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The mathematical formulation and computational implementation of a three-dimensional
particle-in-cell methodology on unstructured Delaunay–Voronoi tetrahedral grids is pre-
sented. The method allows simulation of plasmas in complex domains and incorporates
the duality of the Delaunay–Voronoi in all aspects of the particle-in-cell cycle. Charge
assignment and field interpolation weighting schemes of zero- and first-order are formu-
lated based on the theory of long-range constraints. Electric potential and fields are derived
from a finite-volume formulation of Gauss’ law using the Voronoi–Delaunay dual. Bound-
ary conditions and the algorithms for injection, particle loading, particle motion, and par-
ticle tracking are implemented for unstructured Delaunay grids. Error and sensitivity
analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical
heating, the slowing-down time, and the deflection times. The problem of current collec-
tion by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numer-
ical results compare favorably with previous numerical and analytical solutions for a wide
range of probe radius to Debye length ratios, probe potentials, and electron to ion temper-
ature ratios. The versatility of the methodology is demonstrated with the simulation of a
complex plasma microsensor, a directional micro-retarding potential analyzer that
includes a low transparency micro-grid.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

This work is motivated by the need to model bounded plasmas, plasma microdevices and plasma sensors with complex
geometries and boundary conditions. This work is directed towards the simulation of collisionless plasmas, described the-
oretically by the electrostatic Vlasov–Maxwell system of equations. This work establishes and validates a novel 3d, electro-
static, particle-in-cell (PIC) methodology on unstructured Voronoi–Delaunay grids (UPIC3dE).

Various implementations of electrostatic and electromagnetic PIC methods have been developed on three-dimensional
structured and mostly uniform grids [1–3]. A structured grid allows for an easy implementation of numerical algorithms
essential to PIC, such as high-order weighting, fast particle movers and tracers, and fast field solvers. Domain decomposition
of the structured grid is also straightforward which is important in the design of the parallel PIC codes [4–7].

There are few implementations of PIC on unstructured grids. In 2d, Jacobs and Hesthaven [8] used unstructured triangular
grids to implement an electrostatic PIC approach, while Sonnendrücker et al. [9] implemented a Darwin model on triangular
finite-elements. A three-dimensional electromagnetic PIC method on non-uniform hexahedral grids was developed by Wang
et al. [10,11]. The method is parallelized and takes advantage of the hexahedral cells that are connected with cubic cells, dis-
torted to fit the complex geometries. Each hexahedral is mapped one to one to a unit cube in the logical Cartesian space. The
. All rights reserved.
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gather/scatter procedures are performed in the Cartesian space using a charge conserving weighting scheme by Villasenor
and Buneman [12]. Wu et al. [13] developed a finite-element parallelized electrostatic code using 3d unstructured tetrahe-
dral meshes with dynamic domain decomposition. Petillo et al. [14] developed a finite-element based code that includes
both structured and unstructured grid systems.

While unstructured grids offer advantages in simulating bounded plasmas or plasma devices with complex geometries,
they present challenges that relate with most aspects of the standard PIC cycle. In this paper we present the major mathe-
matical and algorithmic contributions that establish a novel PIC formulation on unstructured 3d Delaunay–Voronoi grids
(UPIC3dE). The new developments involve the unstructured grid generation, particle loading, particle injection, charge
assignment, force interpolation, particle tracing and moving, and field solver. In Spirkin and Gatsonis [15] we presented ini-
tial results from UPIC3dE. The major conceptual contribution in our work is the use of the Delaunay–Voronoi in all aspects of
the UPIC3dE cycle. Particle weight and force interpolation schemes are derived for Delaunay tetrahedra from the long-range
constraints theory established by Hockney and Eastwood [2] for 2d Cartesian cells. The nodal values of charge density are
derived using the Delaunay–Voronoi dual. The evaluation of the potential and electric field is obtained through a finite-vol-
ume method that discretizes Gauss’ integral law using the Delaunay–Voronoi dual. Hermeline [16] utilized a similar ap-
proach for the numerical solution of the 2d Maxwell equations. Dirichlet and Neumann boundary conditions are
implemented through Gauss’s law. In addition, floating boundary conditions are developed for 3d unstructured Delaunay
grids, following the 2d cartesian concept of Vahedi and DiPeso [17]. An improved particle-search algorithm is developed
based on ideas found in [18] and aids to the numerical integration of the particle equations of motion. Error analysis and
sensitivity follows the 2d3V formulation by Hockney [19] which is expanded to cover the 3d3V UPIC3dE methodology.
The effects of particles/cell, grid scaling, and time-step on numerical heating, slowing-down time, and deflection times
are evaluated in a parametric investigation. The UPIC3dE method is validated with as series of computations that compare
numerical with theoretical and previous computational results of current collection by cylindrical probes in stationary and
moving plasmas. Finally, in this paper the application of the UPIC3dE to the simulation of a micro-retarding potential ana-
lyzer extends considerably the preliminary results appeared in [15]. The UPIC3dE numerical results are compared with ana-
lytic solutions and demonstrate the three-dimensional geometric and space-charge effects not captured in the theory. The
UPIC3dE methodology therefore, shows its applicability in the design of complex plasma devices and sensors.

In Section 2 the Vlasov–Poisson mathematical description of a collisionless plasma is summarized. The mathematical and
numerical aspects of the UPIC3dE methodology are presented in Section 3. Error analysis and the evaluation of heating, slow-
ing-down and deflection times are presented in Section 4. The validation of the code is discussed in Section 5. An implemen-
tation of UPIC3dE to the simulation of a plasma sensor with a complex geometry and boundary conditions, the directional
micro-retarding analyzer, are presented in Section 6.

2. Mathematical description of collisionless electrostatic plasma

We consider a fully ionized plasma occupying a volume V consisting of several species denoted by the species index s each
with Ns particles. A mathematical description of a collisionless plasma involves the electrostatic Vlasov–Maxwell system
[20,21]. The single-particle distribution function for species s particles, gives the average number of particles in a volume
d3r d3v � drdv of the phase-space centered at a point ðr;vÞ as
fsðr;v; tÞd3r d3v ¼ d6NsðtÞ: ð1Þ
The local number density is then
nsðr; tÞ ¼
Z

fsðr;v; tÞd3v : ð2Þ
The equation for the distribution function is
@fs

@t
þ v � @fs

@r
þ qs

ms
½Eðr; tÞ þ v � Bextðr; tÞ� �

@fs

@v
¼ 0: ð3Þ
The electrostatic formulation assumes that there are no induced magnetic fields due to the particle motion. The self-consis-
tent electric field (and potential) is due to the smoothed distribution (internal) qint and external distribution of charges qext,
and is given by Maxwell’s equations that reduce to the integral Gauss’s law
tSE � dS ¼ 1
eo

