
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 40, 1573—1596 (1997)

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE

MARK W. BEALL AND MARK S. SHEPHARD

Scientific Computation Research Center, CII-7011, 110 8th Street, Rensselaer Polytechnic Institute,
¹roy, N½ 12180-3590, º.S.A.

SUMMARY

A representation for a mesh based on the topological hierarchy of vertices, edges, faces and regions,
is described. The representation is general and easily supports procedures ranging from mesh genera-
tion to adaptive analysis processes. Three implementations are given which concentrate on different
aspects of performance (storage requirements and speed). Comparisons are made to other published
representations. (1997 by John Wiley & Sons, Ltd.

KEY WORDS: mesh data structures; topology; hierarchic

1. INTRODUCTION

A critical capability needed by automated, adaptive finite element analysis procedures is the
ability to manipulate the mesh of the analysis domain. Data structures have been published for
specific parts of the adaptive finite element analysis process, such as searching during mesh
generation,1—3 refinement of existing meshes,4—9,13—15 and the solution process.10—12 The present
paper focuses on the analysis of a topology-based mesh data structure.

There are weaknesses in the classic element-node mesh data structures, especially
in an adaptive analysis environment. One major problem is the lack of information relating
the mesh back to the original geometric model. This information, called classification,16 is
critical for mesh generation and enrichment procedures,17 it allows the specification of analysis
attributes in terms of the original geometric model rather than the mesh,18 and supports direct
links to the geometric shape information of the original domain, useful in p-version element
integration.

An important goal of a mesh data structure is to effectively provide the information required by
the procedures that create and/or use that data. The differing needs of these procedures dictate
that the database be general and able to answer all queries about the mesh. Such a capability can
only be achieved by utilizing a general abstraction of a mesh.19

The informational requirements for a general purpose mesh database for automated adaptive
finite element analysis on domains defined by manifold geometric models are first given. Then
a mesh database based on a topological hierarchy designed to meet these requirements is given.
The efficiency of three implementations of this database is discussed with respect to both storage
space and access time.

CCC 0029—5981/97/091573—24$17.50 Received 15 October 1995
(1997 by John Wiley & Sons, Ltd. Revised 28 August 1996

1.1. Nomenclature

Models
)

V
domain associated with the model », »"G, M where G signifies the geometric model
and M signifies the mesh model

)1
V

the closure of the domain associated with the model », »"G, M

¹opological entities
»d

i
the ith entity of dimension d in model ». Shorthand for »M»dN

i
L (»d

i
) the entities on the boundary of »d

i
»M d

i
closure of topological entity defined as »d

i
XL (»d

i
)

[classification symbol used to indicate the association of one or more entities from the
mesh, M, with an entity in the geometric model, G

Groups
M»dN unordered group of topological entities of dimension d in model »
x»dy ordered group of topological entities of dimension d in model »
[»d] cyclically ordered group of topological entities of dimension d in model »
S»dT a group where the ordering is unspecified (ordering is one of: unordered, ordered or

cyclically ordered)
u
i

ith topological entity in group u, where u is any one of the groups above

Adjacency operations
uS»dT the set of entities of dimension d in model » that are adjacent to, or contained in u.

u may be a single entity, »d
i

or S»dT
i
, a group of entities, S»dT (possibly a group

resulting from another adjacency operation), or a model »
uS»d

B
T an adjacency relation with directional use information associated with each entity.

The $ indicates the directional use of each entity. A # indicates use in the same
direction as the entity definition, a ! indicates use in the opposite direction

Examples
»M»dN all of the entities of order d in model »

»di
i
M»djN the unordered group of topological entities of dimension d

j
that are adjacent to the

entity »di
i

in model »
»di

k
M»djN

i
the ith member of the unordered group of topological entities of dimension d

j
that are

adjacent to the entity »di
k{

in model »

The adjacency notation is evaluated from left to right, for example:
»3

i
M»0NM»3N

j
is found by first finding u"»3

i
M»0N and then the jth member of uM»3N

2. GEOMETRY-BASED AUTOMATED ADAPTIVE ANALYSIS

The goal of an analysis is to solve a set of partial differential equations over a geometric domain,
)1

G
. Numerical analysis procedures utilize a discretized version of this domain, called a mesh.

Since the mesh domain,)1
M

, may not be identical to the original geometric domain,)1
G
, and

various procedures, such as automatic mesh generation, mesh refinement and element stiffness
integration, need to understand the relationship of the mesh to the geometric model, it is critical
to use a representational scheme which can maintain this relationship. A number of schemes are
possible for defining a geometric domain,20 the most advantageous are boundary-based schemes
in which the geometric domain is represented as a set of topological types and adjacencies where

1574 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

the topological entities have shape information associated with them. Adjacencies are the
relationships among topological entities which bound each other. For example, the edges
bounding a face is a commonly used topological adjacency.

In addition to being unique, topological entities and their adjacencies provide a convenient
abstraction for defining a domain, and allow the convenient specification of analysis attributes
such as material properties, loads, boundary conditions and initial conditions with respect to the
geometric domain.18 An additional advantage is that current computer aided design systems
support a boundary representation of the domains defined within them, thus allowing efficient
combination with automatic mesh generation and modification procedures. Finally, recent
boundary representation can properly represent non-manifold geometric domains commonly
used for analysis processes.21,22

3. REQUIREMENTS FOR MESHES OF MANIFOLD MODELS

This section presents the requirements for manipulating meshes of manifold models. The require-
ments are fundamentally the same for non-manifold models, however some additions are
required for the non-manifold case. For the purposes of clairity these details are not presented
here.

3.1. ¹opological entities

Topology provides an unambiguous, shape independent, abstraction of the mesh. Maintaining
the relation between the domain and the mesh is simplified, and many operations can be
performed more naturally using the mesh’s topological adjacencies.

Each topological entity of dimension d, Md
i
, is bounded by a set of topological entities of

dimension d!1, Md
i
MMd~1N. A region is a 3-D entity with a set of faces bounding it. A face is

a 2-D entity with a set of edges bounding it. An edge is a 1-D entity with two vertices bounding it.
The representation of general geometric domains requires loop and shell topological entities,

and, in the case of non-manifold models, use entities for the vertices, edges, loops, and faces.21,23
However, restrictions on the topology of a mesh allow a reduced representation in terms of
only the basic 0 to d-dimensional topological entities. In three dimensions (d"3) these
entities are:

¹
M
"MMMM0N,MMM1N,MMM2N,MMM3NN

where MMMdN, d"0, 1, 2, 3 are, respectively, the set of vertices, edges, faces and regions defining
the primary topological elements of the mesh domain. Restrictions on the topology of a mesh
which allow this reduction are:

1. Regions and faces have no interior holes.
2. Each entity of order d

i
in a mesh, Mdi, may use a particular entity of lower order, Mdj, d

j
(d

i
,

at most once.
3. For any entity Mdi

i
there is a unique set of entities of order d

i
!1, Mdi

i
SMdi~1T that are on the

boundary of Mdi
i

if at least one member of Mdi
i
SMdi~1T is classifed on Gdj

j
where d

j
'd

i
.

