PUMI: Parallel Unstructured Mesh Infrastructure

DANIEL A. IBANEZ, E. SEEGYOUNG SEOL, CAMERON W. SMITH,
and MARK S. SHEPHARD, Rensselaer Polytechnic Institute

The Parallel Unstructured Mesh Infrastructure (PUMI) is designed to support the representation of, and
operations on, unstructured meshes as needed for the execution of mesh-based simulations on massively
parallel computers. In PUMI, the mesh representation is complete in the sense of being able to provide any
adjacency of mesh entities of multiple topologies in O(1) time, and fully distributed to support relationships
of mesh entities across multiple memory spaces in a manner consistent with supporting massively parallel
simulation workflows. PUMI’s mesh maintains links to the high-level model definition in terms of a model
topology as produced by CAD systems, and is specifically designed to efficiently support evolving meshes as
required for mesh generation and adaptation. To support the needs of parallel unstructured mesh simula-
tions, PUMI also supports a specific set of services such as the migration of mesh entities between parts
while maintaining the mesh adjacencies, maintaining read-only mesh entity copies from neighboring parts
(ghosting), repartitioning parts as the mesh evolves, and dynamic mesh load balancing.

Here we present the overall design, software structures, example programs, and performance results.
The effectiveness of PUMI is demonstrated by its applications to massively parallel adaptive simulation
workflows.

CCS Concepts: ® Computing methodologies — Massively parallel and high-performance sim-
ulations; ® Theory of computation — Massively parallel algorithms; ® Software and its
engineering — Massively parallel systems

Additional Key Words and Phrases: Unstructured mesh, partial differential equation simulation, hybrid
MPI/thread, massively parallel

ACM Reference Format:

Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S. Shephard. 2016. PUMI: Parallel
unstructured mesh infrastructure. ACM Trans. Math. Softw. 42, 3, Article 17 (May 2016), 28 pages.

DOL: http://dx.doi.org/10.1145/2814935

1. INTRODUCTION

Many areas of application in science and engineering benefit greatly by the application
of reliable and accurate mesh-based simulations solving appropriate sets of partial
differential equations (PDEs) over general domains. Unstructured mesh finite vol-
ume and finite element methods have the advantage of being able to solve problems
over geometrically complex physical domains using meshes that can be automatically
generated and anisotropically adapted, and to effectively provide the level of solu-
tion accuracy desired with two or more orders of magnitude fewer unknowns than

This work is supported by the Department of Energy (DOE) Office of Science’s Scientific Discovery through
Advanced Computing (SciDAC) Institute as part of the Frameworks, Algorithms, and Scalable Technologies
for Mathematics (FASTMath) program under grant DE-SC0006617.

Authors’ addresses: D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, Scientific Computation
Research Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.; emails: {ibaned,
seols, smithcl1, shephard}@rpi.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 0098-3500/2016/05-ART17 $15.00

DOI: http://dx.doi.org/10.1145/2814935

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

http://dx.doi.org/10.1145/2814935
http://dx.doi.org/10.1145/2814935

17:2 D. A. Ibanez et al.

uniform mesh techniques. However, the gains in efficiency (many fewer unknowns)
and generality (fully automatic mesh generation and control) come at the cost of more
complex data structures and algorithms, particularly when considering meshes with
billions of entities solved on massively parallel computers. Although the calculation
time is dominated by solving the discretized equation (the classic analysis code), the
total simulation time and expense are dominated by the creation of the spatial dis-
cretization (meshes) and linkage of mesh-based simulation data between coupled anal-
yses. For example, a recent study of the needs of nuclear reactor simulations indicated
that only 4% of the time was spent in running the simulation, while the execution of
geometry and meshing issues took 73% of the time [Hansen and Owen 2008].

The bottlenecks caused by the generation and control of meshes as well as the in-
teractions between meshes and simulation data only increase when efforts to ensure
the simulation reliability, through the application of adaptive control and uncertainty
quantification, are applied. Two requirements must be met to eliminate these bot-
tlenecks. The first is full automation of all steps in going from the original problem
definition to the final results since any step that is not automated is doomed to be a
bottleneck due to the combination of high latency, slow data transfer rate, and serial
processing that is inevitable when a human is in the loop. The second is that all steps be
executed in parallel on the same massively parallel computer that the finite element or
finite volume mesh is solved on to avoid the bottlenecks of data transfer through files.

There exist several libraries capable of representing unstructured finite element
meshes. STK is a parallel array-based mesh library developed at Sandia National Lab-
oratories with some modifiability but as yet no general adaptive capability [Edwards
et al. 2010]. MOAB is another parallel array-based mesh library developed at Argonne
National Laboratory that uses a comparatively small memory with limited modifiabil-
ity [Tautges et al. 2004a]. Work by Celes, Paulino, and Espinha includes a modifiable,
adaptive structure in which elements point to their vertices and to adjacent elements,
while vertices point to one adjacent element [Celes et al. 2005a]. In collaboration with
MOAB, a more modifiable structure called AHF was developed, which can be thought
of as using the scheme of Celes et al. with additional orientation information between
adjacent entities [Dyedov et al. 2014]. Ollivier-Gooch et al. have implemented the se-
rial simplex mesh library GRUMMP, which is capable of adaptivity [GRUMMP Web
2015]. Finally, a predecessor to the libraries presented here is FMDB, a parallel C++
object-based mesh library well suited to general adaptivity [Seol and Shephard 2006a].

Parallel automated adaptive unstructured mesh simulations go from design mod-
els directly to fully parallel mesh generation, to a loop of unstructured mesh-based
analysis, error estimation, and mesh adaptation. This article presents the Parallel
Unstructured Mesh Infrastructure (PUMI) that supports parallel automated adaptive
unstructured mesh simulations with reliable simulation results. PUMI is being devel-
oped as part of the DOE SciDAC FASTMath Institute [FASTMath DOE SciDAC Web
2015] to support a full range of operations on adaptively evolving unstructured meshes
on massively parallel computers [Seol and Shephard 2006b; Seol et al. 2012; Zhou et al.
2012b; Xie et al. 2014]. When coupled with dynamic load-balancing procedures [Zhou
et al. 2012a; Boman et al. 2012; Devine et al. 2002], PUMI provides an infrastructure to
support parallel automated adaptive simulations, as indicated in Figure 1. Functions
supported by PUMI include (1) a complete mesh topology, linked back to the original
domain definition that ensures the ability to support any mesh-based application in-
cluding fully automatic mesh generation and mesh adaptation; (2) a partition model
to coordinate the interactions and communications of a mesh distributed in parts over
the nodes of a parallel computer; and (3) utilities to support changing the mesh parti-
tioning to maintain load balance for various operations such as a posteriori error esti-
mation and mesh-based analysis. As shown in Figure 1, other components required for

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:3

" — process -
Input Domain Definition Physics and Model Parameters
parameters

nun-manifolc] physical PDE’s and discre-
model construction Darameters tization methods
Complete Domain Definition N ﬁdds Mesh-based Analysis
attributed non- discretization
manifold topology ‘parameters
s : _ R
PARALLEL INFRASTRUCTURE lution Transfeil:_j

i mesh with
Domain Topology Trelds
Mesh Topology and Partition Control geometric
. ” interrogation and
Dynamic Load Balancing -
mesh with fields

mesh with ﬁeldsl mesh with fields mesh size field
| Postprocessing/Visualization | irection Indical

Fig. 1. Simulation infrastructure.

automated adaptive simulations include a complete domain definition attributed with
the required physical attributes (for instance, loads, material properties, and boundary
conditions) [O’Bara et al. 2002], parallel mesh generation and adaptation, mesh-based
analysis, correction indication to drive mesh adaptation, and visualization. A set of
the parallel adaptive simulation workflows that have been developed following the
structure of Figure 1 includes (1) combined FEM/PIC modeling of electromagnetics in
particle accelerators [Luo et al. 2011], (2) modeling blood flow in the human arterial
system [Zhou et al. 2010b], (3) two-phase simulation of jets [Galimov et al. 2010], and
(4) industrial flow problems [Tendulkar et al. 2011; Shephard et al. 2013]. These sim-
ulation workflows have been executed on various AMD and Intel clusters, Cray XT5
and XE6 systems, and/or the three generations of IBM Blue Gene systems (L, P, and
Q). PUMI has recently supported construction of a 92-billion-element mesh solved on
3/4 million compute cores [Rasquin et al. 2015].

This article provides an overview of PUMI, focusing on its design, software struc-
tures, examples, and applications on massively parallel computers. The fundamental
concepts, definitions, and design are presented in Section 2. Sections 3 and 4 describe
the software aspects and example programs, respectively. Section 5 provides the per-
formance and scaling results. Section 6 presents two adaptive simulation applications
to produce complete parallel simulation workflows. Finally, Section 7 discusses future
directions of this work. For more interested readers, the Online Appendix presents
algorithms of the core parallel functionalities of mesh migration and ghosting.

1.1. Basic Notations

\% the model, V € {G, P, M}, where G signifies the geometric model, P
signifies the partition model, and M signifies the mesh.

(Vv{vdy a set of topological entities of dimension d in model V, V € (G, P, Mj}.
d = 0 for vertex, d = 1 for edge, d = 2 for face, and d = 3 for region. For
instance, {M{M?}} is the set of all the faces in the mesh.

Vid the i*" entity of dimension d in model V', V € {G, P, M}.

{3(M2)} a set of mesh entities on the boundary of M¢.

{M#{M?}} a set of mesh entities of dimension g that are adjacent to M. For
instance, {M1{M?3}} is a set of mesh regions adjacent to mesh edge M.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:4 D. A. Ibanez et al.

Md C G? the geometric classification indicating the unique association of mesh
entity M? with geometric model entity Gz, d=<q.

Mfi C PJ(? the partition classification indicating the unique association of mesh
entity M{ with partition model entity P, d < q.

2M?] a set of part ID(s) where mesh entity M¢ exists.

Mi@P; mesh entity M¢? located in part P;.

2. DEFINITIONS AND DESIGN

The structures used to support the problem definition, the discretization of the model,
and their interactions are central to mesh-based analysis methods. A geometry-based
analysis environment consists of four sets of problem specification information: the
geometric model, which houses the topological and shape description of the domain of
the problem; the attributes, describing the loads, material properties, and boundary
conditions on the geometric model needed to define the physical problem; the mesh,
which describes the discretized representation of the domain used by the analysis
method; and the fields, which describe the distribution of input and solution tensors
over the mesh entities [Beall 1999; Simmetrix Web 2015].

These four structures support the information flow between the functional compo-
nents in a parallel adaptive simulation workflow (Figure 1). The mesh structure is at
the core of the workflow since all the functional components of mesh generation, mesh
adaptation, mesh-based analysis, correction indication, and solution transfer must in-
teract with the mesh. In case of parallel adaptive simulations, the mesh data must
meet the following criteria: (1) it is distributed in a manner consistent with the needs
of the mesh-based analysis, (2) it is flexible enough to support parallel mesh generation
and adaptation processes, and (3) it supports the transfer of geometry-based attributes
to the mesh to define input fields. As the fields are directly related to the mesh, their
parallel distribution is directly related to the distribution of the mesh.

