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An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary 
tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric 
potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux 
Approximation of Gauss’ law using the indirect dual cell with Dirichlet, Neumann and 
external circuit boundary conditions. The resulting matrix equation for the nodal potential 
is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) 
preconditioner algorithm, parallelized using a combination of node coloring and level 
scheduling approaches. The electric field on vertices is obtained using the gradient 
theorem applied to the indirect dual cell. The algorithms for injection, particle loading, 
particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. 
The algorithms for the potential solver, electric field evaluation, loading, scatter-gather 
algorithms are verified using analytic solutions for test cases subject to Laplace and 
Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative 
error in potential, field, and charge density as a function of edge-averaged and volume-
averaged cell size. Analysis shows second order of convergence for the potential and 
first order of convergence for the electric field and charge density. Temporal sensitivity 
analysis is performed and the momentum and energy conservation properties of the 
particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, 
slowing-down and the deflection times are quantified. The heating, slowing-down and the 
deflection times are found to be almost linearly dependent on number of particles per 
cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless 
plasmas show good comparison with previous experimentally validated numerical results. 
These simulations were also used in a parallelization efficiency investigation. Results show 
that the EUPIC has efficiency of more than 80% when the simulation is performed on a 
single CPU from a non-uniform memory access node and the efficiency is decreasing as the 
number of threads further increases. The EUPIC is applied to the simulation of the multi-
species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC 
potential and flowfield distribution around the CubeSat exhibit features that are consistent 
with previous simulations over simpler geometrical bodies.
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1. Introduction

Particle-in-Cell (PIC) methods using unstructured grids and parallelization offer flexibility to perform large-scale com-
putations of collisionless plasmas in domains with complex geometries. The algorithmic and mathematical issues for 
parallelized unstructured PIC implementations involve all aspects of a PIC cycle: gather/scatter, particle search and motion, 
potential and electric field evaluation, boundary conditions in bounded and unbounded plasmas, and quality of simula-
tion due to artificial collisions and heating. There have been few implementations of electrostatic and electromagnetic PIC 
on unstructured grids and an even smaller number of parallelized ones. A three-dimensional parallel, electromagnetic PIC 
method on non-uniform hexahedral grids was developed by Wang et al. [1,2]. The method is based on a finite volume for-
mulation with hexahedral cells that are connected with cubic cells, distorted to fit the complex geometries. Each hexahedral 
is mapped one to one to a unit cube in the logical Cartesian space. The gather/scatter procedures are performed in the 
Cartesian space using a charge conserving weighting scheme by Villasenor and Buneman [3]. The code has been applied to 
ion beam neutralization [4]. Wu et al. [5] developed a 3d finite element, parallelized, electrostatic code using unstructured 
tetrahedral grids with dynamic domain decomposition. Petillo et al. [6] developed a finite element electromagnetic PIC code 
on structured and unstructured grids and applied to electron guns. A three-dimensional PIC code on unstructured tetrahe-
dral grids coupled with a finite element electrostatic solver and a frequency-domain electromagnetic solver was developed 
by Pavarin et al. [7] and applied to the simulation of a cylindrical cusped-plasma accelerator [8]. Alternative approaches 
addressing complex geometries without using unstructured meshes include conformal mapping [9] and adaptive mesh re-
finement [10]. Unstructured PIC simulations present a potential for increased artificial collisions and numerical heating due 
to the exerted self-force on particles [11]. Bettencourt [12] suggested an algorithm that allows controlling the amount of 
the self-force. Gatsonis and Spirkin [13] presented the mathematical formulation and implementation of an electrostatic PIC 
method on unstructured 3d Delaunay–Voronoi tetrahedral grids (UPIC3dE). The duality of the Delaunay–Voronoi grid was 
used in [13] effectively in the gather/scatter, potential solver, particle mover, and sampling step of the UPIC3dE cycle but 
imposed restrictions due to the required quality of the Delaunay discretization in 3D.

To take advantage of available general-purpose tetrahedral grid generators and multi-platform shared-memory multi-
processing computers including GPUs, this work presents a new mathematical formulation of a parallelized electrostatic 
PIC method on unstructured tetrahedral grids (EUPIC). All algorithms of the EUPIC are parallelized and implemented using 
OpenMP methodology allowing large-scale plasma computations with complex geometrical domains on multiprocessors. The 
grid structure used in EUPIC involves the tetrahedral cells, which scale with the local Debye length and the indirect dual 
cells formed by connecting the centroids of each adjoining face to the midpoints of the edges shared and then connecting 
the centroids of the faces to the centroids of the tetrahedra to which these faces belong. Charge assignment to the vertices 
of the tetrahedra (or nodes) and electric-field weighting to the particle follows [13]. The evaluation of the electric potential 
follows the finite volume formulation of the integral Gauss law in [13] but is performed using the indirect dual cell as the 
Gaussian surface. The potential is assumed to vary linearly within a cell, which makes our formulation consistent with the 
Multi-Point Flux Approximation (MPFA) family of methods [14]. The potential on conductors driven by external circuits is 
evaluated by a finite volume MPFA of the integral Gauss law, the charge conservation law and Kirchhoff’s lumped circuit law. 
Unlike previous approaches [13,15,16] during an EUPIC iteration a single extended system of algebraic equations is solved 
providing the potential on all nodes of the domain, including externally driven, Dirichlet and Neumann nodes. The solution 
is obtained by the restarted generalized minimal residual method (GMRES) solver with an incomplete LU preconditioner 
with zero fill-ins (ILU(0)) following [17]. GMRES is parallelized in EUPIC with OpenMP using a combination of node-coloring 
and level-scheduling approaches. The nodal electric field is evaluated by a finite volume MPFA of the integral definition for 
the electric field [13]. For a Dirichlet or driven-circuit boundary node the electric field is corrected by use of the nodal sur-
face charge, which is evaluated by a finite volume MPFA of Gauss’ Law. The particle integrator in EUPIC follows Buneman’s 
time-centered leapfrog formulation [18]. The particle search-locate algorithm is performed using an optimized version of an 
algorithm developed for Direct Simulation Monte Carlo method on tetrahedra [19]. Particle injection from surfaces in EUPIC 
follows [13]. Periodic boundary conditions are also implemented in EUPIC for a number of pairs of periodic surfaces by mir-
roring the grids and translating particles between two periodic surfaces. Nodal macroscopic properties are evaluated using 
a super-cell that consist of all tetrahedral cells surrounding a node taking into account particles with different weights. The 
methods and algorithms in EUPIC are validated and verified with an extensive set of test cases. Grid sensitivity analysis 
is performed to identify the order of accuracy for the potential and electric field evaluation. The effects of particles/cell, 
grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection time are investigated by 
performing simulations of fully ionized electron–positive ion plasmas in a grounded box with periodic boundary conditions. 
Laframboise’s results [20] on current collection by cylindrical Langmuir probes in collisionless plasmas are used for verifica-
tion of EUPIC simulations in the orbital motion limited and thin sheath regimes. Finally, EUPIC is used for a simulation of 
the plasma flow around a CubeSat in Low Earth Orbit.

2. Electrostatic unstructured particle in cell in 3D (EUPIC) methodology

The EUPIC method solves the electrostatic Vlasov–Poisson system for a multi-species fully ionized plasma [21,22]. The 
single-particle distribution function for species s particles, gives the average number of particles in a volume d3rd3 v ≡
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Fig. 1. The tetrahedron ΩD with global indexing in a domain Ω .

drdv of the phase-space centered at a point (r, v) as f s(r, v, t)d3rd3 v = d6Ns(t) and the local number density as ns(r, t) =∫
f s(r, v, t)d3 v . The equation for the distribution function is

∂ f s

∂t
+ v · ∂ f s

∂r
+ qs

ms

[
E(r, t) + v × Bext(r, t)

] · ∂ f s

∂v
= 0. (1)

In the electrostatic formulation induced magnetic fields due to the particle motion are neglected, and Faraday’s Law 
implies that electric fields are irrotational given by the electrostatic potential φ(r, t)

E(r, t) = −∇φ(r, t). (2)

The self-consistent electric field (and potential) is due to the smoothed distribution (internal) ρint(t) and external distribu-
tion of charges ρext(t), and is given by Maxwell’s equations that reduce to the integral Gauss’s law,

�
A

E · dA = −
�
A

∇φ · dA = 1

ε0

�
V

ρdV (3)

or to the differential Poisson’s equation

ε0∇ · E(r, t) = ε0∇ · (Eext(r, t) + Eint(r, t)
)=∑

s

qs

∫
f s(r,v, t)d3 v − ρext(r, t). (4)

In the Vlasov–Poisson system the single-particle trajectories in the presence of an electrostatic and an external magnetic 
field are

drs(t)

dt
= vs(t),

ms
dvs(t)

dt
= qs

ms

[
E
(
rs(t), t

)+ vs × Bext
(
rs(t), t

)]
.

