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Abstract. Effective use of the processor memory hierarchy is an important issue in high performance computing. In this work,
a part level mesh topological traversal algorithm is used to define a reordering of both mesh vertices and regions that increases
the spatial locality of data and improves overall cache utilization during on processor finite element calculations. Examples based
on adaptively created unstructured meshes are considered to demonstrate the effectiveness of the procedure in cases where the
load per processing core is varied but balanced (e.g., elements are equally distributed across cores for a given partition). In one
example, the effect of the current ajacency-based data reordering is studied for different phases of an implicit analysis including
element-data blocking, element-level computations, sparse-matrix filling and equation solution. These results are compared to a
case where reordering is applied to mesh vertices only. The computations are performed on various supercomputers including
IBM Blue Gene (BG/L and BG/P), Cray XT (XT3 and XT5) and Sun Constellation Cluster. It is observed that reordering im-
proves the per-core performance by up to 24% on Blue Gene/L and up to 40% on Cray XT5. The CrayPat hardware performance
tool is used to measure the number of cache misses across each level of the memory hierarchy. It is determined that the measured
decrease in L1, L2 and L3 cache misses when data reordering is used, closely accounts for the observed decrease in the overall
execution time.
Keywords: Data reordering, cache penalty model, unstructured mesh, finite element analysis

1. Introduction

The finite element method is a standard analysis tool
for solving complex sets of partial differential equa-
tions (PDEs) over general domains. In a large number
of cases, the ability to solve problems of practical inter-
est requires the use of many millions of spatial degrees
of freedom and many thousands of implicit time steps.
Problems of such size can only be solved on massively
parallel computers but any performance improvements
in on-processor calculations are desirable, particularly
in situations with tight constraints on time to solution.
One such example is patient-specific vascular surgical
planning, where the solution times must be in minutes
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for problems with up to 100 million degrees of free-
dom in total. This paper presents an adjacency-based
data reordering algorithm, which reorders both mesh
vertices and regions to increase cache coherency dur-
ing two primary stages of an implicit, finite element
analysis, i.e., element formation and equation solution.
The effective use of the memory hierarchy on process-
ing cores in turn leads to improved flop rate (or floating
point operations per second).

In calculations based on unstructured meshes, the ir-
regular mesh structures and connections make the data
storage order a strong contributor to the effective use
of the memory hierarchy. Since the storage order of
the data is defined by the labeling of the entities in the
mesh, it is desirable to have the mesh entities labeled
such that those that interact, or have sequential access
during calculations, have labels that are as close to each
other as possible. The historic way to address this is-
sue is to employ the methods used in “bandwidth” and
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“wavefront” minimization such as RCM [6], GPS [8,
9,5] and others. In previous work on edge-based un-
structured mesh computations [4,16,17], the nodes are
reordered using a bandwidth-minimization technique
(RCM, recursive bisection, etc.) for optimal cache per-
formance before subsequently renumbering the edges
according to the nodes on each edge [16] or apply-
ing nodal reordering according to maximum connec-
tivity to reduce indirect memory access [4,17] specif-
ically for edge-based methods. Oliker et al. [18–20]
compared effects of data reordering strategies, RCM
and self-avoiding walk (SAW) developed in [11] for
two-dimensional unstructured meshes. In their tests on
smaller cache architectures, SAW is about twice as fast
as RCM, while there is little difference in parallel per-
formance between RCM and SAW on larger cache ar-
chitectures. It is worth noting that SAW is not a tech-
nique designed specifically for vertex reordering and
incurs a higher construction cost [20]. Another alter-
native approach is the permutation method of rows
(and columns) of a matrix, which is presented in [21]
to increase cache reuse in sparse-matrix and dense-
vector product. This is the kernel of equation solu-
tion of our finite element analysis. In a more recent
work, Yzelman et al. [33] introduced a data reorder-
ing algorithm for sparse matrix–vector multiplication
by permuting rows and columns of the input matrix
using a hypergraph-based matrix partitioning scheme.
However, those algorithms do not help the other pri-
mary stage of our finite element analysis (element for-
mation) and the overhead of the algorithm is gener-
ally high. Williams et al. [31] employed sparse cache
blocking to specifically optimize sparse matrix–vector
products. Data reordering algorithms for general un-
structured meshes are described in [3]. In the first step
they apply existing classic approaches (such as band-
width reduction, the greedy method, etc.) to either ver-
tices, edges, faces or regions. In the second step, they
consistently renumber the other entities used in the
solver. Mappings, such as a list of connected vertex
pairs needs to be constructed to use the existing clas-
sic approaches in the first step, which can be expen-
sive (see Section 3 for detailed discussions). Han et al.
[10] introduced a data reordering (GPART) based on
the graph structure within data access and Strout et al.
[27] developed algorithm to increase spacial locality
based on the hypergraph within data access, however
both of them have to pay the overhead of constructing
the graph/hypergraph at run time.

The examples considered in this paper are based
on linear C0 finite elements. Here, the only mesh en-

tity labeling required is of the mesh regions and mesh
vertices. The mesh vertices are the holders of the de-
grees of freedom that play the primary role in the equa-
tion solution stage. Thus, it is desirable to label ver-
tices with coupled degrees of freedom such that they
are close to each other. On the other hand, during el-
ement integration (equation formation) the ordering of
both mesh regions and vertices is important since the
process traverses the regions and accesses information
related to the vertices of those regions. Note that in par-
allel finite element analysis, the ordering of mesh en-
tities is required individually on parts making it easy
to define. It is worth mentioning that the automatic un-
structured mesh generators typically do not concern
themselves with an ordering of entities since they typ-
ically do not know the details of the analysis algo-
rithms. Furthermore, even if ordering was performed
on the initial mesh, it would be disrupted by mesh
adaptation procedures in their attempt to incrementally
add and delete entities to achieve high local resolution
meshes.

By taking advantage of the fact that a mesh topology
is maintained during the pre-processing of the finite el-
ement analysis input, an algorithm that effectively re-
orders the mesh regions and vertices based on topolog-
ical adjacency has been implemented. The mesh topol-
ogy concept is discussed in Section 2. The reordering
algorithm is described in Section 3 and results demon-
strating its ability to improve flop rate are presented in
Section 4.

2. Mesh representation and topological adjacency

The process of reordering a mesh is greatly aided by
databases and functions that can answer basic queries
about the topological adjacencies of a given mesh. In
the studies described herein, we have made use of the
Flexible distributed Mesh DataBase (FMDB) which is
a distributed mesh data management system that is ca-
pable of shaping its data structure dynamically based
on the user-requested mesh representation [25]. Before
describing the algorithms it is useful to introduce some
nomenclature.

