
Computer Physics Communications 222 (2018) 351–373

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Smilei: A collaborative, open-source, multi-purpose particle-in-cell
code for plasma simulation✩

J. Derouillat a, A. Beck b, F. Pérez c, T. Vinci c, M. Chiaramello d, A. Grassi d,e,f, M. Flé g,
G. Bouchard h, I. Plotnikov i, N. Aunai j, J. Dargent i,j, C. Riconda d, M. Grech c,*
a Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
b Laboratoire Leprince-Ringuet, École Polytechnique, CNRS-IN2P3, F-91128 Palaiseau, France
c Laboratoire d’Utilisation des Lasers Intenses, CNRS, École Polytechnique, CEA, Université Paris-Saclay, UPMC Université Paris 06: Sorbonne Universités,
F-91128 Palaiseau Cedex, France
d Laboratoire d’Utilisation des Lasers Intenses, UPMC Université Paris 06: Sorbonne Universités, CNRS, Ecole Polytechnique, CEA, Université Paris-Saclay,
F-75252 Paris Cedex 05, France
e Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
f Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR/INO), u.o.s. Adriano Gozzini, I-56127 Pisa, Italy
g Institut du Développement des Ressources en Informatique Scientifique, CNRS, F-91403 Orsay, France
h Lasers, Interactions and Dynamics Laboratory, CEA, CNRS, Université Paris-Saclay, DSM/IRAMIS, CEN Saclay, F-91191 Gif sur Yvette, France
i Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, UPS-OMP, F-31400 Toulouse, France
j Laboratoire de Physique des Plasmas, Ecole Polytechnique, CNRS, UPMC, Université Paris-Sud, F-91128 Palaiseau, France

a r t i c l e i n f o

Article history:
Received 16 February 2017
Received in revised form 30 August 2017
Accepted 26 September 2017
Available online 10 October 2017

Keywords:
Plasma kinetic simulation
Particle-In-Cell (PIC)
High-performance computing
Laser–plasma interaction
Astrophysical plasmas

a b s t r a c t

Smilei is a collaborative, open-source, object-oriented (C++) particle-in-cell code. To benefit from the
latest advances in high-performance computing (HPC), Smilei is co-developed by both physicists and
HPC experts. The code’s structures, capabilities, parallelization strategy and performances are discussed.
Additional modules (e.g. to treat ionization or collisions), benchmarks and physics highlights are also
presented. Multi-purpose and evolutive, Smilei is applied today to a wide range of physics studies, from
relativistic laser–plasma interaction to astrophysical plasmas.
Program summary
Program title: Smilei (version 3.2)
Program Files doi: http://dx.doi.org/10.17632/gsn4x6mbrg.1
Licensing provisions: This version of the code is distributed under the GNU General Public License v3
Programming language: C++11, Python 2.7
Nature of the problem: The kinetic simulation of plasmas is at the center of various physics studies,
from laser–plasma interaction to astrophysics. To address today’s challenges, a versatile simulation tool
requires high-performance computing on massively parallel super-computers.
Solution method: The Vlasov–Maxwell system describing the self-consistent evolution of a collisionless
plasma is solved using the Particle-In-Cell (PIC) method. Additional physics modules allow to account for
additional effects such as collisions and/or ionization. A hybrid MPI-OpenMP strategy, based on a patch-
based super-decomposition, allows for efficient cache-use, dynamic load balancing andhigh-performance
on massively parallel super-computers.
Additional comments: Repository https://github.com/SmileiPIC/Smilei
References: http://www.maisondelasimulation.fr/smilei

© 2017 Published by Elsevier B.V.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.

E-mail address:mickael.grech@polytechnique.edu (M. Grech).

1. Introduction

The Particle-In-Cell (PIC) approach was initially developed for
fluid dynamics studies [1]. Having various advantages (conceptual
simplicity, efficient implementation on massively parallel com-
puters, etc.), it has become a central simulation tool for a wide
range of physics studies, from semiconductors to cosmology or
accelerator physics, and in particular to plasma physics. Today, the

https://doi.org/10.1016/j.cpc.2017.09.024
0010-4655/© 2017 Published by Elsevier B.V.

https://doi.org/10.1016/j.cpc.2017.09.024
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2017.09.024&domain=pdf
http://dx.doi.org/10.17632/gsn4x6mbrg.1
https://github.com/SmileiPIC/Smilei
http://www.maisondelasimulation.fr/smilei
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:mickael.grech@polytechnique.edu
https://doi.org/10.1016/j.cpc.2017.09.024

352 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

kinetic simulation of plasmas in various environments, from the
laboratory to astrophysics, strongly relies on PIC codes [2].

In this paper, we present the new, open-source PIC code Smilei.
It has been developed in a collaborative framework including
physicists and high-performance computing (HPC) experts to best
benefit from the new HPC architectures.

Smilei’s development was initially motivated by recent ad-
vances in ultra-high intensity (UHI) laser technology, and new
projects aiming at building multi-petawatt laser facilities. UHI
laser–plasma interaction has indeed been successfully applied to
probing matter under extreme conditions of temperature and
pressure, opening the way to various promising applications such
as charged-particle (electron and ion) acceleration [3–8], ultra-
bright light sources of unprecedented short duration [9], or abun-
dant electron–positron pair production [10,11]. This wide range
of applications, as well as the associated deeper understanding of
fundamental processes, lead to the creation of the Centre Inter-
disciplinaire de la Lumière EXtrême (CILEX)1 [12]. This academic
center will host, in the forthcoming years, the laser Apollon that
will deliver ultra-short (15 fs), ultra-intense (beyond 1022 W/cm2)
laser pulses, corresponding to a record peak power of 10 PW.
This path toward the study of light–matter interaction at extreme
intensities represents a significant experimental and technological
undertaking. New numerical tools have to be deployed as laser–
plasma interaction, at intensities beyond 1022 W/cm2, is not only
relativistic but also highly nonlinear and of quantum nature [13].

Furthermore, a paradigm shift has occurred in HPC. The num-
ber of cores available on massively parallel supercomputers has
skyrocketed. Recent and future supercomputer architectures are
also hybrid systems relying on both distributed and sharedmemory.
This introduces challenges in workload management, resource
scheduling and data structure at the algorithmic and software
development levels. These tendencies are progressing quickly, and
software development lags behind. Today, most of the codes used
by the plasma community face difficulties when confronted with
these new challenges. As a result, running today’s software tech-
nology on themost recent and forthcomingmachines is intractable
as well as a tremendous waste of resources and electric power.
These limitations are inherent to the internal structure of the
codes, and can be overcome only through a strong collaboration
between physicists and HPC specialists, to build, from the ground
up, a new HPC-relevant simulation tool.

In this context, in early 2013, a consortium of laboratories of
the Plateau de Saclay decided to join their efforts in developing the
new PIC code Smilei (for Simulating Matter Irradiated by Light at
Extreme Intensities). Intended as a multi-purpose and collaborative
PIC code, Smilei addresses a wide range of physics problems, from
laser–plasma interaction to astrophysics.

This paper presents an overview of the code’s principles, struc-
ture, performance and capabilities, as well as benchmarks and ex-
amples. Section 2 reviews the general PIC approach for simulating
collisionless plasmas (the governing equations, and the associated
numerical methods), and specifies the algorithms used in Smilei.
The C++ object-oriented programming and polymorphism, high-
lighted in Section 3, illustrate themulti-purpose,multi-physics and
multi-geometry aspects of the code and its modularity and main-
tainability. We outline Smilei’s components, their interactions and
the I/O management strategy. Section 4 then presents the inno-
vative parallelization strategy devised for Smilei. In particular, the
hybrid MPI-OpenMP (for synchronization in between distributed
and shared memory processes) and dynamic load balancing de-
signs are built around ‘‘patches’’, which extend the notion of do-
main decomposition and improve data locality for faster memory

1 http://goo.gl/kzJCjY.

access and efficient cache use. The code performance onmassively-
parallel super-computers is then discussed. The following Section
5 describes additional modules (binary collisions, ionization, etc.),
and Section 6 explains the input interface and the output diagnos-
tics. Section 7 features applications to different physical scenarii,
the first two related to UHI laser–plasma interaction and the other
two to astrophysics. Finally, Section 8 concludes on Smilei capabil-
ities and perspectives.

2. The Particle-In-Cell (PIC) method for collisionless plasmas

2.1. The Vlasov–Maxwell model

The kinetic description of a collisionless plasma2 relies on the
Vlasov–Maxwell system of equations. In this description, the dif-
ferent species of particles constituting the plasma are described by
their respective distribution functions fs(t, x, p), where s denotes
a given species consisting of particles with charge qs and mass ms,
and x and p denote the position and momentum of a phase-space
element. The distribution fs satisfies Vlasov’s equation:(

∂t +
p

msγ
· ∇ + FL · ∇p

)
fs = 0, (1)

where γ =
√
1 + p2/(ms c)2 is the (relativistic) Lorentz factor, c is

the speed of light in vacuum, and

FL = qs (E + v × B) (2)

is the Lorentz force acting on a particle with velocity v = p/(msγ).
This force follows from the existence, in the plasma, of collective

electric [E(t, x)] and magnetic [B(t, x)] fields satisfying Maxwell’s
equations3:

∇ · B = 0, (3a)

∇ · E = ρ/ϵ0, (3b)

∇ × B = µ0 J + µ0ϵ0 ∂tE, (3c)

∇ × E = −∂tB, (3d)

where ϵ0 and µ0 are the vacuum permittivity and permeability,
respectively.

The Vlasov–Maxwell system of Eqs. (1)–(3) describes the self-
consistent dynamics of the plasma which constituents are subject
to the Lorentz force, and in turn modify the collective electric and
magnetic fields through their charge and current densities:

ρ(t, x) =

∑
s

qs

∫
d3p fs(t, x, p), (4a)

J(t, x) =

∑
s

qs

∫
d3p vfs(t, x, p). (4b)

2.2. Reference units

Smilei is a fully-relativistic electromagnetic PIC code. As such,
it is convenient to normalize all velocities in the code to c. Further-
more, charges andmasses are normalized to e andme, respectively,
with −e the electron charge and me its mass. Momenta and ener-
gies (and by extension temperatures) are then expressed in units
of mec and mec2, respectively.

2 The PIC method can be applied to (fully or partially ionized) plasmas as well as
beams of charged particles. For the sake of simplicity however, we will refer to all
these states as plasmas.
3 It is important to stress that the electromagnetic fields considered here are

macroscopic (mean) fields, and notmicroscopic fields. Therefore, the PIC simulation
does not, in its standard form, accounts for particle collisions. Collisions are however
introduced in an ad hoc module presented in Section 5.4.

http://goo.gl/kzJCjY

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 353

Table 1
List of the most common normalizations used in Smilei. The value of ωr is not de-
fined a priori, but can be set a posteriori as a scaling factor. For simulations requir-
ing the use of ionization and/or collision modules (see Section 5), ωr needs to be
defined, in SI units, by the user.

Units of velocity c
Units of charge e
Units of mass me
Units of momentum me c
Units of energy, temperature mec2

Units of time ω−1
r

Units of length c/ωr
Units of number density nr = ϵ0 me ω2

r /e
2

Units of current density e c nr
Units of pressure me c2 nr
Units of electric field me c ωr/e
Units of magnetic field me ωr/e
Units of Poynting flux me c3 nr/2

The normalization for time and space is not decided a priori.
Instead, all the simulation results may be scaled by an arbitrary
factor. Denoting the (a priori unknown) time units by ω−1

r , dis-
tances are normalized to c/ωr . Electric and magnetic fields are
expressed in units ofmec ωr/e andmeωr/e, respectively.We define
the units for number densities as nr = ϵ0meω

2
r /e

2, while charge
and current densities are in units of e nr and e c nr , respectively.
Note that this definition of nr is chosen for best simplification of
the Vlasov–Maxwell equations, but does not correspond to the
reference distance c/ωr to the power of −3.

Let us now illustrate by two simple examples this choice of
normalization. When dealing with a plasma at constant density
ne, it is convenient to normalize times by introducing the electron
plasma frequency ωpe =

√
e2ne/(ϵ0me). Choosing ωr = ωpe, dis-

tances are now expressed in units of the electron skin-depth c/ωpe,
while number densities are normalized to ne, and the electric and
magnetic fields are in units ofmeωpec/e andmeωpe/e, respectively.

In contrast, when considering the irradiation of a plasma by a
laser with angular frequency ω0, it is convenient to use ωr = ω0.
From this choice, it follows that distances are measured in units
of k−1

0 = c/ω0, while the electric and magnetic fields are in units
of Ec = mecω0/e and meω0/e, respectively. Note that Ec is the
Compton field, which is widely used to measure the importance of
relativistic effects in laser–plasma interaction. In addition, number
densities are expressed in units of nc = ϵ0meω

2
0/e

2, the well-
known critical density delimiting plasmas that are transparent or
opaque to an electromagnetic radiationwith angular frequencyω0.

Table 1 gives a list of the most common normalizations used
in Smilei. In what follows (and if not specified otherwise), all
quantities will be expressed in normalized units.

2.3. Quasi-particles and the PIC method

The ‘‘Particle-In-Cell’’ method owes its name to the discretiza-
tion of the distribution function fs as a sum of Ns ‘‘quasi-particles’’
(also referred to as ‘‘super-particles’’ or ‘‘macro-particles’’):

fs(t, x, p) =

Ns∑
p=1

wp S
(
x − xp(t)

)
δ
(
p − pp(t)

)
, (5)

where wp is a quasi-particle ‘‘weight’’, xp is its position, pp is its
momentum, δ is the Dirac distribution, and S(x) is the shape-
function of all quasi-particles. The properties of the shape-function
used in Smilei are given in Appendix.

In PIC codes, Vlasov’s equation (1) is integrated along the con-
tinuous trajectories of these quasi-particles,whileMaxwell’s equa-
tions (3) are solved on a discrete spatial grid, the spaces between
consecutive grid points being referred to as ‘‘cells’’. Injecting the

discrete distribution function of Eq. (5) in Vlasov’s equation (1),
multiplying the result by p and integrating over all p leads to:

Ns∑
p=1

wp pp ·
[
∂xpS(x − xp) + ∂xS(x − xp)

]
vp

+

Ns∑
p=1

wp S(x − xp)
[
∂tpp − qs (E + vp × B)

]
= 0, (6)

where we have introduced vp = pp/(msγp) = dxp/dt the pth
quasi-particle velocity, and γp =

√
1 + p2

p/(m2
s) its Lorentz factor.

Considering all p quasi-particles independently, and integrating
over all (real) space x, the first term in Eq. (6) vanishes due to the
properties of the shape-function (see Appendix) and one obtains
that all quasi-particles satisfy the relativistic equations of motion:
dxp
dt

=
up

γp
(7)

dup

dt
= rs

(
Ep +

up

γp
× Bp

)
, (8)

where we have introduced rs = qs/ms the charge-over-mass ratio
(for species s), up = pp/ms the quasi-particle reduced momentum,
and the fields interpolated at the particle position:

Ep =

∫
dx S(x − xp) E(x), (9)

Bp =

∫
dx S(x − xp)B(x). (10)

Note that, because of the finite (non-zero) spatial extension
of the quasi-particles (also referred to as quasi-particle size, Ap-
pendix), additional cells (called ghost cells, see Section 4) have to
be added at the border of the simulation domain to ensure that
the full quasi-particle charge and/or current densities are correctly
projected onto the simulation grid.

In this Section, we present the general PIC algorithm, starting
with the simulation initialization and then going through the PIC
loop itself (see Table 2).

2.4. Time- and space-centered discretization

As will be discussed in Section 2.6.4, Maxwell’s equations are
solved here using the Finite Difference Time Domain (FDTD) ap-
proach [14] as well as refined methods based on this algorithm
(for a review of these methods see [15]). In these methods, the
electromagnetic fields are discretized onto a staggered grid, the
Yee-grid, that allows for spatial-centering of the discretized curl
operators in Maxwell’s equations (3c) and (3d). Fig. 1 summarizes
at which points of the Yee-grid the electromagnetic fields, as
well as charge and density currents, are defined. Similarly, the
time-centering of the time-derivative in Maxwell’s equations (3c)
and (3d) is ensured by considering the electric fields as defined
at integer time-steps (n) and magnetic fields at half-integer time-
steps (n +

1
2). Time-centering of the magnetic fields is however

necessary for diagnostic purposes, and most importantly when
computing the Lorentz force acting on the quasi-particles. It should
also be noted, as will be discussed in Section 2.6.2, that a leap-
frog scheme is used to advance the particles in time, so that their
positions and velocities are defined at integer (n) and half-integer
(n −

1
2) time-steps, respectively.

