
Engineering with Computers (2002) 18: 339–351
Ownership and Copyright
 2002 Springer-Verlag London Limited

Attribute Management System for Engineering Analysis

Robert M. O’Bara,1 Mark W. Beall1 and Mark S. Shephard2

1Simmetrix Inc.; 2Rensselaer Design Research Center, Rensselaer Polytechnic Institute, Troy. NY, USA

Abstract. This paper presents the design and implemen-
tation of an attribute management system that supports the
specification of information, past that of the domain defi-
nition, needed to qualify an engineering analysis. The infor-
mation managed by this system includes various order tensors
needed to specify the analysis attributes of material proper-
ties, loads, and boundary conditions as well as additional
data constructs used by the analysis such as strings, and
references to either other attributes or model entities. The
system supports general dependencies and variations of this
attribute information as well as its association with the
various geometric entities which constitute the geometric
domain being analyzed. In addition, since the information is
coupled with the model entities themselves, the system can be
used to store information needed to control the discretization
process of the geometric domain. Since the information can
be both spatially and temporally varying, an expression sub-
system was also designed into the system. The framework
was designed using object-oriented techniques, implemented
in C++, and can be easily maintained and extended.

Keywords. Attribute management

1. Introduction

The application of Computer-Aided Design (CAD)
technology has become commonplace in industry.
Although the product information in CAD models
could be employed by Computer-Aided Engineering
(CAE) systems, the impact to date of CAE has
fallen far short of its potential. The application
of today’s numerical analysis procedures by design
engineers can be effective only if they are automated
and if the quantitative results produced reliably pre-
dict the parameters requested.

To achieve this, it is necessary to utilize automatic
mesh generation [1–4] that interacts directly with
the geometric representation of the domain, robust
finite element analysis procedures, error estimation,
and adaptivity. The automatic mesh generation pro-
cedures can be integrated with finite element analy-

sis procedures which can determine approximate
values to the desired solution parameters. The sol-
utions obtained then need to be examined to deter-
mine if the results obtained are of the requested
level of accuracy. Substantial progress has been
made on methods to estimate the mesh discretization
errors [5,6], while methods to estimate analysis
modeling errors are beginning to receive increased
attention. If the error estimates indicate that the
model and/or its discretization needs improvement,
the model construction and/or mesh generation pro-
cedures can be used to perform the required adap-
tations before the next analysis step.

The application of an automated adaptive analysis
environment of this type requires procedures to sup-
port the geometry-based specification of the loads,
material properties, boundary conditions, and initial
conditions required to complete the specification of
the physical problem to be simulated. Historically,
ad hoc methods have been used for the specification
of analysis attributes in which each attribute was
defined directly in terms of the numerical analysis
discretization. Such specifications can not improve
the approximation to the attribute when the mesh is
modified as dictated by an adaptive analysis pro-
cedure. The correct, and more natural, specification
of the analysis attributes is to associate them directly
with the geometric representation of the domain to
be analyzed. Assuming the classification information
of the mesh with respect to its geometric model1 is
already maintained, the amount of memory needed
to associate the attributes can be drastically reduced.
An additional benefit of associating attributes
directly with the model is that information related
to controlling the discretization process itself can be
represented in the system. Starting from a high
level statement of requirements for such an attribute

1 Mesh classification refers to the unique association of each
mesh topological entity with the geometric model topological
entity that if lies on or within [9].

340 R. M. O’Bara et al.

specification capability [7], this paper presents an
attribute management system for the geometry-based
definition of tensorial information that supports gen-
eral variations and dependencies.

Section 2 overviews the functional requirements
of an analysis attribute manager to support: (i) the
organization of individual analysis attributes into the
correct collection for a particular analysis (Sect. 3);
(ii) the information that defines analysis attributes
(Sect. 4); (iii) the specification of general distri-
butions for attributes and dependencies among the
attributes (Sect. 5); and (iv) the association of the
geometry-based attributes with the domain definition
housed in a CAD system (Sect. 6). Section 7 dis-
cusses some of the implementation issues.

2. Requirements for Analysis
Attribute Specification

2.1. Analysis Attribute Information

An examination of the properties of analysis attri-
butes indicates those that qualify the physical prob-
lem are tensorial quantities, and therefore require a
general scheme to specify various order tensors [8].
Tensorial quantities must be defined with respect to
a coordinate system and may include various forms
of symmetry which must be taken into account for
efficiency. Therefore, the components of the struc-
ture used to define tensor attributes are (i) the order
of the tensor, (ii) the coordinate system the attribute
is defined in, (iii) the symmetries possessed, and
(iv) the dependence of the tensor on other quantities.