(5)

2.1. Grid generation and data structure

The EUPIC method uses an unstructured three-dimensional mesh with tetrahedral cells obtained through a grid generator 
such as GMSH [23]. The EUPIC method requires local data structures for efficient implementation of particle motion, electric 
field evaluation and the sampling of macroscopic properties. Grid parameters are stored in data structures that maintain 
node position, node connectivity, face sharing and cell nearest-neighbor information similar to [13]. A tetrahedral cell is 
illustrated in Fig. 1 and assigned to a global cell index D = 1, . . . , G D , where G D is the number of cells in the domain. The 
vertices of the cells are designated as the nodes of the domain, each assigned to a global node index d = 1, . . . , Gd , where 
Gd is the number of nodes in the domain. The triangular faces Aσ of the tetrahedral cells with area |Aσ | are assigned to a 
global face index σ = 1, . . . , Gσ , where Gσ is the number of faces in the domain. The four nodes associated with a cell D
form a unique index set {i, j, k, l} through an association D → {i, j, k, l}, where the ordered set {i, j, k, l} ∈ {1, . . . , Gd}. The 
numbering of the nodes corresponds to the right orientation of the tetrahedron. A node {i} has coordinates ri = (xi, yi, zi)

and the volume of the cell ΩD denoted by |ΩD | is

|ΩD | ≡ |Ωi jkl| = �rl,i · (�ri, j × �ri,k)/6, (6)

where �ri, j = ri − r j .



S.N. Averkin, N.A. Gatsonis / Journal of Computational Physics 363 (2018) 178–199 181
Fig. 2. Notation used for the centroids in the tetrahedral mesh.

Fig. 3. Dual cells for a given primary cell ΩD in 2D and 3D.

Centroids used in various aspects of an EUPIC cycle are depicted in Fig. 2. The centroid (or midpoint) of the edge 
connecting nodes i and j, ri j , the centroid of the face surrounded by nodes i, j, k, ri jk , and the centroid of the tetrahedron 
Ωi jkl , ri jkl , are defined respectively as

ri j = 1

2
(ri + r j),

ri jk = 1

3
(ri + r j + rk),

ri jkl = 1

4
(ri + r j + rk + rl).

(7)

A triangular face of the cell Ωi jkl(ΩD) with nodes i, j, k opposite to the node l is denoted by ADl . The unit outward 
normal to this face with respect to the cell ΩD is nDl .

The indirect dual cell used in Poisson’s solver is shown in Fig. 3(a) for a 2D configuration. For a node i it is formed by 
connecting the centroids of each adjoining face to the midpoints of the edges shared by i. The partial indirect dual cell for 
a 3D configuration around node i is shown in Fig. 3b. It is formed by connecting the centroids of each adjoining face to the 
midpoints of the edges shared by i, then connecting the centroids of the faces to the centroids of the tetrahedra to which 
these faces belong. This construction splits each tetrahedron ΩD (Ωi jkl) into four hexahedra. The hexahedron containing a 
node i is denoted by ΓiD . The dual cell for a node i containing all such hexahedra is denoted by Γi and is given by

Γi =
⋃

D
ΩD �i

ΓiD . (8)

The face of the dual cell ΓiD adjacent to the edge connecting the nodes i and k is denoted by ÂDik and can be written 
as

ÂDik = ΓiD ∩ ΓkD . (9)
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The area of the face ÂDik is denoted by | ÂDik|. The outward unit normal to this face for the cell ΓiD is denoted by n̂Dik . The 
relation between unit outward normals for two adjacent cells is

n̂Dik = −n̂Dki, (10)

where n̂Dki is the outward normal for the face ÂDki ≡ ÂDik of the cell ΓkD .
The data structure implemented in EUPIC allows evaluation of information on neighboring cells during particle motion 

without any additional operations as discussed in Sec. 2.6.

2.2. Charge assignment, nodal number density and nodal charge density

The particle loading and injection procedures in EUPIC follow those in [13]. The charge assignment functions used in 
EUPIC follow also [13] and satisfy charge conservation and first-order constraint. With the Nearest Grid Point (NGP) scheme, 
the charge from the particle at position rp ∈ ΩD(Ωi jkl) is assigned to the closest node from the cell ΩD . Thus, the weight 
function WmD(rp) assigned to the node m ∈ ΩD for a particle at position rp ∈ ΩD(Ωi jkl) is

WmD(rp) =
{

1, minn∈ΩD |rn − rp| = |rm − rp|
0, minn∈ΩD |rn − rp| 
= |rm − rp| m = i, j,k, l. (11)

With the Cloud In Cell (CIC) scheme, the weight functions are

WmD(rp) = (1/3)�rnp · nDm|ADm|/ΩD m = i, j,k, l; n ∈ ADm. (12)

Using weights given by Eqs. (11) or (12) the species s charge at a node i is

Q s
i = qs

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

W iD(rp)F W p, (13)

where F W p is the particle weight of particle p, i.e. the number of real molecules represented by a single computational 
particle p, Ns

p is the number of particles of species s available in the computation domain. With the nodal charges known 
the species s charges density at a node i is obtained using the volume of the indirect dual cell Γi shown in Fig. 3(a), as

ρs(xi, yi, zi) ≡ ρ i
s = Q i

s/|Γi|. (14)

2.3. Electric potential at nodes

The integral Gauss law given by Eq. (3) using as the Gaussian surface the dual cell Γi surrounding a node i = 1, . . . , Gd

shown in Fig. 3a for 2D configuration yields

G D (i)∑
D=1

∑
k∈ΩD

k 
=i

�
ÂDik

∇φ · dA = − Q i

ε0
, (15)

where G D(i) denotes the number of cells which share the same node i. Assuming furthermore a linear potential variation 
inside each tetrahedron ΩD ∩ Γi 
= ∅, the electric field (or gradient) in Eq. (15) is constant in every cell ΩD and can be 
found from the following system of linear equations

(∇φ)D · �ri, j = φi − φ j,

(∇φ)D · �ri,k = φi − φk,

(∇φ)D · �ri,l = φi − φl,

(16)

whose solution for the electric field for a positively oriented tetrahedron is written as

ED = −(∇φ)D = 1

3|ΩD |
(
φinDi|ADi| + φ jnD j|AD j| + φknDk|ADk| + φlnDl|ADl|

)
. (17)

The discrete form of Eq. (15) can be written as

G D (i)∑
D=1

(∇φ)D ·
∑

k∈ΩD

n̂Dik| ÂDik| = − Q i

ε0
. (18)
k 
=i
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Fig. 4. ΓiD is the part Gaussian surface Γi used in the evaluation of the electric potential.

The areas and corresponding normals in Eq. (18) as shown in Fig. 4 are

n̂Di| ÂDi| =
∑
k∈ΩD

k 
=i

n̂Dik| ÂDik| = n̂Dij| ÂDi j| + n̂Dik| ÂDik| + n̂Dil| ÂDil| (19)

and can be simplified to

n̂Di| ÂDi| = 1

3
nDi|ADi|. (20)

Substituting Eq. (17) and Eq. (20) into Eq. (18), it becomes

G D (i)∑
D=1

1

9|ΩD |
∑

k∈ΩD

φknDk|ADk| · nDi|ADi| = Q i

ε0
. (21)

Applying Eq. (21) to all the interior nodes Gd in the domain, a system of Gd × Gd linear equations for the unknown nodal 
potentials is obtained⎛

⎜⎜⎜⎜⎜⎝

R11 R12 R13 · · · R1Gd

R21 R22 R23 · · · R2Gd

R31 R32 R33 · · · R3Gd
...