2.5. Initialization of the simulation

The initialization of a PIC simulation is a three-step process
consisting in: (i) loading particles, (ii) computing the initial total
charge and current densities onto the grid, and (iii) computing the

354 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Table 2
Summary of Smilei’s PIC algorithm.

Initialization time step n = 0, time t = 0

Particle loading ∀p, define (xp)n=0 , (up)
n=−

1
2

Charge projection on grid
[
∀p, (xp)n=0

]
→ ρ(n=0)(x)

Compute initial fields - solve Poisson on grid:
[
ρ(n=0)(x)

]
→ E(n=0)

stat (x)
- add external fields: E(n=0)(x) = E(n=0)

stat (x) + E(n=0)
ext (x)

B(n= 1
2)(x) = B

(n= 1
2)

ext (x)
PIC loop: from time step n to n + 1, time t = (n + 1)∆t

Restart charge & current densities
Save magnetic fields value (used to center magnetic fields)
Interpolate fields at particle positions ∀p, [xp, E(n)(x),B(n)(x)] → E(n)

p ,B(n)
p

Push particles - compute new velocity ∀p, p
(n− 1

2)
p

[
E(n)
p ,B(n)

p

]
p
(n+ 1

2)
p

- compute new position ∀p, x(n)p

[
p
(n+ 1

2)
p

]
x(n+1)
p

Project current onto the grid using a charge-conserving scheme[
∀p x(n)p , x(n+1)

p , p
(n+ 1

2)
p

]
→ J(n+

1
2)(x)

Solve Maxwell’s equations

- solve Maxwell–Faraday: E(n)(x)
[
J(n+

1
2)(x)

]
E(n+1)(x)

- solve Maxwell–Ampère: B(n+ 1
2)(x)

[
E(n+1)(x)

]
B(n+ 3

2)(x)

- center magnetic fields: B(n+1)(x) =
1
2

(
B(n+ 1

2)(x) + B(n+ 3
2)(x)

)

Fig. 1. Representation of the staggered Yee-grid. The location of all fields and
current densities follows from the (rather standard) convention to define charge
densities at the cell nodes.

initial electric and magnetic field at the grid points. In Smilei, all
three steps can be done either as a restart of a previous simulation
(in which case the particles, charge and current densities and
electromagnetic fields are directly copied from a file generated at
the end of a previous simulation), or from a user-defined input file.
In that case, the user defines the initial conditions of the particle,
charge and current densities as well as the initial electromagnetic
fields over the whole simulation domain.

In particular, the user prescribes spatial profiles for the number
density ns, the number of particle per cell Ns, the mean velocity vs
and the temperature Ts of each species s at time t = 0. The particle
loading then consists in creating, in each cell, Ns particles with
positions xp uniformly distributedwithin the cell (either randomly
or regularly spaced), and with momenta pp randomly sampled
from a requested distribution.4 In Smilei, a given numerical weight

4 The user may select a zero-temperature distribution, a Maxwellian distri-
bution, or Maxwell–Jüttner distribution, i.e. the relativistic generalization of the
Maxwellian distribution [16]. In the latter case, the method proposed in Ref. [17]
is used to ensure a correct loading of particles with a relativistic drift velocity.

wp is assigned to each particle depending on the density associated
to the cell it originates from:

wp =
ns

(
xp(t = 0)

)
Ns

(
xp(t = 0)

) . (11)

This variable weighting is particularly beneficial when considering
initially highly inhomogeneous density distributions.

Once all particles in the simulation domain have been created,
the total charge and current densities ρ(t = 0, x) and J(t = 0, x)
are computed onto the grid using a direct projection technique
(see Appendix for more details) that assigns to a grid point located
at xi the total charge and or current contained in the cell surround-
ing it:

ρ(t = 0, x) =

∑
s

qs
∑
p

wp

∫
dx S

(
x − xp(t = 0)

)
PD(x − xi), (12)

where PD(x) = ΠD
µ=1P(x

µ) (D referring to the number of spatial
dimensions) with P(x) the crenel function such that P(xµ) = 1 if
|xµ

| < ∆µ/2 and P(xµ) = 0 otherwise, and ∆µ is the cell length
in the µ = (x, y, z)-direction.

Then, the initial electric fields are computed from ρ(t = 0, x)
by solving Poisson’s equation (3b). In Smilei, this is done using the
conjugate gradient method [18]. This iterative method is partic-
ularly interesting: it is easily implemented on massively parallel
computers as it requires mainly local information exchange be-
tween adjacent domains (see Section 4 for more information on
domain decomposition for parallelization).

External (divergence-free) electric and/or magnetic fields can
then be added to the resulting electrostatic fields, provided they
fulfill Maxwell’s equations (3), and in particular Gauss and Poisson
equations (3a) and (3b).

2.6. The PIC loop

At the end of the initialization stage [time-step (n = 0)], all
quasi-particles in the simulation have been loaded and the elec-
tromagnetic fields have been computed over the whole simulation
grid. The PIC loop is then started over N time-steps each consist-
ing in (i) interpolating the electromagnetic fields at the particle
positions, (ii) computing the new particle velocities and positions,

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 355

(iii) projecting the new charge and current densities on the grid,
and (iv) computing the new electromagnetic fields on the grid. In
this section, we describe these four steps taken to advance from
time-step (n) to time-step (n + 1).

2.6.1. Field interpolation at the particle
At the beginning of time-step (n), the particles velocities and

positions are known at time-step (n −
1
2) and (n), respectively.

For each particle p, the electromagnetic fields [at time-step (n)]
are computed at the particle position using a simple interpolation
technique:

E(n)
p =

∫
dx S

(
x − x(n)p

)
E(n)(x), (13)

B(n)
p =

∫
dx S

(
x − x(n)p

)
B(n)(x), (14)

where we have used the time-centered magnetic fields B(n)
=

1
2 [B

(n+1/2)
+ B(n−1/2)

]. Additional information on the field interpo-
lation are given in Appendix.

2.6.2. Particle pusher
Knowing, for each quasi-particle, the electromagnetic fields at

its position, the new particle momentum and position are com-
puted using a (second order) leap-frog integrator. In Smilei, two
different schemes have been implemented, the well-known Boris
pusher [19] and the one developed by J.-L. Vay [20]. Both schemes
compute the new particle momentum according to:

u
(n+ 1

2)
p = u

(n− 1
2)

p + rs∆t

⎡⎢⎣E(n)
p +

v
(n+ 1

2)
p + v

(n− 1
2)

p

2
× B(n)

p

⎤⎥⎦ , (15)

as well as the new particle position:

x(n+1)
p = x(n)p + ∆t

u
(n+ 1

2)
p

γp
, (16)

where ∆t denotes the duration of a time-step.
The Boris pusher is a widely-used second-order leap-frog

solver. However, Ref. [20] shows that it introduces errors when
calculating the orbits of relativistic particles in special electro-
magnetic field configurations (e.g. when the electric and magnetic
contributions cancel each other in the Lorentz force). Vay’s solver
proposes an alternative formulation of the leap-frog solver that
prevents such problems with an additional (albeit not large) com-
putational cost.

2.6.3. Charge conserving current deposition
Charge deposition (i.e. charge and current density projection

onto the grid) is then performed using the charge-conserving al-
gorithm proposed by Esirkepov [21]. The current densities in the
dimensions of the grid (i.e., the x-direction for 1-dimensional sim-
ulations, both x- and y-directions for 2-dimensional simulations,
and all three x-, y- and z-directions for 3-dimensional simulations)
are computed from the charge flux through the cell borders (hence
ensuring charge conservation) while the current densities along
the other dimensions are performed using a simple projection. To
illustrate this point, we take the example of current deposition in
a 2-dimensional simulation. The current densities in the x- and y-
directions associated to a particle with charge q are computed as:

(Jx,p)
(n+ 1

2)

i+ 1
2 ,j

= (Jx,p)
(n+ 1

2)

i− 1
2 ,j

+ qwp
∆x
∆t

(Wx)
(n+ 1

2)

i+ 1
2 ,j

(17)

(Jy,p)
(n+ 1

2)

i,j+ 1
2

= (Jy,p)
(n+ 1

2)

i,j− 1
2

+ qwp
∆y
∆t

(Wy)
(n+ 1

2)

j,i+ 1
2

(18)

where (Wx)
(n+ 1

2) and (Wy)
(n+ 1

2) are computed from the particle
present and former positions x(n+1)

p and x(n)p , respectively, using
the method developed by Esirkepov. The particle current in the
z-direction (not a dimension of the grid) is, in this geometry, com-
puted using the direct projection technique described in Appendix:

(Jz,p)i,j = qwrvp
∫
dx S(x − xp) PD(x − xi,j). (19)

The charge density deposited by the particle can be obtained, if re-
quired e.g. for diagnostic purpose, using a similar direct projection.

The total charge and current densities henceforth gather the
contributions of all quasi-particles of all species. It is worth noting
that, within a charge-conserving framework, charge densities are
only projected on the grid for diagnostics purposes (as we will see
in next paragraph, it is not used to advance the electromagnetic
fields).

2.6.4. Maxwell solvers
Now that the currents are known at time-step (n +

1
2), the

electromagnetic fields can be advanced solving Maxwell’s equa-
tions (3). First, Maxwell–Ampère equation (3c) is solved, giving the
advanced electric fields:

E(n+1)
= E(n)

+ ∆t
[
(∇ × B)

(n+ 1
2)

− J(n+
1
2)

]
. (20)

Then, Maxwell–Faraday equation (3d) is computed, leading to the
advanced magnetic fields:

B(n+ 3
2)

= B(n+ 1
2)

− ∆t (∇ × E)(n+1). (21)

Before discussing the discretization of the curl-operator inmore
details, it is worth noting that solving Eqs. (3c) and (3d) is sufficient
to get a complete description of the new electromagnetic fields.
Indeed, it can be shown that this conserves a divergence-free
magnetic field if Gauss’ equation (3a) is satisfied at time t = 0.
Similarly, Poisson’s equation (3b) is verified as long as it is satisfied
at time t = 0 as long as the charge deposition algorithm fulfills the
charge conservation equation:

∂tρ + ∇ · J = 0. (22)

This motivated the use of Esirkepov’s projection scheme discussed
in the previous paragraph.

We conclude this Section by discussing in more details the
discretization of the curl-operators in Eqs. (3c) and (3d). To do so,
let us focus on the equations for the electric and magnetic fields Ex
and Bx discretized on the (staggered) Yee-grid:

(Ex)
(n+1)

i+ 1
2 ,j,k

− (Ex)
(n)

i+ 1
2 ,j,k

∆t
= (Jx)

n+ 1
2

i+ 1
2 ,j,k

+
(
∂yBz

)(n+ 1
2)

i+ 1
2 ,j,k

−
(
∂zBy

)(n+ 1
2)

i+ 1
2 ,j,k

, (23)

(Bx)
(n+ 3

2)

i,j+ 1
2 ,k+ 1

2
− (Bx)

(n+ 1
2)

i,j+ 1
2 ,k+ 1

2

∆t
=

(
∂∗

z Ey
)(n+1)

i,j+ 1
2 ,k+ 1

2

−
(
∂∗

y Ez
)(n+1)

i,j+ 1
2 ,k+ 1

2
. (24)

The partial derivatives in space in both equations are discretized as
follows. In theMaxwell–Ampère equation, the partial derivative in
x (similarly in y and z) reads:

(∂xF)i,j,k =

F
i+ 1

2 ,j,k
− F

i− 1
2 ,j,k

∆x
, (25)

and corresponds to the usual curl-operator discretization used in
the FDTD method. In the Maxwell–Faraday equation, the partial

356 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

derivatives can bemodified using an extended stencil (see Ref. [15]
for a comparative study of different solvers). The spatial derivative
in the x-direction (similarly in the y and z directions) reads:(

∂∗

x F
)
i,j,k

= αx

F
i+ 1

2 ,j,k
− F

i− 1
2 ,j,k

∆x
+ ηx

F
i+ 3

2 ,j,k
− F

i− 3
2 ,j,k

∆x

+βxy

⎡⎣F
i+ 1

2 ,j+1,k
− F

i− 1
2 ,j+1,k

∆x
+

F
i+ 1

2 ,j−1,k
− F

i− 1
2 ,j−1,k

∆x

⎤⎦
+βxz

⎡⎣F
i+ 1

2 ,j,k+1
− F

i− 1
2 ,j,k+1

∆x
+

F
i+ 1

2 ,j,k−1
− F

i− 1
2 ,j,k−1

∆x

⎤⎦ , (26)

the set of parameters αx, ηx, βxy and βxz depending of the type of
solver used [15], and the standard FDTD solver is recovered for
αx = 1, ηx = βxy = βxz = 0.

Note that the FDTD solvers are subject to a Courant–Friedrich–
Lewy (CFL) condition. For the standard solver, the CFL condition
requires the time-step to be smaller than:

∆tCFL =

[∑
µ

∆µ−2

]−1/2

, (27)

µ = (x, y, z) standing for the different spatial directions resolved
in the simulation.

2.6.5. Boundary conditions
After having computed new quasi-particle positions and veloc-

ities, boundary conditions (BCs) are applied to each quasi-particle
that may be located in a ghost cell, i.e. outside of the ’real’ grid.
Quasi-particle species may have a different BC for each boundary
of the simulation box: the quasi-particles can either loop around
the box (periodic), be stopped (momentum set to zero), suppressed
(removed from memory), reflected (momentum and position fol-
low specular reflection rules) or thermalized. In the latter case, the
quasi-particle is set back inside the simulation box, and its new
momentum is randomly sampled in aMaxwellian distribution [22]
with a given temperature and drift velocity, both specified by the
user.

BCs are applied to the electromagnetic fields after Maxwell’s
equations have been solved. Each boundary of the simulation box
can feature a different BC. First, injecting/absorbing BCs inspired
from the ‘‘Silver–Müller’’ BC [23] are able to inject an electromag-
netic wave (e.g. a laser) and/or to absorb outgoing electromag-
netic waves.5 In contrast, the reflective electromagnetic BC will
reflect any outgoing electromagneticwave reaching the simulation
boundary. Lastly, periodic BCs are also available.

3. An evolutive, multi-purpose code

Smilei’s objectives are high performances, a large user com-
munity and support for a variety of applications. Its C++ approach
reflects these goals, providing structure to separate physics from
computing aspects, to encourage their progress, to facilitate their
maintainability and to ensure a multi-purpose capability.

5 In addition, Perfectly Matched Layers [24] and advanced BCs to model arbi-
trarily shaped, tightly focused laser pulses [25] are currently being considered for
implementation in Smilei.

Fig. 2. C++ flow, classes and data structure in Smilei.

3.1. C++ elements and flow

Smilei’s core program is written in the C++ language. Its
multi-purpose andmature technology ensures great flexibility and
strong support for the new HPCmachines. Moreover, C++’s object-
oriented programming provides an efficient way of structuring the
code. Importantly, this eliminates a few bad habits such as passing
large lists of parameters through functions, or usage of global
variables, inefficient in parallel computing. Components can be
constructed almost independently. It offers a good separation be-
tween the purely computing/performance aspects and the physics
calculations.

Fig. 2 shows the various elements of Smilei’s main code: C++
classes, data structure, and the program flow. The main classes,
namely ‘‘particle species’’ and ‘‘electromagnetics’’, are the counter-
parts of particle and cell in Particle-in-cell, respectively. The particle
species class hold the particle object, which is the data structure
for the quasi-particles positions and momenta. It also contains op-
erators on the quasi-particles such as the boundary conditions and
the pusher. On the other side, the electromagnetics class contains
the fields, i.e. the data structure for the electric andmagnetic fields.
Note that these fields also describe the charge and current densities
projected onto the grid. Electromagnetics also includes operators
such as the Maxwell solver and the boundary conditions for the
fields.