Tensors are specified using values based on a
specific coordinate system; however, by maintaining
the coordinate system information, the tensor infor-
mation can be transformed into any requested coor-
dinate system. The system provides the following
capabilities for handling tensor information.

� Creating tensors of any order.
� Defining tensors in a coordinate system with

given values of its components. These values can
either be numerical or expressions.

� Defining the symmetry properties of the tensor.
This allows tensors to be created that are defined
not on a component by component basis but on
the consequences of the symmetries. For example,
the fourth order tensor of a linear isotropic elastic
material is based on only two independent para-
meters.

� Evaluating the tensor in a different coordinate sys-
tem.

� Changing a tensor’s defining coordinate system
via a transformation.

� Including tensors as part of an expression which
can depend on position, time, and other tensors. A
tensor may contain expressions that also introduce
other dependences.

In addition to tensors, other common forms of attri-
bute information used in numerical simulations
include integers, reals, and character strings. Another
type is a reference to a model entity (or entities)
that can be used to define other information. For
example, the loading on one surface may be related
to the minimum distance relative to another surface
represented as a model entity attribute. Another
example of using model references is in the case of
describing the properties of a fan in a CFD analysis.
One component of the fan’s properties is the identi-
fication of the fan’s inlet and outlet surfaces which
would be represented as references to the model’s
surfaces. Similarly the system provides a mechanism
to model information by referencing other attributes
in the system.

2.2. Data Expressions

An attribute may be a function of space, time, or
some other attribute. In addition the system supports
attributes that receive their definition from a variety
of other sources, such as:

� The results of a previous analysis where the
spatial description is given in terms of quantities
defined over some discretized version of the
geometry (e.g. applying a temperature from a
thermal analysis as an attribute for a stress
analysis).

� A function which depends on geometric operators
(e.g. a traction may depend upon the distance
between two model entities).

In order to represent non-constant information the
system supports mathematical expressions that con-
sist of operators, constants, and user defined vari-
ables. A variable can be locally defined inside the
attribute or inherited when the attribute information
is associated with the geometric model.

The functions supported for the mathematical
expressions include:

� Arithmetic: + � */XY (including vector and
matrix versions).

� Trigometric: sin() cos() tan() arcsin() arccos()
arctan().

� Nesting of functions (e.g. (), {}, etc.).

341Attribute Management System for Engineering Analysis

� Interpolations: Linear, Bi-Linear, Tri-Linear,
Spline-based, etc.

� Integration and Differentiation.
� Conditional.
� User-defined Functions.

In the case of modeling expressions, modeling oper-
ators such as closest point, intersection, union, and
subtraction are also included.

The expression sub-system also allows users to
easily add new operators and functions in order to
address future requirements.

2.3. Association Information

Analysis attributes are associated with a specific
portion of the domain being analyzed. In the prob-
lem definition case where analysis attributes are
primarily associated with the specification of bound-
ary value problems, the association of the attributes
with the various topological entities in the boundary
representation of the geometric model is a natural
choice.

To ensure the ability to represent attributes speci-
fied on all possible domains, a full non-manifold
topology similar to that described in References
[10,11] is needed (Fig. 1). The mesh generated for
the model is also defined by the appropriate set of
base topological entities (vertex, edge, face, and
region) and the classification of the mesh entities to
the geometric model is maintained [9]. This
mesh/model representation is key to being able to
apply the geometry-based attribute specification
methods described below.

In addition to the original geometric entities in
the model, auxiliary geometric information, which
aids in attribute specification, may be required to
fully capture the analyst’s intentions. Common
examples of auxiliary geometries are scribed edges
on a model face used to indicate that a traction is
only applied to a portion of a face, or projection
geometry that aids in the specification of an attri-
bute, such as a wind load distribution on a vertical
plane. To properly reflect the association of such

Fig. 1. Model topological adjacency information and relation to model geometry.

attributes the geometric model requires augmentation
to account for the auxiliary geometry. For example,
the curve used to denote the end of a traction on a
face must be used to split the face during aug-
mentation.

2.4. Organization of Attributes

To support the effective specification of attributes
for the complete set of related analyses, while at
the same time making it efficient to collect the
attributes required for each specific analysis, an
organizational structure is needed for the purpose
of describing sets of attributes. The organizational
structure must effectively support a design process
for scenarios where multiple physical behaviors must
be evaluated. In many cases, the result of one
analysis represents part of the problem definition
of another. For example, consider the situation of
performing thermal, electrical, and thermal-mechan-
ical analyses of an electrical component. Though the
three analyses are quite different, there is an overlap
of attribute information. The base materials are the
same for all three analysis types, while the boundary
conditions and loading conditions vary among the
three. The thermal analysis would study various
thermal load distributions. The thermal-mechanical
analysis would use the resulting temperature fields
as input to its load cases. The ability to effectively
organize hierarchies of attributes as needed for each
of these analyses is critical to a useful attribute
management system.