2.1. Geometric Model and Mesh

The most common geometric representation is a boundary representation. A gen-
eral representation of general nonmanifold domains is the Radial Edge Data Struc-
ture [Weiler 1988]. Nonmanifold models are common in engineering analyses. Simply
speaking, nonmanifold models consist of general combinations of solids, surfaces, and
wires. In the boundary representation, the model is a hierarchy of topological entities
of regions, shells, faces, loops, edges, and vertices, and, in case of nonmanifold models,
use entities for vertices, edges, loops, and faces are introduced to support the full range
of entity adjacencies.

A mesh is a geometric discretization of a domain. With restrictions on the mesh
entity topology [Beall and Shephard 1997], the mesh consists of a collection of mesh
entities of controlled size, shape, and distribution, which are regions (3D), faces (2D),
edges (1D), and vertices (0D) [Beall and Shephard 1997; Garimella 2002; Remacle and
Shephard 2003; Celes et al. 2005b].

2.2, Classification
Each mesh entity M¢ maintains a relation, called geometric classification, to a geomet-
ric model entity G? that it was created to partially represent. Geometric classification

is critical in mesh generation and adaptation [Beall and Shephard 1997; Beall 1999;
Shephard 2000].

Definition 2.1 (Geometric Classification). The unique association of a mesh entity
of dimension d, Mld, to a geometric model entity of dimension g, Gg, on which it lies

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:5

Gé 0
Gie o
1
o ¢« 1
- ——
G! Gt G\ Gi[= e
- o
- -
- [
GY 1 G)
— ST
GY Gl ’

Fig. 2. Example of simple model (left) and mesh (right) showing their association via geometric classifica-
tion [Beall and Shephard 1997; Beall 1999].

is termed geometric classification and is denoted Md C G?, (d < q). The classification
symbol, C, indicates that the left-hand entity, or a set of entities, is classified on the
right-hand entity.

Figure 2 illustrates a simple square model (left) and the mesh (right). In the right
figure, the arrows from mesh entities to model entities indicate their geometric clas-
sification. All interior mesh entities without arrows are classified on the model face
G

Definition 2.2 (Reverse Geometric Classification). For each geometric entity, the
set of equal-order mesh entities classified on that model entity defines the reverse
geometric classification. The reverse geometric classification is denoted as RC(G?) =

M7 | M C G%.

Reverse geometric classification provides an understanding of which attributes (for
instance, boundary conditions or material properties) are related to the mesh entities
and how the solution relates back to the original problem description.

Since the amount of information defining the geometric model and attributes is small
compared to the other data, they are usually fully represented on each node/core. How-
ever, as the level of geometric model complexity increases, it becomes more important
to consider methods to distribute the geometric model in parallel. Since the mesh is
the key parallel structure, one approach being taken to distribute the geometric model
is to have a copy of a model entity and its adjacencies represented on each part, which
has mesh entities classified on it [Tendulkar et al. 2011].

2.3. Adjacencies

The relationships of the entities are well described by topological adjacencies. For
a mesh entity of dimension d, a first-order adjacency returns all of the entities of
dimension ¢, which are on the closure of the entity for a downward adjacency (d>q), or
for which the entity is part of the closure for an upward adjacency (d<q). The notation
{M?{M?}} indicates a set of entities of dimension ¢ in mesh that are adjacent to M¢.
Ordering conventions can be used to enforce the specific downward first-order adjacent
entity. The notation M{M%}; indicates the j* entity in the set of mesh entities of
dimension ¢ that are adjacent to mesh entity]Wld [Beall and Shephard 1997; Beall
1999].

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:6 D. A. Ibanez et al.

regon |

l face ‘ :---E face = G7 :

’ edge ‘ P edge C Gy

(a) one-level representation (b) minimum sufficient representation

Fig. 3. Two complete mesh representations [Beall and Shephard 1997; Remacle and Shephard 2003].

2.4. Mesh Representation

Important factors in designing a mesh data structure are storage and computational
efficiency, which are mainly dominated by the entities and adjacencies present in the
mesh representation. The analysis of mesh data structures of various representa-
tions suggests how the mesh representation option and intelligent mesh algorithms
are important to achieve efficiency with mesh applications [Beall and Shephard 1997,
Garimella 2002; Seol 2005; Ollivier-Gooch et al. 2010]. Depending on the dimensions of
entities and adjacencies explicitly stored in the mesh, the mesh representation can be
categorized with two criteria: (1) full versus reduced: if all 0 to d dimensional entities
are explicitly stored, the mesh representation is full; otherwise, it is reduced; (2) com-
plete versus incomplete: if all adjacency information is obtainable in O(1) such that
the number of operations is bounded by the constant, the representation is complete;
otherwise, it is incomplete.

Provided sufficient links are stored, the number of mesh entities on the boundary
of another entity is a known small constant. Therefore, computing downward adja-
cencies is O(1). However, in the most relaxed definition of a mesh, the size of upward
adjacency can grow arbitrarily. A simple example is a disk that is meshed with a fan
of triangles sharing the center point. Note that as the number of elements around
a vertex increases, their average shape quality must decrease. Therefore, with finite
element meshes, there is a constant upper bound on the number of upward adjacent
entities. If the physical analysis demands a lower bound on element shape quality, a
corresponding upper bound exists on upward adjacencies.

A general topology-based mesh data structure must satisfy completeness of adjacen-
cies to support adaptive analysis efficiently. It doesn’t necessarily mean that all 0 to d
dimensional entities and adjacencies need to be explicitly stored in the representation.
There are many representation options in the design of general topology-based mesh
data structure. Figure 3 illustrates two complete representations: one level (full) [Beall
and Shephard 1997] and minimum sufficient (reduced) [Remacle and Shephard 2003].
A solid box and a solid arrow denote, respectively, explicitly stored dimensions of enti-
ties and explicitly stored adjacencies from outgoing dimension to incoming dimension.
A dotted box denotes that among entities of the dimension, only equally classified ones
are explicitly stored, and a dotted arrow denotes that adjacencies from an outgoing
dimension to an incoming dimension are maintained only for the stored entities. Note
that completeness for reduced representations can be defined as having O(1) retrieval
time of adjacencies for both implicit (unrepresented) and explicit (represented) entities.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 177

inter-process
part boundary PROCESS j
Ps -
Mj
N A p2
> 2 Py 75 /pl
Py . !
P2 0
) 0 P,
Mg, Py . ’ P2
.]\/12 P 0 2
intra-process 0_ 2
part boiidiry 15 upa 2 |2
Mg
P,
1 Mll
PROCESS i

(a) (b)

Fig. 4. (a) Distributed mesh on two processes with two parts per process. The thick solid line is the inter-
process part boundary and the thick dotted line is the intraprocess part boundary. (b) Partition model.

Seol and Shephard presented the detailed discussions on how to manipulate the im-
plicit entities for adjacencies and migration as well as the performance comparison of
the one-level representation and the minimum sufficient representation in distributed
meshes [Seol 2005; Shephard and Seol 2009].

PUMI stores the one-level representation that is full and complete, so it maintains
adjacencies between entities one dimension apart [Beall and Shephard 1997]. A com-
plete mesh representation is necessary to be able to carry out fast local modifications
and diffusive load balancing. Using a full representation greatly simplifies the algo-
rithms involved in mesh modification, which make use of the full mapping from mesh
topology to geometric topology to preserve the mesh boundary and other properties.

2.5. Distributed Mesh

A distributed mesh is a mesh divided into parts for distribution over a set of processes
for specific reasons, for example, parallel computation. A part consists of a set of mesh
entities that is assigned to a process. Therefore, each part can have (1) a unique global
part ID within an entire system and (2) a local part ID within a process. Part boundaries
describe groups of mesh entities that are on interpart boundaries. With the addition of
part boundaries, each part can be treated as a serial mesh. In PUMI, mesh entities on
part boundaries (shortly part boundary entities) are duplicated on all parts on which
they are used in adjacency relations. Mesh entities not on the part boundary exist on
only one part and are called internal entities.

Figure 4(a) illustrates a distributed mesh on two processes where the mesh on each
process has two parts. The dotted lines are intraprocess part boundaries within a
process and thick solid lines are interprocess part boundaries between the processes.

Residence part set operator @[Md] returns a set of global part ID(s) where mesh
entity Mid exists. For instance, @[Mg] is {Py, Py, Ps, P3} and Q[M(}] is {Py, P1}. The two
parts, P; and P;, neighbor over entity type! d if they share d-dimensional mesh entities
on part boundary.

Definition 2.3 (Residence part set equation of M?). For a mesh entity M¢ existing in
part p, if (M{M9)} = ¢ (d<q), ZIM?] = {p}. If (MH{M)} # 0 (d<q), ZIM{] = U 2IM7 |
M € (oM.

IDimension and type are interchangeable.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:8 D. A. Ibanez et al.

The residence part set of mesh entity Md is the union of residence part sets of
all entities that it bounds. For a mesh topology where the entities of dimension d are
bounded by entities of dimension d-1 (d>0), if a mesh entity M¢ in part p is not bounded
by any upward adjacent entity such that {]Wid{Md*l}} =0, 3”[]\4{1] is determined to be
{p}. If a mesh entity Mid is bounded by upward adjacent entities such that {Mid{M d+1}}
0, 2IM? is U(@[M}Frl | MY e {8(M§~l+1)}]. For instance, in Figure 4(a), 2[M}] = 2[M{]
U Z2[M?] = (Py) U (P1} = {Py, P1).

2.6. Partition Model

When a mesh is distributed into parts, each part can be viewed as an abstract unit
of domain decomposition by partitioning. Putting all abstract units together, we get a
conceptual model that represents partitioning, which is another kind of domain decom-
position. For the distributed mesh in Figures 4(a), Figure 4(b) illustrates its conceptual
model that represents partitioning with four abstract faces of domain decomposition.
Such a conceptual model exists between the mesh and the geometric model as a part
of hierarchical domain decomposition and is termed partition model. The two purposes
of the partition model are (1) representing mesh partitioning in topology and (2) sup-
porting mesh-level parallel operations through interpart boundary links.

In the parallel extension of unstructured mesh representation, the partition model
consists of a set of topological entities that represent collections of mesh entities based
on their partitioning. Therefore, the standard mesh entities and adjacencies on each
process can be used with only the addition of the partition entity information needed
to support all operations across multiple processes.

Grouping mesh entities to define a partition model entity can be done with multiple
criteria based on the functionalities and needs of distributed meshes. At a minimum,
mesh entities should be grouped by residence part set to support an interpart communi-
cation. They could further be grouped by adjacencies within the same part, which would
diagnose partitioning problems (i.e., a large number of disconnected components) and
inform algorithms that deal with connected components only. In PUMI, for efficiency,
only the residence part set is used for this grouping.

