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a b s t r a c t

We describe a charge-conserving scatter–gather algorithm for particle-in-cell simulations on unstruc-
tured grids. Charge conservation is obtained from first principles, i.e., without the need for any post-
processing or correction steps. This algorithm recovers, at a fundamental level, the scatter–gather
algorithms presented recently by Campos-Pinto et al. (2014) (to first-order) and by Squire et al. (2012), but
it is derived here in a streamlined fashion from a geometric viewpoint. Some ingredients reflecting this
viewpoint are (1) the use of (discrete) differential forms of various degrees to represent fields, currents,
and charged particles and provide localization rules for the degrees of freedom thereof on the various
grid elements (nodes, edges, facets), (2) use of Whitney forms as basic interpolants from discrete differ-
ential forms to continuum space, and (3) use of a Galerkin formula for the discrete Hodge star operators
(i.e., ‘‘mass matrices’’ incorporating the metric datum of the grid) applicable to generally irregular, un-
structured grids. The expressions obtained for the scatter charges and scatter currents are very concise
and do not involve numerical quadrature rules. Appropriate fractional areas within each grid element are
identified that represent scatter charges and scatter currents within the element, and a simple geometric
representation for the (exact) charge conservationmechanism is obtained by such identification. The field
update is based on the coupled first-order Maxwell’s curl equations to avoid spurious modes with secular
growth (otherwise present in formulations that discretize the second-order wave equation). Examples
are provided to verify preservation of discrete Gauss’ law for all times.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Particle-in-cell (PIC) algorithms have been extensively used for
several decades in the simulation of problems involving space
charges [1–4], including plasma-related applications such as elec-
tron accelerators [5], laser ignited devices [6], and high-power mi-
crowave generation [7], to name a few. A key challenge to PIC
algorithms is how to achieve exact charge conservation proper-
ties on unstructured, irregular grids. The traditional approach to
enforce charge conservation is to apply correction terms to the
electric fields in order to satisfy Gauss’ law at every time step
[8–10]. An alternative approach is to enforce the (discrete) con-
tinuity equation directly at every grid cell [11–16]. However, this
latter approach is predicated on the use of rectangular grids. In
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order tomore accurately represent general curved geometries, un-
structured grids are highly desirable [17,18].

A charge-conserving scatter–gather algorithm for irregular
grids based on first principles, that is without resorting to any cor-
rection steps, was proposed in [19,20]. This algorithm relies on the
vector-wave equation and on the use of the time-integrated elec-
tric field as a dynamical variable. Compared to Maxwell’s equa-
tions, the vector-wave equation admits an enlarged solution space
that includes gradient-like solutions exhibiting secular growth
in time, i.e., of the form t ∇φ. These solutions, even if not ini-
tially excited by (properly set) initial conditions, can nevertheless
emerge at late times due to the accumulation of round-off errors
and pollute the numerical solution unless specialized strategies
such tree–cotree decomposition (gauging) [21], grad–div regular-
ization [22], or ad hoc corrections [23] are utilized. In addition, the
approach in [19,20] requires a numerical differentiation in time to
compute the electric field E. This causes the (temporal) order of ac-
curacy for E to be one order less than the order of accuracy of the
time integration scheme itself. Further, a Newmark-beta scheme is
adopted in [19,20] for the numerical time integration. This scheme
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has the advantage of producing an unconditionally stable update,
but has the disadvantage of yielding a linear system with deterio-
rating condition numbers for large Courant factors that may occur,
for example, in highly refined grids or multiscale problems [24].

Another exact charge-conserving algorithm based on first-
principles was recently presented by Squire et al. [17]. This
algorithmutilizes a variational vector-potential formulation that is
multi-symplectic and has manifest gauge symmetry. The authors
employ discrete Hodge star operators (‘‘mass matrices’’, which
encode the spatial metric) represented as diagonal matrices. This
diagonal representation is only adequate for Delaunay triangular
(primal) grids, wherein a particular type of dual grids can be
constructed such that the paired primal–dual grid elements are
orthogonal to each other (constituting the so-called Voronoi dual).
This diagonal representation is not suited formore general types of
triangular gridswhere a dual gridwith such orthogonality property
may not exist.

More recently, Campos-Pinto et al. [25] put forth a compre-
hensive charge-conserving PIC algorithm based on a finite ele-
ment Maxwell solver using curl-conforming elements of arbitrary
orders, arbitrary shape factors, and piecewise polynomial trajec-
tories of particles. In this paper, we derive a charge-conserving
scatter–gather scheme for PIC simulations on unstructured grid
that recovers, at a fundamental level, the scatter–gather algorithm
by Campos Pinto et al. [25] to first-order, and by Squire et al. [17],
but is obtained here in a more streamlined fashion from a ge-
ometric viewpoint. Similarly to [25] but in contrast to [17], the
present algorithm does not require a Delaunay triangular grid, be-
ing equally applicable to any irregular triangular (or simplicial1)
grid through theuse of a sparse, but nondiagonal representation for
the discrete Hodge star operators [26,27], as given by expressions
(9) and (10). The present algorithm uses the coupled first-order
Maxwell’s curl equations and a mixed Whitney form representa-
tion for the electromagnetic fields to avoid spurious solutions, and
a leap-frog time update that only requires a symmetric-positive-
definite linear system solver with no condition number deteriora-
tion across different mesh-refinement scales [24]. Some of the in-
gredients reflecting the geometric perspective adopted here are:
(1) the use of (discrete) differential forms of various degrees to
represent all dynamic variables (fields, currents, and particles) and
provide clear localization rules for the degrees of freedom thereof
on the appropriate grid elements (nodes, edges, facets), and (2) the
use of 0, 1, and 2 (or nodal, edge, and face) Whitney forms (inter-
polatory functions) to consistently represent the particle charges,
currents, and fields in continuum space [26,28,29]. In particular,
the expressions obtained for the scatter charges and scatter cur-
rents are very simple and do not involve any numerical quadra-
ture rules. Appropriate fractional areas within each grid element
are identified to represent scatter charges and scatter currents, and
a geometric demonstration of the exact charge conservation is ob-
tained from this very identification and irrespective of triangular
shape of the grid cells.