To meet these needs the attribute manager must
be able to structure information:

� Consisting of several pieces of specific infor-
mation which must remain together in order for
a specific analysis to be well defined. This con-
cept is represented in the system as a Case.

� To support relationships between information
components. For example, a load on a given
model entity may be represented by the vector
expression {a, 0, 0}, while another load on a
different entity is defined by {0, b, 0}. Using

342 R. M. O’Bara et al.

hierarchical information, one can impose a
relationship between the variables a and b such
that a = 2b.

An analysis can typically be partitioned further into
three different categories of information, each of
which can be represented as a Case in the system:

� Problem Definition Case – attributes defining the
physical problem being modeled such as boundary
conditions, loads, and material properties.

� Discretization Case – attributes defining the
discretization required for the analysis including
target mesh sizes, anisotropic meshing character-
istics (such as boundary layers), and mesh match-
ing constraints.

� Solution Strategy Case – attributes that define the
numerical procedures used to solve the problem.
This would include the type of solver to be used,
convergence criteria, and the polynomial order.

By partitioning an analysis’ information into these
three cases, the user can better reuse the information
in defining different analyses which share common
aspects. For example, two analyses might share the
same solution strategy and problem definitions but
require different discretizations.

3. Organization of Attributes

An appropriate model must be defined for the struc-
turing of the information to be controlled by the
attribute manager. The Analysis Information Model
(AIM) defined here represents a set of analysis
attributes that can share common information and
are thus built upon each other. The AIM is rep-
resented as a directed acyclic graph that consists of
analysis information structuring nodes (AISNs) that
are used to represent the analysis attribute infor-
mation. There are three basic classes of AISN:

� Information Node – used to represent conceptual
attribute specification information.

� Group Node – used to represent hierarchical infor-
mation.

� Case Node – used to represent a complete
description for a specific analysis2. Cases also
store the associations of the information with
geometric models.

2 A ‘complete description’ is a conceptualization. The system
will not check the information stored under the case for complete-
ness since it does not know what information is needed. Verifi-
cation of a complete specification requires an understanding of
the problem domain.

All AISNs can define variables internal to the node
itself. These variables can be constants or
expressions. During the attribute association process,
the variables of a node are passed down to its
children and can be used to model data dependences.

3.1. Analysis Information Structuring Nodes

3.1.1. Information Nodes (IN).
Information Nodes (IN) represent the conceptual
types of information introduced in Sect. 2.1. They
are specialized to contain specific types of infor-
mation. For example, there are String INs, First
Order Tensor INs, Real INs, etc. INs behave simi-
larly to variables in that they can be either constant
or contain an expression. For example,

// tempnode is a Oth order tensor and

load 1 node is a 1st order tensor

load 1 node[0] = “2 *sin($t)”;//Define

the first component of the load to be a

function of time

tempnode = 10.0;// Define the temperature

to be a constant value

As with all AISNs, information nodes can have
other nodes as children in order to represent more
complex information. For example, to properly
model density, the node itself would be modeled as
a zero order tensor. In addition, if the node were
to represent density using a Boussinesq approxi-
mation, then it would have the following children
nodes:

� Expansivity – represented as a zero order tensor.
� Reference Temperature – represented as a zero

order tensor.

3.1.2. Group Nodes.
The Group Nodes are used for structuring the infor-
mation and defining interdependencies among the
information nodes. Group Nodes are also useful in
clustering information that should be applied to the
same model entity.

3.1.3. Case Nodes.
A Case Node represents a point in the graph that
completely defines the information for a particular
analysis. A Case Node’s type can be used to indicate
the problem domain being addressed by that sub-
graph. It can be used by a validity checking to
verify that the information is complete. A Case
Node can reference all types of nodes including
other cases. In this way one case can be built on

343Attribute Management System for Engineering Analysis

top of another, resulting in hierarchical structuring
of cases.

In addition the Case Node also stores both a
reference to the model being associated as well as
the associations with the model entities themselves.
By storing the model reference in a Case Node, the
designer is forced to think in terms of what infor-
mation is being applied to a particular model. More
than one model can be incorporated in a case by
referencing other case nodes. A case node can also
re-define the associations that other cases have made
thereby increasing the reusability of existing analy-
sis definitions.

3.2. Attribute Specification

The graph of AISNs represents the analysis infor-
mation that is independent of the geometric model.
The attribute management system also provides a
mechanism to relate this information back to the
geometric model. The AISNs are combined with
links to the model entities to construct the attributes.
The system supports association of the attributes to
the appropriate mesh entities within the analysis.