2.1. Nomenclature

M an abstract model of the mesh.
{M{Md}} a set of topological entities of dimen-

sion d in model M .
Md

i the ith entity of dimension d in model
M . d = 0 for a vertex, d = 1 for an
edge, d = 2 for a face and d = 3 for a
region.
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{Md
i {Mq}} a set of entities of dimension q in model

M that are adjacent to Md
i .

Md
i {Mq}j the jth entity in the set of entities of di-

mension q in model M that are adjacent
to Md

i .
{Md

i {D}} a set of nodes (degrees of freedom) as-
sociated with mesh entity Md

i .
Md

i {D}j jth node (degree of freedom) associ-
ated with mesh entity Md

i .
Ni the number of entities of dimension i in

the mesh. Shorthand for |{M{M i}}|.
N0, N1, N2 and N3 are the number of
vertices, edges, faces and regions, re-
spectively, in the mesh.

Examples
{M{M2}} the set of all the faces in the mesh.
{M1

3 {M3}} the mesh regions adjacent to mesh edge
M1

3 .
M3

1 {M1}2 the 2nd edge adjacent to mesh region
M3

1 .

2.2. Adjacency and distributed mesh representation

Adjacencies describe how mesh entities connect to
each other. For an entity of dimension d, adjacency,
denoted by {Md

i {Mq}}, returns all the mesh entities
of dimension q, which are on the closure of the entity
for a downward adjacency (d > q), or for which the
entity is part of the closure for an upward adjacency
(d < q).

There are many options in the design of the mesh
data structure in terms of the entities and adjacencies
stored. If a mesh representation stores all 0 to d level
entities explicitly, it is a full representation, otherwise,
it is referred to as a reduced representation. Complete-
ness of adjacency indicates the ability of a mesh repre-
sentation to provide any type of adjacencies requested
without involving an operation dependent on the mesh
size such as the global mesh search or mesh traver-
sal. Regardless of whether the representation is full or
reduced, if all adjacency information is obtainable in
O(1) time, the representation is complete, otherwise, it
is incomplete.

We assume full and complete mesh representa-
tions throughout this paper. Implementations with re-
duced complete representations using all the same
overall algorithms are possible, with the addition of
some complexities within the mesh database API func-
tions [25].

A distributed mesh is a mesh divided into parts for
distribution over a set of processors for specific rea-

Fig. 1. Distributed mesh on three parts P0, P1 and P2 [22].

sons, for example, parallel computation. Each part is
treated as a mesh with entities on that part and the ad-
dition of part boundaries to describe groups of mesh
entities that are on inter-part boundaries. Mesh enti-
ties on inter-part boundaries are duplicated on parts
where they are used in adjacency relations. Mesh en-
tities that are not on any inter-part boundary exist on
a single part. Figure 1 depicts a mesh that is distrib-
uted on 3 parts. Vertex M0

1 is common to three parts
and exists on each part, several mesh edges like M1

j
are common to two parts. The dashed lines represent
inter-part boundaries that consist of mesh vertices and
edges (including mesh faces in 3D) duplicated on mul-
tiple parts.

The reordering algorithm described in Section 3 is
developed on the basis of individual parts and by taking
advantage of the complete adjacencies.

3. Algorithm of data reordering

As discussed in references [3,4,16–21], improving
data locality in unstructured mesh calculations can
have a substantial influence on the computational per-
formance of the numerical operations performed. One
can increase the data locality by accounting for the
locality of the entities in the mesh, and the non-zero
entries in the resulting finite element matrices. Since
the ordering of the operations and information in the
finite element matrices are derived from the labeling
given to the mesh entities, one wants to define a label-
ing such that mesh entities considered to be near via
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adjacency, and related to each other, are closely num-
bered.

The relationships between mesh entities dictate
where terms are placed in sparse matrices and the or-
der in which they are accessed during numerical op-
erations. In the context of finite element analysis such
information is easily identified based on the mesh ad-
jacencies. For example, in the case of linear finite ele-
ments, the degrees of freedom are associated with ver-
tices. The non-zero entities in the stiffness matrix for
the equation associated with a given degree of freedom
or a vertex are due to all of the vertices that are associ-
ated with elements that bound (sharing) the given ver-
tex (i.e., {{M0

i {M3}}{M0}}). Figure 2 shows an ex-
ample, where a vertex, 29, has five elements around it
and all the other vertices that bound these five elements
are 1, 2, 12, 30 and 50. The entities in the stiffness
matrix due to vertex 29, are shown in the matrix A.
Matrix–vector products with this matrix will enjoy se-
quential access of the matrix entries (block compressed
sparse row scheme is employed, which is naturally in
row order), but the second half of each product pair
will require entries from the product vector associated
with these non-zeros as shown in the vector P . Note
that the labels of mesh entities determine the entries in
the vector that will be accessed one after another and
thus, when the mesh entities labeled without consider-
ation of order, the entries accessed subsequently may
be placed far away in the vector.

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A29,1 A29,2 · · · A29,12 · · ·

A1,29
A2,29

...
A12,29

...
A29,29 A29,30 · · · A29,50
A30,29

...
A50,29

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Fig. 2. All the vertices that bound the five elements around a given
vertex 29.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1
P2
...

P12
...

P29
P30

...
P50

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the case where one maintains a complete set of mesh
adjacencies, the determination of the vertices that are
related to a given vertex can be found via constant time
operations (i.e., O(1) operations). The first step deter-
mines the mesh entities defining the finite elements
around a given vertex while the second step collects the
set of vertices that bound those mesh entities. In the ex-
ample shown in Fig. 3, it takes constant time to deter-
mine all the elements that M0

1 bounds, which are ele-
ments M0

1 {M2}1, M0
1 {M2}2, M0

1 {M2}3, M0
1 {M2}4

and M0
1 {M2}5. For each of these five elements another

constant time operation is required to determine all the
bounding vertices, hence, constant time operations are
used for collecting the set of vertices (combining M0

2 ,
M0

3 , M0
4 , M0

5 and M0
6 ) related to a given vertex M0

1 .
For other numerical operations, and/or other equation
discretization methods, different relationships between
mesh entities are important. In each of those cases, the
underlying discretization method determines such re-
lationships which can be easily defined in terms of ap-
propriate mesh adjacencies.