Two additional operators are external to those structures be-
cause they operate between particles and fields. The interpolator
takes the field data and interpolates it at the particles positions. The
projector takes the particle data and projects it at the grid points.

3.2. Polymorphism

TheC++ language supports the definition of polymorphic classes.
These classes contain functions, called virtual functions, that are
selected at runtime among several options. In other words, the
behavior of an object is not decided a priori, but may be defined
during the simulation.

Smilei relies on C++ polymorphism to handle its multi-purpose
ambition. For instance, the basic polymorphic Field class may be
derived into different classes such as Field1D, Field2D, etc. All
these derived classes inherit their functions from the base class,
but they include different data structures. In Fig. 2, examples of
polymorphic (virtual) classes are highlighted. Note that, in Smilei,
selecting the class from which each object will be created is en-
sured by a ‘‘factory design pattern’’.

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 357

There are several advantages to polymorphism. First, it allows
for straightforward inheritance of properties between objects of
similar structures. It also improves the readability of the code by
removing the complexity of all themulti-purpose capabilities from
the program flow. Lastly, it standardizes the form of the objects
for easier maintenance. In these conditions, a single executable
file can perform simulations in various dimensions, interpolation
orders, or physics components, without the complexity of many
code versions.

However, an excess of virtualization, or a large number of
objects layers could have a significant computational cost. For
instance, the use of a virtualmethod to access a single data element
(e.g., a single particle property) would have an unacceptable data
access overhead. This pitfall is avoided by passing the whole data
structures to computational operators. They are passed in their
virtual form, then cast to the required class by the operator itself.

3.3. Uncoupling operators from data

An other fundamental ambition of the project is to provide an
efficient tool of simulation on current and future supercomputers
whose architectures are in permanent evolution. For instance,
they may have complex memory hierarchy, whether distributed
or shared between several processors. For ideal performances, the
code must be adapted to these specific architectures. Besides this
multi-machine aspect, amulti-purpose code (able to simulate vari-
ous physical scenarii)may require a different optimization strategy
depending on the subject of each simulation.

For these two challenges, Smilei’s solution is based on its
object-oriented design: it consists in uncoupling the computing
algorithms from the data formalism. In all operators (solvers,
interpolators, projectors, etc.), algorithms do not rely on raw data
but on wrappers (Field and Particles) which encapsulate and
provide access to the data. Operators can thus be defined indepen-
dently from the chosen data structure, provided the ‘‘protocol’’ for
accessing to the data is respected. As a consequence, performances
can be optimized separately in operators and in the data structures.

Along the same principle, parallelism management tends to be
decoupled from thephysics calculations by implementing different
levels of parallelism, as detailed in Section 4.2.2.

3.4. HDF5 data management

A significant amount of output data is generated by PIC simula-
tions. We examine here the representation of these data, focusing
on the data access convenience and performances on a large super-
computer.

Classical outputmanagementwould simply consist in gathering
data on a ‘‘master’’ processor which writes everything out, or in
generating one file for each processor. The former technique is lim-
ited by the cost of communicating data and its memory overhead,
while the latter requires heavy post-processing. In both cases, the
larger the simulation, the more expensive the overhead.

Parallel I/O libraries are optimized to avoid these pitfalls, and
their development continuously improves their performances.
They can share andwrite data in parallel to a single file. Famous ex-
amples are MPI-IO,6 HDF5 (Hierarchical Data Format7) and NetCDF
(Network Common Data Form8). Although no parallel I/O library is
yet fully optimized for themost recent parallelism techniques, they
greatly enhance the simulations efficiency.

MPI-IO has demonstrated good performances, but it generates
unformatted data, thus requiring an additional effort from the user

6 IBM Knowledge center at http://www.goo.gl/XjUXzu.
7 https://www.hdfgroup.org/HDF5.
8 http://www.unidata.ucar.edu/software/netcdf/docs/index.html.

to access and analyze the simulation data. In contrast, both HDF5
and NetCDF rely on a structured data model, which is also open-
source and widely used. HDF5 also benefits from a large panel
of open-source software for post-processing and visualization.
To sustain the required level of performance while maintaining
its user-friendly and open-source approach Smilei currently uses
HDF5.

During preliminary studies done for the IDRIS Grand Challenge
(see in Section 7.2), Smilei achieved a write bandwidth of 2.6 Gb/s
on the Turing (BlueGene/Q) GPFS file system. The simulation do-
main consisted in a grid of size 30,720 x 15,360 cells, and 18
fields were written every 1755 timesteps (for a total of 135,000
timesteps). The amount of 60 Gb of data was written in 24 s for
each of the selected timesteps.

4. Parallelization

As high-performance computing (HPC) systems are evolving
toward the exascale, there is an admitted risk that today’s algo-
rithms and softwares will be subpar, at best, for the upcoming
architectures. Manufacturers have been unable to improve the ex-
isting ‘‘standard’’ microprocessor technologies for the last decade.
Instead, the trend is oriented toward the multiplication of the
number of computing units by several orders of magnitude. This
is achieved either using co-processors or massively multi-core
processors. In order to face this emerging complexity, codes must
expose a tremendous amount of parallelismwhile conserving data
locality and minimizing load imbalance. In this Section, we first
present the overall parallelization strategy chosen for Smilei, and
follow with accurate descriptions of its elements.

4.1. Strategy

For the sake of generality, all fundamental computing items
(cores, MPI processes, openMP threads, cuda threads, openCLwork
items, etc.) will be referred to as computing elements (CE) in this
subsection.

The difficulty in parallelizing a PIC code lies in the coupling
between the grid and particle aspects of the code. In a typical
run, most of the load is carried by the particles. It is therefore
very tempting to distribute particles equally between CEs: bene-
fits would be huge. First, simplicity. No particle communications
are required because particles only interact with fields and are
independent from each other. Second, an almost perfect load bal-
ance is maintained at all times. The drawback of this approach is
that it implies that all CEs have access to a shared global array
of grid quantities (fields and currents). These accesses must be
synchronized and require frequent global communications which,
in practice, prevent any formof scalability above a couple hundreds
of CEs.

A purely particle-based decomposition being impossible, we
must apply a grid-based decomposition technique. Domain de-
composition is the technique used in all state-of-the-art PIC codes
such as Osiris [26] or Calder-Circ [27] in laser–plasma interaction
or Photon–Plasma [28] in astrophysics.

It has shown very good scalability but comes with a cost. As
most of the computational load is carried by particles, having
a grid-based decomposition is inconvenient. Its efficient imple-
mentation is more involved, and load balance is very difficult to
achieve. The biggest issue is that particles are volatile objects trav-
eling throughout the entire domain, forcing (i) communications
between CEs when particles cross their local domain boundary,
and (ii) random access to the grid at every interpolation and pro-
jection phases. Communications are limited to neighbor domains
and are not a fundamental threat to performance or scalability. In
contrast, the randomness of the particle positions is much more

http://www.goo.gl/XjUXzu
https://www.hdfgroup.org/HDF5
http://www.unidata.ucar.edu/software/netcdf/docs/index.html

358 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

problematic. Random access to the grid arrays breaks the principle
of data locality paramount to the performance via a good cache
use. Conversely, a proper access to the data avoids multiple load
operations when the same data is used several times. And on top
of that, if the access is well organized, Single Instruction Multiple
Data (SIMD) operations can be executed thus accelerating the
computation by a significant amount.

Most of the time, this issue is addressed by sorting particles.
Different kind of algorithms can ensure that particles close to each
other in space are also well clustered in memory. Particles can
be sorted at the cell level by a full count-sort algorithm every
now and then during the simulation, or they can be subject to
a more lax but more frequent sorting as proposed in Ref. [29].
Note that the domain decomposition technique is already a form
of sorting. Particles of a given sub-domain are naturally stored in a
compact array ofmemory and attached to the grid portion they can
interact with. If each sub-domain is sufficiently small to fit in the
cache, very good performances can be achieved. This approachwas
suggested in Refs. [30,31] and is the one used in Smilei. It consists
in a very fine-grain domain decomposition referred to as ‘‘patch-
based’’ decomposition where patches denote the very small sub-
domains. In addition, Smilei still performs a very lightweight
particle sorting within the patches, as in Ref. [29], in order to min-
imize cache misses. It brings a convenient flexibility in the patches
size without loss of performances as quasi-particles remain well
sorted even if the patches are large.

4.2. A patch-based MPI + openMP implementation

Smilei uses the Message Passing Interface (MPI) to commu-
nicate data between distinct nodes of the distributed-memory
architecture, and the Open Multi-Processing (openMP) interface
to harmonize the computational load within each node with a
reduced programming complexity.

This section shows that this hybrid MPI + openMP implemen-
tation of a patch-based decomposition naturally extends the pure
MPI one described in Ref. [31]. It provides both scalability and
dynamic load balancing.

4.2.1. Patches distribution between MPI processes
The first layer of parallelism in Smilei is similar to the standard

domain decomposition: the simulation box is divided into sub-
domains that can be treated in parallel. In a standard ‘‘traditional’’
MPI approach, each MPI process handles one sub-domain. But in
Smilei, the simulation box is divided intomanymore sub-domains
than there areMPI processes. They are called ‘‘patches’’ specifically
to make this distinction: each MPI process handles many patches.
Note that the content of a patch is not different than that of a sub-
domain: particles and a portion of the grid.

The obvious cost of this fine-grain domain decomposition is an
additional, but necessary, synchronization between patches. Syn-
chronization between patches belonging to the same MPI process
is very cheap. It consists in a simple copy of a relatively small
amount of ghost cells and exchange of particles in a sharedmemory
system. Synchronization becomes more expensive when it occurs
between patches belonging to differentMPI processes. In that case,
data has to be exchanged through thenetwork betweendistributed
memory systems via costly calls to theMPI library. In order to limit
this cost, we need a distribution policy of the patches between the
differentMPI processeswhichminimizesMPI calls. This is achieved
by grouping patches in compact clusters that reduce the interface
between MPI sub-domains as much as possible. In addition, this
policy must be flexible enough to support an arbitrary number of
MPI processes and varying number of patches per process. In order
to satisfy both compactness and flexibility, patches are ordered
along a Hilbert space-filling curve [32]. An example of the Hilbert

Fig. 3. Example of a 32× 32 patches domain decomposition, shared between 7MPI
processes. MPI domains are delimited by different colors. The Hilbert curve (black
line) passes through all the patch centers (black dots). It starts from the patch with
coordinates (0, 0) and ends at the patchwith coordinates (31, 0). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

curve is given in Fig. 3. This curve is divided into asmany segments
as MPI processes and each process handles one of these segments.
The mathematical properties of the Hilbert curve guarantee that
these segments form compact clusters of patches in space (see
Fig. 3) independently of their number or length.

4.2.2. OpenMP parallelization and load balancing
Patch-based decomposition, in addition to its cache efficiency,

is a very convenient way to expose a lot of local (inside MPI sub-
domains) parallelism. Each patch being independent, they can be
easily treated in parallel by the threads owned by the MPI process.
Without this structure, the projection of particles might result in
race conditions (threads overwriting each other’s computation)
and would require costly atomic operations.

In Smilei, patches are treated by openMP threads. In practice,
this allows the user to start the simulation with less (but larger)
MPI domains than in a pure MPI implementation. A similar level of
computational performance is retainedwhile decreasing the global
amount of communications. The number of macro-particles per
patch may differ significantly and so does the computational load
associated to eachpatch. The use of the openMPdynamic scheduler
therefore provides local load balancing at a reasonable cost. If a
thread is busy treating a patch with a lot of macro-particles, other
threads will be able to handle the remaining lighter patches thus
avoiding idle time (see performance results in Section 4.3.2 and
Fig. 5).

Patches also act as sorting structures. Indeed, quasi-particles
of a given patch only interact with this patch’s local grid. Small
patches therefore provide a finer-grain load balancing and opti-
mized cache use at the cost of more inter-patch synchronization.
This cost is assessed in Section 4.3.5.

4.2.3. Load management
The objective of load management is to harmonize the com-

putational workload between CEs as homogeneously as possible,
in order to avoid idle, underloaded CEs waiting for overloaded

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 359

CEs. In Smilei, the load is dynamically balanced. Note that load
balancing is not the only approach for load management: it can
also involve load-limiting techniques such as the k-means particle-
merging algorithm implemented in Photon–Plasma [33].

We have seen in Section 4.2.2 that openMP already provides
some amount of load balancing at the node level, but it does not
help managing the load between MPI processes. Smilei balances
the load between MPI processes by exchanging patches (defined
in Section 4.2.1). This technique is efficient because a single patch
workload ismuch smaller than the total workload of a process. The
patch size defines the balance grain and the smaller the patches the
smoother the balance.

This is yet another argument in favor of usingpatches as small as
possible. At this point, it becomes interesting to understand what
limits the patch size. The minimum size of a patch is dictated by
the number of ghost cells used. We consider reasonable that a
patch must have more cells than ghost cells. The number of ghost
cells is defined by the order of Maxwell’s equations discretization
scheme, and by the shape function of the macro-particles. A stan-
dard second-order Yee scheme, for instance, uses 4 ghost cells per
dimension (2 on each side). Theminimum patch size in that case is
therefore 5 cells per dimension. This criteria also guarantees that
ghost cells from non-neighbor patches do not overlap, which is
convenient for the synchronization phases. The influence of the
patch size is illustrated in Section 4.3.

We have seen in Section 4.2.1 that patches are organized along
a Hilbert space-filling curve divided into as many segments of
similar length as there areMPI processes. Each process handles the
patches located in its segment of the Hilbert curve. Dynamically
balancing the load simply consists in exchanging patches between
neighbor MPI processes along the curve. That is to lengthen or
shorten the segments depending on how loaded they are. When
an MPI process is overloaded, it sends patches to its neighbors
along the Hilbert curve; therefore its segment becomes shorter.
Inversely, an underloaded process will receive patches from its
neighbors; its segment becomes longer.

The following describes the dynamic load-balancing algorithm
(it is summarized in Table 3). First, the computational load P[p] of
each patch p is evaluated as

P[p] = Npart + Ccell × Ncells + Cfrozen × Nfrozen (28)

where Npart is the number of active particles in the patch, Ncells is
the number of cells in the patch, Nfrozen is the number of frozen
(immobile) particles in the patch, and Ccell and Cfrozen are user-
defined coefficients representing the computational cost of cells
(mostly solving Maxwell equation) and frozen particles. In most
cases, the active particles are the major source of computational
load. By default Smilei uses Ccell = 1 and Cfrozen = 0.1. The total
computational load of MPI rank r is L[r] = ΣpP[p] (sum over all
the patches owned by r) and the total computational load of the
simulation is Ltot = ΣrL[r]. The optimal computational load per
process Lopt = Ltot/NMPI, where NMPI is the number of MPI pro-
cesses. The balancing algorithm proceeds to a new decomposition
of the Hilbert curve so that each segment carries a load as close
to Lopt as possible. This balancing process is typically done every
20 iterations in order to follow the dynamics of the simulation.
Frequent and small corrections give superior performance than
rare and dramatic adjustments (see Fig. 8). The three global com-
munications required involve only a single number by MPI rank
thus minimizing the total volume of data exchanged and memory
occupation. Sharing the details of the computational load of each
patch is needed only between two consecutive MPI ranks and is
done via local communications.

The amplitude of the readjustment is limited: eachMPI process
keeps at least one of its original patches. This reduces the perfor-
mance impact of strong, high-frequency, oscillatory variations of
the load observed in some cases. Once the segments are defined,
the actual exchange of data is performed if necessary.

Fig. 4. Pure MPI strong scaling of Smilei in a homogeneous plasma case on the
CINES/Occigen system. For this specific test case, the MPI domain size becomes
smaller than the L1 cache around 20,000 cores. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

4.3. Performances and scaling

This section illustrates the efficiency of the chosen paralleliza-
tion strategy and gives some insight on the optimization of the
numerical parameters available to the user.