Z Z Z
V
qdV ð4Þ
or to the differential Poisson’s equation
e0r � Eðr; tÞ ¼ e0r � ðEextðr; tÞ þ Eintðr; tÞÞ ¼
X

s

qs

Z
fsðr;v; tÞd3v � qextðr; tÞ: ð5Þ
The external fields satisfy also the electrostatic Maxwell equations and therefore in the electrostatic limit the internal field
satisfies the Poisson equation
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e0r � Eint ¼
X

s

qs

Z
fsðr;v; tÞd3v ¼

X
s

qsns ¼ qðr; tÞ: ð6Þ
In the Vlasov–Poisson system the discreteness of plasma particles is lost, and the electric fields are found self-consistently
from smoothed charge and current distributions. In addition the motion in the phase-space is incompressible, and fs is con-
stant in time along characteristics which are the single-particle trajectories in the presence of electromagnetic fields
drsðtÞ
dt
¼ vsðtÞ;

ms
dvsðtÞ

dt
¼ qs

ms
½EðrsðtÞ; tÞ þ vs � BextðrsðtÞ; tÞ�

ð7Þ
We define also the species-mean molecular velocity Vs ¼ fVsx;Vsy;Vszg by
Vsðr; tÞ � hvis ¼
Z 1

�1
vfsðr;v; tÞdv=nsðr; tÞ: ð8Þ
The mass-average velocity V ¼ fVx;Vy;Vzg used to represent the plasma as a single fluid is
Vðr; tÞ ¼
X

s

nsmsVs=
X

s

nsms: ð9Þ
The species diffusion velocity is defined as
Ws ¼ Vs � V: ð10Þ
The species s thermal (or random) velocity is given with respect to the species-mean velocity as
Cs ¼ vs � Vs ð11Þ
or with respect to the mass-averaged velocity as
C�s ¼ vs � V ¼ Cs þWs: ð12Þ
Physically significant moments of the distribution (macroscopic properties) can be derived using as the reference velocity
the species-average velocity or the mass-average velocity [22–25]. The translational temperature is defined in species-mean
system as Ts and in the mass-average system as T�s by
3
2

kBTð�Þs ðr; tÞ ¼
1
2

mp Cð�Þ2s

D E
ð13Þ
with T�s ¼ Ts þmsW
2
s =3kB. Similarly, the scalar pressure is pð�Þs ðr; tÞ ¼ nsms Cð�Þ2s

D E
=3, the pressure tensor

Pð�Þs ðr; tÞ ¼ nsms Cð�Þs Cð�Þs

D E
and the heat flux vector is qð�Þs ðr; tÞ ¼ nsms Cð�Þ2s Cð�Þs

D E
=2. We define also single-fluid macroscopic vari-

ables for the plasma as follows:
Jðr; tÞ ¼
X

s

nsqsVs ¼ qV þ
X

s

nsqsWs; ð14Þ

Tðr; tÞ ¼ 1=
X

s

ns

 !X
s

nsTs þ nsmsW
2
s =3kB ¼

X
s

nsT
�
s=
X

s

ns; ð15Þ

pðr; tÞ ¼
X

s

p�s ¼
X

s

ps þ
X

s

nsmsW
2
s =3; ð16Þ

Pðr; tÞ ¼
X

s

P�s ¼
X

s

Ps þ
X

s

nsmsWsWs; ð17Þ

qðr; tÞ ¼
X

s

q�s ¼
X

s

qs þ ð3=2ÞpsWs þWs � Ps þ ð1=2ÞnsmsW
2
s Ws: ð18Þ
Other transport properties and macroscopic equations can be defined using either reference frame. As we discuss later in the
paper, such moments of the distribution can be calculated directly from particle properties during a PIC simulation.
3. Unstructured particle-in-cell in 3D (UPIC3dE) methodology

The UPIC3dE method implements the conventional PIC computational steps on an unstructured Delaunay–Voronoi dis-
cretization. The UPIC3dE begins with the grid generation which provides an unstructured Delaunay mesh and its Voronoi
dual. Computational particles are loaded in the domain and injected from boundaries. Charge is assigned from the position
of the computational particles to the grid nodes. Gauss’ integral law (4) is solved on the nodes in order to obtain the electric
potential. The electric field is evaluated on the nodes and interpolated to the position of particles. Particles are moved
according to Eq. (7). In addition, particles are allowed to enter or leave the domain based on specified boundary conditions.
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Macroscopic single-fluid and multi-fluid variables are evaluated on nodes. The numerical implementation of the UPIC3dE
steps on the unstructured Delaunay–Voronoi grid is discussed in the following sections.

3.1. Delaunay–Voronoi grid generation

The unstructured grid generator provides tetrahedral cells obtained through a Delaunay triangulation for arbitrary geo-
metric configurations. The methodology [26] discretizes a domain X by ND Delaunay tetrahedra and proceeds with a surface
triangulation followed by a volume grid generation and subsequent optimization.

The surface triangulation is obtained with use of commercially available surface generators. The unstructured (volume)
grid generator is based on Watson’s incremental node insertion method [27], which uses properties of the Delaunay trian-
gulation. An initial mesh is required for Watson’s method, in order to have a domain where point insertion to begin. After the
initial mesh is generated, the source geometry is inserted into the domain following two steps. First, the boundary nodes are
successively inserted into the grid via Watson’s algorithm. Second, the boundary facets present in the source geometry are
recovered using local modifications to the grid. The cells external to the grid are removed as well as cells in any internal
cavity.

The sizing function requires the interior of the grid to be enriched with nodes to the specified density. For this purpose the
algorithm by Borouchaki and George [28] is implemented and extended to three dimensions [26]. In this algorithm, the char-
acteristic distance between nodes is specified for each grid node as h. Every existing edge of the grid is divided into a number
of new prospective nodes, so that the new resulting edge segments vary in length gradually between the h-values of the edge
vertices. The prospective nodes are filtered in order to satisfy the spacing and grid quality criteria. Nodes falling too close to
existing nodes are eliminated. Nodes that worsen grid quality as specified by the lowest dihedral angle in a set of cells are
also discarded. The nodes that are not rejected are inserted into the grid via Watson’s algorithm. The edge division process is
repeated while new nodes are inserted.

An integration of two optimization techniques is implemented in order to improve the mesh quality. The first step in-
volves mesh relaxation in order to obtain a mesh with the average node degree being as close to the optimal value as pos-
sible. It is reached by means of an edge-swapping procedure regardless of its effects on the Delaunay property of the mesh.
The second step applies Laplacian smoothing by repositioning every node towards the average location of all adjacent nodes.
At this point the mesh is no longer Delaunay and edge swapping may be necessary to recover this mesh property [26]. A
quality improvement procedure has been implemented based on a user-defined minimum dihedral angle.

The UPIC3dE implementation requires local data structures for particle motion, and the sampling of macroscopic param-
eters. For ease of computational manipulation the grid parameters are stored in a data structure that maintains node posi-
tion, node connectivity, face sharing and cell nearest-neighbor information. A Delaunay cell is illustrated in Fig. 1(a) and
assigned a global cell index D ¼ 1; . . . ;ND. The Nd vertices of the cells are designated as the nodes of the domain. Each node
is assigned with a global node index d ¼ 1; . . . ;Nd and has coordinates rd ¼ ðxd; yd; zdÞ. The four nodes associated with a Del-
aunay cell D form a unique index set fJ;K; L;Mg through an association D! fJ;K; L;Mg where the non-ordered set
fJ;K; L;Mg 2 f1; . . . ;Ndg. A node fJg has coordinates rJ ¼ ðxJ; yJ; zJÞ and the volume of the Delaunay cell is given
Fig. 1. The Delaunay tetrahedron with global and local indexing in a domain X in 3d. A Delaunay cell, the Voronoi dual and a Delaunay supercell depicted in
2d.
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XD � XJKLM ¼ rMJ � ðrJK � rJLÞ=6: ð19Þ
Each node d is associated with the Voronoi dual, Cd, and the Delaunay supercell Xd formed by all the Delaunay cells that
share the node d as illustrated in Fig. 1(b) for a 2d geometry.

