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ABSTRACT

Geometric modeling technology for representing three-dimensional objects has pro-
gressed from early wireframe representations, through surface representations, to the
most recent representation, solid modeling. Each of these forms has many possible

representations.

The boundary representation technique, where the surfaces, edges, and vertices of
objects are represented explicitly, has found particularly wide application, Many of
the more sophisticated versions of boundary representations explicitly store topologi-

cal information about the positional relationships among surfaces, edges, and vertices.

This thesis places emphasis on the use of topological information about the shape
being modeled to provide a framework for geometric modeling boundary representa-
tions and their implementations, while placing little constraint on the actual geometric

surface representations used.
The major thrusts of the thesis fall into two areas of geometric modeling,

First, a theoretical basis for two-manifold solid modeling boundary topology represen-
tations is developed. The minimum theoretical and minimum practical topological
adjacency information required for the unambiguous topological representation of
manifold solid objects is determined. This provides a basis for checking the correct-
ness of existing and proposed representations. The correctness of the winged edge
structure is also explored, and several new representations which have advantages

over existing techniques are described and their sufficiency verified.

Second, a non-two-manifold boundary geometric modeling topology representation is
developed which allows the unified and simultaneous representation of wireframe,

surface, and solid modeling forms, while featuring a representable range beyond what

xvil



is achievable in any of the previous modeling forms. In addition to exterior surface
features, interior features can be modeled, and non-manifold features can be
represented directly. A new data structure, the Radial Edge structure, which provides
access to all topological adjacencies in a non-manifold boundary representation, is
described and its completeness is verified. A general set of non-manifold topology
manipulation operators is also described which is independent of a specific data struc-
ture and is useful for insulating higher levels of geometric modeling functionality

from the specifics and complexities of underlying data structures.

The coordination of geometric and topological information in a geometric modeling

system is also discussed.



Chapter 1

INTRODUCTION

Geometric modeling technology for representing three-dimensional objects has pro-
gressed from early wireframe representations, through surface representations, to thé
most recent representation, solid modeling. Each involves increasing amounts of
information about the shape being modeled, and provides correspondingly more
sophisticated functionality. Yet each modeling form still retains unique characteristics

which make it most appropriate under certain application requirements.

Each of these forms has many possible representations. One kind of representation
technique that has found wide application is the boundary representation technique,
where the surfaces, edges, and corner vertices of objects are represented explicitly.
Many of the more sophisticated versions of boundary representations explicitly store
topological information about the positional relationships among surfaces, edges, and

vertices.

This thesis explores boundary based, object based, evaluated representational forms
which explicitly store topological information, because these have shown wide applica-

tion in industrial modeling as well as in other environments.

The thesis places emphasis on the use of topological information about the shape
being modeled to provide a framework for the modeling representation and imple-
mentation, while placing little constraint on the geometric surface representations
used. While there are many advantages to this approach, perhaps the most important
is that it can provide a stable basis for an implementation to evolve using several
geometric surface representation forms, as appropriate to the application require-

ments. The thesis therefore concentrates on the representation of the topological



framework itself.
The major thrusts of the thesis fall into two areas of geometric modeling.

The first is in the area of manifold boundary representations. Manifold boundary
based, object based solid modeling topology representations are the basis of some of
the most popular forms of manifold solid modeling representations being used today.
In spite of this, most of the topological theoretical exploration of solid modeling has
been limited to point set topology, which is of more value in volume based modeling
representations. There has previously been little theoretical exploration of algebraic
topology to provide a firm theoretical basis for boundary based solid modeling sys-
tems. The value of providing a theoretical basis for solid modeling representations is
that it provides a basis for checking the correctness of existing and proposed
representations and their implementations, and can provide insight which may lead to
new representations previously not considered. It also provides a basis for determin-
ing the minimal amount of information needed to unambiguously represent a model.
The thesis addresses this need, developing a theoretical basis for manifold solid
modeling boundary topology representations, The minimum theoretical and
minimum practical topological adjacency information required for the unambiguous
topological representation of manifold solid objects is determined. The correctness of
an existing manifold solid modeling representation is explored, and several new
representations which have advantages over existing techniques are identified and

proof of their sufficiency is given,

The second is in the area of non-two-manifold topology representations. Little work
has been been done in the area of non-manifold boundary based object based
geometric modeling representations, and non-manifold representations which expli-
citly store topological adjacency information are in an entirely new area of research.
Yet there are several reasons why such a representation form is useful. A unified
representation for combined wireframe, surface, and solid modeling by necessity
requires a non-manifold representation, and is desirable since it makes it easy to use

the most appropriate modeling form (or combination of forms) in a given application



without requiring representation conversion as more information is added to the
model. A unified representation can also have many implementation advantages in
terms of lower initial resource investments as well as lower maintenance requirements
compared to multiple representation systems. The user interface in a unified represen-
tation system also tends to offer a more integrated approach to the end user since the
same framework is being manipulated in all cases. Arbitrary geometric information,
such as center lines, can be stored in the model with shape descriptions. Composite
objects can be modeled directly. With a non-manifold representation, applications
such as finite element analysis can for the first time be directly supported in the
modeling representation environment, allowing communication between the modeler
and analysis application in both directions using the model representation as the com-
munication medium. Closed form Boolean operations are possible in a non-manifold
representation. In addition to a non-manifold geometric modeling representation,
operators to manipulate the representation greatly simplify implementations. The
thesis describes a new data structure, the Radial Edge structure, which provides
access to all topological adjacencies in a non-manifold boundary representation, and
verifies its completeness. A general set of non-manifold topology manipulation
operators is also described which is independent of a specific data structure and is use-
tul for insulating higher levels of geometric modeling functionality from the specifics

and complexities of underlying data structures.

The thesis thus contributes to the state of the art in two areas of geometric modeling;
first, by establishing and utilizing a theoretical basis for manifold boundary based
solid modeling topology representation systems, and second, by investigating a power-
ful but largely unexplored geometric modeling form through the development of the
first non-manifold boundary based geometric modeling representation which explicitly

represents topological adjacencies.




1.1. Organization of the Thesis

The thesis is organized into five major sections,

The first major section, “Geometric Modeling”, presents an organized view of the
geometric modeling field and identifies the position of this new work in the wider
geometric modeling context. It provides a philosophical and technical foundation for
the work described in the thesis, and also develops the terminology used throughout
the thesis. It is primarily intended to provide a minimal mathematical background for
the non-mathematician, and a minimal geometric modeling background for those new

to modeling.

The second major section, ‘“Manifold Solid Representations’’, develops a theoretical
foundation for boundary based manifold solid modeling topologies, describes and
proves the sufficiency of several new data structures, and, for completeness, reviews

existing operators to manipulate manifold boundary graph topology representations.

The third major section, ‘‘Non-Manifold Representations’, describes a new non-
manifold boundary graph topology representation which provides a unified representa-
tion of wireframe, surface, solid, and non-manifoid modeling forms. Completeness
of the new data structure is proven. It also preseats new general operators to mani-

pulate non-manifold boundary graph topology representations.

The fourth major section, ““Topology and Geometry Interface’’, describes some of
the problems in coordinating the topological and geometric representations in
geometric modeling systems, and identifies some of the potential techniques to
approach these problems. It also points out the correspondence between direct
representation of uses of topological elements and representation of parametric

geometry surface intersections.

The fifth major section, ‘‘Conclusion”, concludes the thesis, reviews the major

results, and identifies areas for further research,

Five appendices follow. The first, ‘“Topological Sufficiency Under Constraints’’,



examines topological sufficiency for manifold solid modeling topologies under more
restrictions than the domain identified in Chapter 9. The second, “‘Storage and
Accessing Efficiency Comparisons’’, provides detailed comparisons of the four mani-
fold solid modeling data structures described in Chapter 12, in terms of storage
requirements, accessing efficiency, and accessing algorithm complexity. The third,
“Traversals of the Radial Edge Structure’’, describes detailed traversal algorithms for
the non-manifold Radial Edge structure. The fourth, “Sufficiency of the Radial Edge
Structure’’, describes detailed algorithms for the derivation of all of the non-manifold
adjacency relationships from the Radial Edge structure. The fifth, **Selective Query
and Traversal’”, details a technique for associating multiple independent attributes
with topological elements which can later be used for accessing model topological

adjacency information selected by combinations of attributes.

1.2, Audience

Much of the appeal of the geometric modeling field is that humans are naturally
endowed with an understanding of and interest in the three-dimensional physical
world and the spatial relationships of objects in it. This intuition about geometry and
topology is already contained in each of us. It takes only a little more effort to study
and appreciate these same relationships in the more abstract context of geometric

modeling.

The major audience targeted by this thesis is the geometric modeling community.,
One of my goals in writing it is to demonstrate that a proper theoretical foundation is
extremely beneficial in the design and implementation of geometric modeling sys-
tems, and that such a foundation is understandable and usable by modeling system
implementors. In the case of this study alone, theoretical investigations led to more
powerful and general representation systems than the original study was concerned
with. To the end of reaching this audience, most of the theoretical parts of the thesis
are stated in terms probably most familiar to the geometric modeling and computing

communities, perhaps at the expense of disenchanting some who may have preferred




a more traditional notation. With the major exception of the adjacency relationship
terminology central to the topic of adjacency topology, use of notation is avoided, and

where possible, an intuitive overview of what is going on is attempted.

1.3. Miscellaneous

All of the material in the thesis, unless explicitly stated otherwise, describes original
work, except for Chapters 5 and 13, which summarize existing terminology and

review existing techniques.

Some of the material contained in this thesis has been previously published. Of note
are ‘‘Topology as a Framework for Solid Modeling”’ {Weiler 84], which is incor-
porated in Chapter 4, and ‘‘Edge-based Data Structures for Solid Modeling in Curved
Surface Environments’ {Weiler 85a], which is incorporated in parts of Chapter 12

and Appendix B.

The thesis also incorporates work from several currently unpublished papers. These
include “‘Adjacency Relationships in Boundary Graph Based Solid Models” [Weiler
83], which is incorporated in Chapter 11 and Appendix A, ““The Radial Edge Struc-
ture: a Topological Representation for Non-Manifold Geometric Modeling” [Weiler
85b}, which is incorporated in Chapters 15, 16, and 17, and **Boundary Graph Opera-
tors for Non-Manifold Geometric Modeling Representations’’ [Weiler 85¢], which is

incorporated in Chapters 15, 16, and 19.

All of the original work described here was done while pursuing a doctorate at

Rensselaer Polytechnic Institute.



SECTION 1

GEOMETRIC MODELING



Chapter 2

INTRODUCTION

Geometric modeling currently involves the use of computers to aid in the creation,
manipulation, maintenance, and analysis of representations of the geometric shape of
two- and three-dimensional objects. It is used in a wide variety of applications includ-
ing industrial mechanical part design and analysis, engineering and scientific visualiza-
tion, commercial video and motion picture production, artistic pursuits, and many

other areas.
This thesis emphasizes the role of topology in geometric modeling,

This major section has two objectives. First, it provides some background for those
unfamiliar with some of the details of geometric modeling and topology. Second, it
takes a fresh look at several general geometric modeling concepts in order to provide
background for later sections on two important geometric modeling representational

forms, manifold and non-manifold representations.

2.1. Organization of This Section
The first of the following chapters, Chapter 3, provides a brief description of the
different forms of geometric modeling representations currently available.

Next, Chapter 4 provides an intuitive introduction to the use of topology as a frame-
work in geometric modeling implementations, and provides the philosophical basis for

the approach taken in the remainder of the thesis,

Chapter 5 briefly identifies relevant terminology from graph theory, topology, and



geometric modeling,

Chapter 6 discusses topological elements and topological adjacency relationships, and
describes a comprehensive terminology to describe important characteristics of adja-

cency relationships relevant to geometric modeling,

Finally, Chapter 7 discusses the importance of specifying the domain of geometric

modeling systems and of proving sufficiency of the representation over that domain.



Chapter 3

FORMS OF GEOMETRIC MODELING

This chapter briefly describes many of the different approaches to geometric modeling

representations that have evolved over the last twenty-five years.

3.1. Geometric Modeling Forms

Different forms of geometric modeling can be distinguished based on exactly what is
being represented, the amount and type of information directly available without

derivation, and what other information can and cannot be derived.
Historically, several different geometric modeling forms have evolved,

Wireframe modeling, one of the earliest geometric modeling techniques, represents
objects by edge curves and points on the surface of the object (see Figure

3 - 1a).

Surface modeling techniques, first developed in the early 1960’s, go one step further
than wireframe representations by also providing mathematical descriptions
of the shape of the surfaces of objects (see Figure 3 — 1b). Surface
modeling techniques allow graphic display and numerical control machining
of carefully constructed models, but usually offer few integrity checking

features,

Solid modeling, a technique developed in the early 1970’s, explicitly or implicitly con-
tains information about the closure and connectivity of the volumes of

solid shapes. It is becoming an increasingly important part of the process

10
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Figure 3 - 1, Wireframe, surface, and solid modeling forms
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of computer aided modeling of solid physical objects for design, analysis,
manufacturing, simulation, and other applications. Solid modeling offers a
number of advantages over previous surface modeling techniques, because
it provides a guarantee that any models which are created will form closed
and bounded objects more closely related to physically realizable shapes
than can be guaranteed for surface models. Figure 3 -~ Ic illustrates that
for boundary based solid models every surface boundary is always directly
adjacent to one other surface boundary, guarantecing a closed volume.
Solid models, unlike surface models, enable a modeler system to distin-
guish the outside of a volume from the inside, allowing mass property
analysis for the determination of volume, center of gravity, and the like.
Typical solid modeling systems also offer tools for the creation and mani-
pulation of complete solid shapes, while maintaining the integrity of the

representations.

Non-manifold geometric modeling, as defined here, is a new modeling form which
removes constraints traditionally associated with manifold solid modeling
forms by embodying all of the capabilities of the previous three modeling
forms in a unified representation and extending the representational

domain beyond that of the previous modeling forms (see Figure 3 - 2).

Non-manifold representations are the most recent development. Some volume based
solid modeling systems have allowed some non-manifold conditions, but did not
allow the full range of non-manifold conditions involving boundary objects such as
surfaces and wireframe edges. Focus on full non-manifold systems allowing all such
conditions is new. By definition such systems must have some boundary representa-
tion capability. The work in this thesis emphasizes non-manifold representations

which explicitly store topological adjacencies.

The differences between manifold solid representations and non-manifold representa-

tions merit further discussion,

In a manifold (two-manifold) solid representation, every point on a surface is two-
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dimensional; that is, every point has a neighborhood which is homeomorphic to a
two-dimensional disk. In other words, even though the surface exists in three-
dimensional space it is topologically *‘flat’’ when the surface is examined closely in a
small enough area around any given point. Historically, boundary based solid model-

ing systems which store topological adjacencies have used manifold representations,

Non-manifold is a geometric modeling term referring to topological situations which
are not two-manifold. In an environment which allows non-manifold situations the
surface area around a given point on a surface might not be “‘flat”’ in the sense that
the neighborhood of the point need not be a simple two-dimensional disk. This
allows topological conditions such as a cone touching upon another surface at a single
point, more than two faces meeting along a common edge, and wire edges emanating
from a point on a surface (see Figure 3 - 3 ). A non-manifold representation there-
fore allows a general wire mesh with surfaces and enclosed volumes embedded in

space,

A set of common solid modeling operations, the Boolean set operations, are not
closed under manifold representations. A modification of the Boolean operations,
called the regularized set operators [Requicha & Voelcker 77], is designed to permit
only volume filling results from the Boolean operations. The regularized set opera-
tions therefore avoid a subset of the non-manifold results which can result from
applying the Boolean operations on manifold inputs. However, with some manifold
inputs the results of Boolean operations, regularized or not, are non-manifold and
therefore not representable under manifold representations. For example, an append-
age reaching out from the main volume of an object and then touching back on the
surface of the same object at a single point is not directly representable with mani-
folds, and creation of such an object even with regularized set operations cannot yield
a valid manifold result (see Figure 3 - 4). Non-manifold representations avoid these
singularities by representing non-manifold situations directly instead of restricting the

domain of the output.

