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Abstract

We present a high-order particle-in-cell (PIC) algorithm for the simulation of kinetic plasmas dynamics. The core of the
algorithm utilizes an unstructured grid discontinuous Galerkin Maxwell field solver combining high-order accuracy with
geometric flexibility. We introduce algorithms in the Lagrangian framework that preserve the favorable properties of the
field solver in the PIC solver. Fast full-order interpolation and effective search algorithms are used for tracking individual
particles on the general grid and smooth particle shape functions are introduced to ensure low noise in the charge and cur-
rent density. A pre-computed levelset distance function is employed to represent the geometry and facilitates complex par-
ticle–boundary interaction. To enforce charge conservation we consider two different techniques, one based on projection
and one on hyperbolic cleaning. Both are found to work well, although the latter is found be too expensive when used with
explicit time integration. Examples of simple plasma phenomena, e.g., plasma waves, instabilities, and Landau damping
are shown to agree well with theoretical predictions and/or results found by other computational methods. We also discuss
generic well known problems such as numerical Cherenkov radiation and grid heating before presenting a few two-dimen-
sional tests, showing the potential of the current method to handle fully relativistic plasma dynamics in complex
geometries.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The reliable, accurate, and efficient computational modeling of plasma dynamics remains very challenging.
Not only do problems involving plasmas span from the smallest (atomistic particle–particle dynamics) to the
largest scales like solar flares and galaxy dynamics, but there is also a strong interaction between the many
scales and the long range electromagnetic forces. Moreover, the range of applications is very broad, e.g., fusion
energy, both by means of magnetic confinement and laser ignited devices; high-power microwave generation;
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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large scale particle accelerators; and a variety of plasma based technology. This warrants that significant re-
sources be spent on the development of accurate, robust, and efficient tools for the modeling of such plasma
problems.

The direct solution of many problems could in principle be accomplished by solving the Maxwell–Vlasov or
Poisson–Vlasov equation in a fully adaptive fashion. However, its (6 + 1)-dimensional nature keeps such
direct modeling out of reach for problems in complex geometries and of realistic complexity in general.

In the last few decades particle-in-cell (PIC) methods have proved valuable as an approach for the modeling
of a variety of plasma problems, e.g., microwave and fusion devices, and astrophysical problems. Typically, in
this approach, essentially solving the Maxwell–Vlasov equation by a Lagrangian approach, one solves the
Maxwell equations and/or a Poisson equation on a Cartesian grid with a second order finite difference method
or a Fourier spectral method [1]. The particles are forced by the fields and tracked in a Lagrangian framework.
Subsequently, the particles are coupled with the field solver by weighing the sum of the Coulomb forces onto
the grid.

A number of methods based on such ideas have been developed, mainly with the aim of improving on the
computational efficiency and flexibility of PIC. In particular, the exact charge conserving scheme proposed in
[3] is widely used since it eliminates the need to directly impose Gauss� Law to ensure charge conservation. In
[4] this technique is extended to include a multi-block body-fitted finite element method with the aim of
increasing geometric flexibility. Umeda et al. [5] suggest a zigzag particle trajectory to improve upon the com-
putational efficiency in [3], while in [6] the time step restriction of explicit methods is tackled with an implicit
Maxwell solver. All of these methods are second order accurate in space and time and are, in most cases,
restricted to simple Cartesian or block structured geometries.

As powerful as these techniques are, their limitations are beginning to emerge as bottlenecks in the mod-
eling of large scale phenomena and devices, e.g., high-frequency, high-power microwave generation and prop-
agation, and high-frequency particle accelerator modeling [2]. In particular, the reliance on a simple staggered
Cartesian grid in the Maxwell finite difference time-domain solver severely limits the geometric flexibility as
well as the accuracy of the method. This latter restriction causes considerable problems when large scale prob-
lems are being considered, since the second order accuracy results in significant dispersion errors unless pro-
hibitively fine grids are being used.

The classic finite difference based methods also suffer from a number of pathological problems intimately
linked to the properties of the overall scheme. As discussed in [1] the use of simple particle shape functions leads
to strong aliasing and enhanced numerical grid heating. Although filtering can reduce this finite grid instability
[7], a more reasonable way to overcome grid heating is through the use of smoother particle shapes. This would,
however, destroy many of the desirable properties of the original scheme like for example exact charge conser-
vation and is therefore not used. Furthermore, the inherent dispersion properties of the finite difference approx-
imation result in an artificial numerical Cherenkov radiation when modeling highly relativistic problems [8].
This purely numerical pollution of the solution is the result of the concave nature of the field solver�s numerical
dispersion relation, causing fast waves to propagate slower than is physically correct. In highly relativistic prob-
lems the unphysical interaction of fast particles with these waves creates a Cherenkov radiation. The only way
to address this in a systematic way is to choose a scheme with a strictly convex dispersion relation.

This paper presents the first step in the development of a PIC method which has the potential to effectively
address all of the shortcomings of the existing methods. The computational kernel for the field solver in the PIC
method is the discontinuous Galerkin field solver developed for the time-domain Maxwell equations [10]. This
method secures geometric flexibility through a fully unstructured body-fitted grid, arbitrary order of accuracy,
inherent but controllable high-frequency dissipation through fluxes, and excellent stability properties. Further-
more, the dispersion relation of the discontinuous Galerkin method is strictly convex [9], effectively eliminating
the source of numerical Cherenkov radiation as discussed above. The scheme has been tested extensively for
pure 2D and 3D electromagnetic problems and shown itself to be highly efficient, accurate, and robust.

The particle mover relies on high-order interpolation, efficient local search algorithms to locate the parti-
cles, and a level set approach to represent geometries, enabling elastic/inelastic particle interactions with com-
plex geometrical boundaries. Charge and current redistribution computations use smooth weight functions,
enabling a significant decrease in the number of particles needed in a computational cell and reducing the finite
grid instability as compared to the simple redistribution schemes typically used. Divergence cleaning is done
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either through an advective approach, maintaining a very high-parallel efficiency, or through a classical pro-
jection scheme leading to the solution of a Poisson equation. Particles as well as fields are all being advanced in
time with a high-order explicit Runge–Kutta method. As we shall illustrate through a number of computa-
tional experiments and benchmarks, this initial stage of the development suggests that the general algorithm
has the potential to be a successful and powerful tool for the modeling of general plasma kinetics.

The remainder of this paper is organized as follows. In Section 2, we recall the basic governing equations
while Section 3 contains a detailed discussion of the many elements of the algorithm, both for the field
advancement and the particle dynamics. In this section, we also discuss particle shape functions and charge
conservation schemes. This sets the stage in Section 4 for a number of numerical experiments, both of a simple
nature as well as a few more complex two-dimensional examples. This section also contains a discussion of the
finite grid instability and its behavior and control in the current algorithm. Section 5 contains a few concluding
remarks as well as a number of suggestions for future work along the lines initiated here.

2. The physical model

For modeling of the fields, we consider the two-dimensional Maxwell equations in normalized vacuum TE
form written in conservation from
oq

ot
þr � F ¼ J ; ð1Þ

r � E ¼ q; ð2Þ
where q = [Ex,Ey,Bz]
T, F = [Fx,Fy],Fx = [0,�Bz,�Ey]

T, Fy = [Bz, 0,Ex]
T, and J = [Jx,Jy, 0]

T. Throughout E,
B, J and q represent the electric field, the magnetic field, the current, and the charge density, respectively, while
the subscripts identify the direction of the vector field variable. Vacuum permittivity, permeability and the
speed of light, c, are used for normalization of Eq. (1). A reference length, Lf, normalizes space and time
as x ¼ ~x=Lf and t ¼ ~t=ðLf=cÞ, respectively. In this normalization, the vacuum speed of light is one.