The first restriction means that regions may be directly represented by the faces that bound
them, and faces may be represented by the edges that bound them. The second restriction allows
the orientation of an entity to be defined in terms of its boundary entities (without the

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1575

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

introduction of entity uses). For example, the orientation of an edge, M1
i

bounded by vertices
M0

j
and M0

k
is uniquely defined as going from M0

j
to M0

k
only if jOk.

The third restriction means that an interior entity (defined as Mdi
i
[Gdj

i
where, d

j
*d

i
and at

least one of L (Mdi
i
)[Gdj

i
is uniquely specified by its bounding entities. This allows an imple-

mentation using a reduced representation for interior entities. This condition only applies to
interior entities, entities on the boundary of the model may have a non-unique set of boundary
entities as illustrated with a model and a coarse mesh of a plate with a hole in Figure 1. Here, the
mesh is sufficiently coarse that the mesh and model topology are identical on the hole boundary.
The two mesh edges, M1

1
and M1

2
, on the hole boundary have the same set of vertices, M0

1
and M0

2
.

3.2. Classification

Classification defines the relationship of the mesh with the geometric domain.

Definition: Mesh Classification Against the Geometric Domain—The unique association of
a mesh entity of dimension d

i
, Mdi

i
to a geometric model entity of dimension d

j
, Gdj

j
where d

i
)d

j
,

is termed classification and is denoted Mdi
i
[Gdj

j
where the classification symbol, [, indicates

that the left-hand entity, or set, is classified on the right-hand entity.

Multiple Mdi
i

can be classified on a Gdj
j
. Mesh entities are always classified with respect to the

lowest-order geometric model entity possible.
Classification of the mesh against the geometric domain is central to (i) ensuring that the

automatic mesh generator has created a valid mesh,16 (ii) transferring analysis attribute informa-
tion to the mesh,18 (iii) supporting h-type mesh enrichments, and (iv) integrating to the exact
geometry as needed by higher-order elements. An example of how classification information is
used during the mesh refinement process is illustrated in Figure 2. Figure 2(a) shows the mesh
before the dashed edge is split. The model edge is indicated by the bold line. Figure 2(b) shows the
mesh after splitting the edge. The classification information is used to recognize that the new

Figure 1. Example of mesh entities on the model boundary having non-unique boundary entities: (a) geometric model;
(b) mesh

Figure 2. Edge split: (a) before refinement; (b) edge split; (c) new vertex snapped to boundary

1576 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

vertex created is on the model edge (since the vertex was created by splitting an edge classified on
the model edge). The new vertex is then ‘snapped’ to the boundary so that it is located on the
model edge to improve the geometric approximation of the refined mesh.

3.3. Geometric information

The geometric information required for the mesh is limited to pointwise information in terms of
the parametric co-ordinates of the model entity that a mesh entity is classified on. Any other
shape information can be obtained from the geometric model using the classification information
and appropriate queries to the modeler.

3.4. Adjacencies

Adjacencies describe how topological entities connect to each other. There are natural order-
ings for some adjacencies which prove useful, thus the notation distinguishes between unordered,
ordered and cyclic lists. Some adjacencies maintain a directional component that indicates how
that entity is used. The right subscript, $, on the entity, »d

Bi
, indicates a directional use of the

topological entity as defined by its ordered definition in terms of lower-order entities. A # indi-
cates use in the same direction, while a ! indicates use in the opposite direction (e.g. a face, M2

i
,

could be defined by the set of edges bounding it as M2
i
[M1

`i
, M1

~k
,M1

~l
] meaning that the edge

M1
j

is used in the positive direction, from its first to second vertex, edge M1
k

used in the negative
direction and edge M1

l
used in the negative direction).

3.4.1. First-order adjacency relations. The most important set of relations are those which
describe, for a given entity Mdi

k
, all of the entities, Mdj, (iOj) which are either on the closure of the

entity (j(i), or which it is on the closure of (j'i). These are referred to as first-order
adjacencies. For example, the adjacency M2

i
[M0] is the circular ordered list of all of the

mesh vertices which are on the closure of the mesh face M2
i
. The complete list of first-order

adjacencies is

Vertex adjacencies:

M0
i
MM1N, M0

i
MM2N,M0

i
MM3N

Edge adjacencies:

M1
i
xM0y ,M1

i
MM2N,M1

i
MM3N

Face adjacencies:

M2
i
[M0],M2

i
[M1

B
], M2

i
xM3y

Region adjacencies:

M3
i
MM0N,M3

i
MM1N,M3

i
MM2

B
N

Ordered, lower-order adjacencies are used to define the orientation of higher-order entities. The
positive orientation of a mesh edge, M1

i
, is defined by the adjacency relation, M1

i
xM0y , the

positive direction of the edge is from the first vertex, M1
i
xM0y

0
, to the second vertex, M1

i
xM0y

1
.

3.4.2. Second-order adjacency relations. Second-order adjacencies describe, for a given entity
Mdi

k
, all of the entities, Mdj, which share any bounding entity of a given order, d

"
with the entity.

An example of this is the adjacency, M3
i
MM0NMM3N, which is the set of all regions which share

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1577

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

a vertex with M3
i

(useful for element renumbering). The complete set of unordered second-order
adjacencies is expressed as follows:

Mdi
k
MMd"NMMdjN, d

j
Od

"
, d

i
Od

"

As the notation suggests, the second-order adjacencies can be derived from the first-order
adjacencies. Higher-order adjacency relations can also be expressed in a similar manner.

3.5. Other Requirements

It must be possible to uniquely associate arbitrary data with each entity to ensure efficiency.
For example, traversing the mesh using the mesh adjacencies is made much more efficient by
marking entities that have been visited. Other processes can also store data directly on the mesh
entities.

Boundary edges and faces must be orientable. Certain mesh generation operations can be made
more efficient by ensuring that boundary edges and faces are oriented in the same direction as the
model entity that they are classified on.

4. IMPLEMENTATION OPTIONS

The implementation of a mesh database must consider the trade-offs between the storage space
required and the time to access various adjacency information. Efficiency dictates that any query
be answered by operations whose execution time is not a function of the number of entities in the
mesh. Clearly, if more adjacency relations are stored, less work is required to obtain the
adjacencies, but the storage space will be greater. The question, then, is which set of adjacencies
should be stored for the most efficient implementation.