Overall, non-manifold representations have superior flexibility, can represent a larger
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Figure 3 - 4. The Boolean union of two manifold objects yielding a non-manifold
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variety of objects, and can support a wider variety of applications than manifold
representations, but at a cost of a larger size data structure. Boolean operation imple-
mentations operating on either manifold or non-manifold representations must detect
and deal with non-manifold results in some fashion; however, in a non-manifold
representation such results are uniformly and cleanly represented and manipulated.
Thus non-manifold representations are required if accurate closed form Boolean
operations with faithful representation of non-manifold results are desired. Non-
manifold representations are also required if one is interested in the interior volume
structures in an object and the relationships between them, such as in composite

objects and finite element meshes.

Perhaps most importantly, generalized non-manifold representations can represent
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wireframe, surface, and solid modeling representations simultaneously in a single uni-
form format. This uniformity offers significant advantages in the staging, delivery,

and maintenance of geometric modeling systems.

Manifold topology representations may still be preferable, however, in situations
where storage space is at a premium, and the additional advantages of non-manifold

capability are not required.
3.2. A Taxonomy of Geometric Modeling Representations

More detailed analysis of the many different representations that have been
developed for geometric modeling reveals a more complex picture than that shown by

the basic representational form classification presented in the previous subsection.
A more detailed taxonomy of these representations is now presented.

A wide variety of representations have been developed for geometric models, each
with its own strengths and weaknesses in the context of different applications. These
techniques can be differentiated on the basis of at least three independent criteria

concerning whether the representation is:

¢ boundary based or volume based
* object based or spatially based

s cvaluated or unevaluated in form

A representation is boundary based if the solid volume is specified by its surface

boundary; if the solid is specified directly by its volume it is volume based.

A representation is object based if it is fundamentally organized according to the
characteristics of the actual geometric shape itself; it is spatially based when the
representation is organized around the characteristics of the spatial coordinate system

it uses,

The evaluated/unevaluated characterization is roughly a measure of the amount of
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work necessary to obtain information about the objects being represented with respect
to a stated goal. In this thesis, for simplicity, it is assumed that the goal is obtaining

enough information for wireframe or surface display of an object.

Thus many representational techniques are potentially available by choosing different
combinations of values of the above criteria. The most appropriate modeling tech-
nique to use depends not only on the intended application but also on the particular
phase of the application one is concerned with. Many modeling systems support mul-
tiple representational techniques to ensure their efficacy over a broad range of applica-

tions and phases of the same application,

If each of the three way criteria presented is considered to allow binary choices, then
eight categories result, Several examples of the application of this classification to a
variety of current geometric modeling representational schemes are presented in Fig-
ure 3 - 5. The representation names in the boxes are not the only examples that can

be found for each of the classifications.

Unevaluated representation systems require some form of procedural interpretation to
be used with respect to the specified application. Examples of the unevaluated, spatial,
boundary classification include the halfspace solid representation technique where the
spatial region of interest is defined by successively dividing space in halves with usu-
ally infinite surface descriptions which coincide with portions of the desired region
boundary and selecting the half space on a specified side of the surface, eventually
enclosing the solid region. The halfspace technique is classified here as spatial based
because the surface descriptions are positioned in spatial coordinate space rather than
being relative to the object. An unevaluated, spatial, volume based approach is the
octree solid representation technique which represents solid regions of interest by
hierarchically decomposing a usually cubic volume of space into successively smaller
cubes. Hierarchical division and cube orientation usually follows the spatial coordi-
nate system. An unevaluated, object, boundary based representation example is the
procedural description of an object as a sequence of Euler operations, an edge based

construction technique described later in this thesis. A popular unevaluated, object,
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volume based example is CSG (Constructive Solid Geometry), where desired regions
are described as a series of Boolean set operations combining primitive volumes.
Sweeps, where geometric objects are swept through space, usually to produce a higher
dimensional element (such as sweeping an area to obtain a volume) are another
example falling into this category. Parametric primitives, standard shapes that come

with size, orientation, position; and other parameters, also fall into this category.

Evaluated representation systems usually require substantially less interpretation to
use with respect to the specified application. An example of a evaluated, spatial,
volume based representation is cell enumeration, which may be as simple as a three-
dimensional Boolean array, with each cell representing a cubic volume of space, with
a cell having a true value if the regAion of interest intersects with that cell. A boun-
dary based version of the same technique, an example of a evaluated, spatial, boundary
based representation, is boundary cell enumeration where only the cells which inter-
sect region bu‘oundaries have true values. An popular example of a evaluated, object,
boundary based representation is the boundary representation, where objects are
represented in terms of their boundary elements; for example, a polygon may be
represented by its bounding edges, and 2 solid volume by its finite bounding surfaces.
An evaluated, object, volume based representation is that of non-parametric primitives,

such as a simple fixed position object; this is not a particularly flexible representation,

The application domain of particular interest to this thesis is the design, analysis, and
manufacture of solid mechanical parts, Early in the design phase of such objects a
high level of abstraction, a symbolic form, offers the most powerful means of per-
forming complex design tasks —'as long as the abstraction is appropriate to the design
task at hand and to the designer performing it. However, during modification,
analysis, and use of the constructed model, easy availability of complete information
on the model is a prime consideration. For this phase of this application it has been
popular to use an object based, evaluated, boundary form of geometric model which
explicitly stores topological adjacency information, that is, the information specifying

which topological elements such as faces, edges, and vertices touch upon cne another,
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The focus in this thesis will be on evaluated, object based, boundary representations
which explicitly store topological adjacency information and can be used as a frame-
work for the implementation of geometric modeling systems. Both manifold solid

modeling and non-manifold geometric modeling representations will be addressed.



Chapter 4

TOPOLOGY AS A FRAMEWORK

This chapter provides an intuitive introduction to the use of topology as a framework
in geometric modeling implementations, and provides the philosophical basis for the
approach taken in the remainder of the thesis, It is intended to provide motivation
for following material rather than provide a completely rigorous mathematical descrip-

tion of the topological aspects of geometric modeling.

4.1. Topology and Geometry

Complete geometry can be considered to represent essentially all information about
the geometric shape of an object including where it lies in space and the precise

geometric location of all aspects of its various elements.

Topology, by definition, is an abstraction, a coherent subset, of the information avail-
able from the geometry of a shape. More formally, it is a set of properties invariant
under a specified set of geometric transformations. Invariance of these properties
under transformation implies by definition that the properties represented by the
topology do not include the set of information which is actually changed by such
transformations. Therefore all information is not present in topology; topology is
incomplete shape information which can theoretically be derived from the compiete
geometric specification. A carefully selected, coherent subset of information, one that

suppoerts a meaningful view of the whole, is the essence of an abstraction.

22
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Given this idea, one can consider topological information as a fuzzy definition of an
object located somewhere on the continuum between no information on the object
and a complete geometric definition of the object (see Figure 4 — 1 }. As such, topol-
ogy constrains, but does not uniquely define, the final geometry of an object. On the
other hand, a complete geometric description completely defines the topology of an
object, though such geometric information may not be in a form convenient for the

derivation of topological information.

4.2, Different Kinds of Topology

In the context of geometric modeling, when we think of topology we most often

No Information

Topology

Y

Geometry
(Complete information)

Figure 4 — 1. Topological information in the continuum of information about
the geometric shape of an object
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think of the adjacencies between topological elements such as vertices, edges, and
faces (see Figure 4 — 2 ). An individual adjacency relationship is the adjacency, in
terms of physical proximity and order, of a group of topological elements of one type
(such as vertices, edges, or faces) around some other specific single topological ele-
ment, An example of one topological adjacency relationship is the group of edges

found in a cyclic order around each vertex on an manifold object’s surface.

But an adjacency topology is only one subset of many possible subsets of geometric
information — only one among many forms of topology. Knot theory topology —
knots involving interlocking loops in objects which cannot be undone by geometric
transformation short of intersecting the objects — is one example of a different form
of topology (see Figure 4 — 3a). The amount of twist in an object of genus greater
than zero is another form of topology which is totally unrelated to adjacency or knot
topology (see Figure 4 — 3b). In this case all three forms of topology are orthogonal;

that is, each has information which is completely independent of the other two.

We will restrict our consideration here to the adjacency form of topology since that
form has so far been found the most useful in our selected application areas. Accept-
ing this restriction, adjacency information is often informally referred to as the ropol-
ogy of the solid model. The actual geometric surface descriptions, curve descriptions,
and point locations are then referred to as the geomerry of the solid model. This
topology information can serve as a framework into which the geometric information
is placed, and the topology can therefore serve as the ‘‘glue’’ which holds all the indi-

vidual component geometry and topology information together,

4.3. Using Topology

What benefit is there to considering the topology of a geometric model apart from the

complete geometric description ?

When it is a unified, coherent, high level abstraction of available information, topol-



Vv

VE VF
Fv FE FF

Figure 4 - 2, The nine element adjacency relationships in a manifold adjacency
topology consisting of faces, edges, and vertices
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Figure 4 - 3, Different forms of topology

ogy is useful in several situations. First, it is useful whenever a concise global abstrac-
tion or summary of information can save time over being forced to view in full detail
all data associated with a geometric model. Often, a top-down down hierarchical
description is used for this purpose, with higher levels serving as abstractions of the
lower levels. Second, during local manipulation of a small portion of an object, it is
useful to be able to find directly adjacent portions of the object without having to

review all data associated with the object.

Use of these two properties can simplify geometric modeling manipulation algorithms
and greatly improve their efficiency. However, topology can be even more useful
when it serves as a framework around which the geometric modeling representation

can be built,
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4.4. Topology as a Framework

By using topology as a framework for a geometric modeling representation we mean
first that topological information is explicitly available and second that it serves as the
organizing factor in the schema of the data structures used in the representation (and
therefore in the algorithms which operate on the structures). Third, to provide a
unified total structure, all topological information must be associated together. To
date, the most commonly useful approach has been to organize the topological infor-
mation in a top-down hierarchical fashion from higher to lower levels of dimensional-

ity (see Figure 4 — 4 ).

The usefulness of topological information as described in the previous section is not
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Figure 4 — 4. Top-down hierarchical representation of topological elements
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the only reason topology should be considered as a framework around which a solid

modeling representation can be built. There are more compelling reasons.

First, once the topological and geometric domain which the representation is intended
to cover has been defined, and the corresponding topological representation has been
selected, the topological portion of the implementation remains relatively stable.
Geometric surface representation and implementation techniques are still a subject of
research; the modeling field has not yet converged on any single *‘ultimate” or
canonical geometric surface representation technique, and is still plagued by funda-
mental numerical accuracy problems. As a result, many different forms of geometric
surface representation and implementation techniques currently exist, and more are
under development. If a topological framework is used in a modeling implementation,
old geometric representations can be pulled out and new ones plugged in or multiple
geometric representations can be handled simultaneously without major changes to
the structure of the implementation. With a stable topological framework the impact
of such geometric representation changes can be minimized to small portions of the
implementation and the abillity to add new or replace existing geometric representa-
tions is enhanced. Thus a system implementation based on a topological framework

provides for a smoother evolution of the geometric modeling system over its lifetime.

Second, because of the approximate nature of geometric representations of general-
ized curved surfaces as currently formulated and implemented on computers, it is
possible that numerical accuracy problems can develop, such as small gaps appearing
between surface patches that were intended to be adjacent. Relying on geometric
information alone to determine topological relationships such as patch to patch adja-
cency can be an error prone proposition, particularly since arithmetic operations on
the underlying scalar number representations being used are not closed form. If adja-
cency information is known at the time of model creation, combining a topological
framework with one or more geometric surface representation techniques provides a
way to represent the intended properties of an object, in spite of some types of

geometric inaccuracies (though certainly not all of them).
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Third, separation of topological and geometric information in a geometric modeling
representation provides a more systematic approach to implementation, providing for

simpler creation, verification, and analysis of the model.

4.5. Sufficient Topology

In an adjacency topology consisting of three primitive elements such as faces, edges,
and vertices, there are nine possible adjacency relationships (as seen in Figure 4 - 2
). If a topological representation contains enough information to recreate all nine of
these adjacency relationships without error or ambiguity, it can be considered a

sufficient adjacency topology representation.

A complete characterization of a sufficient representation cannot be made without
first identifying the domain, or representational range over which the representation is

intended to be valid.

Since it is not necessary in general to- store all possible adjacency relationships in
order to have a sufficient topological representation, identifying a sufficient minimat
subset of that information becomes an issue. While only a small subset of the possi-
ble adjacency relationships can be considered sufficient and are theoretically necessary,
practical topological representations useful in geometric modeling normally utilize a
sufficient subset of adjacency relationships in combination with one or more other
adjacency relationships. This is necessary in order to associate together aill of the
unique topological elements found in a particular model. For example, in a three ele-
ment adjacency topology, since each adjacency relationship involves only two element
types, a second adjacency relationship is necessary to associate all three element types
together while maintaining the unique identity of each element (which is necessary to
be able to assign unique non-topological attributes to each element, a requirement in
most modeling applications). If the combination of adjacency relationships selected
for a representation is sufficient, it is then not necessary to rely on geometric infor-

mation to obtain any of the remaining topological adjacency relationships. Because of
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possible inaccuracies in geometric data, a sufficient topological representation is there-

tore highly desirable.

4.6, Sufficient Topology as a Framework

When topological information is used as a framework for geometric modeling
representations and their implementations, its advantages are best realized if it is
independent of geometric representations. Otherwise changes cannot be made to the
geometric representation portion of the system implementation without putting the
entire framework at risk. In other words, a topological representation chosen as a
framework for a geometric modeling system should be a sufficient topological
representation. The use of a sufficient topological representation for the framework
also allows a more complete consistency check against geometry, often avoiding or
identifying some types of inconsistencies due to geometric inaccuracy. Furthermore, it
can help avoid the inadvertent assumption of sufficient information by algorithms

which manipulate the representation,

In an object based evaluated boundary form of geometric modeler it is highly desir-
able to utilize an adjacency topology data structure as a framework in the structure of
the implementation. The abstraction implicit in this topology based organization of
the data can increase the efficiency and simplicity of the modeling system. For this
scheme to gain full advantage, however, the topological information used as the
framework must be mathematically sufficient information, independent of the
geometric information in the model. In this case the use of topology as a stable
framework for the implementation structure can minimize the impact of changes in
the geometric representation portions of the system implementation, can help sur-
mount some types of geometric accuracy problems, and can simplify creation,

verification, and analysis of the geometric model.



Chapter §

TOPOLOGY AND GEOMETRY

This chapter provides a brief introduction to terminology from existing graph theory,
algebraic topology, and geometric modeling that will prove useful in later sections of
the thesis. It is not intended to be completely rigorous, but rather to be accessible to

the average geometric modeling practitioner.

5.1. Graph Theoretic Concepts

Since the topology representations described in later chapters use graphs to represent
the edges and vertices of both planar and curved surface polyhedral solids, a brief

review of some ideas from graph theory will be helpful [Harary 72].

