DANIEL A. IBANEZ, E. SEEGYOUNG SEOL, CAMERON W. SMITH, and MARK S. SHEPHARD, Rensselaer Polytechnic Institute

The Parallel Unstructured Mesh Infrastructure (PUMI) is designed to support the representation of, and operations on, unstructured meshes as needed for the execution of mesh-based simulations on massively parallel computers. In PUMI, the mesh representation is *complete* in the sense of being able to provide any adjacency of mesh entities of multiple topologies in O(1) time, and *fully distributed* to support relationships of mesh entities across multiple memory spaces in a manner consistent with supporting massively parallel simulation workflows. PUMI's mesh maintains links to the high-level model definition in terms of a model topology as produced by CAD systems, and is specifically designed to efficiently support evolving meshes as required for mesh generation and adaptation. To support the needs of parallel unstructured mesh simulations, PUMI also supports a specific set of services such as the migration of mesh entities between parts while maintaining the mesh adjacencies, maintaining read-only mesh entity copies from neighboring parts (ghosting), repartitioning parts as the mesh evolves, and dynamic mesh load balancing.

Here we present the overall design, software structures, example programs, and performance results. The effectiveness of PUMI is demonstrated by its applications to massively parallel adaptive simulation workflows.

Additional Key Words and Phrases: Unstructured mesh, partial differential equation simulation, hybrid MPI/thread, massively parallel

#### **ACM Reference Format:**

Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S. Shephard. 2016. PUMI: Parallel unstructured mesh infrastructure. ACM Trans. Math. Softw. 42, 3, Article 17 (May 2016), 28 pages. DOI: http://dx.doi.org/10.1145/2814935

#### **1. INTRODUCTION**

Many areas of application in science and engineering benefit greatly by the application of reliable and accurate mesh-based simulations solving appropriate sets of partial differential equations (PDEs) over general domains. Unstructured mesh finite volume and finite element methods have the advantage of being able to solve problems over geometrically complex physical domains using meshes that can be automatically generated and anisotropically adapted, and to effectively provide the level of solution accuracy desired with two or more orders of magnitude fewer unknowns than

© 2016 ACM 0098-3500/2016/05-ART17 \$15.00

DOI: http://dx.doi.org/10.1145/2814935

This work is supported by the Department of Energy (DOE) Office of Science's Scientific Discovery through Advanced Computing (SciDAC) Institute as part of the Frameworks, Algorithms, and Scalable Technologies for Mathematics (FASTMath) program under grant DE-SC0006617.

Authors' addresses: D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, Scientific Computation Research Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, U.S.A.; emails: {ibaned, seols, smithc11, shephard}@rpi.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

uniform mesh techniques. However, the gains in efficiency (many fewer unknowns) and generality (fully automatic mesh generation and control) come at the cost of more complex data structures and algorithms, particularly when considering meshes with billions of entities solved on massively parallel computers. Although the calculation time is dominated by solving the discretized equation (the classic analysis code), the total simulation time and expense are dominated by the creation of the spatial discretization (meshes) and linkage of mesh-based simulation data between coupled analyses. For example, a recent study of the needs of nuclear reactor simulations indicated that only 4% of the time was spent in running the simulation, while the execution of geometry and meshing issues took 73% of the time [Hansen and Owen 2008].

The bottlenecks caused by the generation and control of meshes as well as the interactions between meshes and simulation data only increase when efforts to ensure the simulation reliability, through the application of adaptive control and uncertainty quantification, are applied. Two requirements must be met to eliminate these bottlenecks. The first is full automation of all steps in going from the original problem definition to the final results since any step that is not automated is doomed to be a bottleneck due to the combination of high latency, slow data transfer rate, and serial processing that is inevitable when a human is in the loop. The second is that all steps be executed in parallel on the same massively parallel computer that the finite element or finite volume mesh is solved on to avoid the bottlenecks of data transfer through files.

There exist several libraries capable of representing unstructured finite element meshes. STK is a parallel array-based mesh library developed at Sandia National Laboratories with some modifiability but as yet no general adaptive capability [Edwards et al. 2010]. MOAB is another parallel array-based mesh library developed at Argonne National Laboratory that uses a comparatively small memory with limited modifiability [Tautges et al. 2004a]. Work by Celes, Paulino, and Espinha includes a modifiable, adaptive structure in which elements point to their vertices and to adjacent elements, while vertices point to one adjacent element [Celes et al. 2005a]. In collaboration with MOAB, a more modifiable structure called AHF was developed, which can be thought of as using the scheme of Celes et al. 2014]. Ollivier-Gooch et al. have implemented the serial simplex mesh library GRUMMP, which is capable of adaptivity [GRUMMP Web 2015]. Finally, a predecessor to the libraries presented here is FMDB, a parallel C++ object-based mesh library well suited to general adaptivity [Seol and Shephard 2006a].

Parallel automated adaptive unstructured mesh simulations go from design models directly to fully parallel mesh generation, to a loop of unstructured mesh-based analysis, error estimation, and mesh adaptation. This article presents the Parallel Unstructured Mesh Infrastructure (PUMI) that supports parallel automated adaptive unstructured mesh simulations with reliable simulation results. PUMI is being developed as part of the DOE SciDAC FASTMath Institute [FASTMath DOE SciDAC Web 2015] to support a full range of operations on adaptively evolving unstructured meshes on massively parallel computers [Seol and Shephard 2006b; Seol et al. 2012; Zhou et al. 2012b; Xie et al. 2014]. When coupled with dynamic load-balancing procedures [Zhou et al. 2012a; Boman et al. 2012; Devine et al. 2002], PUMI provides an infrastructure to support parallel automated adaptive simulations, as indicated in Figure 1. Functions supported by PUMI include (1) a complete mesh topology, linked back to the original domain definition that ensures the ability to support any mesh-based application including fully automatic mesh generation and mesh adaptation; (2) a partition model to coordinate the interactions and communications of a mesh distributed in parts over the nodes of a parallel computer; and (3) utilities to support changing the mesh partitioning to maintain load balance for various operations such as a posteriori error estimation and mesh-based analysis. As shown in Figure 1, other components required for



Fig. 1. Simulation infrastructure.

automated adaptive simulations include a complete domain definition attributed with the required physical attributes (for instance, loads, material properties, and boundary conditions) [O'Bara et al. 2002], parallel mesh generation and adaptation, mesh-based analysis, correction indication to drive mesh adaptation, and visualization. A set of the parallel adaptive simulation workflows that have been developed following the structure of Figure 1 includes (1) combined FEM/PIC modeling of electromagnetics in particle accelerators [Luo et al. 2011], (2) modeling blood flow in the human arterial system [Zhou et al. 2010b], (3) two-phase simulation of jets [Galimov et al. 2010], and (4) industrial flow problems [Tendulkar et al. 2011; Shephard et al. 2013]. These simulation workflows have been executed on various AMD and Intel clusters, Cray XT5 and XE6 systems, and/or the three generations of IBM Blue Gene systems (L, P, and Q). PUMI has recently supported construction of a 92-billion-element mesh solved on 3/4 million compute cores [Rasquin et al. 2015].

This article provides an overview of PUMI, focusing on its design, software structures, examples, and applications on massively parallel computers. The fundamental concepts, definitions, and design are presented in Section 2. Sections 3 and 4 describe the software aspects and example programs, respectively. Section 5 provides the performance and scaling results. Section 6 presents two adaptive simulation applications to produce complete parallel simulation workflows. Finally, Section 7 discusses future directions of this work. For more interested readers, the Online Appendix presents algorithms of the core parallel functionalities of mesh migration and ghosting.

#### 1.1. Basic Notations

| V                        | the model, $V \in \{G, P, M\}$ , where G signifies the geometric model, P              |
|--------------------------|----------------------------------------------------------------------------------------|
|                          | signifies the partition model, and $M$ signifies the mesh.                             |
| $\{V\{V^d\}\}$           | a set of topological entities of dimension $d$ in model $V, V \in \{G, P, M\}$ .       |
|                          | d = 0 for vertex, $d = 1$ for edge, $d = 2$ for face, and $d = 3$ for region. For      |
|                          | instance, $\{M\{M^2\}\}$ is the set of all the faces in the mesh.                      |
| $V_i^d$                  | the $i^{th}$ entity of dimension $d$ in model $V, V \in \{G, P, M\}$ .                 |
| $\{\partial(M_i^d)\}$    | a set of mesh entities on the boundary of $M_i^d$ .                                    |
| $\{M_{i}^{d}\{M^{q}\}\}$ | a set of mesh entities of dimension q that are adjacent to $M_i^d$ . For               |
| •                        | instance, $\{M_3^1 \{M^3\}\}$ is a set of mesh regions adjacent to mesh edge $M_3^1$ . |

| $M^d_i \sqsubset G^q_j$ | the geometric classification indicating the unique association of mesh entity $M^d_i$ with geometric model entity $G^q_i$ , $d < q$ . |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $M^d_i \sqsubset P^q_j$ | the partition classification indicating the unique association of mesh entity $M_i^d$ with partition model entity $P_i^q$ , $d < q$ . |
| $\mathscr{P}[M_i^d]$    | a set of part ID(s) where mesh entity $M_i^d$ exists.                                                                                 |
| $M_i^d @P_j$            | mesh entity $M_i^d$ located in part $P_j$ .                                                                                           |

### 2. DEFINITIONS AND DESIGN

The structures used to support the problem definition, the discretization of the model, and their interactions are central to mesh-based analysis methods. A geometry-based analysis environment consists of four sets of problem specification information: *the geometric model*, which houses the topological and shape description of the domain of the problem; *the attributes*, describing the loads, material properties, and boundary conditions on the geometric model needed to define the physical problem; *the mesh*, which describes the discretized representation of the domain used by the analysis method; and *the fields*, which describe the distribution of input and solution tensors over the mesh entities [Beall 1999; Simmetrix Web 2015].