To avoid global searching to retrieve any adjacency, the graph of the stored adjacencies needs
at least one cycle that includes all four of the nodes. Given a set of adjacencies meeting this
criteria, how much work must be done to retrieve any adjacency? Stored adjacencies are simply
retrieved which is an O(1) operation. Other adjacencies require a local traversal of the graph,
these fall into two categories. First, the adjacency desired may be the union of a group of stored
adjacencies. For example, if M3

i
MM2N and M2

i
SM1T are stored, then finding M3

i
MM1N requires

only collecting the M1
i
information for each M2

i
in M3

i
MM2N (finding M3

i
MM2NMM1N). The second

case is where the union of stored adjacencies is a superset of the entities satisfying the relation,
requiring that each entity be examined to determine whether it is to be included. For example, if
we have M3

i
MM2

B
N, M2

i
[M1

B
], M1

i
[M0] and M0

i
MM3N and want to find M2

i
[M3] for some face,

M2
i
[M1

B
][M0]MM3N contains regions that do not bound the given face, thus it is necessary to

check each region to see if it bounds the face. This is referred to as local searching. Both of these
operations are O(n

%
), where n

%
is the number of entities that must be examined to find the relation.

n
%
is proportional to the size of the adjacency relation, n

!
, n

%
"cn

!
. For the first case, the typical

range for c for the relations described in this paper is, 2(c(6. For the second case, the range is
4(c(25 and a check on each entity is required to see if some condition is true.

4.1. Storage requirements

The data structure described here can represent a mesh that is any mixture of various shaped
entities (tets, hexes, wedges, pyramids, triangles, quads, lines, etc.). For the purpose of comparing
storage requirements, only all tetrahedral and all hexahedral meshes are considered. A mesh that

1578 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

is a mixture of tetrahedrons, hexahedrons and other common elements would have storage
requirements between these two. The number of pointers needed to store each type of connect-
ivity are shown in Table I. This table shows the number of members in the relation Mdi

k
SMdjT,

(iOj) for the entire mesh in terms of the number of entities in the mesh. Nd
M
,DMMMdiND, is the

number of entities of dimension d in model m. For example, in a tetrahedral mesh, there are a total
of 4N3

M
pointers from regions to faces since each region points to four faces. This means that there

are also 4N3
M

pointers from faces to regions since each face pointed to by a region points back to
that region (although each face only points to two regions).

The relationship between the numbers of the various entities in the mesh is shown in Table II.
The tetrahedral mesh is assumed to be infinite with all equilateral tetrahedra (note that this
is actually impossible since equilateral tetrahedra do not close pack). These values were
checked against real meshes, to check the equilateral assumption gave reasonable results,
giving the following ranges: 2·02(N2

M
/N3

M
(2·19, 1·2(N1

M
/N3

M
(1·45, 0·18(N0

M
/N3

M
(0·27,

showing reasonably good agreement. For a hexahedral mesh an infinite regular mesh was
assumed.

Using the relations in Table II, the adjacency storage requirements (Table I) are rewritten in
terms of the number of regions in the mesh (Table III). Table IV shows the average number of
adjacencies of each entity type of each other type on a per entity basis. There are many subsets of

Table I. Adjacency storage requirements

Tetrahedral mesh Hexahedral mesh

M3
i

M2
i

M1
i

M0
i

M3
i

M2
i

M1
i

M0
i

M3
i

4N3
M

6N3
M

4N3
M

M3
i

6N3
M

12N3
M

8N3
M

M2
i

4N3
M

3N2
M

3N2
M

M2
i

6N3
M

4N2
M

4N2
M

M1
i

6N3
M

3N2
M

2N1
M

M1
i

12N3
M

4N2
M

2N1
M

M0
i

4N3
M

3N2
M

2N1
M

M0
i

8N3
M

4N2
M

2N1
M

Table II. Relations between number of entities in mesh

Tetrahedral mesh N2
M
+2N3

M
, N1

M
+6

5
N3

M
, N0

M
+ 4

23
N3

M
Hexahedral mesh N2

M
+3N3

M
, N1

M
+3N3

M
, N0

M
+N3

M

Table III. Connectivity storage requirements in terms of regions

Tetrahedral mesh Hexahedral mesh

M3
i

M2
i

M1
i

M0
i

M3
i

M2
i

M1
i

M0
i

M3
i

4N3
M

6N3
M

4N3
M

M3
i

6N3
M

12N3
M

8N3
M

M2
i

4N3
M

6N3
M

6N3
M

M2
i

6N3
M

12N3
M

12N3
M

M1
i

6N3
M

6N3
M

2N3
M

M1
i

12N3
M

12N3
M

6N3
M

M0
i

4N3
M

6N3
M

2N3
M

M0
i

8N3
M

12N3
M

6N3
M

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1579

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

Table IV. Average number of adjacencies per entity DM308
i

MM#0-ND

Tetrahedral mesh Hexahedral mesh

M3 M2 M1 M0 M3 M2 M1 M0

M3
i

4 6 4 M3
i

6 12 8

M2
i

2 3 3 M2
i

2 4 4

M1
i

5 5 2 M1
i

4 4 2

M0
i

23 35 14 M0
i

8 12 6

Figure 3. Graph of stored adjacencies for one-level adjacency representation

the first-order adjacencies from which the remaining adjacencies can be derived. The next three
sections give implementations that match well with the various requirements for retrieving
information used in automated adaptive analysis processes.

4.2. One-level adjacency representation

One possible adjacency set is to maintain adjacencies between entities one dimension apart.
A data structure similar to this is discussed in Reference 24 for the specific case of tetrahedral
meshes. Figure 3 graphically depicts this set of relationships.
The actual adjacencies stored are

Downward adjacencies:

M1
i
xM0y ,M2

i
[M1

B
],M3

i
MM2

B
N

Upward adjacencies:

M0
i
MM1N,M1

i
MM2N,M2

i
xM3y

The missing relations can be reconstructed as

M3
i
MM1N"M3

i
MM2NMM1N, M3

i
MM0N"M3

i
MM2NMM1NMM0N

M0
i
MM3N"M0

i
MM1NMM2NMM3N, M0

i
MM2N"M0

i
MM1NMM2N

M1
i
MM3N"M1

i
MM2NMM3N

M2
i
[M0]"MM2

i
[M1an]nxM0ybn

N, b
n
"G

0,

1,

a
n
"#

a
n
"!

, n"0 . . . DM2
i
[M1]D

The last expression deserves an explanation. Each edge in the adjacency M2
i
[M1

B
] is examined in

order. One vertex from each edge is added to the set based on the direction the face is using the
edge. If edge M2

i
[M1

B
]
n

is used in the # direction, the first vertex is taken, if it is used in the
! direction, the second vertex is taken. This results in the ordered set of vertices around the face.