A vertex is a unique point. In modeling discussions we will assume it is associated
with a unique three-dimensional geometric point in modeling space. An edge is an
unordered set of two vertices. Strictly speaking, these vertices must be distinct,
meaning that each edge has two different vertices and at most one edge exists
between any two particular vertices; however we will relax this definition below. A
graph is a set of vertices and a set of distinct edges which utilize the vertices. In
modeling representations, edges are often associated with closed boundaries of sur-
face areas, and may be curved or straight non-self-intersecting finite segments of

space curves.

Edges whose set includes a particular vertex are incident with that vertex. The degree
of a vertex is the number of edges incident with it. Vertices which share an edge

between them are considered to be adjacent to each other,

3
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The trivial graph is a graph consisting of a single vertex.

A graph is connected if every two vertices are joined by some path, that is, there is an
alternating sequence of vertices and edges which begin and end at the two vertices

and where each edge in the path is incident to each vertex before and after it in the

sequence.

The connectivity of a graph, also called the point connectivity, is the minimum number
of vertices which, when removed along with their incident edges, results in a discon-
nected graph. A graph of connectivity a is said to be a-connected. This should not
be confused with fline-connectivity, which is the minimum number of edges whose

removal results in a disconnected graph.

A self-loop is a graph configuration in which an edge joins a vertex to itself; in other
words the two vertices associated with the edge are not distinct. A multigraph is a
graph configuration where multiple edges are allowed to join the same two vertices;
the vertex set of a multigraph edge is therefore not necessarily unique as in the usual
definition of a graph., While ordinary graphs, by strict definition do not allow these
conditions, we will allow both. Graphs that allow both self loops and multiple edges
are called pseudographs. When we refer to graphs in this thesis we are always refer-

ring to pseudographs unless noted otherwise.

A labeled graph is a graph where each vertex and edge is uniquely identified by some

means independent of the graph.

Commonly used graph theory terminology has overlaps with terminology from the
field of topology; some of this relevant terminology is therefore described in the next

subsection,

5.2. Topological Concepts

Some ideas from topological theory will also be necessary to characterize the domain

of the shapes that are of interest in the context of geometric modeling. An intuitive



33

introduction to topology may be found in [Arnold 62). A more formal approach may
be found in {Agoston 76]. The following definitions, while not completely rigorous,

will be helpful in later discussions.

A homeomorphism is a one to one, onto, topological transformation which is continu-
ous and has a continuous inverse, Topology is the study of properties which are
invariant under homeomorphisms; such properties determine topological equivalence.
Intuitively homeomorphisms can be thought of as elastic deformations which

preserve adjacency properties.

An open disk is that portion of a two-dimensional space which lies within some circle
of positive radius centered at a given point, excluding the circle itself. An open ball or
open sphere is the three-dimensional analog of the open disk and is a set of points
inside a sphere centered at a point and with a radius greater than zero, and excludes

the sphere itself,

A subset of a topological space is arcwise-connected if for any two points in the subset
of space there is a continuous path between them which is entirely contained within

that subset of space.

A surface, for our purposes, is an arcwise-connected space that is topologically two-
dimensional in nature. Note that although a surface is locally two-dimensional, it may

geometrically exist in a three-dimensional space, and may be curved.

A surface is bounded if the entire surface can be contained in some open ball. A
boundary on a surface may be a closed or open curve, or a single point on the surface.
A closed curve boundary separates a piece of the surface from the rest of the surface.
A surface is closed if it is bounded and has no boundary. For example, a plane has no

boundary but is unbounded, while a sphere is a closed surface.

A mwo-manifold surface is a topologically two-dimensional connected surface where
each point on the surface has a neighborhood which is topologically equivalent to an
open disk, A manifold may or may not be a closed surface. We will always be refer-

ring to two-manifolds when the word manifold is used in this thesis.
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The study of three-manifolds is concerned with the shape of three-dimensional space;
this area of study will not be of direct concern in this thesis and a Euclidean space will

be assumed.,

A manifold is orientable if it is two sided, that is, if it is not a surface like a Moebius
strip or Klein bottle, The surfaces of a solid volume are required to be oriented as
well as closed so that there is a clear distinction between the inside and outside of the
volume, Note that while the manifold surface of a solid volume may consist of

several pieces, these pieces must be joined together to form a single closed surface.

A graph can be embedded in (or mapped into} a surface if it is drawn on the surface so
that no two edges intersect, except at their incident vertices. A planar graph is a
graph which can be embedded in a planar surface. Graphs may be embedded in
non-planar surfaces unrestricted in the genus of the surface. A graph may also be
embedded in three-dimensional space, with or without accompanying bounded sur-
faces, as long as non-intersection properties are observed, that is, that no two ele-

ments intersect except at common lower dimensional boundary elements.

Faces are the connected subsets of the surface defined by a graph embedded in a sur-
face, Each face is a connected component of the set obtained by subtracting the ver-
tices and edges of the embedded graph from the surface. The boundary of a face
consists of those edges and vertices of the embedded graph whose every part touches

upon the face. Note that a face does not contain its boundary.

When a graph is embedded in an orientable two-manifold surface, each edge of the
graph is used exactly twice in the traversal of the edges around each face, once in
each direction, The traversal can be done by moving along each of the edges and
vertices in sequence around each face such that the area of the face is always to one
side, say the right, and the end vertex of each edge is the beginning vertex of the

next edge in the traversal.

A simply connected face is a face which has a single, connected boundary. A multiply-

connected face has a boundary that consists of two or more disconnected components,



as in a face with a hole in it.

A handle on an object can be formed by cutting two holes in the surface of the object
and then constructing a tube to join these two holes together. A doughnut shape or
torus is topologically equivalent to a sphere with one handle. The genus of a graph is
the minimum number of handles which must be added to a sphere so that the graph
can be embedded in the resulting surface without edges crossing at places other than

their common vertices.

A relationship known as the Euler-Poincaré formula describes the relationships of

numbers of elements in a planar graph:
V-E+ F= 2

where V, E, and F refer to the numbers of vertices, edges, and faces in the graph,

respectively.
In its more general form, where the graph may be embedded in a non-pianar surface,
V-E+ F=2(1-G)

where G refers to the genus of the graph. These formulae will be expanded further
in a later chapter dealing with manifold disconnected embedded graph representa-

tions.

5.3. Geometric Modeling Concepts

The geometric modeling community has also developed its own terminology, Many
of the terms describe concepts of particular interest in geometric modeling which are

not addressed or addressed in less detail in other fields with different concerns,

Non-manifold, as mentioned earlier, is a geometric modeling term referring to topolog-
ical situations which are not restricted to be manifold [Braid 83] [Requicha and
Voelcker 83}, In a non-manifold environment the surface area around a given point

on a surface might not be topologically *‘flat’’ in the sense that the neighborhood of
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the point need not be a simple two-dimensional disk. This allows topological condi-
tions such as a cone touching upon another surface at a single point, more than two

faces meeting along a common edge, and wire edges emanating from a point on a
surface (see Figure 3 - 3 ). Non-manifold representations are defined here as being
represéntations that allow non-manifold topological conditions, including those

involving volume, area, curve, and point elements.

The following terms have sometimes been used inconsistently in the literature; so the

definitions utilized in this thesis are given here,

Edges can be classified according to their use as boundaries by adjacent faces. A wire
or wireframe edge is an edge embedded in space which is not a boundary of any face.
A lamina edge is an edge which is used only once on the boundary of a single face. A
manifold edge is an edge which is used exactly twice on the boundary of one face or
exactly once each on the boundaries of two faces. A non-manifold edge is an edge

which is used three or more times on the boundaries of one or more faces.

A strut edge is a manifold edge which bounds one face and has one vertex which has
no other incident edges. An isthmus edge is a manifold edge which bounds only one

face but both vertices of the edge have additional incident edges.

Adjacency relationships are the information specifying which (and in what order) topo-
logical elements such as faces, edges, and vertices touch upon one another. They are

are defined in detail later in the text.

The regularized set operations are Boolean set operations which restrict their output so
that only volume filling results may occur. Thus so-called “‘dangling’’ faces and edges
which could be a result of the standard Boolean set operations are not present in the
output of a regularized set operator, but non-manifold output may be present

[Requicha 77].



37

5.4. Drawing Boundary Graphs

One practical issue that comes up in discussing adjacency topologies for manifold solid
modeling representations is in determining how to draw the boundary graphs of solid
objects on the flat sheets of paper (or CRT’s) to which we’ve become so accustomed.

It is often convenient to do so for purposes of discussion or exposition.

The graphs used in object based, boundary based, evaluated manifold solid modeling
representations are graphs which have been embedded in a surface. A common form
of diagramming these embedded graphs when they are planar is called a Schlegel
diagram. A Schlegel diagram is a projection (or its combinatorial equivalent) of the
vertices, edges, and faces of the embedded boundary graph of an object as seen from
a point very close to the surface of the object from just outside the object. In a
Schlegel diagram, as in the embedding of the graph onto its surface, edges may not
cross except at their incident vertices, and vertices may not coincide. An example of
a Schlegel diagram of a cube is shown in Figure 5 — 1. From here on in this subsec-
tion, when we say graphs we are referring to graphs which have been embedded in

manifold surfaces unless explicitly stated otherwise.

Since the objects being represented in the case of manifold solids are actuaily closed
objects, diagrams of their boundary graphs drawn on paper use the device of an
“infinite’’ face surrounding the graph drawn on the paper. Intuitively, the diagram
can be considered to be drawn on a small, nearly ‘‘flat”’ portion of a sphere, and this
infinite face can be thought of as the “‘back side’ of the sphere which closes the

object up.

Objects of genus greater than zero, that is, objects whose boundary graphs are non-
planar, need some additional mechanisms for representation on a flat piece of paper.

We extend the Schiegel diagram technique here by allowing voids to be drawn.

Voids are labeled areas which always appear in pairs (for 2-manifold objects), with
each pair having a unique label, Voids are used to connect portions of the graph

together by conceptually establishing a ‘‘bridge’’ over the plane of the paper. Thus
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a)cube b}Schiegel diagram of cube

Figure 5 — 1, Schiege! diagram of a cube

the edges and vertices surrounding a void appear twice in the diagram (adjacent to the
two voids with the same label) and are used in opposite directions by the faces adja-
cent to the voids. The two faces which are adjacent to the same edge on the boun-
dary of a void pair are actually adjacent to each other. Thus the matching pair of

voids can be considered to be conceptually ‘“‘glued™ together.

Voids have no actual counterpart on the surface of the object being represented.

They are a diagramming convenience and have no function other than to convey the
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adjacency information present in the boundary graphs of objects of genus greater than
zero within the confines of a planar diagram. The labeling of the voids serves to
associate together each pair of voids to complete the adjacency association. The
number of void pairs necessary in a diagram is equal to the genus of the boundary

graph.

Figure 5 - 2 illustrates the void technique with an object of genus one, An advantage
of the void technique of representing boundary graphs on a plane is that it easily

allows boundary graphs with a genus greater than one in a uniform fashion.

Another technique used to draw non-planar maps on the plane when lines cross in
the plane drawing but not on the actual surface, is to indicate in some notation that

they do not actually meet, such as by making one of the edges dotted near the

Figure 5 - 2. Boundary graph diagram of an object of genus one using voids
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crossing area (see Figure 5 ~ 3). We’ll call this technique the dotted-line technique.

Both techniques have pros and cons. The dotted-line technique has the disadvantage
that it is difficult to trace face boundaries and determine the number of faces in the
mapping, which is relatively easy with the void technique. On the other hand, deter-
mining the order that edges meet at a vertex is easy with the dotted-line technique
but somewhat less obvious with the void technique when the vertex is located on the

boundary of a void,

Figure 5 - 3, Crossing edge diagram of torus in Figure 5-2
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Boundary graphs of non-manifold models can be drawn on the plane if suitable
domain specifications are made and additional techniques are utilized. In the case of
the non-manifold domain specified in this thesis in Chapter 15, individual faces
(which do not include bounding edges and vertices) are restricted to be mappable to a
plane. Thus their boundary graphs can be drawn on the plane in at least a piecewise

fashion using additional drawing techniques.

Drawing boundary graphs of non-manifold models requires techniques similar to
those used for manifold boundaries but the situations represented can be considerably
more complex. For example, consider a manifold spherical surface. Push together
two points on opposite sides of the sphere until they touch at the center to form a
single boundary vertex. The surface is now a non-manifold surface. A drawing of its
boundary graph on the plane involves the use of the infinite face technique to
represent the closed surface, but the single boundary vertex shows up two places in
the drawing. Similarly, non-manifold edges may show up several places in a planar

drawing of a non-manifold boundary graph.

Wire edges, lamina faces, and individual regions are often drawn separately for non-
manifold boundary graphs, utilizing element labels and occasional region labels to
indicate actual adjacencies. This style of diagramming provides adjacency information
but still does not specify the complete spatial ordering of faces around edges required

for the complete description of a full non-manifold environment.



Chapter 6

TOPOLOGICAL ADJACENCY RELATIONSHIPS

Adjacency topology concerns the physical adjacencies of the topological elements

embedded in space or on the surfaces of an object.

This chapter discusses topological elements and their topological adjacency relation-
ships, and introduces a comprehensive terminology to describe characteristics of adja-
cency relationships relevant to geometric modeling. Topological adjacency relation-
ships form the basis of the topological information in all of the topological representa-

tions described in this thesis.

6.1. Terminologies for Adjacency Relationships

A terminology for identifying the nine element pair adjacency relationships for con-
nected graph manifold topologies was developed by Baer et al {Baer et al 79] for the
purpose of comparing which adjacency relationships were stored in various geometric
modeling systems. That terminology symbolized each adjacency relationship as a pair
of symbols separated by a colon. Each of the symbols refers to one of the three ele-
ment types. The first symbol is a letter which stands for the element type used as the
viewpoint from which the adjacency relationship is expressed. The second symbol
represents the element type which is adjacent in some way to the first element type
(see Figure 6 — 1), This terminology is sufficient for the identification of the nine
element adjacency relationship classes and in some cases includes additional informa-
tion, but does not consistently include enough information for detailed discussion of
the nature of the element adjacency relationships themselves or their interrelation-

ships.

42
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vi{v} e:{v ,v } fi{v}
vi{e} e:f{e;,e;,e ,e53} f:{e}
v:i{f} e:{f .f } f:{5}

Figure 6 - 1. Baer et al. terminology for element adjacency relationships

An expanded terminology is needed which separately specifies the two types of infor-

mation which comprise each of the nine adjacency relationships:

» identification of which of the element adjacency relationships is involved (a
specification of adjacency as in the previous terminology)
* a specification of the order and direction of order of the adjacency given all the

similar components in that relationship,

This last type of information is critical to boundary representation schemes but has
not been previously emphasized. As will be shown later, both kinds of information
are mecessary to represent a complete adjacency topology using the adjacency relation-

ships.

A more comprehensive and general terminology has been developed to explicitly
include this ordering and orientation information as well as other information that will
facilitate discussion of some of the properties of the adjacency relationships both as a
class and in individual cases. Additions for these purposes include the ability to dis-
tinguish between a specific individual element and a group of elements (including the
entire element class itself). The terminology is generalized enough to handle both

manifold and non-manifold topological adjacencies.

This new terminology is used throughout the remainder of the thesis in discussions

involving the topological element adjacency relationships.
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6.2. Topological Element Adjacency Relationship Terminology

This terminology expresses six concepts related to the elements of graphs embedded
in space or in a surface and their topological adjacency relationships. Each is

described in the following sections.