...
...

. . .
...

RGd1 RGd2 RGd3 · · · RGd Gd

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

φ1
φ2
φ3
...

φGd

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

Q 1/ε0
Q 2/ε0
Q 3/ε0

...

Q Gd/ε0

⎞
⎟⎟⎟⎟⎟⎠ , (22)

where

Rij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑G D (i)
D=1

|ADi |2
9|ΩD | , i = j,∑G D (i)

D=1
nDk·nDi |ADk||ADi |

9|ΩD | , i is adjacent to j,

0, otherwise.

It should be noted that the assumption of the linear variation of the potential inside each tetrahedron is consistent with 
the MPFA methods used in the numerical solution of the diffusion equations on arbitrary unstructured grids [14].

2.3.1. Plasma with surfaces of imposed potential and/or electric field
Consider next a plasma bounded by a surface with imposed potential (Dirichlet) as shown in Fig. 5(a). The potential at 

the Dirichlet node i ∈ ADi of a surface ADi is

φi = Φ0. (23)

In the case of Neumann boundary conditions the normal field at node j ∈ ANe of a surface ANe is

(E j)n = (E0)n. (24)

Using the Gaussian surface corresponding to the dual cell Γ j surrounding a node with index j ∈ ANe as shown in 
Fig. 5(b), Gauss’s law given by Eq. (3) becomes
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Fig. 5. Dirichlet node (a), Neumann node (b), and conductor node driven by LRC circuit boundary conditions showing the corresponding Gaussian surfaces.

G D (i)∑
D=1

1

9|ΩD |
∑

k∈ΩD

φknDk|ADk| · nD j|AD j| + 1

3
E0 ·

∑
σ∈ANe
Aσ � j

nσ |Aσ | = Q j

ε0
, (25)

where nσ is the outward unit normal to the boundary triangular face Aσ .
Any arbitrary combination of Dirichlet and Neumann surfaces in contact with the plasma can be considered by replacing 

equations in the linear system (22) with corresponding equations given by Eqs. (23) or (25). The actual structure of the 
resulting system of equations is shown in the next section.

2.3.2. Plasma with a conductor driven by an LRC circuit
Consider next a bounded plasma that includes a driven conductor as shown in Fig. 5(c). The conductor of surface Aco

is driven by a voltage source V (t) connected in series with a resistance, R , inductance, L, and capacitance, C , as shown in 
Fig. 5(c). The evaluation of the potential generalizes the approach in [13] following [15,16]. The integral Gauss’ law Eq. (3)
applied to the dual cell associated with a node i ∈ Aco shown in Fig. 5(c) becomes

ε0

G D (i)∑
D=1

1

9|ΩD |
∑

k∈ΩD

φknDk|ADk| · nDi|ADi| − σi

∑
Aσ ∈Aco

Aσ �i

|Aσ | = Q i, (26)

where σi(t) is the surface charge density and Q i is the volume charge of node i. Assuming a perfect conductor with constant 
potential φco, the total surface charge density σco(t) on the driven conductor with total area |Aco| is obtained by summing 
all surface charge densities as

σco|Aco| ≡
∑

i∈Aco

σi

∑
Aσ ∈Aco

Aσ �i

|Aσ |

= ε0φco

∑
i∈Aco

G D (i)∑
D=1

|ADi|2
9|ΩD | + ε0

∑
i∈Aco

G D (i)∑
D=1

1

9|ΩD |
∑
k∈ΩD

k 
=i

φknDk|ADk| · nDi |ADi| −
∑

i∈Aco

Q i,

(27)

where 
∑

i∈Aco
Q i is the volume charge associated with the plasma in the dual cells of the conductor. In Eq. (27) φco(t) and 

σco(t) are unknown variables and are evaluated from the boundary conditions from circuit laws. The charge conservation 
law at the conductor (or Kirchhoff’s current law) becomes

|Aco|dσco

dt
= dQ ci

dt
+ dQ cv

dt
, (28)

where, Q cv(t) is the convective charge collected by the conductor from the plasma and Q ci(t) is the charge on the conductor 
due to the circuit. Kirchhoff’s voltage law for the lumped circuit shown in Fig. 5(c) is

L
d2 Q ci

2
+ R

dQ ci + C Q ci(t) = V (t) + φco(t). (29)

dt dt
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Substituting a second-order, backward Euler finite-difference approximation of Eq. (29) [15] into a first-order, backward 
Euler finite-difference approximation of Eq. (28) it becomes

|Aco|σco(t) = |Aco|σco(t − �t) + �Q cv(t) + �Q ci(t − �t) + V (t) + φco(t)
9L

4�t2 + 3R
2�t + C

, (30)

where

�Q ci(t − �t) = −
(

− 15L

4�t2
− R

2�t
+ C

)
Q ci(t − �t)

−
(

11L

2�t2
+ R

2�t

)
Q ci(t − 2�t) + 8

L

4�t2
Q ci(t − 3�t) − L

4�t2
Q ci(t − 4�t),

(31)

and �Q cv(t) = Q cv(t) − Q cv(t − �t) is the convective charge collected by the conductor from the time t − �t to t from the 
plasma. Substituting Eq. (27) into Eq. (30) it becomes[

ε0

∑
i∈Aco

G D (i)∑
D=1

|ADi|2
9|ΩD | −

(
9L

4�t2
+ 3R

2�t
+ C

)−1
]
φco(t) + ε0

∑
i∈Aco

G D (i)∑
D=1

1

9|ΩD |
∑
k∈ΩD

k 
=i

φknDk|ADk| · nDi |ADi|

= |Aco|σco(t − �t) + �Q cv(t) +
∑

i∈Aco

Q i + (�Q ci(t − �t) + V (t)
)( 9L

4�t2
+ 3R

2�t
+ C

)−1

.

(32)

For completeness we also assume that node j is at fixed potential Φ0 (it can be, for example, grounded) and the node 
k is a part of the surface ANe with an applied electric field E0 then Eq. (32) coupled with the system (22) for the interior 
nodes results in⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R11 · · · R1i · · · R1 j · · · R1Gd 0
...

. . .
...

. . .
...

. . .
...

...

0 · · · 1 · · · 0 · · · 0 −1
...

. . .
...

. . .
...

. . .
...

...

0 · · · 0 · · · 1 · · · 0 0
...

. . .
...

. . .
...

. . .
...

...

Rk1 · · · Rki · · · Rkj · · · RkGd 0
...

. . .
...

. . .
...

. . .
...

...

RGd1 · · · RGdi · · · RGd j · · · RGd Gd 0
R̃1 · · · R̃ i · · · R̃ j · · · R̃Gd 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1
...

φi
...

φ j
...

φk
...

φGd

φco

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

ε0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q 1
...

0
...

ε0Φ0
...

Q k − 1
3ε0E0 ·∑ σ∈ANe

Aσ �k
nσ |Aσ |

...

Q Gd

Q̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

where the ith row corresponds to the nodes of the driven conductor Aco, the row j is for the conductor at fixed potential 
Φ0, the kth row is for the Neumann boundary ANe with applied electric field E0, Rij are defined by Eq. (22) and R̃ i and Q̃
are given as

R̃ i =
⎧⎨
⎩
[
ε0
∑

j∈Aco

∑G D ( j)
D=1

|AD j |2
9|ΩD | − ( 9L

4�t2 + 3R
2�t + C

)−1]−1(
ε0
∑G D (i)

D=1
j∈ΩD

j 
=i

1
9|ΩD | nDi |ADi| · nD j|AD j|

)
, i ∈ Aco,

0, i /∈ Aco,

Q̃ =
ε0|Aco|σco(t − �t) + ε0�Q cv(t) + ε0

∑
i∈Aco

Q i(t) + ε0
�Q ci(t−�t)+V (t)

9L
4�t2 + 3R

2�t +C

ε0
∑

i∈Aco

∑G D (i)
D=1

|ADi |2
9|ΩD | − ( 9L

4�t2 + 3R
2�t + C)−1

.