3.2.1. Model Entities.
The model entities represent the topological compo-
nents of a geometric model. The model entities that
the AISNs can be associated with are the vertices,
edges, faces, and regions of the model. For certain
types of analyses it is also useful to be able to
associate the AISNs with the uses of specific model
entities. For example, consider an analysis in which
there are two material regions in contact with a
lubricant of infinitesimal thickness between them.
Assuming a representation (at the model and analy-
sis level) where the lubricant is given a coefficient
but no thickness, the following attributes need to
be specified:

� The lubricant coefficient is assigned to the
model face.

� The surface roughness parameter for the material
on one side is associated with the face use on
that side, while the surface roughness parameter
for the material on the other side is associated
with the face use on that side.

3.2.2. Analysis Structuring Information Nodes
vs. Attribute Objects.
The system makes a clear distinction between AISNs
in the graph and the attribute objects that are
assigned to the model topology for a specific case.
One could think of an AISN as an attribute generator

[12]. During the association of a case, an AISN,
which is contained in one of the case’s association
paths, generates attribute objects that are connected
to the topology. These attribute objects are what we
typically think of as the attributes of a model entity.
A single AISN can generate multiple attribute
objects due to the following:

� The AISN is included in multiple association
paths.

� The AISN is being applied to more than one
model entity via its distributivity property.

In the example shown in Fig. 2, AISN1 is being
applied to the face of the rectangle. In addition, the
node has its distributivity property set to INHERIT
(indicated by the grayed node) which means all
lower order topological entities associated with the
face will also have the information associated with
it (indicated by attribute object a1). The ‘ar’ attribute
objects reference the explicit attribute a1.

3.2.3. Types of Attribute Objects.
There are two main types of attribute objects:

� Associated Attributes – these are created from
AISN’s that have been explicitly associated with
model entities. By explicitly associated we mean
that it is the highest level Information Node
whose path to a case node is contained in an
association path.

� Component Attributes – these are created from
Information Nodes whose ancestors have created
Associated Attributes.

Note that neither Case or Group Nodes directly
create attributes and therefore are not seen by the
parts of the analysis that deal with querying attribute
information directly from model entities. The reason
we make distinctions as to how an attribute object
is associated with a model entity is to be able to
query the attributes based on the association. For
example, consider the previous Density definition
using a Boussinesq approximation. If a model region
has Density associated with it, then querying the
region for Density will return the appropriate attri-

Fig. 2. Example of attribute inheritance.

344 R. M. O’Bara et al.

bute while at the same time asking for Expansivity
would not return any attribute since the density’s
expansivity is not directly associated with the region
but with the density’s attribute itself.

4. Analysis Attribute Information

The data that actually defines an analysis attribute
is stored in the AISNs. The specific information
recognizes the requirements of the analysis and how
the numerical analysis procedures would want to
query and evaluate it.

4.1. Analysis Information Structuring Nodes

An AISN consists of the following information for
each attribute defined:

� Name – not necessarily unique.
� InfoType – represents the type of information

being represented.
� ImageClass – can be used to represent a ‘sub-

class’ of a specific InfoType.
� Defined variables.
� Unique Persistent Identifier defined by the system.

The name and InfoType of the AISN are defined
by the application. For example a density attribute
could have the name ‘density 1’ and InfoType ‘Den-
sity’. In most situations it is the InfoType that is
more important to the analysis since it indicates
what type of information the attribute represents.
Since the name of an AISN does not have to be
unique, the system has to provide a mechanism that
will allow the node to be uniquely referenced
through out its lifetime.

In addition to the InfoType, the application can
also add an ImageClass name to the AISN. One
common use of the ImageClass is to indicate a
‘sub-class’ of the InfoType. In the previous density
example, the application may assign ‘Boussinesq’
as the ImageClass name indicating that the attribute
will have the additional attribute components of
‘Expansivity’ and ‘Reference Temperature’.

4.2. Expressions and Variables

An AISN can be defined as a set of variables
which are managed by the node. The types of
variables include:

� Reals.
� Integers.

� Tensors.
� Strings.
� References to AISNs
� References to Model Entities

In addition the system provides predefined variables
for time ($t), space ($x, $y, $z) and the parametric
space of model edge and face entities ($u, $v). The
system also defines a special variable $me that is a
reference to the model entity associated with the
attribute itself. Since information may be varying in
both time and space, an application may need to
specify both spatial and time coordinates when eval-
uating a variable. For example.