3.2. Particle loading

In UPIC3dE, loading is carried out by placing species s particles in each Delaunay cell with randomly chosen positions and
velocities following the quasi-equilibrium, drifting Maxwellian distribution
f0sðr;v; tÞ ¼ nsðr; tÞ
ms

2pkTs

� �3=2

exp �msðv � VsÞ2

2kTs

" #
; ð20Þ
where nsðr; tÞ; Tsðr; tÞ, and Vsðr; tÞ are assumed as known. The number of computational particles loaded at each Delaunay cell
is CD ¼ nsXD=FN , where FN is the particle weight. The velocity components of each particle at t ¼ 0 are sampled from (20)
following the acceptance–rejection method [29]. The velocities of each particle at t ¼ 0 are displaced backwards by
ð�Dt=2Þ following the leaf-frog integration algorithm discussed in Section 3.8 and using the electric fields at t ¼ 0 [1,30].
The determination of the particle’s position in a Delaunay cell is carried out using a local vector coordinate system based
on cell edges as shown in Fig. 2(a). Three vectors of random lengths along three cell-edges are generated by
a ¼ R1=3
1 r12; b ¼ R1=2

2 R1=3
1 r223; c ¼ R3R1=2

2 R1=3
1 r34; ð21Þ
where R1;R2 and R3 are random numbers. The local position vector, P ¼ aþ bþ c provides the particle’s position from
rp ¼ r1 þ P: ð22Þ
3.3. Particle injection at boundaries

Particles are injected into the domain at surfaces with certain attributes stored in a global array. For a general case, the
inward flux of species s particles across a Delaunay boundary surface is due to a drifting Maxwellian equation (20)
_Ns ¼
ns

2bs

ffiffiffiffi
p
p ðexpð�S2

s cos2ðhÞÞ þ
ffiffiffiffi
p
p

Ss cosðhÞf1þ erfðSs cosðhÞÞgÞ; ð23Þ
where bs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms=ð2kBTsÞ

p
, the mean velocity Vs is inclined at an angle h to the unit normal vector e and the speed ratio is
Ss ¼ Vsbs: ð24Þ
The number of computational particles to be injected to the domain in a given time-step, DNp, is DNp ¼ _NpDtAs=FN , where Dt
is the time-step and As is the area of the surface element. The calculation of the injection position bounded by two face edge
lengths is carried out using localized coordinates generated from the face edges of a Delaunay, as shown in Fig. 2(b). Two
vectors of random length are determined from the respective defining edge as
a ¼ R1=2
1 r12; b ¼ R2R1=2

1 r23: ð25Þ
Fig. 2. Particle position calculation geometry used in the loading algorithm and injection algorithm of the UPIC3dE method.
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The local position vector, R ¼ aþ b provides the particle’s injection position from
rp ¼ r1 þ R: ð26Þ
The generation of the velocity from Eq. (20) follows the acceptance–rejection algorithm [29]. To apply properly the leap-frog
particle integration algorithm and reduce numerical errors, the velocities are moved backwards by ð�Dt=2Þ using the electric
fields at the current time [1,31].

3.4. Charge assignment and force interpolation

The hierarchy of charge assignment functions (or weights) in UPIC3dE is derived following Hockney and Eastwood [2]
according to the long-range, smoothness, and momentum conservation constraints. Using a local index set each Delaunay
tetrahedron X1234 is defined by four nodes with rI ðI ¼ 1; . . . ;4Þ as shown in Fig. 1(a). For a particle in a position
rp ¼ ðxp; yp; zpÞ 2 X1234 the charge is assigned to the four nodes associated with the Delaunay X1234 with functions
WIðxp; yp; zpÞ; I ¼ 1; . . . ;4. Following [2] we assume that the potential at position r due to the unit charge in node position
rI 2 XI is given by the Green’s function Gðr � rIÞ. The potential at r � ðx; y; zÞ due to the charges at M grid points is given by
/ðx; y; zÞ ¼
X4

I¼1

WIðxp; yp; zpÞGðr � rIÞ: ð27Þ
Taylor expanding Gðr � rIÞ about ðr � rpÞ and assuming that Gðr0Þ ¼ Gðr0Þ
/ðx; y; zÞ ¼
X
I¼1;4

WIðxp; yp; zpÞGðr � rpÞ þ
X
I¼1;4

WIðxp; yp; zpÞ ðxp � xIÞ
dGðrp � rÞ

dxp
þ ðyp � yIÞ

dGðrp � rÞ
dyp

"

þðzp � zIÞ
dGðrp � rÞ

dzp
þ Ofðxp � xIÞ2; ðyp � yIÞ

2
; ðzp � zIÞ2g

�
: ð28Þ
Charge conservation requires that
X4

I¼1

WIðxp; yp; zpÞ ¼ 1: ð29Þ
The requirement that the first-order terms in the expansion Eq. (28) are grid independent provides the first-order constraint
as
 X

I¼1;4

WIðxp; yp; zpÞðxp � xIÞ ¼ 0;

X
I¼1;4

WIðxp; yp; zpÞðyp � yIÞ ¼ 0;

X
I¼1;4

WIðxp; yp; zpÞðzp � zIÞ ¼ 0:

ð30Þ
With the Nearest Grid Point (NGP) scheme, the charge from the particle at position rp ¼ ðxp; yp; zpÞ 2 X1234 is assigned to clos-
est node according to
W1ðrpÞ ¼ 1 if min jr1;2;3;4 � rpj ¼ jr1 � rpj;
W2ðrpÞ ¼W3ðrpÞ ¼W4ðrpÞ ¼ 0:

ð31Þ
With the Cloud In Cell (CIC) scheme, the charge from the particle p at position rp � ðxp; yp; zpÞ 2 X1234 is assigned to the four
nodes of the Delaunay cell. Solution to the system of constraints (29) and (30) provides the weight functions
W1 ¼
XP234

X1234
; W2 ¼

XP134

X1234
; W3 ¼

XP124

X1234
; W4 ¼

XP123

X1234
; ð32Þ
where XPklm is the volume of the tetrahedron formed by the particle p and nodes 1;2;3
XP234 ¼ ½r4p � ðrp2 � r23Þ�=6: ð33Þ
Implementation of the CIC weights on the 3-D unstructured tetrahedral grid is therefore analogous to a volume-weighing
and is represented graphically in Fig. 1(a).