2. Formulation

2.1. Field update

On unstructured grids, the electric field intensity E(r, t) and the
magnetic flux density B(r, t) can be expanded usingWhitney basis

1 Recall that a simplicial grid is such that all its elements are simplices,
i.e., elements whose boundaries are the union of a minimal number of lower-
dimensional elements. Therefore, in a 3-D simplicial grid for example, any face is
a triangle and any volume cell is a tetrahedron.
functions as [26,28,29]

E(r, t) =

Ne
i=1

ei(t)W1
i (r), (1)

B(r, t) =

Nf
i=1

bi(t)W2
i (r), (2)

where Ne and Nf are the number of edges and faces in the grid, so
that there is a 1:1 correspondence (localization) of the degrees of
freedom ei(t) and bi(t) to edges and faces, resp., in the grid. In the
above, W1

i (r) and W2
i (r) are (Whitney) edge and face basis func-

tions [26,28,29], respectively. The units of W1
i (r) and W2

i (r) are
[m−1] and [m−2], respectively. The edge and face Whitney func-
tions above are vector proxies of Whitney 1-forms and Whitney
2-forms, respectively. For details aboutWhitney functions, see Ap-
pendix A. Note that the units of the ei(t) and bi(t) factors are Volts
[V] and Webers [Wb], respectively. The above expansions are in-
formed by the fact that electric field is a 1-form and magnetic flux
density is a 2-form in the language of differential forms [30–33].
Furthermore, if an electric current density is present in the grid,
current density is defined such that

J⋆(r, t) =

Ne
i=1

ii(t)W1
i (r). (3)

so that the degrees of freedom ii(t) are associated to the edges
of the grid, like those of E(r, t).2 With the aid of Galerkin testing,
Maxwell’s equations can be spatially discretized as [26]

C · e = −
d
dt

b, (4)

CT
·

⋆µ−1


· b =

d
dt

[⋆ϵ] · e + i. (5)

C is an incidence matrix with elements in the set {−1,0,1}, provid-
ing the (discrete) representation of curl operator distilled from the
metric [34,35]. The superscript T indicates the transpose. The ar-
rays of degrees of freedom are defined as

e = [e1(t), e2(t), . . . , eNe(t)]
T , (6)

b = [b1(t), b2(t), . . . , bNf (t)]
T , (7)

i = [i1(t), i2(t), . . . , iNe(t)]
T . (8)

In addition,

⋆µ−1


and [⋆ϵ] in (5) are discrete Hodge star operators

given by the following integrals [26,27],

[⋆ϵ]ij =


Ω

ϵW1
i (r) · W1

j (r) dV , (9)


⋆µ−1


ij =


Ω

1
µ

W2
i (r) · W2

j (r) dV , (10)

which, for a given grid, are pre-computed using quadratures. This
property is necessary to ensure stability of the time updating
scheme. It should be pointed out that the Hodge matrix associated
with i in (5) is the identity matrix.

Using the leap-frog scheme, the semi-discrete equations (4) and
(5) can be fully discretized as

bn+ 1
2 = bn− 1

2 − ∆t C · en, (11)

[⋆ϵ] · en+1
= [⋆ϵ] · en + ∆t


CT

·

⋆µ−1


· bn+ 1

2 − in+
1
2


. (12)

2 We employ a star subscript on J⋆ because, strictly speaking, the electric current
density J is a (twisted) 2-form that should be discretized in the dual grid. The above
J⋆ is the Hodge dual representation of J on the primal grid [32].
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Fig. 1. Temporal basis functions of the lowest orders: (a) Piecewise constant (pulse) function and (b) Piecewise linear (rooftop) function.
Since (9) and (10) are positive-definite, it can be easily be shown
that the above update scheme is conditionally stable, obeying a
Courant-like stability criterion [26,35]. From the discrete values
en+1 and bn+ 1

2 obtained from (11) and (12), the temporal coeffi-
cients ei(t) in (1) and bi(t) in (2) can be interpolated as [36].

ei(t) =


n

eni Π
n(t), (13)

bi(t) =


n

b
n+ 1

2
i Λn+ 1

2 (t), (14)

where Πn(t) is a piecewise constant (pulse) function centered on
integer times and Λn+ 1

2 (t) is a piecewise linear (rooftop) function
centered on half-integer times as illustrated in Fig. 1(a) and (b), re-
spectively. The choice of (13) and (14) is inspired by (4),where time
derivative of b should be the same form of e. Also, ii(t) in (3) can
be likewise expanded in the piecewise linear function centered on
half-integer time indices (see (5)).

2.2. Gather step

In the gather step, field values are interpolated at the positions
of particles. SinceWhitney basis functions are used to represent the
field values, (1) and (2) can be directly used for the interpolation.
Using (13) and (14), E and B in their respective discrete times are
expressed as

E(rp, n∆t) = En(rp) =

Ne
i=1

eni W
1
i (rp), (15)

B

rp, (n + 1/2)∆t


= Bn+ 1

2 (rp) =

Nf
i=1

b
n+ 1

2
i W2

i (rp), (16)

where rp is the position of the pth particle.

