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a b s t r a c t

To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional
(3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite
integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of
the time step. Particles are emitted from conformal boundaries with the charge conserving emission
scheme and moved by using the relativistic Newton–Lorentz force equation. The symplectic formulas
of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are
given for truncating the open boundaries, numerical results show that the maximum relative error of
truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of
conformal signals’ injection are given, numerical results show that the algorithms can give the rightmode
patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms,
a magnetically insulated line oscillator is simulated, and the results are compared to those provided by
using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order
symplectic integration method can suppress the numerical Cherenkov radiation.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The particle-in-cell (PIC) method has been widely used in
the generation of high-power microwave (HPM) as a means
to understand the very complex nonlinear physical process
of the beam–wave interaction [1,2], and the PIC codes have
revolutionized the HPM research field. In the PIC method, the
electromagnetic fields are updated using the second-order, finite-
difference time-domain (FDTD) [3] or finite integration technique
(FIT) [4,5] method, and the particles are moved using the
relativistic Newton–Lorentz force equation. Based on this method,
some fully electromagnetic PIC codes have been developed, for
example, MAGIC [6], OOPIC (object-oriented PIC) [7], KARAT [8],
ICEPIC [9], MAFIA [10], Vorpal [11], UNIPIC [12,13], and so on.

One of the most difficult problems encountered using a PIC
code to simulate the HPM devices is the treatment of the curved
conducting boundaries and cathode surface, which may exist in
some real HPM devices. For the staircased approach, it is easy
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to generate grids and the algorithm has high efficiency, but the
main disadvantage of this approach is that the solution becomes
the first-order accuracy due to the first-order approximation
to the boundaries, which introduces large discretization errors,
even when the grid size is small. Especially, for the particles’
emission, the particles are emitted from the staircased surface, the
velocity direction of the particle cannot guarantee to be normal
to the original boundary of the cathode. Basically, there are two
types of methods to accurately model the curved boundaries,
namely the unstructured meshes and the structured meshes. For
the unstructured meshes, a discontinuous Galerkin (DG) scheme
for solving the Maxwell–Vlasov equations in time-domain was
developed to model the HPM sources [14]. For the structured
meshes, some conformal methods to accurately model the curved
surface were studied.

To increase the accuracy of the boundary approximation
while preserving many benefits of the original algorithms, the
partially filled cells (PFC) [15] or cut-cell (embedded boundary
method) approach [16] with the second-order accuracy was
developed. Accordingly, some conformal methods for updating
the electromagnetic fields were also developed, such as the
contour path FDTD (CP-FDTD) scheme [15], enlarged cell technique
conformal FDTD (ECT-CFDTD) scheme [17], uniformly stable
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conformal finite integration technique (USC-FIT) scheme, simple
conformal FIT (SC-FIT) scheme [18], CP-WCS FDTD Method [19],
etc. In the ECT-CFDTD/USC-FIT scheme, to avoid the reduction of
time step compared to the conventional staircase method, the
magnetic fluxes from the neighboring cells are interpolated to the
small cell, and the enlarged magnetic voltage of the small cell
is averaged to the neighboring magnetic voltages. But when this
scheme is used in the PIC method, the interpolating and averaging
operations may destroy the charge conversation near the cut-
cell emission boundary, even using the charge conservation
weighting scheme. Unlike the ECT-CFDTD/USC-FIT scheme, the SC-
FIT schemedoes not use any interpolating and averaging operation,
and hence, it will not destroy the charge conservation, meanwhile,
the reduction of edge length is introduced to avoid the reduction
of time step.

Additionally, the traditional FDTD method used for dealing
with the time derivatives in the Maxwell’s equations can lead to
significant numerical dispersion [20], so the FDTD-PIC algorithm
may cause the numerical Cherenkov instability [21,22], which
is particularly serious for the relativistic electron beams [23].
The pseudo-spectral analytical time-domain (PSATD) algorithm
is free of numerical Cherenkov instability [24]. For the PSATD
algorithm, the fields are exact in space and second-order
accurate in time, Fourier transforms of fields and currents are
required at each time step, so the fields should be evaluated
as a set of modes in Fourier space, which is computationally
expensive. Unlike the PSATD algorithm, the symplectic integrator
(SI) [20] is a high order algorithm to simulate the dynamics
of electromagnetic fields in time and second-order accurate
in space, it can preserve the dynamical invariants up to a
desired order of accuracy, and hence, it can greatly decrease the
numerical dispersion. In Ref. [25], a variational multi-symplectic
PIC algorithm with smoothing functions for the Vlasov–Maxwell
systemwas introduced and applied to simulate thenonlinearmode
conversion from extraordinary waves to Bernstein waves [26], but
this algorithm is constructed based on the Lagrangian density for
a collection of N nonrelativistic charged particles together with
the electromagnetic field, and it does not suit for the simulations
of HPM devices involving the relativistic charged beams. So, in
this paper, for decreasing the dispersion error and also having the
capability to solve the relativistic Newton–Lorentz force equation
explicitly, SI method is employed to update the electromagnetic
fields, and the relativistic charged particle’s movement equation is
solved by using the traditional Boris advancing method.