4.3.1. MPI
We study here the case of an MPI-only parallelization. The

series of simulations presented here were performed on the
CINES/Occigen system (Bull) and focused a physics study devoted
to Brillouin amplification of short laser pulses (see Section 7.2), for
which the plasma remains rather homogeneous throughout the
simulation. Fig. 4 displays Smilei’s strong scaling for a pure MPI
parallelization. The same simulation is run on different number
of cores and a single MPI process is attached to each core. As the
number of cores increases, the size of the data handled by each
core, or ‘‘domain size’’, decreases because the global domain is
divided between all cores. The efficiency remains close to 100% as
long as the domain size remains larger or equal to the L1 cache
size. For the specific global domain size used in this test, this occurs
around 20,000 cores. As the domain size approaches the L1 size,
an improved cache-use slightly improves the performances. Using
a larger number of MPI processes then decreases the efficiency
as the domain size becomes significantly smaller than the cache.
At this point, the system computing units occupation is too small
to deliver proper performances, and the cost of additional MPI
communications starts being significant. Fig. 4 illustrates the fact
that the pure MPI decomposition performs well in Smilei up to the
optimal (for this given simulation set-up) number of MPI domains.
There is no significant overhead due to MPI computations, their
costs being much smaller than the computation in a standard case.

In summary, MPI parallelization is good at handling homoge-
neous plasmas as long as the MPI domain sizes are not too small
with respect to the L1 cache.

4.3.2. MPI + openMP
In this section we present the performances achieved with the

hybrid MPI+openMP parallelization described in Section 4.2, when
the plasma does not remain homogeneous.

The case study is now, and until the end of the section, an ultra-
high-intensity laser propagating in a plasma. It is a typical laser
wakefield acceleration case, well known for being strongly im-
pacted by load imbalance [34]. It is a two-dimensional simulation

360 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Table 3
Load balancing algorithm used in Smilei. After initialization, a segment of patches along the space filling curve is attributed to eachMPI rank. The number of patches handled
by each MPI process is then periodically reevaluated according to the following algorithm. The table shows the list of operations executed by MPI rank RMPI as it updates
its number of patches N . (*) shows operations requiring global communications.

Fig. 5. OpenMP load balancing effect. The plot displays the evolution of the wall-
clock time necessary to complete 100 iterations as a function of the number of
iterations already completed. The legend shows the total number of MPI processes
and number of openMP threads per MPI process in the format MPI × openMP.

consisting of 1024 × 128 patches (except in Section 4.3.5 where
this parameter varies), each having 8 × 5 cells and 196 particles
per cell. The global box size is therefore 8192 × 640 cells for a
total of more than a billion particles. The plasma is homogeneous

with a density of 4.94 × 10−4nc , where nc is the critical density.
The laser has both transverse and longitudinal Gaussian profiles
and its strength parameter is a0 = 8. The scale of the simulation
is based on the laser’s inverse wavenumber [k−1

0 = λ0/(2π), see
Section 2.2]. For laser wakefield electron acceleration, a standard
value for the laser wavelength is λ0 = 0.8 µm. In that case, the
electron number density is 8.6 × 1017 cm−3, the waist is w0 =

18 µm and the pulse full width half-maximum is τ0 = 35.3 fs. The
longitudinal cell size is ∆x = 0.125/k0 and the transverse cell size
is ∆y = 1.5/k0. The timestep is ∆t = 0.124/ω0, where ω0 = ck0
is the laser angular frequency.

Each run ran on 32 nodes of the OCCIGEN system. This rep-
resents 64 processors of 12 cores each for a total of 768 cores.
The plasma is initially homogeneous but load imbalance gradually
builds up, then rises quickly after 6000 iterations before stabilizing.

Fig. 5 shows the evolution of the wall-clock time necessary to
complete 100 iterations as a function of the number of iterations
already completed for different numerical settings. The runs only
differ by the number of openMP threads per MPI process and total
number of MPI processes. The total number of threads is kept
constant and equal to 768 in order to have 1 thread per core. The
openMP dynamic scheduler is used in all cases.

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 361

Fig. 6. Evolution of the MPI domains shapes with respect to the computational load distribution. The colormap indicates the local imbalance Iloc = log10 (Lloc/Lav) where
Lloc is the local patch computational load and Lav the average computational load. Black lines delimit the different MPI domains. The laser enters an initially homogeneous
plasma from the left side of the box and propagates toward the right. The 4 panels show the entire simulation domain after 1600, 5480, 6820, 9080 iterations from top to
bottom. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Several interesting features can be noticed on Fig. 5. First, as
long as the plasma is relatively homogeneous (first 1000 itera-
tions), all runs perform similarly. It means that the overhead for
having a hybrid parallelization is negligible in this situation. Later
in the simulation, the pure-MPI case shows an extreme sensitivity
to the load imbalance. The wall-clock time spent to perform 100
iterations is almost multiplied by 20 with respect to the initial
homogeneous plasma. Cases using more than one openMP thread
per MPI process are much less sensitive to this effect. And the
more threads per MPI process, the smoother the performances.
This is perfectly in line with the local load balancing analysis given
in Section 4.2.2. Nevertheless, even in the best case 64 × 12, a
performance loss of a factor superior to 4 is still impacting the
simulation. This is explained by the fact that openMP can only
balance the load within a givenMPI domain. Imbalance across MPI
domains will keep slowing the simulation down.

Using more openMP threads, or equivalently more cores, per
MPI process allows the use of larger MPI domains and there-
fore provides a better load balancing. But the number of openMP
threads is limited to the number of cores accessible on the shared
memory system. In our case, this is a single OCCIGEN nodemade of
two processors of 12 cores each so up to 24 openMP threads could
be used. But going from 12 to 24 openMP threads per MPI process
results in a drop of the performances because of the synchroniza-
tion required between the two processors of the node. The best
performances are achieved when a single MPI process is given to
each processor and when all cores of the processor are managed
by the openMP scheduler. The quality of the load balancing via the
openMP dynamic scheduler thus directly depends on the size (in
number of cores) of the processors composing the nodes.

4.3.3. MPI + openMP + dynamic load balancing
This section presents results obtained with the dynamic load

balancing (DLB) algorithm described in Section 4.2.3. With DLB
activated, theMPI domains are now capable of exchanging patches
and therefore their shape evolves with respect to the computa-
tional load distribution. Fig. 6 shows this distribution and the cor-
responding evolution of the shape of theMPI domains. As expected,
they tend to become smaller in areaswhere the computational load
is high and, reversely, larger where the patches are underloaded.
The least loaded patches have approximately 1% of the average
patch load. These under loaded patches are empty of particles and
their computational load is limited to solving the maxwell equa-
tions. On the opposite, the most loaded patches have almost 100

Fig. 7. Dynamic load balancing (DLB) algorithm effect. The plot displays the
evolution of the wall-clock time necessary to complete 100 iterations as a function
of the number of iterations already completed. The legend shows the total number
of MPI processes and number of openMP threads per MPI process in the format MPI
× openMP. The red and yellow curves are replicas of Fig. 5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

times as much computational load as the average and their load is
completely dominated by particles. Note that the computational
load map looks very much like the density map for the simple
reason that the computational load ismostly carried by themacro-
particles as in most PIC simulations.

Fig. 7 shows a performance comparison between the two best
cases obtained in the previous section (without DLB) and the same
cases with DLB activated.

The balancing here is done every 20 iterations and Ccell = 2. No
difference is observed during the balanced stage of the run (first
1000 iterations). As expected, the cost of the balancing is negligible
when actual balancing is not required. In the imbalanced stage of
the run, DLB provides an additional gain of almost 40%with respect
to the previous best case ‘‘64 × 12’’. A side benefit is also to reduce
the dependency on the large number of openMP threads. Indeed,
it appears that almost similar results are obtained with only 6
openMP threads when DLB is active. As DLB balances the load
between MPI processes, the local balancing via openMP becomes
much less critical thanbefore. Note that the openMPparallelization
remains necessary for an efficient fine grain balancing but it can be
achieved with only a limited number of threads thus removing the
dependency on a large shared memory hardware.

362 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Fig. 8. Evolution of the wall-clock time necessary to complete 100 iterations, as
a function of the number of completed iterations, for four different values of Nb
(the number of iterations between two load-balancing events). The black curve is a
replica of Fig. 7. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Note also that the cost of the imbalance is still significant in spite
of all the efforts to balance the load. The additional cost is mainly
due to the imbalance of the particles communication cost which is
not as well balanced as the computational cost of particles.

4.3.4. Balancing frequency
The load is balanced every Nb iterations. Fig. 8 shows the in-

fluence of this parameter. As expected, as Nb decreases, the load
balance getsmore accurate and the performances increase. Amore
frequent balancing also means smaller adjustments each time.
Consequently, the overhead of load balancing remains low, even
for low Nb. The cost of load balancing has a negative impact on
performances only when Nb is much lower than the number of
iterations over which imbalance builds up.

4.3.5. Number of patches
The number of patches is an important parameter. It influences

the quality of both the openMP implementation and DLB. A large
number of patches allows for finer-grain openMP parallelization
and DLB, but also implies more ghost cells and synchronization
costs.

Fig. 9 shows several interesting features. First, while imbalance
is weak (between iterations 2000 and 6000), having more patches
noticeably costs additional synchronization. The cost of particles
dynamics far outweighs the cost of synchronization, but this over-
head is measurable. On the other hand, in the second stage of the
simulationwhere a strong imbalance kicks in (after iteration 6000),
having smaller and more numerous patches is clearly beneficial.

Another interesting result comes from the comparison between
the 256 × 64 and 128 × 128 cases. Despite an equal number
of patches, much better performances are achieved in the latter
topology. This can be explained by the way the Hilbert curve is
generated. The case of a ‘‘square’’ topology (Nx = Ny, Nx being a
power of 2) corresponds to the usual Hilbert curve. If the number
of patches is larger in one direction, the Hilbert curve is generated
over a square of the smaller dimension’s size, then repeated along
the longer dimension. The constraint on Nx and Ny being powers of
2 remains but they can be different. The cost of this generalization
is that the resulting space-filling curve loses some of its compact-
ness. This translates into additional synchronization cost.

5. Additional modules

To answer to the users various needs, additional modules have
been implemented in Smilei.

Fig. 9. Evolution of the wall-clock time necessary to complete 100 iterations as
a function of the number of iterations already completed, for various number of
patches. The legend shows Npatches in the format Nx × Ny where Nx and Ny are
respectively the number of patches in the x and y directions. The black curve is a
replica of Fig. 7. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5.1. Electric field and current density filters

Particle-in-Cell codes relying on the FDTD Maxwell solvers are
known to face serious problems when dealing with relativistic
beams of particles and/or relativistically drifting plasmas [35] such
as encountered in laserwakefield acceleration [36] or in relativistic
astrophysics simulation [37]. Numerical dispersion indeed results
in a spurious, direction-dependent reduction of the light waves
velocity. As a result, ultra-relativistic particlesmay artificially catch
up with the light waves giving rise to the grid-Cerenkov instabil-
ity [35]. Various methods have been proposed to deal with this
instability: in particular, time-filtering of the electric fields [38] and
spatial-filtering of the current density [39].

Smilei specifically uses the Friedman time filter on the electric
fields [38]. If required by the user, this filter consists in replacing
the electric field in the Maxwell–Faraday solver by a time-filtered
field:

E(n)
=

(
1 +

θ

2

)
E(n)

−

(
1 −

θ

2

)
E(n−1)

+
1
2
(1 − θ)2 Ē(n−2), (29)

where Ē(n−2)
= E(n−2)

+ θ Ē(n−3), and the filtering parameter θ ∈

[0, 1] is an input parameter defined by the user.
A multi-pass bilinear filter on the current density has also been

implemented [39]. Each pass consists in a 3-points spatial averag-
ing (in all spatial dimensions) of the current, so that the filtered
current density (here defined at location i on a one-dimensional
grid) is recomputed as:

J fi =
1
2
Ji +

Ji+1 + Ji−1

4
. (30)

Current filtering, if required by the user, is applied before solving
Maxwell’s equation, and the number of passes is an input parame-
ter defined by the user.

Both methods can be used together or separately and have
allowed to satisfactorily reduce the numerical grid-Cerenkov insta-
bility when dealing with relativistically drifting electron–positron
plasmas in the framework of collisionless shock studies (see Sec-
tion 7.4).

5.2. Antennas

After the particle projection and before the Maxwell solver
execution, custom additional currents can be introduced. These
additional, user-defined, currents are referred to as antennas in
Smilei. The user provides both spatial and temporal profiles for
chosen currents Jx, Jy and/or Jz . Antennasmay be used, for instance,

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 363

Fig. 10. Ez electric field (at t = 60) generated by an oscillating Jz source placed at
the center of an empty box.

to apply external electromagnetic sources anywhere in the box. An
example is provided in Fig. 10, showing the electric field induced
by an oscillating Jz current applied within a small circular region in
the center of an empty box. A circular wave is generated from the
antenna and propagates outwards.

5.3. Field ionization

Field ionization is a process of particular importance for laser–
plasma interaction in the ultra-high intensity regime. It can affect
ion acceleration driven by irradiating a solid target with an ultra-
intense laser [40], or can be used to inject electrons through the
accelerating field in laser wakefield acceleration [41]. This process
is not described in the standard PIC (Vlasov–Maxwell) formulation,
and an ad hoc description needs to be implemented. A Monte-
Carlomodule for field ionizationhas thus beendeveloped in Smilei,
closely following the method proposed by Nuter et al. [40].

5.3.1. Physical model
This scheme relies on the quasi-static rate for tunnel ionization

derived in Refs. [42–44]. Considering an ion with atomic number Z
being ionized from charge state Z⋆ to Z⋆

+1 ≤ Z in an electric field
E of magnitude |E|, the ionization rate reads:

ΓZ⋆ = An⋆,l⋆ Bl,|m| IZ⋆

(
2(2IZ⋆)3/2

|E|

)2n⋆
−|m|−1

× exp
(

−
2(2IZ⋆)3/2

3|E|

)
, (31)

where IZ⋆ is the Z⋆ ionization potential of the ion, n⋆
= (Z⋆

+

1)/
√
2IZ⋆ and l⋆ = n⋆

− 1 denote the effective principal quantum
number and angular momentum, and l and m denote the angular
momentum and its projection on the laser polarization direction,
respectively.ΓZ⋆ , IZ⋆ and E are here expressed in atomic units.9 The
coefficients An⋆,l⋆ and Bl,|m| are given by:

An⋆,l⋆ =
22n⋆

n⋆ Γ (n⋆ + l⋆ + 1)Γ (n⋆ − l⋆)
, (32a)

Bl,|m| =
(2l + 1)(l + |m|)!
2|m||m|!(l − |m|)!

, (32b)

9 Γqs is in units of h̄/(α2mec2) with h̄ the Planck constant and α the fine-structure
constant. IZ⋆ is in units of α2mec2 (also referred to as Hartree energy) and E is in unit
of α3m2

e c
3/(eh̄).

where Γ (x) is the gamma function. Note that considering an elec-
tric field E = |E| cos(ωt) oscillating in time at the frequency ω,
averaging Eq. (31) over a period 2π/ω leads to the well-known
cycle-averaged ionization rate:

ΓADK =

√
6
π
An⋆,l⋆ Bl,|m| IZ⋆

(
2(2IZ⋆)3/2

|E|

)2n⋆
−|m|−3/2

× exp
(

−
2(2IZ⋆)3/2

3|E|

)
. (33)

In Smilei, following Ref. [40], the ionization rate Eq. (31) is
computed for |m| = 0 only. Indeed, as shown in Ref. [44], the ratio
R of the ionization rate computed for |m| = 0 by the rate computed
for |m| = 1 is:

R =
ΓZ⋆ , |m| = 0
ΓZ⋆ , |m| = 1

= 2
(2 IZ⋆)3/2

|E|
≃ 7.91 10−3 (IZ⋆ [eV])3/2

a0 h̄ω0[eV]
, (34)

where, in the practical units formulation, we have considered
ionization by a laser with normalized vector potential a0 =

e|E|/(mecω0), and both the ionization potential IZ⋆ and the photon
energy h̄ω0 in eV. Typically, ionization by a laser with wavelength
1 µm (correspondingly h̄ω0 ∼ 1 eV) occurs for values of a0 ≪ 1
(even for large laser intensities for which ionization would occur
during the rising time of the pulse) while the ionization potential
ranges from a couple of eV (for electrons on the most external
shells) up to a few tens of thousands of eV (for electrons on the
internal shell of high-Z atoms). As a consequence, R ≫ 1, and
the probability of ionization of an electronwithmagnetic quantum
number |m| = 0 greatly exceeds that of an electron with |m| = 1.