6.2.1, Element Type Symbol

Three alphabetic letter symbols are used to specify which of the three basic topological

element types is being referred to:

V  the vertex element type
E  the edge element type
F  the face element type

In more complex topologies, such as those allowing disconnected graphs and non-
manifold conditions, additional topological element type symbols are required. They

will be defined in the relevant chapters as needed.

6.2.2. Symbol Plurality

The plurality of an element symbol determines whether the symbol refers to one or
more or all elements of the given type in a specific topology. Plurality is indicated in

the following manner:

v (lower case) - singular plurality; refers to one
specific element
vV (upper case) - multiple plurality; refers to a collec-

tion of zero or more elements
(upper case with bar) - multiple plurality; refers to
a collection of all elcme%g of the specified type

=l



45

6.2.3. Group Ordering

A group is a collection of elements. Groups are allowed to have one of four group
ordering specifications. Groups of elements are symbolized either by the proper plu-
rality of a single symbol or by a list of element symbols. While the plurality of a sym-
bol indicates whether the symbol refers to a single element or a group of elements, it
does not identify the ordering of the group. A sequential list also does not neces-
sarily imply an ordering. The following terminology is used to specify which ordering

an element group actually has:

group indicates that the grouF ordering is unspecified; it
could be any of the following three orders
[ group ] indicates an ordered linear list of elements
< group > indicates an ordered cyclic list of elements
{ group } indicates an unordered set of elements

As an example, < E> refers to a group of edges in a cyclic ordering,

The group specification within the brackets can take either the general form indicated
by the multiple plurality of a single symbol, or a specific form indicated by a series of
symbols of singular plurality. Therefore if the plurality of a symbol in a group is
singular, then all members of the group must be specified. As used here, all ele-

ments in a single group are usually of the same type and ordering,
Ordering refers to both sequence and direction information.

It is also useful in some cases to nest groups inside of other groups; that is, a group
may consist of a list of other groups. An example of a nested group is {{E][£]} which
refers to an unordered set of two items, both of which are ordered linear lists of

~edges.

Parenthesis are not used as a bracketing symbol in this terminology; they therefore
retain their usual mathematical meaning of associating parts of an expression when-

ever they are used in conjunction with the adjacency relationship terminology.
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If the group specification within the group ordering brackets is a single symbol of
multiple plurality, it binds to the group ordering brackets. For example, because of
this binding action {V] means a linear ordered group of individual vertices rather a
linear ordered group of nested groups of vertices. In cases where it is important to
specify nesting of groups without making an ordering specification, parenthesis can be
used to make the overall specification unambiguous. In the example above, a linear
ordered group of nested groups of vertices (of an unspecified ordering) could be writ-

ten as [{(V)].

Two additional notational devices are used in the adjacency relationship terminology
relating to groups. First, the cardinality of a group is specified as a superscript follow-
ing the group ordering form brackets (as in < >3 ), indicating that the group has the
specific number of members specified by the superscript. Second, a subscript follow-
ing the group ordering form brackets (as in [], ) indicates a reference to the n th ele-
ment in the group. The following section on referencing and enumeration discusses
such references for unordered groups and cyclic ordered groups. Superscripts may be
zero or any positive number, subscripts may be any positive number less than or

equal to the number of elements in the group.

The use of the word ‘‘group” here should not be confused with other uses of the

word in mathematics.

6.2.4. Adjacency Relationship

The element adjacency relationships indicate the topological adjacency of a group of ele-
ments with regard to a single element or element type. This is represented as a pair-
ing of symbols. The first symbol in the pair is the single reference element, and the
second symbol, called the adjacent group, refers to the group of elements adjacent to

the reference element:

reference adjacentgroup  indicates a specific adjacency relationship
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Adjacency relationships deal with distinct ordered pairs of element types, so the
number of adjacency relationships in an adjacency topology of n element types is a2,
In the examples initially presented three topological element types are present, creat-
ing nine distinct combinations of element types. Each distinct combination is called
an adjacency relationship class or type. For example, VE refers to the adjacency rela-
tionship class involving the groups of edges which surround ail of the vertices of a
graph. V< E> is more specific and refers to the circular ordered lists of edges which

surround vertices,

As a form of shorthand, EE can be used to signify E£. This includes situations where
group ordering specifications are made, so E< V> can be used to signify E< V> .
This means that the reference element part of an adjacency relationship always refers
to all elements when a multiple plurality symbol is used. Whether the general adja-
cency relationship concept itself or a specific adjacency in an embedded graph is being

referred to is determined by the plurality of the symbols used.

An adjacency relationship carries two kinds of information: the class of the adjacency
relationship and the ordering information of the adjacent group. Adjacency relation-
ships which have unordered adjacent groups are called unordered adjacency relation-
ships; relationships with linearly or circularly ordered adjacent groups are called
ordered adjacency relationships. For example, V< E> is an ordered adjacency rela-
tionship while V{£} is an unordered adjacency relationship. The distinction is a vital
one in terms of the informational sufficiency of the adjacency relationships, as will be

discussed in Chapter 11.

Adjacency relationship classes can be organized into an adjacency relationship matrix, a
standard way of presenting the déscriptions of the classes. The matrix is organized
into # columns and a rows, where » is the number of topological elements. The
matrix starts at the upper left corner. The rows are labeled top to bottom from the
lowest dimensional element (the vertex) to the highest dimensional element (in the
examples given here, the face). The columns are similarly labeled left to right. For a

given position in the matrix, the row labeling specifies the reference element type and
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YV VE VF
EV EE EF
FY FE FF

Figure 6 — 2, The element adjacency relationship class matrix

the column labeling specifies the adjacent group type of the adjacency relationship

class.

One can alsc name groups of classes based on their position within the matrix, The
main diagonal consists of the » adjacency classes falling on the diagonal of classes
from upper left to lower right. All of the classes lying above the main diagonal are
the upward hierarchical relationships, and those below the main diagonal are the down-
ward hierarchical relationships. The subset of the (n—1) upward hierarchical relation-
ship classes immediately adjacent to the main diagonal is the upward hierarchical diago-
nal, and the subset of the (n-1) downward hierarchical relationships immediately
adjacent to the main diagonal is the downward hierarchical diagonal. Figure 6 — 2
shows the element adjacency relationship matrix for the three basic topological ele-

ment types.

An adjacency relationship matrix may be referred to as A, with the specific matrix

indicated by context. A specific adjacency relationship may then be specified in a

positional notation, A, ..onmn » Where the adjacency relationship is located in the
specified position in the adjacency relationship matrix, For example, in Figure 6 - 2,

A, 5 refers to the EF adjacency relationship.

The element adjacency relationships are discussed in detail in Chapters 10 and 16 for

manifold and non-manifold domains, respectively.
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6.2.5. Correspondence

Correspondence is the ability to make adjacency associations between adjacency rela-
tionships which utilize the same element type in either their reference element or
adjacent group. An example is the ability to make correspondences between elements

in the ordered adjacent groups of two or more adjacency relationships.

The strongest form of correspondence is when two adjacency refationships have the
same reference element type. Other forms of correspondence have the common ele-
ment type in the adjacent group type or mixed between the adjacent group type and
reference element type. Correspondences with the same reference element type are
referred to as strong correspondences because, unlike other correspondences, their adja-
cent lists can be interleaved and combined in a fashion which contains more informa-

tion than either of the adjacency relationships individually.

For example, using correspondence one may associate the VE adjacency relationship
with the VF adjacency relationship, Then one has available not only the edge-around-
a-vertex information and face-around-a-vertex information, but also all edge-then-face-
then-edge information around a vertex. That is, the correspondence information logi-
cally links together the adjacency information about the various elements so that their

ordering information can be coordinated.

Correspondence is symbolized as two or more adjacency relationships connected by a
dash. For example, the V< V> and V< E> manifold adjacency relationships in
correspondence are symbolized as V< ¥>-V<E>. In this case correspondence
means that information about verrex-and-edge-then-vertex-and-edge ... around-a-vertex
information is available in addition to the expected edge-then-edge-around-a-vertex (

V< E> ) and vertex-then-vertex-around-a-vertex ( V< V> ) information,

The order of appearance of the adjacency relationships in the correspondence is not

significant. For example, V< V> -V < E> is the same as V< E> -V< V> |

Strong correspondence appears to embody information not found in the individual
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corresponding adjacency relationships; generating correspondence information
requires information from additional adjacency relationships. For example, in the

VV -VE correspondence above, EV is required to generate the correspondence.
While correspondence will be used in several places in this thesis, the topic is not
treated in detail, and represents an area of possible further research.

6.2.6. Referencing and Enumeration

When dealing with a specific labeled graph, which has been mapped into a surface for
manifold topologies, or embedded in space for non-manifoid topologies, it is assumed

there is available:

V- {7V}
Fa= {E}
Fo {F}

which are the unordered sets of all vertices, all edges, and all faces of the embedded
graph. Similarly, the sets of all of any additional elements would also be available. In
order to refer to specific elements of these unordered sets, an ordering shall be
assumed, [V1, [E], [F]. Specific elements may then be referred to by the group sub-
scripting mechanism, so that [V]; specifies the ith element of that ordering, A short-
hand form for referring to specific elements is the form v; , ¢; , and f; , which
signifies {V};, [E};, [FI; respectively, and again refers to specific members of these
sets, where the subscript specifies the ith element of that ordering, The ordering
chosen is arbitrary, but once chosen remains constant for a given consideration of the

embedded graph. Thus the embedded graph is a labeled graph.

Similarly, cyclic groups, < N>, are assumed to have an ordering [N], so that its
members may be referred to by the standard group subscripting, < N> ; , to indicate
the ith element of the group. To arrive at such an ordering, a specific (but arbitrarily

chosen) element in the cyclic list is chosen as a first element of the ordered list. Sub-
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scripted list elements then refer to the ith element in this ordered list modulo the size

of the cyclic list.

The number of elements in a set or ordered group is the cardinality designated by
bracketing, as in |V |, meaning the number of vertices in the entire graph, or as in
vi< E> |, meaning the number of edge elements in the cyclic adjacency group associ-

ated with v; .
An iteration over the elements of a set or list can then be specified by, for example,

Vi E> jiel.vi< E> |
which iterates over each member in the adjacent group of v< E>, or

vi<e>;, jelon
for short. The iteration is usually stated by itself on a line and the scope of the itera-
tion is specified by indentation of relevant statements towards the right. The iteration

may be nested, in which case the rightmost iteration varies fastest.

This terminology allows discussion of algorithms which refer to adjacency relation-

ships of elements in a specific embedded graph.

6.2.7. Examples

The following examples further illustrate use of this terminology.

v represents the collection of all vertices in a graph.
VE refpres_ents the general adjacency relationship class
of adjacent groups of edges surrounding vertex

rgference elements. It can also be stated as VE for
short,

V< E> is a more detailed description of a VE adjacency
relationship class, s ecidying that the adjacent
groups are cyclicly ordered.

v; represents a specific vertex, namely [V);, the ith
element in the group of all vertices in a graph.



v < E>

Vo< e 3

EWP

E{<E> PV

v, < €, e & >

VE - VF
VvV - VE - VF
e {E1P

(ei< L> < V>

E;ie—1.n

!

Vi< E> g,jelin,kelon

represents the specific VE adjacency relationship
consisting of the circularly ordered adjacent group
of edges surrounding the reference element ver-
tex [V); .

indicates a reference to the third edge element in
the cyclic list of the adjacent group edge elements
surrounding the vertex reference element [V], .

represents the adjacency relationship class EV with
unordered adjacent groups of vertices surrounding
a edge reference elements, and further specifies
that there are always exactly two vertices in each
adjacent group.

represents the adjacency relationship class EE with
unordered adjacent groups, each member of which
is itself a cglclicly ordered group of edges. The
description further specifi¢s that there are always
exactly two < E> groups in the adjacent group of
each edge. This could also be written out as
E{< E> <E>}

represents a fully detailed description of the circu-
larly ordered list of edges around a specific vertex.
Note that here, all members of the group must be
enumerated, since the adjacent group consists of
specific elements rather than a single multiple plu-
rality group symbol.

indicates that the VE and VF adjacency relation-
shrllps are maintained in correspondence” with each
other. )

indicates that all three of these adjacency relation-
ships are maintained in correspondence,

represents the relationships of edées adjacent to
each end of a particular edge e;. See Chapter 10
for a more detailed explanation.

is the L< V> adjacency for a specific loop. The
loop reference element is found by taking a refer-
ence to the jth element of the ¢/< L > adjacency
relationship’s adjacent group. The parentheses are
not strictly required here but do provide clarity.

is an iteration over each edge in an entire graph.

is a nested iteration over each edge in the adjacent
group of the V< E> adjacency relationship for
every vertex in a graﬁh. . The edge is referenced
within the scope of the iteration by its complete
expression V;< E>, . The index k varies fastest
in this iteration,
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represents a specific adjacency relationship in an
adjacency relationship relationship matrix using
the row, column positional notation. The adjacency
relationship matrix being referred should be clear
from context. In this example, referring to the
adjacency relationship matrix in Figure 6 — 2, the
adjacency relationship specified is the VF adjacen-
cy relationship.
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Chapter 7

TOPOLOGICAL DOMAIN AND SUFFICIENCY

A computer representation of an application consists not only of static data and data
structures but also of the operators and procedures applied against them. The two are

inextricably intertwined.

The domain of a representation is the complete set of possibilities for which the
representation is valid. The domain addressed by any representation should be care-
fully specified; it is the only measure of success of the representation and is the start-

ing point for any formal proof of correctness,

The correctness of a representation depends on:
* the complete specification of the domain over which it is intended to be use-
ful.
¢ proof of sufficiency over that entire domain.
¢ operators which can be proven to cover the entire domain yet cannot create
or manipulate the data into a state outside of the intended domain of

the representation,

Early influential work by Requicha {Requicha 77] emphasized consideration of the
topological aspects of domain, but much of this work used a point set topological
approach, which is less directly applicable to boundéry representations than to other
representation forms. The approach taken here utilizes algebraic topology, which is

directly related to the adjacency topologies addressed in this thesis.

This section will address the importance of providing a specification for the intended

domain of geometric modeling representations, as well as the importance of



determining their topological sufficiency over that domain.

7.1. Domain

Traditionally, the careful specification of the domain for geometric modeling represen-
tations, especially boundary based representations, was rarely done — often leaving
open the question of their validity for various applications. Considering the amount
of effort required to construct a significant robust geometric modeling system, imple-
mentors can ill afford to base an implementation around a representation structure
which is insufficient over the domain it is intended to support. It is therefore vital to
prove sufficiency of the representation before significant investment of resources.
Specification of the domain which a modeling system is intended to address is the first

step in such an examination of the sufficiency of a representation.

The domain, in this case the topological domain, must be specified as completely as
possible. The domain specification is usually made by stating an initial environment
followed by a series of further restrictions on that environment. Two types of restric-

tions can be made.

First, representational restrictions places further limits on the gross topological condi-
tions affecting the geometric shapes that are allowed to exist in the representation,
directly affecting what is representable in the representation. For example, placing
restrictions on the allowable genus of an object, such as stating that the genus must
always be zero, reduces the number of possible shapes that are representable, in this

case making doughnut (torus) shapes unrepresentable.