Definition 2.4 (Partition (model) Entity). A topological entity in the partition model,
P¢, represents a group of mesh entities of dimension d and their downward adjacent
entities that have the same residence part set. Each partition model entity is uniquely
determined by the residence part set.

The partition model in Figure 4(b) consists of (1) partition vertex P{ representing
mesh vertex duplicated on all four parts; (2) partition edges Pj representing mesh
vertices and edges duplicated on Py and P, Pl1 representing mesh vertices and edges
duplicated on P; and P, le representing mesh vertices and edges duplicated on P,
and Ps, and P31 representing mesh vertices and edges duplicated on Py and Ps; and (3)
partition faces P? representing internal mesh vertices, edges, and faces on part P;, 0 <
i <3.

Definition 2.5 (Partition classification). The unique association of mesh entity of
dimension d, Md, to partition model entity of dimension g, PJ‘.I, on which it lies is
termed partition classification and is denoted Md C P]‘?, d=<q).

Each partition model entity stores dimension, residence part set, and owning part
ID, and each mesh entity keeps a pointer to the partition model entity based on the
partitioning. Therefore, at the mesh entity level, the residence part set and owning

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:9

P,
(a) mesh
P
2 P,
[S
M! KN M2 M2 S
4 WUl 5 S,
Q Y 2 ., p?
‘N My g M .. pl N, ’
., § 53 \’I
2"' 0 1 0 “a
M; N, M M, M ,
P 2y 5 12 8 /~/ Pg P;
! 2 2 P, (
M3 Ml M7 P P 2 P
9 3 2 1 2
M2 M2 Pol Pi :
Mg
(c) mesh (d) partition model of (c)

Fig. 5. Distributed mesh and owning part stored in partition model entities based on the poor-to-rich
rule [Seol 2005; Seol and Shephard 2006b].

part information are maintained through partition classification. In Figure 4, mesh
vertex Mg is classified on partition vertex Pg, and mesh edges M} are classified on
partition edges P!, 0 < i < 3. Internal mesh entities (vertices, edges, and faces) on P,
are classified on partition face Piz, 0<i<3.

2.7. Mesh Migration

In adaptive simulations on a distributed mesh, the mesh entities need to be migrated
from part to part frequently in order to facilitate the local mesh modification and
computations or to regain mesh load balance for other steps in the simulation workflow.
Figure 5 illustrates an example of mesh migration. Figures 5(a) and 5(b) are the initial
mesh and partition model, and Figures 5(c) and 5(d) are the mesh and partition model
after migrating mesh faces MZ and M from part P to part Py and M2 from part P to
part Ps.

To initiate the migration of mesh entities, the destination part IDs of mesh entities
must be determined. The residence part set equation dictates that if a destination
part ID of mesh entity ZVIid, which is not on the boundary of any other mesh entities,
is determined, its downward adjacent entities, {M{i{Mq 1} (d>q), should be migrated to
the same destination part as well. Thus, a mesh entity that is not on the boundary of
any upward adjacent entities is the basic unit to assign the destination part ID in the
migration procedure.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:10 D. A. Ibanez et al.

Definition 2.6 (Partition Object). The partition object is the basic unit to assign a
destination part ID in migration. A mesh entity not being on the boundary of any
upward adjacent entities (termed mesh element) can be a partition object. In a 3D
mesh, partition objects are all mesh regions, the mesh faces not bounding any mesh
regions, the mesh edges not bounding any mesh faces or regions, and mesh vertices not
bounding any mesh edges, faces, or regions. An ordered set of unique mesh elements
confined to a part can also be a partition object if designated to be migrated as a unit.

An ordered set of unique mesh elements confined to a part is referred to as p-set [Xie
et al. 2014]. A p-set is useful in representing boundary layer stacks [Sahni et al. 2008;
Ovcharenko et al. 2013].

In case of a 3D (2D, respectively) manifold model, partition objects are p-sets consist-
ing of regions (faces, respectively) and mesh regions (faces, respectively) not contained
in a p-set. In case of a nonmanifold model, a lookup for mesh entities not bounding
any upward adjacent entities is required for each dimension d, 0<d<3. In Figure 4(a),
partition objects are all mesh faces.

If a mesh entity is duplicated, it must be aware of where it is duplicated. Among
multiple duplicate copies, an entity in a specific part is assigned as the owner with
charge of modification, communication, or computation of the copies. For the purpose of
simple denotation, the entity on the owning part is called the owner of all its copies. Note
that the owning part ID for part boundary entities is maintained at the partition model
entity, and the mesh entity’s owning part is retrieved through partition classification.
In PUMI, the owning part is determined based on the poor-to-rich rule: the owning part
is a part with the least number of partition object mesh entities among all residence
parts [Seol 2005; Seol and Shephard 2006b]. And if residence parts have the same least
number of partition object entities, the part with the smaller ID is the owning part. In
Figure 5, the bigger circle and thicker lines denote the owning part of partition model
entities. For instance, the owner of mesh entity Mg in Figure 5(a) (5(c), respectively)
is Mg@Po (Mg@Pg, respectively). The owner of M, i in Figure 5(a) (5(c), respectively) is

M}@P, (M;@P;, respectively).

2.8. Mesh Ghosting

For the support for specific mesh operations requiring data from mesh entities on
remote processes, the ghosting procedure localizes internal mesh entities and their
member data on neighboring parts for the purpose of minimizing interprocess commu-
nications [Lawlor et al. 2006; iMeshP Web 2015]. The inputs to the ghosting procedure
are (1) ghost type g (0<g<mesh dimension), which is an entity type to be ghosted;
(2) bridge type b (0<b<g and b#g), which is an entity type to be used to compute enti-
ties to be ghosted based on adjacency; (3) the number of ghost layers n measured from
interpart boundary up to the number with which the whole part can be ghosted; and
(5) an integer inc_copy to indicate whether to include nonowned bridge type entities
(1) or not (0) in computing entities to be ghosted [iMeshP Web 2015].

Given input parameters, the ghosting procedure first iterates all part boundary
entities of type b and collects entities to be ghosted (shortly, ghosting candidates) as
follows: note that a ghosting candidate is created in a neighboring residence part of
bridge entity only if the ghost candidate doesn’t exist in the part as a remote copy or
ghost copy.

(1) If n = 1, for each part boundary entity of type b, M?, ghosting candidates are
upward adjacent entities of type g, {]VIib{Mg }}. If the input inc_copy is 0 and]Wib is
not the owner copy, Mib is not considered for the ghosting candidate computation.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:11

Geometric Model Partition Model

Parallel Control

Fig. 6. PUMI components: an arrow from component A to component B indicates that component A is
dependent on component B.

If the input inc_copy is 1,]Vlib is considered for the ghosting candidate computation
no matter if it is the owner copy or not.
(2) If n>1, for each mesh entity Mf in ghosting candidates of n — 1 layer ghosting,

ghosting candidates are a set of entities {M?{M°}{M#}}. The notation {M?{M"}}
denotes a set of mesh entities of type b adjacent to mesh entity Mjg . The notation
{Mjf’ {M?}{M#}} denotes a second-order adjacency, meaning a set of mesh entities of
type g adjacent to mesh entity M}, where M} {M?{M"}}.

As parallel finite element analysis (FEA) needs remote vertices and the finite volume
method (FVM) needs remote regions for analysis, the ghosting procedure is an essential
functionality for analysis. In case of a 3D analysis, FEA may use one-layer ghosting
with bridge type 0 (vertex) and ghost type 3 (region). Low-order FVM may use one-layer
ghosting with bridge type 2 (face) and ghost type 3 (region). High-order FVM may use
two-layer or more ghosting with bridge type 2 (face) and ghost type 3 (region).

2.9. Graph-Based Mesh Partitioning

Graph-based n-to-m mesh partitioning redistributes n-part mesh into m parts (n#m,
n<m). The procedure consists of four steps: (1) transforming the unstructured mesh
data structures to the graph vertex and edge structures needed by Zoltan [Boman
et al. 2012; Devine et al. 2002], (2) running Zoltan, (3) transforming the output of
Zoltan (graph vertices and destination part IDs) to STL maps of partition object (mesh
element and/or p-set) and part ID required by the migration procedure, and (4) running
the migration. Graph vertices are defined by partition objects (mesh elements and/or
p-sets), and graph edges by the mesh faces (3D) or edges (2D) shared by adjacent ele-
ments and p-sets, either through topology or through periodicity. This graph definition
supports the natural division of the mesh into nonoverlapping parts P, of dimension d
such that M = [J P,. In a 3D mesh, this uniquely assigns each mesh region to a single
part. Creating graph vertices from p-sets conforms to this approach and ensures that
user-defined groups of mesh elements will be accessible within the same part after
partitioning. Zoltan’s interface requires that each graph vertex is defined by a unique
user-defined object. Likewise, a graph edge is defined by two graph vertex objects. The
most efficient definition of the graph vertex object is an integer [Boman et al. 2012;
Devine et al. 2002].

3. SOFTWARE STRUCTURE

PUMI consists of six software components (Figure 6) [Seol et al. 2012; PUMI Web
2015]: (1) the Common Utility for common tools and services used in multiple other

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:12 D. A. Ibanez et al.

components, (2) the Parallel Control component for parallel-specific tools and services,
(3) the Geometric Model component for interfacing with geometric model kernels, (4) the
Mesh component to provide the distributed mesh representation and manipulations,
(5) the Partition Model component for partition model representation and manipula-
tions, and (6) the Field component for field storage and manipulations.

As a partition model is constructed based on the mesh distribution, it is automatically
updated when mesh partitioning is changed. Therefore, its functionality is embedded
in mesh implementation, and furthermore, access/modification by the users is not
needed. Except for the Partition Model component, each component is a self-contained,
independently usable library with its own set of requirements and well-defined API.

3.1. PCU: Parallel Control Utility Library

pcu is a library that provides a parallel programming model including parallel control
functions. Its two major functionalities are message passing that allows parallel tasks
to coordinate and thread management that extends the MPI programming model into
a hybrid MPI/thread system.

The foundation of pcu is its point-to-point message-passing routines where nonblock-
ing synchronous message-passing primitives are defined. There are two versions, one
of which is a direct interface to MPI, and the second supports message passing between
threads [Ibanez et al. 2016]. The two versions are interchangeable, and pcu can change
which set of them is being used at runtime without affecting the rest of the software
components.

Building on the point-to-point primitives, pcu has an extensible framework for col-
lective operations such as reduction, broadcast, scan, and barrier. Any collective whose
communication pattern can be encoded as some kind of tree is supported, and the most
common ones come built in to pcu. These collectives are directly available to users.

