indication

actuator
parameters

physical
parameters

NS finite
elements

non-manifold
model construction

attributed non-
manifold topology

flow field

attributed
mesh

and fields

solution

geometric
interrogation and

mesh with fields

mesh with
fields

mesh with fields

Correction Indicator

mesh with fields mesh size field

Figure 5.4: Workflow of parallel PHASTA adaptive loop [72]

development of transfer methods is important for bringing adaptivity to a wider

range of applications.

5.4 PHASTA Active Flow Control

PHASTA [100, 101] is an effective implicit finite element based CFD code

for bridging a broad range of time and length scales in various flows including

turbulent ones (based on URANSS, DES, LES, DNS). It has been applied with

anisotropic adaptive algorithms [38, 102–104] along with advanced numerical mod-

els of flow physics [105–107]. Modeling large-scale aerodynamic problems and ac-

tive flow control’s effects on large-scale flow changes (for instance, re-attachment of

separated flow or virtual aerodynamic shaping of lifting surfaces) from micro-scale

input [108–110] requires an efficient parallel adaptive workflow.

A workflow supporting parallel adaptive PHASTA flow simulations is illus-

trated in Figure 5.4. Figure 5.5 shows the initial and adapted mesh near the leading

edge of TrapWing NASA test case [72, 111]. The Argonne Leadership Computing

Facility’s IBM BlueGene Q Mira system provides 4 hardware threads per core. Run-

ning this workflow in Mira system with 4 MPI processes per core, PHASTA achieved

strong scaling in mesh-based computations on up to 786,432 cores using 3,145,728

MPI processes with a 92 billion element mesh [21].

136

Figure 5.5: Cut views of the initial (left) and adapted (right) anisotropic
boundary layer meshes for NASA TrapWing [111]

Key to this scaling and the efficiency of the workflow is controlling the load

balance through PUMI interfaces to Zoltan and ParMA load balancing and parti-

tioning tools. The workflow invokes load balancing after parallel mesh generation,

during general unstructured mesh adaptation and before execution of PHASTA.

Dynamic partitioning using a combination of ParMA and Zoltan is executed after

parallel mesh generation to reach the partition sizes needed by mesh adaptation

and PHASTA. During mesh adaptation, ParMA predictive load balancing proce-

dures are used to ensure system memory is not exhausted and the resulting mesh is

balanced. Lastly, before PHASTA execution, ParMA multi-criteria diffusive proce-

dures are run to reduce both the mesh element and mesh vertex imbalance. During

each of these stages the association of PHASTA solution data with mesh entities is

maintained via field migration and local solution transfer procedures.

An in-memory coupling supporting a parallel adaptive PHASTA analysis loop

[98] using the components depicted in Figure 5.4 is enabled through a functional

interface to the FORTRAN 77/90 based flow solver. Through the use of FOR-

TRAN 2003 iso c bindings, this interface supports interoperability with C/C++

components and supports the control of solver execution, and the interrogation and

management of solver data structures.

5.5 Albany Adaptive Loop

Albany is a general-purpose finite element code built on the Trilinos framework

[112, 113], both of which are developed primarily at Sandia National Laboratories.

137

This code is highly extensible, allowing the creation of new finite element numerical

methods, which makes it an ideal platform for research in finite elements. The

design of Albany is parallel from the start, and also includes an abstract interface

for discretization storage, i.e. a mesh database, as well as various adaptivity codes.

As illustrated in Figure 5.8, PUMI was used to form a parallel adaptive loop

using Albany and MeshAdapt [98,114]. This is entirely an in-memory coupling: the

mesh database provides simple connectivity arrays and field data arrays to Albany

for analysis, which Albany returns after a specified number of analysis steps on an

unchanging mesh.

Once the data is back in PUMI structures, mesh adaptivity can be invoked on

them to produce a new mesh, and solution transfer of key solution variables allows

this new state to be sent back to Albany for further analysis, resulting in a self-

contained, in-memory adaptive finite element code. The rich encoding of the PUMI

mesh means that it is almost always a superset of the mesh information required for

an analysis code. As such, we were able to convert not only to connectivity structures

used internally by Albany, but also to another mesh data structure known as STK,

part of the Trilinos framework. This makes PUMI more interoperable with any finite

element codes involving the Trilinos framework. Figure 5.6 illustrates the initial and

adapted mesh in large deformation analysis with Albany adaptive loop.

We are also using the MDS array structure to manage very large meshes in a

compact and scalable way for a different Albany simulation studying the mechanical

properties of computer circuitry. Figure 5.7 shows how the initial meshes used for

this project represent multiple CAD model regions with graded resolution. The

initial mesh is further refined and partitioned, and runs have exceeded one billion

elements, utilizing up to 4 racks (65536 cores) of an IBM BlueGene/Q computer.

The memory use of our structure is quite small compared to the storage used for

the stiffness matrix and Krylov vectors in this problem.