For emission/absorption of the charged particles, when a cut-
cell boundary is involved, the challenge is how to deal with the
boundary conditions of particles to ensure that Gauss’s law is
preserved. Amacro-particle, which crosses a cut-cell boundary and
leaves the simulation region, should be removed. And the macro-
particle, which is emitted from a cut-cell boundary, should be
injected there. However, immediate removal or injection from a
cut-cell boundary can lead to non-zero divergence of the electric
field. This can accumulate to an unphysical degree [16]. One may
simply forcefully displace a particle to the nearest PEC (perfect
electric conductor) node, compute currents as if this was the
actual trajectory, and hence insure no remnant charge [16]. But the
currents may produce large numerical noise, where the noise can
couple to high frequency modes trapped within the cut-cells [16].

In this paper, we present a new SC symplectic PIC method.
The SC method is used to overcome the shortcomings of the
staircased meshes without reduction of time step, and the
symplectic integrator is introduced to reduce the phase error in
time. On the other hand, the cut-cell conformal scheme of particle
injection is improved for reducing the numerical noise while
preserving the charge conservation. For the truncation of open
port, the auxiliary-differential equation (ADE) form of the complex
Fig. 1. Flow chart for SC symplectic PIC scheme.

frequency shifted [27] perfectly matched layer (CFS-PML) [28] for
symplectic FIT algorithm is introduced first. The conformal port
mode loading algorithm is given by solving the discrete eigenvalue
equation at the conformal port. Additionally, Friedman damping
scheme [29] is employed to suppress the high frequency waves.

2. SC symplectic PIC method

Based on our recent developed model design and conformal
grid generation techniques [30], the SC symplectic PIC method is
developed to getmore accuracywithout loss of toomuch efficiency
to simulate the HPM tubes. The general flow of this method is
shown in Fig. 1.

The fields are defined at discrete locations in space. Using the SC
scheme tomaintain the curved boundary valueswithout reduction
of the time step, and employing the symplectic integrator, the
fields are advanced at discrete times. For the port’s mode loading,
the elements belonging to the port can be selected first, the
distribution modes of fields at the port can be computed and be
loaded as the input signals by solving the eigenvalue equations
of these elements. For the open port (or output port) boundaries,
the ADE-CFS-PML is employed to truncate the outgoing waves.
Unlike the convolutional PML (CPML) with the discrete recursive
convolution algorithm [31–33], the parameters of ADE-CFS-PML
are not the exponential functions of time step, so it is easy to
introduce a high-order SI method tomaintain the time derivatives.

The particles are defined in the continuum spaces of both
position and velocity. In our scheme, Boris advancing method
with the time-centered second-order accuracy is used to solve
the relativistic Newton–Lorentz force equation. For conformal
emission and absorption of particles, the cut-cellmethod is slightly
modified, namely, the particle is absorbed only when it moves
into a cell fully filled by PEC. If a particle is in a PFC, it is pushed
by the fields normally. So when a particle is emitted with an
initial velocity at the nearest exterior node just as the cut-cell
emission scheme, not being artificially forced to move to the cut-
cell boundary, the particle moves with its own velocity into a PFC
or a non-filled cell by PEC.

The electromagnetic fields and particles are coupled through
the current term in the Maxwell’s equations. In our scheme, ρ and
J are computed by the density decomposition method [34], which
is a charge conservation scheme.

2.1. The definition of grid elements in conformal grid system

Given a boundary representation (B-rep) of a shape [35], in
order to describe the topology of discrete boundaries in the
discrete grid system, the relative orientation relationship between
line and face on a PFC for PEC geometries should be defined.