1580 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

The time to retrieve the unstored relations is less than implied by the operators above. For
example, obtaining M3

i
MM0N"M3

i
MM2NMM1NMM0N for a tetrahedron requires looking at only

two of the faces of the region. The first face yields three of the vertices of the region and any other
face gives the fourth. Similar processes can be determined for some of the other relations. Table
V shows an estimate of the operation count to obtain each of the adjacency relations for the
one-level representation.

4.3. Circular adjacency representation

Another reasonable set of adjacencies is to store downward pointers from each entity to the
entity one dimension lower and to store pointers from the vertices up to the highest-order entities
that are using them (in a 3-D manifold mesh this would be the mesh regions) as shown in Figure 4.
Less information is stored in this scheme, however more work must be done to obtain the upward
adjacencies that are not being stored. The actual adjacencies stored are

Downward adjacencies:

M1
i
[M0],M2

i
SM1

B
T,M3

i
MM2

B
N

Upward adjacencies:

M0
i
MM3N

This set of relations has the minimum connectivity storage in which all entities are explicitly
represented. This can be seen by weighting the corresponding edges in the graph of first-order
adjacencies with the connectivity storage requirements in Table III. This set of relations (or the
similar one using the inverse of each relation: M0

i
MM1N, M1

i
MM2N, M2

i
xM3y and M3

i
MM0N) is the

minimum weighted cyclic path that includes all four nodes in the graph. The three downward and
one upward adjacencies are used instead of three upward and one downward since there is
directional use information in the downward relations.

Finding the missing relations is more involved than with the one level adjacency relations.
Procedures for constructing the relations M0

i
MM1N, M1

i
MM2N, and M2

i
xM3y are shown

Table V. Operation count for retrieving adjacency M308
i

MM#0-N for one-level
representation

Tetrahedral mesh Hexahedral mesh

M3 M2 M1 M0 M3 M2 M1 M0

M3
i

1 9 6 M3
i

1 20 16

M2
i

1 1 3 M2
i

1 1 4

M1
i

10 1 1 M1
i

8 1 1

M0
i

140 70 1 M0
i

48 24 1

Figure 4. Graph of adjacencies for circular adjacency representation

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1581

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

below. The remaining adjacency relations are found as shown previously for the one-level
representation.

M0
i
MM1N: M1

j
3M0

i
MM1N if M0

j
3L (M1

j
) where M1

j
"M0

i
MM3NMM2NMM1N

j

M1
i
MM2N: M2

j
3M1

i
MM2N if M1

j
3L (M

j
) where M

j
"M1

i
MM0NMM3NMM2N

j

M2
i
xM3y : R"M2

i
MM1NMM0NMM3N (R is the set of all regions bounding the closure of M2

i
)

Each region in R must be checked to determine if it is adjacent to M2
i
. The direction that the

region is using M2
i

determines which side of M2
i

the region is on:

M2
i
xM3y

0
"R

j
such that R

j
MM2bk

N
k
"M2

i
and b

k
"!

M2
i
xM3y

1
"R

j
such that R

j
MM2bk

N
k
"M2

i
and b

k
"#

Table VI shows an estimate of the operation count needed to retrieve each adjacency. Most of the
upward adjacencies require a local search consisting of traversing the entire cycle in the adjacency
graph then doing topological queries on each entity that is found. Thus, the time required to
determine these relations is larger than for the one-level adjacency set.

4.4. Reduced representations

The restriction: For any entity Mdi
i

there is a unique set of entities of order d
i
!1, Mdi

i
SMdi~1T

that are on the boundary of Mdi
i

if at least one member of Mdi
i
SMdi~1T is classified on Gdj

i
where

d
j
'd

i
, requires interior entities to be uniquely defined by their boundary entities. This allows the

elimination of interior faces and edges without losing any information about the mesh.
The functionality presented earlier must not be affected by the elimination of entities. Although

the implementation does not explicitly represent these entities, the interface must act as though it
does. All the operations given earlier must be possible even for entities which are not explicitly
represented. The general idea is that if an entity that is not represented and the program using the
database needs that entity (e.g. the entity is returned as a part of an adjacency relation)
a temporary proxy is returned for the entity. The lifetime of this proxy is only as long as the
program is referencing that entity. There are two important issues in eliminating entities:
reconstruction of the eliminated entities as needed and associating data with the eliminated
entities.

Table VI. Operation count for retrieving adjacency M308
i

MM#0-N for circular representation

Tetrahedral mesh Hexahedral mesh

M3 M2 M1 M0 M3 M2 M1 M0

M3
i

1 9 6 M3
i

1 20 16

M2
i

299 1 3 M2
i

148 1 4

M1
i

538 570 1 M1
i

304 296 1

M0
i

1 264 304 M0
i

1 192 228

1582 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

4.4.1. Reconstructing eliminated entities. The most complex aspect of reconstructing elimi-
nated entities is the fact that edges and faces are oriented entities which must always have
a consistent orientation. That is, if an edge, M1

i
, which is not explicitly stored is defined as

M1
i
xM0

j
,M0

k
y at one point it must never be redefined as M1

i
xM0

k
,M0

j
y on a later query. The same

consistency of ordering of edges around a face applies.
One way in which this can be accomplished is (Fig. 5):

1. Assign each vertex in the mesh a unique number (integer).
2. Define edge M1

i
as going from M0

j
to M0

k
where j(k. That is, edges which are not explicitly

represented are defined such that the positive direction of the edge is from the lower
numbered vertex to the higher numbered one.

3. A face M2
i

is defined in terms of an ordered set of vertices M2
i
[M0] where the face

orientation is defined by the loop in the direction from the lowest numbered vertex to the
next lowest numbered vertex adjacent to it.

Although a unique orientation for edges and faces is obtained, the ability to arbitrarily orient
them is lost. Since the orientation of an interior edge or face is determined by the numbering of the
vertices (which is hidden from the programmer) an edge defined from vertex M0

k
to vertex M0

j
,

M1
i
xM0

k
,M0

j
y , may actually end up being oriented as M1

i
xM0

j
,M0

k
y if j(k. This cannot be

changed by simply renumbering the vertices as demonstrated in Figure 6. However, since there is
no requirement to orient internal edges and faces this is a workable approach.

It is necessary to know which vertices are used to define the edges and faces. This information
comes from the region definition. In order to infer the existence of faces and edges the relation
M3

i
xM0y (an ordered set corresponding to M3

i
MM0N) must be defined for each type of region (e.g.

hexahedron, tetrahedron, wedge, etc.). This requirement was not present in the previous repres-
entations where the topological configuration of the region did not need to be explicitly stored.