138

Figure 5.6: Initial (left) and adapted mesh showing the Von Mises stress
field that guides adaptivity (right) [72]

Figure 5.7: Graded multi-material mesh to initiate large scale runs

139

ParaView

GMI or GeomSim

MDS with partition model
or MeshSim

Zoltan and ParMA

PUMI and/or Simmetrix

GDS2 Layout/Process Data Physics and Model Parameters

GeomSim Albany/Trilinos

Solution Transfer

MeshSim & MeshAdapt
or MeshSim Adapt

Projection-based Method

process
parameters

physical
parameters

solid mechanics
finite elements

GDS2 to Parasolid and
Parasolid to GeomSim

attributed non-
manifold topology

stre
sse

s

attributed
mesh

and fields

element order
integration rule

geometric
interrogation and

mesh with fields

mesh with
fields

mesh with fields mesh with fields mesh size field

Figure 5.8: Workflow of parallel Albany adaptive loop [72]

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We presented two open-source implementations of general, conformal, cavity-

based mesh adaptation with a focus on high-performance execution on heterogeneous

supercomputers. Two techniques for supporting mesh adaptation using array-based

data structures are presented, one of which uses rapidly modifiable arrays and the

second uses batched independent sets of modifications to static arrays. Highly scal-

able techniques for the parallelization of mesh adaptation are developed, including

the implementation of irregular sparse communications using MPI, as well as the

efficient interaction of MPI with shared-memory array parallelism. One of the im-

plementations of mesh adaptation presented is capable of carrying out general mesh

adaptation in the context of the restricted programming model required to execute

on GPUs, and effectively takes advantage of GPU parallelism. Some exploration of

mesh adaptation operators and their scheduling is carried out, and the trade-offs of

different approaches are demonstrated. Finally, the use of both implementations of

mesh adaptation was demonstrated by integrating them into the workflows of sev-

eral scientific simulation codes in use by the U.S. Army Corps of Engineers, Sandia

National Laboratories, Boeing, and others.

6.2 Future Work

6.2.1 Convergence of PUMI and Omega h

Section 2.5 presented the rationale for the development of Omega h as a sepa-

rate effort from PUMI, which opens the question of whether it is possible to combine

the two codes in the future. A combination in this case would be defined as a strict

union of their capabilities. In order to retain the ability to execute efficiently on

GPUs and other shared memory hardware, a parallel for loop programming model

such as that introduced in Section 1.7.3 would need to be used throughout. The

MDS structure design which allows single additions and removals (see Section 2.4.3)

140

141

would likely need to be replaced with a static design and independent set algo-

rithms as is done in Omega h. The resulting structure would need to be augmented

to accept more than just simplices, as described in Section 2.4.5. Finally, several

MeshAdapt algorithms not discussed in this thesis would need to be re-designed to

use parallel for loops.

6.2.2 Snapping to Boundary Geometry

This thesis has not presented any new developments in the area of snapping (al-

though MeshAdapt supports this in a limited capacity). This capability is required

for many applications of interest, including aerodynamics simulations of rigid air-

craft and mechanical simulations in which the shape of the solid objects does not

significantly change, and thus the implementation of snapping in at least one of the

codes presented here is considered important future work.

REFERENCES

[1] E. S. Seol, “FMDB: flexible distributed mesh database for parallel
automated adaptive analysis,” Ph.D. dissertation, Dept. Comput. Sci.,
Rensselaer Polytechnic Inst., Troy, NY, 2005.

[2] B. K. Karamete, R. Aubry, E. Mestreau, and S. Dey, “A novel double link
structure (DLS) with applications to computational engineering and design,”
in 54th AIAA Aerospace Sciences Meeting, Jan. 4-8, 2016, pp. 1–17.

[3] W. J. Schroeder and M. S. Shephard, “A combined octree/delaunay method
for fully automatic 3-d mesh generation,” Int. J. Numerical Methods in Eng.,
vol. 29, no. 1, pp. 37–55, Jan. 1990.

[4] E. S. Seol and M. S. Shephard, “Efficient distributed mesh data structure for
parallel automated adaptive analysis,” Eng. with Comput., vol. 22, no. 3-4,
pp. 197–213, Dec. 2006.

[5] R. Biswas and R. C. Strawn, “Tetrahedral and hexahedral mesh adaptation
for CFD problems,” Appl. Numerical Math., vol. 26, no. 1, pp. 135–151, Jan.
1998.

[6] A. Loseille, V. Menier, and F. Alauzet, “Parallel generation of large-size
adapted meshes,” in Proc. 24th Int. Meshing Roundtable, Oct. 11-14, 2014,
pp. 57–69.

[7] G. Compere, J.-F. Remacle, J. Jansson, and J. Hoffman, “A mesh
adaptation framework for dealing with large deforming meshes,” Int. J.
Numerical Methods in Eng., vol. 82, no. 7, pp. 843–867, May 2010.

[8] X. Li, M. S. Shephard, and M. W. Beall, “3D anisotropic mesh adaptation
by mesh modification,” Comput. Methods in Appl. Mech. and Eng., vol. 194,
no. 48-49, pp. 4915–4950, Nov. 2005.

[9] A. Liu and B. Joe, “Relationship between tetrahedron shape measures,” BIT
Numerical Math., vol. 34, no. 2, pp. 268–287, Jan. 1994.

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach. Waltham, MA: Elsevier, 2011.

[11] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, “Brook for GPUs: Stream computing on graphics hardware,”
in ACM SIGGRAPH 2004 Papers, 2004, pp. 777–786.

142

143

[12] W.-M. Hwu, C. Rodrigues, S. Ryoo, and J. Stratton, “Compute unified
device architecture application suitability,” Comput. in Sci. & Eng., vol. 11,
no. 3, pp. 16–26, May 2009.

[13] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The
tianhe-1a supercomputer: Its hardware and software,” J. Comput. Sci. and
Technol., vol. 26, no. 3, pp. 344–351, May 2011.