Using both point-to-point and collective communication, pcu provides a message-
passing algorithm for general unstructured communication. The send phase allows
tasks to send any messages out to neighbors, and the receive phase ensures that
neighbors receive all the messages they have been sent. This phased communica-
tion algorithm is equivalent to the nonblocking consensus algorithm for sparse data
exchange [Hoefler et al. 2010].

Finally, pcu has a system for creating a pool of threads within each process and
assigning them ranks in a way that MPI does to processes. Users can call this API to
enter a hybrid MPI/thread mode in which all the communication APIs (point-to-point,
collective, and phased) work between threads. These capabilities support a hybrid
MPI/thread operation.

3.2. GMI: Geometric Model Interface Library

The problem domain is the basis for generating meshes on which the analysis is per-
formed. Commercial geometric modeling kernels provide the description of the problem
domain.

The geometric model library provides modeling kernel-independent geometry ac-
cess by polymorphism and replicating the topological information in modeling kernels.
Therefore, geometry-based applications (including mesh) can interface with various
modeling kernels through the geometric model library [Panthaki et al. 1997; Tautges
2001; Beall et al. 2004]. In gmi, the class hierarchy of the geometric model is de-
rived for implementation with specific commercial geometric modeling kernels such as
Acis [ACIS Web 2015], GeomSim [GeomSim Web 2015], and Parasolid [Parasolid Web
2015]. In case no commercial modeling kernel is available, gmi supports a geometric
model constructed from mesh, called mesh model [Beall et al. 2004]. The following core

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:13

functionalities are provided at the high-level API regardless of underlying modeling
kernel:

—DModeling kernel registration: establishing the relationship between the high-level
API and the modeling kernel-specific API and importing the geometric model infor-
mation into topological representation.

—Geometric model representation: maintaining pointers to topological model entities.
In boundary representation, they are regions, shells, faces, loops, edges, vertices, and
use entities for vertices, edges, loops, and faces with a nonmanifold model [Weiler
1988]. The information stored in these data structures provides a topological defini-
tion of the geometric model, so the mesh structure can always be correctly classified
and the topological similarity between the mesh and the model can be maintained
during modifications.

—Interrogations: adjacency, tolerance, shape information, and so forth. Model entity
objects themselves contain boundary-representation adjacency structures to other
model entities as well as declaring virtual methods for modeler queries such as
evaluating a point of a parametric surface [Beall et al. 2004].

Recently, models with thousands to millions of model entities have been constructed
in gmi, which prompted the addition of fast lookup structure to the model object since
retrieval of a model entity from its integer identifier is a common operation during
message passing and file reading.

3.3. MDS: Mesh Data Structure Library

An efficient and scalable distributed mesh data structure is mandatory to achieve per-
formance since it strongly influences the overall performance of adaptive mesh-based
simulations. In addition to the general mesh-based operations, the distributed mesh
data structure must support (1) efficient communication between entities duplicated
over multiple parts, (2) migration of entities or groups of entities between parts, and
(3) dynamic load balancing. mds provides the storage and management of distributed
unstructured meshes and partition model. It supports all the mesh-level services to
interrogate/modify the mesh data needed by parallel adaptive analysis. Core mds func-
tionalities include the following:

—Interrogations: first- and second-order adjacency, owning part ID, status (internal,
part boundary, matched, ghost or ghosted), classification (geometric and partition
model), and so forth.

—Modification: Entity and entity set? creation/deletion, migrating entity and p-set
from part to part including tagged data, and a capability to dynamically change the
number of parts per process.

—Load balancing: a capability to balance the mesh load on each part predictively
[Flaherty et al. 1997; Zhou et al. 2012b] or as postprocessing with the help of mesh
migration and partitioning libraries such as Zoltan, ParMETIS, and ParMA. Zoltan
is a toolkit for scientific applications that provides graph-based load-balancing and
partitioning algorithms [Boman et al. 2012; Devine et al. 2002]. ParMETIS provides
algorithms for partitioning unstructured graphs and meshes and for computing fill-
reducing orderings of sparse matrices [Schloegel et al. 2002]. ParMA is a partitioning
library developed at SCOREC without using the classical graph data structure. Three
ParMA procedures are (1) multicriteria diffusive partition improvement [Zhou et al.

2Grouping of arbitrary entities from multiple parts or a single part [Tautges et al. 2004b; Ollivier-Gooch
et al. 2010; ITAPS Web 2015].

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:14 D. A. Ibanez et al.

Fig. 7. Two-dimensional distributed mesh with periodic model edges Gil and G}.

2010a, 2012a], (2) predicted load balancing [Flaherty et al. 1997; Zhou et al. 2012b],
and (3) heavy part splitting [Zhou et al. 2012b; Seol et al. 2012].

—DMatching: a capability to maintain mesh entities on matched, periodic model bound-
aries [Karanam et al. 2008; MeshSim Web 2015]. Figure 7 illustrates four-part dis-
tributed mesh with periodic model edges G! and G} (thick solid lines). The mesh
entities classified on G} are matched to mesh entities classified on G}, and vice
versa. For instance, M?@Po is matched to three mesh vertices, M{)@P3, Mg@Pg, and
MQ@P,. M{@P, is matched to two mesh vertices, MJ@P;, and M;@P,. When a mesh
entity is modified or migrated, all the matched copies should be updated as well to
keep the identity.

—File I/0: ascii or binary file I/O in various mesh formats (NetCDF [NetCDF
Web 2015], Exodus [Schoof and Yarberry 1994], VTK [VTK Web 2015], Simmetrix
[Simmetrix Web 2015], etc.) for partition model and mesh entities with auxiliary
data including geometric classification, partition classification, tagged data, entity
set, matched copies, and so forth.

The term instance is used to indicate an object of model data existing on each process.
For example, a mesh instance on a process means a pointer to a mesh data structure
on the process that all parts on the process are maintained by, and accessible through.
The term handle is used to indicate a pointer to other types of data objects such as
part, entity, and entity set. For example, a mesh entity handle means a pointer to the
mesh entity data [Seol and Shephard 2006b; Ollivier-Gooch et al. 2010; Seol et al. 2012;
ITAPS Web 2015].

Figure 8 illustrates a mesh and related data in each process. The mesh instance
maintains (1) one or more part handles and (2) zero or more entity set handles [ITAPS
Web 2015]. Each part handle maintains (1) a link to a geometric model instance, (2) a
link to a partition model instance, (3) zero or more entity handles per dimension (0 to
3), and (4) zero or more p-set handles.

Each mesh entity maintains the following information:

—Dimension or type: 0 for vertex, 1 for edge, 2 for face, and 3 for region.

—Topology: for a region, PUMI supports tetrahedron, hexahedron, prism (wedge), and
pyramid. For a face, PUMI supports triangle and quadrilateral.

—Geometric classification: a link to a geometric model entity handle where it’s
discretized.

—Partition classification: a link to a partition model entity handle representing resi-
dence part set and owning part ID of the mesh entity. When a residence part set of

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure

17:15

mesh instance

entity set

geometric model [K-+--vvvvviiiii i part handle

partition model

geometric model entity ¢--.......... .. /s mesh entity

e

match copy

4
partition model entity

remote copy ghost copy

Fig. 8. Mesh data in process: A solid line from upper positioned component U to lower positioned component
L indicates that the component U contains 0 or more of component L. A dotted arrow from component A to
component Bindicates that the component A maintains a link to component B. A data drawn with rectangle
indicates that at least one copy of the data should exist on each process.

mesh entity is changed, the mesh entity searches a partition model entity that has
the same residence part set and updates the partition classification. If a partition
model entity with the same residence part set is not found, a new partition model
entity is created and the new partition model entity is used to set the partition
classification of the mesh entity.

—Adjacency: i** dimensional mesh entity maintains the links to (i — 1)* and (i + 1)
dimensional adjacent entities (0 < i < 3) if applicable.

—Remote copy: a memory location of a part boundary entity on another part. To reduce
the communication time, every part boundary entity stores an STL map of (remote
part ID, remote copy) no matter if it is a master (owner copy) or a slave (nonowner
copy). Note that the performance of mesh migration dictates the overall performance
of simulation workflow due to its high frequency. In our experiment, the migration
time of only the owner copy having remote copy information was more than that of
every part boundary entity storing remote copy information.

—Ghost copy: a memory location of duplicate copy of internal entity in neighboring
parts [Lawlor et al. 2006; iMeshP Web 2015]. For efficient communications, the
original internal entity is designated to be an owner copy and maintains an STL
map of (ghost part ID, ghost copy). The ghost copy maintains the owning part ID
and the memory location of the owner copy. Since ghost copies are stored explicitly
in the mesh as regular entities, all entity-level functions can be used with ghost
copies—for instance, traversal, entity set, tagging® and various interrogations such
as geometric classification, adjacencies, remote copies, residence part set, owning
part ID, partition classification, and so forth.

—DMatch copy: a memory location of a matched entity handle. Note that an entity can
have one or more match copies per part. Therefore, when a mesh entity is matched
to another entity, it maintains an STL multimap of (match part ID, match copy). If
an entity is matched to a part boundary entity, it must be matched to all the remote
copies.

3 Attaching user data of various types (single or array of integer, pointer, floating point, binary, entity set,
entity) to a part, entity set, or entity [Ollivier-Gooch et al. 2010; Seol et al. 2012; ITAPS Web 2015].

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:16 D. A. Ibanez et al.

In less flexible applications, it would be possible to globally number the mesh entities
such that duplicate copies have the same integer ID. Then, each part could store its
neighbors, and entities would store nothing but their global number. It is then possible
to send data across parts along with a global number and search for the corresponding
number after receiving the data. However, supporting this search is expensive, and
more importantly, a global number would be invalidated by mesh modification unless
expensive methods to maintain unique labeling of entities being created across the
cores of the parallel system were used. Therefore, the remote copies are carefully
tracked pointers as opposed to a global numbering.

Even with this requirement, there are three options as to how the remote copies
could be stored: (1) all duplicate copies store the remote copy information, (2) each
nonowner copy stores a single pointer to its owner copy and the owner copy stores
nothing, and (3) only the owner copy stores the remote copy information. In case
of option 2 (3, respectively), an algorithm that broadcasts data from the owner to
nonowners (non-owners to owner, respectively), a common operation in finite element
codes, would have to use an “echo” system where nonowners (owner, respectively) would
request the information from the owner (nonowners, respectively) first, since the owner
(nonowners, respectively) does (do, respectively) not yet know where to send it. This
would double the number of communication rounds, which is worse than the slightly
increased memory cost of having part boundary entities know all their copies.

For mesh entities migrated to other part(s), new partition classification can be de-
rived from the remote copy information (it provides the new residence part set). How-
ever, it can be useful during the migration algorithm to first update the partition
classifications based on where mesh entities are migrated, and then actually move the
entities and update the remote copies based on the new partition classification. This
justifies that storing partition classification per entity benefits the mesh migration.