4.4.2. Associating data with eliminated entities. It is not possible to store data on eliminated
entities. The best way to resolve this is to store the data associated with the edges and faces on the

Figure 5. Edge and face orientations based on vertex numbering

Figure 6. Impossible edge orientation, requires a(b, b(c, c(a

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1583

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

vertices used to define them. To do this not only the data must be stored but also information
that indicates which face or edge the data belongs to (for an edge it would be necessary to
store the other vertex, for a face all the other vertices which define the face). This extra
information used to indicate the owner of the data is only needed when there is data actually
stored on the entity.

4.4.3. Implementation. Elimination of faces and edges only in the interior of the mesh gives
a data structure called the reduced interior representation. On the boundary Mdi

i
[Gdi

i
is

represented. The adjacency graph of this representation is shown in Figure 7.
The adjacency graph is more complicated since the mesh representation is now heterogen-

eous. The dashed lines in the graph indicate adjacencies that are implicitly stored due to the
ordering of vertices defining a region. The ordering of vertices which defines the faces must
not be used for faces on the boundary. Local searching must be done to find these faces (which
are represented). It can be seen from the adjacency graph that any downward adjacency can be
directly retrieved. Upward adjacencies are obtained in a similar manner to the circular hierarchic
representation. Table VII shows an estimate of the operation count to retrieve adjacencies for
the reduced representation. The counts shown only consider retrieving adjacencies for interior
entities, more searching must be done on the boundary to find boundary entities. It is assumed
that it takes one operation to construct a proxy for an entity that is not explicitly represented.
The operation counts are less than those for the circular representation since all of the
downward adjacencies are stored (either explicitly or implicitly). The retrieval operations that
require local searching take more time than the same operation using the one-level adjacency
representation.

Figure 7. Adjacency graph for reduced interior representation

Table VII. Operation count for retrieving adjacency M308
i

MM#0-N for reduced representation

Tetrahedral mesh Hexahedral mesh

M3 M2 M1 M0 M3 M2 M1 M0

M3
i

4 6 1 M3
i

8 12 1

M2
i

293 3 1 M2
i

176 4 1

M1
i

230 373 1 M1
i

112 212 1

M0
i

1 219 198 M0
i

1 116 86

1584 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

4.4.4. Issues with the reduced representation. There are some issues with the reduced repres-
entation that make them less desirable than the representations with a complete set of entities.19
The most important problem is that modifying the mesh may change the definition of mesh
entities that were not directly modified. For example, Figure 8 shows an edge collapse procedure
where this redefinition occurs. The dashed edge is collapsed with vertex 6 replacing vertex 2. The
two figures show the edge orientations (as arrows on the edges) and the face orientations (a
face has its normal pointing out of the page, a ! face has it pointing into the page) as given by
the vertex numbering scheme. After the edge collapse, three things have happened that would not
happen if the edges and faces were directly represented: (i) two edges (2—4 and 2—3) have actually
changed their identities causing any references to them to become invalid, (ii) those same two
edges have changed their orientations (thus the direction that the faces are using them have
changed), and (iii) a face (previously 1—2—4, now 1—4—6) has changed its orientation. The same
operation using a representation with all entities present would have resulted in only adjacency
information being changed. The entities themselves would have remained unchanged including
their orientations.

This non-local effect makes this representation less efficient for doing many mesh modifications
since information about the topology of the mesh that is saved by the procedure may become
invalid when an operation on the mesh is performed. This means that the procedure must
reacquire this information after each mesh modification. With the full representation of all
entities, the propagation of these changes is very limited and predictable.

5. COMPARISON TO CLASSIC FE DATA STRUCTURE

This section compares the size of a data structure based on the classic element-node connectivity
to the hierarchic representations showing that the hierarchic data structure does not necessarily
take significantly more storage space than a classic data structure, especially when other data
structures needed to perform an analysis are considered. The comparison is not really fair since
the classic data structure does not meet the needs of various adaptive procedures. Meshes
consisting of tetrahedral and hexahedral elements of up to cubic order are considered. For the
purposes of the comparison, only serendipity elements with nodes on edges are considered,
although all the data structures can easily store any type of element. For this comparison sizes are
given in words, where an integer or a pointer is one word and a real value is 2 words.

5.1. Classic mesh data structure

The classic approach to a mesh data structure describes the mesh in terms of elements and
nodes. Additional data structures needed for operations such as node or element reordering are

Figure 8. Edge collapse: (a) before collapse; (b) after collapse

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1585

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

also commonly constructed when this data structure is used. An element is defined by an ordered
list of nodes (Figure 9). Each node has an id and a position in space.

The size of the Element data structure is n#2 where n is the number of nodes in the element.
The size of the Node data structure is 7. Table VIII shows the number of nodes (N) as a function
of the number of edges and vertices in a mesh.

Given the size and number of nodes and elements, the storage needed for the mesh can be
calculated as shown in Table IX.

5.1.1. Equation renumbering. Some of the most successful renumbering algorithms are Sloan,
Gibbs—King, Gibbs—Poole—Stockmeyer (GPS) and reverse Cuthill—McKee (see Reference 25 and
references therein). All of these algorithms build a graph of the node-to-node connectivity of the
mesh. An efficient implementation uses an adjacency list accessed by a pointer vector26 requiring
storage of 2E#N words, where E is the number of edges and N is the number of
nodes in the graph. Other storage is also needed which varies greatly by algorithm. The

Figure 9. Classic mesh data structure

Table VIII. Number of nodes and elements in mesh

Element type Number of nodes Number of elements

Linear
m
N0 N3

M
Quadratic

m
N1#

m
N0 N3

M
Cubic 2

m
N1#

m
N0 N3

M

Table IX. Total storage by entity—classic

Element Node Total

Tetrahedral

Linear 6N3
M

1N3
M

7N3
M

Quadratic 12N3
M

8N3
M

20N3
M

Cubic 18N3
M

15N3
M

33N3
M

Hexahedral

Linear 10N3
M

7N3
M

17N3
M

Quadratic 22N3
M

28N3
M

50N3
M

Cubic 34N3
M

49N3
M

83N3
M

1586 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

number of nodes, N, in the adjacency graph is the same as the number of finite element nodes in
the mesh. The number of edges in the graph depends on the type of mesh and on the particular
mesh itself.

E can be calculated for various types of meshes. For each node, the number of connected graph
edges, E

n
, is the number of nodes on all the elements that share that node (counting each node

only once). For linear hexahedral elements (nodes only at the vertices) the connectivity of each
node is all the nodes on the eight hexahedral elements that meet at each vertex (26). E

n
for various

types and orders of meshes is shown in Table X.
The value of E is the connectivity of each node times the number of nodes of that type

(Table XI). Note the dramatic increase in connectivity information that must be stored for
higher order elements. These numbers indicate that in these situations it may be wise to avoid
these renumbering schemes which are derived solely from the structure of the assembled system
of equations and use an approach based on the connectivity of the mesh as described in
Section 6.5.