[14] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H. Rogers,
“Titan: Early experience with the Cray XK6 at Oak Ridge National
Laboratory,” in Proc. Cray User Group Conf., Apr. 29-30, 2012, pp. 1–21.

[15] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate
CPU vs. GPU performance without the answer,” in IEEE Int. Symp.
Performance Anal. of Syst. and Software (ISPASS), 2011, pp. 134–144.

[16] J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High-Performance
Programming. Waltham, MA: Elsevier, 2013.

[17] R. Hempel, “The MPI standard for message passing,” in Proc. Int. Conf.
High-Performance Comput. and Networking., May 18-20, 1994, pp. 247–252.

[18] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface standard,”
Parallel Comput., vol. 22, no. 6, pp. 789–828, Apr. 1996.

[19] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
R. Thakur, and J. L. Träff, “MPI on a million processors,” in Proc. 16th
Eur. PVM/MPI Users’ Group Meeting, Sep. 7-10, 2009, pp. 20–30.

[20] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using Advanced MPI:
Modern Features of the Message-Passing Interface. Cambridge, MA: MIT
Press, 2014.

[21] M. Rasquin, C. Smith, K. Chitale, E. S. Seol, B. A. Matthews, J. L. Martin,
O. Sahni, R. M. Loy, M. S. Shephard, and K. E. Jansen, “Scalable implicit
flow solver for realistic wing simulations with flow control,” Comput. in Sci.
& Eng., vol. 16, no. 6, pp. 13–21, Dec. 2014.

[22] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[23] H. C. Edwards and C. R. Trott, “Kokkos: Enabling performance portability
across manycore architectures,” in 2013 Extreme Scaling Workshop, Aug.
15-16, 2013, pp. 18–24.

[24] (2014). “PUMI GitHub repository.” [Online]. Available:
https://github.com/SCOREC/core (Date Last Accessed: Oct. 26, 2016)

https://github.com/SCOREC/core

144

[25] (2016). “Omega h GitHub repository.” [Online]. Available:
https://github.com/ibaned/omega h (Date Last Accessed: Oct. 26, 2016)

[26] D. Ibanez and M. S. Shephard, “Modifiable array data structures for mesh
topology,” SIAM J. Scientific Comput., under review.

[27] W. Celes, G. H. Paulino, and R. Espinha, “A compact adjacency-based
topological data structure for finite element mesh representation,” Int. J.
Numerical Methods in Eng., vol. 64, no. 11, pp. 1529–1556, Sep. 2005.

[28] C. Ollivier-Gooch. (2016). “GRUMMP: Generation and refinement of
unstructured, mixed-element meshes in parallel.” [Online]. Available:
http://tetra.mech.ubc.ca/GRUMMP (Date Last Accessed: Nov. 6, 2016)

[29] H. C. Edwards, A. B. Williams, G. D. Sjaardema, D. G. Baur, and W. K.
Cochran, “SIERRA toolkit computational mesh conceptual model,” Sandia
Nat. Labs, Albuquerque, NM, Tech. Rep. SAND2010-1192, 2010.

[30] T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst, “MOAB:
A mesh-oriented database,” Sandia Nat. Labs, Albuquerque, NM, Tech. Rep.
SAND2004-1592, 2004.

[31] V. Dyedov, N. Ray, D. Einstein, X. Jiao, and T. J. Tautges, “AHF:
array-based half-facet data structure for mixed-dimensional and
non-manifold meshes,” Eng. with Comput., vol. 31, no. 3, pp. 389–404, Jul.
2015.

[32] R. V. Garimella, “Mesh data structure selection for mesh generation and
FEA applications,” Int. J. Numerical Methods in Eng., vol. 55, no. 4, pp.
451–478, Jul. 2002.

[33] J.-F. Remacle and M. S. Shephard, “An algorithm oriented mesh database,”
Int. J. Numerical Methods in Eng., vol. 58, no. 2, pp. 349–374, Jul. 2003.

[34] M. W. Beall and M. S. Shephard, “A general topology-based mesh data
structure,” Int. J. Numerical Methods in Eng., vol. 40, no. 9, pp. 1573–1596,
May 1997.

[35] I. J. Sung, G. D. Liu, and W. M. W. Hwu, “DL: A data layout
transformation system for heterogeneous computing,” in Innovative Parallel
Comput., May 13-14, 2012, pp. 1–11.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA: MIT Press, 2001, ch. 17.4.

[37] D. E. Knuth, The Art of Computer Programming, 3rd ed. Boston, MA:
Addison-Wesley, 1997, vol. 1, ch. 2.2.3.

https://github.com/ibaned/omega_h
http://tetra.mech.ubc.ca/GRUMMP

145

[38] A. Ovcharenko, K. C. Chitale, O. Sahni, K. E. Jansen, and M. S. Shephard,
“Parallel adaptive boundary layer meshing for CFD analysis,” in Proc. 21st
Int. Meshing Roundtable, 2013, pp. 437–455.

[39] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Scientific Comput., vol. 20, no. 1,
pp. 359–392, Jul. 1998.

[40] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-complete
graph problems,” Theoretical Comput. Sci., vol. 1, no. 3, pp. 237–267, Feb.
1976.

[41] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proc. 24th Nat. ACM Conf., 1969, pp. 157–172.

[42] M. Zhou, O. Sahni, M. S. Shephard, C. D. Carothers, and K. E. Jansen,
“Adjacency-based data reordering algorithm for acceleration of finite element
computations,” Scientific Programming, vol. 18, no. 2, pp. 107–123, May
2010.