Second, procedural restrictions place additional conditions on the representation, but do
not directly change what is representable in the representation, only the exact manner
in which it is represented. For example, restricting individual faces from having han-
dles does not mean that surfaces with handles are not representable, only that a face
boundary must be present on a handle. Thus, the allowable partitioning of the sur-

face is further restricted, but anything representable without the restriction is



transformable into something which is representable without changing the intended

shape.
7.2. Topological Sufficiency

Topological sufficiency of a representation is regarded here as the ability to completely
and unambiguously represent adjacency topologies. Completeness implies the ability
to generate all of the topology information from the representation. Unambiguity
implies that for any unique set of data in the representation, there is only one possi-
ble set of topology information that can result from interpretation of the representa-
tion, that is, there is a one-to-one mapping between a representation and the full

topology information,

Sufficiency can be regarded at two levels, theoretical and practical sufficiency.
Theoretical sufficiency is the absolute minimum information required to unambigu-
ously reproduce a complete adjacency topology, while practical sufficiency is the

minimum required in a practical geometric modeling representation.

7.2.1. Theoretical Sufficiency

Sufficiency of a representation is the ability to recreate all of the topological element
adjacency relationships without error or ambiguity. In this context, it is the ability of
a specified subset of the element adjacency relationships taken from a Speciﬁc mapped
graph to provide enough information to uniquely reproduce the original embedding of
the graph except for labels of the element type(s) which are not in the original subset
of adjacency relationship(s) chosen. The embedding constructed from the adjacency
relationship subset must be identical to the original in all of the element adjacency
relationships, reflecting the ability of the adjacency relationship subset to represent
the topology of a mapped graph exactly and completely. Note that this definition does
not allow the use of geometry associated with elements (if any) for derivation of any

additional topological information.
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In general, it is not necessary to store information on all the adjacency relationship
classes in the topology to achieve sufficiency. In fact, at least in the manifold domain,
there can be single adjacency relationships and combinations of single insufficient
adjacency relationships which can be used to achieve topological sufficiency over a

specified domain,

7.2.2. Practical Sufficiency

All elements in an embedded graph geometric modeling structure must be bound
together in some fashion in order to produce a single cohesive representation of an
object. Thus all elements must be related to each other by label, since in a practical
modeling system additional information is potentially uniquely associated with each

individual element by label.

This means that any representation which includes n topological element types for
which reproducible labels are desired, must allow the derivation of at least n—1 adja-
cency relationships involving all » element types. This is the key to understanding
the difference between theoretical minimal sufficient topological information and the

minimal sufficient topological information practical in a geometric modeling system.

For example, in a labeled graph environment consisting of three topological element
types, at least two or more adjacency relationships are necessary to bind all of the
different element types together, since each individual relationship can only refer to at
most two element types. Thus in a practical modeling representation for this environ-
ment sufficient combinations of two individually insufficient adjacency relationships
are just as interesting for geometric modeling representations as individually sufficient
relationships (as long as they involve all three element types), since two adjacency

relationships are required anyway.
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MANIFOLD SOLID REPRESENTATIONS



Chapter 8

INTRODUCTION

This major section discusses object based evaluated boundary based manifold solid
modeling representations which explicitly represent information about the adjacencies
of topological elements. To date, all of these representations, with only partiaf excep-

tions, have been manifold representations.

Manifold representations are currently in use in many commercial boundary based
solid modeling systems, as well as in prototype industry standards, and reflect a heavy
investment in manifold technology by industry. When storage space is at a premium
and the flexibility and unified representational advantages of non-manifold representa-
tions will never be required in a representation, manifold representations will con-
tinue to be used in preference over non-manifold representations. Thus manifold
topology systems will likely be around for some time, and are worthy of detailed

theoretical analysis.

8.1. Organization of This Section

This major section is organized into the following five chapters concerning manifold
topelogy representations,

First, the domain of interest is described in Chapter 9.

Chapter 10 describes the manifold adjacency relationships.

Next, Chapter 11 details the theoretical sufficiency of various combinations of the

manifold adjacency relationship information.
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Chapter 12 describes several data structures for manifold topology representations

and provides proof of their sufficiency.

Lastly, Chapter 13 describes operators for manipulating manifold topologies,

{
)
|



Chapter 9

DOMAIN

In this section we are interested in restricting our range of topological representational
capability from the domain of all topological possibilities to only that portion which
corresponds to physically realizable solids with manifold surfaces. Making such res-
trictions will simplify our stated goal of unambiguously representing topologies of

manifold solid polyhedra using boundary graph based techniques.

The domain conditions identified in this chapter will provide the context which will be
assumed in the rest of this major section on manifold solid modeling representations,

unless explicitly noted otherwise.

9.1. Topological Considerations

Our primary assumption in this section is that of a manifold domain in a three-
dimensional Euclidean space. We are going to restrict the range of solid objects of
interest to those with compact (closed) orientable 2-manifold surfaces. This elim-
inates the possibility of vertices, edges, and one sided faces which ““hang off’’ the
mapped boundary graph of the object. Thus non-manifold objects such as Figure
3 — 2 are excluded from consideration here (but are treated in the next major section

of the thesis).

In many current modeling applications the final result does not require non-manifold
objects; such objects are not physically realizable as single objects since they can be

connected through infinitely thin vertices or edges. Thus a manifold representation is
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often adequate for representing the final result, if only solid shape information is
desired. This does have the effect of restricting the modeling sequence of operations,
however, since non-manifold objects would not be allowed even as intermediate
results; these restrictions can be removed by the use of more advanced non-manifold
representations. This major section of the thesis will accept this limitation and require

a manifold representation at all stages of modeling,

[Requicha 771 and {Mantyla 81] discusses objects with ‘‘pseudo-manifold’’ surfaces.
Basically such objects have non-manifold regions at certain points and curves, but,
unlike the non-manifold object in Figure 3 — 2, their volumes are completely con-
nected by regions consisting only of interior points (Figure 3 - 3). Because of this,
such objects, while not manufacturable in the practical sense because infinitely thin
portions of the solid cannot be machined or manufactured, do represent possible
design goals in that they are still single, connected objects. One approach for
representing such objects could be by simply adding edges and vertices to the mani-
fold representation until all surfaces were manifolds and then identifying and associat-
ing together elements involved in the originally non-manifold regions explicitly.
Geometry is not modified in this scheme so that the originally non-manifold regions
are still geometrically coincident though no longer directly adjacent topologically
without use of the additional association information. We will not include such
objects within our representational range of interest here because of the additional
complexity an adequate representational scheme for pseudo-manifolds would imply,
while still not providing the generality or uniformity of a true non-manifold approach
because implementations of these techniques require special case procedural detection

and handling of non-manifold conditions.

The ability to represent boundary graphs as pseudographs which allow self loops and
multigraphs is very desirable because such situations occur naturally during typical
modeling operations, particularly those involving the Boolean operations {see Figure
9 — 1). While such situations can be simulated by dividing each multiple and self
loop edge into several edges, this approach requires additional intelligence on the part

of the modeler to detect and deal with such situations. Much of the power of
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boundary graph based solid modeling systems derives from their ability to preserve
and quickly deliver surface coherence information; unnecessarily increasing the

number of elements necessary to represent an object decreases this performance,

a) self loops created by subtraction of a cylinder from a rectangular solid

Figure 9 - 1. Seif loops and multigraphs resulting from common modeling
operations
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9,2, Geometric Considerations

In a sense the topology of an object is a ‘“‘fuzzy’’ geometry specification which
prescribes certain limits which a geometric instantiation must maintain, Thus
geometric instantiations of topological representations by definition are subject to cer-
tain geometric restrictions in order to preserve their topological integrity. It is
worthwhile discussing some of the geometric implications of the topological restric-

tions we will be making,

Perhaps the most important geometric restriction on the geometric instantiation of a
manifold polyhedron topology in this regard is that the manifold surfaces of the topol-
ogy may not intersect except at the specified adjacent face boundaries. This is neces-
sary to keep the surface homeomorphic to an open disk as required in the definition
of a manifold. If the geometric instantiation of the object surface intersects itself at a
point, curve, or area then the combination of the object topology and geometry
representations is invalid under the requirements we have identified so far. At such
intersections the surface becomes non-manifold and non-orientable with repsect to a

single volume when one considers the entire surface of the object at one time.

Non-manifold objects such as those described above can be the result of common
modeling operations such as the Boolean operations. Requicha discusses constraints
on the Boolean set operations (the regularized set operations [Requicha 77]) which
guarantee that all resulting surfaces are used as boundaries of space filling volumes.
It is the responsibility of manifold modeling system implementations that depend on
manifold characteristics for their topological integrity to ensure that all possible
modeling operations result in manifold objects or at least declare non-manifold results
invalid since they are unrepresentable in the manifold domain. Non-manifold model-

ing systems can avoid this problem entirely.

Another geometric restriction invoives the valid range of the geometric definition of
an individual face of a manifold solid object model which uses boundary graph based

representation techniques. Every embedding of a graph into a surface must be a
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two-cell embedding. That is, each face is homeomorphic to an open disk. Every
face, whether singly or multiply connected, must be mappable to a plane. This means
that each face is topologically ‘‘flat’’ and cannot contain handles. Otherwise one could
arbitrarily add any number of handles to each face and information about such global
features as genus would have to be contained in geometric surface definitions rather
than the boundary graph structure. Allowing this would remove many of the advan-
tages of boundary graph based representations of solid models since detailed
geometric information would have to be consulted to determine some of the global
characteristics such as genus of the entire surface. At any rate, flexible geometric
representations of such multi-handled surface types independent of topological infor-
mation appear intractable with today’s geometric surface representation techniques,
particularly when one considers the intersections of such surfaces. Since this is an
undesirable situation, we will therefore restrict all face geometric surface definitions to

form surfaces which are topologicaily ‘‘flat’’ and mappable to a plane.

We can include the surface of a sphere under this constraint if we omit at least one
point. A truncated cylindrical surface is mappable to a plane and implies a discon-
nected graph, Both connected and disconnected graph conditions will be discussed in

this section.

Following [Requicha 80a], we also restrict geometric surface descriptions to have
“finiteness’’ properties, that is, they are well behaved in the sense of having finite

surface area and not having infinitely varying surface properties.

9.3. Domain Characterization

We will now describe the domain over which we are examining these solid modeling
representations in more detail. We are specifically interested in representations of the
class of manifold solid objects with the following (not necessarily distinct) characteris-

tics:

Compact Orientable 2-Manifolds - The surfaces of the objects are compact
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orientable 2-manifolds in a three-dimensional Euclidean space. This
implies that no faces are allowed which self-intersect, or intersect with
each other, forcing the adjacency topology to explicitly carry all surface
intersection information through adjacency information, Thus in a traver-
sal of edges bordering faces, every edge is traversed exactly twice, and no
non-manifold conditions are allowed. The orientability guarantees that the
interior of a solid volume is distinguishable from its exterior. Note also
that we are talking about single volumes completely connected by interior
points,

Embedded Graph Adjacency Topology - Their topologies are represented by 2-cell
embeddings of graphs into a surface. In other words, the graph is totally
contained in the surface, without any edges crossing except at mutual end-
points. Every face in the embedded graph must have a boundary of at
least one vertex.

Pseudographs - Their graphs are pseudographs; they may be multigraphs and may
contain self loops. This allows curved edges with little constraint on
geometry, other than the embedded graph constraint that edges must not
intersect except at endpoints. This ability is very desirable because such
situations occur naturally during typical modeling operations involving
curved surfaces, particularly those involving the Boolean set operations.
More restricted graphs are briefly considered in Appendix A,

Labeled Graphs - Their graphs are labeled (at least for those element types
involved in the adjacency relationships being used to represent their topol-
ogy). Our interest in maintaining the labels of graph elements is explained
below.

Faces contain no handles - This ensures that an arbitrary number of handles can-
not be added to the surface of a solid without changing its boundary graph
structure, forcing the adjacency topology to carry all genus information
(and maintain the validity of the Euler-Poincaré formula). It is important
to note that a face does not include its boundary; otherwise faces of

objects like the one in Figure 12 - 4 would have to contain a handle,
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Intuitively this can also be described as the condition that the face must be
mappable to a plane without cutting the face or changing its boundary.
Note that the no handle on faces restriction is not implied by the two-
manifold condition.

Genus - There is no restriction on the genus of the total object being represented.

Connected Graph - In initial discussions on sufficiency and data structures, we will
assume the graphs are connected graphs, and their individual faces are
simply connected. There are no other connectivity restrictions other than
being 1-connected. This restriction will be lifted in a later parts of the

relevant discussion.

The compact orientable manifold, embedded graph, and connected graph conditions

ensure the validity of the basic Euler-Poincaré equation.

While polyhedra are normally thought of as having straight edges and planar faces,
topologically it makes no difference if the edges and surfaces are curved. Therefore,
in general, graph based solid boundary representational techniques are equally valid
for representing both planar and nonplanar faced solid objects with curved or straight
line edges. However, there is a much wider variety of embedded graph
configurations that are possible if the underlying surface is curved, as indicated by the
pseudograph condition. This condition is not needed for domains involving only
planar surfaces, since self loops and multigraphs cannot occur in these more restricted

environments.

There are actually several reasons for using labeled graphs. First, it is desirable to
have the ability to associate non-topological and possibly non-unique attributes with
topological elements for application purposes (inclﬁding associating geometric coordi-
nate values with a vertex). Second, adjacency relationship information, even if
sufficient, does not in general uniquely identify an element. Third, all element types
will in general be required in a solid modeling representation since we want the rela-
tionships of all topological element types to be derivable and associated with each

other by label.
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Holes in faces and internal cavities in solids can be represented with disconnected
graphs. Both of these situations are not directly allowed by the connected graph con-
dition, but this restriction will be removed, and an expanded version of the Euler-
Poincaré equation will be presented to support removal of this restriction in a subsec-

tion on disconnected graphs in the following chapter.



_ Chapter 10

TOPOLOGICAL ADJACENCY RELATIONSHIPS

The basic concepts behind the topological adjacency relationships have been described
in Chapter 6; this chapter describes the specific topological adjacency relationships

found in the manifold domain specified in the previous chapter.

10.1. The Manifold Topological Elements

Since topological element adjacency relationships concern the relationships between
individual topological elements, we must now define the elements more carefully

before describing the adjacency relationships themselves.

At least seven distinct element types, including six basic topological element types are
involved in a manifold evaluated object based boundary topology representation.
They can be seen as being related in a hierarchical fashion, where lower dimensional

elements are used as boundaries of higher dimensional elements,

A model is a single three-dimensional topological modeling space, consisting of one or
more distinct regions of space. A model is not strictly a topological element as such,
but acts as a repository for all topological elements contained in a geometric model,

allowing the manipulation of multiple geometric models by a modeling system,

A region is a volume of space. There is always at least one in a model. Only one
region in a model may have infinite extent; all others have a finite extent, and when
more than one region exists in a model, all regions have a boundary. For example, a
single solid would require two regions in the model, one for the inside of the object,

and one for the outside (which has an infinite extent). For manifold solid modeling
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it is usually assumed that there is only one volume of interest (where there would be
only two regions in a model} so in this situation it is not necessary to directly
represent regions in an adjacency relationship topology. The only times that more
than two regions show up in a manifold solid topology is when a solid model has
several interior voids or when voids have additional shells within them. Even in
these cases regions are usually not represented directly, since there is a one-to-one
correspondence between shells and regions in a manifold model. Regions will there-

fore not be considered further in this section.

A shell is an oriented boundary surface of a region. Shells are applicable to discon-
nected graph topologies. A single region may have more than one shell, as in the
case of a solid object with a void contained within it. A region may have no shell
only where all space exists as a single region, as in the initial state where no modeling
has been done, or after all components of a model have been deleted. A shell must

consist of a connected set of faces which form a closed volume.