These four structures support the information flow between the functional components in a parallel adaptive simulation workflow (Figure 1). The mesh structure is at the core of the workflow since all the functional components of mesh generation, mesh adaptation, mesh-based analysis, correction indication, and solution transfer must interact with the mesh. In case of parallel adaptive simulations, the mesh data must meet the following criteria: (1) it is distributed in a manner consistent with the needs of the mesh-based analysis, (2) it is flexible enough to support parallel mesh generation and adaptation processes, and (3) it supports the transfer of geometry-based attributes to the mesh to define input fields. As the fields are directly related to the mesh, their parallel distribution is directly related to the distribution of the mesh.

### 2.1. Geometric Model and Mesh

The most common geometric representation is a boundary representation. A general representation of general nonmanifold domains is the Radial Edge Data Structure [Weiler 1988]. Nonmanifold models are common in engineering analyses. Simply speaking, nonmanifold models consist of general combinations of solids, surfaces, and wires. In the boundary representation, the model is a hierarchy of topological entities of regions, shells, faces, loops, edges, and vertices, and, in case of nonmanifold models, use entities for vertices, edges, loops, and faces are introduced to support the full range of entity adjacencies.

A mesh is a geometric discretization of a domain. With restrictions on the mesh entity topology [Beall and Shephard 1997], the mesh consists of a collection of mesh entities of controlled size, shape, and distribution, which are regions (3D), faces (2D), edges (1D), and vertices (0D) [Beall and Shephard 1997; Garimella 2002; Remacle and Shephard 2003; Celes et al. 2005b].

### 2.2. Classification

Each mesh entity  $M_i^d$  maintains a relation, called geometric classification, to a geometric model entity  $G_j^q$  that it was created to partially represent. Geometric classification is critical in mesh generation and adaptation [Beall and Shephard 1997; Beall 1999; Shephard 2000].

Definition 2.1 (Geometric Classification). The unique association of a mesh entity of dimension d,  $M_i^d$ , to a geometric model entity of dimension q,  $G_j^q$ , on which it lies



Fig. 2. Example of simple model (left) and mesh (right) showing their association via geometric classification [Beall and Shephard 1997; Beall 1999].

is termed geometric classification and is denoted  $M_i^d \sqsubset G_j^q$ ,  $(d \le q)$ . The classification symbol,  $\sqsubset$ , indicates that the left-hand entity, or a set of entities, is classified on the right-hand entity.

Figure 2 illustrates a simple square model (left) and the mesh (right). In the right figure, the arrows from mesh entities to model entities indicate their geometric classification. All interior mesh entities without arrows are classified on the model face  $G_1^2$ .

Definition 2.2 (Reverse Geometric Classification). For each geometric entity, the set of equal-order mesh entities classified on that model entity defines the reverse geometric classification. The reverse geometric classification is denoted as  $\text{RC}(G_j^q) = \{M_i^q \mid M_i^q \sqsubset G_j^q\}$ .

Reverse geometric classification provides an understanding of which attributes (for instance, boundary conditions or material properties) are related to the mesh entities and how the solution relates back to the original problem description.

Since the amount of information defining the geometric model and attributes is small compared to the other data, they are usually fully represented on each node/core. However, as the level of geometric model complexity increases, it becomes more important to consider methods to distribute the geometric model in parallel. Since the mesh is the key parallel structure, one approach being taken to distribute the geometric model is to have a copy of a model entity and its adjacencies represented on each part, which has mesh entities classified on it [Tendulkar et al. 2011].

#### 2.3. Adjacencies

The relationships of the entities are well described by topological adjacencies. For a mesh entity of dimension d, a first-order adjacency returns all of the entities of dimension q, which are on the closure of the entity for a *downward* adjacency (d>q), or for which the entity is part of the closure for an *upward* adjacency (d<q). The notation  $\{M_i^d\{M^q\}\}$  indicates a set of entities of dimension q in mesh that are adjacent to  $M_i^d$ . Ordering conventions can be used to enforce the specific downward first-order adjacent entity. The notation  $M_i^d\{M^q\}_j$  indicates the  $j^{th}$  entity in the set of mesh entities of dimension q that are adjacent to mesh entity  $M_i^d$  [Beall and Shephard 1997; Beall 1999].



Fig. 3. Two complete mesh representations [Beall and Shephard 1997; Remacle and Shephard 2003].

#### 2.4. Mesh Representation

Important factors in designing a mesh data structure are *storage* and *computational efficiency*, which are mainly dominated by the entities and adjacencies present in the mesh representation. The analysis of mesh data structures of various representations suggests how the mesh representation option and intelligent mesh algorithms are important to achieve efficiency with mesh applications [Beall and Shephard 1997; Garimella 2002; Seol 2005; Ollivier-Gooch et al. 2010]. Depending on the dimensions of entities and adjacencies explicitly stored in the mesh, the mesh representation can be categorized with two criteria: (1) full versus reduced: if all 0 to d dimensional entities are explicitly stored, the mesh representation is *full*; otherwise, it is *reduced*; (2) complete versus incomplete: if all adjacency information is obtainable in O(1) such that the number of operations is bounded by the constant, the representation is *complete*; otherwise, it is *incomplete*.

Provided sufficient links are stored, the number of mesh entities on the boundary of another entity is a known small constant. Therefore, computing downward adjacencies is O(1). However, in the most relaxed definition of a mesh, the size of upward adjacency can grow arbitrarily. A simple example is a disk that is meshed with a fan of triangles sharing the center point. Note that as the number of elements around a vertex increases, their average shape quality must decrease. Therefore, with finite element meshes, there is a constant upper bound on the number of upward adjacent entities. If the physical analysis demands a lower bound on element shape quality, a corresponding upper bound exists on upward adjacencies.

A general topology-based mesh data structure must satisfy completeness of adjacencies to support adaptive analysis efficiently. It doesn't necessarily mean that all 0 to *d* dimensional entities and adjacencies need to be explicitly stored in the representation. There are many representation options in the design of general topology-based mesh data structure. Figure 3 illustrates two complete representations: *one level* (full) [Beall and Shephard 1997] and *minimum sufficient* (reduced) [Remacle and Shephard 2003]. A solid box and a solid arrow denote, respectively, explicitly stored dimensions of entities and explicitly stored adjacencies from outgoing dimension to incoming dimension. A dotted box denotes that among entities of the dimension, only equally classified ones are explicitly stored, and a dotted arrow denotes that adjacencies from an outgoing dimension to an incoming dimension are maintained only for the stored entities. Note that completeness for reduced representations can be defined as having O(1) retrieval time of adjacencies for both implicit (unrepresented) and explicit (represented) entities.



Fig. 4. (a) Distributed mesh on two processes with two parts per process. The thick solid line is the interprocess part boundary and the thick dotted line is the intraprocess part boundary. (b) Partition model.

Seol and Shephard presented the detailed discussions on how to manipulate the implicit entities for adjacencies and migration as well as the performance comparison of the one-level representation and the minimum sufficient representation in distributed meshes [Seol 2005; Shephard and Seol 2009].

PUMI stores the one-level representation that is full and complete, so it maintains adjacencies between entities one dimension apart [Beall and Shephard 1997]. A complete mesh representation is necessary to be able to carry out fast local modifications and diffusive load balancing. Using a full representation greatly simplifies the algorithms involved in mesh modification, which make use of the full mapping from mesh topology to geometric topology to preserve the mesh boundary and other properties.

#### 2.5. Distributed Mesh

A *distributed* mesh is a mesh divided into *parts* for distribution over a set of processes for specific reasons, for example, parallel computation. A *part* consists of a set of mesh entities that is assigned to a process. Therefore, each part can have (1) a unique global part ID within an entire system and (2) a local part ID within a process. *Part boundaries* describe groups of mesh entities that are on interpart boundaries. With the addition of part boundaries, each part can be treated as a serial mesh. In PUMI, mesh entities on part boundaries (shortly *part boundary entities*) are duplicated on all parts on which they are used in adjacency relations. Mesh entities not on the part boundary exist on only one part and are called *internal entities*.

Figure 4(a) illustrates a distributed mesh on two processes where the mesh on each process has two parts. The dotted lines are *intraprocess part boundaries* within a process and thick solid lines are *interprocess part boundaries* between the processes. Residence part set operator  $\mathscr{P}[M_i^d]$  returns a set of global part ID(s) where mesh

Residence part set operator  $\mathscr{P}[M_i^d]$  returns a set of global part ID(s) where mesh entity  $M_i^d$  exists. For instance,  $\mathscr{P}[M_0^0]$  is  $\{P_0, P_1, P_2, P_3\}$  and  $\mathscr{P}[M_0^1]$  is  $\{P_0, P_1\}$ . The two parts,  $P_i$  and  $P_j$ , neighbor over entity type<sup>1</sup> d if they share d-dimensional mesh entities on part boundary.

 $\begin{array}{l} Definition \ 2.3 \ (Residence \ part \ set \ equation \ of \ M_i^d). \ \mbox{For a mesh entity} \ M_i^d \ existing \ in \ part \ p, \ \mbox{if} \ \{M_i^d\{M^q\}\} = \emptyset \ (d < q), \ \mathscr{P}[M_i^d] = \{p\}. \ \mbox{If} \ \{M_i^d\{M^q\}\} \neq \emptyset \ (d < q), \ \mathscr{P}[M_i^d] = \cup \ \mathscr{P}[M_j^q] \ | \ M_i^d \ \in \ \{\partial(M_i^q)\}]. \end{array}$ 

<sup>&</sup>lt;sup>1</sup>Dimension and type are interchangeable.

The residence part set of mesh entity  $M_i^d$  is the union of residence part sets of all entities that it bounds. For a mesh topology where the entities of dimension d are bounded by entities of dimension d-1 (d>0), if a mesh entity  $M_i^d$  in part p is not bounded by any upward adjacent entity such that  $\{M_i^d \{M^{d+1}\}\} = \emptyset$ ,  $\mathscr{P}[M_i^d]$  is determined to be  $\{p\}$ . If a mesh entity  $M_i^d$  is bounded by upward adjacent entities such that  $\{M_i^d \{M^{d+1}\}\} = \emptyset$ ,  $\mathscr{P}[M_i^d]$  is  $\cup \mathscr{P}[M_j^{d+1} \mid M_i^d \in \{\partial(M_j^{d+1})\}]$ . For instance, in Figure 4(a),  $\mathscr{P}[M_0^1] = \mathscr{P}[M_0^2] \cup \mathscr{P}[M_1^2] = \{P_0\} \cup \{P_1\} = \{P_0, P_1\}$ .