Particles are described in a purely Lagrangian manner using
dxp

dt
¼ vp; ð3Þ

dmvp
dt

¼ qðE þ vp � BÞ; ð4Þ
where xp and mvp denote the non-dimensional particle coordinate and momentum, respectively, with q and m

representing the particle charge and mass. For high-speed plasma the relativistic correction applies to m as

m ¼ m0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� jvpj2Þ

q
, where m0 is the mass at rest.

The particles, represented by q, xp, and mvp, couple to the fields through the space charge, q, and the in-
duced current density, J, as
qðxÞ ¼
XNp

i¼1

qiSðjxp � xjÞ; ð5Þ

JðxÞ ¼
XNp

i¼1

qiviSðjxp � xjÞ. ð6Þ
Here i is particle index and Np is the total number of particles. S(|xp � x|) is a particle weighing function that
represent the manner in which the individual particle charge is distributed in space. We shall discuss its exact
meaning and form in more detail later.
3. The numerical approach

As simple as the problem description given above may appear, its formulation as a numerical scheme is
far from trivial. The main complication is found in the simple observation that the fields are described in
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an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell�s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form
qN ðx; tÞ ¼
XN
j¼1

qðxj; tÞLjðxÞ ¼
XN
j¼1

q̂jðtÞLjðxÞ; ð7Þ
where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have
N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell�s

equations to satisfy
Z
D

oqN
ot

þr � FN � JN

� �
LiðxÞ dx ¼

I
oD

LiðxÞn̂ � ½FN � F�� dx. ð8Þ
Here, F� signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,
M̂ ij ¼
Z
D
LiLj dx; Ŝij ¼

Z
D
rLjLi dx; F̂ ij ¼

I
oD

LiLj dx; ð9Þ
we recover from Eq. (8) the fully explicit local scheme,
M̂
dq̂

dt
þ Ŝ � F̂ � M̂ Ĵ ¼ F̂ n̂ � ½F̂ � F̂

��; ð10Þ
where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
�
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F�, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well�s equations, we use a flux like
n̂ � ½F � F�� ¼
n� ðcn� ½E� � ½B�Þ;
n� ðcn� ½B� þ ½E�Þ;

�
ð11Þ
where [Q] = Q� � Q+ measures the jump in the values across an interface. Superscript �+� refers to the value
from the neighbor element while superscript ��� refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].
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The set of linear ODE�s in (10) is integrated with the low storage, fourth order Runge–Kutta scheme (RK4)
from Carpenter and Kennedy [13],
wi ¼ aiwi�1 þ DtFðti�1; q
ði�1ÞÞ

qðiÞ ¼ qði�1Þ þ biwi

)
; i ¼ 1; 2; . . . ; s; ð12Þ
where a1 = 0 for the algorithm to be self-starting, qð0Þ ¼ q̂n�1; qðsÞ ¼ q̂n, and ti = tn � 1 + ciDt. This is a 2N stor-
age scheme, since only q and w require storage. Compared to a classic 4th order Runge–Kutta method the
memory usage is reduced by half. The current scheme is a five stage method with the coefficients [13] given by
a1 ¼ 0:0; b1 ¼ 0:1496590219993; c1 ¼ 0:0;

a2 ¼ �0:4178904745; b2 ¼ 0:3792103129999; c2 ¼ 0:1496590219993;

a3 ¼ �1:192151694643; b3 ¼ 0:8229550293869; c3 ¼ 0:3704009573644;

a4 ¼ �1:697784692471; b4 ¼ 0:6994504559488; c4 ¼ 0:6222557631345;

a5 ¼ �1:514183444257; b5 ¼ 0:1530572479681; c5 ¼ 0:9582821306748.

ð13Þ
3.2. Tracking the particles

Lagrangian tracking of the particles consists of three stages per particle, including searching the element a
particle is located in, interpolating the field variables to the particle location, and pushing the particle forward
with a time integration method.

In [14] a tracking algorithm is discussed in a system that only couples the field equations to the particles in
one direction, e.g., passive advection. It was shown that interpolation and temporation integration method
may, in most cases, be of a lower order than the approximation order of the spatial and temporal discretiza-
tion method used for the field equations. From numerous tests, however, it has become clear that only full
order interpolation using Eq. (7) suffices in a system that fully couples particles and field equations in both
directions. In full order interpolation the interpolating polynomial order is equal to the order of the polyno-
mial used to represent the fields.

A fast full-order interpolation technique is discussed in Appendix A. Lower order interpolation severely
influences the accuracy of the total scheme and may lead to instability in many situations. Similarly, the time
scheme for integration of Eq. (4) should be the same as the time scheme that integrates the field equations, i.e.,
Eq. (12).

The particle localization scheme follows [14], where the particle�s element is found by comparing the
mapped particle coordinate to the coordinates of the standard element for each element on the grid. The map-
ping takes advantage of the simple inverse of the linear blending formula for triangles. For the smooth map-
ping of a straightsided triangle the inverse is given as,
np ¼ C1xp þ C2; ð14Þ
where np is the mapped coordinate. Matrix C1 and vector C2 contains constants that are functions of the tri-
angles� vertex coordinates. Even though the elements are typically large, scanning all elements in a large grid is
prohibitive. We reduce the cost dramatically by storing information about the elements connected to one
node, and scan only these elements if a particle leaves the element close to this node. Since high-order elements
are typically large and we are considering purely explicit time stepping here, particles do in general not leave
the bounds of this cloud of elements.
3.3. Weighing of the particles to the grid

To connect the fields and the particles, we must translate the action of the particles to the Eulerian grid
using Eq. (6). Computational efficiency and accuracy suggest that the particles be treated as clouds rather than
points [1]. Thus the shape function S in Eq. (6) is not chosen as a Coulomb distribution, but commonly as a
compact distribution spanning approximately the area of a grid cell.
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Classic particle-in-cell (PIC) methods [1] usually weigh with a zero or first order function, which is not suit-
able for a high-order method as the lack of smoothness of the particle shape results in a Gibbs type phenom-
enon that severely influences accuracy and introduces noise in q and J. The non-smooth shape is also more
likely to enhance the well-known finite grid heating and instability [1]. Thus, an unstructured grid high-order
method requires a different approach, in which smoothness is desirable.

In the volume weighing approach [1] the interpolation function is different from the shape function. Assign-
ing a particle according to this approach to a high-order element is difficult unless we use linear weighing.
Rather, we choose to assign a smooth shape function to the grid directly. Thus, in the approach developed
here, the shape function is the interpolation function.

We compare four potential smooth shape functions. These include a raised cut-off cosine function,
Scos ¼
p

R2ðp2 � 4Þ
cos

rp
R

� �
þ 1

h i
; ð15Þ
where r = |x � xp| is the Eulerian distance from the center of the particle cloud, and R is the influence radius of
the cloud. (15) is normalized such that that integral

R 2p
0

R R
0
Scosr dr d/ ¼ 1, where / is the azimuthal coordi-

nate. However, the odd derivatives are not zero at r = R, leading to unfavorable behavior as we shall see
shortly.