[43] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson, J. D. Teresco,
J. Faik, J. E. Flaherty, and L. G. Gervasio, “New challenges in dynamic load
balancing,” Appl. Numerical Math., vol. 52, no. 2, pp. 133–152, Feb. 2005.

[44] J. Petit, “Experiments on the minimum linear arrangement problem,” J.
Exp. Algorithmics, vol. 8, no. 1, pp. 1–29, Dec. 2003.

[45] J. Skilling, “Programming the hilbert curve,” in 23rd Int. Workshop on
Bayesian Inference and Maximum Entropy Methods in Sci. and Eng., vol.
707, no. 1, Aug. 3-8, 2004, pp. 381–387.

[46] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh : a
C++ library for parallel adaptive mesh refinement/coarsening simulations,”
Eng. with Comput., vol. 22, no. 3, pp. 237–254, Dec. 2006.

[47] B. M. Klingner and J. R. Shewchuk, “Aggressive tetrahedral mesh
improvement,” in Proc. 16th Int. Meshing Roundtable, Oct. 14-17, 2007, pp.
3–23.

[48] H. L. De Cougny and M. S. Shephard, “Parallel refinement and coarsening of
tetrahedral meshes,” Int. J. Numerical Methods in Eng., vol. 46, no. 7, pp.
1101–1125, Sep. 1999.

[49] X. Li, “Mesh modification procedures for general 3D non-manifold domains,”
Ph.D. dissertation, Dept. Mech. Eng., Rensselaer Polytechnic Inst., Troy,
NY, 2003.

146

[50] L. A. Freitag and C. Ollivier-Gooch, “Tetrahedral mesh improvement using
swapping and smoothing,” Int. J. Numerical Methods in Eng., vol. 40,
no. 21, pp. 3979–4002, Nov. 1997.

[51] P. Frey and F. Alauzet, “Anisotropic mesh adaptation for CFD
computations,” Comput. Methods in Appl. Mech. and Eng., vol. 194, no.
48-49, pp. 5068–5082, Nov. 2005.

[52] F. Alauzet, X. Li, E. S. Seol, and M. S. Shephard, “Parallel anisotropic 3D
mesh adaptation by mesh modification,” Eng. with Comput., vol. 21, no. 3,
pp. 247–258, May 2006.

[53] E. Schönhardt, “Über die zerlegung von dreieckspolyedern in tetraeder,”
Mathematische Annalen, vol. 98, no. 1, pp. 309–312, Mar. 1928.

[54] Q. Lu, “Developments of parallel curved meshing for high-order finite
element simulations,” M.S. thesis, Dept. Mech. Eng., Rensselaer Polytechnic
Inst., Troy, NY, 2011.

[55] R. V. Garimella, “Anisotropic tetrahedral mesh generation,” Ph.D.
dissertation, Dept. Mech. Eng., Rensselaer Polytechnic Inst., Troy, NY, 1999.

[56] T. Michal and J. Krakos, “Anisotropic mesh adaptation through edge
primitive operations,” in 50th AIAA Aerospace Sciences Meeting, Jan. 9-12,
2012, pp. 1–16.

[57] F. Dassi, L. Kamenski, and H. Si, “Tetrahedral mesh improvement using
moving mesh smoothing and lazy searching flips,” in Proc. 25th Int. Meshing
Roundtable, Sep. 16-29, 2016, pp. 1–13.

[58] A. Loseille and R. Löhner, “On 3d anisotropic local remeshing for surface,
volume and boundary layers,” in Proc. 18th Int. Meshing Roundtable, Oct.
25-28, 2009, pp. 611–630.

[59] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan, “Zoltan
data management services for parallel dynamic applications,” Comput. in
Sci. Eng., vol. 4, no. 2, pp. 90–96, Mar. 2002.

[60] C. W. Smith, M. Rasquin, D. Ibanez, K. E. Jansen, and M. S. Shephard,
“Application specific partition improvement,” SIAM J. Scientific Comput.,
under review.

[61] J.-F. Remacle, V. Bertrand, and C. Geuzaine, “A two-level multithreaded
delaunay kernel,” in Proc. 24th Int. Meshing Roundtable, Oct. 11-14, 2014,
pp. 6–17.

147

[62] C. Navarro, N. Hitschfeld-Kahler, and E. Scheihing, “A parallel gpu-based
algorithm for delaunay edge-flips,” in The 27th Eur. Workshop on
Computational Geometry, EuroCG, Mar. 28-30, 2011, pp. 1–4.

[63] D. Engwirda, “Conforming restricted delaunay mesh generation for piecewise
smooth complexes,” in Proc. 25th Int. Meshing Roundtable, Sep. 16-29, 2016,
pp. 1–13.

[64] L. N. Trefethen and D. Bau III, Numerical Linear Algebra. Philadelphia,
PA: SIAM, 1997.

[65] F. Alauzet and P. Frey, “Estimateur d’erreur géométrique et métriques
anisotropes pour l’adaptation de maillage. Partie I: aspects théoriques,”
INRIA, Palaiseau, France, Tech. Rep. RR-4759, 2003.

[66] C. Pain, A. Umpleby, C. de Oliveira, and A. Goddard, “Tetrahedral mesh
optimisation and adaptivity for steady-state and transient finite element
calculations,” Comput. Methods in Appl. Mech. and Eng., vol. 190, no. 29-30,
pp. 3771–3796, Apr. 2001.