### 2.6. Partition Model

When a mesh is distributed into parts, each part can be viewed as an abstract unit of domain decomposition by partitioning. Putting all abstract units together, we get a conceptual model that represents partitioning, which is another kind of domain decomposition. For the distributed mesh in Figures 4(a), Figure 4(b) illustrates its conceptual model that represents partitioning with four abstract faces of domain decomposition. Such a conceptual model exists between the mesh and the geometric model as a part of hierarchical domain decomposition and is termed *partition model*. The two purposes of the partition model are (1) representing mesh partitioning in topology and (2) supporting mesh-level parallel operations through interpart boundary links.

In the parallel extension of unstructured mesh representation, the partition model consists of a set of topological entities that represent collections of mesh entities based on their partitioning. Therefore, the standard mesh entities and adjacencies on each process can be used with only the addition of the partition entity information needed to support all operations across multiple processes.

Grouping mesh entities to define a partition model entity can be done with multiple criteria based on the functionalities and needs of distributed meshes. At a minimum, mesh entities should be grouped by residence part set to support an interpart communication. They could further be grouped by adjacencies within the same part, which would diagnose partitioning problems (i.e., a large number of disconnected components) and inform algorithms that deal with connected components only. In PUMI, for efficiency, only the residence part set is used for this grouping.

Definition 2.4 (Partition (model) Entity). A topological entity in the partition model,  $P_i^d$ , represents a group of mesh entities of dimension d and their downward adjacent entities that have the same residence part set. Each partition model entity is uniquely determined by the residence part set.

The partition model in Figure 4(b) consists of (1) partition vertex  $P_0^0$  representing mesh vertex duplicated on all four parts; (2) partition edges  $P_0^1$  representing mesh vertices and edges duplicated on  $P_0$  and  $P_1$ ,  $P_1^1$  representing mesh vertices and edges duplicated on  $P_1$  and  $P_2$ ,  $P_2^1$  representing mesh vertices and edges duplicated on  $P_2$ and  $P_3$ , and  $P_3^1$  representing mesh vertices and edges duplicated on  $P_0$  and  $P_3$ ; and (3) partition faces  $P_i^2$  representing internal mesh vertices, edges, and faces on part  $P_i$ ,  $0 \le i \le 3$ .

Definition 2.5 (Partition classification). The unique association of mesh entity of dimension d,  $M_i^d$ , to partition model entity of dimension q,  $P_j^q$ , on which it lies is termed partition classification and is denoted  $M_i^d \sqsubset P_i^q$ ,  $(d \le q)$ .

Each partition model entity stores dimension, residence part set, and owning part ID, and each mesh entity keeps a pointer to the partition model entity based on the partitioning. Therefore, at the mesh entity level, the residence part set and owning



Fig. 5. Distributed mesh and owning part stored in partition model entities based on the poor-to-rich rule [Seol 2005; Seol and Shephard 2006b].

part information are maintained through partition classification. In Figure 4, mesh vertex  $M_0^0$  is classified on partition vertex  $P_0^0$ , and mesh edges  $M_i^1$  are classified on partition edges  $P_i^1$ ,  $0 \le i \le 3$ . Internal mesh entities (vertices, edges, and faces) on  $P_i$  are classified on partition face  $P_i^2$ ,  $0 \le i \le 3$ .

#### 2.7. Mesh Migration

In adaptive simulations on a distributed mesh, the mesh entities need to be migrated from part to part frequently in order to facilitate the local mesh modification and computations or to regain mesh load balance for other steps in the simulation workflow. Figure 5 illustrates an example of mesh migration. Figures 5(a) and 5(b) are the initial mesh and partition model, and Figures 5(c) and 5(d) are the mesh and partition model after migrating mesh faces  $M_5^2$  and  $M_6^2$  from part  $P_2$  to part  $P_0$  and  $M_8^2$  from part  $P_1$  to part  $P_2$ .

To initiate the migration of mesh entities, the destination part IDs of mesh entities must be determined. The residence part set equation dictates that if a destination part ID of mesh entity  $M_i^d$ , which is not on the boundary of any other mesh entities, is determined, its downward adjacent entities,  $\{M_i^d\{M^q\}\}(d>q)$ , should be migrated to the same destination part as well. Thus, a mesh entity that is not on the boundary of any upward adjacent entities is the basic unit to assign the destination part ID in the migration procedure.

17:9

Definition 2.6 (Partition Object). The partition object is the basic unit to assign a destination part ID in migration. A mesh entity not being on the boundary of any upward adjacent entities (termed *mesh element*) can be a partition object. In a 3D mesh, partition objects are all mesh regions, the mesh faces not bounding any mesh regions, the mesh edges not bounding any mesh faces or regions, and mesh vertices not bounding any mesh edges, faces, or regions. An ordered set of unique mesh elements confined to a part can also be a partition object if designated to be migrated as a unit.

An ordered set of unique mesh elements confined to a part is referred to as *p-set* [Xie et al. 2014]. A p-set is useful in representing boundary layer stacks [Sahni et al. 2008; Ovcharenko et al. 2013].

In case of a 3D (2D, respectively) manifold model, partition objects are p-sets consisting of regions (faces, respectively) and mesh regions (faces, respectively) not contained in a p-set. In case of a nonmanifold model, a lookup for mesh entities not bounding any upward adjacent entities is required for each dimension d,  $0 \le d \le 3$ . In Figure 4(a), partition objects are all mesh faces.

If a mesh entity is duplicated, it must be aware of where it is duplicated. Among multiple duplicate copies, an entity in a specific part is assigned as the owner with charge of modification, communication, or computation of the copies. For the purpose of simple denotation, the entity on the owning part is called the *owner* of all its copies. Note that the owning part ID for part boundary entities is maintained at the partition model entity, and the mesh entity's owning part is retrieved through partition classification. In PUMI, the owning part is determined based on the *poor-to-rich rule:* the owning part is a part with the least number of partition object mesh entities among all residence parts [Seol 2005; Seol and Shephard 2006b]. And if residence parts have the same least number of partition object entities, the part with the smaller ID is the owning part. In Figure 5, the bigger circle and thicker lines denote the owning part of partition model entities. For instance, the owner of mesh entity  $M_5^0$  in Figure 5(a) (5(c), respectively) is  $M_5^0 @P_0$  ( $M_5^0 @P_3$ , respectively). The owner of  $M_4^1$  in Figure 5(a) (5(c), respectively) is  $M_4^1 @P_0$  ( $M_4^1 @P_1$ , respectively).

#### 2.8. Mesh Ghosting

For the support for specific mesh operations requiring data from mesh entities on remote processes, the ghosting procedure localizes internal mesh entities and their member data on neighboring parts for the purpose of minimizing interprocess communications [Lawlor et al. 2006; iMeshP Web 2015]. The inputs to the ghosting procedure are (1) ghost type g ( $0 < g \le mesh$  dimension), which is an entity type to be ghosted; (2) bridge type b ( $0 \le b < g$  and  $b \ne g$ ), which is an entity type to be used to compute entities to be ghosted based on adjacency; (3) the number of ghost layers n measured from interpart boundary up to the number with which the whole part can be ghosted; and (5) an integer *inc\_copy* to indicate whether to include nonowned bridge type entities (1) or not (0) in computing entities to be ghosted [iMeshP Web 2015].

Given input parameters, the ghosting procedure first iterates all part boundary entities of type b and collects entities to be ghosted (shortly, ghosting candidates) as follows: note that a ghosting candidate is created in a neighboring residence part of bridge entity only if the ghost candidate doesn't exist in the part as a remote copy or ghost copy.

(1) If n = 1, for each part boundary entity of type b,  $M_i^b$ , ghosting candidates are upward adjacent entities of type g,  $\{M_i^b\{M^g\}\}$ . If the input *inc\_copy* is 0 and  $M_i^b$  is not the owner copy,  $M_i^b$  is not considered for the ghosting candidate computation.



Fig. 6. PUMI components: an arrow from component A to component B indicates that component A is dependent on component B.

If the input *inc\_copy* is 1,  $M_i^b$  is considered for the ghosting candidate computation no matter if it is the owner copy or not.

(2) If n>1, for each mesh entity  $M_j^g$  in ghosting candidates of n-1 layer ghosting, ghosting candidates are a set of entities  $\{M_j^g\{M^b\}\{M^g\}\}$ . The notation  $\{M_j^g\{M^b\}\}$  denotes a set of mesh entities of type b adjacent to mesh entity  $M_j^g$ . The notation  $\{M_j^g\{M^b\}\{M^g\}\}$  denotes a second-order adjacency, meaning a set of mesh entities of type g adjacent to mesh entity  $M_i^b$ , where  $M_i^b \in \{M_j^g\{M^b\}\}$ .

As parallel finite element analysis (FEA) needs remote vertices and the finite volume method (FVM) needs remote regions for analysis, the ghosting procedure is an essential functionality for analysis. In case of a 3D analysis, FEA may use one-layer ghosting with bridge type 0 (vertex) and ghost type 3 (region). Low-order FVM may use one-layer ghosting with bridge type 2 (face) and ghost type 3 (region). High-order FVM may use two-layer or more ghosting with bridge type 2 (face) and ghost type 3 (region).

## 2.9. Graph-Based Mesh Partitioning

Graph-based *n*-to-*m* mesh partitioning redistributes *n*-part mesh into *m* parts ( $n \neq m$ , n < m). The procedure consists of four steps: (1) transforming the unstructured mesh data structures to the graph vertex and edge structures needed by Zoltan [Boman et al. 2012; Devine et al. 2002], (2) running Zoltan, (3) transforming the output of Zoltan (graph vertices and destination part IDs) to STL maps of partition object (mesh element and/or p-set) and part ID required by the migration procedure, and (4) running the migration. Graph vertices are defined by partition objects (mesh elements and/or p-sets), and graph edges by the mesh faces (3D) or edges (2D) shared by adjacent elements and p-sets, either through topology or through periodicity. This graph definition supports the natural division of the mesh into nonoverlapping parts  $P_i$  of dimension d such that  $M = \bigcup P_i$ . In a 3D mesh, this uniquely assigns each mesh region to a single part. Creating graph vertices from p-sets conforms to this approach and ensures that user-defined groups of mesh elements will be accessible within the same part after partitioning. Zoltan's interface requires that each graph vertex is defined by a unique user-defined object. Likewise, a graph edge is defined by two graph vertex objects. The most efficient definition of the graph vertex object is an integer [Boman et al. 2012; Devine et al. 2002].