2.3. Particle update

The next step is to update particle attributes such as po-
sition rp(t) and velocity vp(t). The equation of motion and
Lorentz–Newton equation are utilized. For simplicity, we consider
here a non-relativistic case:
drp
dt

= vp, (17)

dvp
dt

=
q
m


E + vp × B


. (18)

In (18), q and m are the charge and mass of the particle, respec-
tively. Using the leap-frog time update, (17) and (18) are dis-
cretized as

rn+1
p − rnp = ∆t v

n+ 1
2

p , (19)

v
n+ 1

2
p − v

n− 1
2

p =
q∆t
m


En

+ vnp × Bn . (20)

Note that (19) is the explicit update whereas (20) is implicit. Fur-
thermore, the interpolated values of vnp andBn in the right hand side
of (20) should be calculated a priori.We assume that vnp is expanded
in the piecewise linear function because vnp and Bn are centered on
the same time. Therefore, when t = n∆t ,

vnp =
1
2


v
n+ 1

2
p + v

n− 1
2

p


, (21)

Bn
=

1
2


Bn+ 1

2 + Bn− 1
2


. (22)

In contrast to vp, B is the function of space as well, so it is assumed
that Bn+ 1

2 (rp) = Bn+ 1
2 (rnp). Therefore, (20) is modified to

v
n+ 1

2
p − v

n− 1
2

p

=
q∆t
m


En

+
1
4
v
n+ 1

2
p ×


Bn+ 1

2 + Bn− 1
2


+

1
4
v
n− 1

2
p ×


Bn+ 1

2 + Bn− 1
2


. (23)

After some algebra, (23) can be succinctly expressed as

v
n+ 1

2
p = N−1

· NT
· v

n− 1
2

p +
q∆t
m

N−1
· En, (24)

where

N =


1 −

q∆t
2m

Bn
z

q∆t
2m

Bn
y

q∆t
2m

Bn
z 1 −

q∆t
2m

Bn
x

−
q∆t
2m

Bn
y

q∆t
2m

Bn
x 1

 , (25)

Bn
s =

1
2


B
n+ 1

2
s + B

n− 1
2

s


, s = x, y, or z. (26)

Note that N is unitless. In summary, (19) together with (24) con-
stitute the well-known (non-relativistic) equation of motion for a
charged particle in an electromagnetic field. Note that the particle
velocity should be updated before the update of the particle posi-
tion.

2.4. Scatter step

This step is to assign charge density and current density back
to the grid using the updated particle attributes. Of course, the
fundamental question here is how to assign the particle charge to
grid vertices (nodes) consistent to the assignment of the respective
currents to grid edges. To achieve this, we use the same family
of interpolatory functions for both, viz. Whitney functions. The
advantage of using such functions is two-fold: (i) they preserve the
total amount of the vertex-distributed charge for each particle and
(ii) they exactly preserve the charge continuity equation (more on
this below) and guarantee that no spurious charges arise in Gauss’
law during the particle motion on the grid.

To examine this, let us first consider the charge assignment.
The charge Q of the pth particle is represented as a 0-form and
distributed to the grid vertices so that

qi = QW 0
i (rp) = Qλi(rp), (27)
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Fig. 2. Scatter step: (a) Nodal charge assignment from a charged particle placed
at rp with local numbering of vertices and edges and (b) current assignment due
to charge movement from rp,s to rp,f during ∆t with default current directions on
edges.

where the subscript i is the index of vertices andW 0
i is theWhitney

0-form associatedwith vertex i. The value of the functionW 0
i (rp) is

simply equal to the barycentric coordinate of the point rp referred
to the node i, i.e., W 0

i (rp) = λi(rp) (see Appendix A). When (27) is
summed over all possible i values,

i

qi =


i

Qλi(rp) = Q


i

λi(rp) = Q , (28)

since


i λi(rp) = 1 holds (a partition of unity). The charge as-
signment (27) is illustrated in Fig. 2(a) with the local numbering of
vertices and edges. Vertices and edges are represented by ν and e,
respectively. Note that the charge values are only associated to the
vertices of the triangle on which the particle is located.

Fig. 2(b) describes the current assignment. The pth particle of
charge Q moves from rp,s to rp,f during ∆t along straight path L.
For example, the current assigned to e1 (edge 1) is

i1 =
Q
∆t

 rp,f

rp,s
W1

1(rp) · dL =
Q
∆t


λs
1λ

f
2 − λ

f
1λ

s
2


, (29)

whereλs
i andλ

f
i are shorthands ofλi(rp,s) andλi(rp,f ), respectively.

See Appendix B for further details on the evaluation of this line
integral. We note that Eq. (29) is a simpler version of the first
equation in Section 3.2 of [25], here evaluated in closed-form along
a linear particle trajectory. The current values i2 and i3 can be
obtained similarly. During the scatter step ∆t , particles might
travel beyond a single triangle element and cross element edges.
In this case, the path can be simply divided into smaller segments
whereby each segment resides entirelywithin a single triangle. The
scatter step above can then be applied to each segment.

2.5. Charge conservation

To verify charge conservation, let us consider the semi-discrete
continuity equation

d
dt

q +S · i = 0, (30)

where the array q represents the amount of charge at all vertices,
i.e., q = [q1(t), q2(t), . . . , qNν (t)]

T , Nν being the number of
vertices in the grid, andS being the incidence matrix associated
with the (discrete) divergence operator in the dual grid [27,32,
34,37]. Note that, similarly to C, all elements ofS are in the set
{−1,0,1}. Applying a leap-frog time update to (30), we obtain

qn+1
− qn

∆t
+S · in+

1
2 = 0. (31)

Then, let us consider ν1 (vertex 1) without loss of generality. The
time rate of charge variation at ν1 is

qn+1
1 − qn1

∆t
=

Qλ
f
1

∆t
−

Qλs
1

∆t
=

Q
∆t

(λ
f
1 − λs

1). (32)
On the other hand, the current flowing out of ν1 can be computed
as

(S · in+
1
2 )1 = i1 + i2

=
Q
∆t

 rp,f

rp,s
W1

1(rp) · dL +

 rp,f

rp,s
W1

2(rp) · dL



=
Q
∆t


λs
1λ

f
2 − λ

f
1λ

s
2


+


λs
1λ

f
3 − λ

f
1λ

s
3


=

Q
∆t


λs
1 − λ

f
1


, (33)

where the property λ1 + λ2 + λ3 = 1 has been used, and the
Whitney edge basis functions are indexed in an ascending order
fashion (instead of a cyclic order) such that

W1
1(rp) = λ1(rp)∇λ2(rp) − λ2(rp)∇λ1(rp), (34)

W1
2(rp) = λ1(rp)∇λ3(rp) − λ3(rp)∇λ1(rp), (35)

W1
3(rp) = λ2(rp)∇λ3(rp) − λ3(rp)∇λ2(rp). (36)

As the sum of (32) and (33) equals zero, the continuity equation is
verified exactly.