Variable a = aisn.defineVar (“a”, REAL,

DEFINE);// Declare a to be real

a = “sin($t) *$x;// a is both spatially

and temporally varying

Variable b = aisn.defineVar(“b”,

INTEGER, DEFAULT) // Declare b to be an

integer

b = 10; // b is a constant;

In addition, a definition may be used to define a
default value that could be overridden by an ancestor
AISN. This allows for greater reusability of AISNs
and for information to be parametrized. In the above
example, b is defined to be a default which means
any ancestor node of the AISN can override b’s
value. Consider the example shown in Fig. 3. Since
a was defined with ‘DEFINE’, under either case the
value of aisn’s ‘a’ would be 10.0 while b, which
was defined with ‘DEFAULT’ would have the value
of 2 when processing Case 1 and would be time
varying when processing Case 2.

Fig. 3. Example of defining variables.

345Attribute Management System for Engineering Analysis

4.3. Mathematical Expressions

The expression sub-system allows an application to
specify an infix expression as a character string and
internally parses it into a stack of variables and
functional objects that represent the expression in
Polish Notation [13]. The justification for using a
stack based approach versus an expression tree was
to facilitate adding new functions and operators. In
tree-based approaches each node representing an
operation or function has n-arcs coming into it
where each are represents an augment being passed
in. Therefore, the structure of a functional node
depends on its signature. By using a stack-based
representation, all objects in the system have the
exact same evaluation signature which is to simply
pass in a result stack that the object manipulates.
While forming the expression stack, sub-expressions
involving constants are simplified if possible. For
example the expression string ‘4 *cos(PI/3.0)’ would
be simplified to 2, while ‘$t *cos(PI/3.0)’ would
have the following expression stack:

$t
0.5
add-function

In the former, the expression is evaluated only once,
while in the latter, the expression needs to be re-
evaluated as needed. In addition, the expression
system is strongly typed and allows for both func-
tional and operator overloading. For example the
dyadic ‘+’ operator can be defined for both numeri-
cal summation and string concatenation.

5. Modeling Dependencies

The attribute system provides mechanisms to model
two basic forms of dependencies:

� Distributivity – how information is inherited based
on model topology.

� Data Constraints and Parametrizations.

5.1. Distributivity

Distributivity of an AISN refers to how the node’s
information relates to the model entity and its clos-
ure. For example, information applied to a face may
also need to be associated with the edges and verti-
ces of the face. Forcing the user or application to
do this explicitly would be tedious and prone to
errors. This can be especially useful when assigning

information to the entire model. The system’s design
includes the following distributivity types:

� None – information is explicitly associated with
model entities.

� Inheritable – in addition to the topological entity
explicitly associated with the information, lower
order topological entities that are associated with
the model entity implicitly have the information
associated with them.

� Closure – the information is applicable to the
closure of the model entity but not the entity
itself. In this context closure refers to the topo-
logical entities that are one order lower than that
of the model entity itself.

The distributivity type Closure behaves similarly to
Inheritable but restricts the type of entities on the
model entity’s boundary that will inherit the infor-
mation. For example, the user may wish to assign
a temperature attribute to all the faces of a model
region. By using the Closure option, this can be
easily achieved. In addition, if the model is later
altered and the set of faces of the region is changed,
this mechanism still insures that all the faces will
be properly assigned a temperature value.

5.2. Data Constraints and Parameterizations

In addition to topological dependences, the infor-
mation inside a node itself may be related to another
node’s information. Consider the case of rep-
resenting two velocity constraints in which the user
requires the magnitudes to be the same. This
relationship can be modeled using variables in
defining the magnitudes of the constraints and then
defining the variable in a common ancestor node
(see Fig. 4). In addition to modeling dependencies
between information stored in different nodes, vari-
ables also allows the information to be structured
parametrically. In the example shown in Fig. 4, the
magnitudes have been parametrized with respect to
Case 1’s variable ‘m’ allowing a series of analyses

Fig. 4. Velocity Constraint Example showing the use of variables.

346 R. M. O’Bara et al.

to be defined simply by changing the variable’s
value.

6. Associating AISNs with Geometric
Models

This section describes the process of creating attri-
bute objects by associating the AISNs under a Case
Node and the appropriate geometric model entities.

6.1. Specifying Model Associations

The notation used to represent an association
between the graph of AISNs and model entities is

{model entities}:{AISNs}

The left side of the association represents the list
of model entities that will be assigned any attributes
generated by the association. If the list is empty
then the attributes are attached to the Case Node
that owns the association. One application of using
an empty model entity list is in dealing with the
majority of the information pertaining to non-physi-
cal attributes like the Solution Strategy Case. Infor-
mation related to solvers and time integrators are
not typically associated with any particular model
entities but to the case itself. The right side of the
association represents paths in the graph that contain
the list of AISNs. This may contain at most one
Information Node which would be the node creating
the corresponding attributes. In the situation where
the list does not contain any INs, the association
refers to all IN’s that fit the following criteria:

� The path from the Case Node to the Information
Node contains the list of AISNs in the association.