### 3. SOFTWARE STRUCTURE

PUMI consists of six software components (Figure 6) [Seol et al. 2012; PUMI Web 2015]: (1) the Common Utility for common tools and services used in multiple other

components, (2) the Parallel Control component for parallel-specific tools and services, (3) the Geometric Model component for interfacing with geometric model kernels, (4) the Mesh component to provide the distributed mesh representation and manipulations, (5) the Partition Model component for partition model representation and manipulations, and (6) the Field component for field storage and manipulations.

As a partition model is constructed based on the mesh distribution, it is automatically updated when mesh partitioning is changed. Therefore, its functionality is embedded in mesh implementation, and furthermore, access/modification by the users is not needed. Except for the Partition Model component, each component is a self-contained, independently usable library with its own set of requirements and well-defined API.

### 3.1. PCU: Parallel Control Utility Library

*pcu* is a library that provides a parallel programming model including parallel control functions. Its two major functionalities are *message passing* that allows parallel tasks to coordinate and *thread management* that extends the MPI programming model into a hybrid MPI/thread system.

The foundation of *pcu* is its point-to-point message-passing routines where nonblocking synchronous message-passing primitives are defined. There are two versions, one of which is a direct interface to MPI, and the second supports message passing between threads [Ibanez et al. 2016]. The two versions are interchangeable, and *pcu* can change which set of them is being used at runtime without affecting the rest of the software components.

Building on the point-to-point primitives, *pcu* has an extensible framework for collective operations such as reduction, broadcast, scan, and barrier. Any collective whose communication pattern can be encoded as some kind of tree is supported, and the most common ones come built in to *pcu*. These collectives are directly available to users.

Using both point-to-point and collective communication, pcu provides a messagepassing algorithm for general unstructured communication. The *send* phase allows tasks to send any messages out to neighbors, and the *receive* phase ensures that neighbors receive all the messages they have been sent. This *phased* communication algorithm is equivalent to the nonblocking consensus algorithm for sparse data exchange [Hoefler et al. 2010].

Finally, *pcu* has a system for creating a pool of threads within each process and assigning them ranks in a way that MPI does to processes. Users can call this API to enter a hybrid MPI/thread mode in which all the communication APIs (point-to-point, collective, and phased) work between threads. These capabilities support a hybrid MPI/thread operation.

### 3.2. GMI: Geometric Model Interface Library

The problem domain is the basis for generating meshes on which the analysis is performed. Commercial geometric modeling kernels provide the description of the problem domain.

The geometric model library provides modeling kernel-independent geometry access by polymorphism and replicating the topological information in modeling kernels. Therefore, geometry-based applications (including mesh) can interface with various modeling kernels through the geometric model library [Panthaki et al. 1997; Tautges 2001; Beall et al. 2004]. In *gmi*, the class hierarchy of the geometric model is derived for implementation with specific commercial geometric modeling kernels such as Acis [ACIS Web 2015], GeomSim [GeomSim Web 2015], and Parasolid [Parasolid Web 2015]. In case no commercial modeling kernel is available, *gmi* supports a geometric model constructed from mesh, called *mesh model* [Beall et al. 2004]. The following core

functionalities are provided at the high-level API regardless of underlying modeling kernel:

- -Modeling kernel registration: establishing the relationship between the high-level API and the modeling kernel-specific API and importing the geometric model information into topological representation.
- -Geometric model representation: maintaining pointers to topological model entities. In boundary representation, they are regions, shells, faces, loops, edges, vertices, and use entities for vertices, edges, loops, and faces with a nonmanifold model [Weiler 1988]. The information stored in these data structures provides a topological definition of the geometric model, so the mesh structure can always be correctly classified and the topological similarity between the mesh and the model can be maintained during modifications.
- -Interrogations: adjacency, tolerance, shape information, and so forth. Model entity objects themselves contain boundary-representation adjacency structures to other model entities as well as declaring virtual methods for modeler queries such as evaluating a point of a parametric surface [Beall et al. 2004].

Recently, models with thousands to millions of model entities have been constructed in gmi, which prompted the addition of fast lookup structure to the model object since retrieval of a model entity from its integer identifier is a common operation during message passing and file reading.

## 3.3. MDS: Mesh Data Structure Library

An efficient and scalable distributed mesh data structure is mandatory to achieve performance since it strongly influences the overall performance of adaptive mesh-based simulations. In addition to the general mesh-based operations, the distributed mesh data structure must support (1) efficient communication between entities duplicated over multiple parts, (2) migration of entities or groups of entities between parts, and (3) dynamic load balancing. *mds* provides the storage and management of distributed unstructured meshes and partition model. It supports all the mesh-level services to interrogate/modify the mesh data needed by parallel adaptive analysis. Core *mds* functionalities include the following:

- *—Interrogations:* first- and second-order adjacency, owning part ID, status (internal, part boundary, matched, ghost or ghosted), classification (geometric and partition model), and so forth.
- -Modification: Entity and entity set<sup>2</sup> creation/deletion, migrating entity and p-set from part to part including tagged data, and a capability to dynamically change the number of parts per process.
- -Load balancing: a capability to balance the mesh load on each part predictively [Flaherty et al. 1997; Zhou et al. 2012b] or as postprocessing with the help of mesh migration and partitioning libraries such as Zoltan, ParMETIS, and ParMA. Zoltan is a toolkit for scientific applications that provides graph-based load-balancing and partitioning algorithms [Boman et al. 2012; Devine et al. 2002]. ParMETIS provides algorithms for partitioning unstructured graphs and meshes and for computing fillreducing orderings of sparse matrices [Schloegel et al. 2002]. ParMA is a partitioning library developed at SCOREC without using the classical graph data structure. Three ParMA procedures are (1) multicriteria diffusive partition improvement [Zhou et al.

<sup>&</sup>lt;sup>2</sup>Grouping of arbitrary entities from multiple parts or a single part [Tautges et al. 2004b; Ollivier-Gooch et al. 2010; ITAPS Web 2015].



Fig. 7. Two-dimensional distributed mesh with periodic model edges  $G_i^1$  and  $G_i^1$ .

2010a, 2012a], (2) predicted load balancing [Flaherty et al. 1997; Zhou et al. 2012b], and (3) heavy part splitting [Zhou et al. 2012b; Seol et al. 2012].

- —*Matching:* a capability to maintain mesh entities on matched, periodic model boundaries [Karanam et al. 2008; MeshSim Web 2015]. Figure 7 illustrates four-part distributed mesh with periodic model edges  $G_i^1$  and  $G_j^1$  (thick solid lines). The mesh entities classified on  $G_i^1$  are matched to mesh entities classified on  $G_j^1$ , and vice versa. For instance,  $M_1^0@P_0$  is matched to three mesh vertices,  $M_1^0@P_3$ ,  $M_5^0@P_3$ , and  $M_5^0@P_2$ .  $M_3^0@P_0$  is matched to two mesh vertices,  $M_3^0@P_1$ , and  $M_7^0@P_2$ . When a mesh entity is modified or migrated, all the matched copies should be updated as well to keep the identity.
- -File I/O: ascii or binary file I/O in various mesh formats (NetCDF [NetCDF Web 2015], Exodus [Schoof and Yarberry 1994], VTK [VTK Web 2015], Simmetrix [Simmetrix Web 2015], etc.) for partition model and mesh entities with auxiliary data including geometric classification, partition classification, tagged data, entity set, matched copies, and so forth.

The term *instance* is used to indicate an object of model data existing on each process. For example, a mesh instance on a process means a pointer to a mesh data structure on the process that all parts on the process are maintained by, and accessible through. The term *handle* is used to indicate a pointer to other types of data objects such as part, entity, and entity set. For example, a mesh entity handle means a pointer to the mesh entity data [Seol and Shephard 2006b; Ollivier-Gooch et al. 2010; Seol et al. 2012; ITAPS Web 2015].

Figure 8 illustrates a mesh and related data in each process. The mesh instance maintains (1) one or more part handles and (2) zero or more entity set handles [ITAPS Web 2015]. Each part handle maintains (1) a link to a geometric model instance, (2) a link to a partition model instance, (3) zero or more entity handles per dimension (0 to 3), and (4) zero or more p-set handles.

Each mesh entity maintains the following information:

- *—Dimension or type:* 0 for vertex, 1 for edge, 2 for face, and 3 for region.
- -Topology: for a region, PUMI supports tetrahedron, hexahedron, prism (wedge), and pyramid. For a face, PUMI supports triangle and quadrilateral.
- -Geometric classification: a link to a geometric model entity handle where it's discretized.
- -Partition classification: a link to a partition model entity handle representing residence part set and owning part ID of the mesh entity. When a residence part set of



Fig. 8. Mesh data in process: A solid line from upper positioned component U to lower positioned component L indicates that the component U contains 0 or more of component L. A dotted arrow from component A to component B indicates that the component A maintains a link to component B. A data drawn with rectangle indicates that at least one copy of the data should exist on each process.

mesh entity is changed, the mesh entity searches a partition model entity that has the same residence part set and updates the partition classification. If a partition model entity with the same residence part set is not found, a new partition model entity is created and the new partition model entity is used to set the partition classification of the mesh entity.