The system of sparse linear equations given by Eq. (33) is solved using restarted GMRES solver with the ILU(0) precon-
ditioner following [17]. This derivation can be extended to a plasma with additional driven electrodes and, thus, allows the 
representation of a specific plasma device.

In the case of a floating conductor the potential is determined by the surface charge collected by it. This case is equivalent 
to a driven conductor shown in Fig. 5(c) connected to an open circuit with C → 0. Gauss’s law for the floating conductor is 
expressed as in Eq. (27) and charge conservation law given by Eq. (28) in discrete form becomes

|Aco|σco(t) = |Aco|σco(t − �t) + �Q cv(t), (34)

where we took into account that there is no charge on the conductor due to the circuit.
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Substituting Eq. (34) into Eq. (27), it becomes

ε0

∑
i∈Aco

G D (i)∑
D=1

|ADi|2
9|ΩD |φco(t) + ε0

∑
i∈Aco

G D (i)∑
D=1

1

9|ΩD |
∑
k∈ΩD

k 
=i

φknDk|ADk| · nDi|ADi|

= |Aco|σco(t − �t) + �Q cv(t) +
∑

i∈Aco

Q i .

(35)

The coefficients R̃ i and Q̃ from Eq. (33) are defined for floating conductor based on Eq. (35) as

R̃ i =
⎧⎨
⎩
(∑

j∈Aco

∑G D ( j)
D=1

|AD j |2
9|ΩD |

)−1∑G D (i)
D=1

j∈ΩD
j 
=i

1
9|ΩD | nDi |ADi| · nD j|AD j|, i ∈ Aco,

0, i /∈ Aco,

Q̃ =
( ∑

i∈Aco

G D (i)∑
D=1

|ADi|2
9|ΩD |

)−1(
|Aco|σco(t − �t) + �Q cv(t) +

∑
i∈Aco

Q i(t)

)
.

2.4. Particle injection from surfaces and periodic boundary conditions on unstructured meshes

Particle injection from surfaces follows [13,19]. Periodic boundary conditions are also implemented in EUPIC for a number 
of periodic surfaces pairs obtained by translation by a vector R, which, in general, is different for different pairs. The main 
difficulty in implementing periodic boundary conditions on unstructured meshes is the necessity to find a corresponding 
periodic face from which particle is reinjected from the periodic surface once it left the domain from the other. In order to 
circumvent this computationally expensive procedure we use mirror meshes on the periodic surfaces pairs. The list of the 
periodic faces of the two periodic boundaries separated by R is stored. When a particle crosses a periodic face, its position is 
shifted by R and reinjected from the other periodic face. This implementation is both computationally efficient and allows 
using arbitrary shaped periodic boundaries. For the periodic potential we use Dirichlet boundary conditions described in 
Sec. 2.3.1.

2.5. Nodal electric field and force interpolation

The electric field at node i can be found from

E = − lim
V →0

1

V

�
A

φdA (36)

applied to the dual cell Γi in Fig. 3

Ei = − 1

|Γi|
G D (i)∑
D=1

∑
k∈ΩD

∫
ÂDik

φdA (37)

or after carrying out all integrations in fully discrete form

Ei = −
( G D (i)∑

D=1

|ΩD |
)−1 Gσ (i)∑

σ=1
i,Aσ ∈ΩD
l∈ΩD \Aσ

nDl|Aσ |1

3

∑
j∈Aσ

φ j, (38)

where Gσ (i) is the number of faces surrounding the node i including the boundary faces for each node i is a part of the 
faces. Equation (38) can be used to evaluate electric field on both interior and boundary nodes. However, for a Neumann 
boundary node the field is evaluated directly from the imposed one following Eq. (24). For a Dirichlet node or driven-circuit 
node i ∈ ADi the electric field is given by

Ei = σi

ε0
ni, (39)

where σi is the surface charge density at node i and ni is the unit outward normal at node i. Equation (39) in discrete form 
becomes

Ei = −1

3

σi

ε0

∑
σ∈ADi

nσ |Aσ |. (40)
Aσ � j
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Fig. 6. Particle tracking algorithm.

The surface charge density, σi , is calculated from a finite volume MPFA of the Gauss’ law applied to the Gaussian surfaces 
shown in Fig. 5(b, c) and is given by

σi = ε0
∑G D (i)

D=1
1

9|ΩD |
∑

k∈ΩD
φknDk|ADk| · nDi|ADi| − Q i∑

Aσ ∈ADi
Aσ �i

|Aσ | . (41)

When a node is shared between two or more surfaces with different boundary conditions (for example, corners) an area-
weighted average of the electric field is evaluated from each of these surfaces calculated following Eqs. (24) and (40).

The electric field at the position of a particle rp ∈ ΩD is obtained through interpolation from the four nodes of the 
tetrahedral cell using the same weights as in Sec. 2.2 as

E(xp, yp, zp) =
∑

m∈ΩD

EmWmD(rp). (42)

2.6. Integration of particle motion and particle tracer

The trajectory of a particle in the presence of an electrostatic field, E, and an external magnetic field, Bext , is integrated 
as in [13] following Buneman’s time-centered leapfrog formulation [18]

vt+�t/2
p − vt−�t/2

p

�t
= qp

mp

[
Et(rp) + vt+�t/2

p − vt−�t/2
p

2
× Bt

ext(rp)

]
,

rt+�t
p = vt+�t/2

p �t + rt
p

(43)

combined with Boris’s algorithm [24] for the implementation of the v ×Bext rotation in case of an applied external magnetic 
field.

The particle search-locate algorithm in EUPIC is carried out using an improved version of the successive-neighbor algo-
rithm developed in [19] for Direct Simulation Monte Carlo method on unstructured three-dimensional meshes. Compared 
to [19] the current algorithm requires less number of floating point operations. The steps for particles tracking in tetrahedra 
shown in Fig. 6 are outlined below:

(S.1) For each tetrahedral cell D using the outward normal nDl for each face l in the cell for each particle p calculate the 
projection of velocity vp onto nDl , v Dl = vp · nDl that gives the velocity at which the particle is approaching the plane of 
the corresponding face ADl .

(S.1.1) If v Dl < 0 the particle is moving in the opposite direction of the face and intersection is not possible; set δtDl =
1 + �t .

(S.1.2) If v Dl = 0 the particle is moving parallel to the face and intersection with this face is not possible, set δtDl = 1 + �t .
(S.1.3) If v Dl > 0 the particle can cross the plane of the face and intersection is possible. In this case calculate the distance 

from the face to the particle in the cell, as δDl = −�rp,k · nDl , where �rp,k = rp(t) − rk , and rk is the position of a 
node which lies into the face as shown in Fig. 6. Using the particle-face distance δDl and the normal velocity v Dl
calculate the time needed for a particle to reach the face as, δtDl = δDl/v Dl .
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(S.2) Calculate δtmin = minl∈ΩD (δtDl).

(S.2.1) If δtmin ≤ �t then the particle crosses the corresponding face. Once a face which the particle crosses is determined, 
the neighbor cell is also found. It is achieved by storing a list of the global faces indices, a list of the global nodes 
indices opposite to the faces and a list of the global indices of neighbor cells in the same order for every cell in the 
grid, allowing efficient next cell determination during particle crossing. According to the type of the crossed face the 
following cases are possible:
(S.2.1.1) If the particle crosses a boundary face, the boundary conditions associated with this face are imposed. The 

new location of the particle in the next cell (or the same cell in case of a reflection) is rp(t + δtmin) =
rp(t) + vpδtmin and the new time step for this particle is �t∗ = �t − δtmin. The velocity of the particle in 
the next cell depends on the boundary condition. Then this process is repeated with new time step until 
the particle remains in a new cell or leaves the domain.

(S.2.1.2) If particle crosses a free boundary, it is deleted from the computational domain.
(S.2.2) If δtmin > �t the particle remains in the current cell and its final position is rp(t + �t) = rp(t) + vp�t .