Secondly, we consider a Gaussian shape function,
Sgauss ¼
1

2p�2
e

�r2

2p�2 ; ð16Þ
where � is the well-known variance. The spatial unboundedness of the Gaussian function does not suit the
finite nature of a particle cloud, but in practice the Gaussian is zero to machine precision at a radius of five
to seven times the variance and can be cut off. The integral of Sgauss is again unity, the Gaussian is analytic
and, unlike the cosine, its derivative is approximately zero at the cutoff radius.

Thirdly, we consider the polynomial function,
Spol ¼
1

2pA
1� ð2p þ 1Þ!=ðp!Þ2

Z r=R

0

½sð1� sÞ�p ds
� �

; r ¼ 0; . . . ;R; ð17Þ
This function is p differentiable and has a finite radius, R. The parameter, A, ensures that the integral over its
surface is unity (for example for p = 4, A = 3R2/22). The first p/2 derivatives of Spol are zero at r = R. If p
(mostly p = 4) is set, the seemingly expensive evaluation of Spol is relatively inexpensive, as the integral reduces
to a few multiplications.

Finally, we consider the polynomial function,
Spo1l ¼
aþ 1

pR2
1� r

R

� �2
� �a

; r ¼ 0; . . . ;R; ð18Þ
which is likewise smooth and has a unit integral. The evaluation of this function is the least expensive of the
above functions. Note that all functions are isotropic as opposed to the rectangular cloud shape commonly
used in standard PIC codes.

Fig. 1 plots the three distribution functions versus the radial coordinate. Sgauss is plotted for a cut-off at
R = 5� and R = 7�. Spol is plotted for p = 4 and 6. Spol1 is plotted for a = 10 and 20. The Gaussian and Spol1

show similar trends. Note that Spol1 does not require a cut-off, whereas the Gaussian does. Sgauss and Spol1

have larger maxima (at r = 0) than the cosine and Spol, as they decay to zero faster when r goes to R. The
cosine and polynomial function distribute their weight more evenly over the cloud influence area. The non-
zero value of the cosine higher order derivatives is evident from the large slope the cosine has toward
r = R compared to the polynomial function. If p increases, the weight of the polynomial concentrates at
0 < r < R/2 and the function goes to zero more rapidly for r > R/2 to ensure that the higher order derivatives
vanish.

An accurate representation of S(r) requires multiple interpolation points. In fact, approximating a single
particle shape to order Oð10�3Þ is found to require a number of grid points per particle that varies from
150 to 500 depending on the approximation order. This number is high, i.e., computationally expensive for
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PIC simulations in plasmas that generally require a particle number that varies from a couple of hundred into
the millions. In plasma simulations, however, the accurate representation of one particle is secondary to the
accurate representation of the charge and current density by many particles.

To obtain an indication of the accuracy of the charge density, q, we consider particles being positioned
equidistantly on a square domain with 148 elements. This particle distribution yields a constant charge density
over the domain, which should be qexact = Npq/Area, where Area is the domain area. The deviation of the
computed value from qexact indicates the accuracy. Fig. 2 plots this deviation for the shape functions against
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Fig. 2. The L2 approximation error of q for a (a) raised cosine, (b) Gaussian, (c) polynomial (p = 4), and (d) polynomial1 with (a = 3 and
10 (with filled circle)) shape function plotted versus the number of particles, Np, per element with approximation order N = 4 at various
ratios of the distribution radius, R, to a typical grid spacing, dx.
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the number of particles per element at various R/dx, the values of which are considerably smaller (fewer points
per particles) than mentioned above. Indeed, all shape functions exhibit greater accuracy than what the indi-
vidual particle approximation suggests. The accuracy of the Gaussian (Fig. 2(b)) is more dependent on
Np/element and R/dx than the accuracy of Spol (Fig. 2(b)) and the cosine (Fig. 2(c)). The dependency of
the accuracy of Spol1 is influenced by a. For large values of a, Spol1 behaves more like the Gaussian and
for small a the function behaves like the cosine and Spol.

For R/dx > 1 and Np/element > 5 the Gaussian and Spol1 with large a are by far the most accurate. The
polynomial is more accurate than the cosine for all R/dx and Np/element plotted.

The cosine function, Eq. (15), generally performs poorly, both for the approximation of a single particle
and of q and should not be considered. The choice between Spol1 with large a (or Gaussian) or Spol1 with small
a (or Spol) is less obvious and depends on simulation parameters. If there are many elements that contain less
than five particles and if R/dx � 1 (computational efficient, but not very accurate), then Spol1 with small a is
favorable. However, if the objective is to minimize noise in q at the cost of computational efficiency a larger a
is preferred. The ability of Spol1, Eq. (18), to behave like a Gaussian as well as Spol depending on a in addition
to its computational efficiency makes Spol1 the preferred particle distribution function and we shall use it
subsequently.

We weigh particles throughout the domain with a constant particle cloud size, R, independent of the ele-
ment size. Particles are weighed only to the elements that are influenced by the particle�s distribution func-
tion, i.e., the elements for which r < R. These elements are identified for all vertices in a pre-processing
stage. The closest vertex to a particle then provides the lookup table for the elements for the weighing. This
weighing procedure may lead to a larger number of elements to be weighed per particle than established
methods. One could reduce the number of weighing elements through a varying R. This, however, may have
an impact on the accuracy of q and introduces a compressible particle that violates charge conservation.
With constant R these problems are not present and the computational overhead is minimized by having
local lookup tables to identify element regions. Nevertheless, for highly non-uniform grids, a range of par-
ticle cloud sizes is clearly desirable and we are currently exploring this important next stage of the
development.

3.4. Charge conservation techniques

Gauss�s law, Eq. (2), is generally not satisfied with the weighing technique described in the previous section
and a correction to the electric field is required. To this end we consider two techniques, comprising a projec-
tion method [1] and a hyperbolic cleaning technique proposed in [15].

3.4.1. Global Poisson correction

In the classic projection, one expresses the computed field, E*, as
E� ¼ E þr/;
where $ Æ E = q. This represents a Helmholtz decomposition of the computed field, E*, into a charge conserv-
ing component and a gradient, $/.

This immediately yields
r2/ ¼ r � E� � q with / ¼ 0 on oX; ð19Þ

where the boundary conditions come from n · E = n · $/ = 0, i.e., / = constant along the boundary. As this
constant has no importance, we are free to choose homogeneous conditions.

Once / is found, the electric field is corrected as
E ¼ E� � r/; ð20Þ

where E now is the corrected electric field.

Consistent with theMaxwell solver the Poisson equation is solved with a local discontinuous element scheme
at every Runge–Kutta stage. We rewrite the Poisson equation into a system of two first-order equations,
r � q ¼ f ; q ¼ r/. ð21Þ
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This is discretized exactly as Maxwell�s equations, leading to
Ŝ � q̂ ¼ M̂ f̂ þ F̂ n̂ � ½q̂� q̂��;
M̂ q̂ ¼ Ŝ/̂� F̂ n̂½/̂� /̂

��.
Note that q̂ is a purely local variable. Using a standard approach [16] we use the stabilized central fluxes
/̂
�
¼ 1

2
ð/̂�

þ /̂
þ
Þ; q̂� ¼ 1

2
ðq̂� þ q̂þÞ � s½/̂�;
where s � n2/h is a stabilization parameter, scaling with the order, n, and grid size, h. Note that other choices
of the numerical fluxes are possible and may lead to improved behavior [16]. It should also be noted that this
approach may lead to a reduced accuracy in E as / is computed to Oðhnþ1Þ and, thus, $/ to OðhnÞ [16]. For low
order elements this is likely to affect the overall accuracy of the scheme.