A face is a bounded portion of a shell, It is oriented. Note that an orientable element
implies only that it is possible to assign an orientation, while an oriented element
actually specifies a particular orientation. Strictly speaking, a face consists of the piece

of surface it covers, but does not include its boundaries.

A loop is a connected boundary of a single face. Loops are applicable to disconnected
graph topologies. A face may have one or more loops; for example a simple polygo-
nal face would require one loop, and a face with a hole in it would require two loops.
Loops normally consist of an alternating sequence of edges and vertices in a complete

circuit, but may consist of only a single vertex. Loops are also oriented.

An edge is a portion of a loop boundary between two vertices. Topologically, an edge
is a bounding curve segment which may serve as part of a loop boundary for the one
or two faces which meet at that edge. Every edge is bounded by a vertex at each end
(possibly the same one). An edge is orientable, though not oriented; it is the use of

an edge which is oriented.
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A vertex is simply a unique point in space, that is, no two vertices may exist at the
same geometric location (although the topology alone does not specify an exact
geometric location beyond these topological constraints). Single vertices may also

serve as boundaries of faces.

Thus,'discounting models and regions, there are three topological elements of interest
for connected graph manifold adjacency topologies and five topological elements of

interest for disconnected graph manifold adjacency topologies.

Although not directly represented in adjacency relationships as described here, at least
two additional structure types of topological element adjacency uses associated with
the edge, and vertex elements may also be defined. Their purpose is to represent the
use of a specific basic topological element in the adjacent group of an adjacency rela-

tionship; in some representations they are represented directly.

An edge-use is an oriented bounding curve segment on a loop of a face and represents
the use of an edge by that loop. There are always two uses of a single edge in a man-
ifold model.

A vertex-use is a structure representing the adjacency use of a vertex by an edge, or a

foop.

10.2. The Manifold Connected Graph Topological Adjacency Relationships

The nine manifold element adjacency relationships of topological elements in mani-
fold embedded graphs, as expressed in the new adjacency relationship terminology,
are shown in Figure 10 - 1. A diagram of the ordered element adjacency relation-
ships, along with the unordered relationships (which lack ordering information) is
shown in Figure 10 — 2. The unordered relationships have been included in these
figures for later discussions of orderedness of topological models under certain con-
straints. Figure 10 - 2 includes ordered adjacency relationships with the edge as a

reference element, although the ordering is not intrinsic to the relationships and can
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only be induced by correspondence (see Section [0.2.1). An expanded example of
the actual values of adjacency relationships in a particular embedded graph is shown

in Figure 10 - 3,

Variations on how each relationship is represented and defined are possible. These
variations involve the semantics of the adjacency relationships and not necessarily
storage representation formats. The adjacency relationship definitions shown in the
figures include a few cases which reflect choice as to the exact meaning of the rela-

tionship.

The EE adjacency relationship can be defined at least two different ways. In both
cases the adjacent group of the reference edge is an unordered list of length two. The
length of two is due to an edge having two ends and the list is unordered since there
is no means of identifying one end of an edge from the other solely in terms of its
edge adjacencies. The difference in the two definitions given is in how the members

of the adjacent group themselves are defined,

class ordered unordered

VW V< V> vivy
VE V<E> VIE}

VF V< F> V{F}

EV E{vy see text

EE  E{[E)¥ E{{E EE def. A, see text
EF E{FP see text

FV F< V> F{V}

FE  F<E> F{E}

FF F< F> F{F} FF def. A, see rext

Figure 10 — 1. The ordered and unordered adjacency relationships for manifold
topologies

;
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@ \
Edge is Facels

reference refarence
elemant eflement

reference
element

@ O .

Figure 10 - 2, Diagram of the ordered and unordered element adjacency rela-
tionships
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a) a solid tetrahedron and its labeled embedded graph structure

b} adjacency relationships

v
1/f2

Ve V> V< E>» V< F>

vi< Vo = vyp< vy vy V> Vi< E> = vi<egjejeps Vi< F> = vi< fafsf
Vo Vo = va< vy vy v vy B> = vy< ggeqe0 v Fo = va< i fafo>
Vi< Vo @ < vy vy v vi< B> = vi< ggeqe5> Vi< F> = va< fifafa
v Vo = < vy vy v ve< B> = vy< ege eq> va< B> = vy< f1faf s>
E{V} E{E1} E{F}

e{Vl= {v; vy} e {[E]} = eq{leseyllegeqi} e {F}= e {f1f4}
ex{Vi= {vy v3} e {[E1P = ey{lee;s]les eql} ex{P}= e3{f3f4}
e3{V}= {v; vy} es{[E]1P= es{leserlles esl} e3{F}= e3{f2f1}
ea{Vi= {vy vy} es{[E1F = eslleseslle; eql} e4{Fl= e {fif2}
es{Vi= {vy v3} es{lE]F = es{leseqlfeg esl} es{F}= es{ff1}
es{Vi= {v3 vg} es{lE1Y = eg{lesesiies e4]} eslF}= es{f1fa}

F< Vo F< E> F< F>

Fis Vo = fu<vavg vy f19E> = fi<egeges> 1< F> = fi<fafaf o
fac Vo = fadvyvy vy f1< B> = fa<eqeqep fa< B> = fo< fifaf e
fas V> = fa<vivyvyp fa< B> = fi<esesey FfacF> = fa< fof if e
Ffac Vo = fu<vyvave fa<E> = fu< ezegep> fa< B> = fuo<fafafe

Figure 10 - 3. Actual adjacency relationships for a tetrahedron




In the first EE definition, E {{E1}, (or E{[E])* in correspondence) referred to here as
EE definition A, each of the two members of the adjacent group is itself a group of
two linearly ordered edges, symbolized by [E]. The two edges, in order, refer to the
left and right nearest neighbor of the reference edge clockwise and counterclockwise
from the reference edge respectively about that end of the reference edge. Such rota-
tional directions are as seen from outside the solid volume looking directly towards
the surface. This definition of EE has the advantage of requiring a short constant

length implementation data structure.

In the second EE definition, E{< E> }*, referred to here as EE definition B, each
member of the adjacent group is a cyclicly ordered group of edges, symbolized as
< £>. Each member < E> of the adjacent group refers to the cyclicly ordered list of
all of the edges surrounding one end of the edge. To effectively use the relation-
ships, the reference edge would usually need to be found in the < E> group in order
to determine the relationship of the reference edge to other edges, and further, an
indication of which occurrence of the edge in the adjacent group was relevant to a

particular end of the edge would need to be maintained for seif Ioop edges.

An example illustrating the differences in the two definitions are shown in Figure

10 — 4,

FF will be defined in terms of the adjacency of faces to vertex and/or edge elements
in the boundary of the reference face. Even then, the FF relationship can still be
defined at least two semantically different as well as syntactically different ways. The

difference is in how the adjacent goup is defined (see also Figure 10 - 3):

Definition A - only faces adjacent to edges surrounding the reference face are in the
adjacent group
Definition B - faces adjacent to edges and vertices of the reference face are in the adja-

cent group; no differentiation of the two is made in the adjacent group

Unless specified otherwise, we will be referring to definition A when FF is mentioned.

The preferred definition is largely a matter of taste; definition A is chosen here
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a) topology

b) E{lE1Y form (definition A} generates:
es{leserjleseql}
¢) E{< E> P form (definition B) generates:

ef< ey e,e, 69> < ere4€5€5> }

Figure 10 — 4. EE adjacency relationship formats
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a) topology

b) definition A

FiF> = fi< frofsfsfi>

¢} definition B

Fi< F> Fi<fwfafsfafsfsf1fsfe>

Figure 10 - 5. Two definitions of the F< F> adjacency relationship

because of its simplicity and because of the convenience of having the same number

of members in its adjacent group as F< V> and F< E> .

In the F< V> relationship, strut or isthmus edges and self loops in faces are

represented as shown in Figure 10 - 6.

The V< F> relationship is defined such that the adjacent group enumerates all faces
encountered between all the edges surrounding a vertex. The number of elements in

the adjacent group of F< V> is therefore the same as in the V< E> relationship.
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For example, in the case of v, in Figure 10 — 6, the adjacent group is < fy f{ f1 > .

This is the maximum amount of infoermation we can ascribe to V< F> .

10.2.1. Edge Adjacency Relationships

The element adjacency relationships where the edge is the reference element have
several characteristics which are different from the other adjacency relationships and

are worth mentioning at this point.

The relationships where the edge is the reference element are the only relationships
in which the adjacent groups can be of fixed length, are essentially unordered, and

can not be truly cyclic,

EV and EF are defined as E{V } and £ {F} and are exceptional in that they are the only
adjacency relationships which always have exactly two members in their adjacent
group (Je{V}l = 2 and |e {F} = 2). Without combining information together,
there is no basis for differentiating one end or one side of the edge from the other in
any in.dividual adjacency relationship involving the edge as the. reference element.
Thus EV and EF are by themselves unorderable without ré%erring to other elements
for positioning, One might argue that £V and EF have cyclic ordered adjacent groups
of length two, but this is semantically equivalent to an unordered list in terms of ord-
ering information, and it is unclear if a claim can be made for any cyclic nature of the
two ends of an edge. Therefore, since EV and EF can’t reflect any true ordering they

are represented as unordered element adjacency relationships, and there are no

ordered versions of EV and EF.

Similarly, the adjacent group of the EE relationship is also unordered. In this case,
however, it is listed as an ordered adjacency relationship because some relative order-
ing information is retained in each of the individual members of the adjacent group in

both definitions discussed.

Any two or all three of the adjacency relationships with the edge as the reference ele-
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a) F< V> relationship
F1< V> = f<vsvivgvvavavv,>
b) V< F> relationship
VK F> = vi< faof fi>
¢) V< E> relationship
Vi E> = v < eeges>
d) E{[E1Y relationship (EE definition A)

e6llE1F = eg{les esllese ]}
37{[E}}2 = e7{leseq]lese;]1}

e) E{< E> ¥ relationship (EE definition B)
es{<E> P = eg{< g1eges> < gg> }

ey {< B> }2 = €7{< €4€q8q84> < €4eq€q9€4> }

Figure 10 - 6. Adjacency relationship example involving strut edges and self
loops
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ment may be put into correspondence. In this case the correspondence information
may be represented by having the adjacent group assume an ordering for coordination
only, as in E{V) and E[F] for E{V} and E{F} in correspondence, and using the order-
ing to coordinate between the two relationships. ‘Although the ordering is arbitrary
for the first relationship chosen, it provides a basis for ordering the remaining ele-
ments, allowing the correspondence to be made, Thus while E{V ¥, E{{E]P, and E{F}
all consist of unordered adjacent groups, the imposition of an ordering can be used to
represent the correspondence between all of them, creating E[V1*-E[[E11*-E(F]? This
ordering would be used for correspondence and does not represent information

inherently present in the specific adjacency relationships in correspondence.

An example of the representation of strut and seif loop edges in terms of both
definition A and definition B of the EE relationship are shown in Figure 10 - 6d and
10 — 6e., Ends of strut edges, since they are not adjacent to any other edges, are
represented in definition A, E{[E]}, as a set including the reference edge twice for
the corresponding member of the adjacent group. In deﬁ‘nition B, however, a strut
edge does have a single member in its adjacent group member < E>, which is the

reference edge itself.

An advantage of the EE definition A is that with the correspondence E[V }2-E[[E]]*-
E{F7?, efficient clockwise and counterclockwise traversals around the edges and ver-
tices surrounding a face can be made. This allows traversal of the entire graph
without resorting to local searches through cyclic lists of elements of arbitrary length,
as would be necessary with EE definition B unless the cyclic adjacent groups were
somehow marked to indicate the location of the reference element edge in the cyclic

list.

10.2.2. Correspondence

The twenty-seven pairs and the six triplets of possible correspondences of the nine

possible adjacency relationships are listed in Figure 10 — 7. Nine of the possible
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thirty-six pairs of adjacency relationships (thirty-six since the number of unique unor-
dered pairs in 2 group of n objects is ﬂ%ﬂ ) do not allow correspondence because
they involve the adjacency relationships where one of the pair of adjacency relation-
ships has the same reference and adjacent group element type and the other of the

pair of adjacency relationships consists of the two element types not found in the first

relationship.

same reference element type

EV - EF VE - VF FV - FE
EV - EE VE - VV FV - FF
EE - EF YV -VF FE - FF

EV-EE-EF VV-VE-VF FV-FE-FF

same adjacent group element type

VV - EV VE - EE VF - EF
VV - FV VE - FE VFE - FF
EV - FY EE - FE EF - FF

VV-EV-FV VE-EE-FE VF-EF-FF
mixed same reference and adjacent group element type

VE-EV VF-FV EF-FE
VE-EF VF-FE EF-FV
VE-FVY VF-EV EV-FE

Figure 10 - 7. Correspondences between the nine adjacency relationships
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10.3. Adjacency Relationships for Disconnected Graphs

Although early boundary modelers (such as [Baumgart 72]) had simpler data struc-
tures which represented topology information using the element adjacency relations
much as they have already been described, several later boundary based solid
modelers (including [Eastman & Weiler 79] and [Braid et al 78]) have expanded the
number of basic elements to remove both the surface and volume connectivity res-
trictions encountered with the original representations. The basic idea is that the new
glement types “‘bridge’’ the gap between common boundaries of the same face or
volume. Since the same conditions can be represented in a connected graph
representation, the changes are more a practical matter of convenience and a clean

representation rather than an extension of theory,

The loop structure modification was originaily created to eliminate the otherwise
unnecessary artifact edges used to associate “‘inner” hole contours with the “outer”
face boundaries (see Figure 10 — 8). The addition of the loop structure generalizes
the representations to allow disconnected graphs within single surfaces of a solid

volume.

The shell structure extension was made to allow multiple shelled objects (solid
volumes with internal cavities) without resorting to artifact faces created solely to pro-
vide a connected graph representation of the desired separate surfaces (see Figure
10 - 9). Similarly, this addition generalizes the representation schemes to allow sin-

gle volumes to contain multiple surfaces.

Both of these additions together modify the Euler-Poincaré equation:
V-E+ F= 2-2G

to the following form:
V-E+ F-(L-F)= 2(S-G)

where L is the number of loops and S is the number of shells or surfaces in the
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object being represented.

10.3.1. Loops

Note that the quantity (L - F) in the Euler-Poincaré equation above is the number of
contours of multiply connected faces *‘in addition’’ to the first contour in faces of the
object being represented. The effect of subtracting the ‘‘additional’’ contours on the
left side of the equation is identical to the effect of including an additional artifact
edge, since the edges appear with a negative sign on the left side of the equation.
Thus the overall effects of the two different multiple contour face representation tech-

niques are identical in terms of their effect on the Euler characteristic of the topology:

While the artifact edge technique is convenient from a theoretical point of view for its
simplicity, it has several problems from a practical standpoint. In a geometric model-
ing situation, where models are constantly modified during the design of an object,
the artifact edges may be split several times, increasing the computational costs of

manipulating the model. The system must also be able to decide which vertices of

Vi v
Vs [:] 5 VB
VG V7 v 6 V7
v, Vs Vs V3

Figure 10 - 8. Artifact edges to associate separate boundaries of a face
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artifact faces

[\
L=<

Figure 10 — 9. Artifact faces to associate separate boundaries of a volume

the contours to use when locating the artifact edge in the structure during its creation.
In systems which actually display artifact edges, the appearance of these edges to pro-
duce a hole in a face is conceptually disturbing to users whose modeling requests
(such as remove the volume of a cylindrical shape from a block) did not imply

“extra'' lines on faces with holes.