- —Adjacency:  $i^{th}$  dimensional mesh entity maintains the links to  $(i-1)^{th}$  and  $(i+1)^{th}$  dimensional adjacent entities  $(0 \le i \le 3)$  if applicable.
- -Remote copy: a memory location of a part boundary entity on another part. To reduce the communication time, every part boundary entity stores an STL map of (remote part ID, remote copy) no matter if it is a master (owner copy) or a slave (nonowner copy). Note that the performance of mesh migration dictates the overall performance of simulation workflow due to its high frequency. In our experiment, the migration time of only the owner copy having remote copy information was more than that of every part boundary entity storing remote copy information.
- —*Ghost copy:* a memory location of duplicate copy of internal entity in neighboring parts [Lawlor et al. 2006; iMeshP Web 2015]. For efficient communications, the original internal entity is designated to be an owner copy and maintains an STL map of (*ghost part ID*, *ghost copy*). The ghost copy maintains the owning part ID and the memory location of the owner copy. Since ghost copies are stored explicitly in the mesh as regular entities, all entity-level functions can be used with ghost copies—for instance, traversal, entity set, tagging<sup>3</sup> and various interrogations such as geometric classification, adjacencies, remote copies, residence part set, owning part ID, partition classification, and so forth.
- *—Match copy:* a memory location of a matched entity handle. Note that an entity can have one or more match copies per part. Therefore, when a mesh entity is matched to another entity, it maintains an STL multimap of *(match part ID, match copy)*. If an entity is matched to a part boundary entity, it must be matched to all the remote copies.

<sup>&</sup>lt;sup>3</sup>Attaching user data of various types (single or array of integer, pointer, floating point, binary, entity set, entity) to a part, entity set, or entity [Ollivier-Gooch et al. 2010; Seol et al. 2012; ITAPS Web 2015].

In less flexible applications, it would be possible to globally number the mesh entities such that duplicate copies have the same integer ID. Then, each part could store its neighbors, and entities would store nothing but their global number. It is then possible to send data across parts along with a global number and search for the corresponding number after receiving the data. However, supporting this search is expensive, and more importantly, a global number would be invalidated by mesh modification unless expensive methods to maintain unique labeling of entities being created across the cores of the parallel system were used. Therefore, the remote copies are carefully tracked pointers as opposed to a global numbering.

Even with this requirement, there are three options as to how the remote copies could be stored: (1) all duplicate copies store the remote copy information, (2) each nonowner copy stores a single pointer to its owner copy and the owner copy stores nothing, and (3) only the owner copy stores the remote copy information. In case of option 2 (3, respectively), an algorithm that broadcasts data from the owner to nonowners (non-owners to owner, respectively), a common operation in finite element codes, would have to use an "echo" system where nonowners (owner, respectively) would request the information from the owner (nonowners, respectively) first, since the owner (nonowners, respectively) does (do, respectively) not yet know where to send it. This would double the number of communication rounds, which is worse than the slightly increased memory cost of having part boundary entities know all their copies.

For mesh entities migrated to other part(s), new partition classification can be derived from the remote copy information (it provides the new residence part set). However, it can be useful during the migration algorithm to first update the partition classifications based on where mesh entities are migrated, and then actually move the entities and update the remote copies based on the new partition classification. This justifies that storing partition classification per entity benefits the mesh migration.

### 3.4. APF: Attached Parallel Field and Mesh Interface Library

The Attached Parallel Field library provides the finite element field manipulation. It also provides interfacing between the field and multiple databases including *mds*, MeshSim [Simmetrix Web 2015], and STK [APF Web 2015]. The core functionalities are (1) common finite element field operations such as numbering and synchronization over part boundaries, (2) a wide variety of finite element basis functions and numerical integration rules, and (3) array-based field storage for multiple mesh databases, including support for frequent migration and modification of the mesh. The field and numbering data are stored in separate arrays and keyed by the local ID of mesh entities.

#### 3.5. Array-Based Data Structure

The previous PUMI implementation was based on an object-oriented data structure [Seol and Shephard 2006b; Seol et al. 2012]. In the recent improvement, the one-level adjacency information, vertex coordinates, simulation fields, and classification links have been compressed into an array structure. The difficulty involved in an array structure is preserving fast mesh modification without increasing the runtime of existing applications and workflows.

Although PUMI stores the mesh representation in arrays, it still retains the ability to make modifications at the single-entity level without restrictions. Aside from locality and memory access patterns, the storage of data in arrays has resulted in a significant reduced memory usage with respect to other flexible and scalable mesh implementations. For instance, using an array-based data structure, the memory usage of PUMI went down to 25% of the previous data structure. A full description of the array scheme is beyond the scope of this article and will be published in the near future.

```
#include <apf.h>
   #include <gmi_mesh.h>
   #include <apfMDS.h>
   #include <apfMesh2.h>
4
   #include <apfNumbering.h>
   #include <PCU.h>
6
   using namespace apf;
8
9
   int main(int argc, char** argv)
10
    MPI_Init(&argc, &argv);
    PCU_Comm_Init():
    gmi_register_mesh();
14
    Mesh2* mesh = loadMdsMesh("model.dmg", "mesh.smb");
    Numbering* n = numberOverlapNodes(mesh, "ID");
16
    int faceDimension = 2;
    int vertexDimension = 0;
18
    MeshIterator* it = mesh->begin(faceDimension);
19
    MeshEntity* face;
20
    while ((face = mesh->iterate(it)))
     ModelEntity* me = mesh->toModel(face);
     if ((mesh->getType(face) == Mesh::TRIANGLE) &&
24
        (mesh - >getModelType(me) == faceDimension))
26
       int modelFaceTag = mesh->getModelTag(me);
      Downward vertices;
28
       mesh->getDownward(face, vertexDimension, vertices);
29
      int ids[3]:
30
       for (int i = 0; i < 3; ++i)
        ids[i] = getNumber(n, vertices[i], 0, 0);
32
       std::cout << "triangle "<< ids[0]<<" "<<ids[1]<<" "<<ids[2];
33
      std::cout << " is on model face "<< modelFaceTag << '\n';
     }
35
36
    mesh->end(it);
    mesh->destroyNative();
38
    destroyMesh(mesh);
39
    PCU_Comm_Free();
40
    MPI_Finalize();
41
   }
42
```

Listing 1. Boundary Triangle Example.

### 4. EXAMPLES

This section presents three example programs to show how users can query and modify a distributed mesh through the C++ API functions. Note that the PUMI API aims to be abstract over several different mesh implementations so the API uses C-style idioms. For instance, the iterator API does not follow the usual C++ STL iterator convention because not all mesh implementations interoperable with PUMI support separate increment and dereference.

Listing 1 illustrates a program that loads a mesh (Line 15) and identifies every triangle classified on a geometric model face (Lines 23–25). The program establishes a local vertex numbering (Line 16) and prints the three vertex numbers for each triangle

```
#include <apf.h>
    #include <gmi_mesh.h>
2
    #include <apfMDS.h>
3
    #include <apfMesh2.h>
4
    #include <apfNumbering.h>
    #include <PCU.h>
    using namespace apf;
8
    int main(int argc, char** argv)
     MPI_Init(&argc, &argv);
     PCU_Comm_Init();
     gmi_register_mesh();
14
     Mesh2* mesh = loadMdsMesh("model.dmg", "mesh.smb");
     GlobalNumbering* gn = makeGlobal(numberOwnedNodes(mesh, "ID"));
16
     int vertexDimension = 0:
     int self = PCU_Comm_Self();
     MeshIterator* it = mesh->begin(vertexDimension);
19
     MeshEntity* vertex;
20
     while ((vertex = mesh->iterate(it)))
     {
      long id = getNumber(gn, Node(vertex, 0));
      Parts ps;
24
      mesh->getResidence(vertex, ps);
      for (Parts::iterator it = ps.begin(); it != ps.end(); ++it)
26
        int sharedWith = *it;
28
       \begin{array}{l} {\rm std::cout}<<{\rm ``part}\ "<<{\rm self}<<{\rm ``shares vertex}\ ";\\ {\rm std::cout}<<{\rm id}<<{\rm ``with part}\ "<<{\rm sharedWith}<<{\rm ``n';} \end{array}
29
30
      }
     }
     mesh->end(it);
33
     mesh->destroyNative();
34
     destrovMesh(mesh);
35
     PCU_Comm_Free();
36
     MPI_Finalize();
    }
38
```

Listing 2. Vertex Sharing Example.

classified on a geometric model face (Line 33). It also prints the unique tag associated with the model face (Line 34). Lines 28 and 29 illustrate face-to-vertex derivation. The while loop (Lines 21–36) can easily be extended to apply boundary conditions to the vertices or integrate a quantity of interest over the face and accumulate a total integral over the mesh surface.

Listing 2 loads a partitioned mesh (Line 15), establishes a globally unique numbering of the vertices (Line 16), and then prints the interpart sharing of vertices (Lines 24–31). Coupled with element-to-vertex information, the interpart sharing information of vertices is sufficient information to construct a partitioning graph. To construct a partitioning graph in reasonable time, interested readers can find an example program. Advanced use of sparse data exchange API is needed to avoid the local search process based on global numbers. Given the geometric model file name, input mesh file name, output mesh file name, and an integer n, Listing 3 loads a mesh (Line 53), partitions

### 17:18

```
#include <gmi_mesh.h>
   #include <apf.h>
2
   #include <apfMesh2.h>
3
   #include <apfMDS.h>
4
   #include <PCU.h>
5
   #include <apfZoltan.h>
6
   #include <parma.h>
8
   const char* modelFile = 0;
9
   const char* meshFile = 0;
10
   const char* outFile = 0;
   int partitionFactor = 1;
   apf::Migration* getMigrationPlan(apf::Mesh* m)
14
15
   ł
    apf::Splitter* splitter = apf::makeZoltanSplitter(
16
       m, apf::GRAPH, apf::PARTITION, false);
    apf::MeshTag* weights = Parma_WeighByMemory(m);
18
    apf::Migration* plan = splitter->split(weights, 1.05, partitionFactor);
19
    apf::removeTagFromDimension(m, weights, m->getDimension());
20
    m->destroyTag(weights);
    delete splitter;
    return plan;
   }
24
   void cleanup(apf::Mesh2* m)
26
   ł
    m->writeNative(outFile);
28
    m->destroyNative();
    apf::destroyMesh(m);
30
   }
   void getConfig(int argc, char** argv)
34
    if (argc != 5) {
     if (!PCU_Comm_Self())
36
       printf("Usage: %s <model> <mesh> <outMesh> <factor>\n", argv[0]);
37
      MPI_Finalize();
38
      exit(EXIT_FAILURE);
39
     }
40
    modelFile = argv[1]; meshFile = argv[2]; outFile = argv[3];
    partitionFactor = atoi(argv[4]);
42
   }
43
44
   int main(int argc, char** argv)
45
   ł
46
    int provided;
47
    MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);
48
    assert(provided==MPI_THREAD_MULTIPLE);
49
    PCU_Comm_Init();
50
    gmi_register_mesh();
    getConfig(argc, argv);
    apf::Mesh2* m = apf::loadMdsMesh(modelFile, meshFile);
    splitMdsMesh(m, getMigrationPlan(m), partitionFactor, cleanup);
54
    PCU_Comm_Free();
    MPI_Finalize();
56
   }
```

#### Listing 3. Mesh Partitioning Example.



Fig. 9. Memory cost comparison to MOAB, GRUMMP, and STK.

it to n parts per process (Line 54) using Zoltan, and writes out the resulting mesh into the PUMI format (Line 28).