The Poisson solver has the additional advantage that it can be used to model low speed plasma physics. In
this case the Maxwell equations are not solved and only the Poisson solver is used for updating the fields.
Implementation of the Poisson solver for high-speed problems, however, leads to unphysical instantaneous
effects, that can affect the global solution unfavorably.

3.4.2. Hyperbolic cleaning – the v-method

As an alternative to the projection technique, we consider divergence control by a hyperbolic cleaning
method (we shall also refer to it as the v-method) described in [15]. In this approach a correction potential
is introduced into the Maxwell equation (1) as a Lagrangian multiplier. In the strictly hyperbolic formulation
[15], Maxwell�s equations, Eq. (1), are altered to
oq

ot
þr � ~F ¼ J;

o/
ot

¼ vðq�r � EÞ � e/;
ð22Þ
with the modified fluxes of ~F ¼ ½~F x; ~F y �; ~F x ¼ ½v/;�Bz;�Ey �T; ~F y ¼ ½Bz; v/;Ex�T. Here e is a damping con-
stant. Eq. (22) is a strictly hyperbolic system of equations, with four characteristic velocities, k1,4 = v, �v
and k2,3 = �c, c, where c = 1 is the normalized speed of light. Compared to the uncorrected Maxwell equa-
tions, two characteristics, propagating information at speed, v, are added, and one characteristic with zero
velocity is omitted, hence eliminating the DC component of the system.

The v characteristics effectively reduce the divergence error by propagating it away at velocity v. Taking
v� c implies that the divergence error be swept out of the domain very rapidly, effectively imposing Gauss�
law. As v approaches infinity, one recovers the original equation (1).

The fully explicit formulation of Eq. (22) allows for the space discretization to be unaltered from Eq. (10)
with the understanding that q̂; F̂ and Ĵ are adjusted for Eq. (22). The only significant change is the numerical
flux of Eq. (11) which changes to
n � ½F � F�� ¼
n� ðcn� ½E� � ½B�Þ þ vnðn � ½E� � ½/�Þ;
n� ðcn� ½B� þ ½E�Þ;
vðn � ½E� � ½/�Þ.

8><
>: ð23Þ
One can prove accuracy and stability of the modified system following the approach in [10].

3.4.3. Comparison of Poisson correction and Lagrangian multiplier techniques

The Poisson projection correction requires a global solve, which appears expensive at first. In contrast, the
v-method is local and seemingly cheaper. However, the explicit time step in the v-method is proportional to
1/v making the equations stiffer and more expensive for an increased v. So, while increasing v improves the
physical significance of the modified equations (22), it also makes them more expensive.

Simple operation counts will show that the v-method require 1/3 extra work per time step as compared to
the simple Maxwell�s equations, originating from the need to differentiate /. On the other hand, a Maxwell�s
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time step with the Poisson correction applied at every Runge–Kutta stage is �3–4 times slower than the
v-method, when using a sparse direct solver for the Poisson solve. Thus, even with a relatively small (physically
inaccurate) value of v > 3–4, the v-method may be slower than the Poisson correction approach. On the other
hand, the loss of accuracy in the latter method may become a problem when computing at low order and/or in
an hp-environment.

The ease by which the v-method can be parallelized is highly attractive and clearly advantageous over the
Poisson solver. However, to make the v-method sufficiently robust and physically correct, we find that high
values of v are needed, e.g., v > 10. In this case an implicit field solver will be needed, reintroducing the need
for global solves. Another consideration is that in case of PIC, the computationally expensive two-way particle
weighing may well dominate all other elements. In such a case, it is preferable that the field solver requires a
minimum number of times where particles are weighed over a given simulation time, i.e., a large time step. In
conclusion, it is not at all clear which method is to be favored. We find that having both at the disposal is
perhaps the best approach and we shall continue to consider both techniques.
3.5. Particles and boundary conditions

Particle boundary conditions are needed for the tracking of the particles and the weighing of the particles to
the grid. This section discusses these boundary conditions separately.

3.5.1. Boundary conditions for particle tracking
A particle can react inelastic, fully elastic, and partially elastic with a boundary. The inelastic boundary con-

dition simply removes the particle from the computational domain. The elastic boundary conditions require
knowledge of the angle of the particle path with the wall and the distance of the particle from the wall so that
the reflected path can be determined. We use a levelset [17,18] to represent the distance normal to the bound-
aries and its accompanying direction from which the particle�s angle and distance to the wall can be deduced.

To compute the levelset, c, we seek the steady state solution to
oc
os

þ w � rc;¼ sgnðc0Þ þ lDc. ð24Þ
Here c represents a distance function and w ¼ sgnðc0Þ rc
jrcj signifies the signed normal. s is an artificial time and

sgn(x) is the classic sign-function. Here, c0 is the known geometrical boundary and specifies the initial condi-
tion for c. l is a diffusion coefficient that is ideally zero. The left side of Eq. (24) is a Hamilton–Jacobi equation
whose characteristics have unity velocity and a normal direction to the geometrical boundary. The right-hand
side introduces a minor stabilizing diffusion.

The numerical solution of (24) follows the method outlined above. Spatial derivatives are determined as
rĉ ¼ Ŝĉ� F̂ n½ĉ� ĉ��; ð25Þ

where Ŝ and F̂ are defined in Eq. (9). The numerical flux, ĉ�, is a simple central flux. Applying Eq. (25) twice
gives second derivatives. The levelset equation is integrated with a Runge–Kutta scheme until steady state is
reached. This is done in a preprocessing stage and values for c and w are stored at every grid point.

The elastic boundary condition uses the two last particle coordinates, xð1Þ
p and xð2Þ

p , where at stage (1) the par-
ticle is still within the computational bounds and at stage (2) the particle has crossed the boundary. With the
local interpolation of c and w to xð1Þ

p the direction and distance of the particle relative to the wall is known. The
reflected particle coordinate, xð3Þ

p , may be determined as sketched in Fig. 3. Stages (1) and (2) determine the dis-
tance and direction of the particle track as s ¼ jxð1Þ

p � xð2Þ
p j and np ¼ ðxð1Þ

p � xð2Þ
p Þ=s, respectively. From

np = [np,x,np,y]
T and w = [wx,wy]

T we obtain a normal vector, m = [mx,my]
T, with the components
mx ¼ np;ywx � np;xwy ; my ¼ np;xwx þ np;ywy ;
that can be used to extract the angle, a. The distance s3 follows from s1 = |c/my|, s2 = s � s1 and s3 = s2my. The
reflected particle coordinate is computed with xð3Þ

p ¼ xð2Þ
p � fws3. Here, f determines the elasticity of the reflec-

tion. If f = 2 the reflection is fully elastic. Determination of the particle velocity at stage (3) follows a similar
procedure.
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With the explicit Runge–Kutta time integration, Eq. (12), only the particle coordinate at stage (2) is known. To
obtain the particle coordinate at stage (1) we linearly track the particle backwith the approximate local time step of
a Runge–Kutta stage assuming constant particle velocity. If the RK4 stage is larger than one, s > 1, the residualswi

and q(i � 1) in Eq. (12) are recomputed assuming constant particle velocity and a linear path from stage (2) to (3).
Using different time steps, like the simulation time step, or not recomputing the residuals may lead to instability.