5.2. Hierarchic data structure—one-level

A data structure for the one-level representation is shown in Figure 10. The number of upward
pointers from edges to faces and from vertices to edges is the average number of entities in that
adjacency relation. The size of each entity can be calculated as shown in Table XII. Total storage
for the mesh is shown broken down by mesh entity in Table XIII.

5.3. Hierarchic data structure—circular

The hierarchic data structure for the circular representation is shown in Figure 11. A real
implementation would have to be slightly more complicated to handle mesh generation and
adaption procedures where a partially constructed mesh may exist.

Table X. Node connectivity

Tetrahedral Hexahedral

Element Vertex Edge Vertex Edge
order nodes nodes nodes nodes

Linear 14 N/A 26 N/A
Quadratic 61 22 80 50
Cubic 107 38 130 81

Table XI. Total connectivity storage

Element type Tetrahedral Hexahedral

Linear 2·5N3
M

26N3
M

Quadratic 37N3
M

230N3
M

Cubic 64N3
M

371N3
M

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1587

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

Figure 10. Hierarchic data structure—one-level

Table XII. Entity sizes for one-level representation

Tetrahedral Hexahedral

Region Face Edge Vertex Region Face Edge Vertex

Linear 6 7 9 23 8 8 8 15
Quadratic 6 7 16 23 8 8 15 15
Cubic 6 7 23 23 8 8 22 15

Table XIII. Total storage by entity—one-level representation

Region Face Edge Vertex Total

Tetrahedral

Linear 6N3
M

14N3
M

11N3
M

4N3
M

35N3
M

Quadratic 6N3
M

14N3
M

19N3
M

4N3
M

43N3
M

Cubic 6N3
M

14N3
M

28N3
M

4N3
M

52N3
M

Hexahedral

Linear 8N3
M

24N3
M

24N3
M

15N3
M

71N3
M

Quadratic 8N3
M

24N3
M

45N3
M

15N3
M

92N3
M

Cubic 8N3
M

24N3
M

66N3
M

15N3
M

113N3
M

The sizes of each entity are shown in Table XIV. In comparison to the one-level representa-
tion the region is the same size, the face and edge structures are smaller (since they do not have
upward connectivity stored) and the vertex is larger (since the number of regions adjacent to
a vertex is larger than the number of edges adjacent to a vertex). The overall storage broken down
by entity is shown in Table XV. The total storage is 15—25 per cent less than the one-level
representation.

1588 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

Figure 11. Hierarchic data structure—circular

Table XIV. Hierarchic representation entity sizes—circular

Tetrahedral Hexahedral

Region Face Edge Vertex Region Face Edge Vertex

Linear 6 5 4 32 8 6 4 17
Quadratic 6 5 11 32 8 6 11 17
Cubic 6 5 18 32 8 6 18 17

Table XV. Total storage by entity—circular

Region Face Edge Vertex Total

Tetrahedral

Linear 6N3
M

10N3
M

5N3
M

5N3
M

26N3
M

Quadratic 6N3
M

10N3
M

13N3
M

5N3
M

34N3
M

Cubic 6N3
M

10N3
M

22N3
M

5N3
M

43N3
M

Hexahedral

Linear 8N3
M

18N3
M

12N3
M

17N3
M

55N3
M

Quadratic 8N3
M

18N3
M

33N3
M

17N3
M

76N3
M

Cubic 8N3
M

18N3
M

48N3
M

17N3
M

91N3
M

5.4. Hierarchic data structure—reduced interior representation

The data structure for the reduced interior representation (Figure 12) is more complicated than
the other two hierarchic representations. There are two different representations of the vertex, one
for the boundary and one for the interior. The vertices stored in the region must be stored in
a known order for each element topological configuration (e.g. tetrahedron, hexahedron). The
data structure shown assumes that there is a full reprsentation on the boundary (edges classified

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1589

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

Figure 12. Hierarchic data structure—reduced interior

Table XVI. Entity sizes—reduced interior

Boundary Boundary Boundary
Region face edge vertex Vertex

Tetrahedral

Linear 6 7 6 29 32
Quadratic 6 7 13 61 88
Cubic 6 7 20 89 137

Hexahedral

Linear 10 8 6 19 17
Quadratic 10 8 13 27 41
Cubic 10 8 20 34 62

on model faces are represented). The implementation shown here is a little simpler than would be
needed for mesh generation since it would be necessary to be able to represent a partially
constructed mesh.

The sizes of each entity are given in Table XVI. Compared to the other two hierarchic
representations most of the data has been moved to the vertex. Part of the reason for this is that
information that was stored on the edges (nodes in this case) is now stored on one of the vertices
of the edge.

1590 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

To calculate the total storage for this representation (Table XVII) the percentage of boundary
entities must be known. For the comparison used here it is assumed that the mesh has 30 per cent
of its vertices, 10 per cent of its edges and 5 per cent of its faces on the boundary.19

5.5. Node renumbering with the hierarchic mesh representations

Extra data structures for node (or element) renumbering are not needed with the hierarchic
mesh representation since the needed adjacency information is already available. One simple
procedure for nodal renumbering uses the adjacency information to traverse the mesh, num-
bering the nodes as it does so. A small amount of storage is needed for the queue and to find
a good starting set of vertices, but extra storage for the node-to-node connectivity is not needed.
Experience has shown that this type of renumbering results in global stiffness matrices with
bandwidths competitive with those generated by other renumbering algorithms. In fact, the
algorithm is much the same as reverse Cuthill—McKee,25 it is even possible to add degree of node
priority to this algorithm making it even more like reverse Cuthill—McKee.

initialize queue with vertices
current—node—number"number of nodes
while queue not emptyM

remove first vertex from queue
number node at vertex with current—node—number
current—node—number"current—node—number!1
for each unnumbered node on any higher order entities adjacent to vertexM

number node with current—node—number
current—node—number"current—node—number!1

N
add neighboring vertices of vertex that are not in queue to queue

N

This type of renumbering could also be used with a classic data structure. It would require
building the node-element connectivity for the vertex nodes only.