The above derivation can be interpreted geometrically by
understanding the geometric representation of Whitney 0-forms
and 1-forms. Let us consider ν1 again. As explained in Appendix A
and illustrated in Fig. A.11, barycentric coordinates can be
visualized as a ratio of two areas. The variation on the charge
assigned to ν1 during ∆t is illustrated in terms of such areas in
Fig. 3(a) and is expressed as

Q
∆t

(λ
f
1 − λs

1) =
Q
∆t

Aq1,n+1 − Aq1,n

A
, (37)

where Aq1,n1 and Aq1,n+1 are the triangle areas as indicated in
Fig. 3(a), and A is the area of the whole triangle (grid element)
defined by ν1, ν2 and ν3. On the other hand, the current flowing
out of ν1 is the sum of the currents along the edges touching ν1,
that is e1 and e2. Referring to the geometric interpretation of the
integral of Whitney 1-forms provided in Appendix A, the sum of
these two currents is evaluated as

i1 + i2 =
Q
∆t


−

 rp,f

rp,s
W1

1(rp) · dL −

 rp,f

rp,s
W1

2(rp) · dL



= −
Q
∆t


Ai1

A
+

Ai2

A


, (38)

where Ai1 and Ai2 are indicated in Fig. 3(b), and the minus sign is
due to the relative orientations of the path L andWhitney 1-forms.
Since

Aq1,n+1 − Aq1,n = Ai1 + Ai2, (39)

the sum of (37) and (38) is identically zero.

2.6. Gauss’ law preservation

We next demonstrate that Gauss’ law is automatically satisfied
for all time steps if proper initial conditions are used. By left-
multiplying both sides of (12) by the discrete divergence matrixS, we obtain

S · [⋆ϵ] ·


en+1

− en

∆t


=S · CT

·

⋆µ−1


· bn+ 1

2 −S · in+
1
2 . (40)

The first term of the right-hand side of (40) vanishes due to
the exact sequence property for the dual grid, i.e.,S · CT

= 0
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Fig. 3. Geometric representation of charge-conservation identity (39): (a) Variation
of Whitney 0-forms coefficients (barycentric coordinates) associated with ν1
(vertex 1) during a time interval ∆t , where the solid red region indicates the
starting time instant and the striped red region (which includes the solid red region)
indicates the finishing time instant. (b) Areas associated with the magnitude of
induced currents (as computed by Whitney 1-forms) on adjacent edges e1 (edge
1) and e2 (edge 2) during ∆t (see also Figs. A.11 and A.12). It is clear that Aq1,n+1 −

Aq1,n = Ai1 + Ai2 . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. Full time-update procedure for the charge-conserving PIC algorithm.

[32,34,38].3 Using the discrete continuity equation (31), we can
rearrange (40) as

S · [⋆ϵ] ·


en+1

− en

∆t


=

qn+1
− qn

∆t
, (41)

which is the discrete version of

∂

∂t
∇ · D =

∂

∂t
ρ. (42)

Therefore, Gauss’ law is preserved for all time steps if the initial
conditionS · [⋆ϵ] · e0 = q0 is met.

For completeness, we show next that Gauss’ law for magnetism
is also satisfied if appropriate initial conditions are used. By taking
discrete divergence matrix S in both sides of (11), we have4

S ·


bn+ 1

2 − bn− 1
2

∆t


= −S · C · en = 0, (43)

where the second equality is from the exact sequence property in
the primal grid, i.e., S · C = 0. The relation (43) is the discrete
version of

∂

∂t
∇ · B = 0. (44)

Therefore, Gauss’ law for magnetism is also preserved for all times
if b0 is such that S · b0

= 0.

3 The identityS·CT
= 0 can be recognized as the discrete analogue of∇·∇× = 0.

4 Note that S is distinct from S since S refers to the primal grid (i.e., the
computational mesh itself) whereasS refers to the dual grid (see [32,34]).
2.7. Time-update sequence

Using the above equations, the overall time-update procedure
is carried out in the following sequence. Initial conditions for E0,

B−
1
2 , v

−
1
2

p , and r0p are first assumed. During each cycle, bn+ 1
2 is first

calculated. Then, En andBn+ 1
2 are interpolated at particle positions.

Next, after the particle acceleration v
n+ 1

2
p is performed, the particle

push rn+1
p is performed for all particles. Next, currents in+

1
2 are

assigned (scattered) to grid edges. Finally, en+1 is updated. Note
that vp and rp are 3×1 column vectors. The procedure is illustrated
in Fig. 4 and each step is enumerated below.

(1) B update : bn+ 1
2 = bn− 1

2 − ∆t C · en

(2) E gather : En
=

Ne
i=1

eni W
1
i (r

n
p)

(3) B gather : Bn+ 1
2 =

Nf
i=1

b
n+ 1

2
i W2

i (r
n
p)

(4) Particle acceleration : v
n+ 1

2
p = N−1

· NT
· v

n− 1
2

p +
q∆t
m

N−1
· En

(5) Particle push : rn+1
p = rnp + ∆tv

n+ 1
2

p

(6) I scatter : i
n+ 1

2
i =

Q
∆t

 rp,f

rp,s
W1

i (rp) · dL

(7) E update : [⋆ϵ] · en+1
= [⋆ϵ] · en

+ ∆t

CT

·

⋆µ−1


· bn+ 1

2 − in+
1
2


.