Classic approaches to define an effective labeling of
the desired mesh entities rely on graph-based proce-
dures [6,8,9], where the nodes in the graph are asso-
ciated to the mesh entities of interest and graph edges
are defined between graph nodes that are related to
each other. Considering again the linear finite element
example, there is a graph node for each mesh vertex
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Fig. 3. Constant time operations are used to determine the adjacent
vertices for a given vertex.

whereas graph edges are defined between nodes for
which there will be a non-zero term in the resulting
stiffness matrix. The key idea in graph-based labeling
procedures [6,8,9] is that once a graph node is assigned
a label, all the unlabeled graph nodes connected to it by
edges are labeled as soon as possible. The primary dif-
ferences in the various algorithms are the criteria used
to decide the node to be labeled first and the following
graph traversing mechanisms used in assigning labels
to the unlabeled connected nodes. Typically one of the
most time consuming, and most data intensive, aspects
in the execution of these procedures is the definition
of the graph from a given mesh. In the case where the
starting data is the list of vertices for each element, this
process requires traversing the elements, where a graph
node is defined for each vertex of an element (if one
does not exist already) and also graph edges are de-
fined between graph nodes associated with the vertices
of the element.

An alternative, but equivalent, approach to the clas-
sic graph-based labeling has been defined and is ap-
plied in the present work. This approach takes advan-
tage of the fact that maintaining the adjacencies of a set
of mesh entities in a complete representation. A com-
plete mesh topology information is functionally equiv-
alent to having a rich graph structure which houses any
desired mesh entity relationship used in the classical
method by simply stating the mesh entities and adja-
cencies to account for in the definition of the graph
nodes and edges respectively. Equivalence is defined
here in that once those mesh entities that will represent
the graph nodes are known, the process of determining
the graph edges between them due to mesh entity re-
lationships can be performed in a number of O(1) op-
erations per graph node [1]. Note that depending on
the specific form of the complete mesh representation

used, the number of operations can range from one to a
few hundred, but each is of O(1) since it is not a func-
tion of the total number of entities in the mesh [2,25].
The mesh entity labeling algorithm presented here em-
ploys this equivalence to label the desired mesh entities
based on a single traversal through selected mesh adja-
cencies which is equivalent to a specific graph traversal
such as those used in the more classic procedures. In
fact, by carefully defining the traversal process and the
labeling order, these methods have been found to de-
fine orderings that, on average, produce slightly better
matrix profiles for finite element meshes of any poly-
nomial order when compared to Reverse Cuthill Mc-
Kee and GPS.

3.1. Linear finite element data access

In the current work based on linear finite elements,
the mesh entities to be labeled are the mesh regions
({M{M3}}) that represent the finite elements and the
mesh vertices ({M{M0}}) since they are the mesh en-
tities that hold the degrees of freedom in the matrix
equation system. The relabeling of both the regions
and vertices is important in the system formation phase
which has four major steps, (1) localization of the data
from global to element level, (2) computation of the
residual (right-hand side) vector and tangent (left-hand
side) matrix at the element level, (3) globalization of
the residual vector from the element to the global level
and (4) filling of entries in a sparse-matrix. It is also
important in the basic kernel of sparse matrix–vector
products during equation solution stage based on it-
erative schemes. The pseudo code of these primary
steps are demonstrated in Algorithm 1 and the nota-
tion used in the pseudo code are defined in Table 1
(note that ylocal and yglobal describe the solution vari-
able which is taken to be a scalar at each vertex in the
pseudo code but in many interesting problems is actu-
ally a vector which inflates all ranks involving solution
or residual by one, and tangent matrices by two (e.g.,
LHS(nnz_tot) becomes LHS(nnz_tot, nvar, nvar) while
Resglobal(N3) becomes Resglobal(N3, nvar)).

In the process of localization and globalization (see
pseudo code 1 and 3 in Algorithm 1), the mesh re-
gions are traversed, where each vertex of the region is
mapped to a global degree of freedom (gdof ) which is
in the same ordering with the mesh vertices. Relabel-
ing both the regions and vertices increases the cache
hits since the vertices of adjacent regions will have
global degrees of freedom that are close. Then, for a
given vertex gdof , if yglobal(gdof ) and Xglobal(gdof )
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Algorithm 1 Pseudo code of localization, element level integrals, globalization, sparse-matrix filling and AP
product

1. Pseudo code of Localization
for (e = 1; e <= N3; e + +) do

for (jnen = 1; jnen <= nen; jnen + +) do
gdof = ien(e, jnen)
ylocal(e, jnen) = yglobal(gdof ))
Xlocal(e, jnen, 1 : nsd) = Xglobal(gdof , 1 : nsd))

end for
end for

2. Pseudo code of Element Level Integrals
for (e = 1; e <= N3; e + +) do

compute Reslocal(e, 1 : nen) and xKebe(e, 1 : nen, 1 : nen) based on Xlocal(e, 1 : nen, 1 : nsd) and
ylocal(e, 1 : nen)

end for

3. Pseudo code of Globalization
Resglobal(1 : N0) = 0
for (e = 1; e <= N3; e + +) do

for (jnen = 1; jnen <= nen; jnen + +) do
gdof = ien(e, jnen)
Resglobal(gdof ) + = Reslocal(e, jnen)

end for
end for

4. Pseudo code of Sparse-Matrix Filling
LHS(1 : nnz_tot, 1 : nen, 1 : nen) = 0
for (e = 1; e <= N3; e + +) do

for (jnen = 1; jnen <= nen; jnen + +) do
gdof = ien(e, jnen)
c = col(gdof ), n = col(gdof + 1) − 1
for (knen = 1; knen <= nen; knen + +) do

b = ien(e, knen)
nzg = search for the match of b in array row confined to istart = c and istop = n
LHS(nzg) + = xKebe(e, jnen, knen)

end for
end for

end for

5. Pseudo code of Sparse AP product
q(1 : N0) = 0
for (i = 1; i <= N0; i + +) do

for (k = col(i); k <= col(i + 1) − 1; k + +) do
j = row(k)
q(i) + = LHS(k) ∗ P (j)

end for
end for
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Table 1

Definitions of symbols in the pseudo code

nen: Number of vertices per element

N0: Number of vertices in the mesh

N3: Number of regions in the mesh

nsd: Number of space dimensions

gdof : Global degree of freedom

e: Element number

jnen & knen: Node number local to element

nnz_tot: Total number of non-zeros in
stiffness matrix

ien(N3, nen): Connectivity array (e and jnen
yield gdof )