[67] X. Jiao and M. T. Heath, “Common-refinement-based data transfer between
non-matching meshes in multiphysics simulations,” Int. J. Numerical
Methods in Eng., vol. 61, no. 14, pp. 2402–2427, Oct. 2004.

[68] P. Farrell and J. Maddison, “Conservative interpolation between volume
meshes by local galerkin projection,” Comput. Methods in Appl. Mech. and
Eng., vol. 200, no. 1-4, pp. 89–100, Jan. 2011.

[69] F. Alauzet, “A parallel matrix-free conservative solution interpolation on
unstructured tetrahedral meshes,” Comput. Methods in Appl. Mech. and
Eng., vol. 299, no. 1, pp. 116–142, Feb. 2016.

[70] D. Powell and T. Abel, “An exact general remeshing scheme applied to
physically conservative voxelization,” J. Computational Physics, vol. 297,
no. 1, pp. 340–356, Sep. 2015.

[71] M. A. Park, A. Loseille, J. A. Krakos, and T. Michal, “Comparing
anisotropic output-based grid adaptation methods by decomposition,” in
22nd AIAA Computational Fluid Dynamics Conf., Jun. 22-26, 2015, pp.
1–30.

[72] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, “PUMI: Parallel
unstructured mesh infrastructure,” ACM Trans. Math. Softw., vol. 42, no. 3,
pp. 17:1–17:28, May 2016.

[73] D. Ibanez, I. Dunn, and M. S. Shephard, “Hybrid MPI-thread parallelization
of adaptive mesh operations,” Parallel Comput., vol. 52, pp. 133–143, Jan.
2016.

148

[74] D. Ibanez and M. Shephard, “Mesh adaptation for moving objects on shared
memory hardware,” in Proc. 25th Int. Meshing Roundtable, Sep. 16-29, 2016,
pp. 1–5.

[75] H. Simon, “Partitioning of unstructured problems for parallel processing,”
Comput. Syst. in Eng., vol. 2, no. 2, pp. 135–148, Feb. 1991.

[76] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[77] F. Roberts and B. Tesman, Applied Combinatorics. Boca Raton, FL: CRC
Press, 2009, pp. 254–256.

[78] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library for
CUDA,” in GPU Computing Gems Jade Edition. Waltham, MA: Elsevier,
2011, ch. 26, pp. 359–371.

[79] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting algorithms
for manycore GPUs,” in IEEE Int. Symp. Parallel & Distributed Process.,
May 25-29, 2009, pp. 1–10.

[80] A. D. Robinson. (2014). “A parallel stable sort using C++11 for TBB, Cilk
Plus, and OpenMP.” [Online]. Available: https://software.intel.com/en-us/
articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp (Date
Last Accessed: Nov. 9, 2016)

[81] T. Hoefler, C. Siebert, and A. Lumsdaine, “Scalable communication
protocols for dynamic sparse data exchange,” ACM Sigplan Notices, vol. 45,
no. 5, pp. 159–168, May 2010.

[82] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur, and
J. L. Träff, “The scalable process topology interface of MPI 2.2,”
Concurrency and Computation: Practice and Experience, vol. 23, no. 4, pp.
293–310, Aug. 2011.

[83] T. Hoefler and T. Schneider, “Optimization principles for collective
neighborhood communications,” in Proc. Int. Conf. High Performance
Comput., Networking, Storage and Anal. (SC). IEEE, Nov. 10-16, 2012, pp.
1–10.

[84] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and
J. J. Dongarra, “Performance analysis of MPI collective operations,” Cluster
Comput., vol. 10, no. 2, pp. 127–143, Mar. 2007.

[85] R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in MPICH,” in Proc. 10th Eur. PVM/MPI Users’ Group Meeting,
Sep. 29-30, 2003, pp. 257–267.

https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
https://software.intel.com/en-us/articles/a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp

149

[86] T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and performance
analysis of non-blocking collective operations for MPI,” in Proc. 2007
ACM/IEEE Conf. Supercomputing, Nov. 10-16, 2007, pp. 1–10.

[87] T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, and A. Lumsdaine,
“A case for standard non-blocking collective operations,” in Proc. 14th Eur.
PVM/MPI User’s Group Meeting, Sep. 30, 2007, pp. 125–134.

[88] A. Ovcharenko, D. Ibanez, F. Delalondre, O. Sahni, K. E. Jansen, C. D.
Carothers, and M. S. Shephard, “Neighborhood communication paradigm to
increase scalability in large-scale dynamic scientific applications,” Parallel
Comput., vol. 38, no. 3, pp. 140–156, Mar. 2012.

[89] M. Zhou, “Petascale adaptive computational fluid dynamics,” Ph.D.
dissertation, Dept. Mech. Eng., Rensselaer Polytechnic Inst., Troy, NY, 2009.

[90] D. J. Mavriplis, “Parallel performance investigations of an unstructured
mesh navier-stokes solver,” Int. J. High Performance Comput. Appl., vol. 16,
no. 4, pp. 395–407, Nov. 2002.

[91] O. S. Lawlor, S. Chakravorty, T. L. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, and L. V. Kalé, “ParFUM: a parallel framework for unstructured
meshes for scalable dynamic physics applications,” Eng. with Comput.,
vol. 22, no. 3, pp. 215–235, Sep. 2006.

[92] S. Pande, S. Biswas, and A. De, “GPU-based parallel algorithms for
delaunay mesh refinement,” in Proc. 24th Int. Meshing Roundtable, Oct.
11-14, 2014, pp. 1–5.