The algorithm utilizes an ‘‘intelligent’’ mesh for tracking particles
at each time step without resorting to iterative search or lookup
tables. The intelligent mesh is constructed (initialized) once
the input mesh is loaded and it includes (adds) the necessary
connectivity information among mesh elements to efficiently
determine the element location of each particle in the next time
step. The computing time of this process is minimal because
it always starts the particle search from adjacent elements. It
should also be stressed that the proposed scatter–gather algorithm
is independent of the time integration scheme and it can be
combined with other schemes as well.

3. Validation

Let us consider a simple cyclotron motion for which a uniform
static magnetic field is excited along the z-direction. The static
magnetic flux density is Bz = 2.275 × 10−3 Wb/m2, which
produces the gyroradius of 0.25 m using Bz = (mv)/(rq), where
m = 9.1 × 10−31 kg, v = 108 m/s, and q = −1.6 × 10−19 C.
Fig. 5 shows the snapshots of the movement of a single particle at
selected time steps. As the scheme is conditionally stable, time step
should be less than the Courant limit ∆tc = 0.14887 ns, which
is the function of the mesh element sizes and is computed from
the maximum eigenvalue of the stiffness matrix [24]. This ∆tc is
less than ∆l/|vp| ≈ 0.1/108

= 10−9 s, where ∆l is the typical
edge length of the triangular grid elements. It can be observed that
the particle exactly shows the circular motion of 0.25 m radius. In
this simulation, a pair of particles with the opposite charges are
initially placed in the same location, so that net charge density
and electric fields are initially zero. In contrast to the negatively
charged particle, the particle with positive charge is assumed to be
stationary due to itsmuch largermass, which is not shown in Fig. 5.
Fig. 6(a) and (b) show the amount of vertex-distributed charge and
the absolute value of the particle velocity as a function of time,
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Fig. 5. Movement of a single particle in the uniform static magnetic field at different time instants (∆t = 0.1 ns): (a) t = 0, (b) t = 50∆t , (c) t = 100∆t , and (d) t = 200∆t .
Fig. 6. Charge and energy conservation: (a) Distributed amounts of charge to local vertices and their sum at all time steps and (b) Absolute value of the particle velocity at
all time steps.
Table 1
Charge and energy conservation at large time steps.

n q1 q2 q3 Q |vp|

101
−6.410056 × 10−20

−9.245821 × 10−20
−3.441224 × 10−21

−1.600000 × 10−19 9.999999 × 107

102
−7.635486 × 10−20

−7.154041 × 10−20
−1.210471 × 10−20

−1.600000 × 10−19 9.999999 × 107

103
−6.187120 × 10−20

−7.721123 × 10−20
−2.091755 × 10−20

−1.600000 × 10−19 9.999999 × 107

104
−5.772639 × 10−21

−1.472014 × 10−19
−7.025898 × 10−21

−1.600000 × 10−19 9.999999 × 107

105
−5.766949 × 10−20

−2.809120 × 10−20
−7.423930 × 10−20

−1.600000 × 10−19 1.000000 × 108

106
−1.480969 × 10−20

−1.365091 × 10−21
−1.438252 × 10−19

−1.600000 × 10−19 1.000000 × 108
respectively. The total charge remains constant by the virtue of the
consistent particle interpolation in the scatter–gather algorithm.
The absolute value of the particle velocity (hence, energy) also
remains constant as well due to a negligible electric field. Table 1
shows similar results as Fig. 6, but extended up to 106 time steps
to further verify charge and energy conservation.

As the second example, Fig. 7 shows the movement of three
negatively-charged particles at different time steps. Similarly
as before, these particles describe circular motions because the
influence of the static magnetic field is more dominant than
interactions among the particles. Particles with positive charges,
which are not shown in Fig. 7, are again stationary at all time
steps due to their much larger masses. We select three random
vertices ν5, ν21, ν42 as illustrated in Fig. 7(a) for the verification
of Gauss’ law. The discrete version of Gauss’ law at t = n∆t ,
i.e.,S · [⋆ϵ] ·en = qn is computed in double-precision floating-point
arithmetic. Table 2 shows the left- and right-hand side values of
this equation and the residuals at several time steps up to 106. The
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Fig. 7. Movement of three particles in the uniform static magnetic field at different time instants (∆t = 0.1 ns): (a) t = 0, (b) t = 50∆t , (c) t = 100∆t , and (d) t = 200∆t .
Table 2
Verification of the discrete Gauss’ law at different time steps and (global) vertices.