ylocal(N3, nen): Local variable array

yglobal(N0): Global variable array

Xlocal((N3, nen, nsd): Local coordinate

Xglobal(N0, nsd): Global coordinate

Reslocal(N3, nen): Local residual array

Resglobal(N0): Global residual array

xKebe(N3, nen, nen): Local stiffness matrix

LHS(nnz_tot): Global sparse-matrix

col(N0 + 1) & row(nnz_tot): Auxiliary arrays

(in localization phase) or Resglobal(gdof ) (in global-
ization phase) are in the cache, the vertices in the ad-
jacent regions which are processed next are likely to
be in the cache resulting in cache hit. In the process of
the sparse-matrix filling, a mapping from the vertices
of each region to the global degrees of freedom is cre-
ated as well. The position of this global degree of free-
dom in the sparse-matrix is then searched. Therefore
vertex and region relabeling improves the cache per-
formance in the process of sparse-matrix filling. How-
ever, the relabeling has no effect on the element-level
integrals (see pseudo code 2 in Algorithm 1), in which
the memory hierarchy is already used efficiently due to
the localization of the data. Previous work [3] reports
high performance improvement (over a factor of two)
in the equation formation phase, since without a local-
ization procedure, region and vertex ordering has more
influence on the stiffness matrix and residual computa-
tions.

In the solution phase of the finite element analy-
sis, the resulting non-linear algebraic equations are lin-
earized to yield a system of linear equations which
are solved using iterative procedures (e.g., GMRES
[23,26]). Only the vertex relabeling is important to
the equation solution phase. The sparse matrix–vector
product (see pseudo code 5 in Algorithm 1) work is
proportional to the number of global degrees of free-
dom. The sparse storage structure naturally stores the

LHS entries in the order they will be used (sequential
by row) but proper vertex order ensures that the items
which follow each other in the product vector P (list
of j) are close in memory despite the indirect address-
ing of the sparse storage format. The last key kernel in
the iterative solve is the vector dot product but this is
not discussed here since it naturally enjoys sequential
access for any ordering. Note that currently diagonal
preconditioning is employed, which is not affected by
data reordering.

3.2. Adjacency-based reordering algorithm

Algorithm 2 for element and nodal labeling given
below considers degrees of freedom associated with
mesh vertices, edges, faces and regions, and with the
assumption that mesh regions are finite elements. The
reordering process starts with the first vertex and labels
it with N0, due to the reverse ordering (see steps 1–2).
Then it loops over adjacent edges of the current ver-
tex, M0

k (step 9). For each adjacent edge M1
i , the ele-

ments bounded by this edge are traversed and labeled
(if they have not been labeled). If these elements have
nodes which have not been processed, then those nodes
are pushed into the queue nodeList (see steps 10–21).
Then the faces bounded by edge M1

i are traversed as
well. If there are unprocessed nodes associated with
these faces, then those nodes get pushed into the queue,
otherwise, the algorithm proceeds (steps 22–29). If the
other vertex (M0

l ) of edge M1
i is not yet processed,

then unprocessed nodes associated with M1
i and M0

l
get pushed into the queue. Otherwise, the algorithm la-
bels the unprocessed nodes associated with edge M1

i
immediately (steps 30–44). The reordering algorithm
continues until nodeList is empty.

Though the current algorithm is developed and used
for 3D unstructured meshes, for clarity, Fig. 4 uses a
2D example to explain the procedures for setting mesh
entity labels. In the 2D context, mesh faces are the el-
ements, which need to be labeled. The left picture of
Fig. 4 illustrates the starting configuration of a mesh
with 16 nodes and 5 faces, and the right one shows the
new labels of the mesh nodes and elements. Table 2
demonstrates the status of the queue and the nodes la-
beled on each pass through. The reordering process
starts with the first entity (node a) and labels it as 16,
due to the reverse order. Then, it labels the adjacent el-
ement of node a as 5 (with circle in Fig. 4). b and c are
two adjacent nodes of a through a mesh edge, which
are not processed yet, therefore b and c are pushed into
the queue. The process continues until the queue is
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Algorithm 2 Pseudo code for nodal and element labeling

1: getstart(), take M 0
1 from the set {M{M 0}}, assign labelnode = N0 and labelelement = N3

2: push M 0
1 {D}0 back to nodeList and tag it to be in the nodeList

3: while nodeList is not empty do
4: pop out the first node Md

k {D}p from nodeList
5: Md

k {D}p → setlabel(labelnode − −)
6: if Md

k is not a vertex then
7: continue
8: else
9: for (i = 0; i < |{M 0

k{M 1}}|, i + +) do
10: take edge M 1

i = M 0
k{M 1}i

11: for (j = 0; j < |{M 1
i {M 3}}|, j + +) do

12: take element M 3
j = M 1

i {M 3}j

13: if M 3
j is not labeled then

14: M 3
j → setlabel(labelelement − −)

15: end if

16: for (p = 0; p < |{M 3
j {D}}|; p + +) do

17: if M 3
j {D}p is not labeled and M 3

j {D}p is not tagged to be in nodeList then
18: push M 3

j {D}p back to nodeList and tag it to be in the nodeList
19: end if
20: end for
21: end for

22: for (j = 0; j < |{M 1
i {M 2}}|, j + +) do

23: take face M 2
j = {M 1

i {M 2}}j

24: for (p = 0; p < |{M 2
j {D}}|; p + +)) do

25: if M 2
j {D}p is not labeled and M 2

j {D}p is not tagged to be in nodeList then
26: push M 2

j {D}p back to nodeList and tag it to be in the nodeList
27: end if
28: end for
29: end for

30: take the other vertex M 0
l = {M 1

i {M 0}}(M 0
k)

31: if M 0
l {D}0 is not labeled and M 0

l {D}0 is not tagged to be in nodeList then
32: for (p = 0; p < |{M 1

i {D}}|; p + +) do
33: if M 1

i {D}p is not labeled and M 1
i {D}p is not tagged to be in nodeList then

34: push M 1
i {D}p back to nodeList and tag it to be in the nodeList

35: end if
36: end for
37: push M 0

l {D}0 back to nodeList and tag it to be in the list
38: else
39: for (p = 0; p < |{M 1

i {D}}|; p + +) do
40: if M 1

i {D}p is not labeled and M 1
i {D}p is not tagged to be in nodeList then

41: M 1
i {D}p → setlabel(labelnode − −)

42: end if
43: end for

44: end if

45: end for
46: end if
47: end while
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Fig. 4. A 2D example of nodal and element labeling.

Table 2

The status of the queue and the nodes labeled on each pass through

Queue In process Node label assigned

a – start of process-none assigned yet

b, c a 16

c, e, f b 15

e, f, h, g, j c 14, 13 (d done since e already in queue)

f, h, g, j, i, l e 12

h, g, j, i, l, m f 11

g, j, i, l, m h 10

j, i, l, m g 9

i, l, m, n,o j 8, 7 (k done since l already in queue)

l, m, n, o i 6

m, n, o, p l 5

n, o, p m 4

o, p n 3

p o 2

– p 1

empty. In the step 4, both nodes c and d are labeled
when encountered since node e is already in queue,
similarly in step 9.