3.5. Nodal number density and charge density

The evaluation of the number density nsd and charge density qsd of species s particles at a node d with rd ¼ ðxd; yd; zdÞ uti-
lizes the Delaunay–Voronoi dual in order to implement the PIC approach used with structured grids [1,3]. All species s par-
ticles residing in a Delaunay cell are weighted to the four nodes D! fJ;K; L;Mg following the NGP or the CIC scheme. This
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algorithmic procedure applied to each Delaunay cell D ¼ 1; . . . ;ND provides the total weight Wsd and total charge Qsd of spe-
cies s for each node d ¼ 1; . . . ;Nd. Similar to structured grids, contribution to a node d comes from particles that reside in the
cells that share the node. In our unstructured grid these shared cells define the Delaunay supercell Xd depicted in Fig. 1(b).
The species s number density at the a node d is obtained using the volume of the Voronoi dual Cd shown in Fig. 1(b), as
nsðxd; yd; zdÞ � nsd ¼ FsWsd=Cd: ð34Þ
Similarly, the species s charge density at a node d is
qsðxd; yd; zdÞ � qsd ¼ Q sd=Cd: ð35Þ
3.6. Nodal electric potential

The electric potential is obtained through an approach that takes advantage of the Delaunay–Voronoi dual. The formula-
tion is based on the integral Gauss law (4) using as the Gaussian surface the Voronoi volume Cd associated with a node
shown in Fig. 3 as
tSE � dS ¼ 1
eo

Z Z Z
C
qdC: ð36Þ
The semi-discrete form of Gauss’ law is
XNf

k¼1

Edk � ðnAÞdk ¼ Q d=e0; ð37Þ
where Nf is the number of corresponding faces of the Voronoi Cd;Edk is the field over the area Adk, and Qd is the charge at
node d enclosed in Cd. Using the potential U and the definition of the gradient, Eq. (37) becomes
XNf

k¼1

rUdk � n̂Að Þdk ¼
XNf

k¼1

A
@U
@n

� �
dk

¼ �Q d

e0
: ð38Þ
The derivative of the potential at a face of a Voronoi cell can be obtained from
@U
@n

����
dk

¼ Uk �Ud

Ldk
þ OðL2

dk=4Þ; ð39Þ
where Ldk is the length of the Delaunay cell indicated in Fig. 3(a). Eq. (38) then becomes
XNf

k¼1

rU � n̂Að Þdk ¼
XNf

k¼1

ðUd �UkÞ
Adk

Ldk
¼ Q d

e0
: ð40Þ
Applying (40) to all the nodes Nd in the domain, a system of Nd � Nd linear equations is obtained
k= 1

k

dΓd

Ωd

Ldk

A dk

AN2

EN2

Φ0

(b).  Dirichlet (Φ0) and Neumann (EN2) 
boundary conditions.

(c).  Floating conductor with 

the Gaussian surface Γd (dot).

(a).  The Gaussian surface Γd (dot), the  

Voronoi Γd (dash),  and the Delaunay 

super-cell Ωd (dash-dot),  used in the 
evaluation of the potential and electric 
fields at a node d.

k= 1

k

k N= d

d
Γd

Ωd

Ldk

Adk

Fig. 3. Cell structure used in the finite-volume discretization of Gauss’ integral law in UPIC3dE for a 2d geometry.
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R11 R12 R13 � � � R1Nd

R2;1 R2;2 R2;3 � � � R2Nd

R31 R32 R33 � � � R3Nd

..

. ..
. ..

. . .
. ..

.

RNd1 RNd2 RNd3 � � � RNdNd

2
66666664

3
77777775

U1

U2

U3

..

.

UNd

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ 1

e0

Q 1

Q 2

Q 3

..

.

QNd

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð41Þ
For global node indexes I ¼ 1; . . . ;Nd and J ¼ 1; . . . ;Nd the coefficients RIJ are given by
RIJ ¼
XNf

k¼1

AIk=LIk for I ¼ J;

RIJ ¼ �AIk=LIk if ðI; JÞ 2 Xd;

RIJ ¼ 0 ifðI; JÞ R Xd:

ð42Þ
The sparse matrix in Eq. (41) is stored using the compressed sparse row scheme [32, Sections 3 and 6] and the solution to the
linear system of equations is obtained using the Jacobi or the Generalized Minimize Residual (GMRES ) method [32, Sections
4 and 6].

3.6.1. Dirichlet, Neumann, and floating potential boundary conditions
The implementation of Dirichlet and Neumann boundary conditions is depicted in Fig. 3(b) for a 2d configuration. The

boundaries of the Delaunay triangles, surfaces in 3d, coincide with the boundaries of the Voronoi and therefore. In
Fig. 3(b) node-1 has a potential Uo while node-2 is a Neumann boundary associated with and the applied inward normal
electric filed EN2. The application of the matrix equation (41) leads
1 0 0 � � � 0
R2;1 R2;2 R2;3 � � � R2Nd

R31 R32 R33 � � � R3Nd

..

. ..
. ..

. . .
. ..

.

RNd1 RNd2 RNd3 � � � RNdNd

2
66666664

3
77777775

U1

U2

U3

..

.

UNd

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ 1

e0

Uo

Q2 þ eoEN2AN2

Q3

..

.

Q Nd

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
: ð43Þ
Bounded plasmas interact with surfaces often connected to external circuits. For a floating conductor, i.e. an electrode that
does not exchange charge with the external circuit, the time variation of the total charge density inside the volume is ob-
tained from the charge conservation equation [33,17],
tSJ � dS ¼ d
dt

ZZZ
V
qdV ð44Þ
The discrete form of Eq. (44) is
AðrTðtÞ � rTðt � DtÞÞ ¼ Q conðtÞ ð45Þ
where, rT is a total charge density on the surface of the conductor, A is the conductor surface area exposed to the plasma, Qcon

is convective charge collected by the conductor for the time t � Dt to t due to particles from the plasma. The finite-volume
discretization of Gauss’ law involves a Gaussian surface that coincides with the Voronoi volume associated with the bound-
ary node b and includes the area just below the surface of the conductor as shown for a 2d case in Fig. 3(c). Application of Eq.
(40) provides
e0

XNf

k

ðUb �UkÞ
Adk

Ldk

 !
¼ Q pl

b þ rbAb: ð46Þ
In this formulation Ab is the boundary area associated with a boundary node b;Q pl
b is the total charge assigned to the node b

due to the plasma and Abrb is the surface charge. The summation is carried over all the faces of the Voronoi but clearly the
boundary nodes on the conductor that have potential Ub ¼ Uk do not contribute to the summation. Summing Eq. (46) for all
boundary nodes b of the floating conductor and substituting Eq. (46) into Eq. (45) it becomes
ArTðtÞ ¼ ArTðt � DtÞ þ Q conðtÞ ¼
X

b

e0

X
k

ðUbðtÞ �UkðtÞÞ
Abk

Lbk

 !
� Q pl

b ðtÞ
 !