3.5.2. Boundary conditions for particle weighing

We assign particle clouds to the grid using a constant radius assignment function. If a particle cloud is near
a boundary its weighing area crosses the boundary and part of the assignment function will not be projected to
the grid which affects q and J. Depending on the type of boundary encountered, a correction is required to
model the physical boundary condition. For example, a conducting wall places a mirror particle with
opposite charge, q = �q on the other side of the wall. The mirror distance is readily determined from the
levelset c and w.

3.6. Filtering

Filtering is used to reduce noise in fields and enhance robustness of the algorithm. Low diffusion spectral
methods can benefit from it to the point where filtering stabilizes the simulation. We apply filtering in two
instances. If the influence area of the particle R/dx < 1, q and J are filtered for noise reduction. Secondly,
we enhance the Poisson solver in geometries with sharp corners. The filtering is applied on the right side of
Gauss�s law equation (2).

We have used a standard exponential filter, adding a little dissipation to the scheme as possible. The details
of the filter, its impact and implementation as a matrix operator are discussed in [19]. As we shall see shortly,
the use of this filter is not needed in many applications and, as some of the tests show, it is effect is minimal
beyond making the general computational approach more robust.

4. Numerical examples

In the following, we shall present a number of tests, first of a simple character to simply validate several
components of the scheme and, subsequently, to model a variety of basic, yet essential plasma phenomena.
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4.1. Tests of the scheme components

We shall begin by validating the particle tracking, the reflecting boundary condition, and the charge con-
servation methods.

Computation of the Larmor radius and E · B drift confirm the fourth order accuracy of the scheme (not
shown here). We take unity fields, q/m = 1 and initialize with unity particle velocity. Comparison of the com-
puted and exact particle velocity for the Larmor radius in Fig. 4(a) illustrates the slightly dissipative nature of
the RK4 scheme. The E · B drift (Fig. 4(b)) shows a slight growth in error over time as can be expected [10].

We validate the fully elastic particle boundary condition by releasing a circular array of particles in a cir-
cular geometry with an outward velocity normal to the wall. The grid consist of straight sided elements. Fig. 5
shows the initial circular particle array and accompanying velocity vector before and after interaction with the
wall. Ideally, the particle array after reflection should be a circular array, but, as can be seen from the figure,
the straight elements reflect the particle not exactly normal to a circle. Near the corners there is a coagulation
of particles and the velocity vector does not point to the center of the circle. A finer grid or a high-order
boundary-fitted grid would reduce this effect.

The dipole simulation presented in [15] is reproduced to assess the accuracy of the Poisson and hyperbolic
divergence cleaning techniques. The simulation is performed on a 16 by 16 square domain with 572 elements.
One hundred particles are released in a circular array with radius 1.28 in the center of the domain. A constant
magnetic field, Bz = 1, drives the particles with q/m = �0.195, q = �3.86 · 10�5 in a circle with velocity,
|vp| = 0.25. The influence radius of the particle cloud is R = 0.90. Fig. 6 confirms that the hyperbolic cleaning
removes excess divergence from the domain faster in time for larger v. The Poisson projection method (which
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has no time dependency on the divergence cleaning for this case) is affected by noise in the charge density more
severely than the hyperbolic cleaning, resulting in the slightly larger divergence at steady state (t > 100 for
v = 20). A comparison of the contour lines of the electric field in the x-direction, Ex (Fig. 7), shows that
the projection method (Fig. 7(c)) smears Ex most. With increasing v, the results from the hyperbolic cleaning
compare better with those obtained by the projection method which can be expected to be less robust for mar-
ginally resolved problems.

A further test is to consider the question of self-forcing, i.e., whether a particle is being pushed by its own
field. In temporal splitting schemes used in classical FDTD PIC this self-force is averaged away. The scheme
presented here has no splitting and should theoretically not suffer from a self force. We test this hypothesis by
releasing one particle with zero velocity, q = 1 and q/m = 1 in the center of a unit square domain with 228 4th
order elements and periodic boundary conditions. The particle cloud has radius R = 0.5 and a = 10. The fields
are initially zero. Fig. 8 shows that the particle is initially marginally displaced due to errors in the initial par-
ticle assignment. At later times the particle remains at it position with a slight oscillation confirming the
absence of any essential self force.

4.2. Finite grid instability

The finite grid heating and resulting instability manifests itself if the Debye length kD is underresolved and
is caused by aliasing errors in the determination of the non-linear current density. The result is an unphysical



0 20 40 60 80 100
time

–3e–05

–2e–05

–1e–05

0

1e–05

X
p

Fig. 8. Particle coordinate in x direction, Xp, plotted versus time for a particle initially at rest in a zero electromagnetic field.

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 109
total energy increase, which has been known to trouble classic particle-in-cell methods, in particular for prob-
lems with high-density plasmas like for example laser–matter interactions. Theoretically, a smoother weighing
function and high-order schemes should suffer less from such errors and thus exhibit a reduced grid heating.

We will test the finite grid instability by simulating an isotropic plasma in a periodic domain with an under-
resolved Debye length. The severity of the finite grid instability is characterized by simulating for a fixed time
and monitoring the total energy increase. A comparison is made with OOPIC [20], a second-order structured
finite difference electromagnetic PIC code.

We take the electron number density ne = 1021 cm�3 and the electron temperature Te = 90 eV. The resulting
Debye length is kD = 2.23 nm. The thermal velocity of the electrons is vthe = 3.97 · 106 m/s. The side of the
computational square has a reference length of Lf = 10�7 m. The simulations are run for a time of
Tfinal = 3.3 · 10�4 s.

The OOPIC simulations use equidistant grids with 25 · 25, 50 · 50, and 100 · 100 cells and 8 particles per
cell. For the coarsest grid the cell size is 18 times the Debye length, i.e., one can expect a significant grid heat-
ing. The increase of the total energy in time in Fig. 9 confirms the significant (exponential) growth as well as
the reduced grid heating with improved resolution. At the final time the total energy has increased with a fac-
tor of 17, 3.7 and 1.5 for the 25 · 25, the 50 · 50, and the 100 · 100 grid, respectively.
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grids.
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For the high-order PIC method we study the effect of various resolution parameters. As a base we choose a
grid with 200 triangles and a fifth order approximation. The grid has 50 grid points on the side of the com-
putational domain. 70 · 70 particles are released in the domain with a non-dimensional radius R = 0.1, which
is equal to Lf/10 in dimensional units. The power in (18) is a = 10. This base case has a resolution comparable
to the 50 · 50 OOPIC case presented above.

Fig. 10 summarizes the effect of various resolution parameters. All cases show a small (<5%) initial drop in
total energy, a result of the particles randomizing their coordinates from the initial equidistant release posi-
tions. At later times the finite grid instability increases the total energy. For the base case the total energy
has increased with a mere 2%. Fig. 10(a) shows that the Poisson divergence cleaner introduces more grid heat-
ing than the hyperbolic cleaning approach, possibly caused by its global nature and increased sensitivity to
noise.

Changing the value of v does not have a significant effect on the grid heating, because the constant E for this
isotropic plasma simulation is not affected much by the v correction. Moreover, the finite grid instability is
driven by J, which is also barely affected by v in this isotropic case.