After applying data reordering algorithm, the spatial
data locality is increased. Figure 5 demonstrate the or-
der of accessing the vector array P (array index j) in
pseudo code 5 in Algorithm 1. This example considers
a serial case with 54,195 non-zeros and 3977 vertices
on a straight pipe. Without data reordering, the order
to access vector array P is highly irregular, while the
access is more sequential with the data reordering.

4. Results and discussions

In this section, two geometric models are used to
study the performance improvement of the finite ele-
ment analysis (FEA) solver (specifically PHASTA [14,
30] but referred to more generally as the FEA solver)
by applying the adjacency-based data reordering algo-

rithm presented in Section 3. The first example is a bi-
furcation pipe model which is shown in Fig. 6. The
other example considers an abdominal aorta aneurysm
(AAA) model (see Fig. 7). These two geometries and
meshing approaches are used to study different aspects
of the data ordering.

In the first study, the relative impact of the current
data reordering algorithm on each phase of the FEA
solver, including system formation (localization, glob-
alization, element level integrals and sparse-matrix fill-
ing) and system solution is presented in Section 4.1.
In Section 4.2, an 8.8M (where M denotes million) re-
gion mesh of the bifurcation pipe model is partitioned
into different numbers of parts (from 128 up to 8192
parts), which allows a study of the effect of varying av-
erage work load per part in different partitions. These
first two tests were performed on IBM Blue Gene/L at
Rensselaer’s Computational Center for Nanotechnol-
ogy Innovations (CCNI). A similar study on an AAA
model with a 133.6M region mesh is presented in Sec-
tion 4.3. For this study, the computations are performed
on various supercomputers, including IBM Blue Gene
(BG/L and BG/P), Cray XT (XT3 and XT5) and Sun
Constellation Cluster, to study the data reordering ef-
fect on various architectures. In Section 4.4, a hard-
ware performance tool, CrayPat on Cray XT5 is used
to predict the penalty due to cache misses, which con-
firms that the acceleration of FEA solver is due to the
improved cache performance. In this test, the effect of
data reordering algorithm is studied on cases with dif-
ferent load per part by fixing the number of processing
cores and increasing the mesh size (i.e., the load per
part changes from one case to another but in each case
the load is balanced among parts). Note that one part
per processing core is considered in this paper (i.e., the
number of parts equals the number of processing cores)
and the time usage of the FEA excludes the overhead
of data reordering, which is negligible.

4.1. Data reordering relative effect

In this section, the effect of data reordering algo-
rithm on each primary phase of FEA solver is studied
on an 8.8M region mesh of the bifurcation pipe model
(see Fig. 6). A parabolic steady inflow boundary condi-
tion is applied at the inlet of the bifurcation pipe model.
The computation runs for 100 time steps with 3 non-
linear iterations per step using 128 CCNI BG/L cores.
Table 3 provides the execution times for each primary
phase of the finite element analysis, system formation
(where localization and globalization, sparse-matrix
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Fig. 5. Order to access vector array for computing AP product with and without data reordering algorithm.

Fig. 6. Geometry model of a bifurcation pipe.

filling, element level integrals are the main compo-
nents) and system solution. Furthermore, these times
are compared between three strategies: without any re-
ordering, reordering of vertices only and reordering of
both vertices and regions. The values in the parentheses
are the normalized time usage of each phase of FEA
solver (normalized by total time usage of the analy-
sis without any data reordering, which is 5422.8 s). It
is clearly shown in the table that reordering, of both
the vertices and elements, improves FEA solver per-
formance the most among these strategies, which takes
81.7% of the original analysis time (the one without
using data reordering), while reordering of only ver-
tices improves the solver performance as well, which
takes 83.6% of the original analysis time. Reorder-
ing both vertices and regions simultaneously improves
the time usage of localization and globalization (from
1.1% to 0.5%), while (as expected) reordering of ver-
tices only does not improve performance of localiza-
tion and globalization steps. A similar observation can
be made for the step of sparse-matrix filling. On the
other hand, the data reordering algorithm has negligi-

ble effect on element-level integrals due to their use of
localized data structures as mentioned in the previous
section. Relabeling of vertices only improves the per-
formance of the equation solution phase from 71.8%
to 55.4%, but including region relabeling has negligi-
ble effect which is expected and also consistent with
the discussion in Section 3. The relative improvement
of each phase is obtained by comparing values in col-
umn 3 (reordering of vertices only) and 4 (reordering
of vertices and elements) with column 2 (without data
reordering). For example, relabeling of both vertices
and elements improves localization and globalization
by a factor of over two (61.5/27.9 = 2.2); a significant
percentage gain but a small fraction of the total time.
For the case of explicit time marching, data reorder-
ing accelerates system formation stage, however, this
paper focuses on implicit analysis. Henceforth, overall
performance improvement based on the total execution
time of the analysis will be presented.

4.2. The effect of load

In these runs, the bifurcation pipe model is con-
sidered but now the mesh is partitioned into different
numbers of parts. This allows us to study the effect of
data reordering with different mesh sizes or load per
processing core. To create different mesh partitions,
the mesh database (FMDB) is interfaced with Zoltan
library [7] where the graph based partitioning package
ParMETIS [15] is used. Table 4 lists the average num-
ber of mesh regions and vertices per part for different
partitions of an 8.8M element uniformly refined tetra-
hedral mesh. A wide range of average number of el-
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Fig. 7. Geometry and the mesh of AAA model.