[93] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM J. Comput., vol. 15, no. 4, pp. 1036–1053, Nov. 1986.

[94] M. Wicke, D. Ritchie, B. M. Klingner, S. Burke, J. R. Shewchuk, and J. F.
O’Brien, “Dynamic local remeshing for elastoplastic simulation,” in ACM
SIGGRAPH, Jul. 26-30, 2010, pp. 1–11.

[95] P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O’Brien, “Simulating
liquids and solid-liquid interactions with lagrangian meshes,” ACM Trans.
Graph., vol. 32, no. 2, pp. 17:1–17:15, Apr. 2013.

[96] J. Chen, S. Li, J. Zheng, and Y. Zheng, “Parallel local remeshing for moving
body applications,” in Proc. 24th Int. Meshing Roundtable, Oct. 11-14, 2014,
pp. 1–6.

[97] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities,” Int. J. Numerical Methods
in Eng., vol. 79, no. 11, pp. 1309–1331, May 2009.

150

[98] C. W. Smith, K. Chitale, D. A. Ibanez, B. Orecchio, E. S. Seol, O. Sahni,
K. E. Jansen, and M. S. Shephard, “Building effective parallel unstructured
adaptive simulations by in-memory integration of existing software
components,” in XSEDE16, Jul. 17-21, 2016, pp. 1–6.

[99] S. D. Pino, “Metric-based mesh adaptation for 2D lagrangian compressible
flows,” J. Computational Physics, vol. 230, no. 5, pp. 1793–1821, Mar. 2011.

[100] K. E. Jansen, C. H. Whiting, and G. M. Hulbert, “A generalized-α method
for integrating the filtered Navier-Stokes equations with a stabilized finite
element method,” Comput. Methods in Appl. Mech. and Eng., vol. 190, no.
3-4, pp. 305–319, Oct. 2000.

[101] C. H. Whiting, K. E. Jansen, and S. Dey, “Hierarchical basis for stabilized
finite element methods for compressible flows,” Comput. Methods in Appl.
Mech. and Eng., vol. 192, no. 47-48, pp. 5167–5185, Nov. 2003.

[102] O. Sahni, J. Müller, K. E. Jansen, M. S. Shephard, and C. A. Taylor,
“Efficient anisotropic adaptive discretization of cardiovascular system,”
Comput. Methods in Appl. Mech. and Eng., vol. 195, no. 41-43, pp.
5634–5655, Aug. 2006.

[103] O. Sahni, K. E. Jansen, M. S. Shephard, C. A. Taylor, and M. W. Beall,
“Adaptive boundary layer meshing for viscous flow simulations,” Eng. with
Comput., vol. 24, no. 3, pp. 267–285, Sep. 2008.

[104] O. Sahni, K. E. Jansen, C. A. Taylor, and M. S. Shephard, “Automated
adaptive cardiovascular flow simulations,” Eng. with Comput., vol. 25, no. 1,
pp. 25–36, Jan. 2009.

[105] T. J. Hughes, L. Mazzei, and K. E. Jansen, “Large-eddy simulation and the
variational multiscale method,” Comput. and Visualization in Sci., vol. 3,
no. 1-2, pp. 47–59, May 2000.

[106] A. E. Tejada-Mart́ınez and K. E. Jansen, “On the interaction between
dynamic model dissipation and numerical dissipation due to streamline
upwind/Petrov-Galerkin stabilization,” Comput. Methods in Appl. Mech.
and Eng., vol. 194, no. 9-11, pp. 1225–1248, Mar. 2005.

[107] A. E. Tejada-Mart́ınez and K. E. Jansen, “A parameter-free dynamic
subgrid-scale model for large-eddy simulation,” Comput. Methods in Appl.
Mech. and Eng., vol. 195, no. 23-24, pp. 2919–2938, Apr. 2006.

[108] M. Amitay, B. L. Smith, and A. Glezer, “Aerodynamic flow control using
synthetic jet technology,” in 36th AIAA Aerospace Sciences Meeting and
Exhibit, Jan. 12-15, 1998, pp. 1–19.

151

[109] A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. of Fluid Mech.,
vol. 34, pp. 503–529, Jan. 2002.

[110] O. Sahni, J. Wood, K. E. Jansen, and M. Amitay, “Three-dimensional
interactions between a finite-span synthetic jet and a crossflow,” J. Fluid
Mech., vol. 671, no. 1, pp. 254–287, Apr. 2011.

[111] K. C. Chitale, O. Sahni, M. S. Shephard, S. Tendulkar, and K. E. Jansen,
“Anisotropic adaptation for transonic flows with turbulent boundary layers,”
AIAA J., vol. 53, no. 2, pp. 367–378, Feb. 2014.

[112] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.
Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G.
Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams,
and K. S. Stanley, “An overview of the Trilinos project,” ACM Trans. Math.
Softw., vol. 31, no. 3, pp. 397–423, Sep. 2005.

[113] (2016). “The Trilinos Project: Sandia National Laboratories.” [Online].
Available: https://trilinos.org/ (Date Last Accessed: Oct. 26, 2016)

[114] (2016). “MeshAdapt: Parallel unstructured mesh adaptation library.”
[Online]. Available: http://scorec.rpi.edu/meshadapt/ (Date Last Accessed:
Oct. 26, 2016)

https://trilinos.org/
http://scorec.rpi.edu/meshadapt/

APPENDIX A

Key Algorithms

A.1 Mapping Inversion

The shared-memory parallel map inversion algorithm used by Omega h is not

only a key building block but also an example of the limitations of typical shared-

memory programming principles and how atomic operations may be unavoidable

under certain constraints. In our case, a map means an array, a2b, describing

a mapping from its accessible indices to another index space. This describes a

bipartite graph (from set A to set B) in which all graph nodes in set A have degree

1, while nodes in set B may have degrees greater than one.