Grid (h) refinement (Fig. 10(b)) improves the Debye length resolution and therefore decreases the grid heat-
ing. A halved h improves grid heating by an order. Doubling the number of particles in the x and the y direc-
tion (Fig. 10(c)) reduces the grid heating by 50%, i.e., a linear effect. It is also observed that with fewer particles
the initial total energy reduction is larger. Increasing R (Fig. 10(d)) reduces aliasing and thus grid heating.
Changing R from 0.05 to 0.075 and 0.1 reduces grid heating by 1 and 2 orders of magnitude, respectively.
Smoothening the particles shape (Fig. 10(e)) by reducing a from 10 to 5 decreases grid heating slightly. Reduc-
ing a further to 1 yields a non-smooth linear shape function that doubles the grid heating.

From the above we can conclude that the high-order method can achieve a significant smaller grid heating
(in the order of a few percent) compared to OOPIC (a minimum of 50%) for similar resolution. The high-order
method is quite sensitive to h and R adjustments. These parameters can be varied independently of each other
making the high-order PIC flexible, as opposed to classic PIC methods which couple the two and have a more
predictable and moderate grid heating dependency on h refinement. As a final note we should mention that the
absence of a total energy increase does not mean that the results are accurate. For example, capturing particle
dynamics may require a smaller R or more particles than required to control grid heating.
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This flexibility is a strength which should be explored in the modeling of complex phenomena, although it
remains a challenge to estimate when to choose the parameters, i.e., particle size and form, in an optimal man-
ner. This is complicated further by the fact that the role of the particles is both to represent to spatial charge
and model the distribution in velocity space.

4.3. One-dimensional plasma tests

As a first dynamic test, we simulate essentially 1D plasma cases, including a plasma wave, a 2-stream insta-
bility, and linear Landau damping. The results are compared with the XES1 code [1] which is a 1D electro-
static solver that solves a Poisson equation using a spectral Fourier method to obtain the electric field. To
compare with our method, we solve only for the electric field and set the current densities to zero.

For all three cases, the computational domain has a length of 2p in the x-direction of the plasma wave
propagation. In the y-direction the grid has length 1.5 and is meshed with approximately two triangles so
as to simulate a 1D setting, i.e., a full two-dimensional solver is used in this case. The total number of elements
is 62. In the y-direction, 25 particles are distributed equidistantly to emulate a 1D setting. We use a particle.
equation (18), with a = 10. No filtering is applied in any of the cases below. We set N = 64 for the XES1 Fou-
rier spectral method and use no compensation or filtering [1].

4.3.1. Plasma wave

320 particles are equidistantly distributed with a superimposed one-dimensional sine deviation
Fig. 11
simula
x ¼ xeq þ A sinðkxeqÞ; ð26Þ

where the amplitude of the deviation is A = 0.001 and the wavenumber k = 2. The cloud influence area is
R = 0.5. Physical parameters for the particle are q = 0.001177 and q/m = 1.0. Fig. 11 shows that the total en-
ergy (a), the kinetic energy(b) and the potential energy of the plasma wave computed with the DG Poisson
solver are in excellent agreement with XES1. XES1 predicts a slightly lesser total energy, but both methods
preserve energy equally well.
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Fig. 12 shows that using the hyperbolic cleaning approach with the field solver conserves energy equally
well as the spectral Poisson solver for v = 20. For v = 5 the total energy fluctuation (which should theoreti-
cally be zero) increases dramatically as compared to v = 20 and we observe a dispersive effect on the plasma
wave when v is too small. The improved agreement for increasing v is expected as this changes the v-method
linearly towards the more realistic governing Maxwell�s equations. The kinetic and potential energy results
show equal dependencies on v.

4.3.2. 2-stream instability

256 particles with R = 0.5 are released according to Eq. (26) with A = 0.0001, k = 2 and a unit velocity.
Another 256 are released with A = �0.0001 and unit velocity in the opposite direction. Fig. 13 confirms that
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Fig. 13. A comparison of the kinetic energy, ke, plotted versus time of electrostatic PIC simulations with the current method and XES1 for
a 2-stream instability.
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the computed results (using n = 4 elements) and XES1 predict the appearance of the instability in the sudden
drop of the kinetic energy at equal times. Excellent comparison up to t � 35 is found after which (t > 35) 2D
effects lead to a different particle heating and different quantitative kinetic energy. Both methods show a total
energy fluctuation of less than 1% indicating equally accurate energy conservation.

4.3.3. Landau damping

We simulate Landau damping with 1k and 10k particles with R = 0.4 released according to (26) with
A = 0.1. The initial velocity is Maxwellian with a thermal velocity of vth = 0.4.

Fig. 14(a) shows that both XES1 and the current method are unable to predict the Landau damping for
more than 3 periods. The current method seems to deteriorate a little less. For 10k particles (Fig. 14) no sub-
stantial deterioration of the wave is observed for t < 15. The current methods� minima are, however, closer to
zero indicating a more accurate approximation of the phenomenon.

4.4. Two-dimensional plasma tests

In the following, we shall also present a few fully electromagnetic two-dimensional tests to confirm that the
general approach also works in such cases.

4.4.1. Weibel instability

This section presents results of PIC simulations of the Weibel instability presented in [21]. We compare the
finite difference time domain (FDTD) method [1], and the high-order PIC method.

The Weibel instability simulations are performed on a unit square with periodic boundary conditions. We
consider a quasi-neutral plasma with a thermal velocity ratio of 5 of the velocity in x, uthe = 0.25 and y,
vthe = 0.05 direction. The plasma frequency is 15 times the length of the square, i.e., xpe = 15 resulting in
q
m ¼ �ð15pÞ2 with the electron charge density set to q = �1.
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With these settings, magnetic waves develop with a dominant frequency in the y-direction. The wave num-
ber decreases in time as the thermal velocities approach the equilibrium state.

A study with the FDTD method indicates that a 256 · 256 grid with 36 particles per cell yields a reasonably
converged solution. The results of this simulation are used in the remainder of this section for comparison.

The high-order simulations are performed on a grid with 200 triangles using a fifth order scheme. We track
Np · Np particles in this domain for two time units. In Figs. 15 and 16, we compare various plasma energy
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components of simulations, obtained using both Poisson and hyperbolic divergence (v = 10) cleaning, with the
results of the FDTD simulations. The hyperbolic cleaning method conserves total energy better (less than 3%
deviation) as compared to the global cleaning method (10–50% increase) for similar resolutions. The poor
energy conservation in the latter approach translates into a poor comparison to FDTD method of the other
energy components.

The FDTD based method requires significantly more grid points to obtain total energy conservation com-
parable to those obtained with the hyperbolic cleaning technique. Both show comparable kinetic energy
trends, i.e., first a decrease followed by a slow increase. The hyperbolic cleaning method predicts a slightly
smaller peak value in the magnetic energy as compared to the FDTD method, but the trend is comparable.
The hyperbolic cleaning approach appears superior to PIC with global Poisson based cleaning as well as to
FDTD in reducing noise as witnessed by the electrical energy trend.

Surprisingly, we observe that decreasing a in Eq. (18) for the hyperbolic cleaning approach (Fig. 15) has a
minimal effect on the energy trends. Note that for a = 1 we take R half the value as compared to a = 10. The
reason is that at a = 10 most of the deposition function is located within the half radius near the origin. For
a = 1 the deposition in this region is approximated by a linear function. The simplified function and reduced
influence region lead to a factor three speed up.

Fig. 16 shows that decreasing a with the Poisson based divergence cleaning leads to poorer energy conser-
vation as one would expect ( larger aliasing error ) resulting in worsened energy trends. This is not the case for
the v cleaning. It is not clear why this difference is so obvious. Applying a weak filtering on the Poisson equa-
tion source term reduces grid heating, however it does not necessarily improve the results as witnessed in the
Hz energy trend. Increasing the number of particles improves the result as expected through a reduction of the
grid heating and an improved comparison to the FDTD result.