Suppose that the direction of a grid line is along one coordinate
axis, u0, u1, and u2 are used to define the direction of grid lines,
(u0, u1, u2) may be (x, y, z), (y, z, x) or (z, x, y). For convenience,
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(a) Relative orientation in a regular grid. (b) Relative orientation in a PFC grid.

Fig. 2. The relative orientation between discrete faces and lines.
we correspondingly map x, y and z to 0, 1 and 2. If the value of u0
is set as one of 0, 1 or 2, then the values of u1 and u2 can be given as

u1 = (u0 + 1) mod (3) , u2 = (u0 + 2) mod (3) (1)

where ‘‘mod’’ is the modulus operator.
In the grid system, (u, ijk) is defined as the multi-index of the

grid elements. lu,ijk and Lu,ijk are separately the non-PEC length and
the total one of cell edge (i, j, k) along the direction u, defined as the
natural orientation of lu,ijk and Lu,ijk. su,ijk and Su,ijk are separately the
non-PEC area and the total one of cell face (i, j, k) with the normal
direction (natural orientation) u.

For convenience of definition, the direction of one edge element
with amulti-index q is defined as uq,0, and the direction of one facet
with a multi-index p is defined as ũp,0. According to Eq. (1), we can
get the direction uq,1, uq,2, ũq,1, and ũq,2.

Based on definition of the natural orientation of grid elements,
the relative orientation between line and face can be decided. For
a regular grid face Sp shown in Fig. 2(a), the line Lq is one of its
boundary edges. If the natural orientation of Lq is reverse to the
direction of the closed boundary orientation induced by natural
orientation of Sp, we say that the orientation of Lq is relatively
reverse to the orientation of Sp. On the contrary, we say that the
orientation of Lq is relatively consistent with the orientation of Sp.
The relative orientation relationship between Lq and Sp is noted as
Rp
q . R

p
q = −1 means that Lq is relatively reverse to Sp, and Rp

q = 1
means that the orientation of Lq is consistent with the orientation
of Sp. The definitionmanner of Rp

q is also suitable for PF faces shown
in Fig. 2(b).

2.2. Review of symplectic FDTD and SC scheme

The dynamics of electromagnetic fields are described by
Maxwell’s equations, which in the differential form for a linear
medium are

ε
∂

∂t
E =

1
µ

∇ × B − J (2)

∂

∂t
B = −∇ × E − M (3)

where E and B are the electric and magnetic fields, ε and µ are the
permittivity and permeability of the medium, and J andM are the
electric current density and magnetic current density.

According to the explicit symplectic partitioned Runge–Kutta
(pRK) algorithm [20], the discrete forms of Eqs. (2) and (3) can be
expressed as

Bn+(j+1)/r
= Bn+j/r

− bj1t

∇ × En+r

+ Mn+j/r (4)

En+(j+1)/r
= En+j/r

+ b̃j1t
1
ε


1
µ

∇ × Bn+(j+1)/r
− Jn+(j+1)/r


(5)
Fig. 3. A PF grid face.

where, j = 0, . . . , r−1, bj and b̃j are the coefficients for the explicit
pRK algorithm, r is the order of the method, the values of bj and b̃j
can be selected referring to Ref. [20].

To introduce SC conformal method to pRK algorithm, the curl-
operator in Eq. (4) needs to be expressed as an integral form. In
context of FIT, the electromotive force along the oriented boundary
of an arbitrary face Sp can be given as the following formula

V n
p =


Lq∈δSp

Rq
p l̄qLqE

n
q (6)

where l̄u,ijk = lu,ijk/Lu,ijk.
For the small partially filled face shown in Fig. 3, the SC method

is adopted to avoid reduction of the time step. That is to say, the
value of l̄u0,ijk in Eq. (6) will be replaced in the following manner

l̄u0,ijk = min

2min


s̄u1,ijk, s̄u1,ij(k−1), s̄u2,ijk, s̄u2,i(j−1)k


, l̄u0,ijk


(7)

where s̄u,ijk = su,ijk/Su,ijk.
Combining Eqs. (4)–(7), the conformal explicit symplectic pRK

discrete equations can be obtained without reduction of time step.