Table 3

Data reordering effect on different phases of implicit FEA

Time in seconds (in %) Without Reordering of Reordering of
data reordering vertices only vertices and elements

Localization and globalization 61.5 (1.1%) 67.2 (1.2%) 27.9 (0.5%)

Sparse-matrix filling 163.8 (3.0%) 162.8 (3.1%) 132.2 (2.4%)

Element level integral 997.7 (18.4%) 998.6 (18.4%) 994.3 (18.3%)

Total of system formation 1520.4 (28.0%) 1524.1 (28.1%) 1429.9 (26.3%)

System solution 3894.9 (71.8%) 3005.7 (55.4%) 2992.8 (55.2%)

Total of analysis 5422.8 (100%) 4537.3 (83.6%) 4430.3 (81.7%)

Table 4

Average number of regions and vertices per part of an 8.8M region mesh of a bifurcation pipe model

Number of parts 128 256 512 1024 2048 4096 8192

Avg. rgn./part 68,856 34,463 17,231 8616 4308 2154 1077

Avg. vtx./part 14,020 7262 3780 1984 1050 560 306

ements per part is used, where it varies from as high
as (about) hundred thousand (required for large simu-
lations) on a partition with 128 parts to as few as sev-
eral thousand (useful for time critical runs) on a par-
tition with 8192 parts. It is worth noting that the av-
erage number of vertices per part does not decrease at
the same rate as the regions when a fixed-size prob-
lem is spread into more and more parts. For example,
14,020 is the average number of mesh vertices per part
in the partition with 128 parts and it is 306 in the 8192
part partition; which is about 39.7% higher relatively
(219 mesh vertices will be ideal based on the average
of 14,020 when going from 128 parts to 8192 parts).
This occurs due to an increase in mesh vertices shared
at inter-part boundaries. These tests are performed on
IBM Blue Gene/L at CCNI.

The performance improvement ratio obtained due to
data reordering for each partition is shown in Fig. 8.
The time usage of FEA solver with and without us-
ing data reordering algorithm along with improvement
is listed in Table 5. The algorithm has greater effect
on heavily loaded processing cores, which can be eas-
ily observed in Fig. 8. This happens because in the
run with heavily loaded parts (i.e., run on a lower
core count) relatively more time is spent accessing the
memory compared to the lightly loaded computation
(higher core count). Also the larger the data a given
part must hold, the smaller the percentage of total data
will be resident in cache, so more misses are more
likely when the data is randomly ordered and accessed.
The data reordering algorithm attempts to produce a
more uniform rate of accessing data from memory for
all mesh sizes. This algorithm improves the FEA per-
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Fig. 8. FEA solver performance improvement due to current data
reordering algorithm on a bifurcation pipe model on CCNI’s BG/L.

formance by 18.0% for the run on 128 parts, while it
improves 9.3% on the 4096 part run and 2.3% on the
8192 part run. Though the improvement diminishes as
the load is reduced, data reordering reduced the com-
putational time for all the test cases.

4.3. The effect of different architectures

Another example considers a 133.6M element non-
uniform, anisotropic, tetrahedral mesh created by ap-
plying mesh adaptation [24] on AAA model (see
Fig. 7). A Womersley profile [32] is applied at the in-
let and rigid vessel walls with no-slip boundary con-
dition are considered. At outlets a lumped parameter
boundary condition [28] is applied. The computation is
run for 20 steps and the time usage for different parti-
tions on different supercomputers with and without us-
ing data reordering algorithm is measured, see Table 6.
The performance improvement ratio obtained by ap-
plying the current data reordering algorithm is shown
in Fig. 9.

This result is consistent with the one shown in Sec-
tion 4.2 in that the data reordering algorithm has more
benefit in cases with heavily loaded processing cores
(i.e., in runs on lower number of processors). It also
suggests that the amount of performance gain that can
be achieved by applying data reordering algorithm is
dependent on the system architecture as well. In Ta-
ble 7 we summarize the supercomputer systems con-
sidered in this study.

The data reordering algorithm has a more signifi-
cant effect on the Blue Gene (up to 23.6% on BG/L
and up to 21.9% on BG/P) due to a much smaller L2
cache, which is a prefetch buffer against L3. The L2

cache of Blue Gene (BG/L and BG/P) is only 2 KB
in size compared with 1 MB in the case of Bigben
and 512 KB in the case of Ranger and Kraken. The
consequence of this dramatic difference in L2 cache
size is that 4096 Ranger/Kraken processing cores have
4K × 0.5 MB = 2 GB L2 cache in total, but same
number of processing cores on Blue Gene have only
4K × 2 KB = 8 MB L2 cache which is 1/256 of the
other systems. This cache size difference also explains
why the performance improvement diminishes when
reaching 4096 processing cores on Ranger, Bigben and
Kraken, but still has over 20% performance improve-
ment on Blue Gene systems. Because the L2 cache on
the Blue Gene systems is prefetch driven, the reorder-
ing algorithm has a greater sustained positive impact
on cache performance since it orders data items in such
a way as to make it obvious to the prefetcher which
data items to go after next.

4.4. Cache performance modeling

On the Cray XT5 (NICS Kraken), the hardware per-
formance tool of CrayPat is used to predict the penalty
due to cache misses. In these runs, the effect of data
reordering on the cases with different load per part is
studied by fixing the number of processing cores and
increasing the mesh size. Note this study is comple-
mentary to the strong scaling study (fixed-size prob-
lem distributed into different number of processing
cores) discussed earlier. Hardware counters provide
low-overhead access to a wealth of detailed perfor-
mance information related to CPU’s functional units,
caches and main memory, etc. The hardware perfor-
mance, specifically cache performance, is studied in
this section. In this study four meshes of different sizes
are used, where 8.8M element mesh of a bifurcation
pipe model (see Fig. 6) is adapted to obtain three ad-
ditional meshes of different sizes that have 22M, 42M
and 92M elements, respectively. Computation based
on each mesh involves 5 time steps on 128 cores (16
nodes). Table 8 compares the time usage of FEA solver
with and without using data reordering algorithm.

The NICS Kraken-XT5 system consists of compute
nodes with 2.3 GHz quad-core AMD Opteron proces-
sors (Barcelona). It has 64 KB L1 cache per core for
data (and same for instructions) with a 3 cycle la-
tency, a 512 KB L2 cache per core with a 12 cycle la-
tency [29], and 2 MB L3 cache shared among cores
on a socket (or quad-core processor) with a 38 cycle
latency [12]. Note that the 38 cycle latency is a re-
ported average. It turns out that the L3 cache may have
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Table 5

Time usage of FEA solver on a bifurcation pipe model on CCNI’s BG/L along with performance improvement

Number of parts 128 256 512 1024 2048 4096 8192

Without reordering (s) 5422.8 2643.1 1316.3 679.0 351.7 201.3 136.5

With reordering (s) 4430.3 2246.6 1100.0 587.8 320.7 182.6 133.3

Improvement (%) 18.0 15.0 16.4 13.4 8.8 9.3 2.3

Table 6

Time usage of FEA solver on an AAA model with and without using data reordering
algorithm on different supercomputers along with performance improvement