Vertex n S · [⋆ϵ ] · en qn S · [⋆ϵ ] · en − qn

ν5

101
−6.206610172341678 × 10−36 0 −6.206610172341678 × 10−36

102
−3.655787431057314 × 10−34 0 −3.655787431057314 × 10−34

103
−3.996030839009677 × 10−20

−3.996030839009684 × 10−20 6.620384183831123 × 10−35

104
−3.581126715387582 × 10−20

−3.581126715385507 × 10−20
−2.074587661969626 × 10−32

105 1.442950348685220 × 10−31 0 1.442950348685220 × 10−31

106
−2.830713776667131 × 10−30 0 −2.830713776667131 × 10−30

ν21

101 3.385423730368188 × 10−36 0 3.385423730368188 × 10−36

102
−2.045237819570873 × 10−20

−2.045237819570803 × 10−20
−6.981496048403730 × 10−34

103
−3.751623558930333 × 10−20

−3.751623558929736 × 10−20
−5.970382827600431 × 10−33

104
−6.801441860813513 × 10−20

−6.801441860811823 × 10−20
−1.690003526199800 × 10−32

105
−1.264643842388650 × 10−31 0 −1.264643842388650 × 10−31

106
−1.345470457792998 × 10−30 0 −1.345470457792998 × 10−30

ν42

101
−4.988033347936703 × 10−20

−4.988033347936874 × 10−20 1.709262825643672 × 10−33

102
−3.159139423392524 × 10−20

−3.159139423392751 × 10−20 2.268986215731212 × 10−33

103
−3.915500401400283 × 10−20

−3.915500401401157 × 10−20 8.738907122657083 × 10−33

104 8.443811020826656 × 10−32 0 8.443811020826656 × 10−32

105 7.919916698552179 × 10−31 0 7.919916698552179 × 10−31

106
−5.373841942680172 × 10−21

−5.373841950539624 × 10−21 7.859451526095034 × 10−30
agreement is excellent, and includes at least thirteenth significant
digits in all cases and relatively negligible residuals at very large
time steps. Note that Gauss’ law formagnetism S·bn

= 0 is trivially
preserved because only the Bz component is present in this case,
and is invariant with respect to z.

For the third example, we consider the PIC simulation of a
blowing-up plasma ball (circle) composed of two species: elec-
trons (hot) and ions (cold). Initially, all electrons and ions are over-
lapped, so that the local charge is zero everywhere. The mesh
is dense around the initial plasma ball and relaxed radially. The
mesh is depicted in Fig. 8 and has 2539 edge elements. A total
of 4000 negatively charged particles are initially randomly dis-
tributed inside the red circle shown, with particle density ne =

4 × 103/(0.052π) = 5.0930 × 105 m−2. Electron velocities are
initialized with a Maxwellian distribution, with a thermal veloc-
ity |vth| = 10−3c m/s, where c is the light speed (nonrelativis-
tic regime). Positive ions are assumed much more massive, with
zero velocity. In Fig. 8, three nodes ν10, ν53, and ν134 are desig-
nated for verifying charge conservation at all times. The electron
Debye length is such that λ2

D = ϵ0kT/(ne)
3/2q2, which gives λD =

0.1974 m from the settings above. Fig. 9 shows the distribution of
the 4000 particles at different time steps, illustrating the expansion
of the plasma ball. To examine energy conservation, we consider
the energy balanced equation

∂

∂t


1
2
E · ϵE +

1
2
B · µ−1B


+ E · J = 0. (45)
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Fig. 8. Mesh with 2539 edges and three selected nodes ν10 , ν53 , and ν134 . A total of
4× 103 negatively charged particles are initially placed in the red circle, uniformly
distributed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

After spatial discretization, (45) writes

d
dt


1
2
eT · [⋆ϵ] · e +

1
2
bT

·

⋆µ−1


· b


+ eT · i = 0, (46)

or, more concisely,

d
dt

(We + Wm) + Ps = 0, (47)

where We and Wm are the electric and magnetic energy density
terms, and Ps is the term associated with the presence of electric
current J from the moving charges. Using a leap-frog scheme for
Fig. 10. Numerical verification of energy conservation with a plot of the left hand
side and the right hand side of (48) for all time steps.

time-discretization, we obtain

∆W
n+ 1

2
e + ∆W

n+ 1
2

m = −P
n+ 1

2
s ∆t, (48)

where half-integer times are considered to coincide with i. Fig. 10
shows the comparison between the left hand side and the right
hand side of (48) for all time steps. An excellent agreement is ob-
served, which numerically verifies energy conservation.

The discrete version of Gauss’ law is also examined for this case
in Table 3. Again, there is a very goodmatch between the two terms
of Gauss’ law for all times.

4. Concluding remarks

Anew, geometrically intuitive charge-conserving scatter–gather
algorithm for full electromagnetic PIC simulations has been
presented for arbitrary unstructured grids. The algorithm relies
Fig. 9. Distribution of 4 × 103 particles with an initial Maxwellian distribution, and zero initial fields. The particle distribution is shown at different time instants
(∆t = 0.01 ns): (a) t = 104∆t , (b) t = 2 × 104∆t , (c) t = 4 × 104∆t , and (d) t = 6 × 104∆t .
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Table 3
Verification of the discrete Gauss’ law for PIC simulations with many particles at different time steps and for three arbitrary (global) vertices.

Vertex n S · [⋆ϵ ] · en qn S · [⋆ϵ ] · en − qn

ν10

101 3.938626419217293 × 10−21 3.938828609135238 × 10−21
−2.021899179450384 × 10−25

102 4.216965415302240 × 10−20 4.216619000000000 × 10−20 3.464153022399240 × 10−24

103 5.693133763020551 × 10−19 5.692525000000000 × 10−19 6.087630205511676 × 10−23

104 3.376346144358901 × 10−18 3.373843000000000 × 10−18 2.503144358901224 × 10−21

6 × 104 1.948941527506024 × 10−17 1.947695000000000 × 10−17 1.246527506023833 × 10−20

ν53

101
−6.035730222106830 × 10−25 0 −6.035730222106830 × 10−25

102
−3.859548532081658 × 10−24 0 −3.859548532081658 × 10−24

103
−3.778195570243296 × 10−23 0 −3.778195570243296 × 10−23

104
−2.171627281773591 × 10−21 0 −2.171627281773591 × 10−21

6 × 104
−6.202694078733229 × 10−18

−6.183721000000000 × 10−18
−1.897307873322922 × 10−20

ν134

101 4.216746669112738 × 10−31 0 4.216746669112738 × 10−31

102 1.762689521069704 × 10−26 0 1.762689521069704 × 10−26

103 6.830106418522705 × 10−26 0 6.830106418522705 × 10−26

104 1.532866351101663 × 10−24 0 1.532866351101663 × 10−24

6 × 104
−1.478546530191113 × 10−18

−1.478877000000000 × 10−18 3.304698088865041 × 10−22
upon the representation of the various dynamical quantities as
discrete differential forms of different degrees, and on their self-
consistent interpolation by Whitney forms. The preservation of
Gauss’ law is demonstrated for all times, both analytically and by
means of numerical tests.
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Appendix A. Whitney forms: basic properties

For convenience, we provide here the explicit expressions of
Whitney forms [39] in 3-D. In the past, Whitney forms have
proved useful in finite element modeling of electromagnetic fields
[40–42], to suppress spurious modes. Although Whitney forms
can be more succinctly and elegantly expressed using the exterior
calculus of differential forms [26,32,33,39],we adopt here themore
familiar notation of vector calculus.