ð47Þ
All boundary nodes of the conductor have the same constant potential UdðtÞ therefore,
UbðtÞ ¼
1
e0

ArTðt � DtÞ þ QconðtÞ þ
P

dQ pl
b ðtÞ

� �
þ
P

b

P
kUkðtÞ Abk

Lbk

� �
P

b

P
k

Abk
Lbk

ð48Þ
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The summation is carried for all nodes that have potential UbðtÞ– UkðtÞ. This expression contains unknown terms UkðtÞ and
requires successive iteration between the solution of Gauss’ law Eq. (41) and Eq. (48). We follow in this work an alternative
approach that uses the superposition principle to find an explicit relation for the potential on the floating boundary [17]. The
total electrostatic potential at any node to be expressed as
UdðtÞ ¼ Upla
d ðtÞ þUbðtÞ~Ud ð49Þ
In the above, Upla
k ðtÞ is the Poisson potential due to the volume charge in the plasma and zero boundary conditions. This po-

tential is obtained at every time t through the solution of Eq. (41) with all boundary nodes set to zero potential. The term ~Ud

is the normalized, time-independent Laplacian potential due to the boundary conditions and without space-charge. This po-
tential is obtained once through the solution of Eq. (41) with all volume charges set to zero and the potential on the nodes of
the floating conductor set to unity. By substitution of Eq. (49) with d � k into (48) we obtain an explicit relation,
U0ðtÞ ¼
1
e0

ArTðt � DtÞ þ
P

bQ conðtÞ þ Q pla
b ðtÞ

� �
þ
P

b

P
kU

pla
k ðtÞ

Abk
Lbk

� �
P

b

P
k

Abk
Lbk
ð1� ~UbÞ

: ð50Þ
With the potential on the conductor known the total surface charge on the conductor ArTðtÞ is evaluated using Eq. (47).

3.7. Nodal electric field

The integral theorem
Z Z Z
V
rUdV ¼ tSUdS ð51Þ
applied to the potential Uðx; y; zÞ provides the definition of the electric field as
rU ¼ lim
V!0

tsUdS
V

¼ �E: ð52Þ
The theorem (51) can be derived from the divergence theorem [34, Chapter 11.8.2]. The discrete form of Eq. (52) provides the
average value of the rU in a volume Vd and the electric field at node d as
rUd ¼
1

Vd

Xn

f¼1

Uf Sf � �Ed: ð53Þ
The volume Vd can associated with the Voronoi, Vd ¼ Cd or the Delaunay supercell, Vd ¼ Xd, as indicated in Fig. 3(a) for a 2d
case. In Eq. (53) Sf is the area and Uf is the potential of the cell face f. For a Voronoi cell the face potential Uf is the average of
the vertices that form a face. For a Delaunay supercell Uf is the average of the potential on the vertices (nodes) that form that
face.

3.8. Integration of particle motion

The equations of particle motion (7) are integrated following Buneman’s time-centered leapfrog formulation [35]
vtþDt=2
p � vt�Dt=2

p

Dt
¼

qp

mp
EtðrpÞ þ

vtþDt=2
p � vt�Dt=2

p

2
� Bt

extðrpÞ
" #

; ð54Þ

rtþDt
p ¼ vtþDt=2

p Dt þ rt
p ð55Þ
combined with Boris’s algorithm [36] for the implementation of the v � Bext rotation [1, Chapter 4.3]. The electric field at the
position of the particle rp ¼ ðxp; yp; zpÞ residing in the Delaunay X1234 is obtained through interpolation from the four nodes of
the tetrahedral cell as
Eðxp; yp; zpÞ ¼
X
I¼1;4

EðxI; yI; zIÞWIðxp; yp; zpÞ: ð56Þ
Following [1] the weights in force interpolation are identical to those obtained for the charge assignment (31) and (32). Sta-
bility conditions are derived using the Von Neumann analysis [37, Chapter 8]. The amplification matrix
vtþDt=2

rtþDt=2

( )
¼ G

vt�Dt=2

rt�Dt=2

( )
ð57Þ
has eigenvalues
k1;2;3 ¼
1
2

2�x2
pDt2 þxpDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pDt2 � 4
q� �

; k4;5;6 ¼
1
2

2�x2
pDt2 �xpDt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

pDt2 � 4
q� �

; ð58Þ



Fig. 4. Geometries utilized with the particle motion algorithm.
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where the plasma frequency xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nee2=e0me

p
. For stability
jkjmax 6 1 ð59Þ
and one recovers the well-known condition for a cold plasma and uniform grid given in [1] as xpDt < 2.

3.9. Particle search-locate algorithm (particle tracer)

Identification of the cell in which a particle resides in unstructured grids can be a computational intensive procedure. We
developed an algorithm for the Delaunay–Voronoi grid based on the successive-neighbor particle search methodology of
Löhner and Ambrosiano [18]. Following Fig. 4, the particle with rpðtÞ resides in a Delaunay cell with volume X1234 and at
t þ Dt moves to position rpðt þ DtÞ. The algorithm requires the evaluation of volume-weighted functions N1;N2;N3;N4 ob-
tained from the new particle position rpðt þ DtÞ with respect to the nodes of the Delaunay cell of origin. The steps are out-
lined below:

(S.1) Calculate the weight functions
N1ðrpðt þ dtÞÞ ¼ Xp234

X1234
¼ ½r24 � ðr2p � r23Þ�=6
½r14 � ðr12 � r23Þ�=6

; N2ðrpðt þ dtÞÞ ¼ Xp134

X1234
;

N3ðrpðt þ dtÞÞ ¼ Xp124

X1234
; N4ðrpðt þ dtÞÞ ¼ Xp123

X1234
:

(S.2) If N1 þ N2 þ N3 þ N4 ¼ 1 then rpðt þ dtÞ 2 X1234.
(S.3) If N1 þ N2 þ N3 þ N4 > 1 then rpðt þ dtÞ R X1234 and cells adjacent to X1234 should be searched. In order to find the tet-

rahedron to be searched, the face with which the particle has intersected needs to be identified. For example, inter-
section of a computational particle p with a face (1–2–3) requires that
rpðtÞ þ vpðtÞs ¼ ar21 þ br32: ð60Þ
In the above vector equation s is a time it takes for the particle to move from its initial position to the face (1–2–3) and the
coefficients a and b define the point of intersection in the skewed coordinate system. The resulting system of scalar equa-
tions may be ill-conditioned if the cell is ill-shaped or if the velocity of the particle is very large. The algorithmic implemen-
tation is as follows:
(S.4) For cell face (1–2–3) solve the system of linear equations
rpðtÞ þ vpðtÞs ¼ ar21 þ br32: ð61Þ
(S.6) If aþ b > 1 then intersection occurred with face (1–2–3) and the algorithmic steps (S.1)–(S.4) are repeated for the tet-
rahedron that shares this face.

(S.5) If s is negative or 1 < a; b < 0 then the intersection does not occur and then next face is investigated.

3.10. Evaluation of macroscopic plasma properties

Other macroscopic (fluid) properties can be evaluated at each node d of the domain. The species-velocity (8), mass-average
velocity (13) and single-fluid plasma properties (14)–(18) are obtained from simple averaging of the particles that reside in
the Voronoi dual Cd. As these macroscopic properties are used for diagnostic purposes there is no weighting procedure in-
volved. For example for Nsd total number species s particles in the Voronoi cell Cd the species mean molecular velocity (8) is
Vsd ¼
XNsd

p¼1

Fsvps=NsdFs ð62Þ
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and the species translational temperature (13) is
Tð�Þs ðr; tÞ ¼
1

3kB
ms

XNsd

p¼1

FsC
ð�Þ2
ps =NsdFs: ð63Þ
4. Error analysis of the UPIC3dE methodology

In particle-in-cell (PIC) simulations the orbits of the particles are perturbed from the true orbits and collisions in the sim-
ulation occur at rates different than the real plasma. This is a result of the smaller of number of particles in the simulation
than in the real space, the effects of spatial discretization, the charge and force interpolation, and time integration. Hockney
[19] provided the theory for measuring the numerical error in 2D-3V PIC simulations with uniform grids using the concepts
of heating, slowing-down and deflection times. We extend this approach in 3D-3V space and study the numerical heating
and collisions for the UPIC3dE methodology.