� The Information Node does not have another
Information Node as a parent in the graph, i.e.
the Information Node is not a component of
another Information Node.

Consider the example shown in Fig. 5, which depicts

Fig. 5. Association of attributes with model entities.

the loading of a model consisting of a single region
for an elasticity analysis. In this example, there are
three loads defined. Two of the loads are identical
and are applied to two different faces. In addition,
a third load is applied to one of the already loaded
faces. Finally, an attribute describing the material
properties of the entire model is applied to the
region itself. The benefits of using paths stored in
case nodes (instead of directly assigning modeling
information to the information nodes) is reusability
and flexibility such as the situation where another
Case Node wants to reuse the Material Property and
assign that information to a different model entity
(or even a different model). In addition, the use of
Group 1 in the association insures that f1 will be
properly loaded. In the future, if there are additional
boundary conditions required for f1 then they can
be simply added to Group 1. No additional model
association information would be needed.

In the situation where a Case Node references
another Case Node, the application can redefine the
associations defined by the referenced Case Node.
This is shown in Fig. 6, which defines Case 2 by
reusing Case 1. In this example, the new analysis
case requires the loading that was applied to f1 to
now be applied to f3. In addition, a new load is
now applied to f4. By allowing the reuse of nodes
and model associations, the common requirements
between related cases can be explicitly captured as
demonstrated by these two scenarios.

Figure 7 shows an example of reusing a problem
specification on a completely different model. The
original specification loaded a simple cylinder which
could be used as simple test case. The second case
represents the same loading but uses a more complex
model. Note that once again some of the information
has been parameterized thus facilitating changes to
the magnitudes of the load and the constraint.

Fig. 6. Redefinition of associations.

347Attribute Management System for Engineering Analysis

Fig. 7. Example showing reuse of an analysis definition using a completely different model.

6.2. Query Methods Based on a Model
Entity (me)

Once the attributes have been created via the associ-
ation process, the system provides the application
query functions to retrieve the attributes directly
from a model entity (or Case Nodes in the situation
of model associations that do not specify any model
entities). The available queries include:

� me.attributes() – return all attributes associated
with the model entity me.

� me.attributes(InfoType) – return all attributes of
a specific InfoType.

� me.attribute(InfoType) – return the first attribute
of a specific InfoType.

6.3. Query Methods Based on an Attribute
Object (ao)

Once the analysis has retrieved an attribute object,
it can then query information such as the attribute’s
InfoType, provide access to its children attributes in
the scenario of its Information Node having compo-
nent nodes, and evaluate the attribute at a specific
time and/or spatial location. The attribute object
itself provides access both to its Information Node

and to the model entity or Case Node that it is
associated with. The available functions include:

� ao.entity() – return the model entity associated
with the attribute object.

� ao.parent() – return the parent attribute.
� ao.node() – return the Information Node of the

attribute.
� ao.children() – return all the component attributes.
� ao.childByType(InfoType) – return the first

component attribute of a specific InfoType.
� ao.eval(t) – Evaluate the attribute at time = t.
� ao.eval(p) – Evaluate the attribute at position p.
� ao.eval(t,p) – Evaluate the attribute at time = t

and position p.
� ao.isConstant() – returns true if the attribute is a

constant value.
� ao.isTemporallyConstant() – returns true if the

attribute is time independent.
� ao.isSpatiallyConstant() – returns true if the attri-

bute is spatially constant.

6.4. Auxiliary Geometry

In many cases, auxiliary geometry has to be created
in order to apply the information in a node to the
geometric model. For example, consider the task of

348 R. M. O’Bara et al.

loading face f1 of the bottom block due to the
presence of the top block depicted in Fig. 8. To
properly load the face, the f1 needs to be split into
two pieces that represent the portions of the f1 that
are in contact and not in contact with the top block.
The main issue is how to automatically re-define
the existing model association information with the
geometry during the creation of the auxiliary
geometry as well as associate the specific infor-
mation to the newly created topology. The first issue
of maintaining the original relationships is solved
by creating an auxiliary model entity that represents
the original entities that were affected by the mode-
ling operation. In the previous example a new entity
is created that contains the two newly created faces.
The entity’s boundary is the five edges that made
up the original face’s edge loop. The model associ-
ations are then updated by replacing f1 with the
auxiliary entity.