3.4. APF: Attached Parallel Field and Mesh Interface Library

The Attached Parallel Field library provides the finite element field manipulation.
It also provides interfacing between the field and multiple databases including mds,
MeshSim [Simmetrix Web 2015], and STK [APF Web 2015]. The core functionalities are
(1) common finite element field operations such as numbering and synchronization over
part boundaries, (2) a wide variety of finite element basis functions and numerical inte-
gration rules, and (3) array-based field storage for multiple mesh databases, including
support for frequent migration and modification of the mesh. The field and numbering
data are stored in separate arrays and keyed by the local ID of mesh entities.

3.5. Array-Based Data Structure

The previous PUMI implementation was based on an object-oriented data struc-
ture [Seol and Shephard 2006b; Seol et al. 2012]. In the recent improvement, the
one-level adjacency information, vertex coordinates, simulation fields, and classifica-
tion links have been compressed into an array structure. The difficulty involved in an
array structure is preserving fast mesh modification without increasing the runtime of
existing applications and workflows.

Although PUMI stores the mesh representation in arrays, it still retains the ability
to make modifications at the single-entity level without restrictions. Aside from locality
and memory access patterns, the storage of data in arrays has resulted in a significant
reduced memory usage with respect to other flexible and scalable mesh implementa-
tions. For instance, using an array-based data structure, the memory usage of PUMI
went down to 25% of the previous data structure. A full description of the array scheme
is beyond the scope of this article and will be published in the near future.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:17

1 #include <apf.h>

2 #include <gmi mesh.h>

s #include <apfMDS.h>

. #include <apfMesh2.h>

5 #include <apfNumbering.h>
s #include <PCU.h>

using namespace apf;
10 int main(int arge, charsx argv)

{
2 MPI_Init(&arge, &argv);
3 PCU_Comm_Init();
1« gmi_register_mesh();
15 Mesh2x mesh = loadMdsMesh(“model.dmg”, “mesh.smb”);
s Numbering* n = numberOverlapNodes(mesh, “ID”);
17 int faceDimension = 2;
s int vertexDimension = 0;
19 MeshIterators it = mesh—>begin(faceDimension);
20 MeshEntity« face;
21 while ((face = mesh—>iterate(it)))

{
23 ModelEntity* me = mesh—>toModel(face);
24 if ((mesh—>getType(face) == Mesh::TRIANGLE) &&
25 (mesh—>getModelType(me) == faceDimension))

> int modelFaceTag = mesh—>getModelTag(me);
28 Downward vertices;

29 mesh—>getDownward(face, vertexDimension, vertices);

30 int 1dS[3],

31 for (inti=0;1 < 3; ++i)

32 ids[i] = getNumber(n, vertices[i], 0, 0);

33 std::cout << “triangle "< < ids[0]<<* "< <ids[1]<<“ "< <ids[2];
3 std::cout << “is on model face << modelFaceTag << ‘\n’;

}

mesh—>end(it);

35 mesh—>destroyNative();
3 destroyMesh(mesh);

w0 PCU_Comm_Free();

.1 MPI_Finalize();

12}

Listing 1. Boundary Triangle Example.

4. EXAMPLES

This section presents three example programs to show how users can query and modify
a distributed mesh through the C++ API functions. Note that the PUMI API aims
to be abstract over several different mesh implementations so the API uses C-style
idioms. For instance, the iterator API does not follow the usual C++ STL iterator
convention because not all mesh implementations interoperable with PUMI support
separate increment and dereference.

Listing 1 illustrates a program that loads a mesh (Line 15) and identifies every
triangle classified on a geometric model face (Lines 23-25). The program establishes a
local vertex numbering (Line 16) and prints the three vertex numbers for each triangle

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:18 D. A. Ibanez et al.

1 #include <apfh>

> #include <gmi_mesh.h>

s #include <apfMDS.h>

+ #include <apfMesh2.h>

5 #include <apfNumbering.h>
¢ #include <PCU.h>

s using namespace apf;
10 int main(int arge, chars* argv)

{
2 MPI_Init(&arge, &argv);
13 PCU_Comm_Init();
1+ gmi_register_mesh();
15 Mesh2x mesh = loadMdsMesh(“model.dmg”, “mesh.smb”);
s GlobalNumbering* gn = makeGlobal(numberOwnedNodes(mesh, “ID”));
17 int vertexDimension = 0;
s int self = PCU_Comm_Self();
19 MeshlIteratorx it = mesh—>begin(vertexDimension);
20 MeshEntityx vertex;
21 while ((vertex = mesh—>iterate(it)))

2 long id = getNumber(gn, Node(vertex, 0));

24 Parts ps;

25 mesh—>getResidence(vertex, ps);

26 for (Parts::iterator it = ps.begin(); it != ps.end(); ++it)

{
28 int sharedWith = xit;
29 std::cout << “part ” << self << “ shares vertex ”;
30 std::cout << id << “ with part ” << sharedWith << ‘\n’;

0}

33 mesh—>end(it);

3« mesh—>destroyNative();
3 destroyMesh(mesh);

3% PCU_Comm_Free();

7 MPI_Finalize();

Listing 2. Vertex Sharing Example.

classified on a geometric model face (Line 33). It also prints the unique tag associated
with the model face (Line 34). Lines 28 and 29 illustrate face-to-vertex derivation. The
while loop (Lines 21-36) can easily be extended to apply boundary conditions to the
vertices or integrate a quantity of interest over the face and accumulate a total integral
over the mesh surface.

Listing 2 loads a partitioned mesh (Line 15), establishes a globally unique numbering
of the vertices (Line 16), and then prints the interpart sharing of vertices (Lines 24—
31). Coupled with element-to-vertex information, the interpart sharing information
of vertices is sufficient information to construct a partitioning graph. To construct a
partitioning graph in reasonable time, interested readers can find an example program.
Advanced use of sparse data exchange API is needed to avoid the local search process
based on global numbers. Given the geometric model file name, input mesh file name,
output mesh file name, and an integer n, Listing 3 loads a mesh (Line 53), partitions

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure

R

o NN NN NN N

#include <gmi mesh.h>
#include <apfh>
#include <apfMesh2.h>
#include <apfMDS.h>
#include <PCU.h>
#include <apfZoltan.h>
#include <parma.h>

const chars modelFile = 0;
const charx meshFile = 0;
const charx outFile = 0;
int partitionFactor = 1;

apf::Migration* getMigrationPlan(apf::Meshx m)

apf::Splitterx splitter = apf::makeZoltanSplitter(

m, apf::GRAPH, apf::PARTITION, false);
apf::MeshTag+ weights = Parma_WeighByMemory(m);
apf::Migrationx plan = splitter—>split(weights, 1.05, partitionFactor);
apf::removeTagFromDimension(m, weights, m—>getDimension());
m—>destroyTag(weights);
delete splitter;
return plan;

}

void cleanup(apf::Mesh2x m)

m—>writeNative(outFile);
m—>destroyNative();
apf::destroyMesh(m);

}
void getConfig(int arge, charxx argv)

{
if (arge !1=5) {
if (PCU_Comm_Self())
printf(“Usage: %s <model> <mesh> <outMesh> <factor>\n”", argv[0]);
MPI _Finalize();
exit(EXIT_FAILURE);

}
modelFile = argv[1]; meshFile = argv[2]; outFile = argv[3];
partitionFactor = atoi(argv([4]);

}

int main(int arge, charxx argv)

int provided;

MPI Init_thread(&arge, &argv, MPI. THREAD MULTIPLE, &provided);
assert(provided==MPI_THREAD _MULTIPLE);

PCU_Comm _Init();

gmi_register_mesh();

getConfig(argce, argv);

apf::Mesh2x m = apf::loadMdsMesh(modelFile, meshFile);
splitMdsMesh(m, getMigrationPlan(m), partitionFactor, cleanup);
PCU_Comm _Free();

MPI_Finalize();

Listing 3. Mesh Partitioning Example.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:19

17:20 D. A. Ibanez et al.

MEMORY FOR 100K TET MESH
MOAB
PUMI
GRUMMP
STK
0 20 40 G0 a0

MEMORY (M8)

Fig. 9. Memory cost comparison to MOAB, GRUMMP, and STK.

it to n parts per process (Line 54) using Zoltan, and writes out the resulting mesh into
the PUMI format (Line 28).

Although not described in this article, PUMI provides APIs to individually add and
remove entities, which would allow interested users to develop their own mesh adap-
tation codes. The authors provide a robust, scalable, state-of-the-art mesh adaptation
library, MeshAdapt, which is built on PUMI tools and services [Li et al. 2005; Alauzet
et al. 2006; MeshAdapt Web 2015].

5. RESULTS

In the performance studies, the IBM BlueGene/Q at the Center for Computational In-
novations [CCI Web 2015] in Rensselaer Polytechnic Institute is used. The CCI Blue-
Gene/Q is a 64-bit supercomputer with five-rack custom-connected 5,120 nodes reach-
ing LINPACK peak performance 894.4TFlop/s and theoretical peak 1,048.6TFlop/s.
Each compute node has a 16-core 1.6GHz PowerPC A2 processor and 16GB DDRS
memory.

5.1. Parallel Mesh Construction from Node-Element Information

PUMI provides a function to construct a distributed mesh and partition model using the
minimum node-element information for each part. The minimum required information
is, for each part, five arrays with global node ID, node coordinates, elements’ part ID,
elements’ topology, and consisting nodes’ global IDs for each element. Using the node-
element information on 256 parts, it took 12 seconds to construct a 25.6-million-element
mesh and partition model.

5.2. Migration

The migration procedure has been designed for per-element speed as well as parallel
scalability. One stress test is to have each part migrate 10,000 elements to the neigh-
boring part. Running this test with an input mesh of 1.6 billion elements in 16,000
parts takes 12 seconds when using 16,000 cores of the CCI BlueGene/Q.

5.3. Memory Cost

Figure 9 shows the memory used to store an identical 100K* element tetrahedral
mesh using MOAB, GRUMMP, STK, and PUMI. PUMI uses less memory than other
modifiable structures, sometimes up to 3 times less. Furthermore, PUMI uses only 2
times more memory than the simplest nonmodifiable representation.

5.4. Full Stack Scaling

In order to test the capability of the hybrid MPI-thread system, pcu, a 1.6-billion-
element mesh is created using up to 16K cores of the Blue Gene/Q. Mesh generation
begins with a 4-part, 400K-element tetrahedral mesh and proceeds so as to maintain

41K = 1,024.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:21

500

" meshread —¥—
mesh write --—f--
uniform refinement —8H—
local Zoltan --{=--
400 | migration —l—
300 |
w
©
| =
o
v
b
200
it & : |
100 L e - " ¢
---------------- *
0 X 3 X = --%; : :
4 8 16 32 64 128 256 512 1024 2048

input parts

Fig. 10. Scaling results with threads up to 1.6 billion elements and 16K parts.