2.3. Symplectic ADE-CFS-PML

Consider the Maxwell’s equations in a lossless, source-free
medium. Using complex stretched coordinates in the PML region,
Faraday’s and Ampere’s laws in frequency domain are expressed as

−iωBu0 =
1
su1

∂

∂xu1
Eu2 −

1
su2

∂

∂xu2
Eu1 (8)

iωεµEu0 =
1
su1

∂

∂xu1
Bu2 −

1
su2

∂

∂xu2
Bu1 (9)
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where sv(v = u0, u1, u2) are the stretched coordinate metric
coefficients. Initially, these coefficients are chosen via the CFS-PML
parameters,

sv = κv +
σv

αv + iωε0
(10)

where αv , κv , and σv are the positive real functions with one
variable xv .

According to the constructionmanner of ADE-CFS-PML [28], the
discrete form of Eq. (8) can be expressed as

Bn+1/2
u0 = Bn−1/2

u0 − 1t


1
κu1

∂

∂xu1
En
u2 −

1
κu2

∂

∂xu2
En
u1

+Q En
u1,u2 + Q En

u2,u1


(11)

Q En
u1,u2 = au1Q

En−1

u1,u2 + cu1
∂

∂xu1
En−1
u2 (12)

Q En
u2,u1 = au2Q

En−1

u2,u1 − cu2
∂

∂u2
En−1
u1 (13)

aui =
κuiε0

κuiε0 + 1t

κuiαui + σui

 , i = 1, 2 (14)

cui =
1tσui

κui


κuiε0 + 1t


κuiαui + σui

 , i = 1, 2. (15)

The discrete form of Eq. (9) can be obtained similarly.
For explicit symplectic pRK methods given by Eqs. (4) and

(5), one time step is partitioned as multiple substeps, the scales
of jth substep are given by parameters bj and b̃j. To partition
Eqs. (11)–(15) using bj, the explicit partitioned ADE-CFS-PML can
be obtained corresponding to the symplectic pRKmethods, and are
expressed as

Bn+(j+1)/r
u0 = Bn+j/r

u0 − bj1t


1
κu1

∂

∂xu1
En+j/r
u2

−
1

κu2

∂

∂xu2
En+j/r
u1 + Q En+j/r

u1,u2 + Q En+j/r

u2,u1


(16)

Q En+(j+1)/r

u1,u2 = aj,u1Q
En+j/r

u1,u2 + cj,u1
∂

∂xu1
En+j/r
u2 (17)

Q En+(j+1)/r

u2,u1 = aj,u2Q
En+j/r

u2,u1 − cj,u2
∂

∂xu2
En+j/r
u1 (18)

aj,ui =
κuiε0

κuiε0 + bj1t

κuiαui + σui

 , i = 1, 2 (19)

cj,ui =
bj1tσui

κui


κuiε0 + bj1t


κuiαui + σui

 , i = 1, 2 (20)

where j = 0, . . . , r − 1. The corresponding discrete equations for
Ampere’s laws are obtained similarly with the scaled steps by b̃j.

−
1En+j/r

u1

1xu2


ijk

=
V n+j/r
q,uq,1

1Sq
,

V n+j/r
q,uq,1 =


Lp∈∂Sq


rqpLpE

n+j/r
p

up,0 − uq,1

uq,2 − uq,1


(21)

1En+j/r
u2

1xu1


ijk

=
V n+j/r
q,uq,2

1Sq
,

V n+j/r
q,uq,2 =


Lp∈∂Sp


rpq LpE

n+j/r
p

up − uq,1

uq,2 − uq,1


. (22)

In Eq. (16), the difference operator cannot be directly converted
to a finite integral formulation. Using the transforms (21) and (22),
Fig. 4. Relative error versus time for the circular waveguide problem.

the difference operation in Eq. (16) can be transformed to the finite
integral formulation, and then, the consistent formulation with FIT
scheme can be obtained.

2.4. Conformal mode loading scheme

The types of HPM devices are identified into two classes:
oscillators and amplifiers. During the simulation of these devices,
the signals loading problem needs to be solved, including the
injection of a voltage signal source and the launching of an input
signal with one specified mode (not a TEM mode). That is to say,
the mode patterns in the input port need to be solved.

For the injection of a voltage signal, the spatial distributions
of potential in the port can be obtained by solving the following
Laplace’s equation

∇
2
Tϕ = 0 (23)

where ∇
2
T is the transverse Laplacian operation excluding the

normal direction of the port.
If the zero-order boundary conditions are set, using the second-

order center-difference method, Eq. (23) can be expressed as the
following discrete matrix equation,
aϕ = b. (24)

After the spatial distributions of potential are solved by using
Eq. (24), the pattern of electric fields in the port can be computed.