In addressing the second issue of referring to
model entities created by the modeling operation,
each operation defines sets of model entities that
the operation creates. These sets can then be used
in defining model associations. For example, con-
sider the biphasic analysis of cartilage tissue that
forms part of a human knee as depicted in Fig. 9.
In this scenario, only the portions of the tissues that
are in contact need to be loaded. In addition, since
the majority of fluid flow occurs along the contact
boundary, the mesh should be refined along these
‘edges’. To identify these contact areas, an
imprinting operation is used to define new edges
and faces on the original tissue surface with respect

Fig. 8. An example of modifying original model topology to
properly define attributes.

Fig. 9. Using auxiliary geometry to define mesh refinement
(geometry courtesy of the Orthropedics Research Lab of Colum-
bia University).

to the other ‘tool’ tissue surface. The imprint oper-
ation defined the following sets of modeling entities:

� Set of faces that are in contact with the ‘tool’
{Fc}.

� Set of faces that are not in contact {Fn}.
� Set of edges that form the boundary of the contact

areas {Ec}.
� Set of edges that are not in contact {En}.

Figure 10 shows the attribute specifications required
for the femur cartilage with respect to the patella
cartilage. In addition to imprinting the contact areas
and specifying meshing and material properties, the
loading information, which is defined as a bilinear
interpolation using proximity data acquired from
actual measurements in a file call p.data, is associa-
ted with the contacting faces.

7. Implementation Issues

The attribute management system was designed
based on classic object-oriented patterns and data

Fig. 10. Analysis information for the femur tissues based on
the patella.

349Attribute Management System for Engineering Analysis

management concepts. The system was implemented
as a set of extendable classes using the C++
language. The classes represent specific types of
AISNs and attribute objects that can be defined in
the system, variables and expressions that can be
declared and referenced in nodes and attributes, and
the manager object itself which is responsible for
creating and deleting AISNs as well as saving and
retrieving the information in terms of file I/O.

7.1. Interfaces and Tools

The attribute system provides both C and C++ inter-
faces for application development. The interfaces
provide the ability to define and manage the AISNs
as well as the model association information. In
addition, the interfaces allow an application to
associate a Case Node and thereby create attributes
and attach them to their corresponding model entities
or Case Nodes. Once the attributes have been
defined, the application can query and evaluate the
attributes themselves. The application also has
access to the expression system and can specify and
assign expressions to Information Nodes and defined
variables. Finally, the application is provided with
file I/O related functions that allow the AISN graph
to be saved to and retrieved from a file.

In addition to providing function interfaces, attri-
bute information editors have also been designed.
Figure 11 shows an example of one editor that
was implemented. To facilitate defining attribute
information, an attribute definition procedure was
developed which allows a user to register both the
InfoType and ImageClass of an Information Node
and then describe the required and/or optional
children Information Nodes. The editor then can

Fig. 11. An example of an attribute editor based on the attribute system.

read these definitions at run time and present the
appropriate dialog windows to the end user.

7.2. The Association Process

For the attribute system to be extended by adding
new types of AISNs to meet future needs, the
association process used to create and attach attri-
bute objects to model entities must be formalized.
The association process for a basic AISN is defined
by three processes:

� Based on an inherited traversal state, define a
new state based on the node’s information.

� Apply the new traversal state.
� Restore the original traversal state.

The traversal state is defined by the following
information.

� The current traversal paths of AISNs.
� List of model associations that have not been

matched.
� List of model entities requiring attributes.
� List of Case Nodes requiring attributes.
� List of Attributes requiring children attributes.
� List of defined variables.
� The model currently being used.

The basic process of creating a new traversal state
performs the following operations:

1. Add the node to the path.
2. Determine which model associations match the

new path and remove those associations from
the list.

3. Add the model entities and/or cases from the
match associations to the appropriate lists.

350 R. M. O’Bara et al.

4. Add the node’s variables to the variable list.
DEFINED variables are inserted at the beginning
and the DEFAULT variables are appended to
the end.

In the process of applying the traversal state, Case
and Group Nodes, simply pass the new state to their
children nodes’ associate process. In the case of
Information Nodes, applying the traversal state per-
forms the following steps:

1. If the traversal state’s lists of Attributes, Cases,
and model entities are empty there is nothing to
apply and the process just returns.

2. If the traversal state’s lists of Attributes is empty
then create the appropriate attributes and attach
them to the corresponding model entities and/or
Case Nodes.

3. If the list of Attributes is not empty then create
the appropriate attributes and attach them to the
Attributes in the list.

4. Create a new traversal state based on the current
one, with the Case and model entity list set to
be empty and the Attribute list defined as the set
of attributes created by the Information Node.

