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Abstract For the purpose of efficiently supporting par-
allel mesh-based simulations, we developed a partition
model and a distributed mesh data management system
that is able to shape its mesh data structure dynamically
based on the user’s representational needs to provide
the needed representation at a minimum cost (memory
and time), called Flexible distributed Mesh DataBase
(FMDB). The purpose of the partition model is to rep-
resent mesh partitioning and support mesh-level parallel
operations through inter-processor communication links.
FMDB has been used to efficiently support parallel au-
tomated adaptive analysis processes in conjunction with
existing analysis engines.

1 Introduction

An automated adaptive analysis typically starts with
a coarse mesh and a low-order numerical solution of
a problem and based on an estimate of the local dis-
cretization error either refines the mesh (h-refinement),
increases the order of numerical solution (p-refinement),
moves the mesh (r-refinement), or does combinations of
h-, p- and r-refinements to improve the quality of the so-
lution [1,2]. To run adaptive analysis in parallel, solvers
and adaptation steps should run on distributed meshes
partitioned over multiple processors [3].

A distributed mesh data structure is an infrastruc-
ture executing underneath providing all parallel mesh-
based operations needed to support parallel adaptive
analysis. An efficient and scalable distributed mesh data
structure is mandatory to achieve performance since it
strongly influences the overall performance of adaptive
mesh-based simulations. In addition to the general mesh-
based operations [4], such as mesh entity creation/deletion,
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adjacency and geometric classification, iterators, arbi-
trary attachable data to mesh entities, etc., the dis-
tributed mesh data structure must support (i) efficient
communication between entities duplicated over multi-
ple processors, (ii) migration of mesh entities between
processors, and (iii) dynamic load balancing.

Papers have been published on the issues of parallel
adaptive analysis including parallel mesh generation [5–
11], dynamic mesh load balancing techniques [12–16],
and data structure and algorithms for parallel struc-
tured [17–20] or unstructured mesh adaptation [11,21–
27].

Parashar and Browne presented a distributed mesh
data structure for parallel non-conforming h-refinement
called DAGH (Distributed Adaptive Grid Hierarchy) [20].
DAGH represents a mesh with grid hierarchy. In case of
a distributed grid, inter-grid operations are performed
locally on each processor without involving any commu-
nication or synchronization due to the mesh refinement is
non-conforming. The mesh load balancing is performed
by varying granularity of the DAGH blocks.

LibMesh [23] is a distributed mesh data structure
developed at the university of Texas in order to sup-
port parallel finite element simulations with refinement.
It opted the classic element-node data structure support-
ing only h- uniform refinement and serial mesh partition-
ing for initial distribution.

Reference [28] presented a distributed mesh data str-
cuture to support parallel adaptive numerical computa-
tion based on refinement and coarsening [22]. A mesh
data consists of vertices, edges and regions with a linked
list data structure and maintains the shared processor
lists for entities on partition boundaries through the
message passing. Global identifiers are assigned to ev-
ery entity, thus, all data structure are updated to con-
tain consistent global information during adaptation. It
provided the owning processor of shared entities which is
randomly selected and the dynamic mesh load balancing
with ParMETIS [29].
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In reference [26], Selwood and Berzins presented a
general distributed mesh data structure that supports
parallel mesh refinement and de-refinement. It represents
a mesh with all d level mesh entities and adjacencies, and
provides dynamic load balancing with the Zoltan [30]
library. In order to be aware of the part of the mesh
distributed on other processors, the pointers to the ad-
jacent tetrahedron that are on other processors are kept
for each processor.

Reference [14,21] presented a general distributed mesh
data structure called PMDB (Parallel Mesh DataBase),
which was capable of supporting parallel adaptive sim-
ulations. In PMDB, the data related to mesh partition-
ing were kept at the mesh entity level and the inter-
processor links were managed by doubly-linked struc-
tures. These structures provided query routines such as
processor adjacency, lists of entities on partition bound-
aries, and update operators such as insertion and dele-
tion of these entities. The owning processor of an entity
on the partition boundary was determined to the proces-
sor with minimum processor id. In reference [15], PMDB
was enhanced with addition of RPM (Rensselaer Parti-
tion Model) that represents heterogeneous processor and
network of workstations, or some combination of these
for the purpose of improving performance by accounting
for resources of parallel computers.

Most of distributed mesh data structures published
to date are shaped to specific mesh applications [11,20,
23,28] or support only part of adaptive analysis such as
refinement step [18–20,23,24] or are able to handle only
manifold meshes [11,15,19,20,23,24,26–28]. The devel-
opment of the general distributed mesh data structure to
efficiently support parallel adaptive analysis procedures
including the solvers and the adaptation procedures is
not trivial due to data structure comlexity, the nature
of the mesh with non-manifold models, the consistently
evolving nature in the mesh as it is adapted, and the
needs for dynamic load balancing.

The current paper presents a new parallel mesh in-
frastructure capable of handling general non-manifold
[31,32] models and effectively supporting automated adap-
tive analysis. The resulting parallel mesh infrastructure,
referred to as Flexible distributed Mesh DataBase (FMDB),
is a distributed mesh data management system that is
capable of shaping its data structure dynamically based
on the user’s requested mesh representation [33]. This
paper focuses on the design and implementation of the
distributed mesh data structure in the FMDB. Two re-
lated papers cover issues of flexibility in the FMDB [34]
and the software engineering aspects of the FMDB [33].

1.1 Nomenclature

V the model, V ∈ {G, P , M} where G

signifies the geometric model, P signi-
fies the partition model, and M signifies
the mesh model.

{V {V d}} a set of topological entities of dimension
d in model V .

V d
i the ith entity of dimension d in model

V . d = 0 for a vertex, d = 1 for an edge,
d = 2 for a face, and d = 3 for a region.

{∂(V d
i )} set of entities on the boundary of V d

i .
{V d

i {V q}} a set of entities of dimension q in model
V that are adjacent to V d

i .
V d

i {V q}j the jth entity in the set of entities of di-
mension q in model V that are adjacent
to V d

i .

Udi

i < V
dj

j classification indicating the unique as-

sociation of entity Udi

i with entity V
dj

j ,
di ≤ dj , where U , V ∈ {G, P , M} and
U is lower than V in terms of a hierar-
chy of domain decomposition.

P[Md
i ] set of partition id(s) where entity Md

i

exists.
Examples
{M{M2}} the set of all the faces in the mesh.
{M1

3 {M
3}} the mesh regions adjacent to mesh edge

M1
3 .