A typical computational domain used in the heating calculations is shown in Fig. 5. The plasma is loaded initially into the
spherical domain following an quasi-equilibrium Maxwellian distribution equation (20) with
ne ¼ ni ¼ 1016 m�3; Te ¼ Ti ¼ 2 eV, and zero drift velocity. Electrons and ions are also injected at each time-step from the
open boundaries following Eq. (20). Zero electric field is set at the open boundaries of the domain. Particles that reach
the domain boundaries are removed from the simulation. Following Hockney [19] we designate the initial velocity of the
particle p as the parallel direction for that particle vpð0Þ ¼ vpkð0Þ. In a UPIC3dE simulation we measure at time t for a particle
p its velocity vpðtÞ, its velocity component in the parallel direction
vpkðtÞ ¼ vpðtÞ � vpkð0Þ=jvpkð0Þj; ð64Þ
its velocity component in perpendicular direction
vp?ðtÞ ¼ vpðtÞ � vpkðtÞ ð65Þ
and the deflection angle upðtÞ
upðtÞ ¼ cos�1ðvpð0Þ � vpðtÞ=jvpð0ÞkvpðtÞjÞ: ð66Þ
The change in the kinetic energy of a particle p of species s at the time t from its initial value is DEp, and the average change of
the kinetic energy of a particle of species s in the ensemble
hDEsðtÞi ¼
1
Ns

XNs

p¼1

DEpðtÞ ¼
1
Ns

XNs

p¼1

1
2

mpðv2
pðtÞ � v2

pð0ÞÞ: ð67Þ
The heating time sHs is defined as the time for the average kinetic energy per particle of species s to increase its energy by
kBTs=2,
hDEðsHsÞi ¼ kBTsð0Þ=2: ð68Þ
An interpretation of heating can be provided by using the a stochastic error field, dE that accounts for all errors associated
with a PIC simulation. It can be sown [2, Section 9] that for n timesteps
hDEsðtÞi ¼
1
2

q2
s

ms
ðDtÞ2jdEj2n: ð69Þ
Heating therefore, increases with increasing Dt or increasing number of iterations. Eq. (69) shows that the main contribution
to heating comes from electrons.
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Previous 1d and 2d PIC investigations on uniform grids [38–40] have shown that sH strongly depends on xpDt and Dr=kD,
the ratio of the size of the computational cell over the Debye length,
ω
τ

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eokTe=e2ne

q
: ð70Þ
The relevant cell size in our study is the edge length of a tetrahedron, Dr, as shown in Fig. 1. To generate a grid with tetra-
hedrals of nearly equal Dr the cells should have approximately the same volume and dihedral angles as close to 70.53�. Fig. 5
shows the histograms for the dihedral angles and edge lengths obtained for a typical grid used it these simulations.

Fig. 6(a) shows the effects on heating time from varying the parameter vTeDt=Dr, where vTe ¼ hC2
e i

1=2 while keeping the
number of particles per cell constant. The heating time is normalized with the plasma frequency xp. One can observe than
when vTeDt=Dr is in the range of 10�4 to 5� 10�4 the heating time remains almost constant. For both the NGP and CIC
weighting schemes the simulations show a significant decrease in xpsH from 5� 10�4 to 10�3. Further increase of the time-
step has no impact on xpsH . The increase in the timestep leads in general to a larger stochastic error jdEj and as such smaller
heating times according to Eq. (69). The results show that the CIC heating time is about 20% larger than the NGP heating time
for small timesteps vTeDt=Dr < 5� 10�4. For large timesteps, vTeDt=Dr > 5� 10�4, this difference is more than 100%. The CIC
weighting is associated with smaller error jdEj than the NGP weighting and therefore, to results in larger heating times.

Another parameter varied in the heating time investigation is the number of computational particles per cell, CD. An in-
crease in CD leads to smoother electric fields, smaller jdEj and therefore larger heating times. Fig. 6(b) shows the effect of CD

on the heating time for NGP and linear weighting schemes. The increase in the heating time shown is about 10 times for both
weighting schemes while CD varies from 15 to 90. It is important to mention that the computational time for the particle-
move scales linearly with the number of particles. Therefore, a tradeoff is required between the overall computational time
and the quality of the computation.

The ratio of the Debye length to the cell edge length kD=Dr has a strong effect on the heating time as shown in Fig. 6(c). A
decrease of the heating time by an order of magnitude is observed when kD=Dr decreases from 0.2 to 2. There is no appre-
ciable effect on heating in the range 2 6 kD=Dr 6 5. When kD=Dr is increased further Fig. 6(c) shows a decrease in the heating
time by an almost order of magnitude. There is no impact of the weighting scheme on the heating time.

The plasma in the simulation can be treated as collisionless for simulation times that are less than the numerical slowing-
down time sS defined as
hv skðsSÞi ¼
1
Ns

XNs

p¼1

vpkðsSÞ ¼ hv skð0Þi= expð1Þ: ð71Þ
Since the average electron slowing-down time is much smaller than the slowing-down time for heavier ions, it is used in
UPIC3dE to define the limiting conditions. Fig. 7 shows the slowing-down time normalized with the electron–ion collision
time for a fully ionized plasmasei [41] as the function of the number of particles per computational cell for the NGP and CIC
weighting schemes. The slowing-down time exhibits a linear growth as the number of computational particles in the domain
increases. The magnitude of the slowing-down time does not have any significant dependence on the order of the weighting
scheme used.

The deflection time relates also to numerical collisions [19]. Using Eq. (66) we calculate the root-mean-square average
deflection for a particle of species s at time t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h/2

s ðtÞi
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

XNs

p¼1

/2
spðtÞ

vuut ð72Þ
and define the deflection time sU as the time for the average deflection to reach 90�,
vTeΔt / Δr
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu2

s ðsUÞi
q

¼ p=2: ð73Þ
The average change in the perpendicular velocity component hv2
?isim is evaluated when the average value of the deflection

angle of an electron reaches 90�. This value is compared to the theoretical value hv2
?ithe [41]. Fig. 7(b) shows hv2

?isim=hv2
?ithe as

a function of the number of particles per computational cell. The rate of change of the perpendicular component of the veloc-
ity decreases significantly with an increase of number of particles. Since the deflection time is much smaller than heating
time, no significant dependence upon the type of weighting scheme is observed.

5. Validation of the UPIC3dE methodology

The UPIC3dE methodology is applied to the simulation of current collection by cylindrical Langmuir probes of length Lp

and radius rp in collisionless, stationary and drifting, fully ionized, unmagnetized plasmas characterized by a Maxwellian dis-
tribution equation (20). The UPIC3dE results are compared to the numerical predictions by Laframboise [42], analytical
approximations by Peterson and Talbot [43], and analytical solutions by Kanal [44], and Johnson and Murphree [45].