Table XVII. Total storage by entity—reduced interior

Boundary Boundary Boundary
Region Face Edge Vertex Vertex Total

Tetrahedral

Linear 6N3
M

0·5N3
M

1N3
M

1·5N3
M

4N3
M

13N3
M

Quadratic 6N3
M

0·5N3
M

1·5N3
M

3N3
M

11N3
M

22N3
M

Cubic 6N3
M

0·5N3
M

2·5N3
M

5N3
M

17N3
M

31N3
M

Hexahedral

Linear 10N3
M

N3
M

2N3
M

6N3
M

12N3
M

31N3
M

Quadratic 10N3
M

N3
M

4N3
M

8N3
M

29N3
M

52N3
M

Cubic 10N3
M

N3
M

6N3
M

10N3
M

44N3
M

71N3
M

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1591

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

5.6. Size comparison

The information from the previous sections is summarized in Table XVIII and Table XIX. The
cost of the hierarchic data structures decreases rapidly as higher-order elements are used. If
renumbering is taken into account the hierarchic data structures are smaller for quadratic and
higher-order elements.

Another interesting result can be found by normalizing the mesh sizes by the number of nodes
in the mesh (Table XX). Since the number of nodes in the mesh is related to the amount
of information stored on the mesh during the solution process, this can be viewed as the
information cost of the mesh. Doing this normalization allows meshes of different element orders
and element types to be compared. Increasing the element order decreases the information cost
since the fixed cost of storing the mesh topology is amortized over more nodes. One interesting
observation is the high information cost of a linear tetrahedral mesh compared to a linear
hexahedral mesh and that the large difference virtually disappears when the order of each mesh is
raised to quadratic.

Another item that must be considered is that, during a solution process, other information
must be stored in addition to the mesh. At a minimum, a certain number of degrees of freedom per
node are stored. At most, all the local stiffness matrices may be stored. Somewhere in the middle,
in terms of storage, would be storing the assembled stiffness matrix in some form. This storage is
relevant since, if it is large compared to the mesh storage required, a small amount of extra
storage for the mesh is not very significant.

Table XVIII. Size comparison—tetrahedral meshes (numbers in parenthesis are classic data structure
with renumbering information)

Element % of % of Reduced % of
order Classic One-level classic Circular classic interior classic

Linear 7N3
M

35N3
M

500% 26N3
M

371% 13N3
M

186%
(9·5N3

M
) (368%) (274%) (137%)

Quadratic 29N3
M

43N3
M

215% 34N3
M

170% 22N3
M

110%
(57N3

M
) (75%) (60%) (39%)

Cubic 33N3
M

52N3
M

158% 43N3
M

130% 31N3
M

94%
(97N3

M
) (54%) (44%) (32%)

Table XIX. Size comparison—hexahedral meshes (numbers in parenthesis are classic data structure with
renumbering information)

Element % of % of Reduced % of
order Classic One-level classic Circular classic interior classic

Linear 17N3
M

71N3
M

418% 55N3
M

324% 31N3
M

182%
(43N3

M
) (165%) (128%) (72%)

Quadratic 50N3
M

92N3
M

184% 76N3
M

152% 52N3
M

104%
(280N3

M
) (33%) (27%) (19%)

Cubic 83N3
M

113N3
M

136% 91N3
M

110% 71N3
M

86%
(454N3

M
) (25%) (20%) (16%)

1592 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

Table XX. Information cost (words/node) (numbers in parenth-
esis are classic data structure with renumbering information)

Element Reduced
order Classic One-level Circular interior

Tetrahedral mesh

Linear 40 (56) 201 153 76
Quadratic 15 (41) 31 25 16
Cubic 13 (37) 20 17 12

Hexahedral mesh

Linear 17 (43) 71 55 31
Quadratic 13 (70) 23 19 13
Cubic 12 (65) 16 13 10

Table XXI. Information cost for solution data struc-
tures (words/node) n is the number of degrees of free-

dom per node

Element Element Global
order Solution matrices stiffness

Tetrahedral mesh

Linear 2n 376n2 21n2
Quadratic 2n 292n2 41n2
Cubic 2n 398n2 64n2

Hexahedral mesh

Linear 2n 256n2 39n2
Quadratic 2n 400n2 86n2
Cubic 2n 585n2 132n2

A summary of this storage is given in Table XXI for three different cases. First, the storage for
the degrees of freedom that hold the solution itself is fixed at 2 words per degree of freedom (one
double precision number). Second, storage for the individual element matrices is given. Third, the
storage needed for an assembled global stiffness matrix using compressed row storage27 is given
assuming a symmetric system. The compressed row storage is likely to be the most compact
storage possible for the global matrix. In particular, a skyline storage requires storage per node
equal to the average bandwidth of the matrix which will increase as the mesh is refined for a given
problem, the compressed row storage per node is independent of the problem size. The last two
items in Table XXI depend on the square of the number of degrees of freedom per node, since the
size of the stiffness matrix of an element scales in this manner. Note that while the information
cost for the mesh decreases as the element order is increased the information cost for the solution
generally increases.

A comparison to the mesh storage necessitates picking specific problem types and solution
procedures. For illustrative purposes a 3-D elasticity problem (three degrees of freedom per node)
using quadratic tetrahedral elements and a solver that uses an assembled global stiffness matrix

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1593

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

(compressed row storage), is considered. The total storage for the solution process will be 375
words/node (6 words/node for the solution and 369 words/node for the global stiffness matrix).
The classic data structure adds another 15 words/node for a total of 390 words/node. The largest
hierarchic data structure adds 31 words/node for a total of 406 words/node. This 4 per cent
increase in storage (1 per cent for hexahedral elements) for using the richer data structure for the
mesh is not significant.

6. COMPARISON TO SPECIAL PURPOSE HIERARCHIC DATA STRUCTURES

There have been some published hierarchic data structures used in adaptive analysis that,
although not entirely general purpose, are well suited to the functions required by the specific
procedures. This section investigates the storage penalty incurred by using the general purpose
data structure described here versus one specifically designed for the problem. All of the data
structures presented were specifically designed to handle only tetrahedral meshes which saves
some storage space since the number of downward adjacencies is fixed.

6.1. Edge-based data structure

Biswas and Strawn14 present a data structure tailored to an edge-based analysis and refine-
ment scheme. This data structure is a cross between the one-level adjacency structure and the
reduced interior representation. Their data structure omits interior faces but includes faces
classified on the boundary (Figure 13). Interior and boundary edges are included. Their data
structure does not have classification information.

A calculation of the size of their data structure, including only the mesh information (not the
solution storage which is also given in their paper) gives a storage of 22·5N3

M
. This is between the

circular and reduced-interior representations.

6.2. Data structure with fast retrieval of downward adjacencies

Kallinderis and Vijayan present a data structure containing all four topological mesh entities
and primarily downward adjacency information (Figure 14) in Reference 13. Retrieving some
adjacencies with this data structure would require global searching, however their adaptive
analysis does not need these adjacencies.

Figure 13. Data structure of Biswas and Strawn14

Figure 14. Data structure of Kallinderis and Vijayan13

1594 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

Figure 15. Data structure of Connell and Holmes15

This structure is optimized for speed since it explicitly stores the adjacencies required by their
adaptive procedure, rather than deriving them from other adjacencies. Their data structure also
does not have classification information. The size of their data structure is 27N3

M
which is roughly

the same as the circular representation of the hierarchic data structure.