Although not described in this article, PUMI provides APIs to individually add and remove entities, which would allow interested users to develop their own mesh adaptation codes. The authors provide a robust, scalable, state-of-the-art mesh adaptation library, MeshAdapt, which is built on PUMI tools and services [Li et al. 2005; Alauzet et al. 2006; MeshAdapt Web 2015].

## 5. RESULTS

In the performance studies, the IBM BlueGene/Q at the Center for Computational Innovations [CCI Web 2015] in Rensselaer Polytechnic Institute is used. The CCI Blue-Gene/Q is a 64-bit supercomputer with five-rack custom-connected 5,120 nodes reaching LINPACK peak performance 894.4TFlop/s and theoretical peak 1,048.6TFlop/s. Each compute node has a 16-core 1.6GHz PowerPC A2 processor and 16GB DDRS memory.

## 5.1. Parallel Mesh Construction from Node-Element Information

PUMI provides a function to construct a distributed mesh and partition model using the minimum node-element information for each part. The minimum required information is, for each part, five arrays with global node ID, node coordinates, elements' part ID, elements' topology, and consisting nodes' global IDs for each element. Using the node-element information on 256 parts, it took 12 seconds to construct a 25.6-million-element mesh and partition model.

## 5.2. Migration

The migration procedure has been designed for per-element speed as well as parallel scalability. One stress test is to have each part migrate 10,000 elements to the neighboring part. Running this test with an input mesh of 1.6 billion elements in 16,000 parts takes 12 seconds when using 16,000 cores of the CCI BlueGene/Q.

## 5.3. Memory Cost

Figure 9 shows the memory used to store an identical 100K<sup>4</sup> element tetrahedral mesh using MOAB, GRUMMP, STK, and PUMI. PUMI uses less memory than other modifiable structures, sometimes up to 3 times less. Furthermore, PUMI uses only 2 times more memory than the simplest nonmodifiable representation.

## 5.4. Full Stack Scaling

In order to test the capability of the hybrid MPI-thread system, pcu, a 1.6-billionelement mesh is created using up to 16K cores of the Blue Gene/Q. Mesh generation begins with a 4-part, 400K-element tetrahedral mesh and proceeds so as to maintain

 $^{4}1K = 1,024.$ 



Fig. 10. Scaling results with threads up to 1.6 billion elements and 16K parts.



Fig. 11. Part neighborhood size increase during scaling.

a part density of 100K elements per part. Each up-scaling repartitioning step begins with uniform mesh refinement, which multiplies the element count by 8. Following that, the PUMI-Zoltan interface is applied locally to each part, splitting it into eight new parts. For each part, seven new threads are created, and interthread migration is used to distribute the elements among the eight threads according to the Zoltan output. During each step, we start with two processes per node, which results in 16 threads per node or one thread per core at the end. Figure 10 shows the time consumed by each step of this workflow as the number of parts is increased from four to 16K. The final step converts 2K parts into 16K parts.

Note that the increase in migration time in this scaling study can most likely be attributed to the fact that as the mesh is further refined and partitioned, the average and maximum number of parts adjacent to each part increases. This is illustrated in Figure 11. This in turn affects the number of messages that have to be exchanged, and migration time is dominated by waiting for messages to exchange. For good, contiguous 3D partitions, the maximum number of neighbors should have an asymptotic limit, although this scaling study did not reach this theoretical ceiling.



Fig. 12. Workflow of parallel PHASTA adaptive loop.



Fig. 13. Cut views of the initial (left) and adapted (right) anisotropic boundary layer meshes for NASA TrapWing [Chitale et al. 2014].

## 6. APPLICATIONS

## 6.1. Active Flow Control

PHASTA [Jansen et al. 2000; Whiting et al. 2003] is an effective implicit finite elementbased CFD code for bridging a broad range of time and length scales in various flows including turbulent ones (based on URANSS, DES, LES, DNS). It has been applied with anisotropic adaptive algorithms [Sahni et al. 2006, 2008, 2009; Ovcharenko et al. 2013] along with advanced numerical models of flow physics [Hughes et al. 2000; Tejada-Martínez and Jansen 2005, 2006]. Modeling large-scale aerodynamic problems and active flow control's effects on large-scale flow changes (for instance, reattachment of separated flow or virtual aerodynamic shaping of lifting surfaces) from microscale input [Amitay et al. 1998; Glezer and Amitay 2002; Sahni et al. 2011] requires an efficient parallel adaptive workflow.

A workflow supporting parallel adaptive PHASTA flow simulations based on the component workflow in Figure 1 is given in Figure 12. Figure 13 shows the initial and adapted mesh near the leading edge of the TrapWing NASA test case [Chitale et al. 2014]. In this test, the Argonne Leadership Computing Facility's IBM BlueGene Q Mira system is used. The Mira system provides four hardware threads per core. Running this workflow in the Mira system with four MPI processes per core, PHASTA achieved



Fig. 14. Workflow of parallel Albany adaptive loop.

strong scaling in mesh-based computations on up to 786,432 cores using 3,145,728 MPI processes with a 92-billion-element mesh [Rasquin et al. 2015].

Key to this scaling and the efficiency of the workflow is controlling the load balance through PUMI interfaces to Zoltan and ParMA load-balancing and partitioning tools. The workflow invokes load balancing after parallel mesh generation, during general unstructured mesh adaptation and before execution of PHASTA. Dynamic partitioning using a combination of ParMA and Zoltan is executed after parallel mesh generation to reach the partition sizes needed by mesh adaptation and PHASTA. During mesh adaptation, ParMA predictive load-balancing procedures are used to ensure that system memory is not exhausted and the resulting mesh is balanced. Lastly, before PHASTA execution, ParMA multicriteria diffusive procedures are performed to reduce both the mesh element and mesh vertex imbalance. During each of these stages, the association of PHASTA solution data with mesh entities is maintained via field migration and local solution transfer procedures.

An in-memory coupling supporting a parallel adaptive PHASTA analysis loop using the components depicted in Figure 12 is enabled through a functional interface to the FORTRAN 77/90-based flow solver. Through the use of FORTRAN 2003 *iso\_c\_bindings*, this interface supports interoperability with C/C++ components, the control of solver execution, and the interrogation and management of solver data structures.

#### 6.2. Albany Adaptive Loop

Albany [Albany Web 2015] is a general-purpose finite element code built on the Trilinos framework [Heroux et al. 2005; Trilinos Web 2015], both of which are developed primarily at Sandia National Laboratories. This code is highly extensible, allowing the creation of new finite element numerical methods, which makes it an ideal platform for research in finite elements. The design of Albany is parallel from the start, and also includes an abstract interface for discretization storage (i.e., a mesh database), as well as various adaptivity codes.

As illustrated in Figure 14, PUMI was used to form a parallel adaptive loop using Albany and MeshAdapt [Li et al. 2005; Alauzet et al. 2006]. This is entirely an inmemory coupling: the mesh database provides simple connectivity arrays and field data arrays to Albany for analysis, which Albany returns after a specified number of analysis steps on an unchanging mesh.



Fig. 15. Initial (left) and adapted mesh showing the Von Mises stress field that guides adaptivity (right).

Once the data is back in PUMI structures, mesh adaptivity can be invoked on them to produce a new mesh, and solution transfer of key solution variables allows this new state to be sent back to Albany for further analysis, resulting in a self-contained, inmemory adaptive finite element code. The rich encoding of the PUMI mesh means that it is almost always a superset of the mesh information required for an analysis code. As such, we were able to convert not only to connectivity structures used internally by Albany but also to another mesh data structure known as STK, which is a part of the Trilinos framework. This makes PUMI more interoperable with any finite element codes involving the Trilinos framework. Figure 15 illustrates the initial and adapted mesh in large deformation analysis with Albany adaptive loop.

### 7. CLOSING REMARKS

PUMI is a parallel unstructured mesh infrastructure designed to support adaptive analysis simulations on massively parallel computers with an enriched set of distributed mesh control routines. In this article, we discussed a rich design, software structure, example programs, performance results, and two applications. The in-depth study toward extreme-scale performance continues since it requires an optimized or chestration of a complicated interplay of the problem statement, programming techniques, architecture knowledge (processor, memory, I/O, and network interconnections), and balance between computational and communication loads [ASCAC Web 2015; LLNL HPC Web 2015].

Except for *gmi\_acis*, *gmi\_geomsim*, and *gmi\_parasolid*, which directly interact with commercial modeling kernels, all PUMI libraries are open-source programs download-able at https://github.com/SCOREC/core.git. In the same source repository, the users can download MeshAdapt, ParMA, and many useful example programs. For more information on PUMI, visit http://www.scorec.rpi.edu/pumi.

### **ELECTRONIC APPENDIX**

The electronic appendix for this article can be accessed in the ACM Digital Library.

## REFERENCES

ACIS Web. 2015. 3D ACIS Modeling. (2015). http://spatial.com/products/3d-acis-modeling.