Finally, it should be stressed that simulations involving field
ionization (the same is true for those involving binary collisions
and/or collisional ionization as detailed in the next two Sections
5.4 and 5.5) cannot be arbitrarily scaled. The reference time nor-
malization ω−1

r needs to be prescribed. In Smilei, this is done
at initialization, the user having to define the reference angular
frequency in SI units whenever one of this additional module is
used.

5.3.2. Monte-Carlo procedure
In Smilei, tunnel ionization is treated for each species (defined

by the user as subject to field ionization) right after field inter-
polation and before applying the pusher. For all quasi-particles
(henceforth referred to as quasi-ions) of the considered species,
a Monte-Carlo procedure has been implemented that allows to
treat multiple ionization events in a single timestep. It relies on
the cumulative probability derived in Ref. [40]:

F Z⋆

k =

k∑
j=0

PZ⋆

j , (35)

to ionize from 0 to k times a quasi-ion with initial charge state Z⋆

during a simulation timestep∆t , PZ⋆

j being the probability to ionize
exactly j times this ion given by:

P i
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̄ i if k = 0
k−1∑
p=0

Ri+k
i+p

(
P̄ i+k

− P̄ i+p) k−1∏
j=0,j̸=p

Ri+p
i+j

if 0 < k < kmax
k−1∑
p=0

[
1 + Ri+k

i+p

(
Γi+k

Γi+p
P̄ i+p

− P̄ i+k
)] k−1∏

j=0,j̸=p

Ri+p
i+j

if k = kmax,

(36)

with P̄ i
= exp(−Γi∆t) the probability to not ionize an ion in initial

charge state i, and Rβ
α = (1 − Γβ/Γα)−1 with Γi the ith ionization

rate given by Eq. (31).

364 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Fig. 11. Results of two benchmarks for the field ionization model. Left: Average charge state of hydrogen ions as a function of time when irradiated by a laser. The red solid
line corresponds to PIC results, the dashed line corresponds to theoretical predictions using the cycle-averaged ADK growth rate of Eq. (33). Right: Relative distribution
of carbon ions for different charge states as a function of time. Dashed lines correspond to PIC results, thin gray lines correspond to theoretical predictions obtained from
Eq. (38). The Gaussian gray shape indicates the laser electric field envelope. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

The Monte-Carlo scheme proceeds as follows. A random num-
ber r with uniform distribution between 0 and 1 is picked. If r
is smaller than the probability PZ⋆

0 to not ionize the quasi-ion,
then the quasi-ion is not ionized during this time step. Otherwise,
we loop over the number of ionization events k, from k = 1 to
kmax = Z − Z⋆ (for which F Z⋆

kmax
= 1 by construction), until r < F Z⋆

k .
At that point, k is the number of ionization events for the quasi-
ion. A quasi-electron is created with the numerical weight equal
to k times that of the quasi-ion, and with the same velocity as this
quasi-ion. The quasi-ion charge is also increased by k.

Finally, to account for the loss of electromagnetic energy during
ionization, an ionization current Jion is projected onto the simula-
tion grid [40,45] such that

Jion · E = ∆t−1
k∑

j=1

IZ⋆+k−1. (37)

5.3.3. Benchmarks
In what follows, we present two benchmarks of the field ion-

ization model implemented in Smilei. Both benchmarks consist
in irradiating a thin (one cell long) neutral material (hydrogen or
carbon)with a short (fewoptical-cycle long) laserwithwavelength
λ0 = 0.8 µm.

In the first benchmark, featuring hydrogen, the laser intensity is
kept constant at IL = 1014 W/cm2, corresponding to a normalized
vector potential a0 ≃ 6.81 × 10−3, over 10 optical cycles. The
resulting averaged ion charge in the simulation is presented as a
function of time in Fig. 11, left panel. It is found to be in excellent
agreement with the theoretical prediction (dashed in Fig. 11, left
panel) considering the cycle averaged ionization rate ΓADK ≃

2.55 × 1012 s−1 computed from Eq. (33).
The second benchmark features a carbon slab. The laser has a

peak intensity IL = 5×1016 W/cm2, corresponding to a normalized
vector potential a0 ≃ 1.52 × 10−1, and a Gaussian time profile
with full-width-at-half-maximum (FWHM) τL = 5 λ0/c (in terms
of electric field). Fig. 11, right panel shows, as function of time, the
relative distribution of carbon ions for different charge states (from
0 to +4). These numerical results are shown to be in excellent
agreement with theoretical predictions obtained by numerically
solving the coupled rate equations on the population Ni of each
level i:
dNi

dt
= (1 − δi,0)Γi−1 Ni−1 − (1 − δi,Z)Γi Ni, (38)

with δi,j the Kronecker delta, and Γi the ionization rate of level i.
Note also that, for this configuration, ∆t ≃ 0.04 fs is about ten
times larger than the characteristic time Γ −1

ADK ≃ 0.006 fs to ionize
C2+ and C3+ so that multiple ionization from C2+ to C4+ during a
single timestep does occur and is found to be correctly accounted
for in our simulations.

5.4. Binary collisions

As detailed in Section 2, the PIC method aims at describing
the self-consistent evolution of a collisionless plasma by solving
the coupled system of Vlasov–Maxwell equations (1)–(3). Conse-
quently, PIC codes must introduce additional modules to account
for collisions. In Smilei, the effects of relativistic collisions have
been implemented following the scheme described in Ref. [46].
It is based on Nanbu’s approach [47], with the addition of a few
enhancements: relativistic particles, low-temperature correction
to the collision rate, and variable Coulomb logarithm. We briefly
review this scheme here and illustrate it with typical applications.

Nanbu’s theory first considers real particles, assuming that
collisions occur many times during one time-step, and that each
collision introduces a deflection angle θ ≪ 1 (although the total
deflection angle may be large). By simulating a large number of
Coulomb collisions, he finds that the total deflection angle ⟨χ⟩ is
well described by a unique function of s =

⟨
θ2

⟩
N/2, where

⟨
θ2

⟩
is

the expectation of θ2 and N is the number of collisions during one
time-step (N ≫ 1). He also provides a probability density function
f (χ) to pick randomly the deflection angle χ accumulated during
one time-step.

Colliding each quasi-particle with all other quasi-particles
nearbywould be time-consuming. Instead, quasi-particles are ran-
domly paired so that each collides with only one other quasi-
particle at a given time-step. After many time-steps, each of them
will have sampled the overall distribution of target particles. This
pairing follows Ref. [48]. It is split in two cases: intra-collisions,
when a group of particles collides with itself, and inter-collisions,
when two distinct groups of particles collide. Intra-collisions can
occur, for example, within all the electrons in the plasma. In this
case, the group is split in two halves and one half is randomly
shuffled to provide randompairs. In the case of inter-collisions, the
two halves are simply the two groups: only one group is randomly
shuffled. When the two halves do not contain the same number of
particles, the extra particles (not paired yet) are randomly assigned
a companion particle from those which have already been paired.
Thus, one particle may participate in several pairs.

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 365

Fig. 12. Left: thermalization by collisions between ions and electrons of an hydrogen plasma. Right: temperature isotropization of an electron plasma.

Whereas many codes naturally make quasi-particles collide
within their own cell, Smilei makes them collide with all those in
the same patch. This is only accurate when the plasma parameters
do not vary significantly within one patch, but it greatly reduces
the amount quasi-particle sorting required.

The parameter s is normally calculated from the point of view
of one particle traversing a cloud of numerous target particles.
However, this picture is broken by the quasi-particles of the PIC
code having variable weights. To ensure a deflection angle com-
mon to both quasi-particles (in the center-of-mass frame), thus
momentum conservation, the parameter s must be the same from
both quasi-particles’ point of views. Unfortunately, this condition
is not fulfilled when theweights or densities are different. Ref. [48]
provides a detailed solution consisting in modifying s by a factor
which makes it symmetric when exchanging the quasi-particles in
a pair. This modification is later compensated by randomly picking
quasi-particleswhichwill not actually undergo a deflection, so that
energy and momentum are conserved in average.

In addition to these considerations, Ref. [46] provides the rela-
tivistic expressions of s and χ , specifying the relativistic changes
of frames, and gives corrections for low-temperature plasmas and
a varying Coulomb logarithm. Note that these expressions, just
like those of the field ionization module, cannot be normalized to
dimension-less equations when using Smilei’s units: the value of
the reference frequency ωr must be specified in the SI system of
units.

As a first example of the possible effects of collisions, let us
consider the thermalization between ions and electrons: a fully-
ionized hydrogen plasma of density 1022 cm−3 is set with an ion
temperature of 50 eV and an electron temperature of 100 eV. The
left panel of Fig. 12 shows the evolution of both temperatures
due to the e–i collisions, well matched by the theoretical solution
taken from Ref. [49]. Note that, for a simpler comparison between
simulation and theory, the Coulomb logarithm was set to 5 and
e–e and i–i collisions were also applied to ensure Maxwellian
distributions of each species.

This example of the effect of e–i (inter-) collisions has the fol-
lowing counterpart for e–e (intra-) collisions. We set an hydrogen
plasma of the same density with an anisotropic electron tempera-
ture: T∥ = 150 eV and T⊥ = 50 eV. The right panel of Fig. 12 shows
the evolution of both temperatures due to the e–e collisions, again
well matched by the theoretical solution in Ref. [49].

Another important consequence of Coulomb collisions is the
slowing down of high-energy electrons passing through an ionized
plasma (due to e–e collisions). We simulated this situation for var-
ious electron energies traversing a fully-ionized hydrogen plasma,
and present the resulting stopping power in Fig. 13. It is in good
agreement with theoretical calculations from Ref. [50].

Fig. 13. Stopping power Q of a fully-ionized hydrogen plasma of density ne = 1022

cm−3 and temperature 1 keV, divided by ne and by the Coulomb logarithm lnΛ, as
a function of the incident electron energy.

5.5. Collisional ionization

The collisionmodule described in Section 5.4 hosts an electron–
ion impact-ionization model that makes use of the particle pairing
to compute the ionization probability of each pair. The scheme is
identical to that of Ref. [46] with the exception of a few improve-
ments detailed in the following.

The overall approach consists in calculating quantities averaged
over all orbitals of a given ion with atomic number Z and charge
Z⋆, instead of dealing with each orbital individually. This greatly
reduces the amount of randomnumbers to generate. In this regard,
this scheme is partially deterministic.

At the beginning of the simulation, the cross-section formulae
from Ref. [51] are averaged over all the ions orbitals for each value
of Z⋆ and for a given set of incident electron energies. In addition
to these tabulated average cross-sections σ , the average energy e
lost by the incident electron, and the average energyw transferred
to the secondary electron, are tabulated at the same time. For
each particle pair that collides during the simulation, these tables
are interpolated, providing an ionization probability. When an
ionization occurs, the incident electron energy is reduced by e, a
new electron with energy w is created, and Z⋆ is incremented.

In Ref. [46], the ionization probabilities and the energy transfers
assume that the ion frame is the laboratory frame. To overcome this
limitation, Smilei introduces the following changes. The electron
Lorentz factor in the ion frame is calculated using the relativistic

366 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

transformation γ ⋆
e = γeγi − pe · pi/(memi) and the probability for

ionization can be expressed as:

P = 1 − exp (−veσn∆t) = 1 − exp
(
−V ⋆σ ⋆n∆t

)
(39)

where ve is the electron velocity in the laboratory frame, n is the
particle density in the laboratory frame, σ ⋆ is the cross-section in
the ion frame, and V ⋆

=
√

γ ⋆ 2
e − 1/(γeγi). If ionization occurs,

the loss of energy e of the incident electron translates into a
change in momentum p⋆

e
′

= αep⋆
e in the ion frame, with αe =√

(γ ⋆
e − e)2 − 1/

√
γ ⋆2
e − 1. To calculate this energy loss in the

laboratory frame, we apply the relativistic transformation:

p′

e = αepe + ((1 − αe)γ ⋆
e − e)

me

mi
pi. (40)

A similar operation is done for calculating the momentum of the
new electron in the laboratory frame: it is created with energy w
and its momentum is p⋆

w = αwp⋆
e in the ion frame, with αw =√

(w + 1)2 − 1/
√

γ ⋆2
e − 1. In the laboratory frame, it becomes:

pw = αwpe + (w + 1 − αwγ ⋆
e)

me

mi
pi. (41)

Finally, Eqs. (39)–(41) ensure that all quantities are correctly ex-
pressed in the laboratory frame.

To test this first improvement, let us consider the inelastic
stopping power caused by e–i collisions when a test electron beam
is injected in a cold, non-ionized Al plasma of ion density 1021

cm−3. Electrons of various initial velocities are slowed down by the
ionizing collisions and their energy loss is recorded as a function of
time. The left panel of Fig. 14 provides the corresponding stopping
power, compared to the theory of Rohrlich and Carlson [52]. Know-
ing that this theory is valid only well above the average ionization
energy (here ∼ 200 eV), the agreement is satisfactory. At energies
above 107 keV (the ion rest mass), the center-of-mass frame is not
that of the ions, thus the agreement with the theory confirms the
validity of our correction.

Another modification has been added to the theory of Ref. [46]
in order to account for multiple ionization in a single time-step.
This approach closely follows that presented for field ionization
in Section 5.3, the only difference being in the computation of the
ionization rates (described above). It was tested and validated for a
wide range ofmaterials and incident electron energies. An example
is given in the right panel of Fig. 14, where a fast electron beam ion-
izes a zinc plasma. The ionized electrons’ density is plotted against
time, for two vastly different time-steps. With these parameters,
the multiple-ionization scheme matches better the well-resolved
case than the single-ionization scheme. We found that it takes a
reduction of an order of magnitude in the time-step for the single-
ionization approach to work as well as the multiple-ionization
scheme. It therefore brings a significant accuracy improvement.

6. User interface

6.1. Python input file

End-users only need to know how to write an input file, or
namelist. Although the core of Smilei is written in C++, the namelist
is written in the python language. This has many advantages over
the typical text-only inputs. Indeed, python can process complex
operations that may be necessary to initialize the simulation. It
can generate arbitrary numbers of simulation elements at run-
time, without the help of an external script (which would have to
be pre-processed). It supports thousands of additional packages,
often helpful for specific physics calculations. It is widely used and
becoming a reference for all sorts of applications. Very importantly,
python functions can be passed as arguments to Smilei. For in-
stance, a density profile can be directly defined as a function of the
coordinates.

When Smilei is run, it starts a python interpreter that parses
the namelist line-by-line, and executes all the python commands.
Throughout the initialization of the simulation elements (particles,
fields, diagnostics, etc.) the interpreter stays active. Smilei gathers
required data from it, processes all required initialization steps,
and finally closes the interpreter. Note that, if a python function
needs to be evaluated throughout the simulation, the interpreter is
kept active at all times. This happens, for instance, when defining
a custom temporal profile for a laser envelope.

6.2. Diagnostics

Data collection and analysis are performed by diagnostics. They
are not post-processingmodules, but are part of themain code and
executed at runtime. All of these diagnostics have the capability of
being performed only at user-defined times during the simulation.

Scalar diagnostic – The simplest diagnostic is called scalars: it
processes a large set of field and particle data, and combines the
results from all processors before writing out scalar quantities in
a dedicated file. Among these quantities, one can find the overall
energy balance (with contributions from the different fields, par-
ticles, and losses at the boundaries), averaged particle quantities
(charge, energy, number of particles), and global field information
(minima, maxima and Poynting flux through boundaries).

Fields diagnostic – The diagnostic fields provides a direct copy
of all the arrays in the code, after concatenating them from all the
processors. Note that, in addition of the E and B fields, the particle
densities and currents are also written as they are projected on
arrays at each time-step. Moreover, these data may be temporally
averaged over a number of time-steps requested by the user.

Probediagnostics– Thedrawback of the diagnostic fields is that
thewhole arrays are written out. To reduce the file space footprint,
the probes have been implemented: one probe corresponds to a
series of points at which locations the fields are interpolated and
written in a dedicated file. This series of points can be either
regularly arranged in a line, in a rectangle (for a two-dimensional
simulation), or in a parallelepiped (for a three-dimensional sim-
ulation). The spatial separations between consecutive points is
defined by the user. Note that several probes can be added to a
single simulation.