Figs. 17 and 18 compare the Hz and Ex energy spectra at t = 2. We see that most of the energy is stored in
the region 0 < |k| < 7. At larger |k| the Hz energy spectrum of the FDTD simulation shows an increase caused
by the inability of the finite difference method to capture high wave numbers effectively as well as enforcing
energy conservation exactly, leading to a pileup of high-frequency energy. The high-order simulations show
a drop in the spectrum caused by the diffusion of the upwind numerical flux, Eq. (11). The Ex energy spectrum
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Fig. 17. Comparison of Hz and Ex energy spectra for for high-order simulations with LMM divergence cleaning at v = 10 with a = 1 and
10 and Np = 300 and 768 to FDTD PIC. For a = 10 and 1, the particle cloud radius R = 0.075 and 0.038, respectively.
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shows no decrease with |k| for FDTD, but drop off for high-order simulations because of the slight high-
frequency dissipation by the upwind flux. The Hz spectra are not affected much by a and a moderate filter.
Increasing the number of particles increases the drop off at high wave numbers. Decreasing a and decreasing
Np introduces more energy in the low wavenumber part of the Ex spectrum. The filter has little effect on the Ex

spectrum as well. The Ex spectrum of the high-order method with hyperbolic divergence cleaning compares
better to the FDTD result than the results obtained with the projection based divergence cleaner.

The thermal u and v velocity at time t = 2, tabulated in Table 1, shows that the results obtained with both
divergence cleaning techniques converge towards the FDTD result with increased resolution. From this table
one concludes that the results for v = 10 compare best with the FDTD result. Increasing v from 2 to 10 has
quite an effect on the velocities indicating that the less physical v = 2 simulations should not be considered,
consistent with the results in Section 4.3.1.
Table 1
Comparison of thermal velocities for high-order and FDTD PIC at t = 2

Scheme a R Np uthe vthe uthe � vthe

v = 2 10 0.075 300 0.198 0.151 0.047
v = 2 1 0.038 300 0.202 0.148 0.054
v = 2 1 0.038 768 0.204 0.137 0.067

v = 10 10 0.075 300 0.208 0.145 0.062
v = 10 1 0.038 300 0.207 0.147 0.060
v = 10 1 0.038 768 0.205 0.138 0.067

Poisson 10 0.075 300 0.227 0.187 0.040
Poisson 1 0.038 300 0.237 0.194 0.043
Poisson 1 0.038 768 0.212 0.154 0.058

FDTD (N = 256) 0.206 0.140 0.066
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4.4.2. GEM challenge

In a more challenging problem we simulate the benchmark geospace environmental modeling (GEM) mag-
netic reconnection challenge [22]. Collisionless magnetic reconnection is a process in which energy stored in
the magnetic fields is rapidly converted into kinetic energy in a plasma. In this fundamental process, field lines
of opposite polarity are brought together and fused into a new magnetic topology involving the full non-
linearity and coupling of the system of equations.

The simulation is performed on a square with periodic boundary conditions in one direction and conduct-
ing boundary conditions on the non-periodic sides. We use a grid with 1146 triangles and a fifth order approx-
imation. 250 · 192 particles are released in the x and the y direction, respectively. This low resolution
simulation is performed to illustrate the ability of the algorithm to model complex plasma phenomena. For
further initialization details we refer to [22].

Fig. 19 shows that indeed reconnection takes place, i.e., the out-of-plane current has evolved starting from
an initially uniform sheet. Fig. 20 shows that the reconnection flux compares reasonably for this low resolution
simulation. The reference solution is found using CELESTE3D [23], which is a fully implicit finite difference
based PIC scheme.

4.4.3. A6-magnetron

As a final illustration we perform simulations on the A6-magnetron geometry of Palevsky and Bekefi [24] to
show the potential of the high-order unstructured grid PIC method developed here.

For detailed dimensions of the computational domain we refer to the computational simulations in Lemke
et al. [25]. Fig. 21 shows the grid. We initialize the flow with a thin layer of electrons around the inner cathode.
The particle parameters are set as q = 2e � 4, q/m = 0.5, and R = 0.09. The total number of particles is 6167.
Fig. 19. Contours of out-of-plane current and magnetic field lines.
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Fig. 20. The reconnected flux plotted versus time, compared with results obtained with CELESTE3D.
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Fig. 21. Unstructured grid and dimensions used for the A6-magnetron flow simulation.
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Fig. 22. Particle snapshot showing the 2p-mode in the A6-magnetron flow simulation.
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After initial effects have disappeared the A6 magnetron settles down in a 2p-mode, its normal operative
mode, as shown in the particle snapshot of Fig. 22.

5. Concluding remarks and future directions

We present the first stage in the development of a new high-order particle-in-cell algorithm. The core of the
algorithm is based on a high-order discontinuous Galerkin Maxwell field solver on unstructured grids. The
main advantages of the method lie in the higher efficiency of high-order methods to deal with high-frequency
physics and the geometric flexibility of the boundary-fitted unstructured grid. Furthermore, the DG formula-
tion has inherent properties, e.g. natural dissipation control and dispersion properties to avoid numerical
Cherenkov radiation, which suggests it is well suited as a core component of a PIC method.

The algorithm requires full order interpolation to determine the field at the particle position. A monomial
polynomial basis ensures the interpolation is fast. The cell-location algorithm takes advantage of the inverse of
the isoparametric mapping of physical coordinates to a master element.
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The coupling of the particle grid to the Eulerian field grid uses simple smooth functions. This is shown to
reduce noise and effectively enable control of finite grid instabilities. A constant influence area for each particle
avoids compressible particles and reduces noise in the charge and current density at the possible cost of an
increased number of weighing elements per particle. For problems with large scale separation in the geometry,
one should consider an approach to enable particles of different sizes, e.g., an h-type particle adaptivity. We
are currently exploring ways of achieving this without impacting charge conservation.

With the pre-computation of a levelset distance function, particles can interact elastically with complex geo-
metric boundaries.

Divergence control is performed either through a classic projection scheme or a purely hyperbolic cleaning
approach. The former requires the solution of a Poisson equation which is implemented with a discontinuous
Galerkin method consistent with the field solver. The hyperbolic cleaning method is local, fully hyperbolic,
and easily implemented in the framework of the Maxwell field solver. However, the equations become increas-
ingly stiff when improving the physical representation making the method less effective. The computations
show that values of v exceeding 10 is needed to ensure a robust approach, making this technique more expen-
sive than the projection method for comparable accuracy as long as an explicit time-stepping approach is used.

The computational results for a number of different plasma physics benchmarks and test cases confirm the
ability to model these very basic phenomena while offering full geometric flexibility and the potential for hp-
type adaptivity.

That said, however, many issues remain to be addressed in a satisfactory manner. In particular, the use of
advanced implicit–explicit time-stepping methods to enable the use of the hyperbolic cleaning method effi-
ciently at high values of v seems a natural extension. Furthermore, guidelines for the trade offs between par-
ticle size and smoothness must be developed, e.g., for problems dominated by kinetic effects one should clearly
be careful with using only a few large particles.