Frédérik Alauzet, Xiangrong Li, E. Seegyoung Seol, and Mark S. Shephard. 2006. Parallel anisotropic 3D mesh adaptation by mesh modification. *Engineering with Computers* 21, 3 (Jan. 2006), 247–258. DOI:http://dx.doi.org/10.1007/s00366-005-0009-3

- Albany Web. 2015. Albany: a component-based partial differential equation code built on Trilinos. (2015). https://github.com/gahansen/Albany/wiki.
- Micheal Amitay, Barton L. Smith, and Ari Glezer. 1998. Aerodynamic flow control using synthetic jet technology. In 36th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. DOI: http://dx.doi.org/10.2514/6.1998-208
- APF Web. 2015. APF: A Parallel Field Library. (2015). http://www.scorec.rpi.edu/apf.
- ASCAC Web. 2015. ASCAC: Advanced Scientific Commuting Advisory Committee of U.S. Department of Energy. Retrieved from http://science.energy.gov/ascr/ascac.
- Mark W. Beall. 1999. An Object-Oriented Framework for the Reliable Automated Solution of Problems in Mathematical Physics. Ph.D. Dissertation. Rensselaer Polytechnic Institute, Troy, NY.
- Mark W. Beall and Mark S. Shephard. 1997. A general topology-based mesh data structure. International Journal of Numerical Methods in Engineering 40, 9 (May 1997), 1573–1596. DOI:http://dx.doi.org/ 10.1002/(SICI)1097-0207(19970515)40:9<1573::AID-NME128>3.0.CO;2-9
- Mark W. Beall, Joe Walsh, and Mark S. Shephard. 2004. A comparison of techniques for geometry access related to mesh generation. *Engineering with Computers* 20, 3 (Sep. 2004), 210–221. DOI:http://dx.doi.org/10.1007/s00366-004-0289-z
- Erik G. Boman, Ümit V. Çatalyürek, Cédric Chevalier, and Karen D. Devine. 2012. The Zoltan and Isorropia parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring. *Scientific Programming* 20, 2 (2012), 129–150.
- CCI Web. 2015. CCI: Center for Computational Innovations, Rensselaer Polytechnic Institute. Retrieved from http://cci.rpi.edu.
- Waldemar Celes, Glaucio H. Paulino, and Rodrigo Espinha. 2005a. A compact adjacency-based topological data structure for finite element mesh representation. International Journal of Numerical Methods in Engineering 64, 11 (2005), 1529–1556.
- Waldemar Celes, Glaucio H. Paulino, and Rodrigo Espinha. 2005b. A compact adjacency-based topological data structure for finite element mesh representation. International Journal of Numerical Methods in Engineering. 64, 11 (Nov. 2005), 1529–1556. DOI: http://dx.doi.org/10.1002/nme.1440
- Kedar C. Chitale, Onkar Sahni, Mark S. Shephard, Saurabh Tendulkar, and Kenneth E. Jansen. 2014. Anisotropic adaptation for transonic flows with turbulent boundary layers. AIAA Journal 53, 2 (2014), 367–378. DOI: http://dx.doi.org/10.2514/1.J053159
- Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. 2002. Zoltan data management services for parallel dynamic applications. *Computing in Science and Engineering* 4, 2 (2002), 90–97.
- Vladimir Dyedov, Navamita Ray, Daniel Einstein, Xiangmin Jiao, and Timothy J. Tautges. 2014. AHF: Arraybased half-facet data structure for mixed-dimensional and non-manifold meshes. In *Proceedings of the* 22nd International Meshing Roundtable. Springer, 445–464.
- H. Carter Edwards, Alan B. Williams, Gregory D. Sjaardema, David G. Baur, and William K. Cochran. 2010. SIERRA toolkit computational mesh conceptual model. Sandia National Laboratories SAND Series, SAND2010-1192 (2010).
- FASTMath DOE SciDAC Web. 2015. FASTMath: Applied Mathematics Algorithms, Tools, and Software for HPC Applications. Retrieved from http://www.fastmath-scidac.org.
- Joe E. Flaherty, Raymond M. Loy, Mark S. Shephard, Boleslaw K. Szymanski, James D. Teresco, and Louis H. Ziantz. 1997. Predictive load balancing for parallel adaptive finite element computation. In Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'97), Xiangmin Jiao and Jean-Christophe Weill (Eds.), Vol. 1. 460–469.
- Azat Yu Galimov, Onkar Sahni Jr., Richard T. Lahey, Mark S. Shephard, Donald A. Drew, and Kenneth E. Jansen. 2010. Parallel adaptive simulation of a plunging liquid jet. *Acta Mathematica Scientia* 30, 2 (Mar. 2010), 522–538. DOI:http://dx.doi.org/10.1016/S0252-9602(10)60060-4
- Rao V. Garimella. 2002. Mesh data structure selection for mesh generation and FEA applications. International Journal of Numerical Methods in Engineering. 55 (2002), 451–478. DOI:http://dx.doi.org/ 10.1002/nme.509
- GeomSim Web. 2015. GeomSim: Direct Geometry Access. Retrieved from http://www.simmetrix.com/ products/Simul-ationModelingSuite/geomsim/geomsim.html.
- Ari Glezer and Micheal Amitay. 2002. Synthetic jets. Annual Review of Fluid Mechanics 34 (Jan. 2002), 503–529. DOI:http://dx.doi.org/10.1146/annurev.fluid.34.090501.094913
- GRUMMP Web. 2015. Generation and Refinement of Unstructured, Mixed-Element Meshes. (2015). http://tetra.mech.ubc.ca/GRUMMP.

- Glen Hansen and Steve Owen. 2008. Mesh generation technology for nuclear reactor simulation; barriers and opportunities. *Journal of Nuclear Engineering and Design* 238, 10 (Oct. 2008), 2590–2605. DOI:http://dx.doi.org/10.1016/j.nucengdes.2008.05.016
- Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and Kendall S. Stanley. 2005. An overview of the Trilinos project. ACM Transaction on Mathematical Software (TOMS) - Special Issue on the Advanced ComputaTional Software (ACTS) Collection 31, 3 (Sep. 2005), 397–423. DOI:http:// dx.doi.org/10.1145/1089014.1089021
- Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2010. Scalable communication protocols for dynamic sparse data exchange. ACM Sigplan Notices 45, 5 (2010), 159–168.
- Thomas J. R. Hughes, Luca Mazzei, and Kenneth E. Jansen. 2000. Large-eddy simulation and the variational multiscale method. *Computing and Visualization in Science* 3, 1–2 (May 2000), 47–59. DOI:http://dx.doi.org/10.1007/s007910050051
- Daniel A. Ibanez, Ian Dunn, and Mark S. Shephard. 2016. Hybrid MPI-thread parallelization of adaptive mesh operations. *Parallel Comput.* 52 (feb. 2016), 133–143. DOI:http://dx.doi.org/doi:10.1016/j.parco. 2016.01.003
- iMeshP Web. 2015. iMeshP: SciDAC ITAPS Parallel Mesh Interface. Retrieved from http://www.itaps.org/software/iMeshP\_html.
- ITAPS Web. 2015. ITAPS: Interoperable Technologies for Advanced Petascale Simulations of Department of Energy's Scientific Discovery through Advanced Computing (SciDAC). Retrieved from http://www.itaps.org.
- Kenneth E. Jansen, Christian H. Whiting, and Gregory M. Hulbert. 2000. A generalized- $\alpha$  method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in Applied Mechanics and Engineering 190, 3–4 (Oct. 2000), 305–319. DOI:http://dx.doi.org/ 10.1016/S0045-7825(00)00203-6
- Anil K. Karanam, Kenneth E. Jansen, and Christian H. Whiting. 2008. Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis. *Engineering with Computers* 24, 1 (Jan. 2008), 17–26. DOI: http://dx.doi.org/10.1007/s00366-007-0063-0
- Orion S. Lawlor, Sayantan Chakravorty, Terry L. Wilmarth, Nilesh Choudhury, Issac Dooley, Gengbin Zheng, and Laxmikant V. Kalé. 2006. Parfum: A parallel framework for unstructured meshes for scalable dynamic physics applications. *Engineering with Computers* 22, 3 (Dec. 2006), 215–235. DOI:http://dx. doi.org/10.1007/s00366-006-0039-5
- Xiangrong Li, Mark S. Shephard, and Mark W. Beall. 2005. 3D anisotropic mesh adaptation by mesh modification. Computer Methods in Applied Mechanics and Engineering 194, 48–49 (Nov. 2005), 4915– 4950. DOI:http://dx.doi.org/10.1016/j.cma.2004.11.019
- LLNL HPC Web. 2015. High Performance Computing Training, Lawrence Livermore National Laboratory. Retrieved from http://computing.llnl.gov/training.
- Xiao-Juan Luo, Mark S. Shephard, Lie-Quan Lee, Lixin Ge, and Cho Ng. 2011. Moving curved mesh adaption for higher-order finite element simulations. *Engineering with Computers* 27 (2011), 41–50. DOI:http://dx.doi.org/10.1007/s00366-010-0179-5
- MeshAdapt Web. 2015. MeshAdapt: Parallel Unstructured Mesh Adaptation Library. Retrieved from http://www.scorec.rpi.edu/meshadapt.
- MeshSim Web. 2015. MeshSim: Mesh Matching. Retrieved from http://www.simmetrix.com/products/ SimulationMod-elingSuite/MeshSim/MeshMatching/MeshMatching.html.
- NetCDF Web. 2015. NetCDF: Network Common Data Form. Retrieved from http://www.unidata.ucar. edu/software/netcdf.
- Robert M. O'Bara, Mark W. Beall, and Mark S. Shephard. 2002. Attribute management system for engineering analysis. *Engineering with Computers* 18 (2002), 339–351. DOI:http://dx.doi.org/10.1007/ s00366020030
- Carl Ollivier-Gooch, Lori F. Diachin, Mark S. Shephard, Tim J. Tautges, Jason A. Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. 2010. An interoperable, data-structure-neutral component for mesh query and manipulation. ACM Transactions on Mathematical Software 37, 3 (Sep. 2010). DOI:http://dx.doi.org/10.1145/1824801.1864430
- Aleksandr Ovcharenko, Kedar C. Chitale, Onkar Sahni, Kenneth E. Jansen, and Mark S. Shephard. 2013. Parallel adaptive boundary layer meshing for CFD analysis. In *Proceedings of the 21st International Meshing Roundtable*, Xiangmin Jiao and Jean-Christophe Weill (Eds.). Springer, Berlin, 437–455. DOI:http://dx.doi.org/10.1007/978-3-642-33573-0\_26