10.3.2. Shells

Object representations with multiple shells could be represented by a list of several
separate surface topologies. Unlike artifact edges used to represent holes in faces,
independent shells cannot be represented by ‘‘artifact faces’® without significant com-

putational effort and additional tags to differentiate ‘‘real’’ faces from artifact faces.
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This is necessary because two matching coincident ‘‘faces’’ are required to tie
together an outer shell to an inner shell. Normally, geometrically coincident faces

which are topologically separate would not otherwise occur in such representations.

Some additional topological information not derivable from the other adjacency rela-
tionships can also be stored at the shell level, This information is the characterization
of which shell is the outer shell of the finite object and which are the inner shells
entirely contained by the outer shells, The usefulness of representing this informa-
tion in the topological model instead of deriving it from geometric information is
again dependent upon its frequency of use in a given application. Such information
can reduce computational cost dramatically in situations such as the determination of
whether a point is interior or exterior to a solid since it allows a hierarchical spatial

search to be performed,

10.3.3. Disconnected Graph Adjacency Relationships

If the loop and shell elements are considered as additional topological element types,
then several new adjacency relationships emerge, as well as changes in the semantics
of the old adjacency relationships. There can be many variations on the way these
relationships are specified; one way is shown in the adjacency relationship matrix in

Figure 10 - 10,

Since we are only allowing manifold surfaces on objects, the adjacency relationships
ViSh E{SH L{S} F{S}, may only have one member in their adjacent group. L {F}is
part of the definition of a face and therefore has only one member in its adjacent
group. Since edges have only two sides on a manifold, similar to the initial set of
adjacency relationships, the adjacent groups of E{V}, E{L}, E{F}, and each of the

member groups of the adjacent groups of E{{E]} have exactly two members,

V< L> is defined as the cyclically ordered list of loops which use a vertex (see Figure

10 - 11). LL could be defined as the list of loops adjacent to the reference loop by
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Ve V> V< E> V<L> V< F> vi{s}y
E(v¥  E{E} E{LY EfFf  E{SY
L<V> L<E> L<L> LIF} LY
Fi<V>} FKE>} F{L} F{F>} F{}

SV} S{E} S} S{r} SEsY¥

Figure 10 — 10, The manifoid disconnected graph adjacency relationship matrix

sharing an edge (LL definition A}, or as the list of other loops used in the face to
which the loop belongs (LL definition B), as shown in Figure 10 - 12. We will use
LL definition A here,

F{L }is the list of loops belonging to a face,

FV, FE, and FF adjacent groups may have multiple members, each member of which
is a group, one for each loop in the face., For a given face f;, there will therefore be

exactly [f;{L }| members in the unordered adjacent groups of F{< V> }u,.{z,n ,

Fi< E> }lf,-{l-}l 1N

, and Fi{< F>} , with each adjacent group consisting of |[f;{L }!
members consisting of < V>, < E>, and < F> groups, respectively., These < V>
and < E> adjacent groups are equivalent to L< V> and L< E> for each loop of the

face.

§{S} has no members in its adjacent group since shells may not touch in manifold
environments. §{F} simply provides a lists of faces in a shell; the remaining adja-
cency relationships using a shell as the reference element can be derived from ${F}

and similar adjacency relationships using the face as the reference element.
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V1<L> = < 1112131.;)

Figure 10 - 11. V< L> adjacency relationship example
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a) LL Definition A:
Ll } = {lslylsle}
L } = {I4}

b) LL Definition B:
li<L> = <lip
< L> =<ip -

Figure 10 - 12. LL adjacency relationship example

A model normally keeps a simple list of shells, More complex structures may be
desirable in some situations to differentiate the outermost shell or completely capture
the shells of multiple objects or an ability to differentiate containment relationships

between shells (such as with hierarchical tree structured lists).

The new FL and LF adjacency relationships involving the loop element type embody
the connective information allowing faces to have multiple disconnected contours,
Such connective information was only available through adjacency relationships
involving edges in the previous system of adjacency relationships, which is why the

artifact edge technique was developed to simulate disconnected contours.
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Since the addition of the shell element type occurs at a hierarchically higher level
above the existing elements, its effects on the other element adjacency relationships

are minimal.



Chapter 11

TOPOLOGICAL SUFFICIENCY

Proving the topological sufficiency of a geometric modeling representation is an
important part of the process of verifying the correctness of a representation over a
specified domain. The most concise way to prove topological sufficiency of a
representation is to start from information about the theoretical minimum informa-

tion necessary to attain sufficiency.

This chapter develops the theoretical minimum topological adjacency information
necessary for manifold boundary geometric modeling representations. This is done
by examining the topological element adjacency relationships for topological
sufficiency, Sufficiency of specific data structures is discussed in Chapter 12, which

describes the data structures.

The topological element adjacency relationships are first considered for sufficiency
individually, and are then considered for sufficiency in combination. The findings are

then summarized,

Some readers may wish to skip directly to the summary subsection at the end of this

chapter on a first reading.

11.1. Sufficiency of the Manifold Element Adjacency Relationships

To examine the topological sufficiency of a representation or of its specific implemen-
tation data structures we first need to find what information is sufficient, in other

words which set of adjacency relationships are sufficient,

The overall objective of this chapter is to characterize the theoretical sufficiency of

90
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various subsets of the manifold ordered element adjacency relationships, and in par-
ticular each individual adjacency relationship, to represent manifold curved surface

domain polyhedral topologies.

It can be proven with simple counterexamples that none of the individual unordered
element adjacency relationships are sufficient to specify a complete manifold
polyhedron topology under the conditions identified in Chapter 9. Although
insufficiency of two of the unordered adjacency relationships wiil be proven here, this
section will concentrate on examining the sufficiency of the ordered element adja-
cency relationships and their ability to unambiguously produce a complete polyhedron
topology representation under the conditions identified in Chapter 9. This includes
the topic of whether some combinations of individually insufficient adjacency relation-

ships are together sufficient,

First, sufficiency will be defined, then sufficiency of three of the nine individual ele-
ment adjacency relationships will be proven, and then insufficiency of the remaining
six will be proven. The sufficiency of some pairs of individually insufficient element
adjacency relationships will also be considered. Finally, a summary will characterize

the findings.

11.1.1. The Individually Sufficient Adjacency Relationships

Three element adjacency relationships, V< E> , the specific EE adjacency relationship
E{<E> P, and F< E> , are individually sufficient to represent polyhedral topologies.
All three sufficient element adjacency relationships have the edge element type as the
type of their adjacent group.

11.1.1.1. V < E> Sufficiency

A theorem due to Edmonds [Edmonds 60] determined that the directed cyclic orders

of the edges around the vertices in an embedded graph are sufficient information to
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completely and uniquely describe polyhedron topologies (see [White 73] and {Graver
& Watkins 77}). The cyclicly ordered edge-around-a-vertex information is equivalent
to the definition of the V< E> element adjacency relationship given here. Therefore
the V< E> adjacency relationship by itself is sufficient for representing polyhedral

topologies unambiguously.

A major result of the theorem is an embedding enumeration algorithm, called the
Edmonds embedding technique, which can produce all of the 2-cell embeddings in an
orientable surface of a given graph (the connectivity information V{V'}or E{V}). The
algorithm operates by turning the lists of edges incident to each vertex into a cyclic
list, which creates a specific instantiation of V< E> information. By permuting the
orders of the edges in the cyclic lists, all possible V< E> adjacency relationships can
be created. The theorem states that each possible ordering corresponds to a specific
embedding of the graph in an oriented surface. Thus, by permuting the V< E> adja-
cent group information created in this way, each of the possible embeddings can be

produced.

Generating the actual embedding from a specific instantiation of the V< E> informa-
tion (see [White 73]) involves constructing the boundaries of the faces of an embed-
ding from the V< E> information, and then ‘‘sewing’’ the face boundaries together
by matching up their edges much like assembling a picture puzzle. Every edge of an
embedded graph is used exactly twice in the V< E> adjacent groups of edges, and
each such use of an edge is associated with one of the two directed edges between the
two vertices of the edge. Since this map construction or embedding technique results
in a mapped graph where every edge is used twice and in opposite directions, the map

is closed and oriented.

To illustrate how the boundaries of the faces of an embedded graph can be deter-
mined, the following algorithm which is part of the Edmonds embedding technique

(see [White 73] and [Young 63}]) is presented in adjacency relationship terminology.
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To traverse the boundary of a face in a clockwise direction given the clockwise cyclicly

ordered V< E> information:

1. Select a vertex v;. This will be called the original vertex.

2. Select an edge which is a member of v,< E> , say v;< E> ,. This will be called
the original edge.

3. Find some v;< E> , such that < E> , = w< E>, and ifi = k then a= b.

4. Find vw,< E> ., the successor edge to vw< E>, in the traversal of the face
boundary, from the v;< E> information using 6. w< E> . is simply the
edge preceding vy< E> , in the cyclic sequence v,< E> , that is vy< E> ,_;.

3. Until v, = the original vertex and vy< E> , = the original edge, go to step 3,

using v, as the new v; and vy< E> , as the new w< E> 4,

The traversal of the boundary of a face in the embedded graph from the V< E>
information alone is now complete. To construct all face boundaries from the V< E>
information the above process is repeated until all edges have been used twice during

the traversals of the face boundaries,

Note that the F< V> -F< E> adjacency relationships in correspondence can also be
created during the face boundary traversal. These relationships are used to *‘sew”
together the face boundaries into a complete embedding by an identification process
which matches up each use of an edge so that each of its two adjacent faces uses the
edge in opposite directions in their boundary. This is done by making sure the ver-
tices of the two uses of the edge ‘“‘match up’ when the two faces are made adjacent
along their common boundary. In the case of an isthmus or strut edge the two sides

or uses of the edge are sewn together on the same face boundary,

Using this embedding technique, V< E> information taken from a specific embed-
ding can be used to generate an embedding which will be identical to the original up
to the label of the faces. If desired, after the embedding process is complete, the
faces of the embedded graph may be uniquely labeled, and other adjacency relation-

ships derived,
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11.1.1.2. E {< E> } Sufficiency

It is apparent that E {< E> ¥, EE definition B contains nearly identical information to
V< E> since each member of the adjacent group contains information identical to the
entire adjacent group of the V< E> relationship of one of the vertices to which the
edge is incident. The difference is that the reference vertex of each < E> adjacent
group is unknown, and there are multiple copies of each < E> group. In fact, for
every vertex of degree n there are n copies of an adjacent group equivalent to the
vertex’s v;< E> adjacent group. E{< E> ¥ cannot be used directly for traversal of the
edges bounding a face because there is no foolproof way of determining which edge
of the < £> groups to use when multiple self loops occur at a vertex of the reference
edge. In order to determine face boundaries and embeddings from the E{< £> P

information, ¥ < E> information must first be created.

V< E> information can be created from E{< E> ¥ information by a simple algorithm
which eliminates the duplicate copies of the < £> groups and then labels the vertices.
Establishing the equivalence between E{< E> }* and V< E> in this way will prove the

sufficiency of E {< £> }.
The algorithm is:

1. If there are no E{< E> }* adjacency relationships, then our embedded graph is
the trivial graph and we are finished.
2. Otherwise, for each adjacent group member < E> of every ¢;{< E> ¥ create an
equivalent < E> and place it in set A, a set of all < E>’s found in all
E{< E> s,
3. Until set A is empty:
a) Remove some < E>, a member of set A, from set A.
b) Find and eliminate the other (n-1) members of set A which
exactly match in membership and cyclic order the < E> origi-
nally removed from set A in step 3a, where n = [< E> | .

c¢) Place the < E> originally removed from set A in step 3a into set B.
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4. Until set B is empty:
a) Remove < E> , any member of set B.
b) Create a unique label of a vertex, i .
¢) Join the label with the < E> to create a v;< E> adjacency relation-

ship.

Given the ability to generate V< E> information uniquely from E{< E> ¥ informa-

tion, we can claim sufficiency for E{< E> P (EE definition B).

Theorem 11-1: The E{< E> ¥ adjacency relationship is sufficient to unambiguously
represent adjacency topologies of polyhedra.

proof: Given the above algorithm, one can convert E{< £> P into V< E>. The algo-
rithm is correct because by the EE definition B of E{< E> } there must be
n copies of the < E> cyclic ordered groups of edges surrounding each ver-
tex of degree n, one for every edge incident to a vertex. Given the one-
to-one correspondence between V< E> and E{< E> }* using this algo-

rithm, E{< E> ¥ is then sufficient by the Edmonds theorem.

11.1,1.3. F < E> Sufficiency

The ordered cyclic list of edges surrounding a face preserves the orientation and
embedding of the face. Because each edge can only be used twice, and because the
orientation information is preserved, an embedding technique can be constructed to

create the complete embedding from the F< E> information.

The embedding process is similar to the Edmonds embedding technique and is basi-
cally an identification process which matches up each of the two directed uses of a
given edge as well as each of the uses of a vertex, The identification process will
form a closed and oriented surface. Unlike the Edmonds technique, information on
vertex identity is not directly available and vertex identification must be made solely

through the use of edge information.
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The embedding procedure involves the examination of all adjacent groups of all

fi<E>:

1. edge identification procedure
If any f,< E>, = f.< E> 4, where a may or may not equal ¢ (but if a=
¢, as in the case of a strut edge, then b# d), then the boundaries of £, and
f. are adjacent along this edge. The two uses of the edge are the only

uses of the edge and are of opposite orientation in the boundary cycles of

f. and f..

2. vertex identification procedure

Every edge has two ends or vertices. A traversal of the boundary cycle of

a face first encounters one vertex of the edge, called the starting vertex of

the edge, then encounters the edge itself, and then encounters the second

vertex of the edge, called the ending vertex of the edge with respect to the
face boundary cycle. There are two rules for vertex identification:

A) The starting vertex of an edge f,< E>; is the same vertex as the end-
ing vertex of the edge f.< E> ;_; directly previous to f,< E> ;
in the face boundary cycle. The ending vertex of an edge
fa< E>; is the same vertex as the starting vertex of the edge
fa< E> i+1 directly following f,< E>; in the face boundary
cycle.

B) For any matching uses of an edge f,< E>, = f,< E>, , the starting
vertex of edge f,< E>; is the same vertex as the ending vertex
of edge f.< E> ; and the ending vertex of edge f,< E> , is the

same vertex as the starting vertex of edge f.< E> 4.

As a direct result of rule A in the vertex identification procedure, if | f,< E> |= 1 or
| fe< E> | = 1 then the starting and ending vertices of the edge are in fact the same
vertex. Intuitively this makes any previously discovered common uses of the starting
and ending vertices in the partially embedded graph coalesce so that they converge

upon the same vertex. If | f,<E> |# land | f.<E> |=# 1 then the two vertices
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of any given edge in the face boundary cycles may or may not be distinct. In other
words, a self loop must be encountered before it will be recognized that two potential

vertices are in fact the same vertex, since the vertices have not been labeled.