6.3. Data structure with only downward adjacencies

Connell and Holmes give a data structure in Reference 15 that provides only downward
adjacencies (Figure 15). They do however include classification information and correctly reposi-
tion vertices classified on model boundaries during mesh refinement. Again, such a data structure
would require global searching for some adjacencies which are apparently not needed by their
analysis. The storage for this representation requires 17·5N3

M
. This is half of the one-level

adjacency structure and between the storage for the circular and reduced-interior representations.

7. CLOSING REMARKS

Requirements for a general purpose mesh database based on a hierarchy of topological entities
were presented. Three implementations that meet these requirements were given and compared to
the classic element-node representation typically used in finite element analysis codes. It was
shown that when all the storage needed for the solution process was considered, the hierarchic
representation does not add a significant amount of extra storage.

The hierarchic representations add important information and capabilities that are needed for
other parts of an adaptive analysis environment. These representations maintain the relation of
the mesh to the geometric model that it was created from which is critical for mesh generation and
enrichment procedures. This representation can easily be extended to properly represent meshes
of non-manifold models.

REFERENCES

1. R. Löhner, ‘Some useful data structures for the generation of unstructured grids’, Comm. appl. numer. methods, 4,
123—135 (1988).

2. J. Bonet and J. Peraire, ‘An alternating digital tree (ADT) algorithm for 3D geometric and intersection problems’, Int.
j. numer. methods eng., 31, 1—17 (1991).

3. H. Dannelongue and P. Tanguy, ‘Efficient data structure for adaptive remeshing with the FEM’, J. Comput. Phys., 91,
94—109 (1990).

4. G. F. Carey, M. Sharma and K. C. Wang, ‘A class of data structures for 2-D and 3-D adaptive mesh refinement’, Int. j.
numer. methods eng., 26, 2607—2622 (1988).

5. M. C. Rivara, ‘Design and data structure of fully adaptive, multigrid, finite element software’, ACM ¹rans. Math.
Soft., 10, 242—264 (1984).

6. W. C. Rheinboldt and C. K. Mesztenyi, ‘On a data structure for adaptive finite element mesh refinements’, ACM
¹rans. Math. Soft., 6, 166—187 (1980).

7. P. Devloo, J. T. Oden and T. Strouboulis, ‘Implementation of an adaptive refinement technique for the SUPG
algorithm’, Comput. Methods Appl. Mech. Eng., 61, 339—358 (1987).

8. N. Golias and T. Tsiboukis, ‘An approach to refining three-dimensional tetrahedral meshes based on Delaunay
transformations’, Int. j. numer. methods eng., 37, 793—812 (1994).

9. K. C. Chellamuthu and N. Ida, ‘Algorithms and data structures for 2D and 3D adaptive finite element mesh
refinement’, Finite Elements Anal. Des., 17, 205—229 (1994).

10. R. Löhner, ‘Edges, starts, superedges and chains’, Comput. Methods Appl. Mech. Eng., 111, 255—263 (1994).

A GENERAL TOPOLOGY-BASED MESH DATA STRUCTURE 1595

(1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997)

11. R. Löhner, ‘Some useful renumbering strategies for unstructured grids’, Int. j. numer. methods eng., 36, 3259—3270
(1993).

12. D. M. Hawken, P. Townsend and M. F. Webster, ‘The use of dynamic data structures in finite element applications’,
Int. j. numer. methods eng., 33, 1795—1811 (1992).

13. Y. Kallinderis and P. Vijayan, ‘Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes’,
AIAA J., 31, 1440—1447 (1993).

14. R. Biswas and R. Strawn, ‘A new procedure for dynamic adaption of three-dimensional unstructured grids’,
AIAA-93-0672, Presented at the 31st Aerospace Sciences Meeting & Exhibit, Jan. 11—14, 1993, Reno, NV.

15. S. D. Connell and D. G. Holmes, ‘3-dimensional unstructured adaptive multigrid scheme for the euler equations’,
AIAA J., 32, 1626—1632 (1994).

16. W. J. Schroeder and M. S. Shephard, ‘A combined octree/delaunay method for full automatic 3-D mesh generation’,
Int. j. numer. methods eng., 29, 37—55 (1990).

17. M. S. Shephard and M. K. Georges, ‘Reliability of automatic 3D mesh generation’, Comput. Methods Appl. Mech.
Eng., 101, 443—462 (1992).

18. M. S. Shephard, ‘The specification of physical attribute information for engineering analysis’, Eng. Comput., 4,
145—155 (1988).

19. M. Beall and M. Shephard, ‘Mesh data structures for advanced finite element applications’, SCOREC Report 23-1995,
Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy NY, 1995.

20. A. A. G. Requicha and H. B. Voelcker, ‘Solid modeling: current status and research directions’, IEEE Comput.
Graphics Appl., 3, 25—37 (1983).

21. K. J. Weiler, ‘The radial-edge structure: a topological representation for non-manifold geometric boundary repres-
entations’, in M. J. Wozny, H. W. McLaughlin and J. L. Encarnacao (eds.), Geometric Modeling for CAD Applications,
North-Holland, Amsterdam, 1988, pp. 3—36.

22. E. L. Gursoz, Y. Choi and F. B. Prinz, ‘Vertex-based representation of non-manifold boundaries’, in M. J. Wozny,
J. U. Turner and K. Priess (eds.), Geometric Modeling Product Engineering, North-Holland, Amsterdam, 1990,
pp. 107—130.

23. K. J. Weiler, ‘Topological structures for geometric modeling’, Ph.D. ¹hesis, Rensselaer Design Research Center,
Rensselaer Polytechnic Institute, Troy NY, May 1986.

24. E. Bruzzone, L. De Floriani and E. Puppo, ‘Manipulating three-Dimensional triangulations’, in Lecture Notes in
Computer Science, Vol. 367, Springer, Berlin, 1989, pp. 339—353.

25. L. T. Souza and D. W. Murray, ‘A unified set of resequencing algorithms’, Int. j. numer. methods eng., 38, 565—581
(1995).

26. S. W. Sloan and W. S. Ng, ‘A direct comparison of three algorithms for reducing profile and wavefront’, Comput.
Struct., 33, 411—419 (1989).

27. I. Duff, R. Grimes and J. Lewis, ‘Sparse matrix test problems’, ACM ¹rans. Math. Soft., 15, 1—14 (1989).

.

1596 M. W. BEALL AND M. S. SHEPHARD

INT. J. NUMER. METHODS ENG., VOL. 40: 1573—1596 (1997) (1997 by John Wiley & Sons, Ltd.