Trajectory diagnostics – Histories of individual quasi-particles
are stored by the tracking diagnostic. Each species of particles
may be tracked independently, with custom output frequencies.
In order to follow individual particles, each tracked particle is
assigned a unique number which is transported throughout the
simulation.

Particle distribution diagnostics – Tracking the position of all
quasi-particleswith a high frequencywould be time- andmemory-
consuming. To obtain digested data with flexible capabilities, the
particle diagnostic has been implemented. Onediagnostic is defined
by an arbitrary number of axes, which overall define a grid: all the
quasi-particles in the selected species deposit their weight in the
grid cell they belong to (the cell size is unrelated to the PIC grid).
These axes are not necessarily spatial (x, y or z), but can also be one
of px, py, pz , p, γ , vx, vy, vz , v or the particle charge q. A large number
of combinations can thus be designed. For instance, using one axis
[x] will provide the density distribution vs. x; using two axes [x, y]
will provide the two-dimensional density distribution vs. x and
y; using one axis [px] will provide the x-momentum distribution;
using two axes [x, px]provides the phase-space along x; using three
axes [x, y, γ] provides density maps at different energies; using
one axis [q] provides the charge distribution. Further versatility
is possible by choosing which piece of data is deposited in each
cell instead of the quasi-particle weightw. For instance, depositing
the product w q vx results in the jx current density and depositing
w vx px results in a component of the pressure tensor. A final
feature of these particle diagnostics is the capability for temporal
averaging over an arbitrary number of time-steps.

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 367

Fig. 14. Left: inelastic stopping power of a cold aluminum plasma of density 1021 cm−3 as a function of the incident electron energy. Right: evolution of the secondary
electron density caused by a beam of 1 MeV electrons traversing a cold zinc gas (both electrons and target have a density of 1021 cm−3), for various simulation time-steps.
The open circles correspond to the multiple-ionization scheme.

7. Physics highlights

In this section, we present a few examples of simulations high-
lighting physics studies relying on Smilei. The first two are related
to laser–plasma interaction studies, the latter two to astrophysics.

7.1. High-harmonic generation and electron acceleration from in-
tense femtosecond laser interaction with dense plasmas

The interaction between an ultra-intense (I > 1018 W/cm2)
femtosecond laser pulse with a solid target generates a dense
‘‘plasma mirror’’ at its surface that reflects the laser in a strongly
non-linear manner. The temporal distortion of the reflected wave
creates a train of ultra-short attosecond pulses, associated, in the
frequency domain, to a combof high-order harmonics. This scheme
is considered as one of the best candidates for attosecond light
sources [9]. Recent experiments have shown that it also produces
high-energy (relativistic) ultra-short and very-high-charge (nC)
electron bunches [53], of interest for electron injectors.

In what follows, we present a 2-dimensional Smilei simulation
of laser–solid interaction, in conditions relevant to experiments
at the UHI 100 laser facility.10 The laser pulse with wavelength
λ0 = 0.8µmhas a peak intensity I ≃ 2×1019 W/cm2 (normalized
vector potential a0 = 3) when focused to a 4λ0 waist, at 45◦-
incidence with p-polarization, onto an overdense plasma slab. This
overdense plasma mimics the solid target considered fully ionized
with a constant electron densityn0 = 200 nc (nc ≃ 1.7×1021 cm−3

being the critical density), 5λ0-thick, with an exponential pre-
plasma of gradient length 0.1 λ0 down to a cut-off density nc−off =

0.05 nc . The full box size is 80 λ0 × 60λ0 and the simulation time
150 λ0/c. The cell size is ∆x = ∆y = λ0/256 (for a total of
25,600 × 26,880 cells) and the timestep is c∆t = λ0/384 ≃

0.95∆tCFL. Eight to 49 quasi-particles are set in each cell, for a total
of∼ 1.4billions of quasi-particles in the entire box. They are frozen
(not moved) until t = 50 λ0/c , i.e. until the laser pulse reaches the
target.

Fig. 15 presents the simulation set-up and a summary of the
results obtained. The top panel represents half of the simulation
box in the y-direction, and the laser field is reported at three
different times. The reflected laser pulse (at time t2) shows a
different spectral content than the incident pulse (at time t0). The
plasma electron density is shown in black. A close-up view of the
interaction region is given in the bottom panel, illustrating the
electron bunches being pulled out from the plasma surface.

10 http://iramis.cea.fr/slic/UHI100.php.

Fig. 15. Setup and results of a laser–solid interaction simulation. Top: laser mag-
netic field Bz snapshots at three different times: t0 before interaction with the
plasma, t1 during interaction and t2 after reflection by the plasmamirror. The dark-
scale region represents the plasma electron density at time t1 . Bottom: close-up of
the interaction region showing the plasma electron density at t1 , during interaction.

Fourier analysis of the reflected laser magnetic field Bz in space
and time provides the angular distribution of the frequency spec-
trum of the reflected light. High harmonics (up to order 16) are
observed as seen in the top panel of Fig. 16. In addition, electron
acceleration was observed, as highlighted in the bottom panel of
Fig. 16, showing the trajectories of electrons ejected from the tar-
get. The most energetic electrons (with energies up to 10MeV) are
found to propagate in the direction of the reflected light pulse. The
angular histogram also shows that the momenta of the escaping
energetic electrons aremostly directed along two directionswhich
are close to the reflected laser direction. This is consistent with
vacuum electron acceleration suggested in Ref. [53].

This simulation was run on the CINES/Occigen (Bullx) machine
using 256 MPI × 14 OpenMP threads for about 10,700 CPU-hours.
Considering only the simulation time during which particles are
not frozen, the characteristic time to push a particle (complete time
to run one full PIC loop divided by the product of the number of
particles by the number of timesteps) is of the order of 0.717 µs,
25% of which were devoted to diagnostics.

http://iramis.cea.fr/slic/UHI100.php

368 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Fig. 16. Top: angular distribution of high-harmonics generated in short-pulse laser–
plasma interaction. Bottom: typical trajectories of electrons ejected from the target
and accelerated in the reflected laser field. The color scale denotes the electron
kinetic energy. The pink curve is a histogram of the electron momentum angle
when they reach a ‘‘detector’’ located at a distance of 20 λ0 from the focal spot. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

7.2. Short laser pulse amplification by stimulated Brillouin scattering

The generation of short high-intensity laser pulses is limited by
the damage threshold of solid optics materials [54,55], but such
limitations could be overcome using a plasma as an amplifying
medium. This can be achieved by coupling, in a plasma, a long
energetic ‘‘pump’’ pulse of moderate intensity and a short counter-
propagating ‘‘seed’’ pulse of initially low intensity. Energy transfer
from the pump to the seed thanks to the excitation of a plasma
wave can then be obtained [56,57]. In what follows, we focus
on stimulated Brillouin scattering (SBS) amplification, where the
excited waves are ion-acoustic waves.

In the case of a pump with intensity Ip ≳ 1015W/cm2 (with the
laser wavelength λ0 = 1 µm), SBS amplification operates in its
‘‘strong-coupling’’ regime [58–61]. This scheme is particularly ro-
bust with respect to plasma inhomogeneities and does not require
any frequency shift of the seed pulse.

Multi-dimensional kinetic simulations are required to describe
the competing processes (spontaneous Raman scattering, filamen-
tation, saturation), to study the non-linearities intervening in the
amplification mechanism, and to optimize the resulting phase
front (for later focusing [62,63]), but they appear very challenging
as inherently multi-scale. We present here two 2-dimensional
Smilei simulation of short-pulse SBS amplification in conditions
close to actual experiments [64,65]. The simulation box size is
1024 µm× 512 µm and the grid cells are 33nm in both directions,
resulting in 30,720 × 15,360 cells. The simulation lasts 10 ps with

a timestep of 7.3 × 10−2 fs (over 135,000 timesteps in total).
Respectively 25 and 16 billions of quasi-particles have been set in
each simulation.

The first simulation corresponds to typical present-day experi-
ments. The pump has a cos2-temporal profile with duration 4.2 ps
FWHM and maximum intensity Ip = 1015 W/cm2 and propagates
along the x-direction toward x > 0. The counter-propagating seed
has a cos2-temporal profile with duration 0.5 ps FWHM and initial
intensity Is = 1015W/cm2. Both the seed and pump lasers have
a transverse Gaussian profile with 130 µm FWHM (in terms of
intensity). The plasma has a Gaussian density profile over all the
simulation box, with a maximum (central) electron density n =

0.1 nc , where nc the critical density for both the laser pump and
seed (nc ≃ 1.1 × 1021 cm−3 at λ0 = 1 µm).

Typical simulation results are presented in Fig. 17 showing
pump and seed intensities at three different amplification stages.
At t = 5.8 ps (panel a), the seed starts interacting with the
pump. At t = 7.6 ps (panel b), the seed reaches the middle of
the simulation box. At that time, the seed is still in the linear
amplification regime, and the pump is not depleted yet. At t =

9.7ps (panel c), the seed has traveled through the entire simulation
box and the pump is depleted. The final intensity of the seed is
Iouts ≃ 4.6 × 1015 W/cm2, i.e. nearly 5× its initial intensity. The
spot size and phase front are also well conserved, suggesting that
such a beamcould be further focusedusing plasmamirrors to reach
even larger intensities.

The second simulation deals with an innovative plasma–laser
configuration to further optimize SBS amplification. The seed
pulse is now interacting with two pump lasers, both with a cos2-
temporal shape with duration 4.2 ps FWHM, and top intensity
Ip = 1015 W/cm2 that are propagating with an angle of ±6◦

degrees with respect to the x-axis. Taking two pump pulses is an
experimentally convenient configuration that has the advantage
to increase the pump intensity in the 3-pulse-interaction region
while keeping a relatively low pump intensity during propagation
in the non-overlapping region (thus reducing spurious Raman
losses). Moreover, this laser–plasma configuration allows to sep-
arate the Raman backscattering of the pump from the amplified
signal (as will be shown in what follows). The transverse size of
the pump pulses is, for this simulation, reduced to 30 µm FWHM
and the plasma has a constant density profile with electron density
n = 0.05 nc .

The typical interaction set-up and simulation results are shown
in Fig. 18(a). The vertical white-dashed lines delimit the con-
stant plasma, and the amplified seed exiting the simulation box
at t = 10 ps reaches a final intensity Iouts ≃ 3 × 1015 (3×
the initial intensity). Of outmost interest is the spatio-temporal
(ω, k) spectrum of the light recorded on the left-boundary of the
simulation box presented in Fig. 18(b). As expected, this set-up
allows the Raman signal (at ω ≃ 0.76ω0 with ω = 2πc/λ0 the
laser angular frequency) originating from the backscattering of the
pump to propagate mostly in the opposite pump directions (the
signal is mainly at k ≃ ±0.11 k0, with k0 = 2π/λ0), thus angu-
larly separating its contribution from the seed. Furthermore, this

Fig. 17. Evolution of the pump and seed intensities in the case of 2 pulse head-on collision at: (a) t = 5.8 ps, (b) t = 7.6 ps and (c) t = 9.6 ps. The blue–yellow maps
correspond to the plasma density while the white–red maps correspond to the lasers intensity. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 369

Fig. 18. (a) Pump and seed intensity at the end of amplification at t = 10 ps. The
final intensity of the seed is Iouts ≃ 3 × 1015 W/cm2 (3× its initial intensity). (b)
Spectrum (in terms of wave number k/k0 and frequencyω/ω0 , where k0 andω0 are
the nominal wavenumber and frequency of the pump lasers) of the electric field
recorded on the entire length of the left side of the simulation box. (c) Zoom of the
spectrum for ω/ω0 = [0.98, 1.02].

spectrum confirms the dominant role of SBS amplification in the
seed amplification. Indeed, both broadening and red-shift (toward
small temporal frequencies ω < ω0) shown in Fig. 18(b) [and
insert (c)] are signatures of SBS amplification. The signal atω ≃ ω0
and k ≃ ±0.11 k0 correspond to the (forward-propagating) pump
lasers. Notice that, at the end of the amplification, the transverse
focal spot size of the seed at FWHM in intensity is of the order of
28 µm, i.e. of the same order than the initial one.

Both simulations have been performed on the IDRIS/Turing
(BlueGene/Q) super-computer using 1.8 million CPU-hours on
32,768 MPI processes, and 4 OpenMP threads per core to take best
advantage of the architecture. The average time to push a particle
was∼ 1.9µs, 5% of whichwere devoted to diagnostics. The typical
memory footprint for these simulations was of the order of 1 Tb,
and each simulation generated over 1 Tb of output data. On the
CINES/Occigen (Bullx) machine, we obtained an average time of
0.43 µs to push one particle (without diagnostics).

7.3. Magnetic reconnection at the Earth magnetopause

Magnetic reconnection at the Earth magnetopause regulates
the transport of matter, momentum and energy from the solar
wind to the internal magnetosphere. Because of their different ori-
gins, the properties of the plasma and magnetic field on both side
of the magnetopause are quite different. The solar wind plasma
temperature is typically one tenth that of the magnetospheric
plasma, but its density is about ten times larger. Themagnetic field
is typically 2–3 times larger on the magnetospheric side than on
the solar wind side. This asymmetry makes the reconnection dy-
namics vastlymore complex than in symmetric environments, and
has only been studied for a decade via numerical simulations and
spacecraft observations [66,67]. Among all possible asymmetries,
those in the particle density and magnetic field amplitude have by
far the most important impact on the reconnection rate.

Following times of strong magnetospheric activity, very dense
and cold plasma from the plasmasphere can be transported all the
way up to the Earth magnetopause, forming an elongated tongue
of dense material. As it impacts the magnetopause, it drastically

changes the asymmetry described above. If it reaches the magne-
topause at a location where magnetic reconnection is already on-
going with a typical asymmetry, the filling of the reconnection site
with cold plasma, which density can even exceed the solar wind
density, should affect importantly the reconnection dynamics, first
by lowering the reconnection rate.

Studying the impact of a plasmaspheric plume on magne-
topause reconnection via kinetic numerical simulation is difficult.
Indeed, the simulation first needs to reach a quasi-steady state
reconnection with a typical magnetopause asymmetry, see the
arrival of the plume and then last longer for a quasi-steady state
plume reconnection regime to settle. Due to the large particle
density of plumes, the transition and last phases have substantially
longer time scales than the early phase, which makes the simula-
tion heavy. The domain must be long enough in the downstream
direction for the plasma, expelled during the early and transition
phases, to be evacuated from the reconnection region. Otherwise,
upstream plasma would not inflow, thereby stopping reconnec-
tion.

We designed a simulation so that typical magnetopause recon-
nection can proceed and form a reconnection exhaust of about
100 c/ωpi, where ωpi is the ion plasma frequency corresponding
to the reference (solar wind) density n0, long before the plume
reaches the reconnection site. Using the Cassak–Shay estimate of
the inflow velocity [68], we need to position the plume on themag-
netospheric side at about 20 c/ωpi from the initial magnetopause
position. Three ion populations are present. The solar wind and
magnetospheric populations have densities equal to n0 and n0/10,
respectively, on their side of the current sheet, and fall to zero on
the other side. The plume population increases from 0 to 2 n0 at
20 c/ωpi from the initial current sheet on the magnetospheric side.
Themagnetic field amplitude goes from 2 B0 in themagnetosphere
to B0 = meωpe/e in the solar wind and is totally in the simulation
plane. The temperature is initially isotropic and its profile is calcu-
lated to balance the total pressure.

The domain size is 1280 c/ωpi × 256 c/ωpi for 25,600 × 10,240
cells, in the x (downstream) and y (upstream) directions. The total
simulation time is 800Ω−1

ci with a time step 0.00084Ω−1
ci , where

Ωci = eB0/mi is the ion gyrofrequency. We used a reduced ion to
electron mass ratio mi/me = 25, and a ratio c/VA = 50 of the
speed of light by the Alfvén velocity. There are initially 8.6 billion
quasi-protons for the three populations, and 13 billion electrons.