M3
1 {M

1}2 the 2nd edge adjacent to mesh region
M3

1 .

2 General Topology-based Mesh Data Structure

The structures used to support the problem definition,
the discretization of the model and their interactions are
central to mesh-based analysis methods like finite ele-
ment and finite volumes. The geometric model houses
the topological and shape description of the domain of
the problem of interest. The mesh describes the dis-
cretized representation of the domain used by the anal-
ysis method. The linkage of the mesh to the geometric
model, referred to as geometric classification, is critical
for mesh generation and adaptation procedures since it
allows the specification of analysis attributes in terms of
the original geometric model, the proper approximation
of the geometry during mesh adaptation and supports
direct links to the geometric shape information of the
original domain needed to improve geometric approxi-
mation and useful in p-version element integration [4,
35].

The mesh consists of a collection of mesh entities
of controlled size, shape, and distribution. The relation-
ships of the entities defining the mesh are well described
by topological adjacencies, which form a graph of the
mesh. The three functional requirements of a general
topology-based mesh data structure are topological en-
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tities, geometric classification, and adjacencies between
entities [4].

Topology provides an unambiguous, shape-independent,
abstraction of the mesh. With reasonable restrictions on
the topology [4], a mesh is represented with only the ba-
sic 0 to d dimensional topological entities, where d is
the dimension of the domain of the interest. The full
set of mesh entities in 3D is {{M{M0}}, {M{M1}},
{M{M2}}, {M{M3}}}, where {M{Md}}, d = 0, 1, 2, 3,
are, respectively, the set of vertices, edges, faces and re-
gions. Mesh edges, faces, and regions are bounded by the
lower order mesh entities.

Geometric classification defines the relation of a mesh
to a geometric model. The unique association of a mesh
entity of dimension di, Mdi

i , to the geometric model en-

tity of dimension dj , G
dj

j , where di ≤ dj , on which it lies

is termed geometric classification and is denoted Mdi

i <

G
dj

j , where the classification symbol, <, indicates that
the left hand entity, or a set of entities, is classified on
the right hand entity.

Adjacencies describe how mesh entities connect to
each other. For an entity of dimension d, adjacency, de-
noted by {Md

i {M
q}}, returns all the mesh entities of

dimension q, which are on the closure of the entity for a
downward adjacency (d > q), or for which the entity is
part of the closure for an upward adjacency (d < q).

There are many options in the design of the mesh
data structure in terms of the entities and adjacencies
stored. If a mesh representation stores all 0 to d level en-
tities explicitly, it is a full representation, otherwise, it
is a reduced representation. Completeness of adjacency
indicates the ability of a mesh representation to provide
any type of adjacencies requested without involving an
operation dependent on the mesh size such as the global
mesh search or mesh traversal. Regardless of full or re-
duced, if all adjacency information is obtainable in O(1)
time, the representation is complete, otherwise, it is in-
complete.

We assume full and complete mesh representations
throughout this paper.

3 Distributed Mesh Representation

3.1 Definitions and properties

A distributed mesh is a mesh divided into partitions for
distribution over a set of processors for specific reasons,
for example, parallel computation.

Definition 1 (Partition) A partition Pi consists of the
set of mesh entities assigned to ith processor. For each
partition, the unique partition id can be given.

Each partition is treated as a serial mesh with the ad-
dition of mesh partition boundaries to describe groups
of mesh entities that are on inter-partition boundaries.

P1 P2

P0

M0
1

boundary
partition

M1
j

Fig. 1 Distributed mesh on three partitions P0, P1 and
P2 [27]

Mesh entities on partition boundaries are duplicated on
all partitions on which they are used in adjacency rela-
tions. Mesh entities not on the partition boundary exist
on a single partition. Figure 1 depicts a mesh that is dis-
tributed on 3 partitions. Vertex M0

1 is common to three
partitions and on each partition, several mesh edges like
M1

j are common to two partitions. The dashed lines are
partition boundaries that consist of mesh vertices and
edges duplicated on multiple partitions.

In order to simply denote the partition(s) that a mesh
entity resides, we define an operator P.

Definition 2 (Residence partition operator P[Md
i ])

An operator that returns a set of partition id(s) where
Md

i exists.

Definition 3 (Residence partition equation)
If {Md

i {M
q}} = ∅, d < q, P[Md

i ] = {p} where p is the
id of a partition on which Md

i exists. Otherwise,
P[Md

i ] = ∪ P[M q
j | Md

i ∈ {∂(M q
j )}].

For any entity Md
i not on the boundary of any other

mesh entities and on partition p, P[Md
i ] returns {p}

since when the entity is not on the boundary of any other
mesh entities of higher order, its residence partition is de-
termined simply to be the partition where it resides. If
entity Md

i is on the boundary of any higher order mesh
entities, Md

i is duplicated on multiple partitions depend-
ing on the residence partitions of its bounding entities
since Md

i exists wherever a mesh entity it bounds exists.
Therefore, the residence partition(s) of Md

i is the union
of residence partitions of all entities that it bounds. For
a mesh topology where the entities of order d > 0 are
bounded by entities of order d−1, P[Md

i ] is determined
to be {p} if {Md

i {M
d+1

j }} = ∅. Otherwise, P[Md
i ] is ∪

P[Md+1

j | Md
i ∈ {∂(Md+1

j )}]. For instance, for the 3D

mesh depicted in Figure 2, where M3
1 and M2

1 are on
P0, M3

2 and M2
2 are on P1 and M1

1 is on P2, residence
partition ids of M0

1 are {P0, P1, P2} since the union
of residence partitions of its bounding edges, {M1

1 , M1
2 ,

M1
3 , M1

4 , M1
5 , M1

6 }, are {P0, P1, P2}.
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Fig. 2 Example 3D mesh distributed on 3 partitions

To migrate mesh entities to other partitions, the des-
tination partition id’s of mesh entities must be deter-
mined properly before moving the mesh entities. The
residence partition equation implies that once the desti-
nation partition id of Md

i that is not on the boundary of
any other mesh entities is set, the other entities needed to
migrate are determined by the entities it bounds. Thus,
a mesh entity that is not on the boundary of any higher
order mesh entities is the basic unit to assign the desti-
nation partition id in the mesh migration procedure.

Definition 4 (Partition object) The basic unit to which
a destination partition id is assigned. The full set of
partition objects is the set of mesh entities that are not
part of the boundary of any higher order mesh entities.
In a 3D mesh, this includes all mesh regions, the mesh
faces not bounded by any mesh regions, the mesh edges
not bounded by any mesh faces, and mesh vertices not
bounded by any mesh edges.