As a result of vertex identification rules A and B combined, if any two-edge sequence
fm< E>;y fn< E> 4y in the face boundary cycle of face fm matches in opposite order
a sequence f,< E> ; .. fa< E> j,1,,, a sequence in the face boundary cycle of face f,
in which there may be a= 0 or more edges between fa< E>;and f,< E> ;,y,,, then
the ending vertex of f,< E> ; is the starting vertex of f,< E> ,,; is the ending vertex
of fa< E> ; is the starting vertex of f,< E> j+1 i8 the ending vertex of f,< E> jn 18

the starting vertex of f,< E> je1en (see Figure 11 - 1),

F< E> information is similar to the information which had to be constructed in the

fE% i FrasEdipq
fn<E>i+1+n fﬂ(E)i
fm

Figure 11 - 1. Resuit of application of vertex identification rules A and B
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first part of the Edmonds embedding technique, except that the additional F< V>
information is not directly available and must be constructed. Direct information on
the vertices of the edges of the face boundaries is not necessary to match up edges
during embedding because uses of the edges already reflect orientation. Therefore
each of the two uses of a given edge in the F< E> information necessarily uses the
edge in a direction opposite to the other use. Vertex identification is more involved
than for V< E> during embedding since vertices are not directly represented in
F< E> and the information must be derived from edge adjacencies by the rules given

above,

If desired, after the embedding process (the identification process) is complete, the
vertices of the embedded graph may be uniquely labeled, and other adjacency rela-

tionships derived.

Theorem 11-2: The F< E> adjacency relationship is sufficient to unambiguously
represent the adjacency topologies of curved surface polyhedra.

proof: Using the identification process above, since every instance of an edge on a face
boundary is matched with another instance of the same edge on a face
boundary, and every vertex use is connected, the resulting embedding is
closed. Since the two instances of each edge are of opposite orientation
for the two adjoining faces, the embedding is oriented. The order of the
rules applied in the identification or ‘‘sewing’’ process does not affect the
outcome since all affects are local. At every step in the sewing process for
any given edge instance remaining to be sewn there is only one possible
other edge instance in a boundary to which it can be matched. By the ver-
tex identification rules there are a finite number of steps to determine
common vertex identity. The process is therefore deterministic, and the

embedding produced unique.

A point of minor interest is the representation of the trivial graph in the three
sufficient adjacency relationships. In V< E> it is represented as a single adjacency

relationship with an empty adjacent group. In E{< E> ¥ and F< E> there is no direct
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way of representing vertices unattached to edges, so they must represent the trivial

graph as simply the absence of any adjacency relationships.

11.1.2. The Insufficient Individual Adjacency Relationships

Six of the nine element adjacency relationships are individually insufficient for unam-
biguously representing the topologies of polyhedra. These six relationships are E{V},
E{F}, V<V>,F<V>,V<F>, and F< F>. Additionally, EE definition A, E{[E]},

is also insufficient.

Intuitively, the proofs utilize counterexamples to the unambiguous reconstruction of
a mapping of the graph from the adjacency relationship information under considera-
tion. In these counterexamples, it is shown that for a given adjacency relationship of
the type under consideration there exists more than one mapping. This is not accept-
able for the unambiguous representation of the topology of polyhedra and proves the
insufficiency of the particular adjacency relationship under consideration for represent-

ing topologies of polyhedra,

Proofs of the insufficiencies are most easily given in the form of counterexamples.
All of the insufficiency proofs in this paper have the same basic format, so the format
is described once and referred to from the insufficiency theorems in the following sec-

tions. The general format of the proofs is:

General Format for Insufficiency Theorems 11-3 through 11-5:

Theorem: The X adjacency relationship information is not sufficient to unambiguously
represent the manifold adjacency topologies of curved surface polyhedra.

proof (by contradiction): If the X adjacency relationship is sufficient to unambiguously
represent the manifold adjacency topologies of curved surface polyhedra,
then one could reconstruct the unique mapping of the embedded graph of
the object shown in the Figure X part a (along with all of the adjacency
relationships up to the labels of the other element type(s) not involved in

the X adjacency relationship) from its X adjacency relationship information




100

alone (Figure X part b), Note, however, that another mapping consistent
with the X adjacency relationship information can be found which is not
consistent with other adjacency relationships in the original, meaning the
two labeled mappings are not homeomorphic (Figure Xpart ¢). The X adja-
cency relationship is ambiguous and does not contain enough information
to uniquely represent the topology (mapped graph) shown in the figure.
Therefore the X adjacency relationship is insufficient to unambiguously

represent manifold curved surface polyhedra topologies.

Proofs of insufficiency for the remaining six element adjacency relationships now fol-
low. Where appropriate, comments are made regarding causes of the insufficiency
and restrictions which would allow the particular element adjacency relationship to be

sufficient,

For completeness, proofs of the insufficiency of £ {V} and E{F} are given even though

they are not ordered adjacency relationships.

Theorem 11-3: Each of the E{V}, E{F}, V< V>, F< V>, V< F>, and F< F> adja-
cency relationships are individually not sufficient to unambiguously
represent the adjacency topologies of curved surface polyhedra,

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 — 2,
11 -3, 11 -4, 11 -5, 11 ~- 6, and 11 - 7, respectively, we can see that

each is insufficient by counterexample.

Given that the £{V} and E {F} adjacency relationships are not truly ordered element

ad jacency relationships, it is not surprising they are not sufficient.

While each of the two element adjacency relationships V< V> and F< V> are
insufficient for the general case, they are each sufficient if the range of representation
is restricted to disallow multigraphs and self loops. Intuitively, it is possibie to see
this is true because it is only with multigraphs and self loops that edges are not
uniquely identified by the set of their two endpoints. If the restriction is made and

pseudographs are not allowed, then it is fairly straightforward to develop a function
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a) Mapping 1

b) E{V} information

eV} = e{vi vat eV} = es{vy vy}
eV} = eyfyvy val  esV} = eg{vy vy}

¢} Mapping 2

€

Note: while this is a convenient proof, use of pseudographs are not necessary to
prove E{V'} insufficient; an example is the hypercube.

Figure 11 - 2. Insufficiency of the E{V} adjacency relationship
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a) Mapping 1 (and object)

b} E{F} information

el{fFt = edfy fi}
ex{fFf} = ex{f: fi}
e3fF} = ex{fs fa}
esfF} = eu{f, fa}

c) Mapping 2

es{fi1 fa}
es{fs fa}
eq{f1 f2}
es{fs fa4}

Figure 11 - 3. Insufficiency of the E{F} adjacency relationship
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a) Mapping 1

b) V< V> information

vi< V> = Vi< v V3 Vg Vg v V> = Vi< Vi Vv V>
va< V> = Vi V4> V< V> = Vel vy >
c) Mapping 2

Figure 11 - 4. Insufficiency of the V< V> adjacency relationship
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a) Mapping 1

b) F< V> information

fic V> = fi< vy vy fia<V> = i< v vy
fa< V> = fa< vy vo> fac V> = fu< v vy
c) Mapping 2
1
v v

Figure 11 - 5. Insufficiency of the F< V> adjacency relationship
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a) Mapping 1

b) V< F> information

M F> = v fifafsfa> v F> = v fy fy>
V2<F> = V2<f3f2> V5<F> = Vs<f1 f2>
Vi > = ¥ f; f2>

c) Mapping 2 *

( note that orientation of f 5 has changed)

Figure 11 - 6. Insufficiency of the V< F> adjacency relationship
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a) Mapping 1

b} V< F> information

It

Fi<F> = fi<fafafafafafe>  fa<F>
fa< F> fofie fa fe> fa< F>

fi< fafafe>
fe<fo Fifu fafsfa

I
]

c) Mapping 2

Figure 11 - 7, Insufficiency of the F< F> adjacency relationship
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that transforms V< V> into V< E> and F< V> into F< E> . Since both V< E> and
F< E> are sufficient without restriction, V< V> and F< V> would be sufficient
under these restrictions. Sufficiency under this restriction is addressed in detail in

Appendix A,

In a fashion similar to V< V> and F< V> under constraint, if we constrain the adja-
cent groups of £ {F} to be unique so that the reference edge element can be uniquely
identified, V< F> and F< F> can be transformed to V< E> and F< E> respectively

and can be considered sufficient under constraint (see Appendix A).
EE definition A, E{[E]}, is also insufficient:

Theorem 11-4: The EE definition A adjacency relationship, E{{E1}, is insufficient to
unambiguously represent the adjacency topology of curved surface polyhe-
dra.

proof (by contradiction): Using the insufficiency proof form, and the Figure 11 - 8,

we can see that E{[E]} is insufficient by counterexample,

11.1.3. Sufficiency of Combinations of Adjacency Relationships

Since some of the individual element adjacency relationships are insufficient, it is
interesting to consider whether combinations of individually insufficient element adja-

cency relationships are together sufficient.

Out of thirty-six possible unique unordered pairs of the nine adjacency relationships,
twenty-one already involve sufficient relationships, Of those remaining, three have
no basis for correspondence and do not appear in the list of twenty-seven correspon-

dences of Figure 10 — 7, We are therefore left with twelve pairs of possible interest.

As previously mentioned, practical modeling systems need to label all three element
types so that additional application related information may be associated with the ele-

ments. This means that at least two adjacency relationships will be needed in these
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a) Mapping 1

¥y I VZ
&y |
vy V2 1 @ e,
-7} "
. Vo

b} E{V} information

L]

e {[EPP= efl ez esll e5 €3]}
e{lEVE= es{[ es ]l e5 e(1}
e{[EVPF= es{[ e er]l ey 3]}

¢} Mapping 2

¥y

Figure 11 - 8. Insufficiency of the E{[E]} adjacency relationship
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systems so that all three element types are labeled and properly associated to be able
to combine the adjacency information. This makes it interesting to ask whether any
two of the individually insufficient element adjacency relationships which involve all

three element types are together sufficient to represent the topology of polyhedra.

Of the remaining twelve possible pairs of adjacency relationships, only five pairs of
clement adjacency relationships involve all three element types. One pair, consisting
of E{V}-E{F}, has the same element type as reference element and therefore has the
strongest correspondence. Two more pairs, E{V}-F< V> and E{F}-V< F> , have
the same element type in their adjacent groups, and the last two pairs, E{V}-V< F>
and E{F}-F< V> are mixed with the common element type in both the reference ele-

ment and adjacent group.

As will be now shown, none of these five pairs of element adjacency relationships are
sufficient to unambiguously represent the topologies of polyhedra. The form of the
proofs is identical to that used in the proofs of insufficiency for the individual rela-
tionships and so will not be repeated here. The only difference is that pairs of rela-

tionships instead of single relationships will be considered.

In the E{V}-E {F} pair it will be assumed that we have access to both of the adjacency
relationships in strong correspondence since this will allow the maximal amount of
information to be available, If E{V]-E[F] in correspondence- is not sufficient {as we
will prove next) then the pair E{V} and E {F} together without correspondence is also

not sufficient since even less information is available.

Theorem 11-5: Each of the E{V)%-E(F1}, E{VP-F< V> , E{FP-V< F> , EVRE-V< F>,
and E{FP-F<V> adjacency relationship pairs with correspondence is
insufficient to unambiguously represent the ad jacency topologies of curved
surface polyhedra,

proof (by contradiction): Using the insufficiency proof form, and the Figures 11 ~ 9,
I1-10, 11~ 11, 11 - 11, and 11 - 12, respectively, we can see that
EVI*E[F)Y, E[VP-F<V>, E{FP-V<F>, E{VP-V<F>, and E{Ffp-

F< V> are each insufficient,
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Another, more complex combination of particular interest is the so called “‘winged-
edge’’ structure polyhedral topology representation which is discussed in more detail
in Chapter 12. This representation is essentially E{V}? - E[{E]]? - E[F]* in correspon-
dence, utilizing each of the adjacency relationships with the edge as the reference ele-
ment including the EE definition A. All three have been proven individuaily
insufficient previously in this thesis, However, see Section 12.3.2 for proof of the

conditions required for sufficiency of the adjacency relationship pair E[V1>-E[{E )%

The seven other pairs of the original twelve pairs of interest are not examined here
since they do not involve all three element types. Additionally, if one ailso examines
others pairs involving EE definition A, several more pairs of possible interest can be

generated,

Combinations of three or more individually insufficient element adjacencies are also

not examined here.

11.2. Sufficiency of the Disconnected Graph Adjacency Relationships

Disconnected graph topology representations can always be reduced to connected
graph domain by the addition of artifact edges and faces to eliminated loops and

shells.

The introduction of the new element types does produce some differences in the
sufficiency of the various adjacency relationships for representing polyhedral topolo-
gies., The new adjacency relationships together contain the same information available
with the old adjacency relationships, but the information in some cases has been dis-
tributed over a greater number of adjacency relationships. This directly affects the

sufficiency of the new element adjacency relationships.

Intuitively, the addition of the loop element effectively “*spreads out’’ the information
for sufficient representation of a polyhedron from the from the information previ-

ously available in the FE relationship over several new element adjacency relation-
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a} Mapping 1

b) EV12-E[F}? information 2
f2 fg
Vi V4 : V4 V3
Vs
fi(f, fo|f, €3 fafi f,|f,
ellVE = eilvy vil  ey[F1* = e lf, fal
Va2 \Z! eV = es(vi val  e)FP = eylf; 2] Vi Vs
e e, es[V1: = eslvy vsl  eslFP = e3[fy f)l e, €5
edVIE = eylvy val  eylF1? = e4lf, fil
eslVI2 = eslvy val  eslFI* = esf, f4]
c] Mapping 2

Figure 11 - 9. Insufficiency of the E[V]-E[F] adjacency relationships in strong
correspondence
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a) Mapping 1

b) E{V¥-F< V> information

e VP er{vi vat fi<V> = fi< vy v
ex{VE = ex{vy val  fax V> = fo< vy vy
es{V ¥ e3{vy va}  fa< V> = fa<vp vp>
ealVF = es{vy va} Fas V> = fu<vvp

c} Mapping 2

Note that both mappings have identical F< V> , E{V} information yet differ in
E{F}.

Figure 11 - 10. Insufficiency of the E{V}F< V> adjacency relationships in
correspondence
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a) Mapping 1

b) EfFP, E{V . and V< F> information (E{F} and E{V} not in correspondence)

eVP = efvi va} elFP = effi fa} vi<F> = vi< f1 fa f3 f2>

e2lVY = exvi vit  e)fF P = ex{fs fi} va< F> = vi< £y fo>
eslVE = es{vy vi}  esfF P = esffs fa} vi<F> = vi< fy f2>
ealVE = eafvy vs}  edfFP = eslfy f1} vi< F> = v fi fa>
eslVY = es{vy vil  eslFP = eslfy fa} vs<F> = i< fy fo>

eslVE = eslvy vst  eslF P = eolfy fa}

c) Mapping 2

Note orientation of f 4 has changed.

Note that both mappings have identical E{F}V< F> and E{V}V< F> infor-
mation yet differ in F< V> , F< E> , V< E> , and E{(E}{(E)}.

Figure 11 - 11. Insufficiency of the E{F}V< F> adjacency relationships in
correspondence and the E{V}-V< F> adjacency relationships in
correspondence
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a) Mapping 1

b) E{FP-F< V> information

edFP = elffi fab ficV> = fi<vp>
eFY = e{fs f1} fak V> = fa< vy vy vp>
esfF¥ = e3{fa fal fax V> = fi<vp>
fa<c V> = f4< V>
¢} Mapping 2
e
f 1
Vi

Note that both mappings have identical E{F Y, E{V ¥, and F< V> information
yet differ in F< E> , E{(EIP, and V< E>

Figure 11 - 12, Insufficiency of the E{F}F< V> adjacency relationships in
correspondence
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ships (F{L} and L< E>) in order to explicitly represent the separate multiple con-
tours of the faces. Thus in this new system L< E> is not sufficient by itself to
unambiguously represent polyhedral topologies, but requires F{L} or L [F}!, The new
system is primarily a change of form for convenience and efficiency; no additionat
information (that 