Fig. 19 presents some of the simulation results: the electron
density at three different times. In the top panel, reconnection is
in steady state between the solar wind plasma of density ≃ n0
and the magnetosphere plasma of density ≃ 0.1 n0. At this time,
the exhaust is filled with mixed solar wind/hot magnetospheric
plasma as the plume (of density≃ 2n0) is still located at≃ 10 c/ωpi
from the magnetospheric separatrix. The reconnection rate during
this period has a typical value around 0.1 Ω−1

ci , with important
fluctuations caused by plasmoid formation. The plume, originally
at 20 c/ωpi from the magnetopause, is slowly advected toward
themagnetosphere separatrix and finally touches the reconnection
site at about t = 300 Ω−1

ci . The second panel at t = 370 Ω−1
ci

shows the plume starting to fill the exhaust after reaching the
reconnection site and mixing with solar wind plasma. At this time,
the reconnection rate collapses to about half its previous value.
The transition phase lasts for about 100 Ω−1

ci before a plume
reconnection regime reaches a quasi-steady state. The third panel
shows the electron density at the end of the simulation, where the
exhaust is filled with plume and solar wind plasma.

This large-scale simulation has run for a total of 14million CPU-
hours on 16,384 cores of the CINES/Occigen (Bullx) supercomputer
within a GENCI-CINES special call. Overall, the characteristic (full)
push-time for a single particle was of the order of 1.6 µs, 31% of
which were devoted to diagnostics. Note that no dynamic load
balancing was used for this simulation.

370 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

Fig. 19. Magnetopause reconnection simulation results: electron density color
coded at different times (t = 220, 370 and 800Ω−1

ci from top to bottom) in a region
zoomed around the reconnection site. Solid black lines are in-plane magnetic field
lines.

7.4. Collisionless shock in pair plasmas

Relativistic collisionless shocks play a fundamental role in var-
ious astrophysical scenarios (active galactic nuclei, micro-quasars,
pulsar wind nebulae and gamma-ray bursts) where they cause
high-energy radiation and particle acceleration related to the
cosmic-ray spectrum [69]. The long-standing problem of describ-
ing collisionless shock formation has gained renewed interest as
PIC simulations provide insight into the micro-physics of these
non-linear structures [70–72].

In the absence of particle collisions, the shock is mediated by
collective plasma processes, produced by electromagnetic plasma
instabilities, taking place at the shock front. In particular, we study
the Weibel (or current filamentation) instability [73–75] that is
observed in most of the astrophysical relativistic outflows inter-
acting with the interstellar medium. It can be excited by counter-
streaming unmagnetized relativistic flows, and it has been shown
to dominate the instability spectrum for a wide range of param-
eters [74]. It converts part of the kinetic energy of the counter-
propagating flows into small-scale magnetic fields, which are then
amplified up to sub-equipartition levels of the total energy. The
resulting strong magnetic turbulence can isotropize the incoming
flow (in the center-of-mass frame), hence stopping it and leading
to compression of the downstream (shocked plasma) and shock
formation.

The density compression ratio between the upstream relativis-
tic flow (with density n0) and the downstream (with density nd)
plasma can be derived frommacroscopic conservation laws giving
the Rankine–Hugoniot (RH) jump conditions [76]. The shock is
considered formed when the density jump becomes nd/n0 = 1 +

(γ0 + 1)/[γ0(Γad − 1)]. Considering an ultra-relativistic incoming
flow γ0 ≫ 1 and adiabatic index Γad = 3/2 for a 2-dimensional
downstream plasma at ultra-relativistic temperature, we expect a
compression factor nd/n0 = 3. Another clear signature of the shock
formation is the isotropization of the downstream plasma. This
physical picture has been confirmed by various PIC simulations
using counter-penetrating relativistic flows [70–72].

In what follows, we present a 2-dimensional PIC simulation of
a Weibel-mediated collisionless shock driven in an initially un-
magnetized electron–positron plasma. The simulation relies on the

Fig. 20. Snapshot at t = 1000ω−1
p . (a) Weibel generated magnetic field Bz in units

of B0 = me ωp/e. (b) Electron density in units of n0 . (c) Electron density (in units of
n0) averaged along the y-direction.

‘‘piston’’ method that consists in initializing the simulation with a
single cold electron–positron plasma drifting in the +x-direction
at a relativistic velocity v0 ≃ 0.995 c (γ0 = 10). A reflecting
(for both fields and particles) boundary condition is applied at
the right border of the simulation box, hence creating a counter-
penetrating (reflected) flow, the reflected beam mimicking a flow
with velocity −v0.

The simulation box size is 2048 δe × 128 δe, δe = c/ωp being
the (non-relativistic) electron skin-depth of the initial flow. The
spatial resolution is set to ∆x = ∆y = δe/16, the timestep
to c∆t = ∆x/2 and 16 particles-per-cell were used for each
species leading to a total of≃ 2.15×109 quasi-particles. Temporal
Friedman filtering (with θ = 0.1) and binomial current filtering
(using 3 passes) have been applied in order to avoid spurious
effects (e.g. upstream heating) due to the grid-Cerenkov numerical
instability (see Section 5.1).

Fig. 20 presents the characteristic simulation results at time
t = 1000ω−1

p . The overlapping region of incoming and reflected
flows is Weibel-unstable which results in the creation, before the
shock (50 δe < x < 400 δe), of filamentary structures in both the
magnetic field (panel a) and the total plasma density (panel b). The
magnetic field at the shock front (400 δe < x < 600 δe) becomes
turbulent and it is strong enough to stop the incoming particles
leading to a pile-up of the plasma density up to nd ≃ 3.2 n0
(panel c), as predicted by the RH conditions. The simulation also
indicates that the shock propagates toward the left with a velocity
vsh ≃ (0.46 ± 0.01) c . The RH conditions predict a shock velocity
vsh = c (Γad − 1)(γ0 − 1)/(γ0v0) ≃ 0.452 c , in excellent agree-
mentwith the value observed in the simulation. Isotropization and
thermalization of the downstream distribution function was also
observed (not shown), with a typical temperature close to that
predicted from the RH conditions Td =

1
2 (γ0−1)mec2 ≃ 4.5mec2.

Finally, the simulation also demonstrates the build-up of a
supra-thermal tail in the downstream particle energy distribution,
as shown in Fig. 21. At an early time after shock formation, t ≃

500ω−1
p , the particle distribution in the downstream (shocked

plasma, here taken at 800 c/ωp < x < 900 c/ωp) is found to
have relaxed to an isotropic, quasi-thermal, distribution with a
temperature initially only slightly larger than that predicted from
RH conditions Td ≃ 4.5mec2 (dashed line). At later times (t →

2000ω−1
p), a supra-thermal tail of energetic particles has built up,

even more pronounced for particles located in the downstream
plasma closer to the shock front (here taken in a region 500 c/ωp <

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 371

Fig. 21. Electron energy distribution in the downstream region (800 c/ωp < x <

900 c/ωp) for different times t > 450ω−1
p . At time t ≃ 500ω−1

p , the shock is already
formed and the energy distribution closely follows the thermal (2-dimensional)
Maxwell–Jüttner distribution with temperature Td = 4.5mec2 expected from RH
conditions (black dashed line). At later times, a supra-thermal tail appears, even
more visible for particles located closer to the shock front (500 c/ωp < x <

600 c/ωp , solid black line). The dot-dashed guide line indicates the power law
dN/dγ ∝ γ −2.5 .

x < 600 c/ωp, solid black line). This tail is characteristic of first
order Fermi acceleration at the shock front, and appears following
a dN/dγ ∝ γ −s scaling with s = 2.5, a power index consistent
with previous PIC simulations [70,71] and theoretical investiga-
tions [77].

This simulation run on the TGCC/Curie machine using 512 MPI
× 8 OpenMP threads over a total of 26,100 CPU-hours for 65,536
timesteps. For this simulation, the characteristic (total) push time
for a single quasi-particle was of 0.66 µs, 20% of which were
devoted to diagnostics.

8. Conclusions and perspectives

To summarize the capabilities of the open-source PIC code
Smilei, we emphasize on its object-oriented (C++) structure com-
plemented by its user-friendly Python interface, making it a versa-
tile, multi-purpose tool for plasma simulation.

Co-developed by both physicists and HPC experts, Smilei ben-
efits from a state-of-the-art parallelization technique relying on a
patch-based super-decomposition strategy. This approach allows
for an improved cache use, and provides a straightforward imple-
mentation of dynamic load balancing. This strategy is shown to
manage efficiently any load imbalance and to scale well over a
very large number of computing elements (up to several hundred
of thousands). The code was tested on various super-computers,
architectures (Bullx and BlueGene/Q in particular) and processors
(Intel Sandy Bridge, Broadwell and Haswell, and IBM Power A2).

Still a young project (development started in 2013), Smilei ben-
efits from a wide range of additional modules, including a Monte-
Carlo treatment of binary collisions as well as collisional and field
ionization. Smilei is currently used by a growing community, as
illustrated by the presented applications to both laser–plasma
interaction and astrophysics.

The code is under active development and numerous enhance-
ments are being incorporated collaboratively. Even though the
simulations presented in this article are two-dimensional, the
three-dimensional version of the code is now available for produc-
tion (see, e.g., Refs. [78] and [79]).

On the physics side, Monte-Carlo modules are being devel-
oped to account for various quantum-electrodynamics effects,
from high-energy photon to electron–positron pair production

(see, e.g., Ref. [80] and references therein). The implementation of
HPC-relevant spectral solvers for Maxwell’s equations in Smilei,
although challenging, is also under study. This is done through a
collaboration with Lawrence Berkeley National Laboratory and the
open-source PICSAR (PXR) project [81,82].

On the performance side, the incorporation of Single Instruction
Multiple Data (SIMD), also known as vectorization, is in progress.
A joint effort with Intel, aiming at optimizing the code for the
Xeon Phi architectures, was initiated by the Grand Equipement
National de Calcul Intensif (GENCI). To this day, two approaches are
considered. The first one is based on a fine-grain particle sorting.
The other relies on the integration of the vectorized PXR library in
Smilei.

Finally the collaborative aspects are central to the Smilei
project, and important efforts are undertaken: a complete doc-
umentation is under construction (a large portion of which is
already available on Smilei’s website), a set of automated bench-
marks (continuous integration) is currently used and under con-
stant development, the openPMD standard for I/O formatting [83]
is also being implemented. Furthermore, user/training workshops
are currently in preparation.

Acknowledgments

The authors are grateful to L. Gremillet, M. Lobet, R. Nuter
and A. Sgattoni for fruitful discussions, and Ph. Savoini for feed-
back on the code. MG and GB thank F. Quéré and H. Vincenti
for sharing physics insights. Financial support from the In-
vestissements d’Avenir of the PALM LabEx (ANR-10-LABX-0039-
PALM, Junior Chair SimPLE) and from the Plas@Par LabEx (ANR-
11-IDEX-0004–02) are acknowledged. AG acknowledges financial
support from the Université Franco-Italienne through the Vinci
program (Grant No. C2-133). NA and JDa thank the ANR (project
ANR-13-PDOC-0027) for funding their research. MG personally
thanks the collaboration federated around the ANR MACH project
(ANR-14-CE33–0019 MACH). This work was performed using
HPC resources from GENCI-IDRIS Grands Challenges 2015, GENCI-
IDRIS/TGCC (Grants 2016-x2016057678 and 2017-x2016057678),
GENCI-CINES (Grant 2016-c2016067484) and GENCI-CINES (Spe-
cial allocation n◦ t201604s020).

Appendix. Quasi-particles shape functions and interpolation/
projection order

The quasi-particles shape function S(x) has the following prop-
erties: (i) it is symmetric with respect to its argument x, (ii) it is
non-zero in a region centered around x = 0 that extends over a
distance n∆xµ in xµ

= (x, y, z)-direction, with ∆xµ the size of
a cell in this direction, hence defining a so-called quasi-particle
volume Vp = Πµn∆µ, where the integer n, henceforth referred to
as the interpolation/projection order is discussed in what follows,
and (iii) it is normalized so that

∫
dxS(x) = 1.

In what follows, we will consider different shape functions all
of which can be written as a product over the D spatial dimensions
of the simulation:

S(x) =

D∏
µ=1

s(n)(xµ), (A.1)

wherendenotes thepreviously introduced interpolation/projection
order. The one-dimensional shape functions s(n)(x) used in Smilei
can be written in a recursive way. The interpolation/projection
order n = 0 corresponds to a point-like quasi-particle and s(0)(x) =

δ(x), with δ(x) the Dirac distribution. The shape functions of higher
order n > 0 are then obtained recursively:

s(n)(x) = ∆x−1P(x) ⊗ s(n−1)(x)

≡ ∆x−1
∫

∞

−∞

dx′ P(x′
− x) s(n−1)(x′), (A.2)

372 J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373

with the crenel function P(x) = 1 if |x| ≤ ∆x/2 and P(x) = 0
otherwise. Inwhat follows, wewrite explicitly the shape-functions
ŝ(n) = ∆x s(n) for n up to 4 (i.e. up to fourth order):

ŝ(0)(x) = ∆x δ(x), (A.3)

ŝ(1)(x) =

⎧⎨⎩1 if |x| ≤
1
2

∆x,

0 otherwise,
(A.4)

ŝ(2)(x) =

{(
1 −

⏐⏐⏐ x
∆x

⏐⏐⏐) if |x| ≤ ∆x,

0 otherwise,
(A.5)

ŝ(3)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
4

[
1 −

4
3

(x
∆x

)2
]

if |x| ≤
1
2

∆x,

9
8

(
1 −

2
3

⏐⏐⏐ x
∆x

⏐⏐⏐)2

if
1
2

∆x < |x| ≤
3
2

∆x,

0 otherwise,

(A.6)

ŝ(4)(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
3

[
1 −

3
2

(x
∆x

)2
+

3
4

⏐⏐⏐ x
∆x

⏐⏐⏐3] if |x| ≤ ∆x,

4
3

(
1 −

1
2

⏐⏐⏐ x
∆x

⏐⏐⏐)3

if ∆x < |x| ≤ 2∆x,

0 otherwise.

(A.7)

Field interpolation at the particle position

In Section 2.3, it is shown that the quasi-particles are subject
to the electric and magnetic fields interpolated at their positions,
these interpolated fields being given by Eqs. (9) and (10), respec-
tively. For the simplest case of a one-dimensional grid, the field
(either electric or magnetic) seen by the quasi-particle at position
xp = xp x̂ can thus be written in the form:

Fp =

∫
dx s(n)(x − xp) F (x), (A.8)

where field F (x) can be reconstructed from the grid as:

F (x) =

∑
i

Fi P(x − xi), (A.9)

i denoting the grid point index and xi the location of the ith
grid point. Injecting Eq. (A.9) in Eq. (A.8), and using the recursive
definition of the shape-function Eq. (A.2), one obtains a simpleway
to interpolate the field at the quasi-particle position:

Fp =

∑
i

Fi ŝ(n+1)(xp − xi). (A.10)

The generalization to an arbitrary number of spatial dimension is
straightforward.

Direct projection of the charge and current densities onto the grid

Direct projection of the charge and/or current densities onto a
grid point xi can be performed considering the projected quantity
[Q = (ρ, J)] as the amount of charge and/or current contained in
the cell located around this grid point:

Qi =

∫
dx Qp s(n)(x − xp) P(x − xi). (A.11)

Using the recursive definition of the shape-function Eq. (A.2), one
obtains:

Qi = Qp ŝ(n+1)(xi − xp). (A.12)

For the sake of completeness, it is worth noting that using
the same shape-function for both interpolation and projection

is mandatory to avoid unphysical self-force acting on the quasi-
particles.

References

[1] F.H. Harlow, A Machine Calculation for Hydrodynamic Problems. Technical
Report, Los Alamos Scientific Laboratory Report LAMS-1956, 1956.

[2] C.K. Birsall, A.B. Langdon, Plasma Physics Via Computer Simulation, McGraw-
Hill, New York, 1985.

[3] T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43 (1979) 267–270.
[4] A. Pukhov, J. Meyer-ter Vehn, Appl. Phys. B 74 (4) (2002) 355–361.
[5] S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, J.L. Collier, A.E.

Dangor, E.J. Divall, P.S. Foster, J.G. Gallacher, C.J. Hooker, D.A. Jaroszynski,
A.J. Langley, W.B. Mori, P.A. Norreys, F.S. Tsung, R. Viskup, B.R. Walton, K.
Krushelnick, Nature 431 (7008) (2004) 535–538.

[6] C.G.R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C.B. Schroeder, D. Bruhwiler,
C. Nieter, J. Cary, W.P. Leemans, Nature 431 (7008) (2004) 538–541.