Number of parts 1024 2048 4096 8192

CCNI-BGL Without (s) 492.96 246.50 123.88 61.89

IBM BG/L With (s) 376.68 191.70 98.88 50.94

Improvement 23.6% 22.2% 20.2% 17.7%

Intrepid, ANL Without (s) 445.70 223.04 111.40 57.04

IBM BG/P With (s) 348.08 177.88 90.89 46.91

Improvement 21.9% 20.2% 18.4% 17.7%

Kraken, NICS Without (s) 133.27 59.66 31.23 –

Cray XT5 With (s) 118.99 56.12 30.74 –

Improvement 10.7% 5.9% 1.6% –

Ranger, TACC Without (s) 194.22 91.33 48.42 –

Sun Cluster With (s) 166.33 84.19 47.55 –

Improvement 14.4% 7.8% 1.8% –

Bigben, PSC Without (s) 155.53 64.51 30.03 –

Cray XT3 With (s) 132.31 57.65 28.92 –

Improvement 14.9% 10.6% 3.7% –

Fig. 9. FEA solver performance improvement using current data re-
ordering algorithm on an AAA model on various supercomputers
including IBM Blue Gene (CCNI-BGL and Intrepid-BGP), Cray
XT (Bigben-XT3 and Kraken-XT5) and Sun Constellation Cluster
(Ranger).

some additional latency for other reasons: (i) cache ac-
cess between the four cores is doled out in a round-
robin fashion, and (ii) FIFO buffers that sit in front of

this cache in order to deal with cores running at what
may be vastly different clock speeds. Additionally, the
speed of the Barcelona’s L3 cache varies between 1.8
and 2.0 GHz depending on the processor model [13].

The total penalty difference due to changes in cache
misses could be computed by a simplified model as:

(ΔL1_DCM ∗ L1_Latency

+ ΔL2_DCM ∗ L2_Latency

+ ΔL3_CM ∗ L3_Latency)/Clock_speed, (1)

where ΔL1_DCM is the change in L1 data cache
misses, ΔL2_DCM is the change in L2 data cache
misses, and ΔL3_CM is the change in L3 cache misses.
The CrayPat report of cache misses is listed in Table 9
and the penalty differences due to cache misses are
computed for the case with and without using the data
reordering algorithm based on Eq. (1). Note, L1_DCA
in the table refers to L1 data cache access. The penalty
differences due to cache misses (last column of Ta-
ble 9) are close to the differences measured in the exe-
cution time of the analysis with and without using data
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Table 7

Summary of systems considered in this study. SPN refers to sockets per node, CPCN to cores per compute node and CPS to cores per socket.
The tests reported in this paper use all the cores on each node. S refers to shared cache among cores on a socket while P refers to private cache
on cores of a socket

System name CCNI-BGL@RPI Intrepid@ALCF Bigben@PSC Ranger@TACC Kraken@NICS

System type IBM BG/L IBM BG/P Cray XT3 Sun Const. Cray XT5

Proc. type PPC 700 MHz PPC 850 MHz AMD 2.6 GHz AMD 2.3 GHz AMD 2.3 GHz

SPN 1 1 1 4 2

CPS 2 4 2 4 4

CPCN 2 4 2 16 8

L1 size 32 KB/core 32 KB/core 64 KB/core 64 K/core 64 KB/core

L2 size 2 KB/core 2 KB/core 1 MB/core (P) 512 KB/core 512 KB/core

L3 size 4 MB/socket (S) 8 MB/socket (S) – 2 MB/socket (S) 2 MB/socket (S)

Table 8

Time usage of FEA solver on different meshes with and without us-
ing data reordering algorithm on NICS Kraken-XT5

Mesh size 8.8M 22M 42M 92M

Without (s) 69.80 196.72 444.08 1091.62

With (s) 64.34 153.71 307.41 654.46

Difference (s) 5.46 43.01 136.27 437.15

reordering algorithm shown in the last row of Table 8.
For the case with 92M region mesh, the prediction of
time difference due to cache miss penalty (464.13 s) is
higher than the total difference observed in execution
time (437.15 s) with and without data reordering. This
is because the AMD Barcelona processor has an inno-
vative prefetching algorithm that attempts to prefetch
data in the L1 data cache and DRAM levels [29]. Due
to such a data prefetching capability, some of the cache
misses are hidden since the instruction pipeline will
not stall on prefetched data that misses at any level in
the cache. Thus, the time to service a cache miss is
not incurred as a real execution time penalty since in-
struction processing continues during the processing of
the cache miss. But at small mesh sizes, the amount of
main memory used is much less and so there is not as
much an opportunity to prefetch within a single itera-
tion.

Additionally, Table 9 shows that the most dramatic
improvement in memory hierarchy efficiency occurs
in the L2 data cache. Here, it is observed that for the
42M region mesh case, L2 data cache misses are 311%
higher without reordering than with reordering (e.g.,
5.3 billion without reordering vs. 1.7 billion with re-
ordering) and for the 92M region mesh case this trend
increases to 366% more cache misses without reorder-
ing (e.g., 14.3 billion without reordering vs. 3.9 billion
with reordering).

As mentioned before, these tests study the data re-
ordering effect on different load per core cases by fix-

ing the number of processing cores and increasing the
mesh size. The data in Table 9 is normalized by the
lightest loaded case (8.8M region mesh case), i.e., all
the values are divided by the first row in Table 9. The
normalized cache access and cache misses information
is provided in Table 10.

As the mesh size increases (from 8.8M to 22M,
42M and 92M), the computational load per part in-
creases to 2.5, 4.8 and 10.5 times, respectively. The L1
data cache access (L1_DCA) increases at the same ra-
tio, which is expected. It also worth noting that, for a
fixed-size problem on the same number of processing
cores, L1_DCA is expected to be very close (compar-
ing columns 2 and 6 in Table 9). The cache misses on
each of the L1, L2 and L3 levels increase as the prob-
lem size increases as well but not in a proportional way
due to fundamental differences in cache performance
created by reordering the data. Specifically, compar-
ing columns 3 and 7 we see that L1 cache misses in-
crease at a faster rate than the mesh size growth when
the data is not reordered. To see the difference in the
growth rates more clearly we have rescaled each row
of Table 10 by the first column and placed the results in
parentheses (e.g., 1.3 indicates a 30% relative increase
in cache misses for the largest mesh). The effect is even
more dramatic on the L2 cache (170%) and L3 cache
(100%) misses.