For amplifiers or oscillators with phase controller for the pur-
pose of coherent power combining, one signal with a specialized
mode excluding the TEM mode needs to be injected from the in-
put port. It is to say that the spatial distributions of the elec-
tric/magnetic fields with the specified mode in the port need to
be computed first, which can be solved from the following two-
dimensional wave equations,

1
ε
∇T ×


1
µ

∇T × E


= −
∂2E
∂t2

(25)

1
µ

∇T ×


1
ε
∇T × H


= −

∂2H
∂t2

(26)

where∇T is the transverse gradient operator excluding the normal
direction of the port.

According to the FIT method, the discrete electric voltage ⌢e q

and magnetic voltage
⌢
h q are defined as

⌢e q =


Lq
E · dl, ⌢

h q =


L̃q
H · dl (27)

where L̃q is the dual edge of the facet Sq.
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Using the FIT method in the conformal grid system, Eqs. (25)
and (26) are discretized as a matrix–vector form

A ⌢e = −
d2

dt2
⌢e (28)

Ã
⌢
h = −

d2

dt2
⌢
h (29)

where ⌢e and
⌢
h are separately defined as the electric andmagnetic

voltage column vectors.
With a time-harmonic dependence eiωt for the fields, Eqs. (28)

and (29) take the forms

A ⌢e = ω2 ⌢e (30)

Ã
⌢
h = ω2 ⌢

h . (31)

By solving the above equations, the distribution of the elec-
tric/magnetic fields in the portwith eigenvalueω2 can be obtained.

After the distribution patterns of the electric/magnetic fields in
the port are obtained with the desired time function, the input
electric and magnetic fields are separately defined as Es (x, t)
and Hs (x, t). According to the surface equivalence theorem, the
input electric/magnetic fields can be substituted as equivalent
magnetic/electric current densities which are expressed as

Jes = −ên × Hs (32)

Jms = ên × Es. (33)

One specified mode can be loaded from the port by introducing
the equivalent currents of the mode to discrete Maxwell’s
equations,

En+1
= En

+
1t
ε

∇ × Hn+1/2
−

1t
ε


Jn+1/2

+ Jn+1/2
es


(34)

Hn+3/2
= Hn+1/2

−
1t
µ

∇ × En+1
+

1t
µ

Jn+1/2
ms . (35)

2.5. Conformal emission

A commonly used charge conserving weighting scheme is the
linear weighting scheme, in which the charge weighting scheme
can be expressed as

Qi0 i1 i2 =


α

qα


1 − wu0

 
1 − wu1

 
1 − wu2


(36)

Qi0+1i1i2 =


α

qαwu0


1 − wu1

 
1 − wu2


,

i0i1i2 = ijk, jki, kij (37)

Qi0 i1+1i2+1 =


α

qα


1 − wu0


wu1wu2 ,

i0i1i2 = ijk, jki, kij (38)

Qi0+1i1+1i2+1 =


α

qαwu0wu1wu2 (39)

where i, j and k denote the indices of the Cartesian coordinates x, y
and z. wu0 =


xu0 − Xijk


/1xu0 , x refers to the position of the αth

particle, and Xijk is the position of the nearest lower mesh node.
The charge conserving currents generated in the cell can be

expressed as

Iu0,i0 i1 i2 =


α

qα

1t
1wu0


1 − w̄u1

 
1 − w̄u2


(40)

Iu0,i0 i1 i2+1 =


α

qα

1t
1wu0


1 − w̄u1


w̄u2 (41)
Iu0,i0i1+1i2 =


α

qα

1t
1wu0w̄u1


1 − w̄u2


(42)

Iu0,i0i1+1i2+1 =


α

qα

1t
1wu0w̄u1w̄u2 (43)

where 1w = wn+1
− wn, and w̄ =


wn+1

+ wn

/2.

In the flow of PIC advancing scheme by using the above linear
weighting algorithms, one particle is dropped into the cell without
generating the self-consistent fields. After the particle has left
the initial cell, the electric field is computed as if the charges
with opposite sign remain in the first cell. However, Gauss’s law
is preserved in the next cell that the particle moves into. This
implies that the key to charge conserving emission from perfectly
conducting conformal boundaries is that the charge must initially
be distributed completely inside PEC and does not weight any
charges to the nodes inside the vacuum.