2.7. Nodal macroscopic properties

Evaluation of nodal macroscopic properties for multiple particle weights is based on output samples from EUPIC. The 
species s number density at a node i is obtained using the volume of the supercell Ωi shown in Fig. 3, as

ns(xi, yi, zi) ≡ ns
i = Ns(i, t)/|Ωi|, (44)

where the number of real particles of species s inside a supercell Ωi shown in Fig. 3(a) is

Ns(i, t) ≡ Ns
i (t) =

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

F W p, (45)

where Ns
p is the number of computational particles of species s in the domain. The species s mean velocity at a node i is

Vs(i, t) ≡ {V sx(i, t), V sy(i, t), V sz(i, t)
}= 1

Ns(i, t)

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

F W pvsp. (46)

The mass-average velocity V(i, t) at a node i is

V(i, t) ≡ {V x(i, t), V y(i, t), V z(i, t)
}= 1∑

s ns(i, t)ms

∑
s

ns(i, t)msVs. (47)

The thermal (or random) velocity for the p-th particle of species s at time t is given with respect to the node species-
average velocity

Csp = vsp − Vs(i, t) (48)

or with respect to the cell mass-average velocity as

C∗
sp = vsp − V(i, t) = Csp + Wsp . (49)

The species s translational temperature, scalar pressure, pressure tensor, heat flux vector, and current density in the 
species-average system or the mass-average system (designated by *) are obtained as

3

2
kT (∗)

s (i, t) = 1

Ns(i, t)

1

2
ms

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

F W p C (∗)2
sp ,

p(∗)
s (i, t) = 1

3
ns(i, t)

1

Ns(i, t)
ms

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

F W pC (∗)2
sp = ns(i, t)kB T (∗)

s (i, t),

P(∗)
s (i, t) = ns(i, t)

1

Ns(i, t)
ms

ND∑
D=1

Ω �i

Ns
p∑

p=1
r ∈Ω

F W pC(∗)
sp C(∗)

sp , (50)
D p D
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q(∗)
s (i, t) = 1

2

1

Ns(i, t)
ms

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

F W pC(∗)
sp C(∗)

sp ,

js = 1

|Ωi|qs

ND∑
D=1

ΩD �i

Ns
p∑

p=1
rp∈ΩD

W iD(rp)F W pvsp .

3. Parallelization implementation

The EUPIC is parallelized using OpenMP in order to take advantage of multi-platform shared-memory multiprocessing 
computers including GPUs. The parallelization of the algorithms for charge assignment, force interpolation, and particle 
motion is achieved by distributing clusters of tetrahedral cells to distinct parallel threads that compute independently from 
each other. The dynamic load balancing based on the number of particle processed by each thread is used to achieve better 
parallel efficiency. It is achieved by counting the number of particles in all cells every 100 iterations and distributing cell 
clusters that contains a nearly equal amount of particles for parallel processing to all threads in gather/scatter and motion 
algorithms. It allows to avoid using OpenMP’s intrinsic load balancing algorithms that introduce additional overhead for 
every iteration. For the evaluation of macroscopic properties the corresponding moments are first calculated for cells in 
parallel. Then for each node the moments are summed for all cells surrounding a node in parallel and independently of 
other nodes. These sums are then used to calculate the macroscopic properties.

Parallelization of the GMRES computational cycle involves the dot product calculations that are computationally expen-
sive. These calculations are performed by splitting the vectors and matrices in stripes and offloading calculations to different 
threads. In case of matrix–vector products the matrix is split by rows taking into account the number of non-zero elements 
achieving better load balancing. In addition, during the ILU(0) preconditioning it is necessary to solve an LU sparse system. 
The main problem with such solutions is data dependencies between unknown values. In order to reduce such data depen-
dencies we use a combination of nodes reordering based on the coloring of the data dependency directed acyclic graph [25,
26] and calculation ordering based on the level-scheduling scheme [27,26]. First, we create a directed acyclic graph of data 
dependencies of the L and U matrices and use a graph-coloring scheme to color this graph. The nodes are reordered in a 
way that those with the same color are sitting next to each other. Then the level-scheduling scheme is used to reordered 
system to extract independent calculation steps from the solution of the LU system. These reordering steps are performed 
only once in the beginning of the simulation and then used during the entire EUPIC simulation. For the main stopping 
criteria of the restarted GMRES method we use the relative residual en

GMRES at outer GMRES iteration n defined as

en
GMRES = ‖rn‖

max(ε0,‖Q̃ ‖) ≤ ε. (51)

In the above rn = R̃φn − Q̃ is the residual and φn is the potential at the outer GMRES iteration n, ‖ . . .‖ is the either 
L2 or L∞ norm, ε0 is the constant that determines the minimum possible value of ‖Q̃ ‖ to avoid division by zero, ε is 
the specified relative error. The calculation of the actual residual is computationally expensive, therefore, during the inner 
GMRES iterations the following estimate for the preconditioned relative residual is used

ēm
GMRES = min

( ‖M−1rm‖
max(ε0,‖M−1 Q̃ ‖) ,

‖r0‖
‖M−1r0‖

‖M−1rm‖
max(ε0,‖Q̃ ‖)

)
≤ ε, (52)

where m is the inner GMRES iteration, M is ILU(0) preconditioner matrix, r0 is the residual at the beginning of inner 
iterations, rm is the residual at the m inner iteration. Since the satisfaction of the condition given by Eq. (52) doesn’t 
guarantee the satisfaction of Eq. (51), the condition in Eq. (51) is also evaluated a posteriori. In the simulations presented in 
this work the rather conservative values for stopping criteria of ε = 10−11, ε0 = 10−13 were used accompanied by a Krylov 
subspace dimension of 100. The GMRES solver usually converged in less than 200 of iterations depending on the particular 
problem and the relative residual defined by Eq. (51) was usually less than 5 × 10−13.

The parallelization of the electric field calculation algorithm is achieved by first rewriting Eq. (38) explicitly as a product 
between a sparse matrix and a vector as

Ei =
Gd∑
j=1

Ẽi jφ j, (53)

where Ẽi j is the vector-valued coefficient showing the contribution to the electric field at node i from the potential at 
node j. The vector-valued matrix Ẽ has the same fill-in structure as the matrix R in Eq. (22). Then parallelization follows 
the method outlined above for matrix–vector multiplication. The advantage of explicit matrix–vector product is the increased 
efficiency due to better CPU cache utilization. Once electric field at nodes is calculated it is corrected on the boundary nodes 
following Eq. (40).
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Fig. 7. Effects of edge-averaged and volume-averaged cell size on L2 and L∞ norms of the relative error in potential and x-component of electric field (top) 
and corresponding orders of convergence (bottom).

4. Verification, validation and error analysis

The first test case provides verification of the electrostatic solver, nodal field evaluation, and a grid sensitivity analysis. 
It involves a grounded conducting sphere of radius R in vacuum with a uniform applied electric field E0 along z-axis and 
Neumann boundary conditions E(x, y, z = 5R) = E0. The analytic solution [28] is

φ(x, y, z) = −E0

(
1 − R3

r3

)
z,

E(x, y, z) = E0

[
3

zR3

r5 r +
(

1 − R3

r3

)
k
]
,

(54)

where r = √x2 + y2 + z2, k is the unit vector along z. Fig. 7 presents the effects of the cell size on the L2 norm of the 
relative error in φ(x, y, z) and Ex(x, y, z) defined as e2( fh) = ‖ fh − fe‖2/‖ fe‖2 and the L∞ norm of the relative error 
defined as e∞( f ) = ‖ fh − fe‖∞/‖ fe‖∞ , where fh is a numerical solution obtained with the average cell size �r, fe is an 

exact solution given by Eq. (54). The discrete L2 norm is ‖ f ‖2 =
√∑Gd

i=1 f 2
i and the discrete L∞ norm is ‖ f ‖∞ = maxi | f i |. 