- Malcolm J. Panthaki, Raikanta Sahu, and Walter H. Gerstle. 1997. An object-oriented virtual geometry interface. In *Proceedings of the 6th International Meshing Roundtable*. Springer, Berlin, 67–82. http://www.imr.sandia.gov/papers/abstracts/Pa54.html.
- Parasolid Web. 2015. Parasolid: 3D Geometric Modeling Engine. (2015). http://www.plm.automation. siemens.com/en\_us/products/open/parasolid.
- PUMI Web. 2015. PUMI: Parallel Unstructured Mesh Infrastructure. (2015). http://www.scorec.rpi.edu/pumi.
- Michel Rasquin, Cameron W. Smith, Kedar Chitale, E. Seegyoung Seol, Ben Matthews, J. Martin, Onkar Sahni, Raymond Loy, Mark S. Shephard, and Kenneth E. Jansen. 2015. Scalable fully implicit finite element flow solver with application to high-fidelity flow control simulations on a realistic wind design. *Computing in Science and Engineering* (2015). accepted.
- Jean-François Remacle and Mark S. Shephard. 2003. An algorithm oriented mesh database. International Journal of Numerical Methods in Engineering 58, 2 (Sep. 2003), 349–374. DOI:http://dx.doi.org/ 10.1002/nme.774
- Onkar Sahni, Kenneth E. Jansen, Mark S. Shephard, Charles A. Taylor, and Mark W. Beall. 2008. Adaptive boundary layer meshing for viscous flow simulations. *Engineering with Computers* 24, 3 (Sep. 2008), 267–285. DOI:http://dx.doi.org/10.1007/s00366-008-0095-0
- Onkar Sahni, Kenneth E. Jansen, Charles A. Taylor, and Mark S. Shephard. 2009. Automated adaptive cardiovascular flow simulations. *Engineering with Computers* 25, 1 (2009), 25–36. DOI:http://dx.doi.org/ 10.1007/s00366-008-0110-5
- Onkar Sahni, Jens Müller, Kenneth E. Jansen, Mark S. Shephard, and Charles A. Taylor. 2006. Efficient anisotropic adaptive discretization of cardiovascular system. *Computer Methods in Applied Mechanics and Engineering* 195, 41–43 (Aug. 2006), 5634–5655. DOI:http://dx.doi.org/10.1016/j.cma.2005.10.018
- Onkar Sahni, Joshua Wood, Kenneth E. Jansen, and Michael Amitay. 2011. Three-dimensional interactions between a finite-span synthetic jet and a crossflow. *Journal of Fluid Mechanics* 671 (2011), 254–287. http://dx.doi.org/10.1017/S0022112010005604
- Kirk Schloegel, George Karypis, and Vipin Kumar. 2002. Parallel static and dynamic multi-constraint graph partitioning. *Concurrency and Computation: Practice and Experience* 14, 3 (Mar. 2002), 219–240.
- Larry A. Schoof and Victor R. Yarberry. 1994. *EXODUS II: A Finite Element Data Model*. Technical Report SAND92-2137. Sandia National Laboratories, Albuquerque, NM 87158 and Livermore, CA 94550.
- E. Seegyoung Seol. 2005. FMDB: Flexible Distributed Mesh Database for Parallel Automated Adaptive Analysis. Ph.D. Dissertation. Rensselaer Polytechnic Institute, Troy, NY.
- E. Seegyoung Seol and Mark S. Shephard. 2006a. Efficient distributed mesh data structure for parallel automated adaptive analysis. *Engineering with Computers* 22, 3–4 (2006), 197–213.
- E. Seegyoung Seol and Mark S. Shephard. 2006b. Efficient distributed mesh data structure for parallel automated adaptive analysis. *Engineering with Computers* 22, 3 (Dec. 2006), 197–213. DOI:http://dx. doi.org/10.1007/s00366-006-0048-4
- E. Seegyoung Seol, Cameron W. Smith, Daniel A. Ibanez, and Mark S. Shephard. 2012. A parallel unstructured mesh infrastructure. *High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion* (Nov. 2012), 1124–1132. DOI: http://dx.doi.org/10.1109/SC.Companion.2012.135
- Mark S. Shephard. 2000. Meshing environment for geometry-based analysis. International Journal of Numerical Methods in Engineering 47, 1–3 (Jan. 2000), 169–190.
- Mark S. Shephard and E. Seegyoung Seol. 2009. Flexible distributed mesh data structure for parallel adaptive analysis. In Advanced Computational Infrastructures for Parallel and Distributed Applications, Manish Parashar and Xiaolin Li (Eds.). Wiley, 407–435. DOI:http://dx.doi.org/10.1002/ 9780470558027.ch19
- Mark S. Shephard, Cameron Smith, E. Seegyoung Seol, and Onkar Sahni. 2013. Methods and tools for parallel anisotropic mesh adaptation and analysis. In VI International Conference on Adaptive Modeling and Simulation (ADMOS'13), J. P. Moitinho de Almeida, P. Díez, C. Tiago, and N. Parés (Eds.). The European Community in Computational Methods in Applied Sciencies (ECCOMAS), Lisbon, Portugal.
- Simmetrix Web. 2015. Simmetrix: Simulation Modeling and Application Suite. Retrieved from http://www.simmetrix.com.
- Tim J. Tautges. 2001. CGM: A geometry interface for mesh generation, analysis and other applications. *Engineering with Computers* 17, 3 (Oct. 2001), 299–314. DOI:http://dx.doi.org/10.1007/PL00013387
- T. J. Tautges, R. Meyers, K. Merkley, C. Stimpson, and C. Ernst. 2004a. MOAB: A Mesh-Oriented Database. SAND2004-1592. Sandia National Laboratories. Report.
- Tim J. Tautges, Ray Meyers, Karl Merkley, Clint Stimpson, and Corey Ernst. 2004b. *MOAB: A Mesh-Oriented Database*. Technical Report SAND2004-1592. Sandia National Laboratories, Albuquerque, NM 87158 and Livermore, CA 94550.

- Andrés E. Tejada-Martínez and Kenneth E. Jansen. 2005. On the interaction between dynamic model dissipation and numerical dissipation due to streamline upwind/Petrov-Galerkin stabilization. Computer Methods in Applied Mechanics and Engineering 194, 9-11 (Mar. 2005), 1225-1248. DOI:http://dx.doi.org/10.1016/j.cma.2004.06.037
- Andrés E. Tejada-Martínez and Kenneth E. Jansen. 2006. A parameter-free dynamic subgrid-scale model for large-eddy simulation. Computer Methods in Applied Mechanics and Engineering 195, 23 (Apr. 2006), 2919–2938. DOI:http://dx.doi.org/10.1016/j.cma.2004.09.016
- Saurabh Tendulkar, Mark W. Beall, Mark S. Shephard, and Kenneth E. Jansen. 2011. Parallel mesh generation and adaptation for CAD geometries. In *Proceedings of the NAFEMS World Congress*. Boston, MA.
- Trilinos Web. 2015. The Trilinos Project: Sandia National Laboratories. (2015). http://trilinos.sandia.gov.
- VTK Web. 2015. VTK: Visualization Toolkit. (2015). http://www.vtk.org.
- K. J. Weiler. 1988. The radial-edge structure: A topological representation for non-manifold geometric boundary representations. In *Geometric Modeling for CAD Applications: Selected and Expanded Papers from the lfip Wg 5.2 Working Conference*, M. J. Wozny, H. W. McLaughlin, and Jose L. Encarnacao (Eds.). Elsevier Science, 3–36.
- Christian H. Whiting, Kenneth E. Jansen, and Saikat Dey. 2003. Hierarchical basis for stabilized finite element methods for compressible flows. *Computer Methods in Applied Mechanics and Engineering* 192, 47–48 (2003), 5167–5185. http://dx.doi.org/10.1016/j.cma.2003.07.011
- Ting Xie, E. Seegyoung Seol, and Mark S. Shephard. 2014. Generic components for petascale adaptive unstructured mesh-based simulations. *Engineering with Computers* 30, 1 (Jan. 2014), 79–95. DOI:http://dx.doi.org/10.1007/s00366-012-0288-4
- Min Zhou, Onkar Sahni, Karen D. Devine, Mark S. Shephard, and Kenneth E. Jansen. 2010a. Controlling unstructured mesh partitions for massively parallel simulations. *SIAM Journal on Scientific Computing* 32, 6 (Nov. 2010), 3201–3227. DOI: http://dx.doi.org/10.1137/090777323
- Min Zhou, Onkar Sahni, H. Jin Kim, C. Alberto Figueroa, Charles A. Taylor, Mark S. Shephard, and Kenneth E. Jansen. 2010b. Cardiovascular flow simulation at extreme scale. *Computational Mechanics* 46, 1 (2010), 71–82. DOI:http://dx.doi.org/10.1007/s00466-009-0450-z
- Min Zhou, Onkar Sahni, Ting Xie, Mark S. Shephard, and Kenneth E. Jansen. 2012a. Unstructured mesh partition improvement for implicit finite element at extreme scale. *Journal of Supercomputing* 59, 3 (Mar. 2012), 1218–1228. DOI:http://dx.doi.org/10.1007/s11227-010-0521-0
- Min Zhou, Ting Xie, E. Seegyoung Seol, Mark S. Shephard, Onkar Sahni, and Kenneth E. Jansen. 2012b. Tools to support mesh adaptation on massively parallel computers. *Engineering with Computers* 28, 3 (Jul. 2012), 287–301. DOI: http://dx.doi.org/10.1007/s00366-011-0218-x

Received March 2014; revised April 2015; accepted August 2015

17:28