The parameters for the UPIC3dE simulations are specified in Table 1. The size of the computational domain indicated by
the radius RD is set so that the potential at the boundaries reaches zero, i.e., the unperturbed value of the space (or plasma)
potential, Us. Examples of the computational domains used are shown in Fig. 8 indicating the vastly different requirements
needed to capture the thin-sheath (rp � kDÞ and orbital-motion limited (OML) ðrp 	 kDÞ regimes of operation. For cases 1.1–
2.2 the cells are almost equal in volume with edge lengthsDr=kD ’ 1. The particle weigh was set so at least 20 particles are
loaded in each cell. For the OML simulations the grid is non-uniform as Fig. 8(b) shows. Near the probe the cells are set to
Dr=kD ’ 0:1 and progressively reach to Dr=kD ’ 1 at the outer boundary. The computational domain is loaded uniformly with
electrons and ions following the distribution (20). The particle weight is set to a value that results in at least 15 particles
loaded the cells near the probe. The CIC weighting scheme is used for these computations. Electrons and ions are injected
at each time-step from the boundaries of the domain. Particles that reach the boundaries of the domain or reach the probe
are removed from the simulation. Zero electric field is set at the boundaries of the domain and a specified potential Up is
applied at the surface of the cylindrical probe. The electron current to the probe (retarded current) is considered as positive
and the ion current (accelerated current) as negative, with the total current defined as Ip ¼ Iep � Iip.

Simulations of Cases 1.1, 1.2, 2.1, 2.2 were conducted in order to analyze the influence of the ratio Ti=Te on the currents
collected by a stationary cylindrical probe operating in the finite probe ratio regime (rp=kD > 1Þ. The steady-state distribution
of the potential is shown for eUp=kTe ¼ 5; Ti=Te ¼ 1 and rp=kD ¼ 10 in Fig. 9(a). The unsteady formation of the positively
charged sheath around the probe is shown in Fig. 9(b). The comparisons shown in Figs. 9 and 10 show good agreement with
results taken from Laframboise [42] and Peterson and Talbot [43]. Laframboise solved numerically the Vlasov–Poisson sys-
tem (3)–(5) for a wide range of Ti=Te;�25 6 eUp=kTe 6 25 and 0 6 rp=kD 6 100. Laframboise’ results are presented in graph-
onditions for UPIC3dE simulations of cylindrical Langmuir probes.

1.1 1.2 2.1 2.2 3 4

10�2 10�2 10�2 5� 10�3 10�2 5� 10�2

10�3 10�3 10�3 5� 10�4 10�5 5� 10�3

ðm�3Þ 1016 1016 1016 1016 1016 1016

2 2 2 2 2 2
1 0.1 1 1 1 1
10 10 10 5 0.1 50

e �10 to +10 �10 to +10 +2 to +9 +2 to +9 +1 to +9 �2
0 0 0 0 0 1 to 7



Fig. 8. Computational domains used in UPIC3dE simulations of Langmuir probes in stationary plasmas. The thin-sheath regime ðrp=kD � 1Þ and orbital-
motion ðrp=kD 	 1Þ limited regimes require vastly different grid configurations.
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ical and tabular form and have been used widely in the literature. Petersen and Talbot developed regression expressions of
Laframboise’ results for probes with 5 6 rp=kD 6 100 at non-dimensional potential vp ¼ eðUp �UsÞ=kTe > 3 and Ti=ZiTe 6 1.

Simulation results from a stationary cylindrical probe operating in the near OML regime with rp=kD ¼ 0:1; Ti=Te ¼ 1 are
presented in Fig. 11. The time evolution of the electron current collected by the probe at eUp=kTe ¼ 5 is shown in
Fig. 11(a). The non-dimensional electron current is presented in Fig. 11(b) as a function of the non-dimensional potential
for 1 6 eUp=kTe 6 10. The sheath formation leads to the fluctuations in the collected electron current before it reaches a stea-
dy state. The UPIC3dE results are in good agreement with the numerical results by Laframboise [42] and estimates based on
the analytical solution by Kanal [44]. For a stationary probe in the OML regime and Vp ¼ jejUp=kTe > 0 Kanal [44] provides
the collected currents as
Ie ¼ ene

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=2pme

q
ð2prpLpÞ

2ffiffiffiffi
p
p

ffiffiffiffiffiffi
Vp

q
þ eVp erfcð

ffiffiffiffiffiffi
Vp

q
Þ

� �
;

Ii ¼ ene

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=2pmi

q
ð2prpLpÞe�Vp :

ð74Þ
Electron and ion currents collected by a cylindrical probe in the near thin-sheath regime ðrp=kD ¼ 50Þ placed perpendicular to
a flowing plasma with Ti=Te ¼ 1 are plotted in Fig. 12. The probe is biased at eUp=kTe ¼ �2 and currents are presented as a
function of ion-speed ratio Si. The UPIC3dE results are compared with estimates based on Kanal [44] who provides the elec-
tron current as
Ie ¼ ene

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTe=2pme

q
ð2prpLpÞ expð�eUp=kTeÞ: ð75Þ
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The ion current to a perpendicular probe operating in the thin-sheath regime is given by Johnson and Murphree [45] as an
asymptotic expression of Kanal’s theory by
I?i ¼ ð2prpLpÞene

ffiffiffiffiffiffiffiffiffiffiffiffi
kTe

2pmi

s
2ffiffiffiffi
p
p expð�S2

i Þ
X1
n¼0

Si

n!

	 �2

C nþ 3
2

� �
: ð76Þ
Fig. 12 shows the UPIC3dE results to be in good agreement with the theoretical values. At high-speed ratios the theory over-
predicts the ion current because it does not account for probe-wake and space-charge effects that are modeled self-consis-
tently with the UPIC3dE simulations.

6. Application of UPIC3dE to the simulation of a plasma microsensor

The UPIC3dE code is used in the simulation of the flow in a novel plasma sensor that features complex geometrical and
physical characteristics as shown in Fig. 13. The directional micro-retarding potential analyzer (DmRPA) is designed by Par-
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tridge and Gatsonis [46] to operate in high-density flowing plasmas. The DmRPA consists of a floating electrode (FE), a neg-
atively biased electron retarding electrode (ERE), two positively biased ion retarding electrodes (IRE) and a negatively biased
secondary emission suppression electrode (SESE), as shown in Fig. 13. Unlike traditional RPAs the DmRPA has a large aspect
ratio and includes a microgrid at its entrance that can further reduce the incoming flux. The energy distribution of ions in a
plasma can be obtained by analyzing the DmRPA collector plate currents collected for different potential applied to the elec-
trodes. A theory of current collection for the DmRPA has been developed by Partridge and Gatsonis [46] and extends the clas-
sic-RPA collection by accounting for flux reduction due to the microchannel walls and the microgrid. The DmRPA theory
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Fig. 13. DmRPA schematic showing the microgrid plate, microchannel, and electrodes. The computational domain used in the UPIC3E simulations.



Table 2
Input conditions for UPIC3dE simulations of the DmRPA without the microgrid plate (Case 1–6) and with the microgrid plate (Case 1a–6a).