Fig. 7 shows also the order of convergence given by (log e2( f2h) − log e2( fh))/ log 2 for different cell sizes. We use two 
definitions to access the impact of the cell size, �r, an edge-averaged with �r =∑Gd

i=1 li/Gd and a volume-averaged with 
�r = (6

√
2/|Ω̄|)1/3 and |Ω̄| =∑Gd

i=1 |Ωi |/Gd . Fig. 7 shows that both definitions lead to similar results, with e2(φ) ∼ O (�r2)

and e2(Ex) ∼ O (�r) that is consistent with theoretical estimations [14].
The second test case expands with the verification of loading, gather and scatter procedures. It involves a ground sphere 

of radius R enclosing a cloud of stationary positive ions with the linearly varying number density n = n0(1 − r/R) for r ≤ R , 
n = 0 for r > R and Dirichlet boundary conditions φ(r = R) = 0, where r =√x2 + y2 + z2. The potential and electric field 
are spherically symmetric and are given by

φ(r) = φ0

[
1 − 2

(
r

R

)2

+
(

r

R

)3]

E(r) = φ0

R

(
4 − 3

r

R

)
r

R

(55)

where φ0 = en0 R2/(12ε0) is a potential in the center with the maximum electric field Emax = 4φ0/3R at r = 2R/3. Spatial 
discretization is dictated by the need to resolve the maximum gradient �φ/Emax and �r/R � 1.5α where α ≤ 0.1 is a grid 
sensitivity parameter. The simulations were performed with R = 0.1 m, n0 = 1013 m−3, α = 2 × 10−2; 4 × 10−2; 8 × 10−2

and with 300 computational particles per cell.
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Fig. 8. Effects of edge-averaged and volume-averaged cell size on L2 and L∞ norms of the relative error in charge density and potential (top) and corre-
sponding orders of convergence (bottom).

Fig. 8 presents the effect of grid size on the L2 norm and L∞ norm of the relative errors in charge density ρ(x, y, z)
and potential φ(x, y, z), and the order of convergence for different cell sizes. The results show that e2(ρ) ∼ O (�r) and 
e2(φ) ∼ O (�r2).

The third test case examines the momentum and energy conservation properties of the electrostatic solver and leapfrog 
time integrator along with temporal sensitivity analysis. It involves an electron initially at rest placed inside the grounded 
sphere with the linearly-varying stationary ion density distribution as in the previous case. With immobile ions and initial 
conditions the electron is trapped in the potential well and its total energy must be conserved for all times. In addition, 
the translational energy and momentum variations must be periodic functions with constant amplitudes. The time step for 
integration of the electron trajectory is bounded for stability by �t < �r/ve = 3

√
6α/(4ωe), where ωe =√(e2n0)/(meε0). 

The simulations were performed with R = 0.1 m, n0 = 1014 m−3, α = 3 × 10−2 and variable timesteps �t = 5 × 10−11; 
5 × 10−10; 5 × 10−9 s that satisfy stability criterion. The grid consists of about 1,500,000 cells and 200,000 nodes and is 
loaded with about 300,000,000 singly-charged massive ions. The L2 norm of the error in the electric field was found to be 
below 3% for the most part of the domain. The electron kinetic energy evolution in Fig. 9(a) and x-component of momentum 
in Fig. 9(b) show that they vary harmonically with almost constant amplitudes for up to 2e–7 s that corresponds to 113 ω−1

e
that confirms the conservation of energy and momentum. In addition, it can be seen that the effects of varying time-step 
are minimal for up to 2e–7 s that corresponds to 113 ω−1

e or three periods of electron oscillation.
The fourth test case provides analysis of heating, slowing down and deflection times of EUPIC following [11] and [13]. 

The heating time τHs is defined as the time for the average kinetic energy per particle of species s to increase its energy by 
kB Ts/2,〈

�E(τHs)
〉= kB Ts(0)/2. (56)

The numerical slowing-down time τS is the time for the average parallel velocity component of species s, 〈vs‖(τS )〉 to 
become

〈
vs‖(τS)

〉= 1

Ns

Ns∑
p=1

F W p v p‖(τS) = 〈vs‖(0)
〉
/exp(1), (57)

where vp‖(0) = vp(0) is the initial velocity of the particle p, v p‖(t) is the projection of the particle p velocity vector 
at time t onto the vector vp(0)/|vp(0)|. For simulation times less than τS the plasma can be assumed collisionless. The 
deflection time, τd , is also related to numerical collisions [29] and is defined as the time for the root-mean-square average 
deflection angle to reach 90 degrees,

√〈
ϕ2

s (τd)
〉=
√√√√√ 1

Ns

Ns∑
p=1

F W pϕ
2
p(τd) = π/2, (58)
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Fig. 9. Effects of time step on translational energy (a) and x-component of momentum (b) of an electron in a potential well.

Fig. 10. Heating time in EUPIC simulations showing the effects of grid size (a), time step (b) and the average number of computational particles per cell (c).

where the deflection angle for a particle p at time t is defined as

ϕp(t) = cos−1[(vp(0) · vp(t)
)/(∣∣vp(0)

∣∣∣∣vp(t)
∣∣)]. (59)

The simulations are performed in a 3D cubic domain with periodic boundary conditions at all sides. The potential at the 
outer boundaries is fixed at 0 V to eliminate boundary effects. The plasma is loaded initially following a quasi-equilibrium 
Maxwellian distribution with ne = ni = 1016 m−3, Te = Ti = 2 eV and zero drift velocity. Previous investigations [11,13]
have shown that the CIC scheme leads to much larger heating times compared to the NGP scheme. From Eqs. (11) and (12)
it can be seen that on unstructured tetrahedral meshes both schemes require calculation of 4 dot products and as such have 
comparable computational cost. Therefore, on unstructured meshes the NGP charge weighting scheme does not have any 
advantage even from computational costs point of view. For this reason, all simulations in the paper are performed using 
the CIC charge weighting scheme.

Fig. 10a shows the variation of the heating time as the function of the grid spacing at �t = 0.1ω−1
pe and 〈Np〉 = 20. As 

the grid spacing increases the heating time is decreasing. Doubling the grid spacing from �r = 0.5λDe to �r = λDe results in 
an almost order of magnitude decrease in the heating time. Further increase in the grid spacing lowers the heating time to 
103ω−1

pe at �r = 3.17λDe . The effect of the time step at fixed grid spacing �r = λDe and average number of computational 
particles per cell 〈Np〉 = 20 on the heating time is shown in Fig. 10b. The general trend is that increasing time step leads 
to decreasing the heating time. At time steps below �t = 0.1595(�r/vth,e) = 0.1ω−1

pe the further decrease in time step by 
an order of magnitude from �t = 0.1595(�r/vth,e) = 0.1ω−1

pe to �t = 0.01595(�r/vth,e) = 0.01ω−1
pe only slightly increases 

the heating time from 8.8 × 103ω−1
pe to 1.1 × 104ω−1

pe . Similar behavior was found in the earlier simulations of unstructured 
PIC on Delaunay–Voronoi meshes [13]. The dependence of the heating time on the average number of particles per cell at 
constant grid spacing �r = λDe and time step �t = 0.1ω−1

pe is depicted in Fig. 10c. The increase in the average number of 
particles per cell in the range from 20 to 80 results in the almost linear increase in the heating time from 8.8 × 103ω−1

pe to 
2.6 × 104ω−1

pe . The further increase in the average number of computational particles per cell from 80 to 160 particles per 
cell bumps the heating time to 7.3 × 104ω−1

pe . The results from Fig. 10 are used as a guide in the determining of the EUPIC 
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Fig. 11. Deflection (a) and slowing down (b) times in EUPIC simulations as a function of the average number of computational particles per cell with 
�r = λDe and �t = 0.1ω−1

pe .

Table 1
Input conditions for EUPIC simulations of cylindrical Langmuir probes.