5. Associate all the node’s children using the new
state.

Classes derived from the Information Node class
need only override the attribute creation function.
By designing the association process in this way,
new classes of Information Nodes can be easily
added to the system. When an attribute is created
the traversal state’s list of variables is used to
locate the definitions of variables referenced in the
attribute’s expression (if it has one). Note that, since
default variable definitions are always appended to
the end of the list, these definitions are used only
if there are no over-riding definitions of the same
name.

All nodes with the exception of Case Nodes use
the basic association process as defined above. Case
Nodes add their model associations to the traversal
state and set the state’s model to be that of the
Case Node being associated (if there is one). The
basic association process is then invoked. Afterwards
the model associations of the Case Node are
removed and the state’s model is restored.

7.3. Assigning One Model Entity per
Attribute

The system is designed to create unique attribute
objects for each association with a model entity.
This is to prevent the need for passing the model

entity back to an attribute object during evaluation.
Consider the case where an information node is
distributed to several model entities. If, during
association, the node created only one attribute
object and assigned it to all of the model entities,
there would be ambiguity when evaluating the attri-
bute object. Which model entity is asking for the
information?

There are two approaches to solving the problem
of information distribution:

� Creating and assigning attribute objects to each
topological entity that is in the scope of distri-
bution.

� When inquiring an attribute, the search is not
restricted to the model entity but also to all higher
level entities (this is assuming that either inherited
or closure distribution is requested). The search
continues until either the attribute (with the cor-
rect distribution mode) is found or the search
reaches the model level.

The first method is more memory-intensive, since
this means creating multiple attribute objects. These
objects must be as lightweight as possible to be
effective. The second method requires more pro-
cessing power to perform the inquiry. The system
is designed to use the first approach since we feel
that execution time is a more limited resource. To
improve efficiency, information assigned to the
entire model is not to be replicated but stored in a
special look-up list.

8. Closing Remarks

This paper has presented a generalized approach
and associated capabilities for the specification and
control of the attribute information needed to support
reliable engineering analyses in an integrated
design environment.

Since all analysis information is associated with
the highest level domain definition, in this case a
non-manifold solid model, it is easy to properly
associate the loads, material properties, and bound-
ary conditions with any spatial discretization of the
domain generated for the application of a numerical
analysis. This supports the ability to use any selected
discretization approach and these analyses can be
applied automatically given an appropriate algorithm
to create the domain discretization. This approach
also supports the introduction of analysis reliability
through the application of adaptive analysis techno-
logies that change the discretization as the analysis
proceeds.

351Attribute Management System for Engineering Analysis

The structures used to support the specification
and grouping of analysis attributes are also consist-
ent with the needs of an industrial design process
in which databases of various information such as
material properties and environmental conditions (to
specify boundary conditions) are used through the
design/manufacture process. They also effectively
support the application of multiphysics analyses in
which information from one engineering analysis
provides input information for another analysis
process.

References

1. George, P. L. (1991) Automatic Mesh Generation.
Wiley

2. Shephard, M. S., Weatherill, N. P. (1991) Int. J. Num.
Meth. Eng. 32(4)

3. Shephard, M. S., Georges, M.K. (1992) Reliability of
automatic 3-D mesh generation. Comp. Meth. Appl.
Mech. and Engng. 101:443–462

4. Shephard, M. S. (2000) Meshing environment for
geometry-based analysis. Int. J. Numer. Meth. Engng.
47(1–3):169–190

5. Clark, K., Flaherty, J. E., Shephard, M.S. (1994)
Applied Numerical Mathematics. North Holland, The
Netherlands, 14(1–3)

6. Oden, J. T., Demkowicz, L. (1992) Computer Methods
in Applied Mechanics and Eng., Special issue on
the reliability of finite element computations. North
Holland, 101

7. Shephard, M. S. (1988) The specification of physical
attribute information for engineering analysis. Engin-
eering with Computers 4:145–155

8. Beju, I., Soos, E., Teodorescu P. P. (1983) Euclidean
Tensor Calculus with Applications. Abacus Press

9. Beall, M. W., Shephard, M. S. (1997) A general
topology-based mesh data structure. Int. J. Numer.
Meth. Engng. 40(9):1573–1596

10. Gursoz, E. L., Choi, Y., Prinz, F. B. (1990) Vertex-
based representation of Non-manifold boundaries.
Geometric Modeling Product Engineering, North
Holland, Amsterdam, pp. 107–130

11. Weiler, K. (1988) The radial edge structure: a topo-
logical representation for non-manifold geometric
modeling. Geometric Modeling for CAD Applications,
3–36

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995)
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison Wesley

13. Sedgewick, R. (1992) Algorithms in C++. Addison
Wesley