The development of particle clouds that are able to scale according to the size of the underlying grid as well
as the fundamental physics make for a true hp-adaptive particle-in-cell method for the modeling of large scale
plasma dynamic problems in complex geometries. We hope to be able to continue to report on such progress
in the near future.
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Appendix A. Fast interpolation for particle mover

Interpolation that is consistent with the scheme in this paper use nodal points, n, from Hesthaven [11] on
the master element, I (rather than a general D). In this approach the smooth function q(n), i.e., the electromag-
netic field, is represented as
qðnÞ ¼
XN
j¼1

qjLjðnÞ; ð27Þ
where Lj(n) is the genuine two-dimensional multivariate Lagrange interpolation polynomial, LjðnÞ 2 P 2
n, where
P 2
n ¼ spanfnigj; i; j P 0; iþ j 6 ng; ð28Þ
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based on N 2
n ¼ N nodal points, ni, given in the interior as well as on the boundary of I. For the interpolation to

be complete, we must require
N ¼ ðnþ 1Þðnþ 2Þ
2

.

For the actual construction of the interpolation polynomials, let us introduce the complete polynomial basis,
piðnÞ 2 P 2

n, and express the interpolation property as
8i : f ðniÞ ¼
XN
j¼0

f̂ jpjðniÞ ) V f̂ ¼~f ; ð29Þ
where f̂ ¼ ½f̂ 0; . . . ; f̂ N �
T is the vector of expansion coefficients, f = [f(n0), . . ., f(nN)]

T is the grid vector and
Vij = pj(ni) is the multi-dimensional Vandermonde matrix. Clearly, for the interpolation to exist V must be
nonsingular. Under the assumption of existence and uniqueness of the interpolation polynomial, we can ex-
press (29) as,
8i : f ðnÞ ¼
XN
j¼0

f ðniÞLjðniÞ. ð30Þ
Combining (29) and (30) implies that,
L ¼ ðV TÞ�1
p. ð31Þ
The properties of V, e.g., its conditioning depends exclusively on the structure of the nodal set, nj, and on the
way in which we choose to represent the basis, i.e., pi(n). While the former is chosen to ensure well-behaved
Lagrange interpolation polynomials, we have significant freedom in the specification pi. This freedom of
choice in pi makes it possible to choose between interpolation accuracy and speed. For creation of the inter-
polation and differentiation of the matrix, an orthonormal Jacobi polynomial basis results in a well condi-
tioned Vandermonde matrix for an acceptable polynomial order range and provides good accuracy.

For particle interpolation where p in the RHS of (31) changes for every particle and every time step, the
evaluation of p with an orthonormal Jacobi polynomial basis is too expensive. A faster alternative is the mul-
tivariate monomial basis, i.e., pi (ni) = nigj. For moderate polynomials order (n < 4 � 6) this basis conditions V
acceptably and the computational efficiency is significantly improved as compared to the Jacobi basis. For
higher polynomial order the condition number of grows exponentially with n for the monomial basis making
it unsuitable for large n.
References

[1] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, NY, 1985.
[2] S.H. Gold, G.S. Nusinovich, Review of high-power microwave source research, Rev. Sci. Instrum. 68 (11) (1997) 3945–3973.
[3] J. Villasenor, O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Comput. Phys. Commun. 69 (1992)

306–316.
[4] J.W. Eastwood, W. Arter, N.J. Brealey, R.W. Hockney, Body-fitted electromagnetic PIC software for use on parallel computers,

Comput. Phys. Commun. 87 (1995) 155–178.
[5] T. Umeda, Y. Omura, T. Tominaga, H. Matsumoto, A new charge conservation method in electromagnetic particle-in-cell

simulations, Comput. Phys. Commun. 156 (2003) 73–85.
[6] H.X. Vu, J.U. Brackbill, CELESTE1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation,

Comput. Phys. Commun. 69 (1992) 253.
[7] R.W. Hockney, S.P. Goel, J.W. Eastwood, Quiet high-resolution computer models of a plasma, J. Comput. Phys. 14 (1974) 148–

158.
[8] A.D. Greenwood, K.L. Cartwright, J.W. Luginsland, E.A. Baca, On the elimination of numerical Cherenkov radiation in PIC

simulations, J. Comput. Phys. 201 (2004) 665–684.
[9] J.S. Hesthaven, T. Warburton, High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, R. Soc.

London Ser. A 362 (2004) 493–524.
[10] J.S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell�s equations, J.

Comput. Phys. 181 (2002) 186–221.



G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 121
[11] J.S. Hesthaven, From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex, SIAM J. Numer. Anal. 35
(1998) 655–676.

[12] A.H. Mohammadian, V. Shankar, W.F. Hall, Computation of electromagnetic scattering and radiation using a time-domain finite-
volume discretization procedure, Comput. Phys. Commun. 68 (1991) 175–196.

[13] M.H. Carpenter, C.A. Kennedy, A fourth-order 2N-storage Runge–Kutta scheme, NASA TM 109112, June, 1994.
[14] G.B. Jacobs, D.A. Kopriva, F. Mashayek, A particle-tracking algorithm for the multidomain staggered-grid spectral method, AIAA

Paper 2001-0630, 2001.
[15] C.D. Munz, P. Omnes, R. Schneider, E. Sonnendrukker, U. Voss, Divergence correction techniques for Maxwell solvers based on a

hyperbolic model, J. Comput. Phys. 161 (2000) 484–511.
[16] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM

J. Numer. Anal. 39 (2002) 1749–1779.
[17] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999.
[18] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfacesApplied Mathematical Sciences, vol. 153, Springer, Berlin, 2003.
[19] D. Gottlieb, J.S. Hesthaven, Spectral methods for hyperbolic problems, J. Comput. Appl. Math. 128 (1–2) (2001) 83–131.
[20] OOPIC Pro, Tech-X Corporation. Available from: <www.txcorp.com>.
[21] R.L. Morse, C.W. Nielson, Numerical simulation of the Weibel instability in one and two dimensions, Phys. Fluids 14 (4) (1971) 830–

840.
[22] J. Birn, J.K. Drake, M.A. Shay, B.N. Rogers, R.E.M.H. Denton, M. Kuznetsova, Z. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett,

Geospace Environmental Modeling (GEM) magnetic reconnection challenge, J. Geophys. Res. 106 (11) (2001) 3715–3719.
[23] G. Lapenta, private communication, 2005.
[24] A. Palevsky, G. Bekefi, Microwave emission from pulsed, relativistic e-beam diodes. II. The multiresonator magnetron, Phys. Fluids

22 (May) (1978) 986–996.
[25] R.W. Lemke, T.C. Genoni, T.A. Spencer, Three-dimensional particle-in-cell simulation study of a relativistic magnetron, Phys.

Plasmas 6 (2) (1999) 603–613.

http://www.txcorp.com

	High-order nodal discontinuous Galerkin particle-in-cell  method on unstructured grids
	Introduction
	The physical model
	The numerical approach
	The field solver
	Tracking the particles
	Weighing of the particles to the grid
	Charge conservation techniques
	Global Poisson correction
	Hyperbolic cleaning  ndash  the  chi -method
	Comparison of Poisson correction and Lagrangian multiplier techniques

	Particles and boundary conditions
	Boundary conditions for particle tracking
	Boundary conditions for particle weighing

	Filtering

	Numerical examples
	Tests of the scheme components
	Finite grid instability
	One-dimensional plasma tests
	Plasma wave
	2-stream instability
	Landau damping

	Two-dimensional plasma tests
	Weibel instability
	GEM challenge
	A6-magnetron


	Concluding remarks and future directions
	Acknowledgments
	Fast interpolation for particle mover
	References