Case Thin sheath OML

R D (m) 1.2 × 10−2 5 × 10−4

rp (m) 10−3 10−5

lp (m) 10−2 10−4

ne = ni (m−3) 1016 1016

Te = Ti (eV) 2 2
rp/λD 10 0.1
eΦp/kTe −25; −2.5; 0; 2.5; 25 1; 3; 5; 7; 9

Fig. 12. EUPIC simulation of current collection by a cylindrical probe in thin sheath regime (rp � λD ): (a) Computational domain; (b) the normalized 
collected electron and ion currents.

simulation parameters in the subsequent simulations. Fig. 11 shows deflection (a) and slowing down times (b) as a function 
of the average number of computational particles per cell at constant grid spacing �r = λDe and time step �t = 0.1ω−1

pe . 
Both times increase almost linearly as the average number of computational particles increases. The deflection and slowing 
down times are increased from τd = 3.6 × 104ω−1

pe and τS = 2.4 × 104ω−1
pe respectively at 〈Np〉 = 20 to τd = 3.2 × 105ω−1

pe

and τS = 2.1 × 105ω−1
pe respectively at 〈Np〉 = 160. It should be noted that deflection and slowing down times are at least 

three times larger than the corresponding heating time.
The fifth test case involves the simulation of current collection by a cylindrical Langmuir probe of length L p and radius 

rp in a collisionless plasma. The input parameters are shown in Table 1 and cover the regime of operation from thin sheath 
(rp � λD ) to orbital-motion limited (OML) (rp � λD ). Fig. 12a shows the simulation domain for the thin sheath cases as 
an ellipsoidal region with distances from the probe in azimuthal and radial directions equal to 12rp . Due to the symmetry 
of the problem one-eighth of the actual domain is used. The computational domain consists of about 1.7 × 106 tetrahe-
dral cells. Boundary conditions include fixed potential at the probe Φp and zero potential at the outer ellipsoid-like surface 
corresponding to the unperturbed plasma. On the sidewalls zero normal component of the electric field is imposed to repre-
sent the planes of symmetry. The particles are injected through the outer surface following Maxwellian distribution function 
with the parameters from Table 1. Computational particles reaching the probe and the outer surface are removed from the 
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Fig. 13. EUPIC simulation of current collection by a cylindrical probe in the OML regime (rp � λD ): (a) Computational domain; (b) the normalized collected 
electron current as a function of normalized probe potential.

simulations. On the symmetry planes the particles are specularly reflected. The electron current to the probe (retarded 
current) is considered as positive and the ion current (accelerated current) as negative. Fig. 12b plots the electron and ion 
currents normalized by their respective thermal currents (Ie,i0 = ne.irplp

√
2πkB Te,i/me,i) as a function of the probe poten-

tial normalized by the electron temperature. The results of the EUPIC simulations compare favorably to the experimentally 
validated numerical predictions by Laframboise [20].

Fig. 13a show the cut of the computational domain for the EUPIC simulation of current collection by a cylindrical probe 
in the OML regime (rp � λD ). The Langmuir probe is modeled as a cylinder surrounded by a cylindrical domain. Fixed probe 
potential Φp is set at the inner cylinder while zero potential is specified at the outer cylinder corresponding to the unper-
turbed plasma. On the sidewalls zero normal component of the electric field boundary condition is used to represent the 
planes of symmetry. The particles are injected through the surface of the outer cylinder following Maxwellian distribution 
function with the parameters from Table 1 corresponding to the OML case. Fig. 13a shows the comparison of the electron 
current normalized by the random electron current calculated by EUPIC method with the Laframboise simulations [20] as a 
function of the probe potential normalized by the electron temperature. The results of these simulations compare well.

5. Parallelization efficiency

In this section the parallelization efficiency of the OpenMP implementation in EUPIC is discussed. For this purpose, 
simulations of current collection by a cylindrical Langmuir probe in the thin sheath regime were performed following the 
parameters listed in Table 1 for a case of eΦp/kTe = 25. A total of 2.285 × 106 tetrahedral cells were used and initially 
1.2 × 108 of computational particles were loaded. The simulations were performed on the dual socket node with two Intel 
Xeon E5-2690 CPUs with the total number of 16 physical cores and enabled hyper-threading, a technology that allows 
to execute two streams of operations on the same core. The EUPIC code was compiled using the Intel Fortran Compiler 
17.0.1 on Red Hat Enterprise Linux Server 6.8. The simulations have shown that the performance strongly depends on 
how calculations are spread across different cores. The best performance was achieved by using the following environment 
variables: OMP_PLACES = cores and OMP_PROC_BIND = close that were introduced in the OpenMP 4 standard. With these 
options the operating system binds OpenMP threads to physical cores as close as possible to the parent thread and don’t 
allow their migration to other cores. Compared to the default options these settings give performance boost around 30% on 
up to 8 threads while for more threads the performance boost is less than 5%. Fig. 14 presents the speedup and parallel 
efficiency (the ratio of the actual speedup to the theoretical speedup) as a function of the number of OpenMP threads. It 
can be seen that up to 8 threads the parallel efficiency is quite high and monotonically decreases from 96% for two threads 
to 82% for 8 threads as the number of threads increases. Up to 8 threads due to the choice of the environment variables 
the simulation was running on a single CPU of the dual socket configuration. Once the number of threads exceeds 8, as 
can be seen from Fig. 14, the performance drops due to the non-uniform memory access (NUMA) architecture and particle 
data structure in the EUPIC code. The particle data in EUPIC are represented by global arrays and linked lists so that while a 
particle moves from one cell to another it still occupies the same position in the global array and only its pointer is updated. 
Since particle data are stored in the memory of one CPU, the access to this data from the other CPU is much slower due 
to the NUMA memory design architecture. With the choice of OpenMP environment variables in our simulations, if the 
number of threads exceeds 8 but below 16, then 8 threads are assigned to 8 physical cores of one CPU and the remaining 
threads are assigned to the physical cores of another CPU. In this case 8 threads have fast access to the data and finish 
their simulations earlier than remaining threads from another CPU. As a result this 8 threads are waiting for most of the 
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Fig. 14. Speedup (a) and parallel efficiency (b) of the EUPIC simulation of the current collection by a cylindrical Langmuir probe in the thin sheath regime 
as a function of the number of OpenMP threads. The red line shows the number of threads after which NUMA effects start playing the role. The green line 
shows the number of threads after which the hyper-threading technology is used. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Table 2
The average iteration time in the EUPIC simulation of the current collection by a cylindrical Langmuir probe and the percentage of time spend in each step 
of the EUPIC cycle.

Number 
of threads

Average time 
per iteration
(s)

Percentage of the average time spent in each algorithm in PIC cycle

Charge 
assignment

Particle 
motion

Potential 
solver

Electric field 
interpolation and 
particle velocity update

Other

1 64.9434 19.0564 45.3219 12.1982 23.1375 0.2860
2 33.7756 18.0534 45.3070 13.1228 23.1334 0.3835
4 18.1497 17.4091 44.6110 14.4511 22.9895 0.5393
6 12.9278 17.0111 43.8054 15.9242 22.5314 0.7279
8 9.9075 16.8027 42.5648 17.8535 21.8960 0.8830
10 10.3511 17.1590 38.5253 22.9041 20.5811 0.8306
12 9.4986 16.6318 39.2598 23.1179 20.1226 0.8680
16 7.9301 15.6215 37.5267 26.3841 19.4789 0.9888
18 8.8555 14.5536 39.8162 25.0151 19.5062 1.1089
32 6.2594 13.5222 37.3569 27.3490 20.2428 1.5291

simulation time for the remaining threads of another CPU to complete their part of the computations. For the case of up to 
16 threads, the parallel efficiency remains rather low because the simulation is limited by the memory access. At 16 threads 
all cores were loaded and each thread had much less work to do and, thus, much less data to transfer. Therefore, some 
speedup at 16 threads compared to 8 threads can be observed as seen in Fig. 14. Tests with more than 16 threads result 
in some of the cores executing two streams of operations due to the usage of hyper-threading and leads to the slowdown 
shown in Fig. 14. When the node is loaded fully with 32 threads by using all physical and virtual cores, another speedup 
in performance is realized as shown in Fig. 14. In this case the full load on all cores mitigates effects of memory access 
due to the NUMA architecture by taking an advantage of the fact that if one thread of a core is waiting data to perform 
calculations the other thread can perform its own computations resulting in more uniform load of the cores. The speedup 
of 10.3753 for 32 threads corresponds to the effective parallel efficiency of 0.65 based on the number of physical cores. One 
way to reduce the negative performance issues due to the NUMA architecture is to use message passing interface (MPI) for 
each CPU of the node. This strategy will also allow to run simulations on multiple nodes.