Similar to the cut-cell conformal emission algorithm [16], the
cut-cell surface is triangulated to achieve a uniform emission
density, and the initial emission position of emitted particle
is located at the nearest PEC node to the conformal emission
triangle. The difference is that the endpoint is decided by two
components, the normal and transverse components. The former
is the displacement under the normal electric field of the emission
triangle within one time step; the latter is a random displacement
parallel to the emission triangle, and its length is constrained by
the shape of the emission triangle.

In one triangle, the point on it can be expressed as

p = uP0 + vP1 + wP2,

u > 0, v > 0, w > 0, and u + v + w = 1 (44)

where P0, P1, and P2 are the vertices of the triangle, u, v, and w
are the barycentric coordinates. If u and v are the random values in
interval (0, 0.5), and w = 1 − u − v, then the random transverse
component can be selected as the following expression

dxT = p − O (45)

where O is the barycenter of the triangle.

3. Numerical examples

In this section, numerical examples are separately given to
test the symplectic ADE-CFS-PML, conformal mode loading, and
conformal emission algorithms. Finally, a magnetically insulated
line oscillator (MILO) is simulated to test the SC Symplectic PIC
code presented in this paper.

3.1. Numerical examples for symplectic ADE-CFS-PML

The symplectic ADE-CFS-PML formulation is validated via
calculating the electromagnetic wave propagating in a circular
waveguide, whose radius and height are 55.0 and 120.0 mm. The
waveguide is padded with additional ten cells of PML on two ends.
The spatial step is 5.0 mm in all three directions. The origin point
of the discrete space domain is set at the center of the model.
The electric field along z-axis is probed at the point (12.5, 12.5,
35.0 mm). The simulation time is 60.0 ns. The time step is set as

1t = 0.95 ×
1

c

1/ (1x)2 + 1/ (1y)2 + 1/ (1z)2

(46)

where c is the speed of light.
The excitation source is chosen as a dipole with the form of

sine-modulated Gaussian pulse, it occupies one grid step length at
(−12.5, −12.5, −40.0 mm) along z axis,

Jz = cos (2π f ) e−4π(t−t0)2/τ2
(47)
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(a) TE11 . (b) TE21 . (c) TE01 .

(d) TE31 . (e) TE41 . (f) TE12 .

Fig. 5. Some TE mode patterns of a circular waveguide.
Table 1
Cutoff frequencies of TE modes of a circular waveguide.

Mode TE11 TE21 TE01 TE31 TE41 TE12

Analytical Freq (GHz) 1.598 2.651 3.327 3.647 4.616 4.628
Numerical Freq (GHz) 1.598 2.649 3.326 3.643 4.614 4.625
where Jz is the current density along z axis, f is the modulation
frequency, τ is the pulse duration, t0 is the peak time of the pulse. In
the simulation, we choose f = 2.0 GHz, τ = 20/f , and t0 = 20/f .

To study the reflection error due to the symplectic ADE-CFS-
PML, a reference problem is also simulated. The two ends of the
waveguide are extended sufficiently long so that no reflection from
the exterior boundary would occur during the simulation. The
relative error is defined as

ErrordB = 20 log10

Ez (t) − Eref
z (t)


max

Eref
z (t)

 (48)

where Ez represents the field computed using the original problem,
Eref
z represents the field computed using the reference problem,

‘‘max’’ represents the maximum value over all time.
In our simulation, the constitutive parameters of symplectic

ADE-CFS-PML σ , κ , and α are set with the same manner as in [33].
Both σ and κ are scaled with third-order polynomial scaling (m =

3), with κmax = 40.0, σratio = 7.5, and αmax = 0.0. The results are
shown in Fig. 4 with different orders of symplectic integrator. The
results show that the truncation error of symplectic ADE-CFS-PML
could be less than −90 dB.

3.2. Numerical examples for conformal mode loading

The numerical model is selected the same as that used in
Section 3.1. For the circular waveguide, the cutoff frequency of a
TE mode is given by

fCTEmn =
xmn

2πa
√

µε
(49)
Fig. 6. Dfrel versus dx for the TE01 mode in the circular waveguide.

where xmn is the mth root of the function J ′n (x), which is the
derivative of Bessel function of the first kind.

Some cutoff frequencies andmode patterns of TE modes for the
test model are numerically computed by using Eq. (30), and the
results are separately shown in Table 1 and Fig. 5. The numerical
values are compared with the analytical ones, the errors could be
as low as 0.1%.