35 T T T T
maximum ' -
- average --3x---

25

20

neighbors

15

10

4 16 64 256 1024 4096 16384
parts

Fig. 11. Part neighborhood size increase during scaling.

a part density of 100K elements per part. Each up-scaling repartitioning step begins
with uniform mesh refinement, which multiplies the element count by 8. Following
that, the PUMI-Zoltan interface is applied locally to each part, splitting it into eight
new parts. For each part, seven new threads are created, and interthread migration
is used to distribute the elements among the eight threads according to the Zoltan
output. During each step, we start with two processes per node, which results in 16
threads per node or one thread per core at the end. Figure 10 shows the time consumed
by each step of this workflow as the number of parts is increased from four to 16K. The
final step converts 2K parts into 16K parts.

Note that the increase in migration time in this scaling study can most likely be
attributed to the fact that as the mesh is further refined and partitioned, the average
and maximum number of parts adjacent to each part increases. This is illustrated in
Figure 11. This in turn affects the number of messages that have to be exchanged, and
migration time is dominated by waiting for messages to exchange. For good, contiguous
3D partitions, the maximum number of neighbors should have an asymptotic limit,
although this scaling study did not reach this theoretical ceiling.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:22 D. A. Ibanez et al.

actuator
parameters

i NS finite
Parameters elements

Parasolid Physics and Model Parameters

non-manifold
model construction

gmi_parasolid

attributed non-
manifold topology

PUMI

mds with partition model

Zoltan and ParMA

geometric
interrogation and

mesh with fields

mesh with ﬁelds mesh with ﬁelds

Fig. 13. Cut views of the initial (left) and adapted (right) anisotropic boundary layer meshes for NASA
TrapWing [Chitale et al. 2014].

6. APPLICATIONS
6.1. Active Flow Control

PHASTA [Jansen et al. 2000; Whiting et al. 2003] is an effective implicit finite element-
based CFD code for bridging a broad range of time and length scales in various flows
including turbulent ones (based on URANSS, DES, LES, DNS). It has been applied
with anisotropic adaptive algorithms [Sahni et al. 2006, 2008, 2009; Ovcharenko et al.
2013] along with advanced numerical models of flow physics [Hughes et al. 2000;
Tejada-Martinez and Jansen 2005, 2006]. Modeling large-scale aerodynamic problems
and active flow control’s effects on large-scale flow changes (for instance, reattachment
of separated flow or virtual aerodynamic shaping of lifting surfaces) from microscale
input [Amitay et al. 1998; Glezer and Amitay 2002; Sahni et al. 2011] requires an
efficient parallel adaptive workflow.

A workflow supporting parallel adaptive PHASTA flow simulations based on the
component workflow in Figure 1 is given in Figure 12. Figure 13 shows the initial and
adapted mesh near the leading edge of the TrapWing NASA test case [Chitale et al.
2014]. In this test, the Argonne Leadership Computing Facility’s IBM BlueGene Q Mira
system is used. The Mira system provides four hardware threads per core. Running
this workflow in the Mira system with four MPI processes per core, PHASTA achieved

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

PUMI: Parallel Unstructured Mesh Infrastructure 17:23

process
parameters

GDS2 to Parasolid and physical solid mechanics
Parasolid to GeomSim Barameters finite elements

GeomSim o 0852 Albany/Trilinos
attributed non- "
manifold topology e element order
el integration rule
s S
e

PUMI and/or Simmetrix

gmi or GeomSim

GDS2 Layout/Process Data Physics and Model Parameters

msd with partition model geometric
or MeshSim interrogation and
—>
Zoltan and ParMA mesh with fields
mesh with fields mesh with fields
K e ection based Mot
IiaraV1eX jection-based Me

Fig. 14. Workflow of parallel Albany adaptive loop.

mesh size field

strong scaling in mesh-based computations on up to 786,432 cores using 3,145,728 MPI
processes with a 92-billion-element mesh [Rasquin et al. 2015].

Key to this scaling and the efficiency of the workflow is controlling the load balance
through PUMI interfaces to Zoltan and ParMA load-balancing and partitioning tools.
The workflow invokes load balancing after parallel mesh generation, during general
unstructured mesh adaptation and before execution of PHASTA. Dynamic partitioning
using a combination of ParMA and Zoltan is executed after parallel mesh generation to
reach the partition sizes needed by mesh adaptation and PHASTA. During mesh adap-
tation, ParMA predictive load-balancing procedures are used to ensure that system
memory is not exhausted and the resulting mesh is balanced. Lastly, before PHASTA
execution, ParMA multicriteria diffusive procedures are performed to reduce both the
mesh element and mesh vertex imbalance. During each of these stages, the association
of PHASTA solution data with mesh entities is maintained via field migration and local
solution transfer procedures.

An in-memory coupling supporting a parallel adaptive PHASTA analysis loop using
the components depicted in Figure 12 is enabled through a functional interface to the
FORTRAN 77/90-based flow solver. Through the use of FORTRAN 2003 iso_c_bindings,
this interface supports interoperability with C/C++ components, the control of solver
execution, and the interrogation and management of solver data structures.

6.2. Albany Adaptive Loop

Albany [Albany Web 2015] is a general-purpose finite element code built on the Trili-
nos framework [Heroux et al. 2005; Trilinos Web 2015], both of which are developed
primarily at Sandia National Laboratories. This code is highly extensible, allowing the
creation of new finite element numerical methods, which makes it an ideal platform
for research in finite elements. The design of Albany is parallel from the start, and also
includes an abstract interface for discretization storage (i.e., a mesh database), as well
as various adaptivity codes.

As illustrated in Figure 14, PUMI was used to form a parallel adaptive loop using
Albany and MeshAdapt [Li et al. 2005; Alauzet et al. 2006]. This is entirely an in-
memory coupling: the mesh database provides simple connectivity arrays and field
data arrays to Albany for analysis, which Albany returns after a specified number of
analysis steps on an unchanging mesh.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

17:24 D. A. Ibanez et al.

Fig. 15. Initial (left) and adapted mesh showing the Von Mises stress field that guides adaptivity (right).

Once the data is back in PUMI structures, mesh adaptivity can be invoked on them
to produce a new mesh, and solution transfer of key solution variables allows this new
state to be sent back to Albany for further analysis, resulting in a self-contained, in-
memory adaptive finite element code. The rich encoding of the PUMI mesh means that
it is almost always a superset of the mesh information required for an analysis code.
As such, we were able to convert not only to connectivity structures used internally
by Albany but also to another mesh data structure known as STK, which is a part of
the Trilinos framework. This makes PUMI more interoperable with any finite element
codes involving the Trilinos framework. Figure 15 illustrates the initial and adapted
mesh in large deformation analysis with Albany adaptive loop.

7. CLOSING REMARKS

PUMI is a parallel unstructured mesh infrastructure designed to support adaptive
analysis simulations on massively parallel computers with an enriched set of dis-
tributed mesh control routines. In this article, we discussed a rich design, software
structure, example programs, performance results, and two applications. The in-depth
study toward extreme-scale performance continues since it requires an optimized or-
chestration of a complicated interplay of the problem statement, programming tech-
niques, architecture knowledge (processor, memory, I/O, and network interconnections),
and balance between computational and communication loads [ASCAC Web 2015;
LLNL HPC Web 2015].

Except for gmi_acis, gmi_geomsim, and gmi_parasolid, which directly interact with
commercial modeling kernels, all PUMI libraries are open-source programs download-
able at https:/github.com/SCOREC/core.git. In the same source repository, the users
can download MeshAdapt, ParMA, and many useful example programs. For more in-
formation on PUMI, visit http://www.scorec.rpi.edu/pumi.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

ACIS Web. 2015. 3D ACIS Modeling. (2015). http:/spatial.com/products/3d-acis-modeling.

Frédérik Alauzet, Xiangrong Li, E. Seegyoung Seol, and Mark S. Shephard. 2006. Parallel anisotropic
3D mesh adaptation by mesh modification. Engineering with Computers 21, 3 (Jan. 2006), 247-258.
DOI:http://dx.doi.org/10.1007/s00366-005-0009-3

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

http://www.scorec.rpi.edu/pumi
http://dx.doi.org/10.1007/s00366-005-0009-3

PUMI: Parallel Unstructured Mesh Infrastructure 17:25

Albany Web. 2015. Albany: a component-based partial differential equation code built on Trilinos. (2015).
https://github.com/gahansen/Albany/wiki.

Micheal Amitay, Barton L. Smith, and Ari Glezer. 1998. Aerodynamic flow control using synthetic jet tech-
nology. In 36th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and
Astronautics. DOI : http://dx.doi.org/10.2514/6.1998-208

APF Web. 2015. APF: A Parallel Field Library. (2015). http://www.scorec.rpi.edu/apf.

ASCAC Web. 2015. ASCAC: Advanced Scientific Commuting Advisory Committee of U.S. Department of
Energy. Retrieved from http://science.energy.gov/ascr/ascac.

Mark W. Beall. 1999. An Object-Oriented Framework for the Reliable Automated Solution of Problems in
Mathematical Physics. Ph.D. Dissertation. Rensselaer Polytechnic Institute, Troy, NY.

Mark W. Beall and Mark S. Shephard. 1997. A general topology-based mesh data structure. International
Journal of Numerical Methods in Engineering 40, 9 (May 1997), 1573-1596. DOI:http://dx.doi.org/
10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.C0O;2-9

Mark W. Beall, Joe Walsh, and Mark S. Shephard. 2004. A comparison of techniques for geometry ac-
cess related to mesh generation. Engineering with Computers 20, 3 (Sep. 2004), 210-221. DOI:http://
dx.doi.org/10.1007/s00366-004-0289-z

Erik G. Boman, Umit V. Catalyiirek, Cédric Chevalier, and Karen D. Devine. 2012. The Zoltan and Isorropia
parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring. Scientific
Programming 20, 2 (2012), 129-150.

CCI Web. 2015. CCIL: Center for Computational Innovations, Rensselaer Polytechnic Institute. Retrieved
from http://cci.rpi.edu.

Waldemar Celes, Glaucio H. Paulino, and Rodrigo Espinha. 2005a. A compact adjacency-based topological
data structure for finite element mesh representation. International Journal of Numerical Methods in
Engineering 64, 11 (2005), 1529-1556.

Waldemar Celes, Glaucio H. Paulino, and Rodrigo Espinha. 2005b. A compact adjacency-based topological
data structure for finite element mesh representation. International Journal of Numerical Methods in
Engineering. 64, 11 (Nov. 2005), 1529-1556. DOI : http://dx.doi.org/10.1002/nme.1440

Kedar C. Chitale, Onkar Sahni, Mark S. Shephard, Saurabh Tendulkar, and Kenneth E. Jansen. 2014.
Anisotropic adaptation for transonic flows with turbulent boundary layers. AIAA Journal 53, 2 (2014),
367-378. DOI:http://dx.doi.org/10.2514/1.J053159

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. 2002. Zoltan data
management services for parallel dynamic applications. Computing in Science and Engineering 4, 2
(2002), 90-97.