In case of a manifold model, partition objects are all
mesh regions in 3D and all mesh faces in 2D. In case of
non-manifold model, the careful lookup for entities not
being bounded is required over the entities of one specific
dimension. For example, partition objects of the mesh in
Figure 2 are M1

1 , M2
1 , M2

2 , M3
1 , and M3

2 .

3.2 Functional requirements of distributed meshes

Functional requirements of the mesh data structure for
supporting mesh operations on distributed meshes are:

– Communication links: Mesh entities on the parti-
tion boundaries (shortly, partition boundary entities)
must be aware of where they are duplicated.

Definition 5 (Remote partition) Non-self parti-
tion1 where a mesh entity is duplicated.

1 A partition which is not the current local partition

Definition 6 (Remote copy) The memory loca-
tion of a mesh entity duplicated on remote partition.

In parallel adaptive analysis, the mesh and its parti-
tioning can change thousands of time during the sim-
ulation. Therefore, at the mesh functionality level,
efficient mechanism to update mesh partitioning and
keep the links between partitions updated are manda-
tory to achieve scalability.

– Entity ownership: For entities on partition bound-
aries, it is beneficial to assign a specific copy as the
owner of the others and let the owner be in charge of
communication or computation between the copies.
There are 2 common strategies in determining the
owning partition of partition boundary entities.
– Static entity ownership: The owning partition of a

partition boundary entity is always fixed to Pi re-
gardless of mesh partitioning [15,21]. It has been
observed that the static entity ownership pro-
duces mesh load imbalance in adaptive analysis.

– Dynamic entity ownership: The owning partition
of the partition boundary entity is dynamically
specified [28].

For the dynamic entity ownership, there can be sev-
eral options in determining owning processor of mesh en-
tities. With the FMDB, entity ownership is determined
based on the rule of the poor-to-rich ownership, which as-
signs the poorest partition to the owner of entity, where
the poorest partition is the partition that has the least
number of partition objects among residence partitions
of the entity. With this scheme, mesh load balance is kept
during adaptive mesh control simulations since the local
mesh migration procedure performed during mesh adap-
tation to gain the necessary entities for a specific mesh
modification operator [25,36] always migrates entities to
poor partitions improving the overall performance of the
parallel simulation.

4 A Partition Model

To meet the goals and functionalities of distributed meshes,
a partition model has been developed between the mesh
and the geometric model. As illustrated in Figure 3, the
partition model can be viewed as a part of hierarchi-
cal domain decomposition. Its sole purpose is to repre-
sent mesh partitioning in topology and support mesh-
level parallel operations through inter-partition bound-
ary links with ease.

The specific implementation is the parallel extension
of the FMDB, such that standard FMDB entities and
adjacencies are used on processors only with the addition
of the partition entity information needed to support all
operations across multiple processors.
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Fig. 3 Hierarchy of domain decomposition: geometry model, partition model, and the distributed mesh on 4 processors
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Fig. 4 Distributed mesh and its association with the partition model via partition classifications

4.1 Definitions

The partition model introduces a set of topological en-
tities that represent the collections of mesh entities based
on their locations with respect to the partitioning. Group-
ing mesh entities to define a partition entity can be done
with multiple criteria based on the level of functionalities
and needs of distributed meshes.

At a minimum, residence partition must be the cri-
terion to be able to support the inter-partition commu-
nications. Connectivity between entities is also desirable
for the criterion to support some operations quickly and
can be used optionally. Two mesh entities are connected

if they are on the same partition and reachable via ad-
jacency operations. The connectivity is expensive but
useful in representing separate chunks in a partition. It
enables to diagnose the quality of mesh partitioning im-
mediately at the partition model level. In our implemen-
tation, for the efficiency purpose, only residence parti-
tion is used for the criterion. Definition 7 defines the
partition model entity based on the residence partition
criterion.

Definition 7 (Partition (model) entity) A topologi-
cal entity in the partition model, P d

i , which represents a
group of mesh entities of dimension d that have the same

P. Each partition model entity is uniquely determined
by P.

Each partition model entity stores dimension, id, res-
idence partition(s), and the owning partition. From a
mesh entity level, by keeping proper relation to the par-
tition model entity, all needed services to represent mesh
partitioning and support inter-partition communications
are easily supported.

Definition 8 (Partition classification) The unique as-
sociation of mesh topological entities of dimension di,
Mdi

i , to the topological entity of the partition model of di-

mension dj, P
dj

j where di ≤ dj, on which it lies is termed

partition classification and is denoted Mdi

i < P
dj

j .

Definition 9 (Reverse partition classification) For
each partition entity, the set of equal order mesh enti-
ties classified on that entity defines the reverse partition
classification for the partition model entity. The reverse
partition classification is denoted as RC(P d

j ) = {Md
i |

Md
i < P d

j }.

Figure 4 illustrates a distributed 3D mesh with mesh
entities labeled with arrows indicating the partition clas-
sification of the entities onto the partition model entities
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and its associated partition model. The mesh vertices
and edges on the thick black lines are classified on par-
tition edge P 1

1 and they are duplicated on three parti-
tions P0, P1, and P2. The mesh vertices, edges and faces
on the shaded planes are duplicated on two partitions
and they are classified on the partition face pointed with
each arrow. The remaining mesh entities are not dupli-
cated, therefore they are classified on the corresponding
partition region. Note the reverse classification returns
only the same order mesh entities. The reverse parti-
tion classification of P 1

1 returns mesh edges on the thick
black lines. The reverse partition classification of parti-
tion face P 2

i returns mesh faces on each corresponding
shaded plane, i = 1, 2, 3.

4.2 Building a partition model

When the partition model entities are uniquely defined
with the two criteria of residence partition and connec-
tivity between entities, the following rules govern the
creation of a corresponding partition model and specify
the partition classification of mesh entities:

1. High-to-low mesh entity traversal : The partition clas-
sification is set from high order to low order entity
(residence partition equation).

2. Inheritance-first : If Md
i ∈ {∂(M q

j )} and P[Md
i ] =

P[M q
j ], Md

i inherits the partition classification from
M

q
j as a subset of the partitions it is on.

3. Connectivity-second : If Md
i and Md

j are connected

and P[Md
i ] = P[Md

j ], Md
i and Md

j are classified on
the same partition entity.

4. Partition entity creation-last : If neither of rule 2 nor
3 applies for Md

i , a new partition entity P d
j is created.