In 3-D, there are four types of Whitney p-forms, according to
their degree p. A Whitney 0-form is a continuous scalar function
simply expressed as [32]

W 0
i (r) = λi(r), (A.1)

where the subscript i represents vertex i and λi is the barycen-
tric coordinate [43] associated with vertex i. The geometric con-
struction for barycentric coordinates is illustrated in Fig. A.11.
For a 1-D simplex (i.e., edge), the barycentric coordinates associ-
ated to the vertices ν1 and ν2 of any point r in the simplex are
equal to ratios λ1 = L1/(L1 + L2) and λ2 = L2/(L1 + L2), re-
spectively, with L1 and L2 as indicated in Fig. A.11(a). For a 2-D
simplex (triangle), the barycentric coordinates associated to the
three vertices ν1, ν2 and ν3 of any point r in the simplex are
equal to λ1 = A1/A, λ2 = A2/A, and λ3 = A3/A, respec-
tively, with the areas A1, A2, and A3 as indicated in Fig. A.11(b)
and A = A1 + A2 + A3. In a 3-D simplex, which is a tetra-
hedron, the barycentric coordinates can be similarly written as
volume ratios. It is clear that 0 ≤ λi ≤ 1 for all i and that the sumof
the barycentric coordinates of any given point r associated to the
neighbor vertices is equal to one. Hereinafter, the dependence on
r is dropped for notational simplicity, i.e., λi(r) = λi.
Fig. A.11. Geometric illustration for Whitney 0-forms (barycentric coordinates) of
a point r in simplices of various degrees: (a) 1-D simplex and (b) 2-D simplex.

The vector (function) proxy of aWhitney 1-form associatedwith
an arbitrary edge ij5 bounded by vertices i and j is expressed as [32]

W1
ij(r) = λi∇λj − λj∇λi. (A.2)

For a brief geometric illustration of the Whitney 1-form, let us
consider Fig. A.12(a). The area Ae1, which is associated with e1, is

Ae1 = A

λs
1λ

f
2 − λs

2λ
f
1


, (A.3)

whereλs
i andλ

f
i are shorthands ofλi(rs) andλi(rf ), respectively. As

Fig. A.12(b) shows,Ae1 can be regarded as the sumof small triangles
such that

Ae1 = A

n


λn
1λ

n+1
2 − λn

2λ
n+1
1


= A


n


λn
1(λ

n
2 + ∆λn

2) − λn
2(λ

n
1 + ∆λn

1)


= A

n


λn
1∆λn

2 − λn
2∆λn

1


. (A.4)

After taking the limit of infinitesimally small triangles and trans-
forming this summation to an integral, we obtain

Ae1 = A
 rf

rs
[λ1∇λ2 − λ2∇λ1] · dL = A

 rf

rs
W1

12(r) · dL. (A.5)

The areas associatedwith e2 and e3 can be derived in a similar fash-
ion. The last integral in (A.5) above can be viewed as the generaliza-
tion of the concept of barycentric coordinates from 0-dimensional
objects (points) to 1-dimensional objects (segments). That is, this

5 For the sake of clarity, we adopt in this Appendix a vertex-based indexing for all
types of elements. This is in contrast to the single-indexing adopted for all element
types elsewhere in the paper.



52 H. Moon et al. / Computer Physics Communications 194 (2015) 43–53
Fig. A.12. Geometric illustration of the weight assigned to Whitney 1-forms
representing a segment L in a 2-D simplex: (a) In red color is the area Ae1 associated
with the Whitney 1-form on e1 (edge 1) that represents L. The associated weight
is given by Ae1/A, where A is the total area of the triangle composed of ν1, ν2 , and
ν3 . A similar construction can be made for the other two edges e2 and e3 . (b) Area
represented by a sum of small triangles. See the main text for more details.

relation illustrates that, in the same manner as the Whitney
0-forms (barycentric coordinates) are used to represent a point as
a weighted sum of nearby vertices i = 1, 2, 3 (with respective
weights Ai/A), Whitney 1-forms represent any segment [rs, rf ] in
terms of the nearby edges e1, e2, and e3 (now with weights Ae1/A,
Ae2/A, and Ae3/A, respectively). In both cases, the weights are com-
puted by the ‘‘contraction’’ [32] of the Whitney form with the cor-
responding geometric object. For a 0-form, this contraction simply
means an evaluation of W 0

i at the point r, i.e., W 0
i (r) as in (A.1),

whereas for a 1-form, this contraction means an evaluation of the
line integral ofW1

ij along the segment [rs, rf ] as in (A.5). For a more
general description of these Whitney form properties, see [44]. A
comprehensive discussion of the integral ofWhitney 1-forms along
a straight segment is presented in Appendix B.