Nodes in the second set are also assumed to have degrees which are bound by

a small constant. These degrees correspond to upward adjacency degrees in mesh

applications, the upward adjacency with the highest average degree is 36 triangles

adjacent to a vertex in 3D, and the maximum degree in that graph may be over twice

as much, so 100 is a reasonable upper bound. Although certain meshes for complex

simulations have exhibited upward degrees of 300 or more, those cases also exhibit

serious problems with adaptation and simulation accuracy near the high-degree

entity. Although this algorithm can handle nodes in set B having zero degree, this

would only occur in mesh applications when there are “dangling” low-dimensional

entities without upward adjacent higher-dimensional entities.

The goal for this algorithm is to construct the graph from the set B to the set

A, f−1 : B → P(A), where P(A) is the power set of A.

Listing A.1 shows the actual C++ code used for map inversion. We are given

the array a2b mapping each index in set a ∈ A to an index in set f(a) ∈ B. We

also given the size |B| of set B as nb. We first construct an array of degrees for each

index in B, initialized to a degree of zero at every index (line 3). We then iterate

over each (a ∈ A) and atomically increment the degree of b = f(a) (lines 4 and 5).

We then use an exclusive scan (see Section 4.2.3) to convert the array of degrees

into an array of offsets. We call this offsets array b2ba, where ba refers to the edges

152

153

Listing A.1: Invert map by atomics

1 Graph invert_map_by_atomics(LOs a2b, LO nb) {

2 auto na = a2b.size();

3 Write<LO> degrees(nb, 0);

4 auto count = LAMBDA(LO a) {

5 atomic_increment(°rees[a2b[a]]);

6 };

7 parallel_for(na, count);

8 auto b2ba = offset_scan(Read<LO>(degrees));

9 auto nba = b2ba.get(nb);

10 Write<LO> write_ba2a(nba);

11 auto positions = Write<LO>(nb, 0);

12 auto fill = LAMBDA(LO a) {

13 auto b = a2b[a];

14 auto first = b2ba[b];

15 auto j = atomic_fetch_add<LO>(&positions[a2b[a]], 1);

16 write_ba2a[first + j] = a;

17 };

18 parallel_for(na, fill);

19 auto ba2a = LOs(write_ba2a);

20 return Graph(b2ba, ba2a);

21 }

(a, b) of the bipartite graph sorted by their destination node b (line 6). The total

number graph edges nba is given by the last offset (line 7). We then construct an

array with one entry for each edge (edges are sorted by destination), which will store

the source node index of each edge (line 8). We again iterate over a ∈ A, this time

trying to fill an entry in the edge to source array. Since the order of edges with the

same destination is unspecified, we use atomic operations again to determine where

edges are placed. An array of |B| position indices is created to keep track of how

many edges have been processed for each destination node (line 9). Each iteration

of the final loop will atomically read the current position and increment it by one,

thereby obtaining an allocated slot (line 13). It then writes the source vertex a into

this slot (line 14). The resulting graph from set B to set A is represented by the two

arrays b2ba (destinations to edges) and ba2a (edges to sources), which are exactly

the inverse of the input mapping a2b (sources to destinations).

Using T threads, this algorithm can be expected to run in time O(r(|A|/T) +

154

log(|B|)), where r is the maximum degree of any node in B and the log(|B|) term is

introduced by the scan operation. As such, it is specifically designed for low-degree

graphs, such as mesh adjacencies. There is an alternative, which is to explicitly

sort the edges by destination node using a general sorting function. As described in

Section 4.2.4, this could take up to O((|A|/T) log(|A|)) time to run. Explicit sorting

is preferable for higher degrees, but for Omega h usage the two are comparable in

runtime and we use the variant based on atomic operations.

APPENDIX B

Topological Ratios

B.1 Maximum Upward Adjacencies

B.1.1 From Vertices

We begin by proving an upper bound on tetrahedra sharing a vertex, which

must be based on some assumed geometric restriction, because topology alone does

not dictate any such bound. We will begin with the most straightforward restriction,

that of solid angles, and correlate it to the mean ratio quality measure defined by

Equation 1.6 from Section 1.4.7.

Each tetrahedron adjacent to a vertex forms a solid angle at the corner where

the adjacency occurs. For a given vertex, the sum of these solid angles for all

adjacent tetrahedra cannot exceed 4π, the solid angle of a sphere. Conversely, if

there are n tetrahedra adjacent to one vertex, then one or more of the tetrahedra

will satisfy Inequality B.1, where Ω is the solid angle of the relevant corner.

We assume that the way to maximize the mean ratio of a tetrahedron that

has one solid angle equal to Ω is to have its other three corners form an equilateral

triangle.

Since the mean ratio is scale-invariant, we can consider this without loss of

generality for a tetrahedron (o, a, b, c) where o is the center of a unit sphere and

(a, b, c) are on the surface of that sphere, and form an equilateral triangle as shown

in Figure B.1. Let θ be the angle ∠oab = ∠obc = ∠oca, Intuitively, as θ increases

from zero to 2
3
π, the solid angle Ω at o monotonically increases from zero to 2π.