Rule 2 means if the residence partitions of Md
i is iden-

tical to those of its bounding entity of higher order, M
q
j ,

it is classified on the partition entity that M
q
j is clas-

sified on. For example, in Figure 4(a), any mesh faces,
edges and vertices that are not on shaded planes nor on
the thick black line are classified on the partition region
by inheriting partition classification from the regions it
bounds. Note multiple inheritance produces unique par-
tition classification. For instance, internal mesh faces on
partition P0 which are not on shaded planes can inherit
partition classification from any of its bounding regions.
However, the derived partition classification will always
be P 3

1 regardless of the region it was derived from. Rule
3 is applied when Rule 2 is not satisfied. Rule 3 means
if residence partitions of Md

i and Md
j are the same and

they are connected, Md
i is classified on the same parti-

tion entity where Md
j classified on. When neither Rule

2 nor Rule 3 is satisfied, Rule 4 applies, thus a new par-
tition entity of dimension d is created for the partition
classification of entity Md

i .

5 Efficient Mesh Migration

The mesh migration procedure migrates mesh entities
from partition to partition. It is performed frequently in
parallel adaptive analysis to re-gain mesh load balance,
to obtain the mesh entities needed for mesh modifica-
tion operators or to distribute a mesh into partitions.
The efficient mesh migration algorithm with minimum
resources (memory and time) and parallel operations
designed to maintain the mesh load balance through-
out the computation are the most important factors for
high performance in parallel adaptive mesh-based simu-
lations. This section describes the mesh migration algo-
rithm based on full, complete mesh representations.

Figure 5(a) and (b) illustrate the 2D partitioned mesh
and its associated partition model to be used as for the
example of mesh migration throughout this section. In
Figure 5(a), the partition classification of entities on the
partition boundaries is denoted with the lines of the
same pattern in Figure 5(b). For instance, M0

1 and M1
4

are classified on P 1
1 , and depicted with the dashed lines

as P 1
1 . In Figure 5(b). the owning partition of a partition

model edge (resp. vertex) is illustrated with thickness
(resp. size) of lines (resp. circle). For example, the own-
ing partition of partition vertex P 0

1 is P0 since P0 has
the least number of partition objects among 3 residence
partitions of P 0

1 . Therefore P 0
1 on P0 is depicted with a

bigger-sized circle than P 0
1 on P1 or P2 implying that P0

is the owning partition of P 0
1 .

The input of the mesh migration procedure is a list
of partition objects to migrate and their destination par-
tition ids, called, for simplicity, POsToMove. Given the
initial partitioned mesh in Figure 5(a), we assume that
the input of the mesh migration procedure is <(M2

1 ,2),
(M2

7 ,3), (M2
8 ,3)>; M2

1 will migrate to P2 and M2
7 and

M2
8 will migrate to P3. Partition P3 is currently empty.
Algorithm 1 is the pseudo code of the mesh migration

procedure.

5.1 Step 1: Preparation

For a given list of partition objects to migrate, Step 1
collects a set of entities to be updated by migration. The
entities collected for the update are maintained in vector
entsToUpdt, where entsToUpdt [i] contains the entities of
dimension i, i = 0, 1, 2, 3. With a single program multiple
data paradigm [37] in parallel, each partition maintains
the separate entsToUpdt [i] with different contents.

For the example mesh, the contents of entsToUpdt
by dimension for each partition is given in Table 1. Only
entities listed in Table 1 will be affected by the remain-
ing steps in terms of their location and partitioning-
related internal data. entsToUpdt [2] contains the mesh
faces to be migrated from each partition. entsToUpdt [1]
contains the mesh edges which bound any mesh face in
entsToUpdt [2] and their remote copies. entsToUpdt [0]
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Fig. 5 Example of 2D mesh migration

Table 1 The contents of vector entsToUpdt after Step 1

P0 P1 P2

entititesToProcess[0] M0

1 , M0

4 , M0

5 M0

1 , M0

5 , M0

6 , M0

9 M0

4 , M0

5 , M0

8 , M0

9

entititesToProcess[1] M1

3 , M1

4 , M1

8 M1

4 , M1

9 , M1

13, M1

14 M1

8 , M1

12, M1

13, M1

16

entititesToProcess[2] M2

1 M2

8 M2

7
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Data : M , POsToMove

Result : migrate partition objects in POsToMove

begin

/∗ Step 1: collect entities to process and clear
partitioning data. See §5.1 ∗/
for each Md

i ∈ POsToMove do

insert Md
i into vector entsToUpdt [d];

reset partition classification and P;
for each Mq

j ∈ {∂(Md
i )} do

insert Mq
j into entsToUpdt [q];

reset partition classification and P;
endfor

endfor

/∗ Step 2: determine residence partition. See
§5.2 ∗/
for each Md

i ∈ entsToUpdt[q] do

set P of Md
i ;

endfor

do one-round communication to unify P of
partition boundary entities;
/∗ Step 3: update partition classification and
collect entities to remove. See §5.3 ∗/
for d ← 3 to 0 do

for each Md
i ∈ entsToUpdt[d] do

determine partition classification;
if Plocal /∈ P[Md

i ] do

insert Md
i into entsToRmv[d];

endif
endfor

endfor

/∗ Step 4: exchange entities. See §5.4 ∗/
for d ← 0 to 3 do

M exchngEnts(entsToUpdt[d]); /∗ Algorithm
2 ∗/

endfor

/∗ Step 5: remove unnecessary entities. See §5.5
∗/
for d ← 3 to 0 do

for each Md
i ∈ entsToRmv[d] do

if Md
i is on partition boundary do

remove copies of Md
i on other

partitions;
endif

remove Md
i ;

endfor
endfor

/∗ Step 6: update ownership. See §5.6 ∗/
for each P d

i in P do

owning partition of P d
i ← the poorest

partition among P[P d
i ];

endfor
end

Algorithm 1: M migrate(M , POsToMove)

contains the mesh vertices that bound any mesh edge
in entsToUpdt [1] and their remote copies. The partition
classification and P of entities in entsToUpdt are cleared
for further update.