Vladimir Dyedov, Navamita Ray, Daniel Einstein, Xiangmin Jiao, and Timothy J. Tautges. 2014. AHF: Array-
based half-facet data structure for mixed-dimensional and non-manifold meshes. In Proceedings of the
22nd International Meshing Roundtable. Springer, 445-464.

H. Carter Edwards, Alan B. Williams, Gregory D. Sjaardema, David G. Baur, and William K. Cochran. 2010.
SIERRA toolkit computational mesh conceptual model. Sandia National Laboratories SAND Series,
SANDZ2010-1192 (2010).

FASTMath DOE SciDAC Web. 2015. FASTMath: Applied Mathematics Algorithms, Tools, and Software for
HPC Applications. Retrieved from http://www.fastmath-scidac.org.

Joe E. Flaherty, Raymond M. Loy, Mark S. Shephard, Boleslaw K. Szymanski, James D. Teresco, and Louis
H. Ziantz. 1997. Predictive load balancing for parallel adaptive finite element computation. In Proceed-
ings of International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA97), Xiangmin Jiao and Jean-Christophe Weill (Eds.), Vol. 1. 460-469.

Azat Yu Galimov, Onkar Sahni Jr., Richard T. Lahey, Mark S. Shephard, Donald A. Drew, and Kenneth E.
Jansen. 2010. Parallel adaptive simulation of a plunging liquid jet. Acta Mathematica Scientia 30, 2
(Mar. 2010), 522-538. DOI : http://dx.doi.org/10.1016/S0252-9602(10)60060-4

Rao V. Garimella. 2002. Mesh data structure selection for mesh generation and FEA applications. In-
ternational Journal of Numerical Methods in Engineering. 55 (2002), 451-478. D0OI:http://dx.doi.org/
10.1002/nme.509

GeomSim Web. 2015. GeomSim: Direct Geometry Access. Retrieved from http:/www.simmetrix.com/
products/Simul-ationModelingSuite/geomsim/geomsim.html.

Ari Glezer and Micheal Amitay. 2002. Synthetic jets. Annual Review of Fluid Mechanics 34 (Jan. 2002),
503-529. DOI : http://dx.doi.org/10.1146/annurev.fluid.34.090501.094913

GRUMMP Web. 2015. Generation and Refinement of Unstructured, Mixed-Element Meshes. (2015).
http://tetra.mech.ubc.ca/GRUMMP.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

https://github.com/gahansen/Albany/wiki
http://dx.doi.org/10.2514/6.1998-208
http://www.scorec.rpi.edu/apf
http://science.energy.gov/ascr/ascac
<url>http://dx.doi.org/10.1002/(SICI)1097-0207(19970515)40:9lt;1573::AID-NME128gt;3.0.CO;2-9
<url>http://dx.doi.org/10.1002/(SICI)1097-0207(19970515)40:9lt;1573::AID-NME128gt;3.0.CO;2-9
http://dx.doi.org/10.1007/s00366-004-0289-z
http://dx.doi.org/10.1007/s00366-004-0289-z
http://cci.rpi.edu
http://dx.doi.org/10.1002/nme.1440
http://dx.doi.org/10.2514/1.J053159
http://www.fastmath-scidac.org
http://dx.doi.org/10.1016/S0252-9602(10)60060-4
http://dx.doi.org/10.1002/nme.509
http://dx.doi.org/10.1002/nme.509
http://www.simmetrix.com/products/Simul-ationModelingSuite/geomsim/geomsim.html.</url>
http://www.simmetrix.com/products/Simul-ationModelingSuite/geomsim/geomsim.html.</url>
http://dx.doi.org/10.1146/annurev.fluid.34.090501.094913
http://tetra.mech.ubc.ca/GRUMMP

17:26 D. A. Ibanez et al.

Glen Hansen and Steve Owen. 2008. Mesh generation technology for nuclear reactor simulation; barri-
ers and opportunities. Journal of Nuclear Engineering and Design 238, 10 (Oct. 2008), 2590-2605.
DOI:http://dx.doi.org/10.1016/j.nucengdes.2008.05.016

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda,
Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. 2005. An
overview of the Trilinos project. ACM Transaction on Mathematical Software (TOMS) - Special Issue
on the Advanced ComputaTional Software (ACTS) Collection 31, 3 (Sep. 2005), 397—423. DOI:http:/
dx.doi.org/10.1145/1089014.1089021

Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2010. Scalable communication protocols for
dynamic sparse data exchange. ACM Sigplan Notices 45, 5 (2010), 159-168.

Thomas J. R. Hughes, Luca Mazzei, and Kenneth E. Jansen. 2000. Large-eddy simulation and the
variational multiscale method. Computing and Visualization in Science 3, 1-2 (May 2000), 47-59.
DOI: http://dx.doi.org/10.1007/s007910050051

Daniel A. Ibanez, Ian Dunn, and Mark S. Shephard. 2016. Hybrid MPI-thread parallelization of adaptive
mesh operations. Parallel Comput. 52 (feb. 2016), 133—-143. DOI:http://dx.doi.org/doi:10.1016/j.parco.
2016.01.003

iMeshP Web. 2015. iMeshP: SciDAC ITAPS Parallel Mesh Interface. Retrieved from http://www.itaps.
org/software/iMeshP_html.

ITAPS Web. 2015. ITAPS: Interoperable Technologies for Advanced Petascale Simulations of Depart-
ment of Energy’s Scientific Discovery through Advanced Computing (SciDAC). Retrieved from
http://www.itaps.org.

Kenneth E. Jansen, Christian H. Whiting, and Gregory M. Hulbert. 2000. A generalized-o method for
integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer
Methods in Applied Mechanics and Engineering 190, 3—4 (Oct. 2000), 305-319. DOI:http://dx.doi.org/
10.1016/S0045-7825(00)00203-6

Anil K. Karanam, Kenneth E. Jansen, and Christian H. Whiting. 2008. Geometry based pre-processor for
parallel fluid dynamic simulations using a hierarchical basis. Engineering with Computers 24, 1 (Jan.
2008), 17-26. DOI : http://dx.doi.org/10.1007/s00366-007-0063-0

Orion S. Lawlor, Sayantan Chakravorty, Terry L. Wilmarth, Nilesh Choudhury, Issac Dooley, Gengbin Zheng,
and Laxmikant V. Kalé. 2006. Parfum: A parallel framework for unstructured meshes for scalable
dynamic physics applications. Engineering with Computers 22, 3 (Dec. 2006), 215-235. DOI:http:/dx.
doi.org/10.1007/s00366-006-0039-5

Xiangrong Li, Mark S. Shephard, and Mark W. Beall. 2005. 3D anisotropic mesh adaptation by mesh
modification. Computer Methods in Applied Mechanics and Engineering 194, 48-49 (Nov. 2005), 4915—
4950. DOI : http://dx.doi.org/10.1016/j.cma.2004.11.019

LLNL HPC Web. 2015. High Performance Computing Training, Lawrence Livermore National Laboratory.
Retrieved from http:/computing.linl.gov/training.

Xiao-Juan Luo, Mark S. Shephard, Lie-Quan Lee, Lixin Ge, and Cho Ng. 2011. Moving curved mesh
adaption for higher-order finite element simulations. Engineering with Computers 27 (2011), 41-50.
DOI:http://dx.doi.org/10.1007/s00366-010-0179-5

MeshAdapt Web. 2015. MeshAdapt: Parallel Unstructured Mesh Adaptation Library. Retrieved from
http://www.scorec.rpi.edu/meshadapt.

MeshSim Web. 2015. MeshSim: Mesh Matching. Retrieved from http://www.simmetrix.com/products/
SimulationMod-elingSuite/MeshSim/MeshMatching/MeshMatching.html.

NetCDF Web. 2015. NetCDF: Network Common Data Form. Retrieved from http://www.unidata.ucar.
edu/software/netcdf.

Robert M. O’Bara, Mark W. Beall, and Mark S. Shephard. 2002. Attribute management system for en-
gineering analysis. Engineering with Computers 18 (2002), 339-351. DOI:http://dx.doi.org/10.1007/
s00366020030

Carl Ollivier-Gooch, Lori F. Diachin, Mark S. Shephard, Tim J. Tautges, Jason A. Kraftcheck, Vitus
Leung, Xiaojuan Luo, and Mark Miller. 2010. An interoperable, data-structure-neutral component
for mesh query and manipulation. ACM Transactions on Mathematical Software 37, 3 (Sep. 2010).
DOI:http://dx.doi.org/10.1145/1824801.1864430

Aleksandr Ovcharenko, Kedar C. Chitale, Onkar Sahni, Kenneth E. Jansen, and Mark S. Shephard. 2013.
Parallel adaptive boundary layer meshing for CFD analysis. In Proceedings of the 21st International
Meshing Roundtable, Xiangmin Jiao and Jean-Christophe Weill (Eds.). Springer, Berlin, 437-455.
DOI:http://dx.doi.org/10.1007/978-3-642-33573-0_26

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

http://dx.doi.org/10.1016/j.nucengdes.2008.05.016
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1145/1089014.1089021
http://dx.doi.org/10.1007/s007910050051
http://dx.doi.org/doi:10.1016/j.parco.2016.01.003
http://dx.doi.org/doi:10.1016/j.parco.2016.01.003
http://www.itaps.org/software/iMeshPhtml
http://www.itaps.org/software/iMeshPhtml
http://www.itaps.org
http://dx.doi.org/10.1016/S0045-7825(00)00203-6
http://dx.doi.org/10.1016/S0045-7825(00)00203-6
http://dx.doi.org/10.1007/s00366-007-0063-0
http://dx.doi.org/10.1007/s00366-006-0039-5
http://dx.doi.org/10.1007/s00366-006-0039-5
http://dx.doi.org/10.1016/j.cma.2004.11.019
http://computing.llnl.gov/training
http://dx.doi.org/10.1007/s00366-010-0179-5
http://www.scorec.rpi.edu/meshadapt
http://www.simmetrix.com/products/SimulationMod-elingSuite/MeshSim/MeshMatching/MeshMatching.html.
http://www.simmetrix.com/products/SimulationMod-elingSuite/MeshSim/MeshMatching/MeshMatching.html.
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://dx.doi.org/10.1007/s00366020030
http://dx.doi.org/10.1007/s00366020030
http://dx.doi.org/10.1145/1824801.1864430
http://dx.doi.org/10.1007/978-3-642-33573-0_26

PUMI: Parallel Unstructured Mesh Infrastructure 17:27

Malcolm J. Panthaki, Raikanta Sahu, and Walter H. Gerstle. 1997. An object-oriented virtual geome-
try interface. In Proceedings of the 6th International Meshing Roundtable. Springer, Berlin, 67-82.
http://www.imr.sandia.gov/papers/abstracts/Pa54.html.