To observe the effect of the grid size on the numerical accuracy,
we define the relative difference of the cutoff frequencies between
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Fig. 7. Schematic view of the coaxial cylindrical diode.
Fig. 8. The dimensions of the coaxial cylindrical diode.
Fig. 9. Velocity space of particles at 14.1 ns.
Fig. 10. Phase-space of radial velocity of electron for coaxial emission at 14.1 ns.
the numerical and analytic results as

dfrel =
|fnum − fana|

fana
. (50)

We calculate the relative difference of the cutoff frequency for
the TE01 mode in the circular waveguide, and present it versus the
grid size dx in Fig. 6. It can be seen from this figure that the relative
difference between the numerical and analytic results decreases
basically with reduction of the grid size.

3.3. Numerical examples for conformal emission

A coaxial cylindrical diode is chosen to test the conformal
emission algorithm, which is schematically shown in Fig. 7, and
its dimensions are shown in Fig. 8. The anode radius is 15.0 mm
and the cathode radius is 10.0 mm that gives an A–K gap of
5.0 mm. The input A–K gap voltage is 50.0 kV, and its rise time
is 1.0 ns. The spatial step is 0.2 mm in all three directions. The
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Fig. 11. Instantaneous radial electric field near the cathode surface.

particles are emitted according to the charge conservationmethod.
Fig. 9 shows the velocity space distributions of particles inside the
coaxial cylindrical diode, and Fig. 10 shows the phase-space of
radial velocity of particle along the radial gap between the coaxial
cylinders.

The results show that the beam produced by using conformal
charge emission method expands due to the space charge, which
is a fairly parabolic profile as expected.

The radial component Er on the cathode surface remains zero
as a function of time due to the explosive emission of electrons.
Nevertheless, Er is not zero at the half index of the grid near the
cathode surface tomaintain the explosive emission of electrons [1].
Fig. 11 shows Er at the first and third half indices of the grid near
the cathode surface. It can be seen that they grow at first and then
remain nearly unchanged as a function of time.

3.4. Numerical example for the simulation of HPM devices

The MILO is a low-impedance cross-field microwave device, in
which the electrons are emitted from a cylindrical cathode, and
it is chosen as the numerical example for testing the conformal
algorithms introduced in this paper.

Fig. 12 shows the dimensions of MILO geometry, and its 3D
computational model is shown in Fig. 13. Figs. 14 and 15 show
respectively the conformal grids of three cross sections of the
device and the triangular mesh of the cathode. Fig. 16 gives the
details of the conformal grids. This device is driven by a voltage of
2.1 MV with the rise time of 1 ns. The whole computational region
is discretized into 182 × 182 × 587 (nx × ny × nz) cells, and the
time step is 6.556×10−4 ns. Numerical simulations are conducted
on this device with the second and third symplectic integrators.

Typical results are shown in Figs. 17–22. Fig. 17 shows the
velocity space of particles at 13.7688 ns. Fig. 18 represents the
input voltage. Fig. 19 shows the time history of the electric fields
at the test point (0.0, 32.0, 230.0 mm), and Figs. 20 and 21 give the
spectrumof output signal. FromFigs. 19 and 20, the amplitude of Ez
computed with the third SI method is smaller than one computed
with the second SI method. With the FFT analysis, the excited high
frequencies with the third SI method are less than the second
SI method, and to some extent the high frequency numerical
Cherenkov radiation is restrained with the third SI method. Fig. 22
gives the output microwave power generated in the MILO device.
Additionally, comparing Fig. 22(a) and (b), the output microwave
power computed with the third SI method is smoother.

For the sake of comparison, numerical results are also provided
by using the 2.5D UNIPIC code for the same MILO device [12].
Fig. 12. MILO geometry. The red line is the cathode, the dashed green line is the axis. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 13. 3D model of MILO.
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Fig. 14. Conformal grids of three different sections of MILO.
Fig. 15. The triangular mesh of the MILO’s cathode.
(a) The details of one section. (b) The details of
triangular mesh of the
cathode.

Fig. 16. The details of the conformal grids.
Fig. 17. Velocity space of particles inside MILO with the third SI method.

Fig. 23 is the 2D computational model of MILO discretized into
480×76 (nz×nr ) cells. Figs. 24–26 respectively represent the input
voltage, the spectrum of output signal, and the output microwave
power. It can be seen that the results calculated by using these two
codes agree well.
Fig. 18. Input voltage ofMILO recordedwhen using the third symplectic integrator.