With data reordering, the increase in cache misses
is close to the rate of the problem size increasing. The
normalized L1_DCM by the relative problem size are
1.0, 1.0, 1.0 and 0.98, respectively with data reorder-
ing algorithm (column 7 of Table 10 in parentheses).
This confirms the observation in Section 4.2 that the
cases with heavily loaded cores spend disproportion-
ally more time accessing the memory compared to the
lightly loaded processors. L2 and L3 cache results are
less uniform but still show substantially more stable
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Table 9

Comparison of cache access and cache misses for different meshes of a bifurcation model on NICS Kraken-XT5 with and without using data
reordering

Mesh Without data reordering (bil.) With data reordering (bil.) Penalty
diff. (s)

L1_DCA L1_DCM L2_DCM L3_CM L1_DCA L1_DCM L2_DCM L3_CM

8.8M 32.9 3.1 0.5 1.8 32.9 2.5 0.3 1.6 5.13

22M 80.4 9.2 1.9 5.32 80.6 6.2 0.9 3.4 40.85

42M 152.7 18.9 5.3 13.5 153.1 11.9 1.7 7.9 120.43

92M 332.0 41.1 14.3 39.2 333.4 25.8 3.9 15.6 464.13

Table 10

Comparison of normalized cache access and cache misses for different meshes of a bifurcation model on NICS Kraken-XT5 with and without
using data reordering algorithm

Mesh Without data reordering With data reordering

L1_DCA L1_DCM L2_DCM L3_CM L1_DCA L1_DCM L2_DCM L3_CM

1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

2.5 (1.0) 2.4 (0.96) 3.0 (1.2) 3.8 (1.5) 3.0 (1.2) 2.4 (0.96) 2.5 (1.0) 3.0 (1.2) 2.1 (0.84)

4.8 (1.0) 4.6 (0.96) 6.1 (1.3) 10.6 (2.2) 7.5 (1.6) 4.7 (0.98) 4.8 (1.0) 5.7 (1.2) 4.9 (1.0)

10.5 (1.0) 10.1 (0.96) 13.4 (1.3) 28.6 (2.7) 21.8 (2.0) 10.1 (0.96) 10.3 (0.98) 13.0 (1.2) 9.75 (0.93)

Note: Case of 8.8M region mesh is taken as the base to normalize, i.e., normalized by the first row in Table 9. The information is normalized
again (see numbers in the parentheses) by the relative work load which is in the first column (of a given row) of this table.

Table 11

Scaling factors (se) of FEA solver on different meshes with and
without using data reordering algorithm on NICS Kraken-XT5

Mesh size 8.8M 22M 42M 92M

Without (se) 1.496 1.327 1.222 1.0

With (se) 0.973 1.018 0.972 1.0

Improvement 7.8% 21.9% 30.7% 40.0%

results as compared to cases without reordering. The
current data reordering algorithm improves the cache
performance in general and is reasonably successful at
producing the same rate of data access from memory
for all mesh sizes.

With this understanding of the cache performance,
we have the opportunity to revisit the data from Ta-
ble 8. Table 11 presents that data with rows 2 and 3
rescaled to give the time spent per element in the 92M
element case relative to the time spend per element
in the each case/column (e.g., se = (t92/92)/(ti/ni)
where ti is the time spent on the ith mesh (column) and
ni is the number of elements in the ith mesh). Without
data reordering we appear to have super-linear speedup
as we reduce the mesh size (better cache utilization due
to smaller range of data). With data ordering we have
a more scalable cache performance (much closer to 1).
While we have given up the passive super-linear per-
formance, the data ordering algorithm introduced here
has replaced it with something that is uniformly better.

Table 11 also shows the relative improvement in the
fourth row (i.e., row 4 divided by row 2 of Table 8).
Improvement is highest in the most heavily loaded case
(i.e., nearly 40% in the 92M element case).

It is worth noting that the time spent in reorder-
ing the mesh for all of the above studies is negligible
compared to the time spent in pre-processing the mesh
(preparing boundary conditions, initial conditions and
partitioning). This pre-processing time in turn is neg-
ligible compared to the analysis time for simulations
of practical interest. A review of Algorithm 2 confirms
that the reordering algorithm is O(n). We can further
confirm this order and that the constant is small by con-
sidering a fairly large example that results in a neg-
ligible relative cost. For example, the pre-processing
was performed on 512 processing cores on Intrepid
for the case on an AAA model with 133.6M elements.
The time on pre-processing was 190 s, while the time
spent on the data reordering was 7 s which is less than
one aggregate CPU. It takes 445.70 s to run 20 steps
of finite element analysis on 1024 Intrepid cores and
one cardiac cycle usually includes several thousand
time steps, e.g., 5000. After applying data reordering,
it takes 348.08 s for 20 steps. Data reordering saves ag-
gregate 6942 CPU hours on the finite element analysis
per cycle and it takes several cardiac cycles for finite
element to converge before next mesh adaptation and
pre-processing. This is a substantial savings in compu-
tational time.
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5. Conclusions

In this work, we have implemented and tested a data
reordering algorithm in a finite element analysis flow
solver that improves the flop rate by relabeling mesh
regions and mesh vertices. Mesh entities are reordered
such that those visited one after another are topologi-
cally close to each other. This algorithm improves the
usage of the memory hierarchy during on processor
calculations. Two examples are considered, one is a bi-
furcation pipe model and the other is an abdominal aor-
tic aneurysm model. The following strategies are em-
phasized to demonstrate the usefulness of current data
reordering algorithm:

• The first test was on an 8.8M region mesh of a
bifurcation pipe model where the relative impact
of the data reordering algorithm on each phase of
FEA solver was studied. Results showed that the
reordering of both the vertices and regions simul-
taneously is important in the equation formation
phase while reordering of vertices improves per-
formance in equation solution stage.

• In the second test, same 8.8M region mesh of a
bifurcation pipe model was partitioned into differ-
ent number of parts, which yields different aver-
age work load per part. This test indicates that the
improvement due to the data reordering algorithm
decays as the parts become lightly loaded.

• A similar test was performed on a much larger
mesh (133.6M regions) on an AAA model consid-
ering different architectures including IBM Blue
Gene (BG/L and BG/P), Cray XT (XT3 and XT5)
and Sun Constellation Cluster. It additionally sug-
gests that the amount of performance gain that
can be achieved by applying data reordering algo-
rithm is dependent on the system architecture as
well.

• In the last test on Cray XT5, the data reordering
effect was studied with different working load per
part by fixing the number of processing cores and
increasing the mesh size. The hardware perfor-
mance tool of CrayPat was used to measure the
cache misses. This data was combined with an es-
timate of the miss penalty, to model the acceler-
ation achieved by the FEA solver with data re-
ordering. It closely accounts for the observed de-
crease in the overall execution time.

Future work will include the data reordering algorithm
using alternative mesh database descriptions (e.g., re-
duced complete representation) and alternative dis-
cretizations (e.g., higher order finite elements or vari-
ous finite volume discretizations).
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