Case # 1 1a 2 2a 3 3a 4 4a 5 5a 6 6a

ne = ni (m�3) 1016 1018 1016 1018 1016 1018 1016 1018 1016 1018 1016 1018

Te = Ti (eV) 10 10 10 10 10 10 10 10 10 10 10 10
Vi (km/s) 15 15 15 15 15 15 15 15 15 15 15 15
UERE, USESE (V) �50 �50 �50 �50 �50 �50 �50 �50 �50 �50 �50 �50
UIRE-1, UIRE-2 (V) 0 0 14.1 14.1 30 30 50 50 64.1 64.1 80 80
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however, assumes equipotential surfaces inside the microchannel and neglects space-charge effects. The UPIC3de simula-
tions of the DmRPA are used to explore such three-dimensional effects inside the microsensor. In cases where there is dis-
agreement between theoretical predictions and simulations, UPIC3dE results can be used to construct the required I–V
curves. In addition, UPIC3dE simulations elaborate the plasma flow inside the sensor and offer insights that can lead to opti-
mization of its design.
Fig. 14. UPIC3dE simulation of the DmRPA showing the simulation domain, the potential distribution and cx vs. x phase-space plots for
UERE ¼ USESE ¼ �50 V; UIRE-1 ¼ UIRE-2 ¼ 0 V (Case 1).
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The first set of simulations (Cases 1–6) corresponds to the operation of the DmRPA without a microgrid attached at its
entrance. A cylindrical computational domain representing the DmRPA microchannel is shown in Fig. 13. The domain length
and radius are 2100 and 100 lm correspondingly. The domain is discretized with 3500 Delaunay cells that scale with the
Debye length. Cells are loaded with at least 40 particles. The potential of the ERE and SESE electrodes is fixed at
UERE = USESE = �50 V while the potential of the IRE-1 and IRE-2 electrodes is varied from 0 to 80 V. Neumann boundary con-
dition is applied at all insulating surfaces. The plasma with parameters listed in Table 2 is injected from the left side of the
domain with ne ¼ ni ¼ 1016 m�3; Te ¼ Ti ¼ 10 eV;Ve ¼ Vi ¼ 15;000 m=s. Particles that reach any conductor (electrodes) or
dielectric (teflon insulation) boundary are removed from the simulation.

The potential distribution inside of the domain and phase-plots for ions and electrons at the steady state are presented in
Fig. 14 for case 1. The process of acceleration and deceleration of ions as they pass through the grids is evident in the phase
plot of Fig. 14. The ion current that reaches the collector plate is evaluated in the simulations. Fig. 15 shows the dependence
of the collector current on the ion retarding potential. Comparisons are made with the analytical expression of Partridge and
Gatsonis [46]
Fig. 15.
estimat
Ii ¼ v Aqini

2p3=2 exp �b2
i ðceff � ViÞ2

� �
=bi þ c0i

ffiffiffiffi
p
p

1� erfðbiðceff � ViÞÞ

 �h i

: ð77Þ
In the above equation, ceff is the ion velocity corresponding to the effective retarding potential /eff ;A is the DmRPA orifice
area and vRPA is the transmission fraction defined as
vRPA ¼ NccðSi;DÞ=NccðSi;1Þ: ð78Þ
In Eq. (78) Si is the ion-speed ratio, D is the orifice diameter to length ratio and Ncc is defined as
NccðSi;DÞ ¼
ni

2
ffiffiffiffi
p
p

b
pr2f expð�S2

i Þ þ Si
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p
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0
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i sin2 /Þd/

2
4

3
5; ð79Þ
where r is the orifice radius, / and Y are the geometrical integration parameters. Fig. 15(a) shows that the theoretical current
follows the numerical results with differences at low and high applied potentials. The theory assumes an equipotential struc-
ture and no space-charge effects inside the microchannel. The UPIC3dE simulations show clearly that both effects are
present.

The second set of simulations (Cases 1a–6a) corresponds to a more complex geometrical configuration of the DmRPA
shown in Fig. 13 [46]. This configuration involves a microgrid plate of low transparency that is attached in front of the float-
ing electrode. The microgrid is manufactured using a 100 lm thick molybdenum plate with 3 lm diameter holes. The hole-
to-hole spacing is 50 lm with 30� offset as shown in Fig. 13. The microgrid with its holes is represented in the UPIC3dE sim-
ulations by an array of microcylinders attached to the floating electrode and the microchannel as shown in Fig. 13. The diam-
eter and length of each microcylinder is 3 and 100 lm, respectively. Computational particles with the parameters listed in
Table 2 are injected into the domain through the microcylinders.

The ion current measured at the collector plate surface is presented in Fig. 15(b) for various ion retarding potentials. Com-
parison is made with the estimates based on the analytical expression (77). Due to the low transparency of the microgrid, v
ΦIRE-1=ΦIRE-2 [V]
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in Eq. (78) is taken to be a transmission fraction of the microgrid. In essence, the microgrid screens out the incoming ions and
any further reduction in the flux occurs due to the retarding potentials but not the geometry. Differences are attributed to 3d
effects, such as potential variation in the microcylinders and microchannel, not accounted for in the theoretical model.

7. Conclusions

We developed the mathematical formulation and computational implementation of a novel three-dimensional electro-
static particle-in-cell methodology on unstructured Delaunay–Voronoi tetrahedral grids (UPIC3dE). The method allows sim-
ulation of plasmas modeled by the Vlasov–Poisson system of equations in complex domains. The UPIC3dE method
incorporates the duality of the Delaunay–Voronoi duality in all aspects of the particle-in-cell cycle. Charge assignment
and field interpolation schemes of zero- and first-order are formulated for 3d unstructured tetrahedral grids based on the
Hockney’s theory of long-range constraints. The solution to Gauss’s integral law is based on a finite-volume formulation that
takes advantage of the Voronoi–Delaunay dual. Boundary conditions that include floating conductors are developed in 3d
following Gauss’s law. Algorithms for injection from boundaries, particle loading, and particle motion are developed for
unstructured Delaunay grids. An efficient particle tracking algorithm is developed and allows the location of the particle
and aids in the numerical integration of the equations of motion. Macroscopic multi-fluid and single-fluid plasma variables
are obtained on nodes using the Voronoi dual.

Error and sensitivity analysis of the UPIC3dE method was performed. The effects of weighting scheme, particles/cell, grid
scaling, and time-step on the numerical heating, slowing-down time, and deflection times were evaluated in a parametric
investigation. A linear growth of the slowing-down time was found with increasing number of computational particles
per cell. The magnitude of the slowing-down time is shown not to have any significant dependence on the order of the
weighting scheme used. Overall, the linear weighting provides better results in these unstructured Delaunay computations,
is easy to implement and is only slighter slower than zero-order. Higher order weighting/interpolation schemes should be
able to further increase the heating time. However, construction of such schemes on 3d unstructured grids could lead to
more complex analytical formulations that will increase the computational time.

The UPIC3dE numerical methodology and simulation code was validated by application to the problem of current collec-
tion by cylindrical Langmuir probes in stationary and moving collisionless plasmas. Numerical results are compared favor-
ably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe
potentials, and electron to ion temperature ratios.

The UPIC3dE code was applied to the simulation of the directional micro-retarding potential analyzer (DmRPA), a plasma
microsensor that features complex geometrical and physical attributes. The DmRPA includes a microgrid plate that screens
the flowing plasma before it enters a long microchannel embedded with a series of segmented electrodes. The current at the
collector plate is compared favorably with theoretical predictions. The simulations show the complex structure of the poten-
tial inside the segmented microchannel, the phase-space of plasma species and the space-charge effects not captured by the
theory.
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