Next, we discuss the computational expenses cost by the
new code and the UNIPIC code. First, the UNIPIC code is a
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(a) With the second SI method. (b) With the third SI method.

Fig. 19. The electric fields at the test point (0.0, 32.0, 230.0 mm).
(a) With the second SI method. (b) With the third SI method.

Fig. 20. FFT from 7 to 15 ns of Ez .
Fig. 21. FFT of Ey computed with the third SI method.

two-and-a-half dimensional one, which solves the six components
of electromagnetic field (Er , Eφ, Ez,Hr ,Hφ , and Hz) and five
physical quantities of particle (vr , vφ, vz, xr , and xz). Second, this
new3D SC symplectic PICmethod should solve the six components
of electromagnetic field (Ex, Ey, Ez,Hx,Hy, and Hz) and six physical
quantities of particle (vx, vy, vz, Xx, Xy, and Xz), meanwhile, it
needs also to deal with the conformal boundary. Therefore, for the
same numbers of particles to be tracked, the computational cost
per cell of the 3D SC symplectic PIC method is a little bit bigger
than that of the UNIPIC code. This is the case for the second order
SI method, whose computational cost is nearly one third of that for
the third order SI method.

The above studied MILO is a typical device with a cylindrical
cathode surface which needs the conformal emission algorithm,
and it can also be simulated by using the 2.5D PIC code. But some
HPM devices can be simulated only by using 3D PIC code, for
example, the power combiner composed of two or more single
HPM tubes. Recently, Xiao et al. studied the power combination of
two phase-locked relativistic backward wave oscillators (RBWO)
numerically and experimentally [36]. The computational model of
this power combiner is shown in Fig. 27. Due to the complicated
slowwave structure of the klystron-like RBWO and intersection of
the two RBWOs, it is very difficult to get correct physical picture of
the power summation from the two RBWOs by using the UNIPIC-
3D codewith staircasemeshes. And hence, Xiao et al. designed and
investigated this kind of power combiner at the X band by using
our new 3D SC symplectic PIC code [36]. The conformal meshes
constructing the power combiner are also shown in Fig. 27. By
the PIC simulation, the output power, summation efficiency, and
distributions of electromagnetic field inside the combiner were
provided. The numerical results agreedwell with the experimental
ones [36].

To suppress the high frequency waves, the damping scheme is
usually adopted in the particle simulations. In this paper, Friedman
damping scheme is employed [29]. The range of damping factor can
be set as [0, 0.5], but it is usually [0.1, 0.4]. In our simulation of the
MILO, the damping factor is taken as 0.3.

4. Conclusion

This paper presents a 3D SC symplectic PIC method for
simulations of high powermicrowave devices. Comparingwith the
traditional EM-PIC method, the symplectic integrator is employed
to update the fields in time domain, and the SC scheme is used
to solve the fields around the curved boundaries. Accordingly, the
symplectic formulas of ADE-CFS-PML are given for truncating the
open ports, numerical results show that the maximum relative
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(a) With the second SI method. (b) With the third SI method.

Fig. 22. Output microwave power of MILO.
Fig. 23. 2D model of MILO for UNIPIC.

Fig. 24. Input voltage of MILO in UNIPIC.

error is less than 90 dB. For conformal signals injection, the
computing algorithms of the TEM, TE, and TM mode patterns are
given for the waveguide ports, and these patterns are loaded as
the input signals according to the surface equivalence theorem.
Numerical results show that the algorithms can give the right
mode patterns and the errors of cutoff frequencies could be as low
as 0.1%. The modified cut-cell conformal emission is also given,
and a coaxial cylindrical diode is chosen to test the algorithm.
Numerical results show that the beam produced by using the
conformal charge emission method expands as a parabolic profile
as expected. Finally, to verify the conformal algorithms, a MILO is
simulated, and the results are compared to the numerical results
provided by using the 2.5D UNIPIC code, which show that they
agree well. The results also show that the high order SI method
can restrain the numerical Cherenkov radiation.

For conformal emission of the particles, the perfect charge
conservation emission schemeperhapsmaybe given by combining
Fig. 25. Spectrum of electric field generated in MILO obtained by UNIPIC.

Fig. 26. Output microwave power of MILO obtained by UNIPIC.

the weighting scheme on unstructured grids and on structured
grids [37] in the hybrid FVTD/FDTD frameworks recommended in
Ref. [38].
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Fig. 27. The numerical model of the power combiner.
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