The exact relation between Ω and θ is given by Equation B.2 using an intermediate

φ (the dihedral angle between any pair of triangular faces meeting at o).

Ω ≤ 4π

n
(B.1)

155

156

Figure B.1: Maximizing quality versus solid angle

φ = arccos

(
cos θ − cos2 θ

sin2 θ

)
Ω = 3φ− π = 3 arccos

(
cos θ − cos2 θ

sin2 θ

)
− π

(B.2)

Let l = 2 sin
(
θ
2

)
be the length of any cord (a, b), (b, c), or (c, a). We can

use properties of equilateral triangles and isosceles tetrahedra to derive the mean

ratio quality of this tetrahedron in terms of l as shown in Equation B.3. The

ranges for valid tetrahedra are θ ∈ [0, 2
3
π] and l ∈ [0,

√
3/2], in which quality varies

monotonically with solid angle.

157

Figure B.2: Maximum vertex-tetrahedron degree given a minimum tetra-
hedron mean ratio

h =
√

3
2
l

r = 1
3
h = 1

2
√

3
l

R = 2r = 1√
3
l

A =
√

3
4
l2

H =
√

1−R2 =
√

1− 1
3
l2

V = 1
3
AH = 1

4
√

3
l2
√

1− 1
3
l2

lMS = 1
6
(3l2 + 3) = 1

2
(l2 + 1)

η3 =
V 2

γ2l3MS

=
23

42 · 3
l4(1− 1

3
l2)

γ2(l2 + 1)3

(B.3)

In conclusion, if we ensure that all tetrahedra in a mesh have quality ≥ Qmin,

then we also guarantee that no vertex in the mesh can have more than some nmax

tetrahedra adjacent. We can use the extreme case in Figure B.1 to plot this relation,

as shown in Figure B.2

A similar yet much simpler analysis, applied to triangles from the origin to

the edge of a unit circle, results in the plot given by Figure B.3.

158

Figure B.3: Maximum vertex-triangle degree given a minimum triangle
mean ratio

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENT
	ABSTRACT
	INTRODUCTION AND BACKGROUND
	Introduction
	Terminology
	Notation
	Mesh Definitions
	Topological Complex
	Adjacency Relation
	Mesh
	Finite Element Mesh
	Topological Template

	Adaptation
	Metric Field
	Element Quality

	Reference Computer
	Heterogeneous Node Architecture
	Multi-core CPUs
	GPU Coprocessors
	The Intel Xeon Phi

	Programming Environments
	Operating System
	MPI
	OpenMP
	CUDA
	Kokkos

	Overview of Software
	PUMI
	PCU
	APF
	MDS
	MeshAdapt

	Omega_h

	Contributions

	ARRAY-BASED MESH REPRESENTATIONS
	Goals
	Related Work
	Choices in Representation
	Choosing Entities to Store
	Choosing Adjacencies to Store

	MDS Data Structure
	Adjacencies stored in MDS
	Object-Oriented Storage
	Structure of Arrays
	Lists in Arrays
	Dynamically Modifiable Mesh Structure

	Omega_h Data Structure
	Static Mesh
	Adjacency Arrays
	Alignment Information
	Adjacency Cache

	Data Structure Performance
	Adjacency Query Performance

	Reordering

	CAVITY-BASED CONFORMAL MESH ADAPTATION
	In Context
	Conformal and General
	Cavity-Based

	Related Work
	MeshAdapt Methods
	Template Refinement
	Coarsening
	Shape Correction
	Edge Swap

	Overall Steps

	Omega_h Methods
	Refinement
	Coarsening
	Shape Correction
	Overall Steps
	Approaching Displacements and Metrics

	Size Field Algorithms
	Metric Interpolation and Storage
	Implied Metric Field
	Implied Isotropic Size
	Targeting an Element Count

	Solution Transfer in a Cavity
	Conserving Integral Quantities
	Element-Centered Mass-Like Quantities
	Momentum-Conserving Nodal Velocities

	Serial Adaptation Performance
	Analytic Anisotropy Test
	Size Field Scaling Test

	SCALABLE PARALLEL MESH ADAPTATION
	Defining Scalability
	Parallel Operations
	Map
	Reduce
	Scan
	Sort
	Exchange

	PCU: Scalable Inter-Thread Communication
	Messaging Primitives in PCU
	Simple Collectives in PCU
	Non-blocking Consensus in PCU

	Remote Copies and Owners
	Entity-Level Communication
	Migration
	Derive Lower Dimensional Partitionings
	Create and Link New Copies
	Build New Topological Adjacencies

	Ghosting
	Parallel Cavity Operations
	Dynamic Migration
	Independent Sets
	Selection of a Set
	Ghosting for Set Selection

	Determinism
	Upward Adjacency Ordering
	Order-Independent Sums

	Parallel Adaptation Performance
	Generating Large Meshes
	MeshAdapt Uniform Refinement
	Omega_h Parallel Size Field Scaling

	Non-Uniform Size Field with Load Balancing
	Moving Objects on Shared Memory Devices

	APPLICATION TO ADAPTIVE SIMULATIONS
	Workflow Integration
	Proteus
	Alexa
	PHASTA Active Flow Control
	Albany Adaptive Loop

	CONCLUSIONS AND FUTURE WORK
	Conclusions
	Future Work
	Convergence of PUMI and Omega_h
	Snapping to Boundary Geometry

	REFERENCES
	Key Algorithms
	Mapping Inversion

	Topological Ratios
	Maximum Upward Adjacencies
	From Vertices