Data : entsToUpdt[d]

Result : create entities on the destination partitions
and update remote copies

begin

/∗ Step 4.1: send a message to the destination
partitions ∗/
for each Md

i ∈ entsToUpdt[d] do

if Plocal 6= minimum partition id where Md
i

exists
continue;

endif

for each partition id Pi ∈ P[Md
i ] do

if Md
i exists on partition Pi (i.e. Md

i has
remote copy of Pi)

continue;
endif

send message A (address of Md
i on

Plocal, information of Md
i ) to Pi;

endfor
endfor

/∗ Step 4.2: create a new entity and send the
new entity information to the broadcaster ∗/
while Pi receives message A (address of Md

i on
Pbc, information of Md

i ) from Pbc do

create Md
i with the information of Md

i ;
if Md

i 6= partition object
send message B (address of Md

i on Pbc,
address of Md

i created) to Pbc;
endif

end

/∗ Step 4.3: the broadcaster sends the new
entity information ∗/
while Pbc receives message B (address of Md

i on
Pbc, address of Md

i on Pi) from Pi do

Md
i ← entity located in the address of Md

i

on Pbc;
for each remote copy of Md

i on remote
partition Premote do

send message C (address of Md
i on

Premote, address of Md
i on Pi, Pi) to

Premote;
endfor

Md
i saves the address of Md

i on Pi as for the
remote copy on Pi;

end

/∗ Step 4.4: update remote copy information ∗/
while Premote receives message C (address of
Md

i on Premote, address of Md
i on Pi, Pi) from

Pbc do

Md
i ← entity located in the address of Md

i

on Premote;
Md

i saves the address of Md
i on Pi as for the

remote copy on Pi;
end

end

Algorithm 2: M exchngEnts(entsToUpdt[d])
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5.2 Step 2: Determine residence partition(s)

Step 2 determines P of the entities according to the res-
idence partition equation. For each entity which bounds
the higher order entity, it should be determined if the
entity will exist on the current local partition, denoted
as Plocal, after migration to set P. Existence of the en-
tity on Plocal after migration is determined by checking
adjacent partition objects, i.e., checking if there’s any
adjacent partition object to reside on Plocal. One round
of communication is performed at the end to exchange
P of the partition boundary entities to unify them be-
tween remote copies. See §6.2.2 and §6.2.3 for the typical
pseudo codes for a round of communication.

5.3 Step 3: Update the partition classification and
collect entities to remove

For the entities in entsToUpdt, based on P, Step 3 re-
freshes the partition classification to reflect a new up-
dated partition model after migration, and determines
the entities to remove from the local partition, Plocal. An
entity is determined to remove from its local partition
if P of the entity doesn’t contain Plocal. Figure 5(d) is
the partition model updated based on the new partition
topology.

5.4 Step 4: Exchange entities

Since an entity of dimension > 0 is bounded by lower di-
mension entities, mesh entities are exchanged from low
to high dimension. Step 4 exchanges entities from di-
mension 0 to 3, creates entities on the destination par-
titions, and updates the remote copies of the entities
created on the destination partitions. Algorithm 2 illus-
trates the pseudo code that exchanges the entities con-
tained in entsToUpdt[d], d = 0, 1, 2, 3.

Step 4.1 sends the messages to destination partitions
to create new mesh entities. Consider entity Md

i dupli-
cated on several partitions needs to be migrated to Pi. In
order to reduce the communications between partitions,
only one partition sends the message to Pi to create Md

i .
The partition to send the message to create Md

i is the
partition of the minimum partition id among residence
partitions of Md

i . The partition that sends messages to
create a new entity is called broadcaster, denoted as Pbc.
The broadcaster is in charge of creating as well as updat-
ing Md

i over all partitions. For instance, among 3 copies
of vertex M0

5 in Figure 5(a), P0 will be the broadcaster of
M0

5 since its partition id is the minimum among P[M0
5 ].

The arrows in Figure 5(c) indicate the broadcaster of
each entity to migrate. Before sending a message to Pi,
Md

i is checked if it already exists on Pi using the remote
copy information and ignored if exists.

For each Md
i to migrate, Pbc of Md

i sends a message
composed of the address of Md

i on Pbc and the infor-
mation of Md

i necessary for entity creation, which con-
sists of unique vertex id (if vertex), entity shape informa-
tion, required entity adjacencies, geometric classification
information, residence partition(s) for setting partition
classification, and remote copy information.

For instance, to create M0
5 on P3, P0 sends a message

composed of the address of M0
5 on P0 and information

of M0
5 including its P (i.e., P1, P2, and P3) and remote

copy information of M0
5 stored on P0 (i.e. the address of

M0
5 on P2 and the address of M0

5 on P3).

For the message received on Pi from Pbc (sent in Step
4.1), a new entity Md

i is created on Pi. If the new entity
Md

i created is not a partition object, its address should
be sent to back to the sender (Md

i on Pbc) for the update
of communication links. The message to be sent back to
Pbc is composed of the address of Md

i on Pbc and the
address of new Md

i created on Pi. For example, after M0
5

is created on P3, the message composed of the address
of M0

5 on P0 and the address of M0
5 on P3 is sent back

to P0.

In Step 4.3, the message received on Pbc from Pi (sent
in Step 4.2) are sent to the remote copies of Md

i on
Premote and the address of Md

i on Pi is saved as the
remote copy of Md

i . The messages sent are received in
Step 4.4 and used to save the address of Md

i on Pi on
all the remaining remote partitions of Md

i . For instance,
M0

5 on P0 sends the message composed of the address of
M0

5 on P3 to M0
5 on P1 and M0

5 on P2.

For the message received on Premote from Pbc (sent
in Step 4.3), Step 4.4 updates the remote copy of Md

i on
Premote to include the address of Md

i on Pi. For instance,
when M0

5 ’s on P1 and P2 receive the message composed
of the address of M0

5 on P3, they add it to their remote
copy.

5.5 Step 5: Remove unnecessary entities

Step 5 removes unnecessary mesh entities collected in
Step 3 which will be no longer used on the local par-
tition. If the mesh entity to remove is on the partition
boundary, it also must be removed from other partitions
where it is kept as for remote copies through one round
of communication. As for the opposite direction of entity
creation, entities are removed from high to low dimen-
sion.

5.6 Step 6: Update ownership

Step 6 updates the owning partition of the partition
model entities based on the rule of the poor-to-rich parti-
tion ownership. The partition model given in Figure 5(e)
is the final partition model with ownership.
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FMDB::mEntity

FMDB::mMesh

*

*

*

*

gModel

*
gEntity

createdFrom

classifiedOn

constructedFrom

classifiedOn

*

FMDB::pModel

FMDB::pEntity

Fig. 6 Class diagram of G, M and P

6 S/W Design and Implementations

FMDB is implemented in C++ and includes advanced
C++ programming elements, such as the STL (Standard
Template Library) [38], functors [39], templates [40], sin-
gletons [41], and generic programming [42] for the pur-
pose of achieving reusability of the software. MPI (Mes-
sage Passing Interface) [37,43] and Autopack [44] are
used for efficient parallel communications between pro-
cessors. The Zoltan library [30] is used to make partition
assignment during dynamic load balancing.