Likewise, the vector proxy of a Whitney 2-form associated with
a triangular cell ijk is a vector function expressed as [32]

W2
ijk(r) = 2


λi∇λj × ∇λk + λj∇λk × ∇λi + λk∇λi × ∇λj


. (A.6)

Finally, in 3-D, the proxy of a Whitney 3-form associated with a
tetrahedral cell ijkl in 3-D is a scalar function written as [32]

W 3
ijkl(r) = 6


λi∇λj · (∇λk × ∇λl) + λj∇λk · (∇λl × ∇λi)

+ λk∇λl ·

∇λi × ∇λj


+ λl∇λi ·


∇λj × ∇λk


, (A.7)

Despite the complicated-looking expression (A.7), W 3
ijkl can be

shown in 3-D to be simply equal to

W 3
ijkl(r) =


1
V

, if r is in the tetrahedron ijkl,

0, otherwise,
(A.8)

where V is the volume of the tetrahedron ijkl [32]. Whitney forms
are interpolatory in the precise sense that they are equal to one
when ‘‘evaluated on’’ the respective elements (vertices, edges,
triangles, and tetrahedra) and to zero on all remaining elements
of the grid, where ‘‘evaluated on’’ in the case of W1

ij, W
2
ijk, and

W 3
ijkl means ‘‘integrated over’’ edges, triangles, or tetrahedrons

respectively.6 Furthermore, Whitney forms inherit the same type
of continuity of the fields they represent. Specifically, W 0

i (r)
is a continuous scalar function (representing scalar potentials
for example), W1

ij(r) is a tangentially continuous vector function
(representing ‘‘intensity’’ vector fields for example), W2

ijk(r) is a
normally continuous vector function (representing ‘‘flux density’’
vector fields or volumetric current densities for example), and

6 That is, line, surface, or volume integration, for aWhitney form of degree p = 1,
2, and 3, respectively.
Fig. B.13. An arbitrary particle path L during ∆t and associated parameters in the
xy-plane.

W 3
ijkl(r) is a discontinuous scalar field (representing volumetric

charge densities for example).
In 2-D, as in the numerical examples considered here, W 0

i (r)
and W1

ij write exactly as above, but W 2
ijk reduces to a scalar

discontinuous function

W 2
ijk(r) =


1
A
, if r is in the triangle ijk,

0, otherwise,
(A.9)

where A is the area of the triangle ijk.7 Furthermore, W 3
ijkl is

identically zero in 2-D. For these and more properties of Whitney
forms, the reader is referred to [28,29,44–46] and references
therein.

Appendix B. Line integral of Whitney 1-forms

The scatter step of the proposed algorithm and the analytical
verification of charge conservation provided above both rely
upon the evaluation of line integrals of Whitney 1-forms. In this
Appendix, we consider this in more detail. An arbitrary segment L
from rp,s to rp,f on a triangle is illustrated in Fig. B.13. The segment
can be decomposed into two vectors a and b. λ1(·) and λ2(·) are
barycentric coordinates associated with ν1 and ν2. h1 and h2 are
the heights of the triangle for the base of e3 and e2, respectively.
The edge vectors e1, e2, and e3 are oriented in an ascending fashion
of the associated vertex numbers. Note that the edge numbers do
not coincide with the vertex numbers.

A simple way to evaluate the line integral rp,f

rp,s
W1

i (rp) · dL, (B.1)

is to use a parametric representation such that

W1
i (rp) = W1

i (s) and dL = dL(s). (B.2)

W1
i (s) and dL(s) are simply assumed to be a linear function of the

parameter s and the range of s is set to be 0 ≤ s ≤ 1. As an example,
the line integral of theWhitney edge basis function associatedwith
e1,W1

1(rp) = λ1∇λ2 − λ2∇λ1, is derived here.

7 Alternatively, one could consider it as a discontinuous vector functionwith such
amplitude and oriented along the z-direction, i.e., transverse to a 2-D domain in
the xy-plane, so that expressions such as (10) remain invariant with the volume
element dV representing an area (2-D volume).
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As preliminaries, several variables are calculated. Vectors a and
b can be expressed as

a = −


λ
f
2 − λs

2


e3 = −∆2e3, (B.3)

b = −


λ
f
1 − λs

1


e2 = −∆1e2. (B.4)

First, the path and its space derivative are parameterized through
s such that

L = L(s) = (a + b)s = −(∆2e3 + ∆1e2)s, (B.5)

and dL = −(∆2e3 + ∆1e2)ds. Next, barycentric coordinates and
their gradients are parameterized through s as well, i.e.,

λ1(s) =


λ
f
1 − λs

1


s + λs

1 = ∆1s + λs
1 (B.6)

λ2(s) =


λ
f
2 − λs

2


s + λs

2 = ∆2s + λs
2. (B.7)

The gradients of the barycentric coordinates are constant, so they
are not the function of s, that is

∇λ1 =
1
2A

ẑ × e3, ∇λ2 =
1
2A

e2 × ẑ, (B.8)

where A is the area of the triangle. Some dot products used for the
line integral are summarized below.

∇λ1 · e2 = −1, ∇λ1 · e3 = 0 (B.9a)
∇λ2 · e2 = 0, ∇λ2 · e3 = −1. (B.9b)

Therefore, (B.1) for e1 is computed as rp,f

rp,s
W1

1(rp) · dL =

 rp,f

rp,s
(λ1∇λ2 − λ2∇λ1) · dL

=

 1

0


∆1s + λs

1


∇λ2 −


∆2s + λs

2


∇λ1


· (−∆2e3 − ∆1e2) ds

= −∆2 (∇λ2 · e3)
 1

0


∆1s + λs

1


ds

+ ∆1 (∇λ1 · e2)
 1

0


∆2s + λs

2


ds

= ∆2


∆1

2
+ λs

1


− ∆1


∆2 + λs

2

2


= ∆2λ

s
1 − ∆1λ

s
2

=


λ
f
2 − λs

2


λs
1 −


λ
f
1 − λs

1


λs
2 = λs

1λ
f
2 − λ

f
1λ

s
2. (B.10)

Similarly, the other two line integrals can be computed as rp,f

rp,s
W1

2(rp) · dL = λs
1λ

f
3 − λ

f
1λ

s
3, (B.11)

 rp,f

rp,s
W1

3(rp) · dL = λs
2λ

f
3 − λ

f
2λ

s
3. (B.12)
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