[7] J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.P. Rousseau,
F. Burgy, V. Malka, Nature 431 (7008) (2004) 541–544.

[8] A. Macchi, M. Borghesi, M. Passoni, Rev. Modern Phys. 85 (2013) 751–793.
[9] C. Thaury, F. Quéré, J. Phys. B: At. Mol. Opt. Phys. 43 (21) (2010) 213001.

[10] Hui Chen, Scott C. Wilks, James D. Bonlie, Edison P. Liang, Jason Myatt,
Dwight F. Price, David D. Meyerhofer, Peter Beiersdorfer, Phys. Rev. Lett. 102
(2009) 105001.

[11] G. Sarri, K. Poder, J.M. Cole,W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis,
D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel,
S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M.
Vargas, J. Vieira, M. Zepf, Nature Commun. 6 (2015) 6747.

[12] B. Cros, B.S. Paradkar, X. Davoine, A. Chancé, F.G. Desforges, S. Dobosz-
Dufrénoy, N. Delerue, J. Ju, T.L. Audet, G. Maynard, M. Lobet, L. Gremillet,
P. Mora, J. Schwindling, O. Delferrière, C. Bruni, C. Rimbault, T. Vinatier, A.
Di Piazza, M. Grech, C. Riconda, J.R. Marquès, A. Beck, A. Specka, Ph. Martin,
P. Monot, D. Normand, F. Mathieu, P. Audebert, F. Amiranoff, Nucl. Instrum.
Methods Phys. Res. A 740 (2014) 27–33. Proceedings of the first European
Advanced Accelerator Concepts Workshop 2013.

[13] A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Modern Phys. 84
(2012) 1177–1228.

[14] Allen Taflove, Computation Electrodynamics: the Finite-Difference Time-
Domain Method, third ed., Artech House, Norwood, 2005.

[15] RachelNuter,MickaelGrech, PedroGonzalez deAlaizaMartinez, GuyBonnaud,
Emmanuel d’Humières, Eur. Phys. J. D 68 (6) (2014) 177.

[16] Thomas P. Wright, G. Ronald Hadley, Phys. Rev. A 12 (1975) 686–697.
[17] Seiji Zenitani, Phys. Plasmas 22 (4) (2015) 042116.
[18] Brian P. Flannery, Saul Teukolsky, William H. Press, William T. Vetterling,

Numerical Recipies, third ed., Cambridge University Press, 2007.
[19] J.P. Boris, Proceeding of the 4th Conference on Numerical Simulation of Plas-

mas, 1970, pp. 3–67.
[20] J.L. Vay, Phys. Plasmas 15 (5) (2008) 056701.
[21] T. Zh. Esirkepov, Comput. Phys. Comm. 135 (2) (2001) 144–153.
[22] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin

Heidelberg, 1991.
[23] H. Barucq, B. Hanouzet, Asymptot. Anal. 15 (1) (1997) 25.
[24] Jean-Pierre Berenger, J. Comput. Phys. 114 (2) (1994) 185–200.
[25] Illia Thiele, Stefan Skupin, Rachel Nuter, J. Comput. Phys. 321 (2016)

1110–1119.
[26] R.A. Fonseca, L.O. Silva, F.S. Tsung, V.K. Decyk,W. Lu, C. Ren,W.B. Mori, S. Deng,

S. Lee, T. Katsouleas, J.C. Adam, Lecture Notes in Computer Science, Vol. 2331,
Springer, Heidelberg, 2002, pp. 342–351.

[27] A.F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin, V. Malka, J. Comput.
Phys. 228 (5) (2009) 1803–1814.

[28] Troels Haugbølle, Jacob Trier Frederiksen, Åke Nordlund, Phys. Plasmas 20 (6)
(2013) 062904.

[29] George Stantchev, William Dorland, Nail Gumerov, J. Parallel Distrib. Comput.
68 (10) (2008) 1339–1349. General-Purpose Processing using Graphics Pro-
cessing Units.

[30] Viktor K. Decyk, Tajendra V. Singh, Comput. Phys. Comm. 182 (3) (2011)
641–648.

[31] Kai Germaschewski, William Fox, Stephen Abbott, Narges Ahmadi, Kristofor
Maynard, LiangWang, Hartmut Ruhl, Amitava Bhattacharjee, J. Comput. Phys.
318 (2016) 305–326.

[32] D. Hilbert, Math. Ann. 38 (1891) 459.
[33] J. Trier Frederiksen, G. Lapenta, M.E. Pessah, Particle control in phase space by

global k-means clustering, 2015. https://arxiv.org/abs/1504.03849.
[34] A. Beck, J.T. Frederiksen, J. Dérouillat, Nucl. Instrum. Methods Phys. Res. A 829

(2016) 418–421. 2nd European Advanced Accelerator Concepts Workshop -
{EAAC} 2015.

[35] B.B. Godfrey, J. Comput. Phys. 15 (4) (1974) 504–521.
[36] R. Lehe, Improvement of the Quality of Laser-Wakefield Accelerators: Towards

a Compact Free-Electron Laser (Ph.D. thesis), Ecole Polytechnique, 2014.

http://refhub.elsevier.com/S0010-4655(17)30331-4/sb1
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb1
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb1
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb2
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb2
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb2
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb3
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb4
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb5
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb6
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb6
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb6
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb7
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb7
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb7
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb8
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb9
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb10
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb11
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb12
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb13
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb13
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb13
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb14
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb14
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb14
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb15
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb15
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb15
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb16
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb17
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb18
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb18
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb18
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb20
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb21
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb22
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb22
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb22
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb23
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb24
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb25
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb25
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb25
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb26
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb27
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb27
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb27
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb28
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb28
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb28
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb29
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb30
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb30
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb30
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb31
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb32
https://arxiv.org/abs/1504.03849
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb34
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb34
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb34
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb34
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb34
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb35
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb36
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb36
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb36

J. Derouillat et al. / Computer Physics Communications 222 (2018) 351–373 373

[37] Rachel Nuter, Vladimir Tikhonchuk, J. Comput. Phys. 305 (2016) 664–676.
[38] AndrewD. Greenwood, Keith L. Cartwright, JohnW. Luginsland, Ernest A. Baca,

J. Comput. Phys. 201 (2) (2004) 665–684.
[39] J.-L. Vay, C.G.R. Geddes, E. Cormier-Michel, D.P. Grote, J. Comput. Phys. 230 (15)

(2011) 5908–5929.
[40] R. Nuter, L. Gremillet, E. Lefebvre, A. Lévy, T. Ceccotti, P. Martin, Phys. Plasmas

18 (3) (2011) 033107.
[41] D. Umstadter, J.K. Kim, E. Dodd, Phys. Rev. Lett. 76 (1996) 2073–2076.
[42] A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys.—JETP 23 (1966) 924.
[43] A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys.—JETP 24 (1967) 207.
[44] M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys.—JETP 64 (1986) 1191.
[45] P. Mulser, F. Cornolti, D. Bauer, Phys. Plasmas 5 (12) (1998) 4466–4475.
[46] F. Pérez, L. Gremillet, A. Decoster, M. Drouin, E. Lefebvre, Phys. Plasmas 19 (8)

(2012) 083104.
[47] K. Nanbu, Phys. Rev. E 55 (1997) 4642–4652.
[48] K. Nanbu, S. Yonemura, J. Comput. Phys. 145 (2) (1998) 639–654.
[49] J.D. Huba, NRL Plasma Formulary, Office of Naval Research, Naval Research

Laboratory (U.S.), 2013.
[50] N.E. Frankel, K.C. Hines, R.L. Dewar, Phys. Rev. A 20 (1979) 2120–2129.
[51] Yong-Ki Kim, José Paulo Santos, Fernando Parente, Phys. Rev. A 62 (2000)

052710.
[52] F. Rohrlich, B.C. Carlson, Phys. Rev. 93 (1954) 38–44.
[53] M. Thevenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quere, J. Faure,

Nat. Phys. 12 (4) (2016) 355–360.
[54] B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. Lett.

74 (1995) 2248–2251.
[55] D. Ristau, Laser-Induced Damage in Dielectrics with Nanosecond to Subpi-

cosecond Pulses, Taylor & Francis Inc., 2014.
[56] D.W. Forslund, J.M. Kindel, E.L. Lindman, Phys. Fluids 18 (8) (1975) 1002–1016.
[57] Bruce I. Cohen, Claire Ellen Max, Phys. Fluids 22 (6) (1979) 1115–1132.
[58] A.A. Andreev, C. Riconda, V.T. Tikhonchuk, S. Weber, Phys. Plasmas 13 (5)

(2006) 053110.
[59] S. Weber, C. Riconda, L. Lancia, J.-R. Marquès, G.A. Mourou, J. Fuchs, Phys. Rev.

Lett. 111 (2013) 055004.
[60] M. Chiaramello, C. Riconda, F. Amiranoff, J. Fuchs, M. Grech, L. Lancia, J.R.

Marquès, T. Vinci, S. Weber, Phys. Plasmas 23 (7) (2016) 072103.
[61] M. Chiaramello, F. Amiranoff, C. Riconda, S. Weber, Phys. Rev. Lett. 117 (2016)

235003.
[62] J. Fuchs, A.A. Gonoskov, M. Nakatsutsumi, W. Nazarov, F. Quéré, A.M. Sergeev,

X.Q. Yan, Eur. Phys. J. Spec. Top. 223 (6) (2014) 1169–1173.

[63] R. Wilson, M. King, R.J. Gray, D.C. Carroll, R.J. Dance, C. Armstrong, S.J. Hawkes,
R.J. Clarke, D.J. Robertson, D. Neely, P. McKenna, Phys. Plasmas 23 (3) (2016)
033106.

[64] L. Lancia, J.-R. Marquès, M. Nakatsutsumi, C. Riconda, S. Weber, S. Hüller, A.
Mančić, P. Antici, V.T. Tikhonchuk, A. Héron, P. Audebert, J. Fuchs, Phys. Rev.
Lett. 104 (2010) 025001.

[65] L. Lancia, A. Giribono, L. Vassura, M. Chiaramello, C. Riconda, S. Weber, A.
Castan, A. Chatelain, A. Frank, T. Gangolf, M.N. Quinn, J. Fuchs, J.-R. Marquès,
Phys. Rev. Lett. 116 (2016) 075001.

[66] Michael Hesse, Nicolas Aunai, Seiji Zenitani, Masha Kuznetsova, Joachim Birn,
Phys. Plasmas 20 (6) (2013) 061210.

[67] First results from NASA’s Magnetospheric Multiscale (MMS) Mission, 2016.
http://agupubs.onlinelibrary.wiley.com/hub/issue/10.1002/(ISSN)1944-8007.
NASAMMS1/. (Online; Accessed 14 February 2016).

[68] P.A. Cassak, M.A. Shay, Phys. Plasmas 14 (10) (2007) 102114.
[69] J.G. Kirk, P. Duffy, J. Phys. G: Nucl. Part. Phys. 25 (8) (1999) R163.
[70] Anatoly Spitkovsky, Astrophys. J. Lett. 682 (1) (2008) L5.
[71] L. Sironi, A. Spitkovsky, J. Arons, Astrophys. J. 771 (1) (2013) 54.
[72] Troels Haugbølle, Astrophys. J. Lett. 739 (2) (2011) L42.
[73] Erich S. Weibel, Phys. Rev. Lett. 2 (1959) 83–84.
[74] A. Bret, L. Gremillet, M.E. Dieckmann, Phys. Plasmas 17 (12) (2010) 120501.
[75] A. Grassi, M. Grech, F. Amiranoff, F. Pegoraro, A. Macchi, C. Riconda, Phys. Rev.

E 95 (2017) 023203.
[76] R.D. Blandford, C.F. McKee, Phys. Fluids 19 (8) (1976) 1130–1138.
[77] Pasquale Blasi, Astron. Astrophys. Rev. 21 (1) (2013) 70.
[78] A. Grassi, M. Grech, F. Amiranoff, A. Macchi, C. Riconda, Phys. Rev. E 96 (2017)

033204. http://dx.doi.org/10.1103/PhysRevE.96.033204.
[79] A.A. Golovanov, I.Yu. Kostyulov, J. Thomas, A. Pukhov, Phys. Plasmas 24 (2017)

103104. http://dx.doi.org/10.1063/1.4996856.
[80] M. Lobet, E. d’Humières, M. Grech, C. Ruyer, X. Davoine, L. Gremillet, J. Phys.

Conf. Ser. 688 (1) (2016) 012058.
[81] H. Vincenti, J.-L. Vay, Comput. Phys. Comm. 200 (2016) 147–167.
[82] H. Vincenti, J.-L. Vay, 2017. https://arxiv.org/abs/1707.08500.
[83] Axel Huebl, Rémi Lehe, Jean-Luc Vay, David P. Grote, Ivo Sbalzarini, Stephan

Kuschel, Michael Bussmann, Openpmd 1.0.0: A Meta Data Standard For Par-
ticle And Mesh Based Data, Zenodo, 2015. http://dx.doi.org/10.5281/zenodo.
33624.

http://refhub.elsevier.com/S0010-4655(17)30331-4/sb37
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb38
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb38
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb38
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb39
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb39
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb39
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb40
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb40
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb40
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb41
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb42
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb43
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb44
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb45
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb46
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb46
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb46
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb47
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb48
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb49
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb49
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb49
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb50
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb51
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb51
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb51
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb52
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb53
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb53
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb53
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb54
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb54
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb54
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb55
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb55
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb55
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb56
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb57
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb58
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb58
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb58
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb59
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb59
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb59
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb60
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb60
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb60
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb61
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb61
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb61
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb62
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb62
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb62
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb63
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb63
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb63
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb63
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb63
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb64
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb64
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb64
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb64
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb64
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb65
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb65
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb65
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb65
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb65
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb66
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb66
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb66
http://agupubs.onlinelibrary.wiley.com/hub/issue/10.1002/%28ISSN%291944-8007.NASAMMS1/
http://agupubs.onlinelibrary.wiley.com/hub/issue/10.1002/%28ISSN%291944-8007.NASAMMS1/
http://agupubs.onlinelibrary.wiley.com/hub/issue/10.1002/%28ISSN%291944-8007.NASAMMS1/
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb68
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb69
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb70
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb71
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb72
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb73
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb74
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb75
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb75
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb75
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb76
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb77
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb78
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb78
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb78
http://dx.doi.org/10.1103/PhysRevE.96.033204
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb79
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb79
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb79
http://dx.doi.org/10.1063/1.4996856
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb80
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb80
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb80
http://refhub.elsevier.com/S0010-4655(17)30331-4/sb81
https://arxiv.org/abs/1707.08500
http://dx.doi.org/10.5281/zenodo.33624
http://dx.doi.org/10.5281/zenodo.33624
http://dx.doi.org/10.5281/zenodo.33624

	Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation
	Introduction
	The Particle-In-Cell (PIC) method for collisionless plasmas
	The Vlasov–Maxwell model
	Reference units
	Quasi-particles and the PIC method
	Time- and space-centered discretization
	Initialization of the simulation
	The PIC loop
	Field interpolation at the particle
	Particle pusher
	Charge conserving current deposition
	Maxwell solvers
	Boundary conditions

	An evolutive, multi-purpose code
	C++ elements and flow
	Polymorphism
	Uncoupling operators from data
	HDF5 data management

	Parallelization
	Strategy
	A patch-based MPI + openMP implementation
	Patches distribution between MPI processes
	OpenMP parallelization and load balancing
	Load management

	Performances and scaling
	MPI
	MPI + openMP
	MPI + openMP + dynamic load balancing
	Balancing frequency
	Number of patches

	Additional modules
	Electric field and current density filters
	Antennas
	Field ionization
	Physical model
	Monte-Carlo procedure
	Benchmarks

	Binary collisions
	Collisional ionization

	User interface
	Python input file
	Diagnostics

	Physics highlights
	High-harmonic generation and electron acceleration from intense femtosecond laser interaction with dense plasmas
	Short laser pulse amplification by stimulated Brillouin scattering
	Magnetic reconnection at the Earth magnetopause
	Collisionless shock in pair plasmas

	Conclusions and perspectives
	Acknowledgments
	Quasi-particles shape functions and interpolation/projection order
	References