6.1 Class definition

Figure 6 illustrates the relationship between the geomet-
ric model, the partition model, the mesh and their enti-
ties using the Unified Modeling Language notation [45].
A geometric model, gModel, is a collection of geometric
model entities, gEntity. A partition model, pModel, is a
collection of partition model entities, pEntity, and it is
constructed from a set of mesh entities assigned to par-
titions. A mesh, mMesh, is a collection of mesh entities,
mEntity, and it is created from gModel using a mesh
generation procedure. The mesh maintains its current
classification against a geometric model, gModel, and a
partition model, pModel.

When a mesh entity is on the partition boundaries,
its remote copies and remote partitions are maintained.
The pairs of remote copy and remote partition of each
mesh entity is stored in the STL map since remote copy
and remote partition are one-to-one mapped. Iteration
over remote copies is provided through STL-like itera-
tors.

The partition model acts as a container for partition
model entities. All partition model entities are stored in
an STL set since they are unique and iterated through
STL-like iterators. It provides member functions such as
updating the owning partition of partition model entities
and computing partition classification of a mesh entity.
Since a partition model must be instantly updated as the
mesh partitioning is changed, each partition model in-
stance maintains the relation back to the corresponding
distributed mesh.

Each partition model entity stores id, dimension, the
owning partition id, and the set of residence partitions
as its member data. Residence partitions of a partition

entity are stored in an STL set and also iterated through
STL-like iterators.

6.2 Parallel fuctionalities

6.2.1 Parallel services. The parallel utility class sup-
ports various services for parallel programming. Its main
purpose is to hide the details of parallelization and let
the user program do parallel operations without know-
ing details of parallel components. The parallel utility
class is a singleton (i.e., it is based on the Singleton pat-
tern [41,42]) so only one single instance can exist overall
and be accessible globally. The main goal in the design
of distributed meshes is to have a serial mesh be a dis-
tributed mesh on a single processor. All parallel utility
functions are also available in serial.

6.2.2 Efficient communications: Autopack. Since com-
munication is costly for distributed memory systems, it
is important to group small pieces of messages together
and send all out in one inter-processor communication.
The message packing library Autopack [44] is used for
the purpose of reducing the number of message frag-
ments exchanged between partitions. The general non-
blocking codes embedded in parallel mesh-based algo-
rithms to minimize communications begin by allocating
a local buffer on each processor. Then for mesh enti-
ties on partition boundaries, the messages for remote
copies to be sent to remote partitions are collected in
the buffer. When all desired messages have been pro-
cessed, the messages collected in local buffer are sent to
remote partitions. Then the remote partitions process
what they received.

The following is the template of a program used for
communications between remote copies of partition bound-
ary entities using Autopack, where AP size and AP size
return, respectively, the total number of processors and
the processor id of the local processor.

#include "autopack.h"

// send phase

int* sendcounts = new int[AP_size()];

for (int i = 0; i < AP_size(); ++i)

sendcounts[i] = 0;

for each entity on the partition boundary {

for each remote copy of the entity {

void* buf = AP_alloc(...,

remote partition id, );

fill the buffer ;

AP_send(buf);

++sendcounts[remote partition id];

}

}

// receive phase

AP_check_sends(AP_NOFLAGS);

AP_reduce_nsends(sendcounts);

int count, message = 0;
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(A = B)

mesh importmesh export

distribued mesh A on mesh filesn distribued mesh B on n partitions n partitions

Fig. 7 Parallel mesh I/O

while (!AP_recv_count(&count) || message<count)

{

void* msg;

int rc = AP_recv(..., &msg, ...);

if (rc) {

++message;

process msg received ;

AP_free(msg);

}

}

AP_check_sends(AP_WAITALL);

delete[] sendcounts;

The C integer array sendcounts is a counter for the num-
ber of messages sent to each partition. After initializing
sendcounts, for each remote copy of each entity, AP alloc
allocates memory for a message. After filling the message
buffer to send, AP send sends the message to the remote
partition where the remote copy exists. AP recv receives
the message and the appropriate operation is performed
on the remote copy. AP recv count keeps track of the
number of messages received ensuring no change in the
number of messages sent and received. Packing many
small messages into larger messages is hidden from the
user.

6.2.3 Generic data communicator. The typical pattern
of communications between remote copies of a mesh en-
tity on the partition boundary is the following: for each
remote copy of the mesh entity on the partition bound-
aries, (i) fill the message buffer to send to the remote
copy on the remote partition. One message per remote
copy is filled allowing sending different messages depend-
ing on the destination partition. (ii) Send the messages
to the remote copy of the mesh entity. (iii) The remote
copy of the entity receives the message from the sender

partition and processes the received data.
The only difference between each communication is

the data to be sent, the tag of message (an MPI term,
it is like the address on a mail message) and how the re-
mote copy will process the data received. To avoid coding
of the communications over and over with the same pat-
tern and different messages and/or operations, a generic
communicator callback class, pmDataExchanger, and a
generic data exchange operator, genericDataExchanger,
have been developed.

class pmDataExchanger {

public :

virtual int tag() const = 0; // get a message tag

// send a message to the remote copy of a mesh

// entity e on the remote partition pid

virtual void* alloc_and_fill_buffer(mEntity* e,

int pid, mEntity*, int tag) = 0;

// receive data from partition pid

virtual void receiveData(int pid, void* buf) = 0;

};

template <class Iterator>

void genericDataExchanger(const Iterator &beg,

const Iterator &end, pmDataExchanger& de)

{

mEntity* ent;

int* sendcounts = new int[AP_size()];

for (int i = 0; i < AP_size(); ++i)

sendcounts[i] = 0;

for (Iterator it=beg; it != end ; ++it) {

ent = *it;

if (ent->getNumRemoteCopies() == 0) continue;

for (mEntity::RCIter rcIter = ent->rcBegin();

rcIter != ent->rcEnd(); ++rcIter) {

void* buf = de.alloc_and_fill_buffer(ent,

(*rcIter).first, (*rcIter).second, de.tag());

if (buf) {

AP_send(buf);

++sendcounts[(*rcIter).first];

}

}

}

AP_check_sends(AP_NOFLAGS);

AP_reduce_nsends(sendcounts);

int count, message = 0;

while (!AP_recv_count(&count) || message<count)