To better evaluate the impact of memory access on operations Table 2 presents the averaged time per iteration and the 
percentage of time spend in each step of the EUPIC cycle. It can be seen that the most time is spent in the particle motion 
algorithm. The remaining time is spent in charge assignment, potential solver using GMRES and electric field interpolation, 
and particle velocity update. As the number of threads increases the percentage of time spent in charge assignment, particle 
motion and electric field interpolation decreases while the percentage of time spent in the potential solver increases. This 
indicates worse parallel efficiency of the GMRES solver. This is partially due to the usage of the ILU(0) preconditioner which 
considerably reduces the number of operations but has inherit data dependencies that lead to low parallel efficiency as has 
been reported in the literature [25]. Another reason is the aforementioned NUMA memory design effects since GMRES data 
correspond to one CPU. It should be noted that our choice of the relative tolerance in Eqs. (51) and (52) corresponds to the 
machine precision error at most of the nodes in the domain. Using lower tolerance will decrease the number of operations 
required to converge and speedup the simulations even more.

6. EUPIC simulation of the plasma flow over a CubeSat in LEO

In the final example, EUPIC is used for the simulation of the plasma flow over a CubeSat shown in Fig. 15 [30,31]. 
The CubeSat features an instrument for in-situ measurements in the front unit and an electric propulsion system in the 
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Fig. 15. CubeSat used in EUPIC simulation (a) and EUPIC surface grid (b).

Fig. 16. Computational domain used in the EUPIC simulation of the flow over a CubeSat.

last unit used for attitude and orbital control. In order to evaluate the operation of the instrument it is required to obtain 
preflight predictions of the incoming fluxes of O+ , H+ , and electrons as well as the distribution of the electric potential 
around the CubeSat. To accomplish this we simulate the CubeSat with surface mounted solar panel as shown in Fig. 15. 
In this configuration the geometrical features of the CubeSat include closed surfaces formed by the solar arrays and the 
aft section which is open and houses the propulsion system. The EUPIC computational domain is a rectangular region of 
1 m × 1 m × 3 m shown in Fig. 16 and is discretized with 1.25 × 106 cells which scale with the local Debye length. The 
plasma flow corresponds to 800-km conditions with nO+ = 9.06 × 109 m−3, nH+ = 2.44 × 109 m−3, ne = 1.23 × 1010 m−3, 
Te = 2243.1 K, TO+ = TH+ = 1238.5 K [32]. The particles are injected with velocity V x = 0, V y = 0, V z = 7455 m/s from 
the left as shown in Fig. 16. These conditions result in a mesothermal ion flow where the thermal speed of electrons 
Vth,e � V z > Vth,i . The potential boundary conditions are Dirichlet with φ = 0 V on the far field and floating at the CubeSat 
surface. The simulation was performed with �t = 10−8 s and a total of 1.5 × 108 computational particles. The simulation 
was run until steady state, established by the total masses of the plasma components in the domain. After reaching steady 
state 200 samples were collected to generate the sampled-averaged fields.

Fig. 17 shows the potential distribution with the formation of a sheath region surrounding the CubeSat. The conducting 
surfaces reach a floating potential of −0.39 V with respect to unperturbed plasma consistent with simulation results of 
a 1.5 Unit CubeSat performed with the PIC Spacecraft Plasma Interaction Software (SPIS) [33]. The total charge density in 
Fig. 18a and Fig. 19a is positive in the vicinity of the CubeSat and shows a negative region in its wake. The electron density 
in Fig. 18b and Fig. 19b shows a depletion region in the sheath region of the CubeSat and in its near-wake region. These 
features are qualitatively similar to those from SPIS simulations [33]. Fig. 18c–d and Fig. 19c–d show that both H+ and O+
ions show the formation of a wake region and an ion-focusing region which is more prominent for the heavier O+ ions. 
These results are consistent with those from 2d and 3d PIC simulations [33,34].

7. Conclusions

This paper presents the mathematical formulation and a parallelized implementation of an electrostatic unstructured 
Particle-in-Cell method on arbitrary tetrahedral grids (EUPIC). This implementation provides the ability to simulate plasmas 
in arbitrary geometries using readily available grid generators.

The electric potential in EUPIC is evaluated on cell vertices using a finite volume Multi-Point Flux Approxima-
tion of Gauss’ law applied to the indirect dual cell. The Dirichlet, Neumann and external circuit boundary conditions 
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Fig. 17. Potential (V) on the (X = 0, Y , Z ) plane from the EUPIC simulation of the plasma flow around a CubeSat in LEO (a) and near the CubeSat surface (b).

Fig. 18. Flowfield properties on the (X = 0, Y , Z ) plane from EUPIC simulation of the plasma flow around a CubeSat in LEO. Total charge density (a), electron 
number density (b), H+ number density (c), O+ number density (d).

are derived by applying Gauss’ law to the surface tetrahedra. The resulting non-symmetric system of the sparse lin-
ear equations for the nodal potential is solved with a restarted GMRES with ILU(0) preconditioner algorithm. This al-
gorithm is parallelized using a combination of node coloring and level scheduling approaches. The electric field on 
vertices is obtained using the gradient theorem applied to the indirect dual cell. Boundary conditions and the algo-
rithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured tetrahedral 
grids.

The verification and error analysis of EUPIC was performed using analytic solutions of Laplace’s equation for a grounded 
sphere in vacuum with an applied uniform electric field and of Poisson’s equation for a stationary ion cloud with linearly 
varying number density. Grid sensitivity analysis quantifies the L2 and L∞ norms of the relative error in potential, field, 
and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of con-
vergence for the potential and first order of convergence for the electric field and charge density. The simulation of an 
electron motion in a stationary ion cloud with linearly varying charge density was used to investigate the energy and mo-
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Fig. 19. Flowfield properties on the (X = 0, Y , Z ) plane near the CubeSat surface from EUPIC simulation of the plasma flow around a CubeSat in LEO. Total 
charge density (a), electron number density (b), H+ number density (c), O+ number density (d).

mentum conservation properties of the EUPIC and to perform temporal sensitivity analysis. Results show that the motion 
of an electron is harmonic with almost constant amplitudes of the translational energy and x-component of momentum 
with minimal dependence on the time step for times up to 113 ω−1

e corresponding to three periods of oscillation. The 
effects of the average number of particles per cell, grid scaling, and timestep on the numerical heating, the slowing-down 
time, and the deflection times were investigated by considering the evolution of a fully ionized two-component plasma 
in a cube with periodic conditions for particles at all sides and zero potential at the boundaries. The results show that 
heating, slowing down, and deflection times increase almost linearly with increasing average number of computational par-
ticles per cell. The cell size as observed by EUPIC simulations has a strong effect on the heating time. Halving a cell size 
from �r = λDe to �r = 0.5λDe leads to an order of magnitude increase in the heating time. It is also found that decreas-
ing the time step increases the heating time in a non monotonic fashion. The results show that both slowing down and 
deflection times are at least three times lower than the heating time. EUPIC simulations of current collection by Lang-
muir probes are used for validation with Laframboise numerical results which have been validated experimentally [20]. 
The EUPIC currents are found to be in very good agreement for a wide range of probe to Debye length rations cover-
ing the thin sheath to the OML regimes and normalized potential to temperature ratios in the range from −25 to 25. 
Current collection by a cylindrical Langmuir probe in the thin sheath regime was used to study parallelization efficiency 
of the EUPIC code. It was found that the performance strongly depends on how threads are bound to CPU cores. For 
up to 8 cores the parallelization efficiency is more than 80% and it monotonically decreases as the number of threads 
increases due to NUMA memory design and hyper-threading technology effects. The final test case demonstrates the abil-
ity of EUPIC to simulate complex geometrical bodies embedded in flowing multi-species plasmas. The test case involves 
the EUPIC simulation of the plasma flow over a CubeSat under LEO conditions. EUPIC results show the structure of the 
ion and electron wakes, the formation of ion enhancement regions in the wake, and the potential structure. The EUPIC 
results are quantitatively and qualitatively consistent with previous 2D and 3D PIC investigations over simpler geome-
tries.
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