Parasolid Web. 2015. Parasolid: 3D Geometric Modeling Engine. (2015). http:/www.plm.automation.
siemens.com/en_us/products/open/parasolid.

PUMI Web. 2015. PUMI: Parallel Unstructured Mesh Infrastructure. (2015). http://www.scorec.rpi.edu/pumi.

Michel Rasquin, Cameron W. Smith, Kedar Chitale, E. Seegyoung Seol, Ben Matthews, J. Martin, Onkar
Sahni, Raymond Loy, Mark S. Shephard, and Kenneth E. Jansen. 2015. Scalable fully implicit finite
element flow solver with application to high-fidelity flow control simulations on a realistic wind design.
Computing in Science and Engineering (2015). accepted.

Jean-Frangois Remacle and Mark S. Shephard. 2003. An algorithm oriented mesh database. Interna-
tional Journal of Numerical Methods in Engineering 58, 2 (Sep. 2003), 349-374. D01 : http:/dx.doi.org/
10.1002/nme.774

Onkar Sahni, Kenneth E. Jansen, Mark S. Shephard, Charles A. Taylor, and Mark W. Beall. 2008. Adaptive
boundary layer meshing for viscous flow simulations. Engineering with Computers 24, 3 (Sep. 2008),
267—-285. DOI : http://dx.doi.org/10.1007/s00366-008-0095-0

Onkar Sahni, Kenneth E. Jansen, Charles A. Taylor, and Mark S. Shephard. 2009. Automated adaptive
cardiovascular flow simulations. Engineering with Computers 25, 1 (2009), 25-36. DOI : http:/dx.doi.org/
10.1007/s00366-008-0110-5

Onkar Sahni, Jens Miiller, Kenneth E. Jansen, Mark S. Shephard, and Charles A. Taylor. 2006. Efficient
anisotropic adaptive discretization of cardiovascular system. Computer Methods in Applied Mechanics
and Engineering 195, 41-43 (Aug. 2006), 5634-5655. DOI : http://dx.doi.org/10.1016/j.cma.2005.10.018

Onkar Sahni, Joshua Wood, Kenneth E. Jansen, and Michael Amitay. 2011. Three-dimensional interactions
between a finite-span synthetic jet and a crossflow. Journal of Fluid Mechanics 671 (2011), 254—287.
http://dx.doi.org/10.1017/50022112010005604

Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel static and dynamic multi-constraint graph
partitioning. Concurrency and Computation: Practice and Experience 14, 3 (Mar. 2002), 219-240.

Larry A. Schoof and Victor R. Yarberry. 1994. EXODUS II: A Finite Element Data Model. Technical Report
SAND92-2137. Sandia National Laboratories, Albuquerque, NM 87158 and Livermore, CA 94550.

E. Seegyoung Seol. 2005. FMDB: Flexible Distributed Mesh Database for Parallel Automated Adaptive Anal-
ysis. Ph.D. Dissertation. Rensselaer Polytechnic Institute, Troy, NY.

E. Seegyoung Seol and Mark S. Shephard. 2006a. Efficient distributed mesh data structure for parallel
automated adaptive analysis. Engineering with Computers 22, 3—4 (2006), 197-213.

E. Seegyoung Seol and Mark S. Shephard. 2006b. Efficient distributed mesh data structure for parallel
automated adaptive analysis. Engineering with Computers 22, 3 (Dec. 2006), 197-213. DOI:http:/dx.
doi.org/10.1007/s00366-006-0048-4

E. Seegyoung Seol, Cameron W. Smith, Daniel A. Ibanez, and Mark S. Shephard. 2012. A parallel unstruc-
tured mesh infrastructure. High Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion (Nov. 2012), 1124-1132. DOI : http://dx.doi.org/10.1109/SC.Companion.2012.135

Mark S. Shephard. 2000. Meshing environment for geometry-based analysis. International Journal of Nu-
merical Methods in Engineering 47, 1-3 (Jan. 2000), 169-190.

Mark S. Shephard and E. Seegyoung Seol. 2009. Flexible distributed mesh data structure for paral-
lel adaptive analysis. In Advanced Computational Infrastructures for Parallel and Distributed Ap-
plications, Manish Parashar and Xiaolin Li (Eds.). Wiley, 407—435. DOI:http:/dx.doi.org/10.1002/
9780470558027.ch19

Mark S. Shephard, Cameron Smith, E. Seegyoung Seol, and Onkar Sahni. 2013. Methods and tools for
parallel anisotropic mesh adaptation and analysis. In VI International Conference on Adaptive Modeling
and Simulation (ADMOS’13), J. P. Moitinho de Almeida, P. Diez, C. Tiago, and N. Parés (Eds.). The
European Community in Computational Methods in Applied Sciencies (ECCOMAS), Lisbon, Portugal.

Simmetrix Web. 2015. Simmetrix: Simulation Modeling and Application Suite. Retrieved from http:/
www.simmetrix.com.

Tim J. Tautges. 2001. CGM: A geometry interface for mesh generation, analysis and other applications.
Engineering with Computers 17, 3 (Oct. 2001), 299-314. DOI : http://dx.doi.org/10.1007/PL00013387

T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. 2004a. MOAB: A Mesh-Oriented Database.
SAND2004-1592. Sandia National Laboratories. Report.

Tim J. Tautges, Ray Meyers, Karl Merkley, Clint Stimpson, and Corey Ernst. 2004b. MOAB: A Mesh-Oriented
Database. Technical Report SAND2004-1592. Sandia National Laboratories, Albuquerque, NM 87158
and Livermore, CA 94550.

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

http://www.imr.sandia.gov/papers/abstracts/Pa54.html
http://www.plm.automation.siemens.com/enus/products/open/parasolid
http://www.plm.automation.siemens.com/enus/products/open/parasolid
http://www.scorec.rpi.edu/pumi
http://dx.doi.org/10.1002/nme.774
http://dx.doi.org/10.1002/nme.774
http://dx.doi.org/10.1007/s00366-008-0095-0
http://dx.doi.org/10.1007/s00366-008-0110-5
http://dx.doi.org/10.1007/s00366-008-0110-5
http://dx.doi.org/10.1016/j.cma.2005.10.018
http://dx.doi.org/10.1017/S0022112010005604
http://dx.doi.org/10.1007/s00366-006-0048-4
http://dx.doi.org/10.1007/s00366-006-0048-4
http://dx.doi.org/10.1109/SC.Companion.2012.135
http://dx.doi.org/10.1002/9780470558027.ch19
http://dx.doi.org/10.1002/9780470558027.ch19
http://www.simmetrix.com
http://www.simmetrix.com
http://dx.doi.org/10.1007/PL00013387

17:28 D. A. Ibanez et al.

Andrés E. Tejada-Martinez and Kenneth E. Jansen. 2005. On the interaction between dynamic
model dissipation and numerical dissipation due to streamline upwind/Petrov-Galerkin stabiliza-
tion. Computer Methods in Applied Mechanics and Engineering 194, 9—11 (Mar. 2005), 1225-1248.
DOI:http://dx.doi.org/10.1016/j.cma.2004.06.037

Andrés E. Tejada-Martinez and Kenneth E. Jansen. 2006. A parameter-free dynamic subgrid-scale model for
large-eddy simulation. Computer Methods in Applied Mechanics and Engineering 195, 23 (Apr. 2006),
2919-2938. DOI : http:/dx.doi.org/10.1016/j.cma.2004.09.016

Saurabh Tendulkar, Mark W. Beall, Mark S. Shephard, and Kenneth E. Jansen. 2011. Parallel mesh gen-
eration and adaptation for CAD geometries. In Proceedings of the NAFEMS World Congress. Boston,
MA.

Trilinos Web. 2015. The Trilinos Project: Sandia National Laboratories. (2015). http://trilinos.sandia.gov.

VTK Web. 2015. VTK: Visualization Toolkit. (2015). http:/www.vtk.org.

K. J. Weiler. 1988. The radial-edge structure: A topological representation for non-manifold geometric bound-
ary representations. In Geometric Modeling for CAD Applications: Selected and Expanded Papers from
the lfip Wg 5.2 Working Conference, M. J. Wozny, H. W. McLaughlin, and Jose L. Encarnacao (Eds.).
Elsevier Science, 3-36.

Christian H. Whiting, Kenneth E. Jansen, and Saikat Dey. 2003. Hierarchical basis for stabilized finite
element methods for compressible flows. Computer Methods in Applied Mechanics and Engineering 192,
47-48 (2003), 5167-5185. http://dx.doi.org/10.1016/j.cma.2003.07.011

Ting Xie, E. Seegyoung Seol, and Mark S. Shephard. 2014. Generic components for petascale adap-
tive unstructured mesh-based simulations. Engineering with Computers 30, 1 (Jan. 2014), 79-95.
DOI:http://dx.doi.org/10.1007/s00366-012-0288-4

Min Zhou, Onkar Sahni, Karen D. Devine, Mark S. Shephard, and Kenneth E. Jansen. 2010a. Controlling
unstructured mesh partitions for massively parallel simulations. SIAM Journal on Scientific Computing
32, 6 (Nov. 2010), 3201-3227. DOI : http://dx.doi.org/10.1137/090777323

Min Zhou, Onkar Sahni, H. Jin Kim, C. Alberto Figueroa, Charles A. Taylor, Mark S. Shephard, and Kenneth
E. Jansen. 2010b. Cardiovascular flow simulation at extreme scale. Computational Mechanics 46, 1
(2010), 71-82. DOI : http://dx.doi.org/10.1007/s00466-009-0450-z

Min Zhou, Onkar Sahni, Ting Xie, Mark S. Shephard, and Kenneth E. Jansen. 2012a. Unstructured mesh
partition improvement for implicit finite element at extreme scale. Journal of Supercomputing 59, 3
(Mar. 2012), 1218-1228. DOI : http://dx.doi.org/10.1007/s11227-010-0521-0

Min Zhou, Ting Xie, E. Seegyoung Seol, Mark S. Shephard, Onkar Sahni, and Kenneth E. Jansen. 2012b.
Tools to support mesh adaptation on massively parallel computers. Engineering with Computers 28, 3
(Jul. 2012), 287-301. DOI : http://dx.doi.org/10.1007/s00366-011-0218-x

Received March 2014; revised April 2015; accepted August 2015

ACM Transactions on Mathematical Software, Vol. 42, No. 3, Article 17, Publication date: May 2016.

http://dx.doi.org/10.1016/j.cma.2004.06.037
http://dx.doi.org/10.1016/j.cma.2004.09.016
http://trilinos.sandia.gov
http://www.vtk.org
http://dx.doi.org/10.1016/j.cma.2003.07.011
http://dx.doi.org/10.1007/s00366-012-0288-4
http://dx.doi.org/10.1137/090777323
http://dx.doi.org/10.1007/s00466-009-0450-z
http://dx.doi.org/10.1007/s11227-010-0521-0
http://dx.doi.org/10.1007/s00366-011-0218-x