{

void* msg;

int from, tag, size, rc;

rc = AP_recv(MPI_ANY_SOURCE, de.tag(),

AP_BLOCKING|AP_DROPOUT,

&msg, &size, &from, &tag);

if (rc) {

++message;

de.receiveData(from, msg);

AP_free(msg);

}

}

AP_check_sends(AP_WAITALL);
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}

Class pmDataExchanger is an abstract base class since
it defines pure virtual member functions; such functions
must be given definitions in a derived class. Users must
specify data to be filled in the message buffer, message
tag and the operation to be performed when the data
is received to the remote copy. Using a specialized in-
stance of pmDataExchanger, operator genericDataEx-
changer exchanges data between remote copies of en-
tities provided through templated parameter Iterator. A
typical round of communications looks like the following:

class myExchanger: public pmDataExchanger {...};

vector<mEntity*> entsOnPtnBdry;
fill entsOnPtnBdry ;
myExchanger myCallback;

genericDataExchanger(entsOnPtnBdry.begin(),

entsOnPtnBdry.end(), myCallback);

6.3 Parallel mesh I/O

Figure 7 illustrates the parallel mesh I/O. The parallel
mesh import/export procedures let the user export the
distributed mesh into mesh files and recover the mesh
later from the files. The parallel mesh export operator
writes a distributed mesh on n partitions into n mesh
files and the parallel mesh import operator reads the n

mesh files and constructs the identical distributed mesh
and the partition model on n partitions as before the
export. The extra information kept in the mesh file to
recover the distributed mesh from the file includes:

– the partition model information, and
– for each entity on the partition boundaries, the par-

tition model classification information.

6.4 Dynamic mesh load balancing

During parallel adaptive analysis, the computation and
mesh data need to be partitioned in such a way that the
load balance is achieved in each partition and the size of
the inter-partition boundaries is kept minimal to maxi-
mize utilization of all processors by minimizing idling of
processors and inter-processor communication (i.e. the
size of partition boundaries) [3,25].

The Zoltan library is a collection of data manage-
ment services for parallel, unstructured, adaptive, and
dynamic applications [30]. It includes a suite of parallel
algorithms for dynamically partitioning problems over
sets of processors. The FMDB interfaces with the Zoltan
to obtain distribution information of the mesh. It com-
putes the input to the Zoltan that is a model for com-
putational load, i.e., a representation of the distributed
mesh, usually a weighted graph or coordinates of parti-
tion objects. The load of a given processor Pi is defined
as the number of elements in its partition multiplied by

a weight that can be determined based on, for example,
the elements computational demands. If no weight infor-
mation is provided, all weights are set to 1.0 by default
so that the load is simply proportional to the number
of elements. The user also can provide weights for par-
tition boundaries in order to take into account differing
communication costs.

With the distribution information from Zoltan, the
re-partitioning or initial partitioning step is completed
by calling the mesh migration procedure that moves the
appropriate entities from one partition to another. Fig-
ure 8 illustrates an example of 2D mesh load balancing.
In the left, the partition objects (all mesh faces in this
case) are tagged with their destination partition ids. The
final balanced mesh is given on the right.

6.4.1 User interface: Zoltan callback. The interface for
load balancing with a weighted graph is the following:

class pmLBCallbacks {

public :

// from a given graph, retrieve a partition info

virtual void partition(FMDB_distributed_graph &,

int *partitionInfo) = 0;

// get user data of size "size" attached

// to a mesh entity for migration

virtual void * getUserData (mEntity*,

int dest_pid, int &size) = 0;

// delete or free user attached data

virtual void deleteUserData (void*) = 0;

// receive user data. mEntity* is now the mesh

// entity on the remote partition

virtual void receiveUserData (mEntity*,

int pid, int tag, void *buf) = 0;

};

class pmZoltanCallbacks: public pmLBCallbacks {

public :

// Zoltan algorithms available

typedef enum Algorithm {LDiffusion, GDiffusion,

Remap, MLRemap, Random, Octree, Serial};

// Constructor takes the algorithm as input

pmZoltanCallbacks(Algorithm algo = Remap);

// this function interfaces with Zoltan

virtual void partition(FMDB_distributed_graph&,

int *partitionVector);

// change the algorithm

void setAlgorithm (const Algorithm&);

private:

// save the algorithm

Algorithm theAlgorithm;

};

Class pmLBCallbacks is purely virtual. It serves as
a base class of the Zoltan callback class, pmZoltanCall-
backs, to provide functions to retrieve partition informa-
tion from the Zoltan in a form of an integer array of
which the ith item denotes the destination partition of
ith partition object in the mesh and pack/unpack arbi-
trary attached data to mesh entities for communication.
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Fig. 8 Example of 2D mesh load balancing: (left) partition objects are tagged with their destination pids (right) mesh after
load balancing

Class pmZoltanCallbacks is a derived class from pmLB-
Callbacks with addition of a function that enables one
to choose one specific load balancing algorithm among
various partitioning services of the Zoltan.

A typical set of instructions for doing a dynamic load
balancing with the FMDB is to declare a derived class
from pmZoltanCallbacks, choose a Zoltan algorithm, fill
in the behaviors for packing/unpacking attached data to
mesh entities, set weights of entities. Reference [30] pro-
vides more detailed discussions on the partitioning al-
gorithms provided by Zoltan. The following is a simple
user-defined Zoltan callback class for serial mesh parti-
tioning:

class myCB: public pmZoltanCallbacks {

public :

myCB() : pmZoltanCallbacks(

pmZoltanCallbacks::Serial){}

virtual void * getUserData (mEntity*, int, int&)

{ return; }

virtual void receiveUserData (mEntity*, int, int,

void*) { return; }

virtual void deleteUserData (void *buf)

{ free(buf); }

};

// define a mesh object

mMesh* theMesh = new mMesh();

// load a serial mesh from a mesh file

M_load(theMesh, mesh_file);

// declare Zoltan callback object

myCB myCB_object;

// call load balance procedure

M_loadbalance(theMesh, myCB_object);

The load balance procedure, M loadbalance, takes two
inputs: a distributed mesh and an object of user-defined
Zoltan callback type. For simplicity, attached data or
weights were not considered in the user-defined Zoltan
callback type, myCB.

7 Applications

7.1 Parallel Anisotropic 3D Mesh Adaptation

Anisotropic mesh modification [46,47] provides a general
mesh adaptation procedure that applies local mesh mod-
ification operations to yield a mesh of elements match-
ing the required sizes and shapes. The mesh adapta-
tion procedure is governed by a discrete anisotropic met-
ric field specified at each mesh vertex of the current
mesh [46]. The procedure consists of the four interacted
high-level components of refinement, coarsening, swap-
ping [46], and projecting new vertices created onto curved
model boundaries onto the boundaries [47].

The serial mesh modification procedure has been ex-
tended to work with the distributed meshes in parallel
[36,46].

The distributed mesh data structure of the FMDB
provides all needed functionalities for supporting parallel
mesh adaptation such as dynamic mesh load balancing,
individual local mesh migration for coarsening, project-
ing and swapping, easy-to-customize templated commu-
nication, etc.. The mesh migration procedures combined
with the poor-to-rich ownership maintains the mesh load
balance during processes, reducing the frequency of calls
to the mesh load balancing procedure. The metric field
of each mesh vertex is implemented with attachable data
to the mesh vertices. While migrating mesh vertices, the
metric field attached to the vertex must be exchanged
properly to proceed the adaptation. As discussed in §6.4,
the Zoltan callback of the FMDB supports the function-
ality to customize packing/unpacking any arbitrary at-
tached data to mesh entities in the migration procedure.
Reference [36] presents detailed discussions on paralleliz-
ing each mesh modification component.

The parallel mesh adaptation procedure has been
tested against a wide range of models under either ana-
lytical or adaptively defined mesh size field definitions [46].
Some results of the parallel mesh adaptation are pre-
sented to demonstrate the scalability of the distributed
mesh data structure developed. The scalability of a par-
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# proc 2 4 8 16

speedup 2.23 3.37 5.48 8.40
rel. speedup 2.23 1.50 1.62 1.53

Fig. 9 Parallel mesh adaptation I: (left) initial 36 tet mesh, (right) adapted approx. 1 million tet mesh.

# proc 2 4 8 16 32

speedup 1.52 2.47 4.18 8.28 18.71
rel. speedup 1.52 1.57 1.76 1.93 2.26

Fig. 10 Parallel mesh adaptation: (left) initial 20,067 tet mesh, (right) adapted approx. 2 million tet mesh.

allel program running on p processors is defined as the
speedup.

speedup =
run-time on 1 processor

run-time on p processors
(1)

The relative speedup is the speedup against the program

on
p

2
processors.

relative speedup =
run time on p

2
processors

run time on p processors
(2)

Figure 9 shows a uniform initial non-manifold mesh
of a 1×1×1 cubic and triangular surface domain and the
adapted mesh with two spherical mesh size fields on 4
processors. Different color represents different partitions.

The geometry of the mesh in Figure 10 is a torus
with four circular holes. The initial mesh is 20,067 tetra-
hedron. The adapted, approximately 2 million tetrahe-
dron mesh with two spherical shocks is given with the
speedup.

7.2 Parallel adaptive loop for accelerator design

The Stanford Linear Accelerator Center (SLAC)’s eigen-
mode solver Omega3P [48] is being used in the design of
next generation linear accelerators. Recently, Omega3P
has been integrated with adaptive mesh control to im-
prove the accuracy and convergence of wall loss (or qual-
ity factor) calculations in accelerating cavities [49]. The
simulation procedure consists of interfacing Omega3P to
automatic mesh generator, general mesh modification,
and error estimator components to form an adaptive
loop. The FMDB is used as for a mesh database sup-
porting mesh adaptation and error estimation on paral-
lel computers.

The parallel adaptive procedure has been applied to
Trispal model and RFQ model. In these examples, the
size fields were intentionally set to generate big meshes to
demonstrate the scalability of the FMDB. The speedups
given are just for the parallel mesh adaptation portion
of the process.
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(a) initial mesh

(b) after the 2nd loop

(c) after the 8th loop

# proc 20 40

rel. speedup - 1.81

Fig. 11 Parallel adaptive loop for SLAC I: (a) initial coarse Trispal mesh (65 tets), (b) adapted mesh after the second adaptive
loop (approx. 1 million tet), (c) the final mesh converged to the solutions after the eighth adaptive loop (approx. 12 million
tets).

Figure 11 shows the Trispal meshes during the par-
allel adaptive loop, (a) gives the initial mesh composed
of 65 tetrahedron, (b) is the adapted, approximately 1
million, mesh after the second adaptive loop on 24 pro-
cessors, and (c) is the adapted, approximately 12 million,
mesh after the eighth adaptive loop, which converged to
the solution fields.

Figure 12 gives the RFQ meshes during the paral-
lel adaptive loop, (a) gives the initial coarse mesh of
1,595 tetrahedron, (b) is the adapted mesh after the first
adaptive loop, which is approximately 1 million tetrahe-
dron, and (c) and (d) are the front and back view of

the adapted mesh after the second adaptive loop, which
contains about 24 million tetrahedron.

In both of Trispal and RFQ cavities, the parallel
adaptive procedure reliably produced the results with
the desired accuracy and quality factors.

8 Closing Remarks

Data structures for distributed meshes were designed
based on the hierarchical domain decomposition, pro-
viding a partition model as intermediate domain decom-
position between the geometric model and the mesh. For
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(a) initial (front) (b) 1st loop (back)

(c) 2nd loop (front) (d) 2nd loop (back)

# proc 28 56

rel. speedup - 1.97

Fig. 12 Parallel adaptive loop for SLAC II: (a) initial coarse RFQ mesh (1,595 tet), (b) adapted mesh from the first adaptive
loop (approx. 1 million tet), (c) the front view of adapted mesh from the second adaptive loop (approx. 24 million tet), (d)
the back view of (c).

that purpose, the definitions and properties of the par-
tition model and relations between the distributed mesh
and the partition model were identified. The support of
partitioning at the partition model level, optimal order
algorithms to construct and use it, local mesh entity mi-
gration and dynamic load balancing are supported effec-
tively. The distributed mesh environment was designed
to handle meshes on general non-manifold geometries.

The DOE SciDAC [50] Terascale Simulation Tools
and Technologies (TSTT) center [51] defined a mesh
interface that enables the application to use several dif-
ferent mesh databases via language-interoperability pro-
vided by SIDL-Babel [52]. The FMDB was developed to
be TSTT compliant and represent core functionalities of
the TSTT meshing tools. The effort to run Mesquite [51]
the mesh quality improvement library and the mesh adap-
tation procedure through the TSTT Mesh API of the
FMDB is undergoing.

The FMDB is open source available at http://www.sc-
orec.rpi.edu/FMDB.
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